1 /* 2 * Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "interpreter/interpreter.hpp" 28 #include "interpreter/interpreterRuntime.hpp" 29 #include "interpreter/templateTable.hpp" 30 #include "memory/universe.inline.hpp" 31 #include "oops/methodData.hpp" 32 #include "oops/objArrayKlass.hpp" 33 #include "oops/oop.inline.hpp" 34 #include "prims/methodHandles.hpp" 35 #include "runtime/sharedRuntime.hpp" 36 #include "runtime/stubRoutines.hpp" 37 #include "runtime/synchronizer.hpp" 38 #include "utilities/macros.hpp" 39 40 #ifndef CC_INTERP 41 42 #define __ _masm-> 43 44 // Platform-dependent initialization 45 46 void TemplateTable::pd_initialize() { 47 // No amd64 specific initialization 48 } 49 50 // Address computation: local variables 51 52 static inline Address iaddress(int n) { 53 return Address(r14, Interpreter::local_offset_in_bytes(n)); 54 } 55 56 static inline Address laddress(int n) { 57 return iaddress(n + 1); 58 } 59 60 static inline Address faddress(int n) { 61 return iaddress(n); 62 } 63 64 static inline Address daddress(int n) { 65 return laddress(n); 66 } 67 68 static inline Address aaddress(int n) { 69 return iaddress(n); 70 } 71 72 static inline Address iaddress(Register r) { 73 return Address(r14, r, Address::times_8); 74 } 75 76 static inline Address laddress(Register r) { 77 return Address(r14, r, Address::times_8, Interpreter::local_offset_in_bytes(1)); 78 } 79 80 static inline Address faddress(Register r) { 81 return iaddress(r); 82 } 83 84 static inline Address daddress(Register r) { 85 return laddress(r); 86 } 87 88 static inline Address aaddress(Register r) { 89 return iaddress(r); 90 } 91 92 static inline Address at_rsp() { 93 return Address(rsp, 0); 94 } 95 96 // At top of Java expression stack which may be different than esp(). It 97 // isn't for category 1 objects. 98 static inline Address at_tos () { 99 return Address(rsp, Interpreter::expr_offset_in_bytes(0)); 100 } 101 102 static inline Address at_tos_p1() { 103 return Address(rsp, Interpreter::expr_offset_in_bytes(1)); 104 } 105 106 static inline Address at_tos_p2() { 107 return Address(rsp, Interpreter::expr_offset_in_bytes(2)); 108 } 109 110 // Condition conversion 111 static Assembler::Condition j_not(TemplateTable::Condition cc) { 112 switch (cc) { 113 case TemplateTable::equal : return Assembler::notEqual; 114 case TemplateTable::not_equal : return Assembler::equal; 115 case TemplateTable::less : return Assembler::greaterEqual; 116 case TemplateTable::less_equal : return Assembler::greater; 117 case TemplateTable::greater : return Assembler::lessEqual; 118 case TemplateTable::greater_equal: return Assembler::less; 119 } 120 ShouldNotReachHere(); 121 return Assembler::zero; 122 } 123 124 125 // Miscelaneous helper routines 126 // Store an oop (or NULL) at the address described by obj. 127 // If val == noreg this means store a NULL 128 129 static void do_oop_store(InterpreterMacroAssembler* _masm, 130 Address obj, 131 Register val, 132 BarrierSet::Name barrier, 133 bool precise) { 134 assert(val == noreg || val == rax, "parameter is just for looks"); 135 switch (barrier) { 136 #if INCLUDE_ALL_GCS 137 case BarrierSet::G1SATBCT: 138 case BarrierSet::G1SATBCTLogging: 139 { 140 // flatten object address if needed 141 if (obj.index() == noreg && obj.disp() == 0) { 142 if (obj.base() != rdx) { 143 __ movq(rdx, obj.base()); 144 } 145 } else { 146 __ leaq(rdx, obj); 147 } 148 __ g1_write_barrier_pre(rdx /* obj */, 149 rbx /* pre_val */, 150 r15_thread /* thread */, 151 r8 /* tmp */, 152 val != noreg /* tosca_live */, 153 false /* expand_call */); 154 if (val == noreg) { 155 __ store_heap_oop_null(Address(rdx, 0)); 156 } else { 157 // G1 barrier needs uncompressed oop for region cross check. 158 Register new_val = val; 159 if (UseCompressedOops) { 160 new_val = rbx; 161 __ movptr(new_val, val); 162 } 163 __ store_heap_oop(Address(rdx, 0), val); 164 __ g1_write_barrier_post(rdx /* store_adr */, 165 new_val /* new_val */, 166 r15_thread /* thread */, 167 r8 /* tmp */, 168 rbx /* tmp2 */); 169 } 170 } 171 break; 172 #endif // INCLUDE_ALL_GCS 173 case BarrierSet::CardTableModRef: 174 case BarrierSet::CardTableExtension: 175 { 176 if (val == noreg) { 177 __ store_heap_oop_null(obj); 178 } else { 179 __ store_heap_oop(obj, val); 180 // flatten object address if needed 181 if (!precise || (obj.index() == noreg && obj.disp() == 0)) { 182 __ store_check(obj.base()); 183 } else { 184 __ leaq(rdx, obj); 185 __ store_check(rdx); 186 } 187 } 188 } 189 break; 190 case BarrierSet::ModRef: 191 case BarrierSet::Other: 192 if (val == noreg) { 193 __ store_heap_oop_null(obj); 194 } else { 195 __ store_heap_oop(obj, val); 196 } 197 break; 198 default : 199 ShouldNotReachHere(); 200 201 } 202 } 203 204 Address TemplateTable::at_bcp(int offset) { 205 assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); 206 return Address(r13, offset); 207 } 208 209 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg, 210 Register temp_reg, bool load_bc_into_bc_reg/*=true*/, 211 int byte_no) { 212 if (!RewriteBytecodes) return; 213 Label L_patch_done; 214 215 switch (bc) { 216 case Bytecodes::_fast_aputfield: 217 case Bytecodes::_fast_bputfield: 218 case Bytecodes::_fast_zputfield: 219 case Bytecodes::_fast_cputfield: 220 case Bytecodes::_fast_dputfield: 221 case Bytecodes::_fast_fputfield: 222 case Bytecodes::_fast_iputfield: 223 case Bytecodes::_fast_lputfield: 224 case Bytecodes::_fast_sputfield: 225 { 226 // We skip bytecode quickening for putfield instructions when 227 // the put_code written to the constant pool cache is zero. 228 // This is required so that every execution of this instruction 229 // calls out to InterpreterRuntime::resolve_get_put to do 230 // additional, required work. 231 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 232 assert(load_bc_into_bc_reg, "we use bc_reg as temp"); 233 __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1); 234 __ movl(bc_reg, bc); 235 __ cmpl(temp_reg, (int) 0); 236 __ jcc(Assembler::zero, L_patch_done); // don't patch 237 } 238 break; 239 default: 240 assert(byte_no == -1, "sanity"); 241 // the pair bytecodes have already done the load. 242 if (load_bc_into_bc_reg) { 243 __ movl(bc_reg, bc); 244 } 245 } 246 247 if (JvmtiExport::can_post_breakpoint()) { 248 Label L_fast_patch; 249 // if a breakpoint is present we can't rewrite the stream directly 250 __ movzbl(temp_reg, at_bcp(0)); 251 __ cmpl(temp_reg, Bytecodes::_breakpoint); 252 __ jcc(Assembler::notEqual, L_fast_patch); 253 __ get_method(temp_reg); 254 // Let breakpoint table handling rewrite to quicker bytecode 255 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, r13, bc_reg); 256 #ifndef ASSERT 257 __ jmpb(L_patch_done); 258 #else 259 __ jmp(L_patch_done); 260 #endif 261 __ bind(L_fast_patch); 262 } 263 264 #ifdef ASSERT 265 Label L_okay; 266 __ load_unsigned_byte(temp_reg, at_bcp(0)); 267 __ cmpl(temp_reg, (int) Bytecodes::java_code(bc)); 268 __ jcc(Assembler::equal, L_okay); 269 __ cmpl(temp_reg, bc_reg); 270 __ jcc(Assembler::equal, L_okay); 271 __ stop("patching the wrong bytecode"); 272 __ bind(L_okay); 273 #endif 274 275 // patch bytecode 276 __ movb(at_bcp(0), bc_reg); 277 __ bind(L_patch_done); 278 } 279 280 281 // Individual instructions 282 283 void TemplateTable::nop() { 284 transition(vtos, vtos); 285 // nothing to do 286 } 287 288 void TemplateTable::shouldnotreachhere() { 289 transition(vtos, vtos); 290 __ stop("shouldnotreachhere bytecode"); 291 } 292 293 void TemplateTable::aconst_null() { 294 transition(vtos, atos); 295 __ xorl(rax, rax); 296 } 297 298 void TemplateTable::iconst(int value) { 299 transition(vtos, itos); 300 if (value == 0) { 301 __ xorl(rax, rax); 302 } else { 303 __ movl(rax, value); 304 } 305 } 306 307 void TemplateTable::lconst(int value) { 308 transition(vtos, ltos); 309 if (value == 0) { 310 __ xorl(rax, rax); 311 } else { 312 __ movl(rax, value); 313 } 314 } 315 316 void TemplateTable::fconst(int value) { 317 transition(vtos, ftos); 318 static float one = 1.0f, two = 2.0f; 319 switch (value) { 320 case 0: 321 __ xorps(xmm0, xmm0); 322 break; 323 case 1: 324 __ movflt(xmm0, ExternalAddress((address) &one)); 325 break; 326 case 2: 327 __ movflt(xmm0, ExternalAddress((address) &two)); 328 break; 329 default: 330 ShouldNotReachHere(); 331 break; 332 } 333 } 334 335 void TemplateTable::dconst(int value) { 336 transition(vtos, dtos); 337 static double one = 1.0; 338 switch (value) { 339 case 0: 340 __ xorpd(xmm0, xmm0); 341 break; 342 case 1: 343 __ movdbl(xmm0, ExternalAddress((address) &one)); 344 break; 345 default: 346 ShouldNotReachHere(); 347 break; 348 } 349 } 350 351 void TemplateTable::bipush() { 352 transition(vtos, itos); 353 __ load_signed_byte(rax, at_bcp(1)); 354 } 355 356 void TemplateTable::sipush() { 357 transition(vtos, itos); 358 __ load_unsigned_short(rax, at_bcp(1)); 359 __ bswapl(rax); 360 __ sarl(rax, 16); 361 } 362 363 void TemplateTable::ldc(bool wide) { 364 transition(vtos, vtos); 365 Label call_ldc, notFloat, notClass, Done; 366 367 if (wide) { 368 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 369 } else { 370 __ load_unsigned_byte(rbx, at_bcp(1)); 371 } 372 373 __ get_cpool_and_tags(rcx, rax); 374 const int base_offset = ConstantPool::header_size() * wordSize; 375 const int tags_offset = Array<u1>::base_offset_in_bytes(); 376 377 // get type 378 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset)); 379 380 // unresolved class - get the resolved class 381 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass); 382 __ jccb(Assembler::equal, call_ldc); 383 384 // unresolved class in error state - call into runtime to throw the error 385 // from the first resolution attempt 386 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError); 387 __ jccb(Assembler::equal, call_ldc); 388 389 // resolved class - need to call vm to get java mirror of the class 390 __ cmpl(rdx, JVM_CONSTANT_Class); 391 __ jcc(Assembler::notEqual, notClass); 392 393 __ bind(call_ldc); 394 __ movl(c_rarg1, wide); 395 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1); 396 __ push_ptr(rax); 397 __ verify_oop(rax); 398 __ jmp(Done); 399 400 __ bind(notClass); 401 __ cmpl(rdx, JVM_CONSTANT_Float); 402 __ jccb(Assembler::notEqual, notFloat); 403 // ftos 404 __ movflt(xmm0, Address(rcx, rbx, Address::times_8, base_offset)); 405 __ push_f(); 406 __ jmp(Done); 407 408 __ bind(notFloat); 409 #ifdef ASSERT 410 { 411 Label L; 412 __ cmpl(rdx, JVM_CONSTANT_Integer); 413 __ jcc(Assembler::equal, L); 414 // String and Object are rewritten to fast_aldc 415 __ stop("unexpected tag type in ldc"); 416 __ bind(L); 417 } 418 #endif 419 // itos JVM_CONSTANT_Integer only 420 __ movl(rax, Address(rcx, rbx, Address::times_8, base_offset)); 421 __ push_i(rax); 422 __ bind(Done); 423 } 424 425 // Fast path for caching oop constants. 426 void TemplateTable::fast_aldc(bool wide) { 427 transition(vtos, atos); 428 429 Register result = rax; 430 Register tmp = rdx; 431 int index_size = wide ? sizeof(u2) : sizeof(u1); 432 433 Label resolved; 434 435 // We are resolved if the resolved reference cache entry contains a 436 // non-null object (String, MethodType, etc.) 437 assert_different_registers(result, tmp); 438 __ get_cache_index_at_bcp(tmp, 1, index_size); 439 __ load_resolved_reference_at_index(result, tmp); 440 __ testl(result, result); 441 __ jcc(Assembler::notZero, resolved); 442 443 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 444 445 // first time invocation - must resolve first 446 __ movl(tmp, (int)bytecode()); 447 __ call_VM(result, entry, tmp); 448 449 __ bind(resolved); 450 451 if (VerifyOops) { 452 __ verify_oop(result); 453 } 454 } 455 456 void TemplateTable::ldc2_w() { 457 transition(vtos, vtos); 458 Label Long, Done; 459 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 460 461 __ get_cpool_and_tags(rcx, rax); 462 const int base_offset = ConstantPool::header_size() * wordSize; 463 const int tags_offset = Array<u1>::base_offset_in_bytes(); 464 465 // get type 466 __ cmpb(Address(rax, rbx, Address::times_1, tags_offset), 467 JVM_CONSTANT_Double); 468 __ jccb(Assembler::notEqual, Long); 469 // dtos 470 __ movdbl(xmm0, Address(rcx, rbx, Address::times_8, base_offset)); 471 __ push_d(); 472 __ jmpb(Done); 473 474 __ bind(Long); 475 // ltos 476 __ movq(rax, Address(rcx, rbx, Address::times_8, base_offset)); 477 __ push_l(); 478 479 __ bind(Done); 480 } 481 482 void TemplateTable::locals_index(Register reg, int offset) { 483 __ load_unsigned_byte(reg, at_bcp(offset)); 484 __ negptr(reg); 485 } 486 487 void TemplateTable::iload() { 488 transition(vtos, itos); 489 if (RewriteFrequentPairs) { 490 Label rewrite, done; 491 const Register bc = c_rarg3; 492 assert(rbx != bc, "register damaged"); 493 494 // get next byte 495 __ load_unsigned_byte(rbx, 496 at_bcp(Bytecodes::length_for(Bytecodes::_iload))); 497 // if _iload, wait to rewrite to iload2. We only want to rewrite the 498 // last two iloads in a pair. Comparing against fast_iload means that 499 // the next bytecode is neither an iload or a caload, and therefore 500 // an iload pair. 501 __ cmpl(rbx, Bytecodes::_iload); 502 __ jcc(Assembler::equal, done); 503 504 __ cmpl(rbx, Bytecodes::_fast_iload); 505 __ movl(bc, Bytecodes::_fast_iload2); 506 __ jccb(Assembler::equal, rewrite); 507 508 // if _caload, rewrite to fast_icaload 509 __ cmpl(rbx, Bytecodes::_caload); 510 __ movl(bc, Bytecodes::_fast_icaload); 511 __ jccb(Assembler::equal, rewrite); 512 513 // rewrite so iload doesn't check again. 514 __ movl(bc, Bytecodes::_fast_iload); 515 516 // rewrite 517 // bc: fast bytecode 518 __ bind(rewrite); 519 patch_bytecode(Bytecodes::_iload, bc, rbx, false); 520 __ bind(done); 521 } 522 523 // Get the local value into tos 524 locals_index(rbx); 525 __ movl(rax, iaddress(rbx)); 526 } 527 528 void TemplateTable::fast_iload2() { 529 transition(vtos, itos); 530 locals_index(rbx); 531 __ movl(rax, iaddress(rbx)); 532 __ push(itos); 533 locals_index(rbx, 3); 534 __ movl(rax, iaddress(rbx)); 535 } 536 537 void TemplateTable::fast_iload() { 538 transition(vtos, itos); 539 locals_index(rbx); 540 __ movl(rax, iaddress(rbx)); 541 } 542 543 void TemplateTable::lload() { 544 transition(vtos, ltos); 545 locals_index(rbx); 546 __ movq(rax, laddress(rbx)); 547 } 548 549 void TemplateTable::fload() { 550 transition(vtos, ftos); 551 locals_index(rbx); 552 __ movflt(xmm0, faddress(rbx)); 553 } 554 555 void TemplateTable::dload() { 556 transition(vtos, dtos); 557 locals_index(rbx); 558 __ movdbl(xmm0, daddress(rbx)); 559 } 560 561 void TemplateTable::aload() { 562 transition(vtos, atos); 563 locals_index(rbx); 564 __ movptr(rax, aaddress(rbx)); 565 } 566 567 void TemplateTable::locals_index_wide(Register reg) { 568 __ load_unsigned_short(reg, at_bcp(2)); 569 __ bswapl(reg); 570 __ shrl(reg, 16); 571 __ negptr(reg); 572 } 573 574 void TemplateTable::wide_iload() { 575 transition(vtos, itos); 576 locals_index_wide(rbx); 577 __ movl(rax, iaddress(rbx)); 578 } 579 580 void TemplateTable::wide_lload() { 581 transition(vtos, ltos); 582 locals_index_wide(rbx); 583 __ movq(rax, laddress(rbx)); 584 } 585 586 void TemplateTable::wide_fload() { 587 transition(vtos, ftos); 588 locals_index_wide(rbx); 589 __ movflt(xmm0, faddress(rbx)); 590 } 591 592 void TemplateTable::wide_dload() { 593 transition(vtos, dtos); 594 locals_index_wide(rbx); 595 __ movdbl(xmm0, daddress(rbx)); 596 } 597 598 void TemplateTable::wide_aload() { 599 transition(vtos, atos); 600 locals_index_wide(rbx); 601 __ movptr(rax, aaddress(rbx)); 602 } 603 604 void TemplateTable::index_check(Register array, Register index) { 605 // destroys rbx 606 // check array 607 __ null_check(array, arrayOopDesc::length_offset_in_bytes()); 608 // sign extend index for use by indexed load 609 __ movl2ptr(index, index); 610 // check index 611 __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes())); 612 if (index != rbx) { 613 // ??? convention: move aberrant index into ebx for exception message 614 assert(rbx != array, "different registers"); 615 __ movl(rbx, index); 616 } 617 __ jump_cc(Assembler::aboveEqual, 618 ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry)); 619 } 620 621 void TemplateTable::iaload() { 622 transition(itos, itos); 623 __ pop_ptr(rdx); 624 // eax: index 625 // rdx: array 626 index_check(rdx, rax); // kills rbx 627 __ movl(rax, Address(rdx, rax, 628 Address::times_4, 629 arrayOopDesc::base_offset_in_bytes(T_INT))); 630 } 631 632 void TemplateTable::laload() { 633 transition(itos, ltos); 634 __ pop_ptr(rdx); 635 // eax: index 636 // rdx: array 637 index_check(rdx, rax); // kills rbx 638 __ movq(rax, Address(rdx, rbx, 639 Address::times_8, 640 arrayOopDesc::base_offset_in_bytes(T_LONG))); 641 } 642 643 void TemplateTable::faload() { 644 transition(itos, ftos); 645 __ pop_ptr(rdx); 646 // eax: index 647 // rdx: array 648 index_check(rdx, rax); // kills rbx 649 __ movflt(xmm0, Address(rdx, rax, 650 Address::times_4, 651 arrayOopDesc::base_offset_in_bytes(T_FLOAT))); 652 } 653 654 void TemplateTable::daload() { 655 transition(itos, dtos); 656 __ pop_ptr(rdx); 657 // eax: index 658 // rdx: array 659 index_check(rdx, rax); // kills rbx 660 __ movdbl(xmm0, Address(rdx, rax, 661 Address::times_8, 662 arrayOopDesc::base_offset_in_bytes(T_DOUBLE))); 663 } 664 665 void TemplateTable::aaload() { 666 transition(itos, atos); 667 __ pop_ptr(rdx); 668 // eax: index 669 // rdx: array 670 index_check(rdx, rax); // kills rbx 671 __ load_heap_oop(rax, Address(rdx, rax, 672 UseCompressedOops ? Address::times_4 : Address::times_8, 673 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); 674 } 675 676 void TemplateTable::baload() { 677 transition(itos, itos); 678 __ pop_ptr(rdx); 679 // eax: index 680 // rdx: array 681 index_check(rdx, rax); // kills rbx 682 __ load_signed_byte(rax, 683 Address(rdx, rax, 684 Address::times_1, 685 arrayOopDesc::base_offset_in_bytes(T_BYTE))); 686 } 687 688 void TemplateTable::caload() { 689 transition(itos, itos); 690 __ pop_ptr(rdx); 691 // eax: index 692 // rdx: array 693 index_check(rdx, rax); // kills rbx 694 __ load_unsigned_short(rax, 695 Address(rdx, rax, 696 Address::times_2, 697 arrayOopDesc::base_offset_in_bytes(T_CHAR))); 698 } 699 700 // iload followed by caload frequent pair 701 void TemplateTable::fast_icaload() { 702 transition(vtos, itos); 703 // load index out of locals 704 locals_index(rbx); 705 __ movl(rax, iaddress(rbx)); 706 707 // eax: index 708 // rdx: array 709 __ pop_ptr(rdx); 710 index_check(rdx, rax); // kills rbx 711 __ load_unsigned_short(rax, 712 Address(rdx, rax, 713 Address::times_2, 714 arrayOopDesc::base_offset_in_bytes(T_CHAR))); 715 } 716 717 void TemplateTable::saload() { 718 transition(itos, itos); 719 __ pop_ptr(rdx); 720 // eax: index 721 // rdx: array 722 index_check(rdx, rax); // kills rbx 723 __ load_signed_short(rax, 724 Address(rdx, rax, 725 Address::times_2, 726 arrayOopDesc::base_offset_in_bytes(T_SHORT))); 727 } 728 729 void TemplateTable::iload(int n) { 730 transition(vtos, itos); 731 __ movl(rax, iaddress(n)); 732 } 733 734 void TemplateTable::lload(int n) { 735 transition(vtos, ltos); 736 __ movq(rax, laddress(n)); 737 } 738 739 void TemplateTable::fload(int n) { 740 transition(vtos, ftos); 741 __ movflt(xmm0, faddress(n)); 742 } 743 744 void TemplateTable::dload(int n) { 745 transition(vtos, dtos); 746 __ movdbl(xmm0, daddress(n)); 747 } 748 749 void TemplateTable::aload(int n) { 750 transition(vtos, atos); 751 __ movptr(rax, aaddress(n)); 752 } 753 754 void TemplateTable::aload_0() { 755 transition(vtos, atos); 756 // According to bytecode histograms, the pairs: 757 // 758 // _aload_0, _fast_igetfield 759 // _aload_0, _fast_agetfield 760 // _aload_0, _fast_fgetfield 761 // 762 // occur frequently. If RewriteFrequentPairs is set, the (slow) 763 // _aload_0 bytecode checks if the next bytecode is either 764 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then 765 // rewrites the current bytecode into a pair bytecode; otherwise it 766 // rewrites the current bytecode into _fast_aload_0 that doesn't do 767 // the pair check anymore. 768 // 769 // Note: If the next bytecode is _getfield, the rewrite must be 770 // delayed, otherwise we may miss an opportunity for a pair. 771 // 772 // Also rewrite frequent pairs 773 // aload_0, aload_1 774 // aload_0, iload_1 775 // These bytecodes with a small amount of code are most profitable 776 // to rewrite 777 if (RewriteFrequentPairs) { 778 Label rewrite, done; 779 const Register bc = c_rarg3; 780 assert(rbx != bc, "register damaged"); 781 // get next byte 782 __ load_unsigned_byte(rbx, 783 at_bcp(Bytecodes::length_for(Bytecodes::_aload_0))); 784 785 // do actual aload_0 786 aload(0); 787 788 // if _getfield then wait with rewrite 789 __ cmpl(rbx, Bytecodes::_getfield); 790 __ jcc(Assembler::equal, done); 791 792 // if _igetfield then reqrite to _fast_iaccess_0 793 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == 794 Bytecodes::_aload_0, 795 "fix bytecode definition"); 796 __ cmpl(rbx, Bytecodes::_fast_igetfield); 797 __ movl(bc, Bytecodes::_fast_iaccess_0); 798 __ jccb(Assembler::equal, rewrite); 799 800 // if _agetfield then reqrite to _fast_aaccess_0 801 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == 802 Bytecodes::_aload_0, 803 "fix bytecode definition"); 804 __ cmpl(rbx, Bytecodes::_fast_agetfield); 805 __ movl(bc, Bytecodes::_fast_aaccess_0); 806 __ jccb(Assembler::equal, rewrite); 807 808 // if _fgetfield then reqrite to _fast_faccess_0 809 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == 810 Bytecodes::_aload_0, 811 "fix bytecode definition"); 812 __ cmpl(rbx, Bytecodes::_fast_fgetfield); 813 __ movl(bc, Bytecodes::_fast_faccess_0); 814 __ jccb(Assembler::equal, rewrite); 815 816 // else rewrite to _fast_aload0 817 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == 818 Bytecodes::_aload_0, 819 "fix bytecode definition"); 820 __ movl(bc, Bytecodes::_fast_aload_0); 821 822 // rewrite 823 // bc: fast bytecode 824 __ bind(rewrite); 825 patch_bytecode(Bytecodes::_aload_0, bc, rbx, false); 826 827 __ bind(done); 828 } else { 829 aload(0); 830 } 831 } 832 833 void TemplateTable::istore() { 834 transition(itos, vtos); 835 locals_index(rbx); 836 __ movl(iaddress(rbx), rax); 837 } 838 839 void TemplateTable::lstore() { 840 transition(ltos, vtos); 841 locals_index(rbx); 842 __ movq(laddress(rbx), rax); 843 } 844 845 void TemplateTable::fstore() { 846 transition(ftos, vtos); 847 locals_index(rbx); 848 __ movflt(faddress(rbx), xmm0); 849 } 850 851 void TemplateTable::dstore() { 852 transition(dtos, vtos); 853 locals_index(rbx); 854 __ movdbl(daddress(rbx), xmm0); 855 } 856 857 void TemplateTable::astore() { 858 transition(vtos, vtos); 859 __ pop_ptr(rax); 860 locals_index(rbx); 861 __ movptr(aaddress(rbx), rax); 862 } 863 864 void TemplateTable::wide_istore() { 865 transition(vtos, vtos); 866 __ pop_i(); 867 locals_index_wide(rbx); 868 __ movl(iaddress(rbx), rax); 869 } 870 871 void TemplateTable::wide_lstore() { 872 transition(vtos, vtos); 873 __ pop_l(); 874 locals_index_wide(rbx); 875 __ movq(laddress(rbx), rax); 876 } 877 878 void TemplateTable::wide_fstore() { 879 transition(vtos, vtos); 880 __ pop_f(); 881 locals_index_wide(rbx); 882 __ movflt(faddress(rbx), xmm0); 883 } 884 885 void TemplateTable::wide_dstore() { 886 transition(vtos, vtos); 887 __ pop_d(); 888 locals_index_wide(rbx); 889 __ movdbl(daddress(rbx), xmm0); 890 } 891 892 void TemplateTable::wide_astore() { 893 transition(vtos, vtos); 894 __ pop_ptr(rax); 895 locals_index_wide(rbx); 896 __ movptr(aaddress(rbx), rax); 897 } 898 899 void TemplateTable::iastore() { 900 transition(itos, vtos); 901 __ pop_i(rbx); 902 __ pop_ptr(rdx); 903 // eax: value 904 // ebx: index 905 // rdx: array 906 index_check(rdx, rbx); // prefer index in ebx 907 __ movl(Address(rdx, rbx, 908 Address::times_4, 909 arrayOopDesc::base_offset_in_bytes(T_INT)), 910 rax); 911 } 912 913 void TemplateTable::lastore() { 914 transition(ltos, vtos); 915 __ pop_i(rbx); 916 __ pop_ptr(rdx); 917 // rax: value 918 // ebx: index 919 // rdx: array 920 index_check(rdx, rbx); // prefer index in ebx 921 __ movq(Address(rdx, rbx, 922 Address::times_8, 923 arrayOopDesc::base_offset_in_bytes(T_LONG)), 924 rax); 925 } 926 927 void TemplateTable::fastore() { 928 transition(ftos, vtos); 929 __ pop_i(rbx); 930 __ pop_ptr(rdx); 931 // xmm0: value 932 // ebx: index 933 // rdx: array 934 index_check(rdx, rbx); // prefer index in ebx 935 __ movflt(Address(rdx, rbx, 936 Address::times_4, 937 arrayOopDesc::base_offset_in_bytes(T_FLOAT)), 938 xmm0); 939 } 940 941 void TemplateTable::dastore() { 942 transition(dtos, vtos); 943 __ pop_i(rbx); 944 __ pop_ptr(rdx); 945 // xmm0: value 946 // ebx: index 947 // rdx: array 948 index_check(rdx, rbx); // prefer index in ebx 949 __ movdbl(Address(rdx, rbx, 950 Address::times_8, 951 arrayOopDesc::base_offset_in_bytes(T_DOUBLE)), 952 xmm0); 953 } 954 955 void TemplateTable::aastore() { 956 Label is_null, ok_is_subtype, done; 957 transition(vtos, vtos); 958 // stack: ..., array, index, value 959 __ movptr(rax, at_tos()); // value 960 __ movl(rcx, at_tos_p1()); // index 961 __ movptr(rdx, at_tos_p2()); // array 962 963 Address element_address(rdx, rcx, 964 UseCompressedOops? Address::times_4 : Address::times_8, 965 arrayOopDesc::base_offset_in_bytes(T_OBJECT)); 966 967 index_check(rdx, rcx); // kills rbx 968 // do array store check - check for NULL value first 969 __ testptr(rax, rax); 970 __ jcc(Assembler::zero, is_null); 971 972 // Move subklass into rbx 973 __ load_klass(rbx, rax); 974 // Move superklass into rax 975 __ load_klass(rax, rdx); 976 __ movptr(rax, Address(rax, 977 ObjArrayKlass::element_klass_offset())); 978 // Compress array + index*oopSize + 12 into a single register. Frees rcx. 979 __ lea(rdx, element_address); 980 981 // Generate subtype check. Blows rcx, rdi 982 // Superklass in rax. Subklass in rbx. 983 __ gen_subtype_check(rbx, ok_is_subtype); 984 985 // Come here on failure 986 // object is at TOS 987 __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry)); 988 989 // Come here on success 990 __ bind(ok_is_subtype); 991 992 // Get the value we will store 993 __ movptr(rax, at_tos()); 994 // Now store using the appropriate barrier 995 do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true); 996 __ jmp(done); 997 998 // Have a NULL in rax, rdx=array, ecx=index. Store NULL at ary[idx] 999 __ bind(is_null); 1000 __ profile_null_seen(rbx); 1001 1002 // Store a NULL 1003 do_oop_store(_masm, element_address, noreg, _bs->kind(), true); 1004 1005 // Pop stack arguments 1006 __ bind(done); 1007 __ addptr(rsp, 3 * Interpreter::stackElementSize); 1008 } 1009 1010 void TemplateTable::bastore() { 1011 transition(itos, vtos); 1012 __ pop_i(rbx); 1013 __ pop_ptr(rdx); 1014 // eax: value 1015 // ebx: index 1016 // rdx: array 1017 index_check(rdx, rbx); // prefer index in ebx 1018 // Need to check whether array is boolean or byte 1019 // since both types share the bastore bytecode. 1020 __ load_klass(rcx, rdx); 1021 __ movl(rcx, Address(rcx, Klass::layout_helper_offset())); 1022 int diffbit = Klass::layout_helper_boolean_diffbit(); 1023 __ testl(rcx, diffbit); 1024 Label L_skip; 1025 __ jccb(Assembler::zero, L_skip); 1026 __ andl(rax, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1 1027 __ bind(L_skip); 1028 __ movb(Address(rdx, rbx, 1029 Address::times_1, 1030 arrayOopDesc::base_offset_in_bytes(T_BYTE)), 1031 rax); 1032 } 1033 1034 void TemplateTable::castore() { 1035 transition(itos, vtos); 1036 __ pop_i(rbx); 1037 __ pop_ptr(rdx); 1038 // eax: value 1039 // ebx: index 1040 // rdx: array 1041 index_check(rdx, rbx); // prefer index in ebx 1042 __ movw(Address(rdx, rbx, 1043 Address::times_2, 1044 arrayOopDesc::base_offset_in_bytes(T_CHAR)), 1045 rax); 1046 } 1047 1048 void TemplateTable::sastore() { 1049 castore(); 1050 } 1051 1052 void TemplateTable::istore(int n) { 1053 transition(itos, vtos); 1054 __ movl(iaddress(n), rax); 1055 } 1056 1057 void TemplateTable::lstore(int n) { 1058 transition(ltos, vtos); 1059 __ movq(laddress(n), rax); 1060 } 1061 1062 void TemplateTable::fstore(int n) { 1063 transition(ftos, vtos); 1064 __ movflt(faddress(n), xmm0); 1065 } 1066 1067 void TemplateTable::dstore(int n) { 1068 transition(dtos, vtos); 1069 __ movdbl(daddress(n), xmm0); 1070 } 1071 1072 void TemplateTable::astore(int n) { 1073 transition(vtos, vtos); 1074 __ pop_ptr(rax); 1075 __ movptr(aaddress(n), rax); 1076 } 1077 1078 void TemplateTable::pop() { 1079 transition(vtos, vtos); 1080 __ addptr(rsp, Interpreter::stackElementSize); 1081 } 1082 1083 void TemplateTable::pop2() { 1084 transition(vtos, vtos); 1085 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1086 } 1087 1088 void TemplateTable::dup() { 1089 transition(vtos, vtos); 1090 __ load_ptr(0, rax); 1091 __ push_ptr(rax); 1092 // stack: ..., a, a 1093 } 1094 1095 void TemplateTable::dup_x1() { 1096 transition(vtos, vtos); 1097 // stack: ..., a, b 1098 __ load_ptr( 0, rax); // load b 1099 __ load_ptr( 1, rcx); // load a 1100 __ store_ptr(1, rax); // store b 1101 __ store_ptr(0, rcx); // store a 1102 __ push_ptr(rax); // push b 1103 // stack: ..., b, a, b 1104 } 1105 1106 void TemplateTable::dup_x2() { 1107 transition(vtos, vtos); 1108 // stack: ..., a, b, c 1109 __ load_ptr( 0, rax); // load c 1110 __ load_ptr( 2, rcx); // load a 1111 __ store_ptr(2, rax); // store c in a 1112 __ push_ptr(rax); // push c 1113 // stack: ..., c, b, c, c 1114 __ load_ptr( 2, rax); // load b 1115 __ store_ptr(2, rcx); // store a in b 1116 // stack: ..., c, a, c, c 1117 __ store_ptr(1, rax); // store b in c 1118 // stack: ..., c, a, b, c 1119 } 1120 1121 void TemplateTable::dup2() { 1122 transition(vtos, vtos); 1123 // stack: ..., a, b 1124 __ load_ptr(1, rax); // load a 1125 __ push_ptr(rax); // push a 1126 __ load_ptr(1, rax); // load b 1127 __ push_ptr(rax); // push b 1128 // stack: ..., a, b, a, b 1129 } 1130 1131 void TemplateTable::dup2_x1() { 1132 transition(vtos, vtos); 1133 // stack: ..., a, b, c 1134 __ load_ptr( 0, rcx); // load c 1135 __ load_ptr( 1, rax); // load b 1136 __ push_ptr(rax); // push b 1137 __ push_ptr(rcx); // push c 1138 // stack: ..., a, b, c, b, c 1139 __ store_ptr(3, rcx); // store c in b 1140 // stack: ..., a, c, c, b, c 1141 __ load_ptr( 4, rcx); // load a 1142 __ store_ptr(2, rcx); // store a in 2nd c 1143 // stack: ..., a, c, a, b, c 1144 __ store_ptr(4, rax); // store b in a 1145 // stack: ..., b, c, a, b, c 1146 } 1147 1148 void TemplateTable::dup2_x2() { 1149 transition(vtos, vtos); 1150 // stack: ..., a, b, c, d 1151 __ load_ptr( 0, rcx); // load d 1152 __ load_ptr( 1, rax); // load c 1153 __ push_ptr(rax); // push c 1154 __ push_ptr(rcx); // push d 1155 // stack: ..., a, b, c, d, c, d 1156 __ load_ptr( 4, rax); // load b 1157 __ store_ptr(2, rax); // store b in d 1158 __ store_ptr(4, rcx); // store d in b 1159 // stack: ..., a, d, c, b, c, d 1160 __ load_ptr( 5, rcx); // load a 1161 __ load_ptr( 3, rax); // load c 1162 __ store_ptr(3, rcx); // store a in c 1163 __ store_ptr(5, rax); // store c in a 1164 // stack: ..., c, d, a, b, c, d 1165 } 1166 1167 void TemplateTable::swap() { 1168 transition(vtos, vtos); 1169 // stack: ..., a, b 1170 __ load_ptr( 1, rcx); // load a 1171 __ load_ptr( 0, rax); // load b 1172 __ store_ptr(0, rcx); // store a in b 1173 __ store_ptr(1, rax); // store b in a 1174 // stack: ..., b, a 1175 } 1176 1177 void TemplateTable::iop2(Operation op) { 1178 transition(itos, itos); 1179 switch (op) { 1180 case add : __ pop_i(rdx); __ addl (rax, rdx); break; 1181 case sub : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break; 1182 case mul : __ pop_i(rdx); __ imull(rax, rdx); break; 1183 case _and : __ pop_i(rdx); __ andl (rax, rdx); break; 1184 case _or : __ pop_i(rdx); __ orl (rax, rdx); break; 1185 case _xor : __ pop_i(rdx); __ xorl (rax, rdx); break; 1186 case shl : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax); break; 1187 case shr : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax); break; 1188 case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax); break; 1189 default : ShouldNotReachHere(); 1190 } 1191 } 1192 1193 void TemplateTable::lop2(Operation op) { 1194 transition(ltos, ltos); 1195 switch (op) { 1196 case add : __ pop_l(rdx); __ addptr(rax, rdx); break; 1197 case sub : __ mov(rdx, rax); __ pop_l(rax); __ subptr(rax, rdx); break; 1198 case _and : __ pop_l(rdx); __ andptr(rax, rdx); break; 1199 case _or : __ pop_l(rdx); __ orptr (rax, rdx); break; 1200 case _xor : __ pop_l(rdx); __ xorptr(rax, rdx); break; 1201 default : ShouldNotReachHere(); 1202 } 1203 } 1204 1205 void TemplateTable::idiv() { 1206 transition(itos, itos); 1207 __ movl(rcx, rax); 1208 __ pop_i(rax); 1209 // Note: could xor eax and ecx and compare with (-1 ^ min_int). If 1210 // they are not equal, one could do a normal division (no correction 1211 // needed), which may speed up this implementation for the common case. 1212 // (see also JVM spec., p.243 & p.271) 1213 __ corrected_idivl(rcx); 1214 } 1215 1216 void TemplateTable::irem() { 1217 transition(itos, itos); 1218 __ movl(rcx, rax); 1219 __ pop_i(rax); 1220 // Note: could xor eax and ecx and compare with (-1 ^ min_int). If 1221 // they are not equal, one could do a normal division (no correction 1222 // needed), which may speed up this implementation for the common case. 1223 // (see also JVM spec., p.243 & p.271) 1224 __ corrected_idivl(rcx); 1225 __ movl(rax, rdx); 1226 } 1227 1228 void TemplateTable::lmul() { 1229 transition(ltos, ltos); 1230 __ pop_l(rdx); 1231 __ imulq(rax, rdx); 1232 } 1233 1234 void TemplateTable::ldiv() { 1235 transition(ltos, ltos); 1236 __ mov(rcx, rax); 1237 __ pop_l(rax); 1238 // generate explicit div0 check 1239 __ testq(rcx, rcx); 1240 __ jump_cc(Assembler::zero, 1241 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1242 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1243 // they are not equal, one could do a normal division (no correction 1244 // needed), which may speed up this implementation for the common case. 1245 // (see also JVM spec., p.243 & p.271) 1246 __ corrected_idivq(rcx); // kills rbx 1247 } 1248 1249 void TemplateTable::lrem() { 1250 transition(ltos, ltos); 1251 __ mov(rcx, rax); 1252 __ pop_l(rax); 1253 __ testq(rcx, rcx); 1254 __ jump_cc(Assembler::zero, 1255 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1256 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1257 // they are not equal, one could do a normal division (no correction 1258 // needed), which may speed up this implementation for the common case. 1259 // (see also JVM spec., p.243 & p.271) 1260 __ corrected_idivq(rcx); // kills rbx 1261 __ mov(rax, rdx); 1262 } 1263 1264 void TemplateTable::lshl() { 1265 transition(itos, ltos); 1266 __ movl(rcx, rax); // get shift count 1267 __ pop_l(rax); // get shift value 1268 __ shlq(rax); 1269 } 1270 1271 void TemplateTable::lshr() { 1272 transition(itos, ltos); 1273 __ movl(rcx, rax); // get shift count 1274 __ pop_l(rax); // get shift value 1275 __ sarq(rax); 1276 } 1277 1278 void TemplateTable::lushr() { 1279 transition(itos, ltos); 1280 __ movl(rcx, rax); // get shift count 1281 __ pop_l(rax); // get shift value 1282 __ shrq(rax); 1283 } 1284 1285 void TemplateTable::fop2(Operation op) { 1286 transition(ftos, ftos); 1287 switch (op) { 1288 case add: 1289 __ addss(xmm0, at_rsp()); 1290 __ addptr(rsp, Interpreter::stackElementSize); 1291 break; 1292 case sub: 1293 __ movflt(xmm1, xmm0); 1294 __ pop_f(xmm0); 1295 __ subss(xmm0, xmm1); 1296 break; 1297 case mul: 1298 __ mulss(xmm0, at_rsp()); 1299 __ addptr(rsp, Interpreter::stackElementSize); 1300 break; 1301 case div: 1302 __ movflt(xmm1, xmm0); 1303 __ pop_f(xmm0); 1304 __ divss(xmm0, xmm1); 1305 break; 1306 case rem: 1307 __ movflt(xmm1, xmm0); 1308 __ pop_f(xmm0); 1309 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2); 1310 break; 1311 default: 1312 ShouldNotReachHere(); 1313 break; 1314 } 1315 } 1316 1317 void TemplateTable::dop2(Operation op) { 1318 transition(dtos, dtos); 1319 switch (op) { 1320 case add: 1321 __ addsd(xmm0, at_rsp()); 1322 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1323 break; 1324 case sub: 1325 __ movdbl(xmm1, xmm0); 1326 __ pop_d(xmm0); 1327 __ subsd(xmm0, xmm1); 1328 break; 1329 case mul: 1330 __ mulsd(xmm0, at_rsp()); 1331 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1332 break; 1333 case div: 1334 __ movdbl(xmm1, xmm0); 1335 __ pop_d(xmm0); 1336 __ divsd(xmm0, xmm1); 1337 break; 1338 case rem: 1339 __ movdbl(xmm1, xmm0); 1340 __ pop_d(xmm0); 1341 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2); 1342 break; 1343 default: 1344 ShouldNotReachHere(); 1345 break; 1346 } 1347 } 1348 1349 void TemplateTable::ineg() { 1350 transition(itos, itos); 1351 __ negl(rax); 1352 } 1353 1354 void TemplateTable::lneg() { 1355 transition(ltos, ltos); 1356 __ negq(rax); 1357 } 1358 1359 // Note: 'double' and 'long long' have 32-bits alignment on x86. 1360 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) { 1361 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address 1362 // of 128-bits operands for SSE instructions. 1363 jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF))); 1364 // Store the value to a 128-bits operand. 1365 operand[0] = lo; 1366 operand[1] = hi; 1367 return operand; 1368 } 1369 1370 // Buffer for 128-bits masks used by SSE instructions. 1371 static jlong float_signflip_pool[2*2]; 1372 static jlong double_signflip_pool[2*2]; 1373 1374 void TemplateTable::fneg() { 1375 transition(ftos, ftos); 1376 static jlong *float_signflip = double_quadword(&float_signflip_pool[1], 0x8000000080000000, 0x8000000080000000); 1377 __ xorps(xmm0, ExternalAddress((address) float_signflip)); 1378 } 1379 1380 void TemplateTable::dneg() { 1381 transition(dtos, dtos); 1382 static jlong *double_signflip = double_quadword(&double_signflip_pool[1], 0x8000000000000000, 0x8000000000000000); 1383 __ xorpd(xmm0, ExternalAddress((address) double_signflip)); 1384 } 1385 1386 void TemplateTable::iinc() { 1387 transition(vtos, vtos); 1388 __ load_signed_byte(rdx, at_bcp(2)); // get constant 1389 locals_index(rbx); 1390 __ addl(iaddress(rbx), rdx); 1391 } 1392 1393 void TemplateTable::wide_iinc() { 1394 transition(vtos, vtos); 1395 __ movl(rdx, at_bcp(4)); // get constant 1396 locals_index_wide(rbx); 1397 __ bswapl(rdx); // swap bytes & sign-extend constant 1398 __ sarl(rdx, 16); 1399 __ addl(iaddress(rbx), rdx); 1400 // Note: should probably use only one movl to get both 1401 // the index and the constant -> fix this 1402 } 1403 1404 void TemplateTable::convert() { 1405 // Checking 1406 #ifdef ASSERT 1407 { 1408 TosState tos_in = ilgl; 1409 TosState tos_out = ilgl; 1410 switch (bytecode()) { 1411 case Bytecodes::_i2l: // fall through 1412 case Bytecodes::_i2f: // fall through 1413 case Bytecodes::_i2d: // fall through 1414 case Bytecodes::_i2b: // fall through 1415 case Bytecodes::_i2c: // fall through 1416 case Bytecodes::_i2s: tos_in = itos; break; 1417 case Bytecodes::_l2i: // fall through 1418 case Bytecodes::_l2f: // fall through 1419 case Bytecodes::_l2d: tos_in = ltos; break; 1420 case Bytecodes::_f2i: // fall through 1421 case Bytecodes::_f2l: // fall through 1422 case Bytecodes::_f2d: tos_in = ftos; break; 1423 case Bytecodes::_d2i: // fall through 1424 case Bytecodes::_d2l: // fall through 1425 case Bytecodes::_d2f: tos_in = dtos; break; 1426 default : ShouldNotReachHere(); 1427 } 1428 switch (bytecode()) { 1429 case Bytecodes::_l2i: // fall through 1430 case Bytecodes::_f2i: // fall through 1431 case Bytecodes::_d2i: // fall through 1432 case Bytecodes::_i2b: // fall through 1433 case Bytecodes::_i2c: // fall through 1434 case Bytecodes::_i2s: tos_out = itos; break; 1435 case Bytecodes::_i2l: // fall through 1436 case Bytecodes::_f2l: // fall through 1437 case Bytecodes::_d2l: tos_out = ltos; break; 1438 case Bytecodes::_i2f: // fall through 1439 case Bytecodes::_l2f: // fall through 1440 case Bytecodes::_d2f: tos_out = ftos; break; 1441 case Bytecodes::_i2d: // fall through 1442 case Bytecodes::_l2d: // fall through 1443 case Bytecodes::_f2d: tos_out = dtos; break; 1444 default : ShouldNotReachHere(); 1445 } 1446 transition(tos_in, tos_out); 1447 } 1448 #endif // ASSERT 1449 1450 static const int64_t is_nan = 0x8000000000000000L; 1451 1452 // Conversion 1453 switch (bytecode()) { 1454 case Bytecodes::_i2l: 1455 __ movslq(rax, rax); 1456 break; 1457 case Bytecodes::_i2f: 1458 __ cvtsi2ssl(xmm0, rax); 1459 break; 1460 case Bytecodes::_i2d: 1461 __ cvtsi2sdl(xmm0, rax); 1462 break; 1463 case Bytecodes::_i2b: 1464 __ movsbl(rax, rax); 1465 break; 1466 case Bytecodes::_i2c: 1467 __ movzwl(rax, rax); 1468 break; 1469 case Bytecodes::_i2s: 1470 __ movswl(rax, rax); 1471 break; 1472 case Bytecodes::_l2i: 1473 __ movl(rax, rax); 1474 break; 1475 case Bytecodes::_l2f: 1476 __ cvtsi2ssq(xmm0, rax); 1477 break; 1478 case Bytecodes::_l2d: 1479 __ cvtsi2sdq(xmm0, rax); 1480 break; 1481 case Bytecodes::_f2i: 1482 { 1483 Label L; 1484 __ cvttss2sil(rax, xmm0); 1485 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1486 __ jcc(Assembler::notEqual, L); 1487 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1); 1488 __ bind(L); 1489 } 1490 break; 1491 case Bytecodes::_f2l: 1492 { 1493 Label L; 1494 __ cvttss2siq(rax, xmm0); 1495 // NaN or overflow/underflow? 1496 __ cmp64(rax, ExternalAddress((address) &is_nan)); 1497 __ jcc(Assembler::notEqual, L); 1498 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1); 1499 __ bind(L); 1500 } 1501 break; 1502 case Bytecodes::_f2d: 1503 __ cvtss2sd(xmm0, xmm0); 1504 break; 1505 case Bytecodes::_d2i: 1506 { 1507 Label L; 1508 __ cvttsd2sil(rax, xmm0); 1509 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1510 __ jcc(Assembler::notEqual, L); 1511 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1); 1512 __ bind(L); 1513 } 1514 break; 1515 case Bytecodes::_d2l: 1516 { 1517 Label L; 1518 __ cvttsd2siq(rax, xmm0); 1519 // NaN or overflow/underflow? 1520 __ cmp64(rax, ExternalAddress((address) &is_nan)); 1521 __ jcc(Assembler::notEqual, L); 1522 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1); 1523 __ bind(L); 1524 } 1525 break; 1526 case Bytecodes::_d2f: 1527 __ cvtsd2ss(xmm0, xmm0); 1528 break; 1529 default: 1530 ShouldNotReachHere(); 1531 } 1532 } 1533 1534 void TemplateTable::lcmp() { 1535 transition(ltos, itos); 1536 Label done; 1537 __ pop_l(rdx); 1538 __ cmpq(rdx, rax); 1539 __ movl(rax, -1); 1540 __ jccb(Assembler::less, done); 1541 __ setb(Assembler::notEqual, rax); 1542 __ movzbl(rax, rax); 1543 __ bind(done); 1544 } 1545 1546 void TemplateTable::float_cmp(bool is_float, int unordered_result) { 1547 Label done; 1548 if (is_float) { 1549 // XXX get rid of pop here, use ... reg, mem32 1550 __ pop_f(xmm1); 1551 __ ucomiss(xmm1, xmm0); 1552 } else { 1553 // XXX get rid of pop here, use ... reg, mem64 1554 __ pop_d(xmm1); 1555 __ ucomisd(xmm1, xmm0); 1556 } 1557 if (unordered_result < 0) { 1558 __ movl(rax, -1); 1559 __ jccb(Assembler::parity, done); 1560 __ jccb(Assembler::below, done); 1561 __ setb(Assembler::notEqual, rdx); 1562 __ movzbl(rax, rdx); 1563 } else { 1564 __ movl(rax, 1); 1565 __ jccb(Assembler::parity, done); 1566 __ jccb(Assembler::above, done); 1567 __ movl(rax, 0); 1568 __ jccb(Assembler::equal, done); 1569 __ decrementl(rax); 1570 } 1571 __ bind(done); 1572 } 1573 1574 void TemplateTable::branch(bool is_jsr, bool is_wide) { 1575 __ get_method(rcx); // rcx holds method 1576 __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx 1577 // holds bumped taken count 1578 1579 const ByteSize be_offset = MethodCounters::backedge_counter_offset() + 1580 InvocationCounter::counter_offset(); 1581 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + 1582 InvocationCounter::counter_offset(); 1583 1584 // Load up edx with the branch displacement 1585 if (is_wide) { 1586 __ movl(rdx, at_bcp(1)); 1587 } else { 1588 __ load_signed_short(rdx, at_bcp(1)); 1589 } 1590 __ bswapl(rdx); 1591 1592 if (!is_wide) { 1593 __ sarl(rdx, 16); 1594 } 1595 __ movl2ptr(rdx, rdx); 1596 1597 // Handle all the JSR stuff here, then exit. 1598 // It's much shorter and cleaner than intermingling with the non-JSR 1599 // normal-branch stuff occurring below. 1600 if (is_jsr) { 1601 // Pre-load the next target bytecode into rbx 1602 __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1, 0)); 1603 1604 // compute return address as bci in rax 1605 __ lea(rax, at_bcp((is_wide ? 5 : 3) - 1606 in_bytes(ConstMethod::codes_offset()))); 1607 __ subptr(rax, Address(rcx, Method::const_offset())); 1608 // Adjust the bcp in r13 by the displacement in rdx 1609 __ addptr(r13, rdx); 1610 // jsr returns atos that is not an oop 1611 __ push_i(rax); 1612 __ dispatch_only(vtos); 1613 return; 1614 } 1615 1616 // Normal (non-jsr) branch handling 1617 1618 // Adjust the bcp in r13 by the displacement in rdx 1619 __ addptr(r13, rdx); 1620 1621 assert(UseLoopCounter || !UseOnStackReplacement, 1622 "on-stack-replacement requires loop counters"); 1623 Label backedge_counter_overflow; 1624 Label profile_method; 1625 Label dispatch; 1626 if (UseLoopCounter) { 1627 // increment backedge counter for backward branches 1628 // rax: MDO 1629 // ebx: MDO bumped taken-count 1630 // rcx: method 1631 // rdx: target offset 1632 // r13: target bcp 1633 // r14: locals pointer 1634 __ testl(rdx, rdx); // check if forward or backward branch 1635 __ jcc(Assembler::positive, dispatch); // count only if backward branch 1636 1637 // check if MethodCounters exists 1638 Label has_counters; 1639 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 1640 __ testptr(rax, rax); 1641 __ jcc(Assembler::notZero, has_counters); 1642 __ push(rdx); 1643 __ push(rcx); 1644 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), 1645 rcx); 1646 __ pop(rcx); 1647 __ pop(rdx); 1648 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 1649 __ jcc(Assembler::zero, dispatch); 1650 __ bind(has_counters); 1651 1652 if (TieredCompilation) { 1653 Label no_mdo; 1654 int increment = InvocationCounter::count_increment; 1655 int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift; 1656 if (ProfileInterpreter) { 1657 // Are we profiling? 1658 __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset()))); 1659 __ testptr(rbx, rbx); 1660 __ jccb(Assembler::zero, no_mdo); 1661 // Increment the MDO backedge counter 1662 const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) + 1663 in_bytes(InvocationCounter::counter_offset())); 1664 __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, rax, false, Assembler::zero, 1665 UseOnStackReplacement ? &backedge_counter_overflow : NULL); 1666 __ jmp(dispatch); 1667 } 1668 __ bind(no_mdo); 1669 // Increment backedge counter in MethodCounters* 1670 __ movptr(rcx, Address(rcx, Method::method_counters_offset())); 1671 __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask, 1672 rax, false, Assembler::zero, 1673 UseOnStackReplacement ? &backedge_counter_overflow : NULL); 1674 } else { 1675 // increment counter 1676 __ movptr(rcx, Address(rcx, Method::method_counters_offset())); 1677 __ movl(rax, Address(rcx, be_offset)); // load backedge counter 1678 __ incrementl(rax, InvocationCounter::count_increment); // increment counter 1679 __ movl(Address(rcx, be_offset), rax); // store counter 1680 1681 __ movl(rax, Address(rcx, inv_offset)); // load invocation counter 1682 1683 __ andl(rax, InvocationCounter::count_mask_value); // and the status bits 1684 __ addl(rax, Address(rcx, be_offset)); // add both counters 1685 1686 if (ProfileInterpreter) { 1687 // Test to see if we should create a method data oop 1688 __ cmp32(rax, 1689 ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit)); 1690 __ jcc(Assembler::less, dispatch); 1691 1692 // if no method data exists, go to profile method 1693 __ test_method_data_pointer(rax, profile_method); 1694 1695 if (UseOnStackReplacement) { 1696 // check for overflow against ebx which is the MDO taken count 1697 __ cmp32(rbx, 1698 ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit)); 1699 __ jcc(Assembler::below, dispatch); 1700 1701 // When ProfileInterpreter is on, the backedge_count comes 1702 // from the MethodData*, which value does not get reset on 1703 // the call to frequency_counter_overflow(). To avoid 1704 // excessive calls to the overflow routine while the method is 1705 // being compiled, add a second test to make sure the overflow 1706 // function is called only once every overflow_frequency. 1707 const int overflow_frequency = 1024; 1708 __ andl(rbx, overflow_frequency - 1); 1709 __ jcc(Assembler::zero, backedge_counter_overflow); 1710 1711 } 1712 } else { 1713 if (UseOnStackReplacement) { 1714 // check for overflow against eax, which is the sum of the 1715 // counters 1716 __ cmp32(rax, 1717 ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit)); 1718 __ jcc(Assembler::aboveEqual, backedge_counter_overflow); 1719 1720 } 1721 } 1722 } 1723 __ bind(dispatch); 1724 } 1725 1726 // Pre-load the next target bytecode into rbx 1727 __ load_unsigned_byte(rbx, Address(r13, 0)); 1728 1729 // continue with the bytecode @ target 1730 // eax: return bci for jsr's, unused otherwise 1731 // ebx: target bytecode 1732 // r13: target bcp 1733 __ dispatch_only(vtos); 1734 1735 if (UseLoopCounter) { 1736 if (ProfileInterpreter) { 1737 // Out-of-line code to allocate method data oop. 1738 __ bind(profile_method); 1739 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method)); 1740 __ load_unsigned_byte(rbx, Address(r13, 0)); // restore target bytecode 1741 __ set_method_data_pointer_for_bcp(); 1742 __ jmp(dispatch); 1743 } 1744 1745 if (UseOnStackReplacement) { 1746 // invocation counter overflow 1747 __ bind(backedge_counter_overflow); 1748 __ negptr(rdx); 1749 __ addptr(rdx, r13); // branch bcp 1750 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp) 1751 __ call_VM(noreg, 1752 CAST_FROM_FN_PTR(address, 1753 InterpreterRuntime::frequency_counter_overflow), 1754 rdx); 1755 __ load_unsigned_byte(rbx, Address(r13, 0)); // restore target bytecode 1756 1757 // rax: osr nmethod (osr ok) or NULL (osr not possible) 1758 // ebx: target bytecode 1759 // rdx: scratch 1760 // r14: locals pointer 1761 // r13: bcp 1762 __ testptr(rax, rax); // test result 1763 __ jcc(Assembler::zero, dispatch); // no osr if null 1764 // nmethod may have been invalidated (VM may block upon call_VM return) 1765 __ movl(rcx, Address(rax, nmethod::entry_bci_offset())); 1766 __ cmpl(rcx, InvalidOSREntryBci); 1767 __ jcc(Assembler::equal, dispatch); 1768 1769 // We have the address of an on stack replacement routine in eax 1770 // We need to prepare to execute the OSR method. First we must 1771 // migrate the locals and monitors off of the stack. 1772 1773 __ mov(r13, rax); // save the nmethod 1774 1775 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin)); 1776 1777 // eax is OSR buffer, move it to expected parameter location 1778 __ mov(j_rarg0, rax); 1779 1780 // We use j_rarg definitions here so that registers don't conflict as parameter 1781 // registers change across platforms as we are in the midst of a calling 1782 // sequence to the OSR nmethod and we don't want collision. These are NOT parameters. 1783 1784 const Register retaddr = j_rarg2; 1785 const Register sender_sp = j_rarg1; 1786 1787 // pop the interpreter frame 1788 __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp 1789 __ leave(); // remove frame anchor 1790 __ pop(retaddr); // get return address 1791 __ mov(rsp, sender_sp); // set sp to sender sp 1792 // Ensure compiled code always sees stack at proper alignment 1793 __ andptr(rsp, -(StackAlignmentInBytes)); 1794 1795 // unlike x86 we need no specialized return from compiled code 1796 // to the interpreter or the call stub. 1797 1798 // push the return address 1799 __ push(retaddr); 1800 1801 // and begin the OSR nmethod 1802 __ jmp(Address(r13, nmethod::osr_entry_point_offset())); 1803 } 1804 } 1805 } 1806 1807 1808 void TemplateTable::if_0cmp(Condition cc) { 1809 transition(itos, vtos); 1810 // assume branch is more often taken than not (loops use backward branches) 1811 Label not_taken; 1812 __ testl(rax, rax); 1813 __ jcc(j_not(cc), not_taken); 1814 branch(false, false); 1815 __ bind(not_taken); 1816 __ profile_not_taken_branch(rax); 1817 } 1818 1819 void TemplateTable::if_icmp(Condition cc) { 1820 transition(itos, vtos); 1821 // assume branch is more often taken than not (loops use backward branches) 1822 Label not_taken; 1823 __ pop_i(rdx); 1824 __ cmpl(rdx, rax); 1825 __ jcc(j_not(cc), not_taken); 1826 branch(false, false); 1827 __ bind(not_taken); 1828 __ profile_not_taken_branch(rax); 1829 } 1830 1831 void TemplateTable::if_nullcmp(Condition cc) { 1832 transition(atos, vtos); 1833 // assume branch is more often taken than not (loops use backward branches) 1834 Label not_taken; 1835 __ testptr(rax, rax); 1836 __ jcc(j_not(cc), not_taken); 1837 branch(false, false); 1838 __ bind(not_taken); 1839 __ profile_not_taken_branch(rax); 1840 } 1841 1842 void TemplateTable::if_acmp(Condition cc) { 1843 transition(atos, vtos); 1844 // assume branch is more often taken than not (loops use backward branches) 1845 Label not_taken; 1846 __ pop_ptr(rdx); 1847 __ cmpptr(rdx, rax); 1848 __ jcc(j_not(cc), not_taken); 1849 branch(false, false); 1850 __ bind(not_taken); 1851 __ profile_not_taken_branch(rax); 1852 } 1853 1854 void TemplateTable::ret() { 1855 transition(vtos, vtos); 1856 locals_index(rbx); 1857 __ movslq(rbx, iaddress(rbx)); // get return bci, compute return bcp 1858 __ profile_ret(rbx, rcx); 1859 __ get_method(rax); 1860 __ movptr(r13, Address(rax, Method::const_offset())); 1861 __ lea(r13, Address(r13, rbx, Address::times_1, 1862 ConstMethod::codes_offset())); 1863 __ dispatch_next(vtos); 1864 } 1865 1866 void TemplateTable::wide_ret() { 1867 transition(vtos, vtos); 1868 locals_index_wide(rbx); 1869 __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp 1870 __ profile_ret(rbx, rcx); 1871 __ get_method(rax); 1872 __ movptr(r13, Address(rax, Method::const_offset())); 1873 __ lea(r13, Address(r13, rbx, Address::times_1, ConstMethod::codes_offset())); 1874 __ dispatch_next(vtos); 1875 } 1876 1877 void TemplateTable::tableswitch() { 1878 Label default_case, continue_execution; 1879 transition(itos, vtos); 1880 // align r13 1881 __ lea(rbx, at_bcp(BytesPerInt)); 1882 __ andptr(rbx, -BytesPerInt); 1883 // load lo & hi 1884 __ movl(rcx, Address(rbx, BytesPerInt)); 1885 __ movl(rdx, Address(rbx, 2 * BytesPerInt)); 1886 __ bswapl(rcx); 1887 __ bswapl(rdx); 1888 // check against lo & hi 1889 __ cmpl(rax, rcx); 1890 __ jcc(Assembler::less, default_case); 1891 __ cmpl(rax, rdx); 1892 __ jcc(Assembler::greater, default_case); 1893 // lookup dispatch offset 1894 __ subl(rax, rcx); 1895 __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt)); 1896 __ profile_switch_case(rax, rbx, rcx); 1897 // continue execution 1898 __ bind(continue_execution); 1899 __ bswapl(rdx); 1900 __ movl2ptr(rdx, rdx); 1901 __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1)); 1902 __ addptr(r13, rdx); 1903 __ dispatch_only(vtos); 1904 // handle default 1905 __ bind(default_case); 1906 __ profile_switch_default(rax); 1907 __ movl(rdx, Address(rbx, 0)); 1908 __ jmp(continue_execution); 1909 } 1910 1911 void TemplateTable::lookupswitch() { 1912 transition(itos, itos); 1913 __ stop("lookupswitch bytecode should have been rewritten"); 1914 } 1915 1916 void TemplateTable::fast_linearswitch() { 1917 transition(itos, vtos); 1918 Label loop_entry, loop, found, continue_execution; 1919 // bswap rax so we can avoid bswapping the table entries 1920 __ bswapl(rax); 1921 // align r13 1922 __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of 1923 // this instruction (change offsets 1924 // below) 1925 __ andptr(rbx, -BytesPerInt); 1926 // set counter 1927 __ movl(rcx, Address(rbx, BytesPerInt)); 1928 __ bswapl(rcx); 1929 __ jmpb(loop_entry); 1930 // table search 1931 __ bind(loop); 1932 __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt)); 1933 __ jcc(Assembler::equal, found); 1934 __ bind(loop_entry); 1935 __ decrementl(rcx); 1936 __ jcc(Assembler::greaterEqual, loop); 1937 // default case 1938 __ profile_switch_default(rax); 1939 __ movl(rdx, Address(rbx, 0)); 1940 __ jmp(continue_execution); 1941 // entry found -> get offset 1942 __ bind(found); 1943 __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt)); 1944 __ profile_switch_case(rcx, rax, rbx); 1945 // continue execution 1946 __ bind(continue_execution); 1947 __ bswapl(rdx); 1948 __ movl2ptr(rdx, rdx); 1949 __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1)); 1950 __ addptr(r13, rdx); 1951 __ dispatch_only(vtos); 1952 } 1953 1954 void TemplateTable::fast_binaryswitch() { 1955 transition(itos, vtos); 1956 // Implementation using the following core algorithm: 1957 // 1958 // int binary_search(int key, LookupswitchPair* array, int n) { 1959 // // Binary search according to "Methodik des Programmierens" by 1960 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. 1961 // int i = 0; 1962 // int j = n; 1963 // while (i+1 < j) { 1964 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) 1965 // // with Q: for all i: 0 <= i < n: key < a[i] 1966 // // where a stands for the array and assuming that the (inexisting) 1967 // // element a[n] is infinitely big. 1968 // int h = (i + j) >> 1; 1969 // // i < h < j 1970 // if (key < array[h].fast_match()) { 1971 // j = h; 1972 // } else { 1973 // i = h; 1974 // } 1975 // } 1976 // // R: a[i] <= key < a[i+1] or Q 1977 // // (i.e., if key is within array, i is the correct index) 1978 // return i; 1979 // } 1980 1981 // Register allocation 1982 const Register key = rax; // already set (tosca) 1983 const Register array = rbx; 1984 const Register i = rcx; 1985 const Register j = rdx; 1986 const Register h = rdi; 1987 const Register temp = rsi; 1988 1989 // Find array start 1990 __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to 1991 // get rid of this 1992 // instruction (change 1993 // offsets below) 1994 __ andptr(array, -BytesPerInt); 1995 1996 // Initialize i & j 1997 __ xorl(i, i); // i = 0; 1998 __ movl(j, Address(array, -BytesPerInt)); // j = length(array); 1999 2000 // Convert j into native byteordering 2001 __ bswapl(j); 2002 2003 // And start 2004 Label entry; 2005 __ jmp(entry); 2006 2007 // binary search loop 2008 { 2009 Label loop; 2010 __ bind(loop); 2011 // int h = (i + j) >> 1; 2012 __ leal(h, Address(i, j, Address::times_1)); // h = i + j; 2013 __ sarl(h, 1); // h = (i + j) >> 1; 2014 // if (key < array[h].fast_match()) { 2015 // j = h; 2016 // } else { 2017 // i = h; 2018 // } 2019 // Convert array[h].match to native byte-ordering before compare 2020 __ movl(temp, Address(array, h, Address::times_8)); 2021 __ bswapl(temp); 2022 __ cmpl(key, temp); 2023 // j = h if (key < array[h].fast_match()) 2024 __ cmovl(Assembler::less, j, h); 2025 // i = h if (key >= array[h].fast_match()) 2026 __ cmovl(Assembler::greaterEqual, i, h); 2027 // while (i+1 < j) 2028 __ bind(entry); 2029 __ leal(h, Address(i, 1)); // i+1 2030 __ cmpl(h, j); // i+1 < j 2031 __ jcc(Assembler::less, loop); 2032 } 2033 2034 // end of binary search, result index is i (must check again!) 2035 Label default_case; 2036 // Convert array[i].match to native byte-ordering before compare 2037 __ movl(temp, Address(array, i, Address::times_8)); 2038 __ bswapl(temp); 2039 __ cmpl(key, temp); 2040 __ jcc(Assembler::notEqual, default_case); 2041 2042 // entry found -> j = offset 2043 __ movl(j , Address(array, i, Address::times_8, BytesPerInt)); 2044 __ profile_switch_case(i, key, array); 2045 __ bswapl(j); 2046 __ movl2ptr(j, j); 2047 __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1)); 2048 __ addptr(r13, j); 2049 __ dispatch_only(vtos); 2050 2051 // default case -> j = default offset 2052 __ bind(default_case); 2053 __ profile_switch_default(i); 2054 __ movl(j, Address(array, -2 * BytesPerInt)); 2055 __ bswapl(j); 2056 __ movl2ptr(j, j); 2057 __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1)); 2058 __ addptr(r13, j); 2059 __ dispatch_only(vtos); 2060 } 2061 2062 2063 void TemplateTable::_return(TosState state) { 2064 transition(state, state); 2065 assert(_desc->calls_vm(), 2066 "inconsistent calls_vm information"); // call in remove_activation 2067 2068 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { 2069 assert(state == vtos, "only valid state"); 2070 __ movptr(c_rarg1, aaddress(0)); 2071 __ load_klass(rdi, c_rarg1); 2072 __ movl(rdi, Address(rdi, Klass::access_flags_offset())); 2073 __ testl(rdi, JVM_ACC_HAS_FINALIZER); 2074 Label skip_register_finalizer; 2075 __ jcc(Assembler::zero, skip_register_finalizer); 2076 2077 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1); 2078 2079 __ bind(skip_register_finalizer); 2080 } 2081 2082 // Narrow result if state is itos but result type is smaller. 2083 // Need to narrow in the return bytecode rather than in generate_return_entry 2084 // since compiled code callers expect the result to already be narrowed. 2085 if (state == itos) { 2086 __ narrow(rax); 2087 } 2088 __ remove_activation(state, r13); 2089 2090 __ jmp(r13); 2091 } 2092 2093 // ---------------------------------------------------------------------------- 2094 // Volatile variables demand their effects be made known to all CPU's 2095 // in order. Store buffers on most chips allow reads & writes to 2096 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode 2097 // without some kind of memory barrier (i.e., it's not sufficient that 2098 // the interpreter does not reorder volatile references, the hardware 2099 // also must not reorder them). 2100 // 2101 // According to the new Java Memory Model (JMM): 2102 // (1) All volatiles are serialized wrt to each other. ALSO reads & 2103 // writes act as aquire & release, so: 2104 // (2) A read cannot let unrelated NON-volatile memory refs that 2105 // happen after the read float up to before the read. It's OK for 2106 // non-volatile memory refs that happen before the volatile read to 2107 // float down below it. 2108 // (3) Similar a volatile write cannot let unrelated NON-volatile 2109 // memory refs that happen BEFORE the write float down to after the 2110 // write. It's OK for non-volatile memory refs that happen after the 2111 // volatile write to float up before it. 2112 // 2113 // We only put in barriers around volatile refs (they are expensive), 2114 // not _between_ memory refs (that would require us to track the 2115 // flavor of the previous memory refs). Requirements (2) and (3) 2116 // require some barriers before volatile stores and after volatile 2117 // loads. These nearly cover requirement (1) but miss the 2118 // volatile-store-volatile-load case. This final case is placed after 2119 // volatile-stores although it could just as well go before 2120 // volatile-loads. 2121 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits 2122 order_constraint) { 2123 // Helper function to insert a is-volatile test and memory barrier 2124 if (os::is_MP()) { // Not needed on single CPU 2125 __ membar(order_constraint); 2126 } 2127 } 2128 2129 void TemplateTable::resolve_cache_and_index(int byte_no, 2130 Register Rcache, 2131 Register index, 2132 size_t index_size) { 2133 const Register temp = rbx; 2134 assert_different_registers(Rcache, index, temp); 2135 2136 Label resolved; 2137 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2138 __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size); 2139 __ cmpl(temp, (int) bytecode()); // have we resolved this bytecode? 2140 __ jcc(Assembler::equal, resolved); 2141 2142 // resolve first time through 2143 address entry; 2144 switch (bytecode()) { 2145 case Bytecodes::_getstatic: 2146 case Bytecodes::_putstatic: 2147 case Bytecodes::_getfield: 2148 case Bytecodes::_putfield: 2149 entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); 2150 break; 2151 case Bytecodes::_invokevirtual: 2152 case Bytecodes::_invokespecial: 2153 case Bytecodes::_invokestatic: 2154 case Bytecodes::_invokeinterface: 2155 entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke); 2156 break; 2157 case Bytecodes::_invokehandle: 2158 entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle); 2159 break; 2160 case Bytecodes::_invokedynamic: 2161 entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic); 2162 break; 2163 default: 2164 fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode()))); 2165 break; 2166 } 2167 __ movl(temp, (int) bytecode()); 2168 __ call_VM(noreg, entry, temp); 2169 2170 // Update registers with resolved info 2171 __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size); 2172 __ bind(resolved); 2173 } 2174 2175 // The cache and index registers must be set before call 2176 void TemplateTable::load_field_cp_cache_entry(Register obj, 2177 Register cache, 2178 Register index, 2179 Register off, 2180 Register flags, 2181 bool is_static = false) { 2182 assert_different_registers(cache, index, flags, off); 2183 2184 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2185 // Field offset 2186 __ movptr(off, Address(cache, index, Address::times_ptr, 2187 in_bytes(cp_base_offset + 2188 ConstantPoolCacheEntry::f2_offset()))); 2189 // Flags 2190 __ movl(flags, Address(cache, index, Address::times_ptr, 2191 in_bytes(cp_base_offset + 2192 ConstantPoolCacheEntry::flags_offset()))); 2193 2194 // klass overwrite register 2195 if (is_static) { 2196 __ movptr(obj, Address(cache, index, Address::times_ptr, 2197 in_bytes(cp_base_offset + 2198 ConstantPoolCacheEntry::f1_offset()))); 2199 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 2200 __ movptr(obj, Address(obj, mirror_offset)); 2201 } 2202 } 2203 2204 void TemplateTable::load_invoke_cp_cache_entry(int byte_no, 2205 Register method, 2206 Register itable_index, 2207 Register flags, 2208 bool is_invokevirtual, 2209 bool is_invokevfinal, /*unused*/ 2210 bool is_invokedynamic) { 2211 // setup registers 2212 const Register cache = rcx; 2213 const Register index = rdx; 2214 assert_different_registers(method, flags); 2215 assert_different_registers(method, cache, index); 2216 assert_different_registers(itable_index, flags); 2217 assert_different_registers(itable_index, cache, index); 2218 // determine constant pool cache field offsets 2219 assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant"); 2220 const int method_offset = in_bytes( 2221 ConstantPoolCache::base_offset() + 2222 ((byte_no == f2_byte) 2223 ? ConstantPoolCacheEntry::f2_offset() 2224 : ConstantPoolCacheEntry::f1_offset())); 2225 const int flags_offset = in_bytes(ConstantPoolCache::base_offset() + 2226 ConstantPoolCacheEntry::flags_offset()); 2227 // access constant pool cache fields 2228 const int index_offset = in_bytes(ConstantPoolCache::base_offset() + 2229 ConstantPoolCacheEntry::f2_offset()); 2230 2231 size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2)); 2232 resolve_cache_and_index(byte_no, cache, index, index_size); 2233 __ movptr(method, Address(cache, index, Address::times_ptr, method_offset)); 2234 2235 if (itable_index != noreg) { 2236 // pick up itable or appendix index from f2 also: 2237 __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset)); 2238 } 2239 __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset)); 2240 } 2241 2242 // Correct values of the cache and index registers are preserved. 2243 void TemplateTable::jvmti_post_field_access(Register cache, Register index, 2244 bool is_static, bool has_tos) { 2245 // do the JVMTI work here to avoid disturbing the register state below 2246 // We use c_rarg registers here because we want to use the register used in 2247 // the call to the VM 2248 if (JvmtiExport::can_post_field_access()) { 2249 // Check to see if a field access watch has been set before we 2250 // take the time to call into the VM. 2251 Label L1; 2252 assert_different_registers(cache, index, rax); 2253 __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2254 __ testl(rax, rax); 2255 __ jcc(Assembler::zero, L1); 2256 2257 __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1); 2258 2259 // cache entry pointer 2260 __ addptr(c_rarg2, in_bytes(ConstantPoolCache::base_offset())); 2261 __ shll(c_rarg3, LogBytesPerWord); 2262 __ addptr(c_rarg2, c_rarg3); 2263 if (is_static) { 2264 __ xorl(c_rarg1, c_rarg1); // NULL object reference 2265 } else { 2266 __ movptr(c_rarg1, at_tos()); // get object pointer without popping it 2267 __ verify_oop(c_rarg1); 2268 } 2269 // c_rarg1: object pointer or NULL 2270 // c_rarg2: cache entry pointer 2271 // c_rarg3: jvalue object on the stack 2272 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 2273 InterpreterRuntime::post_field_access), 2274 c_rarg1, c_rarg2, c_rarg3); 2275 __ get_cache_and_index_at_bcp(cache, index, 1); 2276 __ bind(L1); 2277 } 2278 } 2279 2280 void TemplateTable::pop_and_check_object(Register r) { 2281 __ pop_ptr(r); 2282 __ null_check(r); // for field access must check obj. 2283 __ verify_oop(r); 2284 } 2285 2286 void TemplateTable::getfield_or_static(int byte_no, bool is_static) { 2287 transition(vtos, vtos); 2288 2289 const Register cache = rcx; 2290 const Register index = rdx; 2291 const Register obj = c_rarg3; 2292 const Register off = rbx; 2293 const Register flags = rax; 2294 const Register bc = c_rarg3; // uses same reg as obj, so don't mix them 2295 2296 resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); 2297 jvmti_post_field_access(cache, index, is_static, false); 2298 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); 2299 2300 if (!is_static) { 2301 // obj is on the stack 2302 pop_and_check_object(obj); 2303 } 2304 2305 const Address field(obj, off, Address::times_1); 2306 2307 Label Done, notByte, notBool, notInt, notShort, notChar, 2308 notLong, notFloat, notObj, notDouble; 2309 2310 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 2311 // Make sure we don't need to mask edx after the above shift 2312 assert(btos == 0, "change code, btos != 0"); 2313 2314 __ andl(flags, ConstantPoolCacheEntry::tos_state_mask); 2315 __ jcc(Assembler::notZero, notByte); 2316 // btos 2317 __ load_signed_byte(rax, field); 2318 __ push(btos); 2319 // Rewrite bytecode to be faster 2320 if (!is_static) { 2321 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx); 2322 } 2323 __ jmp(Done); 2324 2325 __ bind(notByte); 2326 __ cmpl(flags, ztos); 2327 __ jcc(Assembler::notEqual, notBool); 2328 2329 // ztos (same code as btos) 2330 __ load_signed_byte(rax, field); 2331 __ push(ztos); 2332 // Rewrite bytecode to be faster 2333 if (!is_static) { 2334 // use btos rewriting, no truncating to t/f bit is needed for getfield. 2335 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx); 2336 } 2337 __ jmp(Done); 2338 2339 __ bind(notBool); 2340 __ cmpl(flags, atos); 2341 __ jcc(Assembler::notEqual, notObj); 2342 // atos 2343 __ load_heap_oop(rax, field); 2344 __ push(atos); 2345 if (!is_static) { 2346 patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx); 2347 } 2348 __ jmp(Done); 2349 2350 __ bind(notObj); 2351 __ cmpl(flags, itos); 2352 __ jcc(Assembler::notEqual, notInt); 2353 // itos 2354 __ movl(rax, field); 2355 __ push(itos); 2356 // Rewrite bytecode to be faster 2357 if (!is_static) { 2358 patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx); 2359 } 2360 __ jmp(Done); 2361 2362 __ bind(notInt); 2363 __ cmpl(flags, ctos); 2364 __ jcc(Assembler::notEqual, notChar); 2365 // ctos 2366 __ load_unsigned_short(rax, field); 2367 __ push(ctos); 2368 // Rewrite bytecode to be faster 2369 if (!is_static) { 2370 patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx); 2371 } 2372 __ jmp(Done); 2373 2374 __ bind(notChar); 2375 __ cmpl(flags, stos); 2376 __ jcc(Assembler::notEqual, notShort); 2377 // stos 2378 __ load_signed_short(rax, field); 2379 __ push(stos); 2380 // Rewrite bytecode to be faster 2381 if (!is_static) { 2382 patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx); 2383 } 2384 __ jmp(Done); 2385 2386 __ bind(notShort); 2387 __ cmpl(flags, ltos); 2388 __ jcc(Assembler::notEqual, notLong); 2389 // ltos 2390 __ movq(rax, field); 2391 __ push(ltos); 2392 // Rewrite bytecode to be faster 2393 if (!is_static) { 2394 patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx); 2395 } 2396 __ jmp(Done); 2397 2398 __ bind(notLong); 2399 __ cmpl(flags, ftos); 2400 __ jcc(Assembler::notEqual, notFloat); 2401 // ftos 2402 __ movflt(xmm0, field); 2403 __ push(ftos); 2404 // Rewrite bytecode to be faster 2405 if (!is_static) { 2406 patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx); 2407 } 2408 __ jmp(Done); 2409 2410 __ bind(notFloat); 2411 #ifdef ASSERT 2412 __ cmpl(flags, dtos); 2413 __ jcc(Assembler::notEqual, notDouble); 2414 #endif 2415 // dtos 2416 __ movdbl(xmm0, field); 2417 __ push(dtos); 2418 // Rewrite bytecode to be faster 2419 if (!is_static) { 2420 patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx); 2421 } 2422 #ifdef ASSERT 2423 __ jmp(Done); 2424 2425 __ bind(notDouble); 2426 __ stop("Bad state"); 2427 #endif 2428 2429 __ bind(Done); 2430 // [jk] not needed currently 2431 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad | 2432 // Assembler::LoadStore)); 2433 } 2434 2435 2436 void TemplateTable::getfield(int byte_no) { 2437 getfield_or_static(byte_no, false); 2438 } 2439 2440 void TemplateTable::getstatic(int byte_no) { 2441 getfield_or_static(byte_no, true); 2442 } 2443 2444 // The registers cache and index expected to be set before call. 2445 // The function may destroy various registers, just not the cache and index registers. 2446 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) { 2447 transition(vtos, vtos); 2448 2449 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2450 2451 if (JvmtiExport::can_post_field_modification()) { 2452 // Check to see if a field modification watch has been set before 2453 // we take the time to call into the VM. 2454 Label L1; 2455 assert_different_registers(cache, index, rax); 2456 __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 2457 __ testl(rax, rax); 2458 __ jcc(Assembler::zero, L1); 2459 2460 __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1); 2461 2462 if (is_static) { 2463 // Life is simple. Null out the object pointer. 2464 __ xorl(c_rarg1, c_rarg1); 2465 } else { 2466 // Life is harder. The stack holds the value on top, followed by 2467 // the object. We don't know the size of the value, though; it 2468 // could be one or two words depending on its type. As a result, 2469 // we must find the type to determine where the object is. 2470 __ movl(c_rarg3, Address(c_rarg2, rscratch1, 2471 Address::times_8, 2472 in_bytes(cp_base_offset + 2473 ConstantPoolCacheEntry::flags_offset()))); 2474 __ shrl(c_rarg3, ConstantPoolCacheEntry::tos_state_shift); 2475 // Make sure we don't need to mask rcx after the above shift 2476 ConstantPoolCacheEntry::verify_tos_state_shift(); 2477 __ movptr(c_rarg1, at_tos_p1()); // initially assume a one word jvalue 2478 __ cmpl(c_rarg3, ltos); 2479 __ cmovptr(Assembler::equal, 2480 c_rarg1, at_tos_p2()); // ltos (two word jvalue) 2481 __ cmpl(c_rarg3, dtos); 2482 __ cmovptr(Assembler::equal, 2483 c_rarg1, at_tos_p2()); // dtos (two word jvalue) 2484 } 2485 // cache entry pointer 2486 __ addptr(c_rarg2, in_bytes(cp_base_offset)); 2487 __ shll(rscratch1, LogBytesPerWord); 2488 __ addptr(c_rarg2, rscratch1); 2489 // object (tos) 2490 __ mov(c_rarg3, rsp); 2491 // c_rarg1: object pointer set up above (NULL if static) 2492 // c_rarg2: cache entry pointer 2493 // c_rarg3: jvalue object on the stack 2494 __ call_VM(noreg, 2495 CAST_FROM_FN_PTR(address, 2496 InterpreterRuntime::post_field_modification), 2497 c_rarg1, c_rarg2, c_rarg3); 2498 __ get_cache_and_index_at_bcp(cache, index, 1); 2499 __ bind(L1); 2500 } 2501 } 2502 2503 void TemplateTable::putfield_or_static(int byte_no, bool is_static) { 2504 transition(vtos, vtos); 2505 2506 const Register cache = rcx; 2507 const Register index = rdx; 2508 const Register obj = rcx; 2509 const Register off = rbx; 2510 const Register flags = rax; 2511 const Register bc = c_rarg3; 2512 2513 resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); 2514 jvmti_post_field_mod(cache, index, is_static); 2515 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); 2516 2517 // [jk] not needed currently 2518 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore | 2519 // Assembler::StoreStore)); 2520 2521 Label notVolatile, Done; 2522 __ movl(rdx, flags); 2523 __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 2524 __ andl(rdx, 0x1); 2525 2526 // field address 2527 const Address field(obj, off, Address::times_1); 2528 2529 Label notByte, notBool, notInt, notShort, notChar, 2530 notLong, notFloat, notObj, notDouble; 2531 2532 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 2533 2534 assert(btos == 0, "change code, btos != 0"); 2535 __ andl(flags, ConstantPoolCacheEntry::tos_state_mask); 2536 __ jcc(Assembler::notZero, notByte); 2537 2538 // btos 2539 { 2540 __ pop(btos); 2541 if (!is_static) pop_and_check_object(obj); 2542 __ movb(field, rax); 2543 if (!is_static) { 2544 patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no); 2545 } 2546 __ jmp(Done); 2547 } 2548 2549 __ bind(notByte); 2550 __ cmpl(flags, ztos); 2551 __ jcc(Assembler::notEqual, notBool); 2552 2553 // ztos 2554 { 2555 __ pop(ztos); 2556 if (!is_static) pop_and_check_object(obj); 2557 __ andl(rax, 0x1); 2558 __ movb(field, rax); 2559 if (!is_static) { 2560 patch_bytecode(Bytecodes::_fast_zputfield, bc, rbx, true, byte_no); 2561 } 2562 __ jmp(Done); 2563 } 2564 2565 __ bind(notBool); 2566 __ cmpl(flags, atos); 2567 __ jcc(Assembler::notEqual, notObj); 2568 2569 // atos 2570 { 2571 __ pop(atos); 2572 if (!is_static) pop_and_check_object(obj); 2573 // Store into the field 2574 do_oop_store(_masm, field, rax, _bs->kind(), false); 2575 if (!is_static) { 2576 patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no); 2577 } 2578 __ jmp(Done); 2579 } 2580 2581 __ bind(notObj); 2582 __ cmpl(flags, itos); 2583 __ jcc(Assembler::notEqual, notInt); 2584 2585 // itos 2586 { 2587 __ pop(itos); 2588 if (!is_static) pop_and_check_object(obj); 2589 __ movl(field, rax); 2590 if (!is_static) { 2591 patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no); 2592 } 2593 __ jmp(Done); 2594 } 2595 2596 __ bind(notInt); 2597 __ cmpl(flags, ctos); 2598 __ jcc(Assembler::notEqual, notChar); 2599 2600 // ctos 2601 { 2602 __ pop(ctos); 2603 if (!is_static) pop_and_check_object(obj); 2604 __ movw(field, rax); 2605 if (!is_static) { 2606 patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no); 2607 } 2608 __ jmp(Done); 2609 } 2610 2611 __ bind(notChar); 2612 __ cmpl(flags, stos); 2613 __ jcc(Assembler::notEqual, notShort); 2614 2615 // stos 2616 { 2617 __ pop(stos); 2618 if (!is_static) pop_and_check_object(obj); 2619 __ movw(field, rax); 2620 if (!is_static) { 2621 patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no); 2622 } 2623 __ jmp(Done); 2624 } 2625 2626 __ bind(notShort); 2627 __ cmpl(flags, ltos); 2628 __ jcc(Assembler::notEqual, notLong); 2629 2630 // ltos 2631 { 2632 __ pop(ltos); 2633 if (!is_static) pop_and_check_object(obj); 2634 __ movq(field, rax); 2635 if (!is_static) { 2636 patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no); 2637 } 2638 __ jmp(Done); 2639 } 2640 2641 __ bind(notLong); 2642 __ cmpl(flags, ftos); 2643 __ jcc(Assembler::notEqual, notFloat); 2644 2645 // ftos 2646 { 2647 __ pop(ftos); 2648 if (!is_static) pop_and_check_object(obj); 2649 __ movflt(field, xmm0); 2650 if (!is_static) { 2651 patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no); 2652 } 2653 __ jmp(Done); 2654 } 2655 2656 __ bind(notFloat); 2657 #ifdef ASSERT 2658 __ cmpl(flags, dtos); 2659 __ jcc(Assembler::notEqual, notDouble); 2660 #endif 2661 2662 // dtos 2663 { 2664 __ pop(dtos); 2665 if (!is_static) pop_and_check_object(obj); 2666 __ movdbl(field, xmm0); 2667 if (!is_static) { 2668 patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no); 2669 } 2670 } 2671 2672 #ifdef ASSERT 2673 __ jmp(Done); 2674 2675 __ bind(notDouble); 2676 __ stop("Bad state"); 2677 #endif 2678 2679 __ bind(Done); 2680 2681 // Check for volatile store 2682 __ testl(rdx, rdx); 2683 __ jcc(Assembler::zero, notVolatile); 2684 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 2685 Assembler::StoreStore)); 2686 __ bind(notVolatile); 2687 } 2688 2689 void TemplateTable::putfield(int byte_no) { 2690 putfield_or_static(byte_no, false); 2691 } 2692 2693 void TemplateTable::putstatic(int byte_no) { 2694 putfield_or_static(byte_no, true); 2695 } 2696 2697 void TemplateTable::jvmti_post_fast_field_mod() { 2698 if (JvmtiExport::can_post_field_modification()) { 2699 // Check to see if a field modification watch has been set before 2700 // we take the time to call into the VM. 2701 Label L2; 2702 __ mov32(c_rarg3, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 2703 __ testl(c_rarg3, c_rarg3); 2704 __ jcc(Assembler::zero, L2); 2705 __ pop_ptr(rbx); // copy the object pointer from tos 2706 __ verify_oop(rbx); 2707 __ push_ptr(rbx); // put the object pointer back on tos 2708 // Save tos values before call_VM() clobbers them. Since we have 2709 // to do it for every data type, we use the saved values as the 2710 // jvalue object. 2711 switch (bytecode()) { // load values into the jvalue object 2712 case Bytecodes::_fast_aputfield: __ push_ptr(rax); break; 2713 case Bytecodes::_fast_bputfield: // fall through 2714 case Bytecodes::_fast_zputfield: // fall through 2715 case Bytecodes::_fast_sputfield: // fall through 2716 case Bytecodes::_fast_cputfield: // fall through 2717 case Bytecodes::_fast_iputfield: __ push_i(rax); break; 2718 case Bytecodes::_fast_dputfield: __ push_d(); break; 2719 case Bytecodes::_fast_fputfield: __ push_f(); break; 2720 case Bytecodes::_fast_lputfield: __ push_l(rax); break; 2721 2722 default: 2723 ShouldNotReachHere(); 2724 } 2725 __ mov(c_rarg3, rsp); // points to jvalue on the stack 2726 // access constant pool cache entry 2727 __ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1); 2728 __ verify_oop(rbx); 2729 // rbx: object pointer copied above 2730 // c_rarg2: cache entry pointer 2731 // c_rarg3: jvalue object on the stack 2732 __ call_VM(noreg, 2733 CAST_FROM_FN_PTR(address, 2734 InterpreterRuntime::post_field_modification), 2735 rbx, c_rarg2, c_rarg3); 2736 2737 switch (bytecode()) { // restore tos values 2738 case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break; 2739 case Bytecodes::_fast_bputfield: // fall through 2740 case Bytecodes::_fast_zputfield: // fall through 2741 case Bytecodes::_fast_sputfield: // fall through 2742 case Bytecodes::_fast_cputfield: // fall through 2743 case Bytecodes::_fast_iputfield: __ pop_i(rax); break; 2744 case Bytecodes::_fast_dputfield: __ pop_d(); break; 2745 case Bytecodes::_fast_fputfield: __ pop_f(); break; 2746 case Bytecodes::_fast_lputfield: __ pop_l(rax); break; 2747 } 2748 __ bind(L2); 2749 } 2750 } 2751 2752 void TemplateTable::fast_storefield(TosState state) { 2753 transition(state, vtos); 2754 2755 ByteSize base = ConstantPoolCache::base_offset(); 2756 2757 jvmti_post_fast_field_mod(); 2758 2759 // access constant pool cache 2760 __ get_cache_and_index_at_bcp(rcx, rbx, 1); 2761 2762 // test for volatile with rdx 2763 __ movl(rdx, Address(rcx, rbx, Address::times_8, 2764 in_bytes(base + 2765 ConstantPoolCacheEntry::flags_offset()))); 2766 2767 // replace index with field offset from cache entry 2768 __ movptr(rbx, Address(rcx, rbx, Address::times_8, 2769 in_bytes(base + ConstantPoolCacheEntry::f2_offset()))); 2770 2771 // [jk] not needed currently 2772 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore | 2773 // Assembler::StoreStore)); 2774 2775 Label notVolatile; 2776 __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 2777 __ andl(rdx, 0x1); 2778 2779 // Get object from stack 2780 pop_and_check_object(rcx); 2781 2782 // field address 2783 const Address field(rcx, rbx, Address::times_1); 2784 2785 // access field 2786 switch (bytecode()) { 2787 case Bytecodes::_fast_aputfield: 2788 do_oop_store(_masm, field, rax, _bs->kind(), false); 2789 break; 2790 case Bytecodes::_fast_lputfield: 2791 __ movq(field, rax); 2792 break; 2793 case Bytecodes::_fast_iputfield: 2794 __ movl(field, rax); 2795 break; 2796 case Bytecodes::_fast_zputfield: 2797 __ andl(rax, 0x1); // boolean is true if LSB is 1 2798 // fall through to bputfield 2799 case Bytecodes::_fast_bputfield: 2800 __ movb(field, rax); 2801 break; 2802 case Bytecodes::_fast_sputfield: 2803 // fall through 2804 case Bytecodes::_fast_cputfield: 2805 __ movw(field, rax); 2806 break; 2807 case Bytecodes::_fast_fputfield: 2808 __ movflt(field, xmm0); 2809 break; 2810 case Bytecodes::_fast_dputfield: 2811 __ movdbl(field, xmm0); 2812 break; 2813 default: 2814 ShouldNotReachHere(); 2815 } 2816 2817 // Check for volatile store 2818 __ testl(rdx, rdx); 2819 __ jcc(Assembler::zero, notVolatile); 2820 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 2821 Assembler::StoreStore)); 2822 __ bind(notVolatile); 2823 } 2824 2825 2826 void TemplateTable::fast_accessfield(TosState state) { 2827 transition(atos, state); 2828 2829 // Do the JVMTI work here to avoid disturbing the register state below 2830 if (JvmtiExport::can_post_field_access()) { 2831 // Check to see if a field access watch has been set before we 2832 // take the time to call into the VM. 2833 Label L1; 2834 __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2835 __ testl(rcx, rcx); 2836 __ jcc(Assembler::zero, L1); 2837 // access constant pool cache entry 2838 __ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1); 2839 __ verify_oop(rax); 2840 __ push_ptr(rax); // save object pointer before call_VM() clobbers it 2841 __ mov(c_rarg1, rax); 2842 // c_rarg1: object pointer copied above 2843 // c_rarg2: cache entry pointer 2844 __ call_VM(noreg, 2845 CAST_FROM_FN_PTR(address, 2846 InterpreterRuntime::post_field_access), 2847 c_rarg1, c_rarg2); 2848 __ pop_ptr(rax); // restore object pointer 2849 __ bind(L1); 2850 } 2851 2852 // access constant pool cache 2853 __ get_cache_and_index_at_bcp(rcx, rbx, 1); 2854 // replace index with field offset from cache entry 2855 // [jk] not needed currently 2856 // if (os::is_MP()) { 2857 // __ movl(rdx, Address(rcx, rbx, Address::times_8, 2858 // in_bytes(ConstantPoolCache::base_offset() + 2859 // ConstantPoolCacheEntry::flags_offset()))); 2860 // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 2861 // __ andl(rdx, 0x1); 2862 // } 2863 __ movptr(rbx, Address(rcx, rbx, Address::times_8, 2864 in_bytes(ConstantPoolCache::base_offset() + 2865 ConstantPoolCacheEntry::f2_offset()))); 2866 2867 // rax: object 2868 __ verify_oop(rax); 2869 __ null_check(rax); 2870 Address field(rax, rbx, Address::times_1); 2871 2872 // access field 2873 switch (bytecode()) { 2874 case Bytecodes::_fast_agetfield: 2875 __ load_heap_oop(rax, field); 2876 __ verify_oop(rax); 2877 break; 2878 case Bytecodes::_fast_lgetfield: 2879 __ movq(rax, field); 2880 break; 2881 case Bytecodes::_fast_igetfield: 2882 __ movl(rax, field); 2883 break; 2884 case Bytecodes::_fast_bgetfield: 2885 __ movsbl(rax, field); 2886 break; 2887 case Bytecodes::_fast_sgetfield: 2888 __ load_signed_short(rax, field); 2889 break; 2890 case Bytecodes::_fast_cgetfield: 2891 __ load_unsigned_short(rax, field); 2892 break; 2893 case Bytecodes::_fast_fgetfield: 2894 __ movflt(xmm0, field); 2895 break; 2896 case Bytecodes::_fast_dgetfield: 2897 __ movdbl(xmm0, field); 2898 break; 2899 default: 2900 ShouldNotReachHere(); 2901 } 2902 // [jk] not needed currently 2903 // if (os::is_MP()) { 2904 // Label notVolatile; 2905 // __ testl(rdx, rdx); 2906 // __ jcc(Assembler::zero, notVolatile); 2907 // __ membar(Assembler::LoadLoad); 2908 // __ bind(notVolatile); 2909 //}; 2910 } 2911 2912 void TemplateTable::fast_xaccess(TosState state) { 2913 transition(vtos, state); 2914 2915 // get receiver 2916 __ movptr(rax, aaddress(0)); 2917 // access constant pool cache 2918 __ get_cache_and_index_at_bcp(rcx, rdx, 2); 2919 __ movptr(rbx, 2920 Address(rcx, rdx, Address::times_8, 2921 in_bytes(ConstantPoolCache::base_offset() + 2922 ConstantPoolCacheEntry::f2_offset()))); 2923 // make sure exception is reported in correct bcp range (getfield is 2924 // next instruction) 2925 __ increment(r13); 2926 __ null_check(rax); 2927 switch (state) { 2928 case itos: 2929 __ movl(rax, Address(rax, rbx, Address::times_1)); 2930 break; 2931 case atos: 2932 __ load_heap_oop(rax, Address(rax, rbx, Address::times_1)); 2933 __ verify_oop(rax); 2934 break; 2935 case ftos: 2936 __ movflt(xmm0, Address(rax, rbx, Address::times_1)); 2937 break; 2938 default: 2939 ShouldNotReachHere(); 2940 } 2941 2942 // [jk] not needed currently 2943 // if (os::is_MP()) { 2944 // Label notVolatile; 2945 // __ movl(rdx, Address(rcx, rdx, Address::times_8, 2946 // in_bytes(ConstantPoolCache::base_offset() + 2947 // ConstantPoolCacheEntry::flags_offset()))); 2948 // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 2949 // __ testl(rdx, 0x1); 2950 // __ jcc(Assembler::zero, notVolatile); 2951 // __ membar(Assembler::LoadLoad); 2952 // __ bind(notVolatile); 2953 // } 2954 2955 __ decrement(r13); 2956 } 2957 2958 2959 2960 //----------------------------------------------------------------------------- 2961 // Calls 2962 2963 void TemplateTable::count_calls(Register method, Register temp) { 2964 // implemented elsewhere 2965 ShouldNotReachHere(); 2966 } 2967 2968 void TemplateTable::prepare_invoke(int byte_no, 2969 Register method, // linked method (or i-klass) 2970 Register index, // itable index, MethodType, etc. 2971 Register recv, // if caller wants to see it 2972 Register flags // if caller wants to test it 2973 ) { 2974 // determine flags 2975 const Bytecodes::Code code = bytecode(); 2976 const bool is_invokeinterface = code == Bytecodes::_invokeinterface; 2977 const bool is_invokedynamic = code == Bytecodes::_invokedynamic; 2978 const bool is_invokehandle = code == Bytecodes::_invokehandle; 2979 const bool is_invokevirtual = code == Bytecodes::_invokevirtual; 2980 const bool is_invokespecial = code == Bytecodes::_invokespecial; 2981 const bool load_receiver = (recv != noreg); 2982 const bool save_flags = (flags != noreg); 2983 assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), ""); 2984 assert(save_flags == (is_invokeinterface || is_invokevirtual), "need flags for vfinal"); 2985 assert(flags == noreg || flags == rdx, ""); 2986 assert(recv == noreg || recv == rcx, ""); 2987 2988 // setup registers & access constant pool cache 2989 if (recv == noreg) recv = rcx; 2990 if (flags == noreg) flags = rdx; 2991 assert_different_registers(method, index, recv, flags); 2992 2993 // save 'interpreter return address' 2994 __ save_bcp(); 2995 2996 load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic); 2997 2998 // maybe push appendix to arguments (just before return address) 2999 if (is_invokedynamic || is_invokehandle) { 3000 Label L_no_push; 3001 __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift)); 3002 __ jcc(Assembler::zero, L_no_push); 3003 // Push the appendix as a trailing parameter. 3004 // This must be done before we get the receiver, 3005 // since the parameter_size includes it. 3006 __ push(rbx); 3007 __ mov(rbx, index); 3008 assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0"); 3009 __ load_resolved_reference_at_index(index, rbx); 3010 __ pop(rbx); 3011 __ push(index); // push appendix (MethodType, CallSite, etc.) 3012 __ bind(L_no_push); 3013 } 3014 3015 // load receiver if needed (after appendix is pushed so parameter size is correct) 3016 // Note: no return address pushed yet 3017 if (load_receiver) { 3018 __ movl(recv, flags); 3019 __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask); 3020 const int no_return_pc_pushed_yet = -1; // argument slot correction before we push return address 3021 const int receiver_is_at_end = -1; // back off one slot to get receiver 3022 Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end); 3023 __ movptr(recv, recv_addr); 3024 __ verify_oop(recv); 3025 } 3026 3027 if (save_flags) { 3028 __ movl(r13, flags); 3029 } 3030 3031 // compute return type 3032 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 3033 // Make sure we don't need to mask flags after the above shift 3034 ConstantPoolCacheEntry::verify_tos_state_shift(); 3035 // load return address 3036 { 3037 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 3038 ExternalAddress table(table_addr); 3039 __ lea(rscratch1, table); 3040 __ movptr(flags, Address(rscratch1, flags, Address::times_ptr)); 3041 } 3042 3043 // push return address 3044 __ push(flags); 3045 3046 // Restore flags value from the constant pool cache, and restore rsi 3047 // for later null checks. r13 is the bytecode pointer 3048 if (save_flags) { 3049 __ movl(flags, r13); 3050 __ restore_bcp(); 3051 } 3052 } 3053 3054 3055 void TemplateTable::invokevirtual_helper(Register index, 3056 Register recv, 3057 Register flags) { 3058 // Uses temporary registers rax, rdx 3059 assert_different_registers(index, recv, rax, rdx); 3060 assert(index == rbx, ""); 3061 assert(recv == rcx, ""); 3062 3063 // Test for an invoke of a final method 3064 Label notFinal; 3065 __ movl(rax, flags); 3066 __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift)); 3067 __ jcc(Assembler::zero, notFinal); 3068 3069 const Register method = index; // method must be rbx 3070 assert(method == rbx, 3071 "Method* must be rbx for interpreter calling convention"); 3072 3073 // do the call - the index is actually the method to call 3074 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method* 3075 3076 // It's final, need a null check here! 3077 __ null_check(recv); 3078 3079 // profile this call 3080 __ profile_final_call(rax); 3081 __ profile_arguments_type(rax, method, r13, true); 3082 3083 __ jump_from_interpreted(method, rax); 3084 3085 __ bind(notFinal); 3086 3087 // get receiver klass 3088 __ null_check(recv, oopDesc::klass_offset_in_bytes()); 3089 __ load_klass(rax, recv); 3090 3091 // profile this call 3092 __ profile_virtual_call(rax, r14, rdx); 3093 3094 // get target Method* & entry point 3095 __ lookup_virtual_method(rax, index, method); 3096 __ profile_arguments_type(rdx, method, r13, true); 3097 __ jump_from_interpreted(method, rdx); 3098 } 3099 3100 3101 void TemplateTable::invokevirtual(int byte_no) { 3102 transition(vtos, vtos); 3103 assert(byte_no == f2_byte, "use this argument"); 3104 prepare_invoke(byte_no, 3105 rbx, // method or vtable index 3106 noreg, // unused itable index 3107 rcx, rdx); // recv, flags 3108 3109 // rbx: index 3110 // rcx: receiver 3111 // rdx: flags 3112 3113 invokevirtual_helper(rbx, rcx, rdx); 3114 } 3115 3116 3117 void TemplateTable::invokespecial(int byte_no) { 3118 transition(vtos, vtos); 3119 assert(byte_no == f1_byte, "use this argument"); 3120 prepare_invoke(byte_no, rbx, noreg, // get f1 Method* 3121 rcx); // get receiver also for null check 3122 __ verify_oop(rcx); 3123 __ null_check(rcx); 3124 // do the call 3125 __ profile_call(rax); 3126 __ profile_arguments_type(rax, rbx, r13, false); 3127 __ jump_from_interpreted(rbx, rax); 3128 } 3129 3130 3131 void TemplateTable::invokestatic(int byte_no) { 3132 transition(vtos, vtos); 3133 assert(byte_no == f1_byte, "use this argument"); 3134 prepare_invoke(byte_no, rbx); // get f1 Method* 3135 // do the call 3136 __ profile_call(rax); 3137 __ profile_arguments_type(rax, rbx, r13, false); 3138 __ jump_from_interpreted(rbx, rax); 3139 } 3140 3141 void TemplateTable::fast_invokevfinal(int byte_no) { 3142 transition(vtos, vtos); 3143 assert(byte_no == f2_byte, "use this argument"); 3144 __ stop("fast_invokevfinal not used on amd64"); 3145 } 3146 3147 void TemplateTable::invokeinterface(int byte_no) { 3148 transition(vtos, vtos); 3149 assert(byte_no == f1_byte, "use this argument"); 3150 prepare_invoke(byte_no, rax, rbx, // get f1 Klass*, f2 Method* 3151 rcx, rdx); // recv, flags 3152 3153 // rax: reference klass (from f1) 3154 // rbx: method (from f2) 3155 // rcx: receiver 3156 // rdx: flags 3157 3158 // Special case of invokeinterface called for virtual method of 3159 // java.lang.Object. See cpCacheOop.cpp for details. 3160 // This code isn't produced by javac, but could be produced by 3161 // another compliant java compiler. 3162 Label notMethod; 3163 __ movl(r14, rdx); 3164 __ andl(r14, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift)); 3165 __ jcc(Assembler::zero, notMethod); 3166 3167 invokevirtual_helper(rbx, rcx, rdx); 3168 __ bind(notMethod); 3169 3170 // Get receiver klass into rdx - also a null check 3171 __ restore_locals(); // restore r14 3172 __ null_check(rcx, oopDesc::klass_offset_in_bytes()); 3173 __ load_klass(rdx, rcx); 3174 3175 Label no_such_interface, no_such_method; 3176 3177 // Receiver subtype check against REFC. 3178 // Superklass in rax. Subklass in rdx. Blows rcx, rdi. 3179 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3180 rdx, rax, noreg, 3181 // outputs: scan temp. reg, scan temp. reg 3182 r13, r14, 3183 no_such_interface, 3184 /*return_method=*/false); 3185 3186 // profile this call 3187 __ restore_bcp(); // rbcp was destroyed by receiver type check 3188 __ profile_virtual_call(rdx, r13, r14); 3189 3190 // Get declaring interface class from method, and itable index 3191 __ movptr(rax, Address(rbx, Method::const_offset())); 3192 __ movptr(rax, Address(rax, ConstMethod::constants_offset())); 3193 __ movptr(rax, Address(rax, ConstantPool::pool_holder_offset_in_bytes())); 3194 __ movl(rbx, Address(rbx, Method::itable_index_offset())); 3195 __ subl(rbx, Method::itable_index_max); 3196 __ negl(rbx); 3197 3198 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3199 rdx, rax, rbx, 3200 // outputs: method, scan temp. reg 3201 rbx, r13, 3202 no_such_interface); 3203 3204 // rbx: Method* to call 3205 // rcx: receiver 3206 // Check for abstract method error 3207 // Note: This should be done more efficiently via a throw_abstract_method_error 3208 // interpreter entry point and a conditional jump to it in case of a null 3209 // method. 3210 __ testptr(rbx, rbx); 3211 __ jcc(Assembler::zero, no_such_method); 3212 3213 __ profile_arguments_type(rdx, rbx, r13, true); 3214 3215 // do the call 3216 // rcx: receiver 3217 // rbx,: Method* 3218 __ jump_from_interpreted(rbx, rdx); 3219 __ should_not_reach_here(); 3220 3221 // exception handling code follows... 3222 // note: must restore interpreter registers to canonical 3223 // state for exception handling to work correctly! 3224 3225 __ bind(no_such_method); 3226 // throw exception 3227 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3228 __ restore_bcp(); // r13 must be correct for exception handler (was destroyed) 3229 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3230 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError)); 3231 // the call_VM checks for exception, so we should never return here. 3232 __ should_not_reach_here(); 3233 3234 __ bind(no_such_interface); 3235 // throw exception 3236 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3237 __ restore_bcp(); // r13 must be correct for exception handler (was destroyed) 3238 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3239 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 3240 InterpreterRuntime::throw_IncompatibleClassChangeError)); 3241 // the call_VM checks for exception, so we should never return here. 3242 __ should_not_reach_here(); 3243 } 3244 3245 3246 void TemplateTable::invokehandle(int byte_no) { 3247 transition(vtos, vtos); 3248 assert(byte_no == f1_byte, "use this argument"); 3249 const Register rbx_method = rbx; 3250 const Register rax_mtype = rax; 3251 const Register rcx_recv = rcx; 3252 const Register rdx_flags = rdx; 3253 3254 if (!EnableInvokeDynamic) { 3255 // rewriter does not generate this bytecode 3256 __ should_not_reach_here(); 3257 return; 3258 } 3259 3260 prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv); 3261 __ verify_method_ptr(rbx_method); 3262 __ verify_oop(rcx_recv); 3263 __ null_check(rcx_recv); 3264 3265 // rax: MethodType object (from cpool->resolved_references[f1], if necessary) 3266 // rbx: MH.invokeExact_MT method (from f2) 3267 3268 // Note: rax_mtype is already pushed (if necessary) by prepare_invoke 3269 3270 // FIXME: profile the LambdaForm also 3271 __ profile_final_call(rax); 3272 __ profile_arguments_type(rdx, rbx_method, r13, true); 3273 3274 __ jump_from_interpreted(rbx_method, rdx); 3275 } 3276 3277 3278 void TemplateTable::invokedynamic(int byte_no) { 3279 transition(vtos, vtos); 3280 assert(byte_no == f1_byte, "use this argument"); 3281 3282 if (!EnableInvokeDynamic) { 3283 // We should not encounter this bytecode if !EnableInvokeDynamic. 3284 // The verifier will stop it. However, if we get past the verifier, 3285 // this will stop the thread in a reasonable way, without crashing the JVM. 3286 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 3287 InterpreterRuntime::throw_IncompatibleClassChangeError)); 3288 // the call_VM checks for exception, so we should never return here. 3289 __ should_not_reach_here(); 3290 return; 3291 } 3292 3293 const Register rbx_method = rbx; 3294 const Register rax_callsite = rax; 3295 3296 prepare_invoke(byte_no, rbx_method, rax_callsite); 3297 3298 // rax: CallSite object (from cpool->resolved_references[f1]) 3299 // rbx: MH.linkToCallSite method (from f2) 3300 3301 // Note: rax_callsite is already pushed by prepare_invoke 3302 3303 // %%% should make a type profile for any invokedynamic that takes a ref argument 3304 // profile this call 3305 __ profile_call(r13); 3306 __ profile_arguments_type(rdx, rbx_method, r13, false); 3307 3308 __ verify_oop(rax_callsite); 3309 3310 __ jump_from_interpreted(rbx_method, rdx); 3311 } 3312 3313 3314 //----------------------------------------------------------------------------- 3315 // Allocation 3316 3317 void TemplateTable::_new() { 3318 transition(vtos, atos); 3319 __ get_unsigned_2_byte_index_at_bcp(rdx, 1); 3320 Label slow_case; 3321 Label done; 3322 Label initialize_header; 3323 Label initialize_object; // including clearing the fields 3324 Label allocate_shared; 3325 3326 __ get_cpool_and_tags(rsi, rax); 3327 // Make sure the class we're about to instantiate has been resolved. 3328 // This is done before loading InstanceKlass to be consistent with the order 3329 // how Constant Pool is updated (see ConstantPool::klass_at_put) 3330 const int tags_offset = Array<u1>::base_offset_in_bytes(); 3331 __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), 3332 JVM_CONSTANT_Class); 3333 __ jcc(Assembler::notEqual, slow_case); 3334 3335 // get InstanceKlass 3336 __ movptr(rsi, Address(rsi, rdx, 3337 Address::times_8, sizeof(ConstantPool))); 3338 3339 // make sure klass is initialized & doesn't have finalizer 3340 // make sure klass is fully initialized 3341 __ cmpb(Address(rsi, 3342 InstanceKlass::init_state_offset()), 3343 InstanceKlass::fully_initialized); 3344 __ jcc(Assembler::notEqual, slow_case); 3345 3346 // get instance_size in InstanceKlass (scaled to a count of bytes) 3347 __ movl(rdx, 3348 Address(rsi, 3349 Klass::layout_helper_offset())); 3350 // test to see if it has a finalizer or is malformed in some way 3351 __ testl(rdx, Klass::_lh_instance_slow_path_bit); 3352 __ jcc(Assembler::notZero, slow_case); 3353 3354 // Allocate the instance 3355 // 1) Try to allocate in the TLAB 3356 // 2) if fail and the object is large allocate in the shared Eden 3357 // 3) if the above fails (or is not applicable), go to a slow case 3358 // (creates a new TLAB, etc.) 3359 3360 const bool allow_shared_alloc = 3361 Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode; 3362 3363 if (UseTLAB) { 3364 __ movptr(rax, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset()))); 3365 __ lea(rbx, Address(rax, rdx, Address::times_1)); 3366 __ cmpptr(rbx, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset()))); 3367 __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case); 3368 __ movptr(Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())), rbx); 3369 if (ZeroTLAB) { 3370 // the fields have been already cleared 3371 __ jmp(initialize_header); 3372 } else { 3373 // initialize both the header and fields 3374 __ jmp(initialize_object); 3375 } 3376 } 3377 3378 // Allocation in the shared Eden, if allowed. 3379 // 3380 // rdx: instance size in bytes 3381 if (allow_shared_alloc) { 3382 __ bind(allocate_shared); 3383 3384 ExternalAddress top((address)Universe::heap()->top_addr()); 3385 ExternalAddress end((address)Universe::heap()->end_addr()); 3386 3387 const Register RtopAddr = rscratch1; 3388 const Register RendAddr = rscratch2; 3389 3390 __ lea(RtopAddr, top); 3391 __ lea(RendAddr, end); 3392 __ movptr(rax, Address(RtopAddr, 0)); 3393 3394 // For retries rax gets set by cmpxchgq 3395 Label retry; 3396 __ bind(retry); 3397 __ lea(rbx, Address(rax, rdx, Address::times_1)); 3398 __ cmpptr(rbx, Address(RendAddr, 0)); 3399 __ jcc(Assembler::above, slow_case); 3400 3401 // Compare rax with the top addr, and if still equal, store the new 3402 // top addr in rbx at the address of the top addr pointer. Sets ZF if was 3403 // equal, and clears it otherwise. Use lock prefix for atomicity on MPs. 3404 // 3405 // rax: object begin 3406 // rbx: object end 3407 // rdx: instance size in bytes 3408 if (os::is_MP()) { 3409 __ lock(); 3410 } 3411 __ cmpxchgptr(rbx, Address(RtopAddr, 0)); 3412 3413 // if someone beat us on the allocation, try again, otherwise continue 3414 __ jcc(Assembler::notEqual, retry); 3415 3416 __ incr_allocated_bytes(r15_thread, rdx, 0); 3417 } 3418 3419 if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) { 3420 // The object is initialized before the header. If the object size is 3421 // zero, go directly to the header initialization. 3422 __ bind(initialize_object); 3423 __ decrementl(rdx, sizeof(oopDesc)); 3424 __ jcc(Assembler::zero, initialize_header); 3425 3426 // Initialize object fields 3427 __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code) 3428 __ shrl(rdx, LogBytesPerLong); // divide by oopSize to simplify the loop 3429 { 3430 Label loop; 3431 __ bind(loop); 3432 __ movq(Address(rax, rdx, Address::times_8, 3433 sizeof(oopDesc) - oopSize), 3434 rcx); 3435 __ decrementl(rdx); 3436 __ jcc(Assembler::notZero, loop); 3437 } 3438 3439 // initialize object header only. 3440 __ bind(initialize_header); 3441 if (UseBiasedLocking) { 3442 __ movptr(rscratch1, Address(rsi, Klass::prototype_header_offset())); 3443 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), rscratch1); 3444 } else { 3445 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), 3446 (intptr_t) markOopDesc::prototype()); // header (address 0x1) 3447 } 3448 __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code) 3449 __ store_klass_gap(rax, rcx); // zero klass gap for compressed oops 3450 __ store_klass(rax, rsi); // store klass last 3451 3452 { 3453 SkipIfEqual skip(_masm, &DTraceAllocProbes, false); 3454 // Trigger dtrace event for fastpath 3455 __ push(atos); // save the return value 3456 __ call_VM_leaf( 3457 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax); 3458 __ pop(atos); // restore the return value 3459 3460 } 3461 __ jmp(done); 3462 } 3463 3464 3465 // slow case 3466 __ bind(slow_case); 3467 __ get_constant_pool(c_rarg1); 3468 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3469 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2); 3470 __ verify_oop(rax); 3471 3472 // continue 3473 __ bind(done); 3474 } 3475 3476 void TemplateTable::newarray() { 3477 transition(itos, atos); 3478 __ load_unsigned_byte(c_rarg1, at_bcp(1)); 3479 __ movl(c_rarg2, rax); 3480 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), 3481 c_rarg1, c_rarg2); 3482 } 3483 3484 void TemplateTable::anewarray() { 3485 transition(itos, atos); 3486 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3487 __ get_constant_pool(c_rarg1); 3488 __ movl(c_rarg3, rax); 3489 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), 3490 c_rarg1, c_rarg2, c_rarg3); 3491 } 3492 3493 void TemplateTable::arraylength() { 3494 transition(atos, itos); 3495 __ null_check(rax, arrayOopDesc::length_offset_in_bytes()); 3496 __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes())); 3497 } 3498 3499 void TemplateTable::checkcast() { 3500 transition(atos, atos); 3501 Label done, is_null, ok_is_subtype, quicked, resolved; 3502 __ testptr(rax, rax); // object is in rax 3503 __ jcc(Assembler::zero, is_null); 3504 3505 // Get cpool & tags index 3506 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 3507 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 3508 // See if bytecode has already been quicked 3509 __ cmpb(Address(rdx, rbx, 3510 Address::times_1, 3511 Array<u1>::base_offset_in_bytes()), 3512 JVM_CONSTANT_Class); 3513 __ jcc(Assembler::equal, quicked); 3514 __ push(atos); // save receiver for result, and for GC 3515 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3516 // vm_result_2 has metadata result 3517 __ get_vm_result_2(rax, r15_thread); 3518 __ pop_ptr(rdx); // restore receiver 3519 __ jmpb(resolved); 3520 3521 // Get superklass in rax and subklass in rbx 3522 __ bind(quicked); 3523 __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check 3524 __ movptr(rax, Address(rcx, rbx, 3525 Address::times_8, sizeof(ConstantPool))); 3526 3527 __ bind(resolved); 3528 __ load_klass(rbx, rdx); 3529 3530 // Generate subtype check. Blows rcx, rdi. Object in rdx. 3531 // Superklass in rax. Subklass in rbx. 3532 __ gen_subtype_check(rbx, ok_is_subtype); 3533 3534 // Come here on failure 3535 __ push_ptr(rdx); 3536 // object is at TOS 3537 __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry)); 3538 3539 // Come here on success 3540 __ bind(ok_is_subtype); 3541 __ mov(rax, rdx); // Restore object in rdx 3542 3543 // Collect counts on whether this check-cast sees NULLs a lot or not. 3544 if (ProfileInterpreter) { 3545 __ jmp(done); 3546 __ bind(is_null); 3547 __ profile_null_seen(rcx); 3548 } else { 3549 __ bind(is_null); // same as 'done' 3550 } 3551 __ bind(done); 3552 } 3553 3554 void TemplateTable::instanceof() { 3555 transition(atos, itos); 3556 Label done, is_null, ok_is_subtype, quicked, resolved; 3557 __ testptr(rax, rax); 3558 __ jcc(Assembler::zero, is_null); 3559 3560 // Get cpool & tags index 3561 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 3562 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 3563 // See if bytecode has already been quicked 3564 __ cmpb(Address(rdx, rbx, 3565 Address::times_1, 3566 Array<u1>::base_offset_in_bytes()), 3567 JVM_CONSTANT_Class); 3568 __ jcc(Assembler::equal, quicked); 3569 3570 __ push(atos); // save receiver for result, and for GC 3571 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3572 // vm_result_2 has metadata result 3573 __ get_vm_result_2(rax, r15_thread); 3574 __ pop_ptr(rdx); // restore receiver 3575 __ verify_oop(rdx); 3576 __ load_klass(rdx, rdx); 3577 __ jmpb(resolved); 3578 3579 // Get superklass in rax and subklass in rdx 3580 __ bind(quicked); 3581 __ load_klass(rdx, rax); 3582 __ movptr(rax, Address(rcx, rbx, 3583 Address::times_8, sizeof(ConstantPool))); 3584 3585 __ bind(resolved); 3586 3587 // Generate subtype check. Blows rcx, rdi 3588 // Superklass in rax. Subklass in rdx. 3589 __ gen_subtype_check(rdx, ok_is_subtype); 3590 3591 // Come here on failure 3592 __ xorl(rax, rax); 3593 __ jmpb(done); 3594 // Come here on success 3595 __ bind(ok_is_subtype); 3596 __ movl(rax, 1); 3597 3598 // Collect counts on whether this test sees NULLs a lot or not. 3599 if (ProfileInterpreter) { 3600 __ jmp(done); 3601 __ bind(is_null); 3602 __ profile_null_seen(rcx); 3603 } else { 3604 __ bind(is_null); // same as 'done' 3605 } 3606 __ bind(done); 3607 // rax = 0: obj == NULL or obj is not an instanceof the specified klass 3608 // rax = 1: obj != NULL and obj is an instanceof the specified klass 3609 } 3610 3611 //----------------------------------------------------------------------------- 3612 // Breakpoints 3613 void TemplateTable::_breakpoint() { 3614 // Note: We get here even if we are single stepping.. 3615 // jbug inists on setting breakpoints at every bytecode 3616 // even if we are in single step mode. 3617 3618 transition(vtos, vtos); 3619 3620 // get the unpatched byte code 3621 __ get_method(c_rarg1); 3622 __ call_VM(noreg, 3623 CAST_FROM_FN_PTR(address, 3624 InterpreterRuntime::get_original_bytecode_at), 3625 c_rarg1, r13); 3626 __ mov(rbx, rax); 3627 3628 // post the breakpoint event 3629 __ get_method(c_rarg1); 3630 __ call_VM(noreg, 3631 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), 3632 c_rarg1, r13); 3633 3634 // complete the execution of original bytecode 3635 __ dispatch_only_normal(vtos); 3636 } 3637 3638 //----------------------------------------------------------------------------- 3639 // Exceptions 3640 3641 void TemplateTable::athrow() { 3642 transition(atos, vtos); 3643 __ null_check(rax); 3644 __ jump(ExternalAddress(Interpreter::throw_exception_entry())); 3645 } 3646 3647 //----------------------------------------------------------------------------- 3648 // Synchronization 3649 // 3650 // Note: monitorenter & exit are symmetric routines; which is reflected 3651 // in the assembly code structure as well 3652 // 3653 // Stack layout: 3654 // 3655 // [expressions ] <--- rsp = expression stack top 3656 // .. 3657 // [expressions ] 3658 // [monitor entry] <--- monitor block top = expression stack bot 3659 // .. 3660 // [monitor entry] 3661 // [frame data ] <--- monitor block bot 3662 // ... 3663 // [saved rbp ] <--- rbp 3664 void TemplateTable::monitorenter() { 3665 transition(atos, vtos); 3666 3667 // check for NULL object 3668 __ null_check(rax); 3669 3670 const Address monitor_block_top( 3671 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 3672 const Address monitor_block_bot( 3673 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 3674 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 3675 3676 Label allocated; 3677 3678 // initialize entry pointer 3679 __ xorl(c_rarg1, c_rarg1); // points to free slot or NULL 3680 3681 // find a free slot in the monitor block (result in c_rarg1) 3682 { 3683 Label entry, loop, exit; 3684 __ movptr(c_rarg3, monitor_block_top); // points to current entry, 3685 // starting with top-most entry 3686 __ lea(c_rarg2, monitor_block_bot); // points to word before bottom 3687 // of monitor block 3688 __ jmpb(entry); 3689 3690 __ bind(loop); 3691 // check if current entry is used 3692 __ cmpptr(Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD); 3693 // if not used then remember entry in c_rarg1 3694 __ cmov(Assembler::equal, c_rarg1, c_rarg3); 3695 // check if current entry is for same object 3696 __ cmpptr(rax, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes())); 3697 // if same object then stop searching 3698 __ jccb(Assembler::equal, exit); 3699 // otherwise advance to next entry 3700 __ addptr(c_rarg3, entry_size); 3701 __ bind(entry); 3702 // check if bottom reached 3703 __ cmpptr(c_rarg3, c_rarg2); 3704 // if not at bottom then check this entry 3705 __ jcc(Assembler::notEqual, loop); 3706 __ bind(exit); 3707 } 3708 3709 __ testptr(c_rarg1, c_rarg1); // check if a slot has been found 3710 __ jcc(Assembler::notZero, allocated); // if found, continue with that one 3711 3712 // allocate one if there's no free slot 3713 { 3714 Label entry, loop; 3715 // 1. compute new pointers // rsp: old expression stack top 3716 __ movptr(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom 3717 __ subptr(rsp, entry_size); // move expression stack top 3718 __ subptr(c_rarg1, entry_size); // move expression stack bottom 3719 __ mov(c_rarg3, rsp); // set start value for copy loop 3720 __ movptr(monitor_block_bot, c_rarg1); // set new monitor block bottom 3721 __ jmp(entry); 3722 // 2. move expression stack contents 3723 __ bind(loop); 3724 __ movptr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack 3725 // word from old location 3726 __ movptr(Address(c_rarg3, 0), c_rarg2); // and store it at new location 3727 __ addptr(c_rarg3, wordSize); // advance to next word 3728 __ bind(entry); 3729 __ cmpptr(c_rarg3, c_rarg1); // check if bottom reached 3730 __ jcc(Assembler::notEqual, loop); // if not at bottom then 3731 // copy next word 3732 } 3733 3734 // call run-time routine 3735 // c_rarg1: points to monitor entry 3736 __ bind(allocated); 3737 3738 // Increment bcp to point to the next bytecode, so exception 3739 // handling for async. exceptions work correctly. 3740 // The object has already been poped from the stack, so the 3741 // expression stack looks correct. 3742 __ increment(r13); 3743 3744 // store object 3745 __ movptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), rax); 3746 __ lock_object(c_rarg1); 3747 3748 // check to make sure this monitor doesn't cause stack overflow after locking 3749 __ save_bcp(); // in case of exception 3750 __ generate_stack_overflow_check(0); 3751 3752 // The bcp has already been incremented. Just need to dispatch to 3753 // next instruction. 3754 __ dispatch_next(vtos); 3755 } 3756 3757 3758 void TemplateTable::monitorexit() { 3759 transition(atos, vtos); 3760 3761 // check for NULL object 3762 __ null_check(rax); 3763 3764 const Address monitor_block_top( 3765 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 3766 const Address monitor_block_bot( 3767 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 3768 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 3769 3770 Label found; 3771 3772 // find matching slot 3773 { 3774 Label entry, loop; 3775 __ movptr(c_rarg1, monitor_block_top); // points to current entry, 3776 // starting with top-most entry 3777 __ lea(c_rarg2, monitor_block_bot); // points to word before bottom 3778 // of monitor block 3779 __ jmpb(entry); 3780 3781 __ bind(loop); 3782 // check if current entry is for same object 3783 __ cmpptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes())); 3784 // if same object then stop searching 3785 __ jcc(Assembler::equal, found); 3786 // otherwise advance to next entry 3787 __ addptr(c_rarg1, entry_size); 3788 __ bind(entry); 3789 // check if bottom reached 3790 __ cmpptr(c_rarg1, c_rarg2); 3791 // if not at bottom then check this entry 3792 __ jcc(Assembler::notEqual, loop); 3793 } 3794 3795 // error handling. Unlocking was not block-structured 3796 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 3797 InterpreterRuntime::throw_illegal_monitor_state_exception)); 3798 __ should_not_reach_here(); 3799 3800 // call run-time routine 3801 // rsi: points to monitor entry 3802 __ bind(found); 3803 __ push_ptr(rax); // make sure object is on stack (contract with oopMaps) 3804 __ unlock_object(c_rarg1); 3805 __ pop_ptr(rax); // discard object 3806 } 3807 3808 3809 // Wide instructions 3810 void TemplateTable::wide() { 3811 transition(vtos, vtos); 3812 __ load_unsigned_byte(rbx, at_bcp(1)); 3813 __ lea(rscratch1, ExternalAddress((address)Interpreter::_wentry_point)); 3814 __ jmp(Address(rscratch1, rbx, Address::times_8)); 3815 // Note: the r13 increment step is part of the individual wide 3816 // bytecode implementations 3817 } 3818 3819 3820 // Multi arrays 3821 void TemplateTable::multianewarray() { 3822 transition(vtos, atos); 3823 __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions 3824 // last dim is on top of stack; we want address of first one: 3825 // first_addr = last_addr + (ndims - 1) * wordSize 3826 __ lea(c_rarg1, Address(rsp, rax, Address::times_8, -wordSize)); 3827 call_VM(rax, 3828 CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), 3829 c_rarg1); 3830 __ load_unsigned_byte(rbx, at_bcp(3)); 3831 __ lea(rsp, Address(rsp, rbx, Address::times_8)); 3832 } 3833 #endif // !CC_INTERP