1 /* 2 * Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "interpreter/interpreter.hpp" 28 #include "interpreter/interpreterRuntime.hpp" 29 #include "interpreter/templateTable.hpp" 30 #include "memory/universe.inline.hpp" 31 #include "oops/methodData.hpp" 32 #include "oops/objArrayKlass.hpp" 33 #include "oops/oop.inline.hpp" 34 #include "prims/methodHandles.hpp" 35 #include "runtime/sharedRuntime.hpp" 36 #include "runtime/stubRoutines.hpp" 37 #include "runtime/synchronizer.hpp" 38 #include "utilities/macros.hpp" 39 #if INCLUDE_ALL_GCS 40 #include "shenandoahBarrierSetAssembler_x86.hpp" 41 #endif 42 43 #ifndef CC_INTERP 44 45 #define __ _masm-> 46 47 // Platform-dependent initialization 48 49 void TemplateTable::pd_initialize() { 50 // No amd64 specific initialization 51 } 52 53 // Address computation: local variables 54 55 static inline Address iaddress(int n) { 56 return Address(r14, Interpreter::local_offset_in_bytes(n)); 57 } 58 59 static inline Address laddress(int n) { 60 return iaddress(n + 1); 61 } 62 63 static inline Address faddress(int n) { 64 return iaddress(n); 65 } 66 67 static inline Address daddress(int n) { 68 return laddress(n); 69 } 70 71 static inline Address aaddress(int n) { 72 return iaddress(n); 73 } 74 75 static inline Address iaddress(Register r) { 76 return Address(r14, r, Address::times_8); 77 } 78 79 static inline Address laddress(Register r) { 80 return Address(r14, r, Address::times_8, Interpreter::local_offset_in_bytes(1)); 81 } 82 83 static inline Address faddress(Register r) { 84 return iaddress(r); 85 } 86 87 static inline Address daddress(Register r) { 88 return laddress(r); 89 } 90 91 static inline Address aaddress(Register r) { 92 return iaddress(r); 93 } 94 95 static inline Address at_rsp() { 96 return Address(rsp, 0); 97 } 98 99 // At top of Java expression stack which may be different than esp(). It 100 // isn't for category 1 objects. 101 static inline Address at_tos () { 102 return Address(rsp, Interpreter::expr_offset_in_bytes(0)); 103 } 104 105 static inline Address at_tos_p1() { 106 return Address(rsp, Interpreter::expr_offset_in_bytes(1)); 107 } 108 109 static inline Address at_tos_p2() { 110 return Address(rsp, Interpreter::expr_offset_in_bytes(2)); 111 } 112 113 // Condition conversion 114 static Assembler::Condition j_not(TemplateTable::Condition cc) { 115 switch (cc) { 116 case TemplateTable::equal : return Assembler::notEqual; 117 case TemplateTable::not_equal : return Assembler::equal; 118 case TemplateTable::less : return Assembler::greaterEqual; 119 case TemplateTable::less_equal : return Assembler::greater; 120 case TemplateTable::greater : return Assembler::lessEqual; 121 case TemplateTable::greater_equal: return Assembler::less; 122 } 123 ShouldNotReachHere(); 124 return Assembler::zero; 125 } 126 127 128 // Miscelaneous helper routines 129 // Store an oop (or NULL) at the address described by obj. 130 // If val == noreg this means store a NULL 131 132 static void do_oop_store(InterpreterMacroAssembler* _masm, 133 Address obj, 134 Register val, 135 BarrierSet::Name barrier, 136 bool precise) { 137 assert(val == noreg || val == rax, "parameter is just for looks"); 138 switch (barrier) { 139 #if INCLUDE_ALL_GCS 140 case BarrierSet::G1SATBCT: 141 case BarrierSet::G1SATBCTLogging: 142 { 143 // flatten object address if needed 144 if (obj.index() == noreg && obj.disp() == 0) { 145 if (obj.base() != rdx) { 146 __ movq(rdx, obj.base()); 147 } 148 } else { 149 __ leaq(rdx, obj); 150 } 151 __ g1_write_barrier_pre(rdx /* obj */, 152 rbx /* pre_val */, 153 r15_thread /* thread */, 154 r8 /* tmp */, 155 val != noreg /* tosca_live */, 156 false /* expand_call */); 157 if (val == noreg) { 158 __ store_heap_oop_null(Address(rdx, 0)); 159 } else { 160 // G1 barrier needs uncompressed oop for region cross check. 161 Register new_val = val; 162 if (UseCompressedOops) { 163 new_val = rbx; 164 __ movptr(new_val, val); 165 } 166 __ store_heap_oop(Address(rdx, 0), val); 167 __ g1_write_barrier_post(rdx /* store_adr */, 168 new_val /* new_val */, 169 r15_thread /* thread */, 170 r8 /* tmp */, 171 rbx /* tmp2 */); 172 } 173 } 174 break; 175 case BarrierSet::ShenandoahBarrierSet: 176 { 177 // flatten object address if needed 178 if (obj.index() == noreg && obj.disp() == 0) { 179 if (obj.base() != rdx) { 180 __ movq(rdx, obj.base()); 181 } 182 } else { 183 __ leaq(rdx, obj); 184 } 185 if (ShenandoahSATBBarrier) { 186 __ g1_write_barrier_pre(rdx /* obj */, 187 rbx /* pre_val */, 188 r15_thread /* thread */, 189 r8 /* tmp */, 190 val != noreg /* tosca_live */, 191 false /* expand_call */); 192 } 193 if (val == noreg) { 194 __ store_heap_oop_null(Address(rdx, 0)); 195 } else { 196 ShenandoahBarrierSetAssembler::bsasm()->storeval_barrier(_masm, val, r8); 197 __ store_heap_oop(Address(rdx, 0), val); 198 } 199 } 200 break; 201 #endif // INCLUDE_ALL_GCS 202 case BarrierSet::CardTableModRef: 203 case BarrierSet::CardTableExtension: 204 { 205 if (val == noreg) { 206 __ store_heap_oop_null(obj); 207 } else { 208 __ store_heap_oop(obj, val); 209 // flatten object address if needed 210 if (!precise || (obj.index() == noreg && obj.disp() == 0)) { 211 __ store_check(obj.base()); 212 } else { 213 __ leaq(rdx, obj); 214 __ store_check(rdx); 215 } 216 } 217 } 218 break; 219 case BarrierSet::ModRef: 220 case BarrierSet::Other: 221 if (val == noreg) { 222 __ store_heap_oop_null(obj); 223 } else { 224 __ store_heap_oop(obj, val); 225 } 226 break; 227 default : 228 ShouldNotReachHere(); 229 230 } 231 } 232 233 Address TemplateTable::at_bcp(int offset) { 234 assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); 235 return Address(r13, offset); 236 } 237 238 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg, 239 Register temp_reg, bool load_bc_into_bc_reg/*=true*/, 240 int byte_no) { 241 if (!RewriteBytecodes) return; 242 Label L_patch_done; 243 244 switch (bc) { 245 case Bytecodes::_fast_aputfield: 246 case Bytecodes::_fast_bputfield: 247 case Bytecodes::_fast_zputfield: 248 case Bytecodes::_fast_cputfield: 249 case Bytecodes::_fast_dputfield: 250 case Bytecodes::_fast_fputfield: 251 case Bytecodes::_fast_iputfield: 252 case Bytecodes::_fast_lputfield: 253 case Bytecodes::_fast_sputfield: 254 { 255 // We skip bytecode quickening for putfield instructions when 256 // the put_code written to the constant pool cache is zero. 257 // This is required so that every execution of this instruction 258 // calls out to InterpreterRuntime::resolve_get_put to do 259 // additional, required work. 260 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 261 assert(load_bc_into_bc_reg, "we use bc_reg as temp"); 262 __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1); 263 __ movl(bc_reg, bc); 264 __ cmpl(temp_reg, (int) 0); 265 __ jcc(Assembler::zero, L_patch_done); // don't patch 266 } 267 break; 268 default: 269 assert(byte_no == -1, "sanity"); 270 // the pair bytecodes have already done the load. 271 if (load_bc_into_bc_reg) { 272 __ movl(bc_reg, bc); 273 } 274 } 275 276 if (JvmtiExport::can_post_breakpoint()) { 277 Label L_fast_patch; 278 // if a breakpoint is present we can't rewrite the stream directly 279 __ movzbl(temp_reg, at_bcp(0)); 280 __ cmpl(temp_reg, Bytecodes::_breakpoint); 281 __ jcc(Assembler::notEqual, L_fast_patch); 282 __ get_method(temp_reg); 283 // Let breakpoint table handling rewrite to quicker bytecode 284 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, r13, bc_reg); 285 #ifndef ASSERT 286 __ jmpb(L_patch_done); 287 #else 288 __ jmp(L_patch_done); 289 #endif 290 __ bind(L_fast_patch); 291 } 292 293 #ifdef ASSERT 294 Label L_okay; 295 __ load_unsigned_byte(temp_reg, at_bcp(0)); 296 __ cmpl(temp_reg, (int) Bytecodes::java_code(bc)); 297 __ jcc(Assembler::equal, L_okay); 298 __ cmpl(temp_reg, bc_reg); 299 __ jcc(Assembler::equal, L_okay); 300 __ stop("patching the wrong bytecode"); 301 __ bind(L_okay); 302 #endif 303 304 // patch bytecode 305 __ movb(at_bcp(0), bc_reg); 306 __ bind(L_patch_done); 307 } 308 309 310 // Individual instructions 311 312 void TemplateTable::nop() { 313 transition(vtos, vtos); 314 // nothing to do 315 } 316 317 void TemplateTable::shouldnotreachhere() { 318 transition(vtos, vtos); 319 __ stop("shouldnotreachhere bytecode"); 320 } 321 322 void TemplateTable::aconst_null() { 323 transition(vtos, atos); 324 __ xorl(rax, rax); 325 } 326 327 void TemplateTable::iconst(int value) { 328 transition(vtos, itos); 329 if (value == 0) { 330 __ xorl(rax, rax); 331 } else { 332 __ movl(rax, value); 333 } 334 } 335 336 void TemplateTable::lconst(int value) { 337 transition(vtos, ltos); 338 if (value == 0) { 339 __ xorl(rax, rax); 340 } else { 341 __ movl(rax, value); 342 } 343 } 344 345 void TemplateTable::fconst(int value) { 346 transition(vtos, ftos); 347 static float one = 1.0f, two = 2.0f; 348 switch (value) { 349 case 0: 350 __ xorps(xmm0, xmm0); 351 break; 352 case 1: 353 __ movflt(xmm0, ExternalAddress((address) &one)); 354 break; 355 case 2: 356 __ movflt(xmm0, ExternalAddress((address) &two)); 357 break; 358 default: 359 ShouldNotReachHere(); 360 break; 361 } 362 } 363 364 void TemplateTable::dconst(int value) { 365 transition(vtos, dtos); 366 static double one = 1.0; 367 switch (value) { 368 case 0: 369 __ xorpd(xmm0, xmm0); 370 break; 371 case 1: 372 __ movdbl(xmm0, ExternalAddress((address) &one)); 373 break; 374 default: 375 ShouldNotReachHere(); 376 break; 377 } 378 } 379 380 void TemplateTable::bipush() { 381 transition(vtos, itos); 382 __ load_signed_byte(rax, at_bcp(1)); 383 } 384 385 void TemplateTable::sipush() { 386 transition(vtos, itos); 387 __ load_unsigned_short(rax, at_bcp(1)); 388 __ bswapl(rax); 389 __ sarl(rax, 16); 390 } 391 392 void TemplateTable::ldc(bool wide) { 393 transition(vtos, vtos); 394 Label call_ldc, notFloat, notClass, Done; 395 396 if (wide) { 397 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 398 } else { 399 __ load_unsigned_byte(rbx, at_bcp(1)); 400 } 401 402 __ get_cpool_and_tags(rcx, rax); 403 const int base_offset = ConstantPool::header_size() * wordSize; 404 const int tags_offset = Array<u1>::base_offset_in_bytes(); 405 406 // get type 407 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset)); 408 409 // unresolved class - get the resolved class 410 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass); 411 __ jccb(Assembler::equal, call_ldc); 412 413 // unresolved class in error state - call into runtime to throw the error 414 // from the first resolution attempt 415 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError); 416 __ jccb(Assembler::equal, call_ldc); 417 418 // resolved class - need to call vm to get java mirror of the class 419 __ cmpl(rdx, JVM_CONSTANT_Class); 420 __ jcc(Assembler::notEqual, notClass); 421 422 __ bind(call_ldc); 423 __ movl(c_rarg1, wide); 424 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1); 425 __ push_ptr(rax); 426 __ verify_oop(rax); 427 __ jmp(Done); 428 429 __ bind(notClass); 430 __ cmpl(rdx, JVM_CONSTANT_Float); 431 __ jccb(Assembler::notEqual, notFloat); 432 // ftos 433 __ movflt(xmm0, Address(rcx, rbx, Address::times_8, base_offset)); 434 __ push_f(); 435 __ jmp(Done); 436 437 __ bind(notFloat); 438 #ifdef ASSERT 439 { 440 Label L; 441 __ cmpl(rdx, JVM_CONSTANT_Integer); 442 __ jcc(Assembler::equal, L); 443 // String and Object are rewritten to fast_aldc 444 __ stop("unexpected tag type in ldc"); 445 __ bind(L); 446 } 447 #endif 448 // itos JVM_CONSTANT_Integer only 449 __ movl(rax, Address(rcx, rbx, Address::times_8, base_offset)); 450 __ push_i(rax); 451 __ bind(Done); 452 } 453 454 // Fast path for caching oop constants. 455 void TemplateTable::fast_aldc(bool wide) { 456 transition(vtos, atos); 457 458 Register result = rax; 459 Register tmp = rdx; 460 int index_size = wide ? sizeof(u2) : sizeof(u1); 461 462 Label resolved; 463 464 // We are resolved if the resolved reference cache entry contains a 465 // non-null object (String, MethodType, etc.) 466 assert_different_registers(result, tmp); 467 __ get_cache_index_at_bcp(tmp, 1, index_size); 468 __ load_resolved_reference_at_index(result, tmp); 469 __ testl(result, result); 470 __ jcc(Assembler::notZero, resolved); 471 472 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 473 474 // first time invocation - must resolve first 475 __ movl(tmp, (int)bytecode()); 476 __ call_VM(result, entry, tmp); 477 478 __ bind(resolved); 479 480 if (VerifyOops) { 481 __ verify_oop(result); 482 } 483 } 484 485 void TemplateTable::ldc2_w() { 486 transition(vtos, vtos); 487 Label Long, Done; 488 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 489 490 __ get_cpool_and_tags(rcx, rax); 491 const int base_offset = ConstantPool::header_size() * wordSize; 492 const int tags_offset = Array<u1>::base_offset_in_bytes(); 493 494 // get type 495 __ cmpb(Address(rax, rbx, Address::times_1, tags_offset), 496 JVM_CONSTANT_Double); 497 __ jccb(Assembler::notEqual, Long); 498 // dtos 499 __ movdbl(xmm0, Address(rcx, rbx, Address::times_8, base_offset)); 500 __ push_d(); 501 __ jmpb(Done); 502 503 __ bind(Long); 504 // ltos 505 __ movq(rax, Address(rcx, rbx, Address::times_8, base_offset)); 506 __ push_l(); 507 508 __ bind(Done); 509 } 510 511 void TemplateTable::locals_index(Register reg, int offset) { 512 __ load_unsigned_byte(reg, at_bcp(offset)); 513 __ negptr(reg); 514 } 515 516 void TemplateTable::iload() { 517 transition(vtos, itos); 518 if (RewriteFrequentPairs) { 519 Label rewrite, done; 520 const Register bc = c_rarg3; 521 assert(rbx != bc, "register damaged"); 522 523 // get next byte 524 __ load_unsigned_byte(rbx, 525 at_bcp(Bytecodes::length_for(Bytecodes::_iload))); 526 // if _iload, wait to rewrite to iload2. We only want to rewrite the 527 // last two iloads in a pair. Comparing against fast_iload means that 528 // the next bytecode is neither an iload or a caload, and therefore 529 // an iload pair. 530 __ cmpl(rbx, Bytecodes::_iload); 531 __ jcc(Assembler::equal, done); 532 533 __ cmpl(rbx, Bytecodes::_fast_iload); 534 __ movl(bc, Bytecodes::_fast_iload2); 535 __ jccb(Assembler::equal, rewrite); 536 537 // if _caload, rewrite to fast_icaload 538 __ cmpl(rbx, Bytecodes::_caload); 539 __ movl(bc, Bytecodes::_fast_icaload); 540 __ jccb(Assembler::equal, rewrite); 541 542 // rewrite so iload doesn't check again. 543 __ movl(bc, Bytecodes::_fast_iload); 544 545 // rewrite 546 // bc: fast bytecode 547 __ bind(rewrite); 548 patch_bytecode(Bytecodes::_iload, bc, rbx, false); 549 __ bind(done); 550 } 551 552 // Get the local value into tos 553 locals_index(rbx); 554 __ movl(rax, iaddress(rbx)); 555 } 556 557 void TemplateTable::fast_iload2() { 558 transition(vtos, itos); 559 locals_index(rbx); 560 __ movl(rax, iaddress(rbx)); 561 __ push(itos); 562 locals_index(rbx, 3); 563 __ movl(rax, iaddress(rbx)); 564 } 565 566 void TemplateTable::fast_iload() { 567 transition(vtos, itos); 568 locals_index(rbx); 569 __ movl(rax, iaddress(rbx)); 570 } 571 572 void TemplateTable::lload() { 573 transition(vtos, ltos); 574 locals_index(rbx); 575 __ movq(rax, laddress(rbx)); 576 } 577 578 void TemplateTable::fload() { 579 transition(vtos, ftos); 580 locals_index(rbx); 581 __ movflt(xmm0, faddress(rbx)); 582 } 583 584 void TemplateTable::dload() { 585 transition(vtos, dtos); 586 locals_index(rbx); 587 __ movdbl(xmm0, daddress(rbx)); 588 } 589 590 void TemplateTable::aload() { 591 transition(vtos, atos); 592 locals_index(rbx); 593 __ movptr(rax, aaddress(rbx)); 594 } 595 596 void TemplateTable::locals_index_wide(Register reg) { 597 __ load_unsigned_short(reg, at_bcp(2)); 598 __ bswapl(reg); 599 __ shrl(reg, 16); 600 __ negptr(reg); 601 } 602 603 void TemplateTable::wide_iload() { 604 transition(vtos, itos); 605 locals_index_wide(rbx); 606 __ movl(rax, iaddress(rbx)); 607 } 608 609 void TemplateTable::wide_lload() { 610 transition(vtos, ltos); 611 locals_index_wide(rbx); 612 __ movq(rax, laddress(rbx)); 613 } 614 615 void TemplateTable::wide_fload() { 616 transition(vtos, ftos); 617 locals_index_wide(rbx); 618 __ movflt(xmm0, faddress(rbx)); 619 } 620 621 void TemplateTable::wide_dload() { 622 transition(vtos, dtos); 623 locals_index_wide(rbx); 624 __ movdbl(xmm0, daddress(rbx)); 625 } 626 627 void TemplateTable::wide_aload() { 628 transition(vtos, atos); 629 locals_index_wide(rbx); 630 __ movptr(rax, aaddress(rbx)); 631 } 632 633 void TemplateTable::index_check(Register array, Register index) { 634 // destroys rbx 635 // check array 636 __ null_check(array, arrayOopDesc::length_offset_in_bytes()); 637 // sign extend index for use by indexed load 638 __ movl2ptr(index, index); 639 // check index 640 __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes())); 641 if (index != rbx) { 642 // ??? convention: move aberrant index into ebx for exception message 643 assert(rbx != array, "different registers"); 644 __ movl(rbx, index); 645 } 646 __ jump_cc(Assembler::aboveEqual, 647 ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry)); 648 } 649 650 void TemplateTable::iaload() { 651 transition(itos, itos); 652 __ pop_ptr(rdx); 653 // eax: index 654 // rdx: array 655 index_check(rdx, rax); // kills rbx 656 __ movl(rax, Address(rdx, rax, 657 Address::times_4, 658 arrayOopDesc::base_offset_in_bytes(T_INT))); 659 } 660 661 void TemplateTable::laload() { 662 transition(itos, ltos); 663 __ pop_ptr(rdx); 664 // eax: index 665 // rdx: array 666 index_check(rdx, rax); // kills rbx 667 __ movq(rax, Address(rdx, rbx, 668 Address::times_8, 669 arrayOopDesc::base_offset_in_bytes(T_LONG))); 670 } 671 672 void TemplateTable::faload() { 673 transition(itos, ftos); 674 __ pop_ptr(rdx); 675 // eax: index 676 // rdx: array 677 index_check(rdx, rax); // kills rbx 678 __ movflt(xmm0, Address(rdx, rax, 679 Address::times_4, 680 arrayOopDesc::base_offset_in_bytes(T_FLOAT))); 681 } 682 683 void TemplateTable::daload() { 684 transition(itos, dtos); 685 __ pop_ptr(rdx); 686 // eax: index 687 // rdx: array 688 index_check(rdx, rax); // kills rbx 689 __ movdbl(xmm0, Address(rdx, rax, 690 Address::times_8, 691 arrayOopDesc::base_offset_in_bytes(T_DOUBLE))); 692 } 693 694 void TemplateTable::aaload() { 695 transition(itos, atos); 696 __ pop_ptr(rdx); 697 // eax: index 698 // rdx: array 699 index_check(rdx, rax); // kills rbx 700 __ load_heap_oop(rax, Address(rdx, rax, 701 UseCompressedOops ? Address::times_4 : Address::times_8, 702 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); 703 } 704 705 void TemplateTable::baload() { 706 transition(itos, itos); 707 __ pop_ptr(rdx); 708 // eax: index 709 // rdx: array 710 index_check(rdx, rax); // kills rbx 711 __ load_signed_byte(rax, 712 Address(rdx, rax, 713 Address::times_1, 714 arrayOopDesc::base_offset_in_bytes(T_BYTE))); 715 } 716 717 void TemplateTable::caload() { 718 transition(itos, itos); 719 __ pop_ptr(rdx); 720 // eax: index 721 // rdx: array 722 index_check(rdx, rax); // kills rbx 723 __ load_unsigned_short(rax, 724 Address(rdx, rax, 725 Address::times_2, 726 arrayOopDesc::base_offset_in_bytes(T_CHAR))); 727 } 728 729 // iload followed by caload frequent pair 730 void TemplateTable::fast_icaload() { 731 transition(vtos, itos); 732 // load index out of locals 733 locals_index(rbx); 734 __ movl(rax, iaddress(rbx)); 735 736 // eax: index 737 // rdx: array 738 __ pop_ptr(rdx); 739 index_check(rdx, rax); // kills rbx 740 __ load_unsigned_short(rax, 741 Address(rdx, rax, 742 Address::times_2, 743 arrayOopDesc::base_offset_in_bytes(T_CHAR))); 744 } 745 746 void TemplateTable::saload() { 747 transition(itos, itos); 748 __ pop_ptr(rdx); 749 // eax: index 750 // rdx: array 751 index_check(rdx, rax); // kills rbx 752 __ load_signed_short(rax, 753 Address(rdx, rax, 754 Address::times_2, 755 arrayOopDesc::base_offset_in_bytes(T_SHORT))); 756 } 757 758 void TemplateTable::iload(int n) { 759 transition(vtos, itos); 760 __ movl(rax, iaddress(n)); 761 } 762 763 void TemplateTable::lload(int n) { 764 transition(vtos, ltos); 765 __ movq(rax, laddress(n)); 766 } 767 768 void TemplateTable::fload(int n) { 769 transition(vtos, ftos); 770 __ movflt(xmm0, faddress(n)); 771 } 772 773 void TemplateTable::dload(int n) { 774 transition(vtos, dtos); 775 __ movdbl(xmm0, daddress(n)); 776 } 777 778 void TemplateTable::aload(int n) { 779 transition(vtos, atos); 780 __ movptr(rax, aaddress(n)); 781 } 782 783 void TemplateTable::aload_0() { 784 transition(vtos, atos); 785 // According to bytecode histograms, the pairs: 786 // 787 // _aload_0, _fast_igetfield 788 // _aload_0, _fast_agetfield 789 // _aload_0, _fast_fgetfield 790 // 791 // occur frequently. If RewriteFrequentPairs is set, the (slow) 792 // _aload_0 bytecode checks if the next bytecode is either 793 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then 794 // rewrites the current bytecode into a pair bytecode; otherwise it 795 // rewrites the current bytecode into _fast_aload_0 that doesn't do 796 // the pair check anymore. 797 // 798 // Note: If the next bytecode is _getfield, the rewrite must be 799 // delayed, otherwise we may miss an opportunity for a pair. 800 // 801 // Also rewrite frequent pairs 802 // aload_0, aload_1 803 // aload_0, iload_1 804 // These bytecodes with a small amount of code are most profitable 805 // to rewrite 806 if (RewriteFrequentPairs) { 807 Label rewrite, done; 808 const Register bc = c_rarg3; 809 assert(rbx != bc, "register damaged"); 810 // get next byte 811 __ load_unsigned_byte(rbx, 812 at_bcp(Bytecodes::length_for(Bytecodes::_aload_0))); 813 814 // do actual aload_0 815 aload(0); 816 817 // if _getfield then wait with rewrite 818 __ cmpl(rbx, Bytecodes::_getfield); 819 __ jcc(Assembler::equal, done); 820 821 // if _igetfield then reqrite to _fast_iaccess_0 822 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == 823 Bytecodes::_aload_0, 824 "fix bytecode definition"); 825 __ cmpl(rbx, Bytecodes::_fast_igetfield); 826 __ movl(bc, Bytecodes::_fast_iaccess_0); 827 __ jccb(Assembler::equal, rewrite); 828 829 // if _agetfield then reqrite to _fast_aaccess_0 830 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == 831 Bytecodes::_aload_0, 832 "fix bytecode definition"); 833 __ cmpl(rbx, Bytecodes::_fast_agetfield); 834 __ movl(bc, Bytecodes::_fast_aaccess_0); 835 __ jccb(Assembler::equal, rewrite); 836 837 // if _fgetfield then reqrite to _fast_faccess_0 838 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == 839 Bytecodes::_aload_0, 840 "fix bytecode definition"); 841 __ cmpl(rbx, Bytecodes::_fast_fgetfield); 842 __ movl(bc, Bytecodes::_fast_faccess_0); 843 __ jccb(Assembler::equal, rewrite); 844 845 // else rewrite to _fast_aload0 846 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == 847 Bytecodes::_aload_0, 848 "fix bytecode definition"); 849 __ movl(bc, Bytecodes::_fast_aload_0); 850 851 // rewrite 852 // bc: fast bytecode 853 __ bind(rewrite); 854 patch_bytecode(Bytecodes::_aload_0, bc, rbx, false); 855 856 __ bind(done); 857 } else { 858 aload(0); 859 } 860 } 861 862 void TemplateTable::istore() { 863 transition(itos, vtos); 864 locals_index(rbx); 865 __ movl(iaddress(rbx), rax); 866 } 867 868 void TemplateTable::lstore() { 869 transition(ltos, vtos); 870 locals_index(rbx); 871 __ movq(laddress(rbx), rax); 872 } 873 874 void TemplateTable::fstore() { 875 transition(ftos, vtos); 876 locals_index(rbx); 877 __ movflt(faddress(rbx), xmm0); 878 } 879 880 void TemplateTable::dstore() { 881 transition(dtos, vtos); 882 locals_index(rbx); 883 __ movdbl(daddress(rbx), xmm0); 884 } 885 886 void TemplateTable::astore() { 887 transition(vtos, vtos); 888 __ pop_ptr(rax); 889 locals_index(rbx); 890 __ movptr(aaddress(rbx), rax); 891 } 892 893 void TemplateTable::wide_istore() { 894 transition(vtos, vtos); 895 __ pop_i(); 896 locals_index_wide(rbx); 897 __ movl(iaddress(rbx), rax); 898 } 899 900 void TemplateTable::wide_lstore() { 901 transition(vtos, vtos); 902 __ pop_l(); 903 locals_index_wide(rbx); 904 __ movq(laddress(rbx), rax); 905 } 906 907 void TemplateTable::wide_fstore() { 908 transition(vtos, vtos); 909 __ pop_f(); 910 locals_index_wide(rbx); 911 __ movflt(faddress(rbx), xmm0); 912 } 913 914 void TemplateTable::wide_dstore() { 915 transition(vtos, vtos); 916 __ pop_d(); 917 locals_index_wide(rbx); 918 __ movdbl(daddress(rbx), xmm0); 919 } 920 921 void TemplateTable::wide_astore() { 922 transition(vtos, vtos); 923 __ pop_ptr(rax); 924 locals_index_wide(rbx); 925 __ movptr(aaddress(rbx), rax); 926 } 927 928 void TemplateTable::iastore() { 929 transition(itos, vtos); 930 __ pop_i(rbx); 931 __ pop_ptr(rdx); 932 // eax: value 933 // ebx: index 934 // rdx: array 935 index_check(rdx, rbx); // prefer index in ebx 936 __ movl(Address(rdx, rbx, 937 Address::times_4, 938 arrayOopDesc::base_offset_in_bytes(T_INT)), 939 rax); 940 } 941 942 void TemplateTable::lastore() { 943 transition(ltos, vtos); 944 __ pop_i(rbx); 945 __ pop_ptr(rdx); 946 // rax: value 947 // ebx: index 948 // rdx: array 949 index_check(rdx, rbx); // prefer index in ebx 950 __ movq(Address(rdx, rbx, 951 Address::times_8, 952 arrayOopDesc::base_offset_in_bytes(T_LONG)), 953 rax); 954 } 955 956 void TemplateTable::fastore() { 957 transition(ftos, vtos); 958 __ pop_i(rbx); 959 __ pop_ptr(rdx); 960 // xmm0: value 961 // ebx: index 962 // rdx: array 963 index_check(rdx, rbx); // prefer index in ebx 964 __ movflt(Address(rdx, rbx, 965 Address::times_4, 966 arrayOopDesc::base_offset_in_bytes(T_FLOAT)), 967 xmm0); 968 } 969 970 void TemplateTable::dastore() { 971 transition(dtos, vtos); 972 __ pop_i(rbx); 973 __ pop_ptr(rdx); 974 // xmm0: value 975 // ebx: index 976 // rdx: array 977 index_check(rdx, rbx); // prefer index in ebx 978 __ movdbl(Address(rdx, rbx, 979 Address::times_8, 980 arrayOopDesc::base_offset_in_bytes(T_DOUBLE)), 981 xmm0); 982 } 983 984 void TemplateTable::aastore() { 985 Label is_null, ok_is_subtype, done; 986 transition(vtos, vtos); 987 // stack: ..., array, index, value 988 __ movptr(rax, at_tos()); // value 989 __ movl(rcx, at_tos_p1()); // index 990 __ movptr(rdx, at_tos_p2()); // array 991 992 Address element_address(rdx, rcx, 993 UseCompressedOops? Address::times_4 : Address::times_8, 994 arrayOopDesc::base_offset_in_bytes(T_OBJECT)); 995 996 index_check(rdx, rcx); // kills rbx 997 // do array store check - check for NULL value first 998 __ testptr(rax, rax); 999 __ jcc(Assembler::zero, is_null); 1000 1001 // Move subklass into rbx 1002 __ load_klass(rbx, rax); 1003 // Move superklass into rax 1004 __ load_klass(rax, rdx); 1005 __ movptr(rax, Address(rax, 1006 ObjArrayKlass::element_klass_offset())); 1007 // Compress array + index*oopSize + 12 into a single register. Frees rcx. 1008 __ lea(rdx, element_address); 1009 1010 // Generate subtype check. Blows rcx, rdi 1011 // Superklass in rax. Subklass in rbx. 1012 __ gen_subtype_check(rbx, ok_is_subtype); 1013 1014 // Come here on failure 1015 // object is at TOS 1016 __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry)); 1017 1018 // Come here on success 1019 __ bind(ok_is_subtype); 1020 1021 // Get the value we will store 1022 __ movptr(rax, at_tos()); 1023 // Now store using the appropriate barrier 1024 do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true); 1025 __ jmp(done); 1026 1027 // Have a NULL in rax, rdx=array, ecx=index. Store NULL at ary[idx] 1028 __ bind(is_null); 1029 __ profile_null_seen(rbx); 1030 1031 // Store a NULL 1032 do_oop_store(_masm, element_address, noreg, _bs->kind(), true); 1033 1034 // Pop stack arguments 1035 __ bind(done); 1036 __ addptr(rsp, 3 * Interpreter::stackElementSize); 1037 } 1038 1039 void TemplateTable::bastore() { 1040 transition(itos, vtos); 1041 __ pop_i(rbx); 1042 __ pop_ptr(rdx); 1043 // eax: value 1044 // ebx: index 1045 // rdx: array 1046 index_check(rdx, rbx); // prefer index in ebx 1047 // Need to check whether array is boolean or byte 1048 // since both types share the bastore bytecode. 1049 __ load_klass(rcx, rdx); 1050 __ movl(rcx, Address(rcx, Klass::layout_helper_offset())); 1051 int diffbit = Klass::layout_helper_boolean_diffbit(); 1052 __ testl(rcx, diffbit); 1053 Label L_skip; 1054 __ jccb(Assembler::zero, L_skip); 1055 __ andl(rax, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1 1056 __ bind(L_skip); 1057 __ movb(Address(rdx, rbx, 1058 Address::times_1, 1059 arrayOopDesc::base_offset_in_bytes(T_BYTE)), 1060 rax); 1061 } 1062 1063 void TemplateTable::castore() { 1064 transition(itos, vtos); 1065 __ pop_i(rbx); 1066 __ pop_ptr(rdx); 1067 // eax: value 1068 // ebx: index 1069 // rdx: array 1070 index_check(rdx, rbx); // prefer index in ebx 1071 __ movw(Address(rdx, rbx, 1072 Address::times_2, 1073 arrayOopDesc::base_offset_in_bytes(T_CHAR)), 1074 rax); 1075 } 1076 1077 void TemplateTable::sastore() { 1078 castore(); 1079 } 1080 1081 void TemplateTable::istore(int n) { 1082 transition(itos, vtos); 1083 __ movl(iaddress(n), rax); 1084 } 1085 1086 void TemplateTable::lstore(int n) { 1087 transition(ltos, vtos); 1088 __ movq(laddress(n), rax); 1089 } 1090 1091 void TemplateTable::fstore(int n) { 1092 transition(ftos, vtos); 1093 __ movflt(faddress(n), xmm0); 1094 } 1095 1096 void TemplateTable::dstore(int n) { 1097 transition(dtos, vtos); 1098 __ movdbl(daddress(n), xmm0); 1099 } 1100 1101 void TemplateTable::astore(int n) { 1102 transition(vtos, vtos); 1103 __ pop_ptr(rax); 1104 __ movptr(aaddress(n), rax); 1105 } 1106 1107 void TemplateTable::pop() { 1108 transition(vtos, vtos); 1109 __ addptr(rsp, Interpreter::stackElementSize); 1110 } 1111 1112 void TemplateTable::pop2() { 1113 transition(vtos, vtos); 1114 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1115 } 1116 1117 void TemplateTable::dup() { 1118 transition(vtos, vtos); 1119 __ load_ptr(0, rax); 1120 __ push_ptr(rax); 1121 // stack: ..., a, a 1122 } 1123 1124 void TemplateTable::dup_x1() { 1125 transition(vtos, vtos); 1126 // stack: ..., a, b 1127 __ load_ptr( 0, rax); // load b 1128 __ load_ptr( 1, rcx); // load a 1129 __ store_ptr(1, rax); // store b 1130 __ store_ptr(0, rcx); // store a 1131 __ push_ptr(rax); // push b 1132 // stack: ..., b, a, b 1133 } 1134 1135 void TemplateTable::dup_x2() { 1136 transition(vtos, vtos); 1137 // stack: ..., a, b, c 1138 __ load_ptr( 0, rax); // load c 1139 __ load_ptr( 2, rcx); // load a 1140 __ store_ptr(2, rax); // store c in a 1141 __ push_ptr(rax); // push c 1142 // stack: ..., c, b, c, c 1143 __ load_ptr( 2, rax); // load b 1144 __ store_ptr(2, rcx); // store a in b 1145 // stack: ..., c, a, c, c 1146 __ store_ptr(1, rax); // store b in c 1147 // stack: ..., c, a, b, c 1148 } 1149 1150 void TemplateTable::dup2() { 1151 transition(vtos, vtos); 1152 // stack: ..., a, b 1153 __ load_ptr(1, rax); // load a 1154 __ push_ptr(rax); // push a 1155 __ load_ptr(1, rax); // load b 1156 __ push_ptr(rax); // push b 1157 // stack: ..., a, b, a, b 1158 } 1159 1160 void TemplateTable::dup2_x1() { 1161 transition(vtos, vtos); 1162 // stack: ..., a, b, c 1163 __ load_ptr( 0, rcx); // load c 1164 __ load_ptr( 1, rax); // load b 1165 __ push_ptr(rax); // push b 1166 __ push_ptr(rcx); // push c 1167 // stack: ..., a, b, c, b, c 1168 __ store_ptr(3, rcx); // store c in b 1169 // stack: ..., a, c, c, b, c 1170 __ load_ptr( 4, rcx); // load a 1171 __ store_ptr(2, rcx); // store a in 2nd c 1172 // stack: ..., a, c, a, b, c 1173 __ store_ptr(4, rax); // store b in a 1174 // stack: ..., b, c, a, b, c 1175 } 1176 1177 void TemplateTable::dup2_x2() { 1178 transition(vtos, vtos); 1179 // stack: ..., a, b, c, d 1180 __ load_ptr( 0, rcx); // load d 1181 __ load_ptr( 1, rax); // load c 1182 __ push_ptr(rax); // push c 1183 __ push_ptr(rcx); // push d 1184 // stack: ..., a, b, c, d, c, d 1185 __ load_ptr( 4, rax); // load b 1186 __ store_ptr(2, rax); // store b in d 1187 __ store_ptr(4, rcx); // store d in b 1188 // stack: ..., a, d, c, b, c, d 1189 __ load_ptr( 5, rcx); // load a 1190 __ load_ptr( 3, rax); // load c 1191 __ store_ptr(3, rcx); // store a in c 1192 __ store_ptr(5, rax); // store c in a 1193 // stack: ..., c, d, a, b, c, d 1194 } 1195 1196 void TemplateTable::swap() { 1197 transition(vtos, vtos); 1198 // stack: ..., a, b 1199 __ load_ptr( 1, rcx); // load a 1200 __ load_ptr( 0, rax); // load b 1201 __ store_ptr(0, rcx); // store a in b 1202 __ store_ptr(1, rax); // store b in a 1203 // stack: ..., b, a 1204 } 1205 1206 void TemplateTable::iop2(Operation op) { 1207 transition(itos, itos); 1208 switch (op) { 1209 case add : __ pop_i(rdx); __ addl (rax, rdx); break; 1210 case sub : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break; 1211 case mul : __ pop_i(rdx); __ imull(rax, rdx); break; 1212 case _and : __ pop_i(rdx); __ andl (rax, rdx); break; 1213 case _or : __ pop_i(rdx); __ orl (rax, rdx); break; 1214 case _xor : __ pop_i(rdx); __ xorl (rax, rdx); break; 1215 case shl : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax); break; 1216 case shr : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax); break; 1217 case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax); break; 1218 default : ShouldNotReachHere(); 1219 } 1220 } 1221 1222 void TemplateTable::lop2(Operation op) { 1223 transition(ltos, ltos); 1224 switch (op) { 1225 case add : __ pop_l(rdx); __ addptr(rax, rdx); break; 1226 case sub : __ mov(rdx, rax); __ pop_l(rax); __ subptr(rax, rdx); break; 1227 case _and : __ pop_l(rdx); __ andptr(rax, rdx); break; 1228 case _or : __ pop_l(rdx); __ orptr (rax, rdx); break; 1229 case _xor : __ pop_l(rdx); __ xorptr(rax, rdx); break; 1230 default : ShouldNotReachHere(); 1231 } 1232 } 1233 1234 void TemplateTable::idiv() { 1235 transition(itos, itos); 1236 __ movl(rcx, rax); 1237 __ pop_i(rax); 1238 // Note: could xor eax and ecx and compare with (-1 ^ min_int). If 1239 // they are not equal, one could do a normal division (no correction 1240 // needed), which may speed up this implementation for the common case. 1241 // (see also JVM spec., p.243 & p.271) 1242 __ corrected_idivl(rcx); 1243 } 1244 1245 void TemplateTable::irem() { 1246 transition(itos, itos); 1247 __ movl(rcx, rax); 1248 __ pop_i(rax); 1249 // Note: could xor eax and ecx and compare with (-1 ^ min_int). If 1250 // they are not equal, one could do a normal division (no correction 1251 // needed), which may speed up this implementation for the common case. 1252 // (see also JVM spec., p.243 & p.271) 1253 __ corrected_idivl(rcx); 1254 __ movl(rax, rdx); 1255 } 1256 1257 void TemplateTable::lmul() { 1258 transition(ltos, ltos); 1259 __ pop_l(rdx); 1260 __ imulq(rax, rdx); 1261 } 1262 1263 void TemplateTable::ldiv() { 1264 transition(ltos, ltos); 1265 __ mov(rcx, rax); 1266 __ pop_l(rax); 1267 // generate explicit div0 check 1268 __ testq(rcx, rcx); 1269 __ jump_cc(Assembler::zero, 1270 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1271 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1272 // they are not equal, one could do a normal division (no correction 1273 // needed), which may speed up this implementation for the common case. 1274 // (see also JVM spec., p.243 & p.271) 1275 __ corrected_idivq(rcx); // kills rbx 1276 } 1277 1278 void TemplateTable::lrem() { 1279 transition(ltos, ltos); 1280 __ mov(rcx, rax); 1281 __ pop_l(rax); 1282 __ testq(rcx, rcx); 1283 __ jump_cc(Assembler::zero, 1284 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1285 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1286 // they are not equal, one could do a normal division (no correction 1287 // needed), which may speed up this implementation for the common case. 1288 // (see also JVM spec., p.243 & p.271) 1289 __ corrected_idivq(rcx); // kills rbx 1290 __ mov(rax, rdx); 1291 } 1292 1293 void TemplateTable::lshl() { 1294 transition(itos, ltos); 1295 __ movl(rcx, rax); // get shift count 1296 __ pop_l(rax); // get shift value 1297 __ shlq(rax); 1298 } 1299 1300 void TemplateTable::lshr() { 1301 transition(itos, ltos); 1302 __ movl(rcx, rax); // get shift count 1303 __ pop_l(rax); // get shift value 1304 __ sarq(rax); 1305 } 1306 1307 void TemplateTable::lushr() { 1308 transition(itos, ltos); 1309 __ movl(rcx, rax); // get shift count 1310 __ pop_l(rax); // get shift value 1311 __ shrq(rax); 1312 } 1313 1314 void TemplateTable::fop2(Operation op) { 1315 transition(ftos, ftos); 1316 switch (op) { 1317 case add: 1318 __ addss(xmm0, at_rsp()); 1319 __ addptr(rsp, Interpreter::stackElementSize); 1320 break; 1321 case sub: 1322 __ movflt(xmm1, xmm0); 1323 __ pop_f(xmm0); 1324 __ subss(xmm0, xmm1); 1325 break; 1326 case mul: 1327 __ mulss(xmm0, at_rsp()); 1328 __ addptr(rsp, Interpreter::stackElementSize); 1329 break; 1330 case div: 1331 __ movflt(xmm1, xmm0); 1332 __ pop_f(xmm0); 1333 __ divss(xmm0, xmm1); 1334 break; 1335 case rem: 1336 __ movflt(xmm1, xmm0); 1337 __ pop_f(xmm0); 1338 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2); 1339 break; 1340 default: 1341 ShouldNotReachHere(); 1342 break; 1343 } 1344 } 1345 1346 void TemplateTable::dop2(Operation op) { 1347 transition(dtos, dtos); 1348 switch (op) { 1349 case add: 1350 __ addsd(xmm0, at_rsp()); 1351 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1352 break; 1353 case sub: 1354 __ movdbl(xmm1, xmm0); 1355 __ pop_d(xmm0); 1356 __ subsd(xmm0, xmm1); 1357 break; 1358 case mul: 1359 __ mulsd(xmm0, at_rsp()); 1360 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1361 break; 1362 case div: 1363 __ movdbl(xmm1, xmm0); 1364 __ pop_d(xmm0); 1365 __ divsd(xmm0, xmm1); 1366 break; 1367 case rem: 1368 __ movdbl(xmm1, xmm0); 1369 __ pop_d(xmm0); 1370 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2); 1371 break; 1372 default: 1373 ShouldNotReachHere(); 1374 break; 1375 } 1376 } 1377 1378 void TemplateTable::ineg() { 1379 transition(itos, itos); 1380 __ negl(rax); 1381 } 1382 1383 void TemplateTable::lneg() { 1384 transition(ltos, ltos); 1385 __ negq(rax); 1386 } 1387 1388 // Note: 'double' and 'long long' have 32-bits alignment on x86. 1389 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) { 1390 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address 1391 // of 128-bits operands for SSE instructions. 1392 jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF))); 1393 // Store the value to a 128-bits operand. 1394 operand[0] = lo; 1395 operand[1] = hi; 1396 return operand; 1397 } 1398 1399 // Buffer for 128-bits masks used by SSE instructions. 1400 static jlong float_signflip_pool[2*2]; 1401 static jlong double_signflip_pool[2*2]; 1402 1403 void TemplateTable::fneg() { 1404 transition(ftos, ftos); 1405 static jlong *float_signflip = double_quadword(&float_signflip_pool[1], 0x8000000080000000, 0x8000000080000000); 1406 __ xorps(xmm0, ExternalAddress((address) float_signflip)); 1407 } 1408 1409 void TemplateTable::dneg() { 1410 transition(dtos, dtos); 1411 static jlong *double_signflip = double_quadword(&double_signflip_pool[1], 0x8000000000000000, 0x8000000000000000); 1412 __ xorpd(xmm0, ExternalAddress((address) double_signflip)); 1413 } 1414 1415 void TemplateTable::iinc() { 1416 transition(vtos, vtos); 1417 __ load_signed_byte(rdx, at_bcp(2)); // get constant 1418 locals_index(rbx); 1419 __ addl(iaddress(rbx), rdx); 1420 } 1421 1422 void TemplateTable::wide_iinc() { 1423 transition(vtos, vtos); 1424 __ movl(rdx, at_bcp(4)); // get constant 1425 locals_index_wide(rbx); 1426 __ bswapl(rdx); // swap bytes & sign-extend constant 1427 __ sarl(rdx, 16); 1428 __ addl(iaddress(rbx), rdx); 1429 // Note: should probably use only one movl to get both 1430 // the index and the constant -> fix this 1431 } 1432 1433 void TemplateTable::convert() { 1434 // Checking 1435 #ifdef ASSERT 1436 { 1437 TosState tos_in = ilgl; 1438 TosState tos_out = ilgl; 1439 switch (bytecode()) { 1440 case Bytecodes::_i2l: // fall through 1441 case Bytecodes::_i2f: // fall through 1442 case Bytecodes::_i2d: // fall through 1443 case Bytecodes::_i2b: // fall through 1444 case Bytecodes::_i2c: // fall through 1445 case Bytecodes::_i2s: tos_in = itos; break; 1446 case Bytecodes::_l2i: // fall through 1447 case Bytecodes::_l2f: // fall through 1448 case Bytecodes::_l2d: tos_in = ltos; break; 1449 case Bytecodes::_f2i: // fall through 1450 case Bytecodes::_f2l: // fall through 1451 case Bytecodes::_f2d: tos_in = ftos; break; 1452 case Bytecodes::_d2i: // fall through 1453 case Bytecodes::_d2l: // fall through 1454 case Bytecodes::_d2f: tos_in = dtos; break; 1455 default : ShouldNotReachHere(); 1456 } 1457 switch (bytecode()) { 1458 case Bytecodes::_l2i: // fall through 1459 case Bytecodes::_f2i: // fall through 1460 case Bytecodes::_d2i: // fall through 1461 case Bytecodes::_i2b: // fall through 1462 case Bytecodes::_i2c: // fall through 1463 case Bytecodes::_i2s: tos_out = itos; break; 1464 case Bytecodes::_i2l: // fall through 1465 case Bytecodes::_f2l: // fall through 1466 case Bytecodes::_d2l: tos_out = ltos; break; 1467 case Bytecodes::_i2f: // fall through 1468 case Bytecodes::_l2f: // fall through 1469 case Bytecodes::_d2f: tos_out = ftos; break; 1470 case Bytecodes::_i2d: // fall through 1471 case Bytecodes::_l2d: // fall through 1472 case Bytecodes::_f2d: tos_out = dtos; break; 1473 default : ShouldNotReachHere(); 1474 } 1475 transition(tos_in, tos_out); 1476 } 1477 #endif // ASSERT 1478 1479 static const int64_t is_nan = 0x8000000000000000L; 1480 1481 // Conversion 1482 switch (bytecode()) { 1483 case Bytecodes::_i2l: 1484 __ movslq(rax, rax); 1485 break; 1486 case Bytecodes::_i2f: 1487 __ cvtsi2ssl(xmm0, rax); 1488 break; 1489 case Bytecodes::_i2d: 1490 __ cvtsi2sdl(xmm0, rax); 1491 break; 1492 case Bytecodes::_i2b: 1493 __ movsbl(rax, rax); 1494 break; 1495 case Bytecodes::_i2c: 1496 __ movzwl(rax, rax); 1497 break; 1498 case Bytecodes::_i2s: 1499 __ movswl(rax, rax); 1500 break; 1501 case Bytecodes::_l2i: 1502 __ movl(rax, rax); 1503 break; 1504 case Bytecodes::_l2f: 1505 __ cvtsi2ssq(xmm0, rax); 1506 break; 1507 case Bytecodes::_l2d: 1508 __ cvtsi2sdq(xmm0, rax); 1509 break; 1510 case Bytecodes::_f2i: 1511 { 1512 Label L; 1513 __ cvttss2sil(rax, xmm0); 1514 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1515 __ jcc(Assembler::notEqual, L); 1516 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1); 1517 __ bind(L); 1518 } 1519 break; 1520 case Bytecodes::_f2l: 1521 { 1522 Label L; 1523 __ cvttss2siq(rax, xmm0); 1524 // NaN or overflow/underflow? 1525 __ cmp64(rax, ExternalAddress((address) &is_nan)); 1526 __ jcc(Assembler::notEqual, L); 1527 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1); 1528 __ bind(L); 1529 } 1530 break; 1531 case Bytecodes::_f2d: 1532 __ cvtss2sd(xmm0, xmm0); 1533 break; 1534 case Bytecodes::_d2i: 1535 { 1536 Label L; 1537 __ cvttsd2sil(rax, xmm0); 1538 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1539 __ jcc(Assembler::notEqual, L); 1540 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1); 1541 __ bind(L); 1542 } 1543 break; 1544 case Bytecodes::_d2l: 1545 { 1546 Label L; 1547 __ cvttsd2siq(rax, xmm0); 1548 // NaN or overflow/underflow? 1549 __ cmp64(rax, ExternalAddress((address) &is_nan)); 1550 __ jcc(Assembler::notEqual, L); 1551 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1); 1552 __ bind(L); 1553 } 1554 break; 1555 case Bytecodes::_d2f: 1556 __ cvtsd2ss(xmm0, xmm0); 1557 break; 1558 default: 1559 ShouldNotReachHere(); 1560 } 1561 } 1562 1563 void TemplateTable::lcmp() { 1564 transition(ltos, itos); 1565 Label done; 1566 __ pop_l(rdx); 1567 __ cmpq(rdx, rax); 1568 __ movl(rax, -1); 1569 __ jccb(Assembler::less, done); 1570 __ setb(Assembler::notEqual, rax); 1571 __ movzbl(rax, rax); 1572 __ bind(done); 1573 } 1574 1575 void TemplateTable::float_cmp(bool is_float, int unordered_result) { 1576 Label done; 1577 if (is_float) { 1578 // XXX get rid of pop here, use ... reg, mem32 1579 __ pop_f(xmm1); 1580 __ ucomiss(xmm1, xmm0); 1581 } else { 1582 // XXX get rid of pop here, use ... reg, mem64 1583 __ pop_d(xmm1); 1584 __ ucomisd(xmm1, xmm0); 1585 } 1586 if (unordered_result < 0) { 1587 __ movl(rax, -1); 1588 __ jccb(Assembler::parity, done); 1589 __ jccb(Assembler::below, done); 1590 __ setb(Assembler::notEqual, rdx); 1591 __ movzbl(rax, rdx); 1592 } else { 1593 __ movl(rax, 1); 1594 __ jccb(Assembler::parity, done); 1595 __ jccb(Assembler::above, done); 1596 __ movl(rax, 0); 1597 __ jccb(Assembler::equal, done); 1598 __ decrementl(rax); 1599 } 1600 __ bind(done); 1601 } 1602 1603 void TemplateTable::branch(bool is_jsr, bool is_wide) { 1604 __ get_method(rcx); // rcx holds method 1605 __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx 1606 // holds bumped taken count 1607 1608 const ByteSize be_offset = MethodCounters::backedge_counter_offset() + 1609 InvocationCounter::counter_offset(); 1610 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + 1611 InvocationCounter::counter_offset(); 1612 1613 // Load up edx with the branch displacement 1614 if (is_wide) { 1615 __ movl(rdx, at_bcp(1)); 1616 } else { 1617 __ load_signed_short(rdx, at_bcp(1)); 1618 } 1619 __ bswapl(rdx); 1620 1621 if (!is_wide) { 1622 __ sarl(rdx, 16); 1623 } 1624 __ movl2ptr(rdx, rdx); 1625 1626 // Handle all the JSR stuff here, then exit. 1627 // It's much shorter and cleaner than intermingling with the non-JSR 1628 // normal-branch stuff occurring below. 1629 if (is_jsr) { 1630 // Pre-load the next target bytecode into rbx 1631 __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1, 0)); 1632 1633 // compute return address as bci in rax 1634 __ lea(rax, at_bcp((is_wide ? 5 : 3) - 1635 in_bytes(ConstMethod::codes_offset()))); 1636 __ subptr(rax, Address(rcx, Method::const_offset())); 1637 // Adjust the bcp in r13 by the displacement in rdx 1638 __ addptr(r13, rdx); 1639 // jsr returns atos that is not an oop 1640 __ push_i(rax); 1641 __ dispatch_only(vtos); 1642 return; 1643 } 1644 1645 // Normal (non-jsr) branch handling 1646 1647 // Adjust the bcp in r13 by the displacement in rdx 1648 __ addptr(r13, rdx); 1649 1650 assert(UseLoopCounter || !UseOnStackReplacement, 1651 "on-stack-replacement requires loop counters"); 1652 Label backedge_counter_overflow; 1653 Label profile_method; 1654 Label dispatch; 1655 if (UseLoopCounter) { 1656 // increment backedge counter for backward branches 1657 // rax: MDO 1658 // ebx: MDO bumped taken-count 1659 // rcx: method 1660 // rdx: target offset 1661 // r13: target bcp 1662 // r14: locals pointer 1663 __ testl(rdx, rdx); // check if forward or backward branch 1664 __ jcc(Assembler::positive, dispatch); // count only if backward branch 1665 1666 // check if MethodCounters exists 1667 Label has_counters; 1668 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 1669 __ testptr(rax, rax); 1670 __ jcc(Assembler::notZero, has_counters); 1671 __ push(rdx); 1672 __ push(rcx); 1673 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), 1674 rcx); 1675 __ pop(rcx); 1676 __ pop(rdx); 1677 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 1678 __ jcc(Assembler::zero, dispatch); 1679 __ bind(has_counters); 1680 1681 if (TieredCompilation) { 1682 Label no_mdo; 1683 int increment = InvocationCounter::count_increment; 1684 int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift; 1685 if (ProfileInterpreter) { 1686 // Are we profiling? 1687 __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset()))); 1688 __ testptr(rbx, rbx); 1689 __ jccb(Assembler::zero, no_mdo); 1690 // Increment the MDO backedge counter 1691 const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) + 1692 in_bytes(InvocationCounter::counter_offset())); 1693 __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, rax, false, Assembler::zero, 1694 UseOnStackReplacement ? &backedge_counter_overflow : NULL); 1695 __ jmp(dispatch); 1696 } 1697 __ bind(no_mdo); 1698 // Increment backedge counter in MethodCounters* 1699 __ movptr(rcx, Address(rcx, Method::method_counters_offset())); 1700 __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask, 1701 rax, false, Assembler::zero, 1702 UseOnStackReplacement ? &backedge_counter_overflow : NULL); 1703 } else { 1704 // increment counter 1705 __ movptr(rcx, Address(rcx, Method::method_counters_offset())); 1706 __ movl(rax, Address(rcx, be_offset)); // load backedge counter 1707 __ incrementl(rax, InvocationCounter::count_increment); // increment counter 1708 __ movl(Address(rcx, be_offset), rax); // store counter 1709 1710 __ movl(rax, Address(rcx, inv_offset)); // load invocation counter 1711 1712 __ andl(rax, InvocationCounter::count_mask_value); // and the status bits 1713 __ addl(rax, Address(rcx, be_offset)); // add both counters 1714 1715 if (ProfileInterpreter) { 1716 // Test to see if we should create a method data oop 1717 __ cmp32(rax, 1718 ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit)); 1719 __ jcc(Assembler::less, dispatch); 1720 1721 // if no method data exists, go to profile method 1722 __ test_method_data_pointer(rax, profile_method); 1723 1724 if (UseOnStackReplacement) { 1725 // check for overflow against ebx which is the MDO taken count 1726 __ cmp32(rbx, 1727 ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit)); 1728 __ jcc(Assembler::below, dispatch); 1729 1730 // When ProfileInterpreter is on, the backedge_count comes 1731 // from the MethodData*, which value does not get reset on 1732 // the call to frequency_counter_overflow(). To avoid 1733 // excessive calls to the overflow routine while the method is 1734 // being compiled, add a second test to make sure the overflow 1735 // function is called only once every overflow_frequency. 1736 const int overflow_frequency = 1024; 1737 __ andl(rbx, overflow_frequency - 1); 1738 __ jcc(Assembler::zero, backedge_counter_overflow); 1739 1740 } 1741 } else { 1742 if (UseOnStackReplacement) { 1743 // check for overflow against eax, which is the sum of the 1744 // counters 1745 __ cmp32(rax, 1746 ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit)); 1747 __ jcc(Assembler::aboveEqual, backedge_counter_overflow); 1748 1749 } 1750 } 1751 } 1752 __ bind(dispatch); 1753 } 1754 1755 // Pre-load the next target bytecode into rbx 1756 __ load_unsigned_byte(rbx, Address(r13, 0)); 1757 1758 // continue with the bytecode @ target 1759 // eax: return bci for jsr's, unused otherwise 1760 // ebx: target bytecode 1761 // r13: target bcp 1762 __ dispatch_only(vtos); 1763 1764 if (UseLoopCounter) { 1765 if (ProfileInterpreter) { 1766 // Out-of-line code to allocate method data oop. 1767 __ bind(profile_method); 1768 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method)); 1769 __ load_unsigned_byte(rbx, Address(r13, 0)); // restore target bytecode 1770 __ set_method_data_pointer_for_bcp(); 1771 __ jmp(dispatch); 1772 } 1773 1774 if (UseOnStackReplacement) { 1775 // invocation counter overflow 1776 __ bind(backedge_counter_overflow); 1777 __ negptr(rdx); 1778 __ addptr(rdx, r13); // branch bcp 1779 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp) 1780 __ call_VM(noreg, 1781 CAST_FROM_FN_PTR(address, 1782 InterpreterRuntime::frequency_counter_overflow), 1783 rdx); 1784 __ load_unsigned_byte(rbx, Address(r13, 0)); // restore target bytecode 1785 1786 // rax: osr nmethod (osr ok) or NULL (osr not possible) 1787 // ebx: target bytecode 1788 // rdx: scratch 1789 // r14: locals pointer 1790 // r13: bcp 1791 __ testptr(rax, rax); // test result 1792 __ jcc(Assembler::zero, dispatch); // no osr if null 1793 // nmethod may have been invalidated (VM may block upon call_VM return) 1794 __ movl(rcx, Address(rax, nmethod::entry_bci_offset())); 1795 __ cmpl(rcx, InvalidOSREntryBci); 1796 __ jcc(Assembler::equal, dispatch); 1797 1798 // We have the address of an on stack replacement routine in eax 1799 // We need to prepare to execute the OSR method. First we must 1800 // migrate the locals and monitors off of the stack. 1801 1802 __ mov(r13, rax); // save the nmethod 1803 1804 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin)); 1805 1806 // eax is OSR buffer, move it to expected parameter location 1807 __ mov(j_rarg0, rax); 1808 1809 // We use j_rarg definitions here so that registers don't conflict as parameter 1810 // registers change across platforms as we are in the midst of a calling 1811 // sequence to the OSR nmethod and we don't want collision. These are NOT parameters. 1812 1813 const Register retaddr = j_rarg2; 1814 const Register sender_sp = j_rarg1; 1815 1816 // pop the interpreter frame 1817 __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp 1818 __ leave(); // remove frame anchor 1819 __ pop(retaddr); // get return address 1820 __ mov(rsp, sender_sp); // set sp to sender sp 1821 // Ensure compiled code always sees stack at proper alignment 1822 __ andptr(rsp, -(StackAlignmentInBytes)); 1823 1824 // unlike x86 we need no specialized return from compiled code 1825 // to the interpreter or the call stub. 1826 1827 // push the return address 1828 __ push(retaddr); 1829 1830 // and begin the OSR nmethod 1831 __ jmp(Address(r13, nmethod::osr_entry_point_offset())); 1832 } 1833 } 1834 } 1835 1836 1837 void TemplateTable::if_0cmp(Condition cc) { 1838 transition(itos, vtos); 1839 // assume branch is more often taken than not (loops use backward branches) 1840 Label not_taken; 1841 __ testl(rax, rax); 1842 __ jcc(j_not(cc), not_taken); 1843 branch(false, false); 1844 __ bind(not_taken); 1845 __ profile_not_taken_branch(rax); 1846 } 1847 1848 void TemplateTable::if_icmp(Condition cc) { 1849 transition(itos, vtos); 1850 // assume branch is more often taken than not (loops use backward branches) 1851 Label not_taken; 1852 __ pop_i(rdx); 1853 __ cmpl(rdx, rax); 1854 __ jcc(j_not(cc), not_taken); 1855 branch(false, false); 1856 __ bind(not_taken); 1857 __ profile_not_taken_branch(rax); 1858 } 1859 1860 void TemplateTable::if_nullcmp(Condition cc) { 1861 transition(atos, vtos); 1862 // assume branch is more often taken than not (loops use backward branches) 1863 Label not_taken; 1864 __ testptr(rax, rax); 1865 __ jcc(j_not(cc), not_taken); 1866 branch(false, false); 1867 __ bind(not_taken); 1868 __ profile_not_taken_branch(rax); 1869 } 1870 1871 void TemplateTable::if_acmp(Condition cc) { 1872 transition(atos, vtos); 1873 // assume branch is more often taken than not (loops use backward branches) 1874 Label not_taken; 1875 __ pop_ptr(rdx); 1876 __ cmpptr(rdx, rax); 1877 __ jcc(j_not(cc), not_taken); 1878 branch(false, false); 1879 __ bind(not_taken); 1880 __ profile_not_taken_branch(rax); 1881 } 1882 1883 void TemplateTable::ret() { 1884 transition(vtos, vtos); 1885 locals_index(rbx); 1886 __ movslq(rbx, iaddress(rbx)); // get return bci, compute return bcp 1887 __ profile_ret(rbx, rcx); 1888 __ get_method(rax); 1889 __ movptr(r13, Address(rax, Method::const_offset())); 1890 __ lea(r13, Address(r13, rbx, Address::times_1, 1891 ConstMethod::codes_offset())); 1892 __ dispatch_next(vtos); 1893 } 1894 1895 void TemplateTable::wide_ret() { 1896 transition(vtos, vtos); 1897 locals_index_wide(rbx); 1898 __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp 1899 __ profile_ret(rbx, rcx); 1900 __ get_method(rax); 1901 __ movptr(r13, Address(rax, Method::const_offset())); 1902 __ lea(r13, Address(r13, rbx, Address::times_1, ConstMethod::codes_offset())); 1903 __ dispatch_next(vtos); 1904 } 1905 1906 void TemplateTable::tableswitch() { 1907 Label default_case, continue_execution; 1908 transition(itos, vtos); 1909 // align r13 1910 __ lea(rbx, at_bcp(BytesPerInt)); 1911 __ andptr(rbx, -BytesPerInt); 1912 // load lo & hi 1913 __ movl(rcx, Address(rbx, BytesPerInt)); 1914 __ movl(rdx, Address(rbx, 2 * BytesPerInt)); 1915 __ bswapl(rcx); 1916 __ bswapl(rdx); 1917 // check against lo & hi 1918 __ cmpl(rax, rcx); 1919 __ jcc(Assembler::less, default_case); 1920 __ cmpl(rax, rdx); 1921 __ jcc(Assembler::greater, default_case); 1922 // lookup dispatch offset 1923 __ subl(rax, rcx); 1924 __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt)); 1925 __ profile_switch_case(rax, rbx, rcx); 1926 // continue execution 1927 __ bind(continue_execution); 1928 __ bswapl(rdx); 1929 __ movl2ptr(rdx, rdx); 1930 __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1)); 1931 __ addptr(r13, rdx); 1932 __ dispatch_only(vtos); 1933 // handle default 1934 __ bind(default_case); 1935 __ profile_switch_default(rax); 1936 __ movl(rdx, Address(rbx, 0)); 1937 __ jmp(continue_execution); 1938 } 1939 1940 void TemplateTable::lookupswitch() { 1941 transition(itos, itos); 1942 __ stop("lookupswitch bytecode should have been rewritten"); 1943 } 1944 1945 void TemplateTable::fast_linearswitch() { 1946 transition(itos, vtos); 1947 Label loop_entry, loop, found, continue_execution; 1948 // bswap rax so we can avoid bswapping the table entries 1949 __ bswapl(rax); 1950 // align r13 1951 __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of 1952 // this instruction (change offsets 1953 // below) 1954 __ andptr(rbx, -BytesPerInt); 1955 // set counter 1956 __ movl(rcx, Address(rbx, BytesPerInt)); 1957 __ bswapl(rcx); 1958 __ jmpb(loop_entry); 1959 // table search 1960 __ bind(loop); 1961 __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt)); 1962 __ jcc(Assembler::equal, found); 1963 __ bind(loop_entry); 1964 __ decrementl(rcx); 1965 __ jcc(Assembler::greaterEqual, loop); 1966 // default case 1967 __ profile_switch_default(rax); 1968 __ movl(rdx, Address(rbx, 0)); 1969 __ jmp(continue_execution); 1970 // entry found -> get offset 1971 __ bind(found); 1972 __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt)); 1973 __ profile_switch_case(rcx, rax, rbx); 1974 // continue execution 1975 __ bind(continue_execution); 1976 __ bswapl(rdx); 1977 __ movl2ptr(rdx, rdx); 1978 __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1)); 1979 __ addptr(r13, rdx); 1980 __ dispatch_only(vtos); 1981 } 1982 1983 void TemplateTable::fast_binaryswitch() { 1984 transition(itos, vtos); 1985 // Implementation using the following core algorithm: 1986 // 1987 // int binary_search(int key, LookupswitchPair* array, int n) { 1988 // // Binary search according to "Methodik des Programmierens" by 1989 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. 1990 // int i = 0; 1991 // int j = n; 1992 // while (i+1 < j) { 1993 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) 1994 // // with Q: for all i: 0 <= i < n: key < a[i] 1995 // // where a stands for the array and assuming that the (inexisting) 1996 // // element a[n] is infinitely big. 1997 // int h = (i + j) >> 1; 1998 // // i < h < j 1999 // if (key < array[h].fast_match()) { 2000 // j = h; 2001 // } else { 2002 // i = h; 2003 // } 2004 // } 2005 // // R: a[i] <= key < a[i+1] or Q 2006 // // (i.e., if key is within array, i is the correct index) 2007 // return i; 2008 // } 2009 2010 // Register allocation 2011 const Register key = rax; // already set (tosca) 2012 const Register array = rbx; 2013 const Register i = rcx; 2014 const Register j = rdx; 2015 const Register h = rdi; 2016 const Register temp = rsi; 2017 2018 // Find array start 2019 __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to 2020 // get rid of this 2021 // instruction (change 2022 // offsets below) 2023 __ andptr(array, -BytesPerInt); 2024 2025 // Initialize i & j 2026 __ xorl(i, i); // i = 0; 2027 __ movl(j, Address(array, -BytesPerInt)); // j = length(array); 2028 2029 // Convert j into native byteordering 2030 __ bswapl(j); 2031 2032 // And start 2033 Label entry; 2034 __ jmp(entry); 2035 2036 // binary search loop 2037 { 2038 Label loop; 2039 __ bind(loop); 2040 // int h = (i + j) >> 1; 2041 __ leal(h, Address(i, j, Address::times_1)); // h = i + j; 2042 __ sarl(h, 1); // h = (i + j) >> 1; 2043 // if (key < array[h].fast_match()) { 2044 // j = h; 2045 // } else { 2046 // i = h; 2047 // } 2048 // Convert array[h].match to native byte-ordering before compare 2049 __ movl(temp, Address(array, h, Address::times_8)); 2050 __ bswapl(temp); 2051 __ cmpl(key, temp); 2052 // j = h if (key < array[h].fast_match()) 2053 __ cmovl(Assembler::less, j, h); 2054 // i = h if (key >= array[h].fast_match()) 2055 __ cmovl(Assembler::greaterEqual, i, h); 2056 // while (i+1 < j) 2057 __ bind(entry); 2058 __ leal(h, Address(i, 1)); // i+1 2059 __ cmpl(h, j); // i+1 < j 2060 __ jcc(Assembler::less, loop); 2061 } 2062 2063 // end of binary search, result index is i (must check again!) 2064 Label default_case; 2065 // Convert array[i].match to native byte-ordering before compare 2066 __ movl(temp, Address(array, i, Address::times_8)); 2067 __ bswapl(temp); 2068 __ cmpl(key, temp); 2069 __ jcc(Assembler::notEqual, default_case); 2070 2071 // entry found -> j = offset 2072 __ movl(j , Address(array, i, Address::times_8, BytesPerInt)); 2073 __ profile_switch_case(i, key, array); 2074 __ bswapl(j); 2075 __ movl2ptr(j, j); 2076 __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1)); 2077 __ addptr(r13, j); 2078 __ dispatch_only(vtos); 2079 2080 // default case -> j = default offset 2081 __ bind(default_case); 2082 __ profile_switch_default(i); 2083 __ movl(j, Address(array, -2 * BytesPerInt)); 2084 __ bswapl(j); 2085 __ movl2ptr(j, j); 2086 __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1)); 2087 __ addptr(r13, j); 2088 __ dispatch_only(vtos); 2089 } 2090 2091 2092 void TemplateTable::_return(TosState state) { 2093 transition(state, state); 2094 assert(_desc->calls_vm(), 2095 "inconsistent calls_vm information"); // call in remove_activation 2096 2097 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { 2098 assert(state == vtos, "only valid state"); 2099 __ movptr(c_rarg1, aaddress(0)); 2100 __ load_klass(rdi, c_rarg1); 2101 __ movl(rdi, Address(rdi, Klass::access_flags_offset())); 2102 __ testl(rdi, JVM_ACC_HAS_FINALIZER); 2103 Label skip_register_finalizer; 2104 __ jcc(Assembler::zero, skip_register_finalizer); 2105 2106 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1); 2107 2108 __ bind(skip_register_finalizer); 2109 } 2110 2111 // Narrow result if state is itos but result type is smaller. 2112 // Need to narrow in the return bytecode rather than in generate_return_entry 2113 // since compiled code callers expect the result to already be narrowed. 2114 if (state == itos) { 2115 __ narrow(rax); 2116 } 2117 __ remove_activation(state, r13); 2118 2119 __ jmp(r13); 2120 } 2121 2122 // ---------------------------------------------------------------------------- 2123 // Volatile variables demand their effects be made known to all CPU's 2124 // in order. Store buffers on most chips allow reads & writes to 2125 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode 2126 // without some kind of memory barrier (i.e., it's not sufficient that 2127 // the interpreter does not reorder volatile references, the hardware 2128 // also must not reorder them). 2129 // 2130 // According to the new Java Memory Model (JMM): 2131 // (1) All volatiles are serialized wrt to each other. ALSO reads & 2132 // writes act as aquire & release, so: 2133 // (2) A read cannot let unrelated NON-volatile memory refs that 2134 // happen after the read float up to before the read. It's OK for 2135 // non-volatile memory refs that happen before the volatile read to 2136 // float down below it. 2137 // (3) Similar a volatile write cannot let unrelated NON-volatile 2138 // memory refs that happen BEFORE the write float down to after the 2139 // write. It's OK for non-volatile memory refs that happen after the 2140 // volatile write to float up before it. 2141 // 2142 // We only put in barriers around volatile refs (they are expensive), 2143 // not _between_ memory refs (that would require us to track the 2144 // flavor of the previous memory refs). Requirements (2) and (3) 2145 // require some barriers before volatile stores and after volatile 2146 // loads. These nearly cover requirement (1) but miss the 2147 // volatile-store-volatile-load case. This final case is placed after 2148 // volatile-stores although it could just as well go before 2149 // volatile-loads. 2150 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits 2151 order_constraint) { 2152 // Helper function to insert a is-volatile test and memory barrier 2153 if (os::is_MP()) { // Not needed on single CPU 2154 __ membar(order_constraint); 2155 } 2156 } 2157 2158 void TemplateTable::resolve_cache_and_index(int byte_no, 2159 Register Rcache, 2160 Register index, 2161 size_t index_size) { 2162 const Register temp = rbx; 2163 assert_different_registers(Rcache, index, temp); 2164 2165 Label resolved; 2166 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2167 __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size); 2168 __ cmpl(temp, (int) bytecode()); // have we resolved this bytecode? 2169 __ jcc(Assembler::equal, resolved); 2170 2171 // resolve first time through 2172 address entry; 2173 switch (bytecode()) { 2174 case Bytecodes::_getstatic: 2175 case Bytecodes::_putstatic: 2176 case Bytecodes::_getfield: 2177 case Bytecodes::_putfield: 2178 entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); 2179 break; 2180 case Bytecodes::_invokevirtual: 2181 case Bytecodes::_invokespecial: 2182 case Bytecodes::_invokestatic: 2183 case Bytecodes::_invokeinterface: 2184 entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke); 2185 break; 2186 case Bytecodes::_invokehandle: 2187 entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle); 2188 break; 2189 case Bytecodes::_invokedynamic: 2190 entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic); 2191 break; 2192 default: 2193 fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode()))); 2194 break; 2195 } 2196 __ movl(temp, (int) bytecode()); 2197 __ call_VM(noreg, entry, temp); 2198 2199 // Update registers with resolved info 2200 __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size); 2201 __ bind(resolved); 2202 } 2203 2204 // The cache and index registers must be set before call 2205 void TemplateTable::load_field_cp_cache_entry(Register obj, 2206 Register cache, 2207 Register index, 2208 Register off, 2209 Register flags, 2210 bool is_static = false) { 2211 assert_different_registers(cache, index, flags, off); 2212 2213 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2214 // Field offset 2215 __ movptr(off, Address(cache, index, Address::times_ptr, 2216 in_bytes(cp_base_offset + 2217 ConstantPoolCacheEntry::f2_offset()))); 2218 // Flags 2219 __ movl(flags, Address(cache, index, Address::times_ptr, 2220 in_bytes(cp_base_offset + 2221 ConstantPoolCacheEntry::flags_offset()))); 2222 2223 // klass overwrite register 2224 if (is_static) { 2225 __ movptr(obj, Address(cache, index, Address::times_ptr, 2226 in_bytes(cp_base_offset + 2227 ConstantPoolCacheEntry::f1_offset()))); 2228 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 2229 __ movptr(obj, Address(obj, mirror_offset)); 2230 } 2231 } 2232 2233 void TemplateTable::load_invoke_cp_cache_entry(int byte_no, 2234 Register method, 2235 Register itable_index, 2236 Register flags, 2237 bool is_invokevirtual, 2238 bool is_invokevfinal, /*unused*/ 2239 bool is_invokedynamic) { 2240 // setup registers 2241 const Register cache = rcx; 2242 const Register index = rdx; 2243 assert_different_registers(method, flags); 2244 assert_different_registers(method, cache, index); 2245 assert_different_registers(itable_index, flags); 2246 assert_different_registers(itable_index, cache, index); 2247 // determine constant pool cache field offsets 2248 assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant"); 2249 const int method_offset = in_bytes( 2250 ConstantPoolCache::base_offset() + 2251 ((byte_no == f2_byte) 2252 ? ConstantPoolCacheEntry::f2_offset() 2253 : ConstantPoolCacheEntry::f1_offset())); 2254 const int flags_offset = in_bytes(ConstantPoolCache::base_offset() + 2255 ConstantPoolCacheEntry::flags_offset()); 2256 // access constant pool cache fields 2257 const int index_offset = in_bytes(ConstantPoolCache::base_offset() + 2258 ConstantPoolCacheEntry::f2_offset()); 2259 2260 size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2)); 2261 resolve_cache_and_index(byte_no, cache, index, index_size); 2262 __ movptr(method, Address(cache, index, Address::times_ptr, method_offset)); 2263 2264 if (itable_index != noreg) { 2265 // pick up itable or appendix index from f2 also: 2266 __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset)); 2267 } 2268 __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset)); 2269 } 2270 2271 // Correct values of the cache and index registers are preserved. 2272 void TemplateTable::jvmti_post_field_access(Register cache, Register index, 2273 bool is_static, bool has_tos) { 2274 // do the JVMTI work here to avoid disturbing the register state below 2275 // We use c_rarg registers here because we want to use the register used in 2276 // the call to the VM 2277 if (JvmtiExport::can_post_field_access()) { 2278 // Check to see if a field access watch has been set before we 2279 // take the time to call into the VM. 2280 Label L1; 2281 assert_different_registers(cache, index, rax); 2282 __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2283 __ testl(rax, rax); 2284 __ jcc(Assembler::zero, L1); 2285 2286 __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1); 2287 2288 // cache entry pointer 2289 __ addptr(c_rarg2, in_bytes(ConstantPoolCache::base_offset())); 2290 __ shll(c_rarg3, LogBytesPerWord); 2291 __ addptr(c_rarg2, c_rarg3); 2292 if (is_static) { 2293 __ xorl(c_rarg1, c_rarg1); // NULL object reference 2294 } else { 2295 __ movptr(c_rarg1, at_tos()); // get object pointer without popping it 2296 __ verify_oop(c_rarg1); 2297 } 2298 // c_rarg1: object pointer or NULL 2299 // c_rarg2: cache entry pointer 2300 // c_rarg3: jvalue object on the stack 2301 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 2302 InterpreterRuntime::post_field_access), 2303 c_rarg1, c_rarg2, c_rarg3); 2304 __ get_cache_and_index_at_bcp(cache, index, 1); 2305 __ bind(L1); 2306 } 2307 } 2308 2309 void TemplateTable::pop_and_check_object(Register r) { 2310 __ pop_ptr(r); 2311 __ null_check(r); // for field access must check obj. 2312 __ verify_oop(r); 2313 } 2314 2315 void TemplateTable::getfield_or_static(int byte_no, bool is_static) { 2316 transition(vtos, vtos); 2317 2318 const Register cache = rcx; 2319 const Register index = rdx; 2320 const Register obj = c_rarg3; 2321 const Register off = rbx; 2322 const Register flags = rax; 2323 const Register bc = c_rarg3; // uses same reg as obj, so don't mix them 2324 2325 resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); 2326 jvmti_post_field_access(cache, index, is_static, false); 2327 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); 2328 2329 if (!is_static) { 2330 // obj is on the stack 2331 pop_and_check_object(obj); 2332 } 2333 2334 const Address field(obj, off, Address::times_1); 2335 2336 Label Done, notByte, notBool, notInt, notShort, notChar, 2337 notLong, notFloat, notObj, notDouble; 2338 2339 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 2340 // Make sure we don't need to mask edx after the above shift 2341 assert(btos == 0, "change code, btos != 0"); 2342 2343 __ andl(flags, ConstantPoolCacheEntry::tos_state_mask); 2344 __ jcc(Assembler::notZero, notByte); 2345 // btos 2346 __ load_signed_byte(rax, field); 2347 __ push(btos); 2348 // Rewrite bytecode to be faster 2349 if (!is_static) { 2350 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx); 2351 } 2352 __ jmp(Done); 2353 2354 __ bind(notByte); 2355 __ cmpl(flags, ztos); 2356 __ jcc(Assembler::notEqual, notBool); 2357 2358 // ztos (same code as btos) 2359 __ load_signed_byte(rax, field); 2360 __ push(ztos); 2361 // Rewrite bytecode to be faster 2362 if (!is_static) { 2363 // use btos rewriting, no truncating to t/f bit is needed for getfield. 2364 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx); 2365 } 2366 __ jmp(Done); 2367 2368 __ bind(notBool); 2369 __ cmpl(flags, atos); 2370 __ jcc(Assembler::notEqual, notObj); 2371 // atos 2372 __ load_heap_oop(rax, field); 2373 __ push(atos); 2374 if (!is_static) { 2375 patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx); 2376 } 2377 __ jmp(Done); 2378 2379 __ bind(notObj); 2380 __ cmpl(flags, itos); 2381 __ jcc(Assembler::notEqual, notInt); 2382 // itos 2383 __ movl(rax, field); 2384 __ push(itos); 2385 // Rewrite bytecode to be faster 2386 if (!is_static) { 2387 patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx); 2388 } 2389 __ jmp(Done); 2390 2391 __ bind(notInt); 2392 __ cmpl(flags, ctos); 2393 __ jcc(Assembler::notEqual, notChar); 2394 // ctos 2395 __ load_unsigned_short(rax, field); 2396 __ push(ctos); 2397 // Rewrite bytecode to be faster 2398 if (!is_static) { 2399 patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx); 2400 } 2401 __ jmp(Done); 2402 2403 __ bind(notChar); 2404 __ cmpl(flags, stos); 2405 __ jcc(Assembler::notEqual, notShort); 2406 // stos 2407 __ load_signed_short(rax, field); 2408 __ push(stos); 2409 // Rewrite bytecode to be faster 2410 if (!is_static) { 2411 patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx); 2412 } 2413 __ jmp(Done); 2414 2415 __ bind(notShort); 2416 __ cmpl(flags, ltos); 2417 __ jcc(Assembler::notEqual, notLong); 2418 // ltos 2419 __ movq(rax, field); 2420 __ push(ltos); 2421 // Rewrite bytecode to be faster 2422 if (!is_static) { 2423 patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx); 2424 } 2425 __ jmp(Done); 2426 2427 __ bind(notLong); 2428 __ cmpl(flags, ftos); 2429 __ jcc(Assembler::notEqual, notFloat); 2430 // ftos 2431 __ movflt(xmm0, field); 2432 __ push(ftos); 2433 // Rewrite bytecode to be faster 2434 if (!is_static) { 2435 patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx); 2436 } 2437 __ jmp(Done); 2438 2439 __ bind(notFloat); 2440 #ifdef ASSERT 2441 __ cmpl(flags, dtos); 2442 __ jcc(Assembler::notEqual, notDouble); 2443 #endif 2444 // dtos 2445 __ movdbl(xmm0, field); 2446 __ push(dtos); 2447 // Rewrite bytecode to be faster 2448 if (!is_static) { 2449 patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx); 2450 } 2451 #ifdef ASSERT 2452 __ jmp(Done); 2453 2454 __ bind(notDouble); 2455 __ stop("Bad state"); 2456 #endif 2457 2458 __ bind(Done); 2459 // [jk] not needed currently 2460 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad | 2461 // Assembler::LoadStore)); 2462 } 2463 2464 2465 void TemplateTable::getfield(int byte_no) { 2466 getfield_or_static(byte_no, false); 2467 } 2468 2469 void TemplateTable::getstatic(int byte_no) { 2470 getfield_or_static(byte_no, true); 2471 } 2472 2473 // The registers cache and index expected to be set before call. 2474 // The function may destroy various registers, just not the cache and index registers. 2475 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) { 2476 transition(vtos, vtos); 2477 2478 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2479 2480 if (JvmtiExport::can_post_field_modification()) { 2481 // Check to see if a field modification watch has been set before 2482 // we take the time to call into the VM. 2483 Label L1; 2484 assert_different_registers(cache, index, rax); 2485 __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 2486 __ testl(rax, rax); 2487 __ jcc(Assembler::zero, L1); 2488 2489 __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1); 2490 2491 if (is_static) { 2492 // Life is simple. Null out the object pointer. 2493 __ xorl(c_rarg1, c_rarg1); 2494 } else { 2495 // Life is harder. The stack holds the value on top, followed by 2496 // the object. We don't know the size of the value, though; it 2497 // could be one or two words depending on its type. As a result, 2498 // we must find the type to determine where the object is. 2499 __ movl(c_rarg3, Address(c_rarg2, rscratch1, 2500 Address::times_8, 2501 in_bytes(cp_base_offset + 2502 ConstantPoolCacheEntry::flags_offset()))); 2503 __ shrl(c_rarg3, ConstantPoolCacheEntry::tos_state_shift); 2504 // Make sure we don't need to mask rcx after the above shift 2505 ConstantPoolCacheEntry::verify_tos_state_shift(); 2506 __ movptr(c_rarg1, at_tos_p1()); // initially assume a one word jvalue 2507 __ cmpl(c_rarg3, ltos); 2508 __ cmovptr(Assembler::equal, 2509 c_rarg1, at_tos_p2()); // ltos (two word jvalue) 2510 __ cmpl(c_rarg3, dtos); 2511 __ cmovptr(Assembler::equal, 2512 c_rarg1, at_tos_p2()); // dtos (two word jvalue) 2513 } 2514 // cache entry pointer 2515 __ addptr(c_rarg2, in_bytes(cp_base_offset)); 2516 __ shll(rscratch1, LogBytesPerWord); 2517 __ addptr(c_rarg2, rscratch1); 2518 // object (tos) 2519 __ mov(c_rarg3, rsp); 2520 // c_rarg1: object pointer set up above (NULL if static) 2521 // c_rarg2: cache entry pointer 2522 // c_rarg3: jvalue object on the stack 2523 __ call_VM(noreg, 2524 CAST_FROM_FN_PTR(address, 2525 InterpreterRuntime::post_field_modification), 2526 c_rarg1, c_rarg2, c_rarg3); 2527 __ get_cache_and_index_at_bcp(cache, index, 1); 2528 __ bind(L1); 2529 } 2530 } 2531 2532 void TemplateTable::putfield_or_static(int byte_no, bool is_static) { 2533 transition(vtos, vtos); 2534 2535 const Register cache = rcx; 2536 const Register index = rdx; 2537 const Register obj = rcx; 2538 const Register off = rbx; 2539 const Register flags = rax; 2540 const Register bc = c_rarg3; 2541 2542 resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); 2543 jvmti_post_field_mod(cache, index, is_static); 2544 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); 2545 2546 // [jk] not needed currently 2547 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore | 2548 // Assembler::StoreStore)); 2549 2550 Label notVolatile, Done; 2551 __ movl(rdx, flags); 2552 __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 2553 __ andl(rdx, 0x1); 2554 2555 // field address 2556 const Address field(obj, off, Address::times_1); 2557 2558 Label notByte, notBool, notInt, notShort, notChar, 2559 notLong, notFloat, notObj, notDouble; 2560 2561 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 2562 2563 assert(btos == 0, "change code, btos != 0"); 2564 __ andl(flags, ConstantPoolCacheEntry::tos_state_mask); 2565 __ jcc(Assembler::notZero, notByte); 2566 2567 // btos 2568 { 2569 __ pop(btos); 2570 if (!is_static) pop_and_check_object(obj); 2571 __ movb(field, rax); 2572 if (!is_static) { 2573 patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no); 2574 } 2575 __ jmp(Done); 2576 } 2577 2578 __ bind(notByte); 2579 __ cmpl(flags, ztos); 2580 __ jcc(Assembler::notEqual, notBool); 2581 2582 // ztos 2583 { 2584 __ pop(ztos); 2585 if (!is_static) pop_and_check_object(obj); 2586 __ andl(rax, 0x1); 2587 __ movb(field, rax); 2588 if (!is_static) { 2589 patch_bytecode(Bytecodes::_fast_zputfield, bc, rbx, true, byte_no); 2590 } 2591 __ jmp(Done); 2592 } 2593 2594 __ bind(notBool); 2595 __ cmpl(flags, atos); 2596 __ jcc(Assembler::notEqual, notObj); 2597 2598 // atos 2599 { 2600 __ pop(atos); 2601 if (!is_static) pop_and_check_object(obj); 2602 // Store into the field 2603 do_oop_store(_masm, field, rax, _bs->kind(), false); 2604 if (!is_static) { 2605 patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no); 2606 } 2607 __ jmp(Done); 2608 } 2609 2610 __ bind(notObj); 2611 __ cmpl(flags, itos); 2612 __ jcc(Assembler::notEqual, notInt); 2613 2614 // itos 2615 { 2616 __ pop(itos); 2617 if (!is_static) pop_and_check_object(obj); 2618 __ movl(field, rax); 2619 if (!is_static) { 2620 patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no); 2621 } 2622 __ jmp(Done); 2623 } 2624 2625 __ bind(notInt); 2626 __ cmpl(flags, ctos); 2627 __ jcc(Assembler::notEqual, notChar); 2628 2629 // ctos 2630 { 2631 __ pop(ctos); 2632 if (!is_static) pop_and_check_object(obj); 2633 __ movw(field, rax); 2634 if (!is_static) { 2635 patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no); 2636 } 2637 __ jmp(Done); 2638 } 2639 2640 __ bind(notChar); 2641 __ cmpl(flags, stos); 2642 __ jcc(Assembler::notEqual, notShort); 2643 2644 // stos 2645 { 2646 __ pop(stos); 2647 if (!is_static) pop_and_check_object(obj); 2648 __ movw(field, rax); 2649 if (!is_static) { 2650 patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no); 2651 } 2652 __ jmp(Done); 2653 } 2654 2655 __ bind(notShort); 2656 __ cmpl(flags, ltos); 2657 __ jcc(Assembler::notEqual, notLong); 2658 2659 // ltos 2660 { 2661 __ pop(ltos); 2662 if (!is_static) pop_and_check_object(obj); 2663 __ movq(field, rax); 2664 if (!is_static) { 2665 patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no); 2666 } 2667 __ jmp(Done); 2668 } 2669 2670 __ bind(notLong); 2671 __ cmpl(flags, ftos); 2672 __ jcc(Assembler::notEqual, notFloat); 2673 2674 // ftos 2675 { 2676 __ pop(ftos); 2677 if (!is_static) pop_and_check_object(obj); 2678 __ movflt(field, xmm0); 2679 if (!is_static) { 2680 patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no); 2681 } 2682 __ jmp(Done); 2683 } 2684 2685 __ bind(notFloat); 2686 #ifdef ASSERT 2687 __ cmpl(flags, dtos); 2688 __ jcc(Assembler::notEqual, notDouble); 2689 #endif 2690 2691 // dtos 2692 { 2693 __ pop(dtos); 2694 if (!is_static) pop_and_check_object(obj); 2695 __ movdbl(field, xmm0); 2696 if (!is_static) { 2697 patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no); 2698 } 2699 } 2700 2701 #ifdef ASSERT 2702 __ jmp(Done); 2703 2704 __ bind(notDouble); 2705 __ stop("Bad state"); 2706 #endif 2707 2708 __ bind(Done); 2709 2710 // Check for volatile store 2711 __ testl(rdx, rdx); 2712 __ jcc(Assembler::zero, notVolatile); 2713 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 2714 Assembler::StoreStore)); 2715 __ bind(notVolatile); 2716 } 2717 2718 void TemplateTable::putfield(int byte_no) { 2719 putfield_or_static(byte_no, false); 2720 } 2721 2722 void TemplateTable::putstatic(int byte_no) { 2723 putfield_or_static(byte_no, true); 2724 } 2725 2726 void TemplateTable::jvmti_post_fast_field_mod() { 2727 if (JvmtiExport::can_post_field_modification()) { 2728 // Check to see if a field modification watch has been set before 2729 // we take the time to call into the VM. 2730 Label L2; 2731 __ mov32(c_rarg3, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 2732 __ testl(c_rarg3, c_rarg3); 2733 __ jcc(Assembler::zero, L2); 2734 __ pop_ptr(rbx); // copy the object pointer from tos 2735 __ verify_oop(rbx); 2736 __ push_ptr(rbx); // put the object pointer back on tos 2737 // Save tos values before call_VM() clobbers them. Since we have 2738 // to do it for every data type, we use the saved values as the 2739 // jvalue object. 2740 switch (bytecode()) { // load values into the jvalue object 2741 case Bytecodes::_fast_aputfield: __ push_ptr(rax); break; 2742 case Bytecodes::_fast_bputfield: // fall through 2743 case Bytecodes::_fast_zputfield: // fall through 2744 case Bytecodes::_fast_sputfield: // fall through 2745 case Bytecodes::_fast_cputfield: // fall through 2746 case Bytecodes::_fast_iputfield: __ push_i(rax); break; 2747 case Bytecodes::_fast_dputfield: __ push_d(); break; 2748 case Bytecodes::_fast_fputfield: __ push_f(); break; 2749 case Bytecodes::_fast_lputfield: __ push_l(rax); break; 2750 2751 default: 2752 ShouldNotReachHere(); 2753 } 2754 __ mov(c_rarg3, rsp); // points to jvalue on the stack 2755 // access constant pool cache entry 2756 __ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1); 2757 __ verify_oop(rbx); 2758 // rbx: object pointer copied above 2759 // c_rarg2: cache entry pointer 2760 // c_rarg3: jvalue object on the stack 2761 __ call_VM(noreg, 2762 CAST_FROM_FN_PTR(address, 2763 InterpreterRuntime::post_field_modification), 2764 rbx, c_rarg2, c_rarg3); 2765 2766 switch (bytecode()) { // restore tos values 2767 case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break; 2768 case Bytecodes::_fast_bputfield: // fall through 2769 case Bytecodes::_fast_zputfield: // fall through 2770 case Bytecodes::_fast_sputfield: // fall through 2771 case Bytecodes::_fast_cputfield: // fall through 2772 case Bytecodes::_fast_iputfield: __ pop_i(rax); break; 2773 case Bytecodes::_fast_dputfield: __ pop_d(); break; 2774 case Bytecodes::_fast_fputfield: __ pop_f(); break; 2775 case Bytecodes::_fast_lputfield: __ pop_l(rax); break; 2776 } 2777 __ bind(L2); 2778 } 2779 } 2780 2781 void TemplateTable::fast_storefield(TosState state) { 2782 transition(state, vtos); 2783 2784 ByteSize base = ConstantPoolCache::base_offset(); 2785 2786 jvmti_post_fast_field_mod(); 2787 2788 // access constant pool cache 2789 __ get_cache_and_index_at_bcp(rcx, rbx, 1); 2790 2791 // test for volatile with rdx 2792 __ movl(rdx, Address(rcx, rbx, Address::times_8, 2793 in_bytes(base + 2794 ConstantPoolCacheEntry::flags_offset()))); 2795 2796 // replace index with field offset from cache entry 2797 __ movptr(rbx, Address(rcx, rbx, Address::times_8, 2798 in_bytes(base + ConstantPoolCacheEntry::f2_offset()))); 2799 2800 // [jk] not needed currently 2801 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore | 2802 // Assembler::StoreStore)); 2803 2804 Label notVolatile; 2805 __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 2806 __ andl(rdx, 0x1); 2807 2808 // Get object from stack 2809 pop_and_check_object(rcx); 2810 2811 // field address 2812 const Address field(rcx, rbx, Address::times_1); 2813 2814 // access field 2815 switch (bytecode()) { 2816 case Bytecodes::_fast_aputfield: 2817 do_oop_store(_masm, field, rax, _bs->kind(), false); 2818 break; 2819 case Bytecodes::_fast_lputfield: 2820 __ movq(field, rax); 2821 break; 2822 case Bytecodes::_fast_iputfield: 2823 __ movl(field, rax); 2824 break; 2825 case Bytecodes::_fast_zputfield: 2826 __ andl(rax, 0x1); // boolean is true if LSB is 1 2827 // fall through to bputfield 2828 case Bytecodes::_fast_bputfield: 2829 __ movb(field, rax); 2830 break; 2831 case Bytecodes::_fast_sputfield: 2832 // fall through 2833 case Bytecodes::_fast_cputfield: 2834 __ movw(field, rax); 2835 break; 2836 case Bytecodes::_fast_fputfield: 2837 __ movflt(field, xmm0); 2838 break; 2839 case Bytecodes::_fast_dputfield: 2840 __ movdbl(field, xmm0); 2841 break; 2842 default: 2843 ShouldNotReachHere(); 2844 } 2845 2846 // Check for volatile store 2847 __ testl(rdx, rdx); 2848 __ jcc(Assembler::zero, notVolatile); 2849 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 2850 Assembler::StoreStore)); 2851 __ bind(notVolatile); 2852 } 2853 2854 2855 void TemplateTable::fast_accessfield(TosState state) { 2856 transition(atos, state); 2857 2858 // Do the JVMTI work here to avoid disturbing the register state below 2859 if (JvmtiExport::can_post_field_access()) { 2860 // Check to see if a field access watch has been set before we 2861 // take the time to call into the VM. 2862 Label L1; 2863 __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2864 __ testl(rcx, rcx); 2865 __ jcc(Assembler::zero, L1); 2866 // access constant pool cache entry 2867 __ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1); 2868 __ verify_oop(rax); 2869 __ push_ptr(rax); // save object pointer before call_VM() clobbers it 2870 __ mov(c_rarg1, rax); 2871 // c_rarg1: object pointer copied above 2872 // c_rarg2: cache entry pointer 2873 __ call_VM(noreg, 2874 CAST_FROM_FN_PTR(address, 2875 InterpreterRuntime::post_field_access), 2876 c_rarg1, c_rarg2); 2877 __ pop_ptr(rax); // restore object pointer 2878 __ bind(L1); 2879 } 2880 2881 // access constant pool cache 2882 __ get_cache_and_index_at_bcp(rcx, rbx, 1); 2883 // replace index with field offset from cache entry 2884 // [jk] not needed currently 2885 // if (os::is_MP()) { 2886 // __ movl(rdx, Address(rcx, rbx, Address::times_8, 2887 // in_bytes(ConstantPoolCache::base_offset() + 2888 // ConstantPoolCacheEntry::flags_offset()))); 2889 // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 2890 // __ andl(rdx, 0x1); 2891 // } 2892 __ movptr(rbx, Address(rcx, rbx, Address::times_8, 2893 in_bytes(ConstantPoolCache::base_offset() + 2894 ConstantPoolCacheEntry::f2_offset()))); 2895 2896 // rax: object 2897 __ verify_oop(rax); 2898 __ null_check(rax); 2899 Address field(rax, rbx, Address::times_1); 2900 2901 // access field 2902 switch (bytecode()) { 2903 case Bytecodes::_fast_agetfield: 2904 __ load_heap_oop(rax, field); 2905 __ verify_oop(rax); 2906 break; 2907 case Bytecodes::_fast_lgetfield: 2908 __ movq(rax, field); 2909 break; 2910 case Bytecodes::_fast_igetfield: 2911 __ movl(rax, field); 2912 break; 2913 case Bytecodes::_fast_bgetfield: 2914 __ movsbl(rax, field); 2915 break; 2916 case Bytecodes::_fast_sgetfield: 2917 __ load_signed_short(rax, field); 2918 break; 2919 case Bytecodes::_fast_cgetfield: 2920 __ load_unsigned_short(rax, field); 2921 break; 2922 case Bytecodes::_fast_fgetfield: 2923 __ movflt(xmm0, field); 2924 break; 2925 case Bytecodes::_fast_dgetfield: 2926 __ movdbl(xmm0, field); 2927 break; 2928 default: 2929 ShouldNotReachHere(); 2930 } 2931 // [jk] not needed currently 2932 // if (os::is_MP()) { 2933 // Label notVolatile; 2934 // __ testl(rdx, rdx); 2935 // __ jcc(Assembler::zero, notVolatile); 2936 // __ membar(Assembler::LoadLoad); 2937 // __ bind(notVolatile); 2938 //}; 2939 } 2940 2941 void TemplateTable::fast_xaccess(TosState state) { 2942 transition(vtos, state); 2943 2944 // get receiver 2945 __ movptr(rax, aaddress(0)); 2946 // access constant pool cache 2947 __ get_cache_and_index_at_bcp(rcx, rdx, 2); 2948 __ movptr(rbx, 2949 Address(rcx, rdx, Address::times_8, 2950 in_bytes(ConstantPoolCache::base_offset() + 2951 ConstantPoolCacheEntry::f2_offset()))); 2952 // make sure exception is reported in correct bcp range (getfield is 2953 // next instruction) 2954 __ increment(r13); 2955 __ null_check(rax); 2956 switch (state) { 2957 case itos: 2958 __ movl(rax, Address(rax, rbx, Address::times_1)); 2959 break; 2960 case atos: 2961 __ load_heap_oop(rax, Address(rax, rbx, Address::times_1)); 2962 __ verify_oop(rax); 2963 break; 2964 case ftos: 2965 __ movflt(xmm0, Address(rax, rbx, Address::times_1)); 2966 break; 2967 default: 2968 ShouldNotReachHere(); 2969 } 2970 2971 // [jk] not needed currently 2972 // if (os::is_MP()) { 2973 // Label notVolatile; 2974 // __ movl(rdx, Address(rcx, rdx, Address::times_8, 2975 // in_bytes(ConstantPoolCache::base_offset() + 2976 // ConstantPoolCacheEntry::flags_offset()))); 2977 // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 2978 // __ testl(rdx, 0x1); 2979 // __ jcc(Assembler::zero, notVolatile); 2980 // __ membar(Assembler::LoadLoad); 2981 // __ bind(notVolatile); 2982 // } 2983 2984 __ decrement(r13); 2985 } 2986 2987 2988 2989 //----------------------------------------------------------------------------- 2990 // Calls 2991 2992 void TemplateTable::count_calls(Register method, Register temp) { 2993 // implemented elsewhere 2994 ShouldNotReachHere(); 2995 } 2996 2997 void TemplateTable::prepare_invoke(int byte_no, 2998 Register method, // linked method (or i-klass) 2999 Register index, // itable index, MethodType, etc. 3000 Register recv, // if caller wants to see it 3001 Register flags // if caller wants to test it 3002 ) { 3003 // determine flags 3004 const Bytecodes::Code code = bytecode(); 3005 const bool is_invokeinterface = code == Bytecodes::_invokeinterface; 3006 const bool is_invokedynamic = code == Bytecodes::_invokedynamic; 3007 const bool is_invokehandle = code == Bytecodes::_invokehandle; 3008 const bool is_invokevirtual = code == Bytecodes::_invokevirtual; 3009 const bool is_invokespecial = code == Bytecodes::_invokespecial; 3010 const bool load_receiver = (recv != noreg); 3011 const bool save_flags = (flags != noreg); 3012 assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), ""); 3013 assert(save_flags == (is_invokeinterface || is_invokevirtual), "need flags for vfinal"); 3014 assert(flags == noreg || flags == rdx, ""); 3015 assert(recv == noreg || recv == rcx, ""); 3016 3017 // setup registers & access constant pool cache 3018 if (recv == noreg) recv = rcx; 3019 if (flags == noreg) flags = rdx; 3020 assert_different_registers(method, index, recv, flags); 3021 3022 // save 'interpreter return address' 3023 __ save_bcp(); 3024 3025 load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic); 3026 3027 // maybe push appendix to arguments (just before return address) 3028 if (is_invokedynamic || is_invokehandle) { 3029 Label L_no_push; 3030 __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift)); 3031 __ jcc(Assembler::zero, L_no_push); 3032 // Push the appendix as a trailing parameter. 3033 // This must be done before we get the receiver, 3034 // since the parameter_size includes it. 3035 __ push(rbx); 3036 __ mov(rbx, index); 3037 assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0"); 3038 __ load_resolved_reference_at_index(index, rbx); 3039 __ pop(rbx); 3040 __ push(index); // push appendix (MethodType, CallSite, etc.) 3041 __ bind(L_no_push); 3042 } 3043 3044 // load receiver if needed (after appendix is pushed so parameter size is correct) 3045 // Note: no return address pushed yet 3046 if (load_receiver) { 3047 __ movl(recv, flags); 3048 __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask); 3049 const int no_return_pc_pushed_yet = -1; // argument slot correction before we push return address 3050 const int receiver_is_at_end = -1; // back off one slot to get receiver 3051 Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end); 3052 __ movptr(recv, recv_addr); 3053 __ verify_oop(recv); 3054 } 3055 3056 if (save_flags) { 3057 __ movl(r13, flags); 3058 } 3059 3060 // compute return type 3061 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 3062 // Make sure we don't need to mask flags after the above shift 3063 ConstantPoolCacheEntry::verify_tos_state_shift(); 3064 // load return address 3065 { 3066 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 3067 ExternalAddress table(table_addr); 3068 __ lea(rscratch1, table); 3069 __ movptr(flags, Address(rscratch1, flags, Address::times_ptr)); 3070 } 3071 3072 // push return address 3073 __ push(flags); 3074 3075 // Restore flags value from the constant pool cache, and restore rsi 3076 // for later null checks. r13 is the bytecode pointer 3077 if (save_flags) { 3078 __ movl(flags, r13); 3079 __ restore_bcp(); 3080 } 3081 } 3082 3083 3084 void TemplateTable::invokevirtual_helper(Register index, 3085 Register recv, 3086 Register flags) { 3087 // Uses temporary registers rax, rdx 3088 assert_different_registers(index, recv, rax, rdx); 3089 assert(index == rbx, ""); 3090 assert(recv == rcx, ""); 3091 3092 // Test for an invoke of a final method 3093 Label notFinal; 3094 __ movl(rax, flags); 3095 __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift)); 3096 __ jcc(Assembler::zero, notFinal); 3097 3098 const Register method = index; // method must be rbx 3099 assert(method == rbx, 3100 "Method* must be rbx for interpreter calling convention"); 3101 3102 // do the call - the index is actually the method to call 3103 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method* 3104 3105 // It's final, need a null check here! 3106 __ null_check(recv); 3107 3108 // profile this call 3109 __ profile_final_call(rax); 3110 __ profile_arguments_type(rax, method, r13, true); 3111 3112 __ jump_from_interpreted(method, rax); 3113 3114 __ bind(notFinal); 3115 3116 // get receiver klass 3117 __ null_check(recv, oopDesc::klass_offset_in_bytes()); 3118 __ load_klass(rax, recv); 3119 3120 // profile this call 3121 __ profile_virtual_call(rax, r14, rdx); 3122 3123 // get target Method* & entry point 3124 __ lookup_virtual_method(rax, index, method); 3125 __ profile_arguments_type(rdx, method, r13, true); 3126 __ jump_from_interpreted(method, rdx); 3127 } 3128 3129 3130 void TemplateTable::invokevirtual(int byte_no) { 3131 transition(vtos, vtos); 3132 assert(byte_no == f2_byte, "use this argument"); 3133 prepare_invoke(byte_no, 3134 rbx, // method or vtable index 3135 noreg, // unused itable index 3136 rcx, rdx); // recv, flags 3137 3138 // rbx: index 3139 // rcx: receiver 3140 // rdx: flags 3141 3142 invokevirtual_helper(rbx, rcx, rdx); 3143 } 3144 3145 3146 void TemplateTable::invokespecial(int byte_no) { 3147 transition(vtos, vtos); 3148 assert(byte_no == f1_byte, "use this argument"); 3149 prepare_invoke(byte_no, rbx, noreg, // get f1 Method* 3150 rcx); // get receiver also for null check 3151 __ verify_oop(rcx); 3152 __ null_check(rcx); 3153 // do the call 3154 __ profile_call(rax); 3155 __ profile_arguments_type(rax, rbx, r13, false); 3156 __ jump_from_interpreted(rbx, rax); 3157 } 3158 3159 3160 void TemplateTable::invokestatic(int byte_no) { 3161 transition(vtos, vtos); 3162 assert(byte_no == f1_byte, "use this argument"); 3163 prepare_invoke(byte_no, rbx); // get f1 Method* 3164 // do the call 3165 __ profile_call(rax); 3166 __ profile_arguments_type(rax, rbx, r13, false); 3167 __ jump_from_interpreted(rbx, rax); 3168 } 3169 3170 void TemplateTable::fast_invokevfinal(int byte_no) { 3171 transition(vtos, vtos); 3172 assert(byte_no == f2_byte, "use this argument"); 3173 __ stop("fast_invokevfinal not used on amd64"); 3174 } 3175 3176 void TemplateTable::invokeinterface(int byte_no) { 3177 transition(vtos, vtos); 3178 assert(byte_no == f1_byte, "use this argument"); 3179 prepare_invoke(byte_no, rax, rbx, // get f1 Klass*, f2 Method* 3180 rcx, rdx); // recv, flags 3181 3182 // rax: reference klass (from f1) 3183 // rbx: method (from f2) 3184 // rcx: receiver 3185 // rdx: flags 3186 3187 // Special case of invokeinterface called for virtual method of 3188 // java.lang.Object. See cpCacheOop.cpp for details. 3189 // This code isn't produced by javac, but could be produced by 3190 // another compliant java compiler. 3191 Label notMethod; 3192 __ movl(r14, rdx); 3193 __ andl(r14, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift)); 3194 __ jcc(Assembler::zero, notMethod); 3195 3196 invokevirtual_helper(rbx, rcx, rdx); 3197 __ bind(notMethod); 3198 3199 // Get receiver klass into rdx - also a null check 3200 __ restore_locals(); // restore r14 3201 __ null_check(rcx, oopDesc::klass_offset_in_bytes()); 3202 __ load_klass(rdx, rcx); 3203 3204 Label no_such_interface, no_such_method; 3205 3206 // Receiver subtype check against REFC. 3207 // Superklass in rax. Subklass in rdx. Blows rcx, rdi. 3208 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3209 rdx, rax, noreg, 3210 // outputs: scan temp. reg, scan temp. reg 3211 r13, r14, 3212 no_such_interface, 3213 /*return_method=*/false); 3214 3215 // profile this call 3216 __ restore_bcp(); // rbcp was destroyed by receiver type check 3217 __ profile_virtual_call(rdx, r13, r14); 3218 3219 // Get declaring interface class from method, and itable index 3220 __ movptr(rax, Address(rbx, Method::const_offset())); 3221 __ movptr(rax, Address(rax, ConstMethod::constants_offset())); 3222 __ movptr(rax, Address(rax, ConstantPool::pool_holder_offset_in_bytes())); 3223 __ movl(rbx, Address(rbx, Method::itable_index_offset())); 3224 __ subl(rbx, Method::itable_index_max); 3225 __ negl(rbx); 3226 3227 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3228 rdx, rax, rbx, 3229 // outputs: method, scan temp. reg 3230 rbx, r13, 3231 no_such_interface); 3232 3233 // rbx: Method* to call 3234 // rcx: receiver 3235 // Check for abstract method error 3236 // Note: This should be done more efficiently via a throw_abstract_method_error 3237 // interpreter entry point and a conditional jump to it in case of a null 3238 // method. 3239 __ testptr(rbx, rbx); 3240 __ jcc(Assembler::zero, no_such_method); 3241 3242 __ profile_arguments_type(rdx, rbx, r13, true); 3243 3244 // do the call 3245 // rcx: receiver 3246 // rbx,: Method* 3247 __ jump_from_interpreted(rbx, rdx); 3248 __ should_not_reach_here(); 3249 3250 // exception handling code follows... 3251 // note: must restore interpreter registers to canonical 3252 // state for exception handling to work correctly! 3253 3254 __ bind(no_such_method); 3255 // throw exception 3256 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3257 __ restore_bcp(); // r13 must be correct for exception handler (was destroyed) 3258 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3259 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError)); 3260 // the call_VM checks for exception, so we should never return here. 3261 __ should_not_reach_here(); 3262 3263 __ bind(no_such_interface); 3264 // throw exception 3265 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3266 __ restore_bcp(); // r13 must be correct for exception handler (was destroyed) 3267 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3268 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 3269 InterpreterRuntime::throw_IncompatibleClassChangeError)); 3270 // the call_VM checks for exception, so we should never return here. 3271 __ should_not_reach_here(); 3272 } 3273 3274 3275 void TemplateTable::invokehandle(int byte_no) { 3276 transition(vtos, vtos); 3277 assert(byte_no == f1_byte, "use this argument"); 3278 const Register rbx_method = rbx; 3279 const Register rax_mtype = rax; 3280 const Register rcx_recv = rcx; 3281 const Register rdx_flags = rdx; 3282 3283 if (!EnableInvokeDynamic) { 3284 // rewriter does not generate this bytecode 3285 __ should_not_reach_here(); 3286 return; 3287 } 3288 3289 prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv); 3290 __ verify_method_ptr(rbx_method); 3291 __ verify_oop(rcx_recv); 3292 __ null_check(rcx_recv); 3293 3294 // rax: MethodType object (from cpool->resolved_references[f1], if necessary) 3295 // rbx: MH.invokeExact_MT method (from f2) 3296 3297 // Note: rax_mtype is already pushed (if necessary) by prepare_invoke 3298 3299 // FIXME: profile the LambdaForm also 3300 __ profile_final_call(rax); 3301 __ profile_arguments_type(rdx, rbx_method, r13, true); 3302 3303 __ jump_from_interpreted(rbx_method, rdx); 3304 } 3305 3306 3307 void TemplateTable::invokedynamic(int byte_no) { 3308 transition(vtos, vtos); 3309 assert(byte_no == f1_byte, "use this argument"); 3310 3311 if (!EnableInvokeDynamic) { 3312 // We should not encounter this bytecode if !EnableInvokeDynamic. 3313 // The verifier will stop it. However, if we get past the verifier, 3314 // this will stop the thread in a reasonable way, without crashing the JVM. 3315 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 3316 InterpreterRuntime::throw_IncompatibleClassChangeError)); 3317 // the call_VM checks for exception, so we should never return here. 3318 __ should_not_reach_here(); 3319 return; 3320 } 3321 3322 const Register rbx_method = rbx; 3323 const Register rax_callsite = rax; 3324 3325 prepare_invoke(byte_no, rbx_method, rax_callsite); 3326 3327 // rax: CallSite object (from cpool->resolved_references[f1]) 3328 // rbx: MH.linkToCallSite method (from f2) 3329 3330 // Note: rax_callsite is already pushed by prepare_invoke 3331 3332 // %%% should make a type profile for any invokedynamic that takes a ref argument 3333 // profile this call 3334 __ profile_call(r13); 3335 __ profile_arguments_type(rdx, rbx_method, r13, false); 3336 3337 __ verify_oop(rax_callsite); 3338 3339 __ jump_from_interpreted(rbx_method, rdx); 3340 } 3341 3342 3343 //----------------------------------------------------------------------------- 3344 // Allocation 3345 3346 void TemplateTable::_new() { 3347 transition(vtos, atos); 3348 __ get_unsigned_2_byte_index_at_bcp(rdx, 1); 3349 Label slow_case; 3350 Label done; 3351 Label initialize_header; 3352 Label initialize_object; // including clearing the fields 3353 Label allocate_shared; 3354 3355 __ get_cpool_and_tags(rsi, rax); 3356 // Make sure the class we're about to instantiate has been resolved. 3357 // This is done before loading InstanceKlass to be consistent with the order 3358 // how Constant Pool is updated (see ConstantPool::klass_at_put) 3359 const int tags_offset = Array<u1>::base_offset_in_bytes(); 3360 __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), 3361 JVM_CONSTANT_Class); 3362 __ jcc(Assembler::notEqual, slow_case); 3363 3364 // get InstanceKlass 3365 __ movptr(rsi, Address(rsi, rdx, 3366 Address::times_8, sizeof(ConstantPool))); 3367 3368 // make sure klass is initialized & doesn't have finalizer 3369 // make sure klass is fully initialized 3370 __ cmpb(Address(rsi, 3371 InstanceKlass::init_state_offset()), 3372 InstanceKlass::fully_initialized); 3373 __ jcc(Assembler::notEqual, slow_case); 3374 3375 // get instance_size in InstanceKlass (scaled to a count of bytes) 3376 __ movl(rdx, 3377 Address(rsi, 3378 Klass::layout_helper_offset())); 3379 // test to see if it has a finalizer or is malformed in some way 3380 __ testl(rdx, Klass::_lh_instance_slow_path_bit); 3381 __ jcc(Assembler::notZero, slow_case); 3382 3383 // Allocate the instance 3384 // 1) Try to allocate in the TLAB 3385 // 2) if fail and the object is large allocate in the shared Eden 3386 // 3) if the above fails (or is not applicable), go to a slow case 3387 // (creates a new TLAB, etc.) 3388 3389 const bool allow_shared_alloc = 3390 Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode; 3391 3392 if (UseTLAB) { 3393 __ movptr(rax, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset()))); 3394 __ lea(rbx, Address(rax, rdx, Address::times_1)); 3395 __ cmpptr(rbx, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset()))); 3396 __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case); 3397 __ movptr(Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())), rbx); 3398 if (ZeroTLAB) { 3399 // the fields have been already cleared 3400 __ jmp(initialize_header); 3401 } else { 3402 // initialize both the header and fields 3403 __ jmp(initialize_object); 3404 } 3405 } 3406 3407 // Allocation in the shared Eden, if allowed. 3408 // 3409 // rdx: instance size in bytes 3410 if (allow_shared_alloc) { 3411 __ bind(allocate_shared); 3412 3413 ExternalAddress top((address)Universe::heap()->top_addr()); 3414 ExternalAddress end((address)Universe::heap()->end_addr()); 3415 3416 const Register RtopAddr = rscratch1; 3417 const Register RendAddr = rscratch2; 3418 3419 __ lea(RtopAddr, top); 3420 __ lea(RendAddr, end); 3421 __ movptr(rax, Address(RtopAddr, 0)); 3422 3423 // For retries rax gets set by cmpxchgq 3424 Label retry; 3425 __ bind(retry); 3426 __ lea(rbx, Address(rax, rdx, Address::times_1)); 3427 __ cmpptr(rbx, Address(RendAddr, 0)); 3428 __ jcc(Assembler::above, slow_case); 3429 3430 // Compare rax with the top addr, and if still equal, store the new 3431 // top addr in rbx at the address of the top addr pointer. Sets ZF if was 3432 // equal, and clears it otherwise. Use lock prefix for atomicity on MPs. 3433 // 3434 // rax: object begin 3435 // rbx: object end 3436 // rdx: instance size in bytes 3437 if (os::is_MP()) { 3438 __ lock(); 3439 } 3440 __ cmpxchgptr(rbx, Address(RtopAddr, 0)); 3441 3442 // if someone beat us on the allocation, try again, otherwise continue 3443 __ jcc(Assembler::notEqual, retry); 3444 3445 __ incr_allocated_bytes(r15_thread, rdx, 0); 3446 } 3447 3448 if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) { 3449 // The object is initialized before the header. If the object size is 3450 // zero, go directly to the header initialization. 3451 __ bind(initialize_object); 3452 __ decrementl(rdx, sizeof(oopDesc)); 3453 __ jcc(Assembler::zero, initialize_header); 3454 3455 // Initialize object fields 3456 __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code) 3457 __ shrl(rdx, LogBytesPerLong); // divide by oopSize to simplify the loop 3458 { 3459 Label loop; 3460 __ bind(loop); 3461 __ movq(Address(rax, rdx, Address::times_8, 3462 sizeof(oopDesc) - oopSize), 3463 rcx); 3464 __ decrementl(rdx); 3465 __ jcc(Assembler::notZero, loop); 3466 } 3467 3468 // initialize object header only. 3469 __ bind(initialize_header); 3470 if (UseBiasedLocking) { 3471 __ movptr(rscratch1, Address(rsi, Klass::prototype_header_offset())); 3472 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), rscratch1); 3473 } else { 3474 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), 3475 (intptr_t) markOopDesc::prototype()); // header (address 0x1) 3476 } 3477 __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code) 3478 __ store_klass_gap(rax, rcx); // zero klass gap for compressed oops 3479 __ store_klass(rax, rsi); // store klass last 3480 3481 { 3482 SkipIfEqual skip(_masm, &DTraceAllocProbes, false); 3483 // Trigger dtrace event for fastpath 3484 __ push(atos); // save the return value 3485 __ call_VM_leaf( 3486 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax); 3487 __ pop(atos); // restore the return value 3488 3489 } 3490 __ jmp(done); 3491 } 3492 3493 3494 // slow case 3495 __ bind(slow_case); 3496 __ get_constant_pool(c_rarg1); 3497 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3498 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2); 3499 __ verify_oop(rax); 3500 3501 // continue 3502 __ bind(done); 3503 } 3504 3505 void TemplateTable::newarray() { 3506 transition(itos, atos); 3507 __ load_unsigned_byte(c_rarg1, at_bcp(1)); 3508 __ movl(c_rarg2, rax); 3509 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), 3510 c_rarg1, c_rarg2); 3511 } 3512 3513 void TemplateTable::anewarray() { 3514 transition(itos, atos); 3515 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3516 __ get_constant_pool(c_rarg1); 3517 __ movl(c_rarg3, rax); 3518 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), 3519 c_rarg1, c_rarg2, c_rarg3); 3520 } 3521 3522 void TemplateTable::arraylength() { 3523 transition(atos, itos); 3524 __ null_check(rax, arrayOopDesc::length_offset_in_bytes()); 3525 __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes())); 3526 } 3527 3528 void TemplateTable::checkcast() { 3529 transition(atos, atos); 3530 Label done, is_null, ok_is_subtype, quicked, resolved; 3531 __ testptr(rax, rax); // object is in rax 3532 __ jcc(Assembler::zero, is_null); 3533 3534 // Get cpool & tags index 3535 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 3536 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 3537 // See if bytecode has already been quicked 3538 __ cmpb(Address(rdx, rbx, 3539 Address::times_1, 3540 Array<u1>::base_offset_in_bytes()), 3541 JVM_CONSTANT_Class); 3542 __ jcc(Assembler::equal, quicked); 3543 __ push(atos); // save receiver for result, and for GC 3544 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3545 // vm_result_2 has metadata result 3546 __ get_vm_result_2(rax, r15_thread); 3547 __ pop_ptr(rdx); // restore receiver 3548 __ jmpb(resolved); 3549 3550 // Get superklass in rax and subklass in rbx 3551 __ bind(quicked); 3552 __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check 3553 __ movptr(rax, Address(rcx, rbx, 3554 Address::times_8, sizeof(ConstantPool))); 3555 3556 __ bind(resolved); 3557 __ load_klass(rbx, rdx); 3558 3559 // Generate subtype check. Blows rcx, rdi. Object in rdx. 3560 // Superklass in rax. Subklass in rbx. 3561 __ gen_subtype_check(rbx, ok_is_subtype); 3562 3563 // Come here on failure 3564 __ push_ptr(rdx); 3565 // object is at TOS 3566 __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry)); 3567 3568 // Come here on success 3569 __ bind(ok_is_subtype); 3570 __ mov(rax, rdx); // Restore object in rdx 3571 3572 // Collect counts on whether this check-cast sees NULLs a lot or not. 3573 if (ProfileInterpreter) { 3574 __ jmp(done); 3575 __ bind(is_null); 3576 __ profile_null_seen(rcx); 3577 } else { 3578 __ bind(is_null); // same as 'done' 3579 } 3580 __ bind(done); 3581 } 3582 3583 void TemplateTable::instanceof() { 3584 transition(atos, itos); 3585 Label done, is_null, ok_is_subtype, quicked, resolved; 3586 __ testptr(rax, rax); 3587 __ jcc(Assembler::zero, is_null); 3588 3589 // Get cpool & tags index 3590 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 3591 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 3592 // See if bytecode has already been quicked 3593 __ cmpb(Address(rdx, rbx, 3594 Address::times_1, 3595 Array<u1>::base_offset_in_bytes()), 3596 JVM_CONSTANT_Class); 3597 __ jcc(Assembler::equal, quicked); 3598 3599 __ push(atos); // save receiver for result, and for GC 3600 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3601 // vm_result_2 has metadata result 3602 __ get_vm_result_2(rax, r15_thread); 3603 __ pop_ptr(rdx); // restore receiver 3604 __ verify_oop(rdx); 3605 __ load_klass(rdx, rdx); 3606 __ jmpb(resolved); 3607 3608 // Get superklass in rax and subklass in rdx 3609 __ bind(quicked); 3610 __ load_klass(rdx, rax); 3611 __ movptr(rax, Address(rcx, rbx, 3612 Address::times_8, sizeof(ConstantPool))); 3613 3614 __ bind(resolved); 3615 3616 // Generate subtype check. Blows rcx, rdi 3617 // Superklass in rax. Subklass in rdx. 3618 __ gen_subtype_check(rdx, ok_is_subtype); 3619 3620 // Come here on failure 3621 __ xorl(rax, rax); 3622 __ jmpb(done); 3623 // Come here on success 3624 __ bind(ok_is_subtype); 3625 __ movl(rax, 1); 3626 3627 // Collect counts on whether this test sees NULLs a lot or not. 3628 if (ProfileInterpreter) { 3629 __ jmp(done); 3630 __ bind(is_null); 3631 __ profile_null_seen(rcx); 3632 } else { 3633 __ bind(is_null); // same as 'done' 3634 } 3635 __ bind(done); 3636 // rax = 0: obj == NULL or obj is not an instanceof the specified klass 3637 // rax = 1: obj != NULL and obj is an instanceof the specified klass 3638 } 3639 3640 //----------------------------------------------------------------------------- 3641 // Breakpoints 3642 void TemplateTable::_breakpoint() { 3643 // Note: We get here even if we are single stepping.. 3644 // jbug inists on setting breakpoints at every bytecode 3645 // even if we are in single step mode. 3646 3647 transition(vtos, vtos); 3648 3649 // get the unpatched byte code 3650 __ get_method(c_rarg1); 3651 __ call_VM(noreg, 3652 CAST_FROM_FN_PTR(address, 3653 InterpreterRuntime::get_original_bytecode_at), 3654 c_rarg1, r13); 3655 __ mov(rbx, rax); 3656 3657 // post the breakpoint event 3658 __ get_method(c_rarg1); 3659 __ call_VM(noreg, 3660 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), 3661 c_rarg1, r13); 3662 3663 // complete the execution of original bytecode 3664 __ dispatch_only_normal(vtos); 3665 } 3666 3667 //----------------------------------------------------------------------------- 3668 // Exceptions 3669 3670 void TemplateTable::athrow() { 3671 transition(atos, vtos); 3672 __ null_check(rax); 3673 __ jump(ExternalAddress(Interpreter::throw_exception_entry())); 3674 } 3675 3676 //----------------------------------------------------------------------------- 3677 // Synchronization 3678 // 3679 // Note: monitorenter & exit are symmetric routines; which is reflected 3680 // in the assembly code structure as well 3681 // 3682 // Stack layout: 3683 // 3684 // [expressions ] <--- rsp = expression stack top 3685 // .. 3686 // [expressions ] 3687 // [monitor entry] <--- monitor block top = expression stack bot 3688 // .. 3689 // [monitor entry] 3690 // [frame data ] <--- monitor block bot 3691 // ... 3692 // [saved rbp ] <--- rbp 3693 void TemplateTable::monitorenter() { 3694 transition(atos, vtos); 3695 3696 // check for NULL object 3697 __ null_check(rax); 3698 3699 const Address monitor_block_top( 3700 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 3701 const Address monitor_block_bot( 3702 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 3703 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 3704 3705 Label allocated; 3706 3707 // initialize entry pointer 3708 __ xorl(c_rarg1, c_rarg1); // points to free slot or NULL 3709 3710 // find a free slot in the monitor block (result in c_rarg1) 3711 { 3712 Label entry, loop, exit; 3713 __ movptr(c_rarg3, monitor_block_top); // points to current entry, 3714 // starting with top-most entry 3715 __ lea(c_rarg2, monitor_block_bot); // points to word before bottom 3716 // of monitor block 3717 __ jmpb(entry); 3718 3719 __ bind(loop); 3720 // check if current entry is used 3721 __ cmpptr(Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD); 3722 // if not used then remember entry in c_rarg1 3723 __ cmov(Assembler::equal, c_rarg1, c_rarg3); 3724 // check if current entry is for same object 3725 __ cmpptr(rax, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes())); 3726 // if same object then stop searching 3727 __ jccb(Assembler::equal, exit); 3728 // otherwise advance to next entry 3729 __ addptr(c_rarg3, entry_size); 3730 __ bind(entry); 3731 // check if bottom reached 3732 __ cmpptr(c_rarg3, c_rarg2); 3733 // if not at bottom then check this entry 3734 __ jcc(Assembler::notEqual, loop); 3735 __ bind(exit); 3736 } 3737 3738 __ testptr(c_rarg1, c_rarg1); // check if a slot has been found 3739 __ jcc(Assembler::notZero, allocated); // if found, continue with that one 3740 3741 // allocate one if there's no free slot 3742 { 3743 Label entry, loop; 3744 // 1. compute new pointers // rsp: old expression stack top 3745 __ movptr(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom 3746 __ subptr(rsp, entry_size); // move expression stack top 3747 __ subptr(c_rarg1, entry_size); // move expression stack bottom 3748 __ mov(c_rarg3, rsp); // set start value for copy loop 3749 __ movptr(monitor_block_bot, c_rarg1); // set new monitor block bottom 3750 __ jmp(entry); 3751 // 2. move expression stack contents 3752 __ bind(loop); 3753 __ movptr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack 3754 // word from old location 3755 __ movptr(Address(c_rarg3, 0), c_rarg2); // and store it at new location 3756 __ addptr(c_rarg3, wordSize); // advance to next word 3757 __ bind(entry); 3758 __ cmpptr(c_rarg3, c_rarg1); // check if bottom reached 3759 __ jcc(Assembler::notEqual, loop); // if not at bottom then 3760 // copy next word 3761 } 3762 3763 // call run-time routine 3764 // c_rarg1: points to monitor entry 3765 __ bind(allocated); 3766 3767 // Increment bcp to point to the next bytecode, so exception 3768 // handling for async. exceptions work correctly. 3769 // The object has already been poped from the stack, so the 3770 // expression stack looks correct. 3771 __ increment(r13); 3772 3773 // store object 3774 __ movptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), rax); 3775 __ lock_object(c_rarg1); 3776 3777 // check to make sure this monitor doesn't cause stack overflow after locking 3778 __ save_bcp(); // in case of exception 3779 __ generate_stack_overflow_check(0); 3780 3781 // The bcp has already been incremented. Just need to dispatch to 3782 // next instruction. 3783 __ dispatch_next(vtos); 3784 } 3785 3786 3787 void TemplateTable::monitorexit() { 3788 transition(atos, vtos); 3789 3790 // check for NULL object 3791 __ null_check(rax); 3792 3793 const Address monitor_block_top( 3794 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 3795 const Address monitor_block_bot( 3796 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 3797 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 3798 3799 Label found; 3800 3801 // find matching slot 3802 { 3803 Label entry, loop; 3804 __ movptr(c_rarg1, monitor_block_top); // points to current entry, 3805 // starting with top-most entry 3806 __ lea(c_rarg2, monitor_block_bot); // points to word before bottom 3807 // of monitor block 3808 __ jmpb(entry); 3809 3810 __ bind(loop); 3811 // check if current entry is for same object 3812 __ cmpptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes())); 3813 // if same object then stop searching 3814 __ jcc(Assembler::equal, found); 3815 // otherwise advance to next entry 3816 __ addptr(c_rarg1, entry_size); 3817 __ bind(entry); 3818 // check if bottom reached 3819 __ cmpptr(c_rarg1, c_rarg2); 3820 // if not at bottom then check this entry 3821 __ jcc(Assembler::notEqual, loop); 3822 } 3823 3824 // error handling. Unlocking was not block-structured 3825 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 3826 InterpreterRuntime::throw_illegal_monitor_state_exception)); 3827 __ should_not_reach_here(); 3828 3829 // call run-time routine 3830 // rsi: points to monitor entry 3831 __ bind(found); 3832 __ push_ptr(rax); // make sure object is on stack (contract with oopMaps) 3833 __ unlock_object(c_rarg1); 3834 __ pop_ptr(rax); // discard object 3835 } 3836 3837 3838 // Wide instructions 3839 void TemplateTable::wide() { 3840 transition(vtos, vtos); 3841 __ load_unsigned_byte(rbx, at_bcp(1)); 3842 __ lea(rscratch1, ExternalAddress((address)Interpreter::_wentry_point)); 3843 __ jmp(Address(rscratch1, rbx, Address::times_8)); 3844 // Note: the r13 increment step is part of the individual wide 3845 // bytecode implementations 3846 } 3847 3848 3849 // Multi arrays 3850 void TemplateTable::multianewarray() { 3851 transition(vtos, atos); 3852 __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions 3853 // last dim is on top of stack; we want address of first one: 3854 // first_addr = last_addr + (ndims - 1) * wordSize 3855 __ lea(c_rarg1, Address(rsp, rax, Address::times_8, -wordSize)); 3856 call_VM(rax, 3857 CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), 3858 c_rarg1); 3859 __ load_unsigned_byte(rbx, at_bcp(3)); 3860 __ lea(rsp, Address(rsp, rbx, Address::times_8)); 3861 } 3862 #endif // !CC_INTERP