1 /* 2 * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 // output_c.cpp - Class CPP file output routines for architecture definition 26 27 #include "adlc.hpp" 28 29 // Utilities to characterize effect statements 30 static bool is_def(int usedef) { 31 switch(usedef) { 32 case Component::DEF: 33 case Component::USE_DEF: return true; break; 34 } 35 return false; 36 } 37 38 // Define an array containing the machine register names, strings. 39 static void defineRegNames(FILE *fp, RegisterForm *registers) { 40 if (registers) { 41 fprintf(fp,"\n"); 42 fprintf(fp,"// An array of character pointers to machine register names.\n"); 43 fprintf(fp,"const char *Matcher::regName[REG_COUNT] = {\n"); 44 45 // Output the register name for each register in the allocation classes 46 RegDef *reg_def = NULL; 47 RegDef *next = NULL; 48 registers->reset_RegDefs(); 49 for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) { 50 next = registers->iter_RegDefs(); 51 const char *comma = (next != NULL) ? "," : " // no trailing comma"; 52 fprintf(fp," \"%s\"%s\n", reg_def->_regname, comma); 53 } 54 55 // Finish defining enumeration 56 fprintf(fp,"};\n"); 57 58 fprintf(fp,"\n"); 59 fprintf(fp,"// An array of character pointers to machine register names.\n"); 60 fprintf(fp,"const VMReg OptoReg::opto2vm[REG_COUNT] = {\n"); 61 reg_def = NULL; 62 next = NULL; 63 registers->reset_RegDefs(); 64 for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) { 65 next = registers->iter_RegDefs(); 66 const char *comma = (next != NULL) ? "," : " // no trailing comma"; 67 fprintf(fp,"\t%s%s\n", reg_def->_concrete, comma); 68 } 69 // Finish defining array 70 fprintf(fp,"\t};\n"); 71 fprintf(fp,"\n"); 72 73 fprintf(fp," OptoReg::Name OptoReg::vm2opto[ConcreteRegisterImpl::number_of_registers];\n"); 74 75 } 76 } 77 78 // Define an array containing the machine register encoding values 79 static void defineRegEncodes(FILE *fp, RegisterForm *registers) { 80 if (registers) { 81 fprintf(fp,"\n"); 82 fprintf(fp,"// An array of the machine register encode values\n"); 83 fprintf(fp,"const unsigned char Matcher::_regEncode[REG_COUNT] = {\n"); 84 85 // Output the register encoding for each register in the allocation classes 86 RegDef *reg_def = NULL; 87 RegDef *next = NULL; 88 registers->reset_RegDefs(); 89 for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) { 90 next = registers->iter_RegDefs(); 91 const char* register_encode = reg_def->register_encode(); 92 const char *comma = (next != NULL) ? "," : " // no trailing comma"; 93 int encval; 94 if (!ADLParser::is_int_token(register_encode, encval)) { 95 fprintf(fp," %s%s // %s\n", register_encode, comma, reg_def->_regname); 96 } else { 97 // Output known constants in hex char format (backward compatibility). 98 assert(encval < 256, "Exceeded supported width for register encoding"); 99 fprintf(fp," (unsigned char)'\\x%X'%s // %s\n", encval, comma, reg_def->_regname); 100 } 101 } 102 // Finish defining enumeration 103 fprintf(fp,"};\n"); 104 105 } // Done defining array 106 } 107 108 // Output an enumeration of register class names 109 static void defineRegClassEnum(FILE *fp, RegisterForm *registers) { 110 if (registers) { 111 // Output an enumeration of register class names 112 fprintf(fp,"\n"); 113 fprintf(fp,"// Enumeration of register class names\n"); 114 fprintf(fp, "enum machRegisterClass {\n"); 115 registers->_rclasses.reset(); 116 for (const char *class_name = NULL; (class_name = registers->_rclasses.iter()) != NULL;) { 117 const char * class_name_to_upper = toUpper(class_name); 118 fprintf(fp," %s,\n", class_name_to_upper); 119 delete[] class_name_to_upper; 120 } 121 // Finish defining enumeration 122 fprintf(fp, " _last_Mach_Reg_Class\n"); 123 fprintf(fp, "};\n"); 124 } 125 } 126 127 // Declare an enumeration of user-defined register classes 128 // and a list of register masks, one for each class. 129 void ArchDesc::declare_register_masks(FILE *fp_hpp) { 130 const char *rc_name; 131 132 if (_register) { 133 // Build enumeration of user-defined register classes. 134 defineRegClassEnum(fp_hpp, _register); 135 136 // Generate a list of register masks, one for each class. 137 fprintf(fp_hpp,"\n"); 138 fprintf(fp_hpp,"// Register masks, one for each register class.\n"); 139 _register->_rclasses.reset(); 140 for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) { 141 RegClass *reg_class = _register->getRegClass(rc_name); 142 assert(reg_class, "Using an undefined register class"); 143 reg_class->declare_register_masks(fp_hpp); 144 } 145 } 146 } 147 148 // Generate an enumeration of user-defined register classes 149 // and a list of register masks, one for each class. 150 void ArchDesc::build_register_masks(FILE *fp_cpp) { 151 const char *rc_name; 152 153 if (_register) { 154 // Generate a list of register masks, one for each class. 155 fprintf(fp_cpp,"\n"); 156 fprintf(fp_cpp,"// Register masks, one for each register class.\n"); 157 _register->_rclasses.reset(); 158 for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) { 159 RegClass *reg_class = _register->getRegClass(rc_name); 160 assert(reg_class, "Using an undefined register class"); 161 reg_class->build_register_masks(fp_cpp); 162 } 163 } 164 } 165 166 // Compute an index for an array in the pipeline_reads_NNN arrays 167 static int pipeline_reads_initializer(FILE *fp_cpp, NameList &pipeline_reads, PipeClassForm *pipeclass) 168 { 169 int templen = 1; 170 int paramcount = 0; 171 const char *paramname; 172 173 if (pipeclass->_parameters.count() == 0) 174 return -1; 175 176 pipeclass->_parameters.reset(); 177 paramname = pipeclass->_parameters.iter(); 178 const PipeClassOperandForm *pipeopnd = 179 (const PipeClassOperandForm *)pipeclass->_localUsage[paramname]; 180 if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal")) 181 pipeclass->_parameters.reset(); 182 183 while ( (paramname = pipeclass->_parameters.iter()) != NULL ) { 184 const PipeClassOperandForm *tmppipeopnd = 185 (const PipeClassOperandForm *)pipeclass->_localUsage[paramname]; 186 187 if (tmppipeopnd) 188 templen += 10 + (int)strlen(tmppipeopnd->_stage); 189 else 190 templen += 19; 191 192 paramcount++; 193 } 194 195 // See if the count is zero 196 if (paramcount == 0) { 197 return -1; 198 } 199 200 char *operand_stages = new char [templen]; 201 operand_stages[0] = 0; 202 int i = 0; 203 templen = 0; 204 205 pipeclass->_parameters.reset(); 206 paramname = pipeclass->_parameters.iter(); 207 pipeopnd = (const PipeClassOperandForm *)pipeclass->_localUsage[paramname]; 208 if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal")) 209 pipeclass->_parameters.reset(); 210 211 while ( (paramname = pipeclass->_parameters.iter()) != NULL ) { 212 const PipeClassOperandForm *tmppipeopnd = 213 (const PipeClassOperandForm *)pipeclass->_localUsage[paramname]; 214 templen += sprintf(&operand_stages[templen], " stage_%s%c\n", 215 tmppipeopnd ? tmppipeopnd->_stage : "undefined", 216 (++i < paramcount ? ',' : ' ') ); 217 } 218 219 // See if the same string is in the table 220 int ndx = pipeline_reads.index(operand_stages); 221 222 // No, add it to the table 223 if (ndx < 0) { 224 pipeline_reads.addName(operand_stages); 225 ndx = pipeline_reads.index(operand_stages); 226 227 fprintf(fp_cpp, "static const enum machPipelineStages pipeline_reads_%03d[%d] = {\n%s};\n\n", 228 ndx+1, paramcount, operand_stages); 229 } 230 else 231 delete [] operand_stages; 232 233 return (ndx); 234 } 235 236 // Compute an index for an array in the pipeline_res_stages_NNN arrays 237 static int pipeline_res_stages_initializer( 238 FILE *fp_cpp, 239 PipelineForm *pipeline, 240 NameList &pipeline_res_stages, 241 PipeClassForm *pipeclass) 242 { 243 const PipeClassResourceForm *piperesource; 244 int * res_stages = new int [pipeline->_rescount]; 245 int i; 246 247 for (i = 0; i < pipeline->_rescount; i++) 248 res_stages[i] = 0; 249 250 for (pipeclass->_resUsage.reset(); 251 (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) { 252 int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask(); 253 for (i = 0; i < pipeline->_rescount; i++) 254 if ((1 << i) & used_mask) { 255 int stage = pipeline->_stages.index(piperesource->_stage); 256 if (res_stages[i] < stage+1) 257 res_stages[i] = stage+1; 258 } 259 } 260 261 // Compute the length needed for the resource list 262 int commentlen = 0; 263 int max_stage = 0; 264 for (i = 0; i < pipeline->_rescount; i++) { 265 if (res_stages[i] == 0) { 266 if (max_stage < 9) 267 max_stage = 9; 268 } 269 else { 270 int stagelen = (int)strlen(pipeline->_stages.name(res_stages[i]-1)); 271 if (max_stage < stagelen) 272 max_stage = stagelen; 273 } 274 275 commentlen += (int)strlen(pipeline->_reslist.name(i)); 276 } 277 278 int templen = 1 + commentlen + pipeline->_rescount * (max_stage + 14); 279 280 // Allocate space for the resource list 281 char * resource_stages = new char [templen]; 282 283 templen = 0; 284 for (i = 0; i < pipeline->_rescount; i++) { 285 const char * const resname = 286 res_stages[i] == 0 ? "undefined" : pipeline->_stages.name(res_stages[i]-1); 287 288 templen += sprintf(&resource_stages[templen], " stage_%s%-*s // %s\n", 289 resname, max_stage - (int)strlen(resname) + 1, 290 (i < pipeline->_rescount-1) ? "," : "", 291 pipeline->_reslist.name(i)); 292 } 293 294 // See if the same string is in the table 295 int ndx = pipeline_res_stages.index(resource_stages); 296 297 // No, add it to the table 298 if (ndx < 0) { 299 pipeline_res_stages.addName(resource_stages); 300 ndx = pipeline_res_stages.index(resource_stages); 301 302 fprintf(fp_cpp, "static const enum machPipelineStages pipeline_res_stages_%03d[%d] = {\n%s};\n\n", 303 ndx+1, pipeline->_rescount, resource_stages); 304 } 305 else 306 delete [] resource_stages; 307 308 delete [] res_stages; 309 310 return (ndx); 311 } 312 313 // Compute an index for an array in the pipeline_res_cycles_NNN arrays 314 static int pipeline_res_cycles_initializer( 315 FILE *fp_cpp, 316 PipelineForm *pipeline, 317 NameList &pipeline_res_cycles, 318 PipeClassForm *pipeclass) 319 { 320 const PipeClassResourceForm *piperesource; 321 int * res_cycles = new int [pipeline->_rescount]; 322 int i; 323 324 for (i = 0; i < pipeline->_rescount; i++) 325 res_cycles[i] = 0; 326 327 for (pipeclass->_resUsage.reset(); 328 (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) { 329 int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask(); 330 for (i = 0; i < pipeline->_rescount; i++) 331 if ((1 << i) & used_mask) { 332 int cycles = piperesource->_cycles; 333 if (res_cycles[i] < cycles) 334 res_cycles[i] = cycles; 335 } 336 } 337 338 // Pre-compute the string length 339 int templen; 340 int cyclelen = 0, commentlen = 0; 341 int max_cycles = 0; 342 char temp[32]; 343 344 for (i = 0; i < pipeline->_rescount; i++) { 345 if (max_cycles < res_cycles[i]) 346 max_cycles = res_cycles[i]; 347 templen = sprintf(temp, "%d", res_cycles[i]); 348 if (cyclelen < templen) 349 cyclelen = templen; 350 commentlen += (int)strlen(pipeline->_reslist.name(i)); 351 } 352 353 templen = 1 + commentlen + (cyclelen + 8) * pipeline->_rescount; 354 355 // Allocate space for the resource list 356 char * resource_cycles = new char [templen]; 357 358 templen = 0; 359 360 for (i = 0; i < pipeline->_rescount; i++) { 361 templen += sprintf(&resource_cycles[templen], " %*d%c // %s\n", 362 cyclelen, res_cycles[i], (i < pipeline->_rescount-1) ? ',' : ' ', pipeline->_reslist.name(i)); 363 } 364 365 // See if the same string is in the table 366 int ndx = pipeline_res_cycles.index(resource_cycles); 367 368 // No, add it to the table 369 if (ndx < 0) { 370 pipeline_res_cycles.addName(resource_cycles); 371 ndx = pipeline_res_cycles.index(resource_cycles); 372 373 fprintf(fp_cpp, "static const uint pipeline_res_cycles_%03d[%d] = {\n%s};\n\n", 374 ndx+1, pipeline->_rescount, resource_cycles); 375 } 376 else 377 delete [] resource_cycles; 378 379 delete [] res_cycles; 380 381 return (ndx); 382 } 383 384 //typedef unsigned long long uint64_t; 385 386 // Compute an index for an array in the pipeline_res_mask_NNN arrays 387 static int pipeline_res_mask_initializer( 388 FILE *fp_cpp, 389 PipelineForm *pipeline, 390 NameList &pipeline_res_mask, 391 NameList &pipeline_res_args, 392 PipeClassForm *pipeclass) 393 { 394 const PipeClassResourceForm *piperesource; 395 const uint rescount = pipeline->_rescount; 396 const uint maxcycleused = pipeline->_maxcycleused; 397 const uint cyclemasksize = (maxcycleused + 31) >> 5; 398 399 int i, j; 400 int element_count = 0; 401 uint *res_mask = new uint [cyclemasksize]; 402 uint resources_used = 0; 403 uint resources_used_exclusively = 0; 404 405 for (pipeclass->_resUsage.reset(); 406 (piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) { 407 element_count++; 408 } 409 410 // Pre-compute the string length 411 int templen; 412 int commentlen = 0; 413 int max_cycles = 0; 414 415 int cyclelen = ((maxcycleused + 3) >> 2); 416 int masklen = (rescount + 3) >> 2; 417 418 int cycledigit = 0; 419 for (i = maxcycleused; i > 0; i /= 10) 420 cycledigit++; 421 422 int maskdigit = 0; 423 for (i = rescount; i > 0; i /= 10) 424 maskdigit++; 425 426 static const char* pipeline_use_cycle_mask = "Pipeline_Use_Cycle_Mask"; 427 static const char* pipeline_use_element = "Pipeline_Use_Element"; 428 429 templen = 1 + 430 (int)(strlen(pipeline_use_cycle_mask) + (int)strlen(pipeline_use_element) + 431 (cyclemasksize * 12) + masklen + (cycledigit * 2) + 30) * element_count; 432 433 // Allocate space for the resource list 434 char * resource_mask = new char [templen]; 435 char * last_comma = NULL; 436 437 templen = 0; 438 439 for (pipeclass->_resUsage.reset(); 440 (piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) { 441 int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask(); 442 443 if (!used_mask) { 444 fprintf(stderr, "*** used_mask is 0 ***\n"); 445 } 446 447 resources_used |= used_mask; 448 449 uint lb, ub; 450 451 for (lb = 0; (used_mask & (1 << lb)) == 0; lb++); 452 for (ub = 31; (used_mask & (1 << ub)) == 0; ub--); 453 454 if (lb == ub) { 455 resources_used_exclusively |= used_mask; 456 } 457 458 int formatlen = 459 sprintf(&resource_mask[templen], " %s(0x%0*x, %*d, %*d, %s %s(", 460 pipeline_use_element, 461 masklen, used_mask, 462 cycledigit, lb, cycledigit, ub, 463 ((used_mask & (used_mask-1)) != 0) ? "true, " : "false,", 464 pipeline_use_cycle_mask); 465 466 templen += formatlen; 467 468 memset(res_mask, 0, cyclemasksize * sizeof(uint)); 469 470 int cycles = piperesource->_cycles; 471 uint stage = pipeline->_stages.index(piperesource->_stage); 472 if ((uint)NameList::Not_in_list == stage) { 473 fprintf(stderr, 474 "pipeline_res_mask_initializer: " 475 "semantic error: " 476 "pipeline stage undeclared: %s\n", 477 piperesource->_stage); 478 exit(1); 479 } 480 uint upper_limit = stage + cycles - 1; 481 uint lower_limit = stage - 1; 482 uint upper_idx = upper_limit >> 5; 483 uint lower_idx = lower_limit >> 5; 484 uint upper_position = upper_limit & 0x1f; 485 uint lower_position = lower_limit & 0x1f; 486 487 uint mask = (((uint)1) << upper_position) - 1; 488 489 while (upper_idx > lower_idx) { 490 res_mask[upper_idx--] |= mask; 491 mask = (uint)-1; 492 } 493 494 mask -= (((uint)1) << lower_position) - 1; 495 res_mask[upper_idx] |= mask; 496 497 for (j = cyclemasksize-1; j >= 0; j--) { 498 formatlen = 499 sprintf(&resource_mask[templen], "0x%08x%s", res_mask[j], j > 0 ? ", " : ""); 500 templen += formatlen; 501 } 502 503 resource_mask[templen++] = ')'; 504 resource_mask[templen++] = ')'; 505 last_comma = &resource_mask[templen]; 506 resource_mask[templen++] = ','; 507 resource_mask[templen++] = '\n'; 508 } 509 510 resource_mask[templen] = 0; 511 if (last_comma) { 512 last_comma[0] = ' '; 513 } 514 515 // See if the same string is in the table 516 int ndx = pipeline_res_mask.index(resource_mask); 517 518 // No, add it to the table 519 if (ndx < 0) { 520 pipeline_res_mask.addName(resource_mask); 521 ndx = pipeline_res_mask.index(resource_mask); 522 523 if (strlen(resource_mask) > 0) 524 fprintf(fp_cpp, "static const Pipeline_Use_Element pipeline_res_mask_%03d[%d] = {\n%s};\n\n", 525 ndx+1, element_count, resource_mask); 526 527 char* args = new char [9 + 2*masklen + maskdigit]; 528 529 sprintf(args, "0x%0*x, 0x%0*x, %*d", 530 masklen, resources_used, 531 masklen, resources_used_exclusively, 532 maskdigit, element_count); 533 534 pipeline_res_args.addName(args); 535 } 536 else { 537 delete [] resource_mask; 538 } 539 540 delete [] res_mask; 541 //delete [] res_masks; 542 543 return (ndx); 544 } 545 546 void ArchDesc::build_pipe_classes(FILE *fp_cpp) { 547 const char *classname; 548 const char *resourcename; 549 int resourcenamelen = 0; 550 NameList pipeline_reads; 551 NameList pipeline_res_stages; 552 NameList pipeline_res_cycles; 553 NameList pipeline_res_masks; 554 NameList pipeline_res_args; 555 const int default_latency = 1; 556 const int non_operand_latency = 0; 557 const int node_latency = 0; 558 559 if (!_pipeline) { 560 fprintf(fp_cpp, "uint Node::latency(uint i) const {\n"); 561 fprintf(fp_cpp, " // assert(false, \"pipeline functionality is not defined\");\n"); 562 fprintf(fp_cpp, " return %d;\n", non_operand_latency); 563 fprintf(fp_cpp, "}\n"); 564 return; 565 } 566 567 fprintf(fp_cpp, "\n"); 568 fprintf(fp_cpp, "//------------------Pipeline Methods-----------------------------------------\n"); 569 fprintf(fp_cpp, "#ifndef PRODUCT\n"); 570 fprintf(fp_cpp, "const char * Pipeline::stageName(uint s) {\n"); 571 fprintf(fp_cpp, " static const char * const _stage_names[] = {\n"); 572 fprintf(fp_cpp, " \"undefined\""); 573 574 for (int s = 0; s < _pipeline->_stagecnt; s++) 575 fprintf(fp_cpp, ", \"%s\"", _pipeline->_stages.name(s)); 576 577 fprintf(fp_cpp, "\n };\n\n"); 578 fprintf(fp_cpp, " return (s <= %d ? _stage_names[s] : \"???\");\n", 579 _pipeline->_stagecnt); 580 fprintf(fp_cpp, "}\n"); 581 fprintf(fp_cpp, "#endif\n\n"); 582 583 fprintf(fp_cpp, "uint Pipeline::functional_unit_latency(uint start, const Pipeline *pred) const {\n"); 584 fprintf(fp_cpp, " // See if the functional units overlap\n"); 585 #if 0 586 fprintf(fp_cpp, "\n#ifndef PRODUCT\n"); 587 fprintf(fp_cpp, " if (TraceOptoOutput) {\n"); 588 fprintf(fp_cpp, " tty->print(\"# functional_unit_latency: start == %%d, this->exclusively == 0x%%03x, pred->exclusively == 0x%%03x\\n\", start, resourcesUsedExclusively(), pred->resourcesUsedExclusively());\n"); 589 fprintf(fp_cpp, " }\n"); 590 fprintf(fp_cpp, "#endif\n\n"); 591 #endif 592 fprintf(fp_cpp, " uint mask = resourcesUsedExclusively() & pred->resourcesUsedExclusively();\n"); 593 fprintf(fp_cpp, " if (mask == 0)\n return (start);\n\n"); 594 #if 0 595 fprintf(fp_cpp, "\n#ifndef PRODUCT\n"); 596 fprintf(fp_cpp, " if (TraceOptoOutput) {\n"); 597 fprintf(fp_cpp, " tty->print(\"# functional_unit_latency: mask == 0x%%x\\n\", mask);\n"); 598 fprintf(fp_cpp, " }\n"); 599 fprintf(fp_cpp, "#endif\n\n"); 600 #endif 601 fprintf(fp_cpp, " for (uint i = 0; i < pred->resourceUseCount(); i++) {\n"); 602 fprintf(fp_cpp, " const Pipeline_Use_Element *predUse = pred->resourceUseElement(i);\n"); 603 fprintf(fp_cpp, " if (predUse->multiple())\n"); 604 fprintf(fp_cpp, " continue;\n\n"); 605 fprintf(fp_cpp, " for (uint j = 0; j < resourceUseCount(); j++) {\n"); 606 fprintf(fp_cpp, " const Pipeline_Use_Element *currUse = resourceUseElement(j);\n"); 607 fprintf(fp_cpp, " if (currUse->multiple())\n"); 608 fprintf(fp_cpp, " continue;\n\n"); 609 fprintf(fp_cpp, " if (predUse->used() & currUse->used()) {\n"); 610 fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask x = predUse->mask();\n"); 611 fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask y = currUse->mask();\n\n"); 612 fprintf(fp_cpp, " for ( y <<= start; x.overlaps(y); start++ )\n"); 613 fprintf(fp_cpp, " y <<= 1;\n"); 614 fprintf(fp_cpp, " }\n"); 615 fprintf(fp_cpp, " }\n"); 616 fprintf(fp_cpp, " }\n\n"); 617 fprintf(fp_cpp, " // There is the potential for overlap\n"); 618 fprintf(fp_cpp, " return (start);\n"); 619 fprintf(fp_cpp, "}\n\n"); 620 fprintf(fp_cpp, "// The following two routines assume that the root Pipeline_Use entity\n"); 621 fprintf(fp_cpp, "// consists of exactly 1 element for each functional unit\n"); 622 fprintf(fp_cpp, "// start is relative to the current cycle; used for latency-based info\n"); 623 fprintf(fp_cpp, "uint Pipeline_Use::full_latency(uint delay, const Pipeline_Use &pred) const {\n"); 624 fprintf(fp_cpp, " for (uint i = 0; i < pred._count; i++) {\n"); 625 fprintf(fp_cpp, " const Pipeline_Use_Element *predUse = pred.element(i);\n"); 626 fprintf(fp_cpp, " if (predUse->_multiple) {\n"); 627 fprintf(fp_cpp, " uint min_delay = %d;\n", 628 _pipeline->_maxcycleused+1); 629 fprintf(fp_cpp, " // Multiple possible functional units, choose first unused one\n"); 630 fprintf(fp_cpp, " for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n"); 631 fprintf(fp_cpp, " const Pipeline_Use_Element *currUse = element(j);\n"); 632 fprintf(fp_cpp, " uint curr_delay = delay;\n"); 633 fprintf(fp_cpp, " if (predUse->_used & currUse->_used) {\n"); 634 fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask x = predUse->_mask;\n"); 635 fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n"); 636 fprintf(fp_cpp, " for ( y <<= curr_delay; x.overlaps(y); curr_delay++ )\n"); 637 fprintf(fp_cpp, " y <<= 1;\n"); 638 fprintf(fp_cpp, " }\n"); 639 fprintf(fp_cpp, " if (min_delay > curr_delay)\n min_delay = curr_delay;\n"); 640 fprintf(fp_cpp, " }\n"); 641 fprintf(fp_cpp, " if (delay < min_delay)\n delay = min_delay;\n"); 642 fprintf(fp_cpp, " }\n"); 643 fprintf(fp_cpp, " else {\n"); 644 fprintf(fp_cpp, " for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n"); 645 fprintf(fp_cpp, " const Pipeline_Use_Element *currUse = element(j);\n"); 646 fprintf(fp_cpp, " if (predUse->_used & currUse->_used) {\n"); 647 fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask x = predUse->_mask;\n"); 648 fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n"); 649 fprintf(fp_cpp, " for ( y <<= delay; x.overlaps(y); delay++ )\n"); 650 fprintf(fp_cpp, " y <<= 1;\n"); 651 fprintf(fp_cpp, " }\n"); 652 fprintf(fp_cpp, " }\n"); 653 fprintf(fp_cpp, " }\n"); 654 fprintf(fp_cpp, " }\n\n"); 655 fprintf(fp_cpp, " return (delay);\n"); 656 fprintf(fp_cpp, "}\n\n"); 657 fprintf(fp_cpp, "void Pipeline_Use::add_usage(const Pipeline_Use &pred) {\n"); 658 fprintf(fp_cpp, " for (uint i = 0; i < pred._count; i++) {\n"); 659 fprintf(fp_cpp, " const Pipeline_Use_Element *predUse = pred.element(i);\n"); 660 fprintf(fp_cpp, " if (predUse->_multiple) {\n"); 661 fprintf(fp_cpp, " // Multiple possible functional units, choose first unused one\n"); 662 fprintf(fp_cpp, " for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n"); 663 fprintf(fp_cpp, " Pipeline_Use_Element *currUse = element(j);\n"); 664 fprintf(fp_cpp, " if ( !predUse->_mask.overlaps(currUse->_mask) ) {\n"); 665 fprintf(fp_cpp, " currUse->_used |= (1 << j);\n"); 666 fprintf(fp_cpp, " _resources_used |= (1 << j);\n"); 667 fprintf(fp_cpp, " currUse->_mask.Or(predUse->_mask);\n"); 668 fprintf(fp_cpp, " break;\n"); 669 fprintf(fp_cpp, " }\n"); 670 fprintf(fp_cpp, " }\n"); 671 fprintf(fp_cpp, " }\n"); 672 fprintf(fp_cpp, " else {\n"); 673 fprintf(fp_cpp, " for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n"); 674 fprintf(fp_cpp, " Pipeline_Use_Element *currUse = element(j);\n"); 675 fprintf(fp_cpp, " currUse->_used |= (1 << j);\n"); 676 fprintf(fp_cpp, " _resources_used |= (1 << j);\n"); 677 fprintf(fp_cpp, " currUse->_mask.Or(predUse->_mask);\n"); 678 fprintf(fp_cpp, " }\n"); 679 fprintf(fp_cpp, " }\n"); 680 fprintf(fp_cpp, " }\n"); 681 fprintf(fp_cpp, "}\n\n"); 682 683 fprintf(fp_cpp, "uint Pipeline::operand_latency(uint opnd, const Pipeline *pred) const {\n"); 684 fprintf(fp_cpp, " int const default_latency = 1;\n"); 685 fprintf(fp_cpp, "\n"); 686 #if 0 687 fprintf(fp_cpp, "#ifndef PRODUCT\n"); 688 fprintf(fp_cpp, " if (TraceOptoOutput) {\n"); 689 fprintf(fp_cpp, " tty->print(\"# operand_latency(%%d), _read_stage_count = %%d\\n\", opnd, _read_stage_count);\n"); 690 fprintf(fp_cpp, " }\n"); 691 fprintf(fp_cpp, "#endif\n\n"); 692 #endif 693 fprintf(fp_cpp, " assert(this, \"NULL pipeline info\");\n"); 694 fprintf(fp_cpp, " assert(pred, \"NULL predecessor pipline info\");\n\n"); 695 fprintf(fp_cpp, " if (pred->hasFixedLatency())\n return (pred->fixedLatency());\n\n"); 696 fprintf(fp_cpp, " // If this is not an operand, then assume a dependence with 0 latency\n"); 697 fprintf(fp_cpp, " if (opnd > _read_stage_count)\n return (0);\n\n"); 698 fprintf(fp_cpp, " uint writeStage = pred->_write_stage;\n"); 699 fprintf(fp_cpp, " uint readStage = _read_stages[opnd-1];\n"); 700 #if 0 701 fprintf(fp_cpp, "\n#ifndef PRODUCT\n"); 702 fprintf(fp_cpp, " if (TraceOptoOutput) {\n"); 703 fprintf(fp_cpp, " tty->print(\"# operand_latency: writeStage=%%s readStage=%%s, opnd=%%d\\n\", stageName(writeStage), stageName(readStage), opnd);\n"); 704 fprintf(fp_cpp, " }\n"); 705 fprintf(fp_cpp, "#endif\n\n"); 706 #endif 707 fprintf(fp_cpp, "\n"); 708 fprintf(fp_cpp, " if (writeStage == stage_undefined || readStage == stage_undefined)\n"); 709 fprintf(fp_cpp, " return (default_latency);\n"); 710 fprintf(fp_cpp, "\n"); 711 fprintf(fp_cpp, " int delta = writeStage - readStage;\n"); 712 fprintf(fp_cpp, " if (delta < 0) delta = 0;\n\n"); 713 #if 0 714 fprintf(fp_cpp, "\n#ifndef PRODUCT\n"); 715 fprintf(fp_cpp, " if (TraceOptoOutput) {\n"); 716 fprintf(fp_cpp, " tty->print(\"# operand_latency: delta=%%d\\n\", delta);\n"); 717 fprintf(fp_cpp, " }\n"); 718 fprintf(fp_cpp, "#endif\n\n"); 719 #endif 720 fprintf(fp_cpp, " return (delta);\n"); 721 fprintf(fp_cpp, "}\n\n"); 722 723 if (!_pipeline) 724 /* Do Nothing */; 725 726 else if (_pipeline->_maxcycleused <= 727 #ifdef SPARC 728 64 729 #else 730 32 731 #endif 732 ) { 733 fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n"); 734 fprintf(fp_cpp, " return Pipeline_Use_Cycle_Mask(in1._mask & in2._mask);\n"); 735 fprintf(fp_cpp, "}\n\n"); 736 fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n"); 737 fprintf(fp_cpp, " return Pipeline_Use_Cycle_Mask(in1._mask | in2._mask);\n"); 738 fprintf(fp_cpp, "}\n\n"); 739 } 740 else { 741 uint l; 742 uint masklen = (_pipeline->_maxcycleused + 31) >> 5; 743 fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n"); 744 fprintf(fp_cpp, " return Pipeline_Use_Cycle_Mask("); 745 for (l = 1; l <= masklen; l++) 746 fprintf(fp_cpp, "in1._mask%d & in2._mask%d%s\n", l, l, l < masklen ? ", " : ""); 747 fprintf(fp_cpp, ");\n"); 748 fprintf(fp_cpp, "}\n\n"); 749 fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n"); 750 fprintf(fp_cpp, " return Pipeline_Use_Cycle_Mask("); 751 for (l = 1; l <= masklen; l++) 752 fprintf(fp_cpp, "in1._mask%d | in2._mask%d%s", l, l, l < masklen ? ", " : ""); 753 fprintf(fp_cpp, ");\n"); 754 fprintf(fp_cpp, "}\n\n"); 755 fprintf(fp_cpp, "void Pipeline_Use_Cycle_Mask::Or(const Pipeline_Use_Cycle_Mask &in2) {\n "); 756 for (l = 1; l <= masklen; l++) 757 fprintf(fp_cpp, " _mask%d |= in2._mask%d;", l, l); 758 fprintf(fp_cpp, "\n}\n\n"); 759 } 760 761 /* Get the length of all the resource names */ 762 for (_pipeline->_reslist.reset(), resourcenamelen = 0; 763 (resourcename = _pipeline->_reslist.iter()) != NULL; 764 resourcenamelen += (int)strlen(resourcename)); 765 766 // Create the pipeline class description 767 768 fprintf(fp_cpp, "static const Pipeline pipeline_class_Zero_Instructions(0, 0, true, 0, 0, false, false, false, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n"); 769 fprintf(fp_cpp, "static const Pipeline pipeline_class_Unknown_Instructions(0, 0, true, 0, 0, false, true, true, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n"); 770 771 fprintf(fp_cpp, "const Pipeline_Use_Element Pipeline_Use::elaborated_elements[%d] = {\n", _pipeline->_rescount); 772 for (int i1 = 0; i1 < _pipeline->_rescount; i1++) { 773 fprintf(fp_cpp, " Pipeline_Use_Element(0, %d, %d, false, Pipeline_Use_Cycle_Mask(", i1, i1); 774 uint masklen = (_pipeline->_maxcycleused + 31) >> 5; 775 for (int i2 = masklen-1; i2 >= 0; i2--) 776 fprintf(fp_cpp, "0%s", i2 > 0 ? ", " : ""); 777 fprintf(fp_cpp, "))%s\n", i1 < (_pipeline->_rescount-1) ? "," : ""); 778 } 779 fprintf(fp_cpp, "};\n\n"); 780 781 fprintf(fp_cpp, "const Pipeline_Use Pipeline_Use::elaborated_use(0, 0, %d, (Pipeline_Use_Element *)&elaborated_elements[0]);\n\n", 782 _pipeline->_rescount); 783 784 for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) { 785 fprintf(fp_cpp, "\n"); 786 fprintf(fp_cpp, "// Pipeline Class \"%s\"\n", classname); 787 PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass(); 788 int maxWriteStage = -1; 789 int maxMoreInstrs = 0; 790 int paramcount = 0; 791 int i = 0; 792 const char *paramname; 793 int resource_count = (_pipeline->_rescount + 3) >> 2; 794 795 // Scan the operands, looking for last output stage and number of inputs 796 for (pipeclass->_parameters.reset(); (paramname = pipeclass->_parameters.iter()) != NULL; ) { 797 const PipeClassOperandForm *pipeopnd = 798 (const PipeClassOperandForm *)pipeclass->_localUsage[paramname]; 799 if (pipeopnd) { 800 if (pipeopnd->_iswrite) { 801 int stagenum = _pipeline->_stages.index(pipeopnd->_stage); 802 int moreinsts = pipeopnd->_more_instrs; 803 if ((maxWriteStage+maxMoreInstrs) < (stagenum+moreinsts)) { 804 maxWriteStage = stagenum; 805 maxMoreInstrs = moreinsts; 806 } 807 } 808 } 809 810 if (i++ > 0 || (pipeopnd && !pipeopnd->isWrite())) 811 paramcount++; 812 } 813 814 // Create the list of stages for the operands that are read 815 // Note that we will build a NameList to reduce the number of copies 816 817 int pipeline_reads_index = pipeline_reads_initializer(fp_cpp, pipeline_reads, pipeclass); 818 819 int pipeline_res_stages_index = pipeline_res_stages_initializer( 820 fp_cpp, _pipeline, pipeline_res_stages, pipeclass); 821 822 int pipeline_res_cycles_index = pipeline_res_cycles_initializer( 823 fp_cpp, _pipeline, pipeline_res_cycles, pipeclass); 824 825 int pipeline_res_mask_index = pipeline_res_mask_initializer( 826 fp_cpp, _pipeline, pipeline_res_masks, pipeline_res_args, pipeclass); 827 828 #if 0 829 // Process the Resources 830 const PipeClassResourceForm *piperesource; 831 832 unsigned resources_used = 0; 833 unsigned exclusive_resources_used = 0; 834 unsigned resource_groups = 0; 835 for (pipeclass->_resUsage.reset(); 836 (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) { 837 int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask(); 838 if (used_mask) 839 resource_groups++; 840 resources_used |= used_mask; 841 if ((used_mask & (used_mask-1)) == 0) 842 exclusive_resources_used |= used_mask; 843 } 844 845 if (resource_groups > 0) { 846 fprintf(fp_cpp, "static const uint pipeline_res_or_masks_%03d[%d] = {", 847 pipeclass->_num, resource_groups); 848 for (pipeclass->_resUsage.reset(), i = 1; 849 (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; 850 i++ ) { 851 int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask(); 852 if (used_mask) { 853 fprintf(fp_cpp, " 0x%0*x%c", resource_count, used_mask, i < (int)resource_groups ? ',' : ' '); 854 } 855 } 856 fprintf(fp_cpp, "};\n\n"); 857 } 858 #endif 859 860 // Create the pipeline class description 861 fprintf(fp_cpp, "static const Pipeline pipeline_class_%03d(", 862 pipeclass->_num); 863 if (maxWriteStage < 0) 864 fprintf(fp_cpp, "(uint)stage_undefined"); 865 else if (maxMoreInstrs == 0) 866 fprintf(fp_cpp, "(uint)stage_%s", _pipeline->_stages.name(maxWriteStage)); 867 else 868 fprintf(fp_cpp, "((uint)stage_%s)+%d", _pipeline->_stages.name(maxWriteStage), maxMoreInstrs); 869 fprintf(fp_cpp, ", %d, %s, %d, %d, %s, %s, %s, %s,\n", 870 paramcount, 871 pipeclass->hasFixedLatency() ? "true" : "false", 872 pipeclass->fixedLatency(), 873 pipeclass->InstructionCount(), 874 pipeclass->hasBranchDelay() ? "true" : "false", 875 pipeclass->hasMultipleBundles() ? "true" : "false", 876 pipeclass->forceSerialization() ? "true" : "false", 877 pipeclass->mayHaveNoCode() ? "true" : "false" ); 878 if (paramcount > 0) { 879 fprintf(fp_cpp, "\n (enum machPipelineStages * const) pipeline_reads_%03d,\n ", 880 pipeline_reads_index+1); 881 } 882 else 883 fprintf(fp_cpp, " NULL,"); 884 fprintf(fp_cpp, " (enum machPipelineStages * const) pipeline_res_stages_%03d,\n", 885 pipeline_res_stages_index+1); 886 fprintf(fp_cpp, " (uint * const) pipeline_res_cycles_%03d,\n", 887 pipeline_res_cycles_index+1); 888 fprintf(fp_cpp, " Pipeline_Use(%s, (Pipeline_Use_Element *)", 889 pipeline_res_args.name(pipeline_res_mask_index)); 890 if (strlen(pipeline_res_masks.name(pipeline_res_mask_index)) > 0) 891 fprintf(fp_cpp, "&pipeline_res_mask_%03d[0]", 892 pipeline_res_mask_index+1); 893 else 894 fprintf(fp_cpp, "NULL"); 895 fprintf(fp_cpp, "));\n"); 896 } 897 898 // Generate the Node::latency method if _pipeline defined 899 fprintf(fp_cpp, "\n"); 900 fprintf(fp_cpp, "//------------------Inter-Instruction Latency--------------------------------\n"); 901 fprintf(fp_cpp, "uint Node::latency(uint i) {\n"); 902 if (_pipeline) { 903 #if 0 904 fprintf(fp_cpp, "#ifndef PRODUCT\n"); 905 fprintf(fp_cpp, " if (TraceOptoOutput) {\n"); 906 fprintf(fp_cpp, " tty->print(\"# %%4d->latency(%%d)\\n\", _idx, i);\n"); 907 fprintf(fp_cpp, " }\n"); 908 fprintf(fp_cpp, "#endif\n"); 909 #endif 910 fprintf(fp_cpp, " uint j;\n"); 911 fprintf(fp_cpp, " // verify in legal range for inputs\n"); 912 fprintf(fp_cpp, " assert(i < len(), \"index not in range\");\n\n"); 913 fprintf(fp_cpp, " // verify input is not null\n"); 914 fprintf(fp_cpp, " Node *pred = in(i);\n"); 915 fprintf(fp_cpp, " if (!pred)\n return %d;\n\n", 916 non_operand_latency); 917 fprintf(fp_cpp, " if (pred->is_Proj())\n pred = pred->in(0);\n\n"); 918 fprintf(fp_cpp, " // if either node does not have pipeline info, use default\n"); 919 fprintf(fp_cpp, " const Pipeline *predpipe = pred->pipeline();\n"); 920 fprintf(fp_cpp, " assert(predpipe, \"no predecessor pipeline info\");\n\n"); 921 fprintf(fp_cpp, " if (predpipe->hasFixedLatency())\n return predpipe->fixedLatency();\n\n"); 922 fprintf(fp_cpp, " const Pipeline *currpipe = pipeline();\n"); 923 fprintf(fp_cpp, " assert(currpipe, \"no pipeline info\");\n\n"); 924 fprintf(fp_cpp, " if (!is_Mach())\n return %d;\n\n", 925 node_latency); 926 fprintf(fp_cpp, " const MachNode *m = as_Mach();\n"); 927 fprintf(fp_cpp, " j = m->oper_input_base();\n"); 928 fprintf(fp_cpp, " if (i < j)\n return currpipe->functional_unit_latency(%d, predpipe);\n\n", 929 non_operand_latency); 930 fprintf(fp_cpp, " // determine which operand this is in\n"); 931 fprintf(fp_cpp, " uint n = m->num_opnds();\n"); 932 fprintf(fp_cpp, " int delta = %d;\n\n", 933 non_operand_latency); 934 fprintf(fp_cpp, " uint k;\n"); 935 fprintf(fp_cpp, " for (k = 1; k < n; k++) {\n"); 936 fprintf(fp_cpp, " j += m->_opnds[k]->num_edges();\n"); 937 fprintf(fp_cpp, " if (i < j)\n"); 938 fprintf(fp_cpp, " break;\n"); 939 fprintf(fp_cpp, " }\n"); 940 fprintf(fp_cpp, " if (k < n)\n"); 941 fprintf(fp_cpp, " delta = currpipe->operand_latency(k,predpipe);\n\n"); 942 fprintf(fp_cpp, " return currpipe->functional_unit_latency(delta, predpipe);\n"); 943 } 944 else { 945 fprintf(fp_cpp, " // assert(false, \"pipeline functionality is not defined\");\n"); 946 fprintf(fp_cpp, " return %d;\n", 947 non_operand_latency); 948 } 949 fprintf(fp_cpp, "}\n\n"); 950 951 // Output the list of nop nodes 952 fprintf(fp_cpp, "// Descriptions for emitting different functional unit nops\n"); 953 const char *nop; 954 int nopcnt = 0; 955 for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; nopcnt++ ); 956 957 fprintf(fp_cpp, "void Bundle::initialize_nops(MachNode * nop_list[%d], Compile *C) {\n", nopcnt); 958 int i = 0; 959 for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; i++ ) { 960 fprintf(fp_cpp, " nop_list[%d] = (MachNode *) new (C) %sNode();\n", i, nop); 961 } 962 fprintf(fp_cpp, "};\n\n"); 963 fprintf(fp_cpp, "#ifndef PRODUCT\n"); 964 fprintf(fp_cpp, "void Bundle::dump(outputStream *st) const {\n"); 965 fprintf(fp_cpp, " static const char * bundle_flags[] = {\n"); 966 fprintf(fp_cpp, " \"\",\n"); 967 fprintf(fp_cpp, " \"use nop delay\",\n"); 968 fprintf(fp_cpp, " \"use unconditional delay\",\n"); 969 fprintf(fp_cpp, " \"use conditional delay\",\n"); 970 fprintf(fp_cpp, " \"used in conditional delay\",\n"); 971 fprintf(fp_cpp, " \"used in unconditional delay\",\n"); 972 fprintf(fp_cpp, " \"used in all conditional delays\",\n"); 973 fprintf(fp_cpp, " };\n\n"); 974 975 fprintf(fp_cpp, " static const char *resource_names[%d] = {", _pipeline->_rescount); 976 for (i = 0; i < _pipeline->_rescount; i++) 977 fprintf(fp_cpp, " \"%s\"%c", _pipeline->_reslist.name(i), i < _pipeline->_rescount-1 ? ',' : ' '); 978 fprintf(fp_cpp, "};\n\n"); 979 980 // See if the same string is in the table 981 fprintf(fp_cpp, " bool needs_comma = false;\n\n"); 982 fprintf(fp_cpp, " if (_flags) {\n"); 983 fprintf(fp_cpp, " st->print(\"%%s\", bundle_flags[_flags]);\n"); 984 fprintf(fp_cpp, " needs_comma = true;\n"); 985 fprintf(fp_cpp, " };\n"); 986 fprintf(fp_cpp, " if (instr_count()) {\n"); 987 fprintf(fp_cpp, " st->print(\"%%s%%d instr%%s\", needs_comma ? \", \" : \"\", instr_count(), instr_count() != 1 ? \"s\" : \"\");\n"); 988 fprintf(fp_cpp, " needs_comma = true;\n"); 989 fprintf(fp_cpp, " };\n"); 990 fprintf(fp_cpp, " uint r = resources_used();\n"); 991 fprintf(fp_cpp, " if (r) {\n"); 992 fprintf(fp_cpp, " st->print(\"%%sresource%%s:\", needs_comma ? \", \" : \"\", (r & (r-1)) != 0 ? \"s\" : \"\");\n"); 993 fprintf(fp_cpp, " for (uint i = 0; i < %d; i++)\n", _pipeline->_rescount); 994 fprintf(fp_cpp, " if ((r & (1 << i)) != 0)\n"); 995 fprintf(fp_cpp, " st->print(\" %%s\", resource_names[i]);\n"); 996 fprintf(fp_cpp, " needs_comma = true;\n"); 997 fprintf(fp_cpp, " };\n"); 998 fprintf(fp_cpp, " st->print(\"\\n\");\n"); 999 fprintf(fp_cpp, "}\n"); 1000 fprintf(fp_cpp, "#endif\n"); 1001 } 1002 1003 // --------------------------------------------------------------------------- 1004 //------------------------------Utilities to build Instruction Classes-------- 1005 // --------------------------------------------------------------------------- 1006 1007 static void defineOut_RegMask(FILE *fp, const char *node, const char *regMask) { 1008 fprintf(fp,"const RegMask &%sNode::out_RegMask() const { return (%s); }\n", 1009 node, regMask); 1010 } 1011 1012 static void print_block_index(FILE *fp, int inst_position) { 1013 assert( inst_position >= 0, "Instruction number less than zero"); 1014 fprintf(fp, "block_index"); 1015 if( inst_position != 0 ) { 1016 fprintf(fp, " - %d", inst_position); 1017 } 1018 } 1019 1020 // Scan the peepmatch and output a test for each instruction 1021 static void check_peepmatch_instruction_sequence(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) { 1022 int parent = -1; 1023 int inst_position = 0; 1024 const char* inst_name = NULL; 1025 int input = 0; 1026 fprintf(fp, " // Check instruction sub-tree\n"); 1027 pmatch->reset(); 1028 for( pmatch->next_instruction( parent, inst_position, inst_name, input ); 1029 inst_name != NULL; 1030 pmatch->next_instruction( parent, inst_position, inst_name, input ) ) { 1031 // If this is not a placeholder 1032 if( ! pmatch->is_placeholder() ) { 1033 // Define temporaries 'inst#', based on parent and parent's input index 1034 if( parent != -1 ) { // root was initialized 1035 fprintf(fp, " // Identify previous instruction if inside this block\n"); 1036 fprintf(fp, " if( "); 1037 print_block_index(fp, inst_position); 1038 fprintf(fp, " > 0 ) {\n Node *n = block->get_node("); 1039 print_block_index(fp, inst_position); 1040 fprintf(fp, ");\n inst%d = (n->is_Mach()) ? ", inst_position); 1041 fprintf(fp, "n->as_Mach() : NULL;\n }\n"); 1042 } 1043 1044 // When not the root 1045 // Test we have the correct instruction by comparing the rule. 1046 if( parent != -1 ) { 1047 fprintf(fp, " matches = matches && (inst%d != NULL) && (inst%d->rule() == %s_rule);\n", 1048 inst_position, inst_position, inst_name); 1049 } 1050 } else { 1051 // Check that user did not try to constrain a placeholder 1052 assert( ! pconstraint->constrains_instruction(inst_position), 1053 "fatal(): Can not constrain a placeholder instruction"); 1054 } 1055 } 1056 } 1057 1058 // Build mapping for register indices, num_edges to input 1059 static void build_instruction_index_mapping( FILE *fp, FormDict &globals, PeepMatch *pmatch ) { 1060 int parent = -1; 1061 int inst_position = 0; 1062 const char* inst_name = NULL; 1063 int input = 0; 1064 fprintf(fp, " // Build map to register info\n"); 1065 pmatch->reset(); 1066 for( pmatch->next_instruction( parent, inst_position, inst_name, input ); 1067 inst_name != NULL; 1068 pmatch->next_instruction( parent, inst_position, inst_name, input ) ) { 1069 // If this is not a placeholder 1070 if( ! pmatch->is_placeholder() ) { 1071 // Define temporaries 'inst#', based on self's inst_position 1072 InstructForm *inst = globals[inst_name]->is_instruction(); 1073 if( inst != NULL ) { 1074 char inst_prefix[] = "instXXXX_"; 1075 sprintf(inst_prefix, "inst%d_", inst_position); 1076 char receiver[] = "instXXXX->"; 1077 sprintf(receiver, "inst%d->", inst_position); 1078 inst->index_temps( fp, globals, inst_prefix, receiver ); 1079 } 1080 } 1081 } 1082 } 1083 1084 // Generate tests for the constraints 1085 static void check_peepconstraints(FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint) { 1086 fprintf(fp, "\n"); 1087 fprintf(fp, " // Check constraints on sub-tree-leaves\n"); 1088 1089 // Build mapping from num_edges to local variables 1090 build_instruction_index_mapping( fp, globals, pmatch ); 1091 1092 // Build constraint tests 1093 if( pconstraint != NULL ) { 1094 fprintf(fp, " matches = matches &&"); 1095 bool first_constraint = true; 1096 while( pconstraint != NULL ) { 1097 // indentation and connecting '&&' 1098 const char *indentation = " "; 1099 fprintf(fp, "\n%s%s", indentation, (!first_constraint ? "&& " : " ")); 1100 1101 // Only have '==' relation implemented 1102 if( strcmp(pconstraint->_relation,"==") != 0 ) { 1103 assert( false, "Unimplemented()" ); 1104 } 1105 1106 // LEFT 1107 int left_index = pconstraint->_left_inst; 1108 const char *left_op = pconstraint->_left_op; 1109 // Access info on the instructions whose operands are compared 1110 InstructForm *inst_left = globals[pmatch->instruction_name(left_index)]->is_instruction(); 1111 assert( inst_left, "Parser should guaranty this is an instruction"); 1112 int left_op_base = inst_left->oper_input_base(globals); 1113 // Access info on the operands being compared 1114 int left_op_index = inst_left->operand_position(left_op, Component::USE); 1115 if( left_op_index == -1 ) { 1116 left_op_index = inst_left->operand_position(left_op, Component::DEF); 1117 if( left_op_index == -1 ) { 1118 left_op_index = inst_left->operand_position(left_op, Component::USE_DEF); 1119 } 1120 } 1121 assert( left_op_index != NameList::Not_in_list, "Did not find operand in instruction"); 1122 ComponentList components_left = inst_left->_components; 1123 const char *left_comp_type = components_left.at(left_op_index)->_type; 1124 OpClassForm *left_opclass = globals[left_comp_type]->is_opclass(); 1125 Form::InterfaceType left_interface_type = left_opclass->interface_type(globals); 1126 1127 1128 // RIGHT 1129 int right_op_index = -1; 1130 int right_index = pconstraint->_right_inst; 1131 const char *right_op = pconstraint->_right_op; 1132 if( right_index != -1 ) { // Match operand 1133 // Access info on the instructions whose operands are compared 1134 InstructForm *inst_right = globals[pmatch->instruction_name(right_index)]->is_instruction(); 1135 assert( inst_right, "Parser should guaranty this is an instruction"); 1136 int right_op_base = inst_right->oper_input_base(globals); 1137 // Access info on the operands being compared 1138 right_op_index = inst_right->operand_position(right_op, Component::USE); 1139 if( right_op_index == -1 ) { 1140 right_op_index = inst_right->operand_position(right_op, Component::DEF); 1141 if( right_op_index == -1 ) { 1142 right_op_index = inst_right->operand_position(right_op, Component::USE_DEF); 1143 } 1144 } 1145 assert( right_op_index != NameList::Not_in_list, "Did not find operand in instruction"); 1146 ComponentList components_right = inst_right->_components; 1147 const char *right_comp_type = components_right.at(right_op_index)->_type; 1148 OpClassForm *right_opclass = globals[right_comp_type]->is_opclass(); 1149 Form::InterfaceType right_interface_type = right_opclass->interface_type(globals); 1150 assert( right_interface_type == left_interface_type, "Both must be same interface"); 1151 1152 } else { // Else match register 1153 // assert( false, "should be a register" ); 1154 } 1155 1156 // 1157 // Check for equivalence 1158 // 1159 // fprintf(fp, "phase->eqv( "); 1160 // fprintf(fp, "inst%d->in(%d+%d) /* %s */, inst%d->in(%d+%d) /* %s */", 1161 // left_index, left_op_base, left_op_index, left_op, 1162 // right_index, right_op_base, right_op_index, right_op ); 1163 // fprintf(fp, ")"); 1164 // 1165 switch( left_interface_type ) { 1166 case Form::register_interface: { 1167 // Check that they are allocated to the same register 1168 // Need parameter for index position if not result operand 1169 char left_reg_index[] = ",instXXXX_idxXXXX"; 1170 if( left_op_index != 0 ) { 1171 assert( (left_index <= 9999) && (left_op_index <= 9999), "exceed string size"); 1172 // Must have index into operands 1173 sprintf(left_reg_index,",inst%d_idx%d", (int)left_index, left_op_index); 1174 } else { 1175 strcpy(left_reg_index, ""); 1176 } 1177 fprintf(fp, "(inst%d->_opnds[%d]->reg(ra_,inst%d%s) /* %d.%s */", 1178 left_index, left_op_index, left_index, left_reg_index, left_index, left_op ); 1179 fprintf(fp, " == "); 1180 1181 if( right_index != -1 ) { 1182 char right_reg_index[18] = ",instXXXX_idxXXXX"; 1183 if( right_op_index != 0 ) { 1184 assert( (right_index <= 9999) && (right_op_index <= 9999), "exceed string size"); 1185 // Must have index into operands 1186 sprintf(right_reg_index,",inst%d_idx%d", (int)right_index, right_op_index); 1187 } else { 1188 strcpy(right_reg_index, ""); 1189 } 1190 fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->reg(ra_,inst%d%s)", 1191 right_index, right_op, right_index, right_op_index, right_index, right_reg_index ); 1192 } else { 1193 fprintf(fp, "%s_enc", right_op ); 1194 } 1195 fprintf(fp,")"); 1196 break; 1197 } 1198 case Form::constant_interface: { 1199 // Compare the '->constant()' values 1200 fprintf(fp, "(inst%d->_opnds[%d]->constant() /* %d.%s */", 1201 left_index, left_op_index, left_index, left_op ); 1202 fprintf(fp, " == "); 1203 fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->constant())", 1204 right_index, right_op, right_index, right_op_index ); 1205 break; 1206 } 1207 case Form::memory_interface: { 1208 // Compare 'base', 'index', 'scale', and 'disp' 1209 // base 1210 fprintf(fp, "( \n"); 1211 fprintf(fp, " (inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d) /* %d.%s$$base */", 1212 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op ); 1213 fprintf(fp, " == "); 1214 fprintf(fp, "/* %d.%s$$base */ inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)) &&\n", 1215 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index ); 1216 // index 1217 fprintf(fp, " (inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d) /* %d.%s$$index */", 1218 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op ); 1219 fprintf(fp, " == "); 1220 fprintf(fp, "/* %d.%s$$index */ inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)) &&\n", 1221 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index ); 1222 // scale 1223 fprintf(fp, " (inst%d->_opnds[%d]->scale() /* %d.%s$$scale */", 1224 left_index, left_op_index, left_index, left_op ); 1225 fprintf(fp, " == "); 1226 fprintf(fp, "/* %d.%s$$scale */ inst%d->_opnds[%d]->scale()) &&\n", 1227 right_index, right_op, right_index, right_op_index ); 1228 // disp 1229 fprintf(fp, " (inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d) /* %d.%s$$disp */", 1230 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op ); 1231 fprintf(fp, " == "); 1232 fprintf(fp, "/* %d.%s$$disp */ inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d))\n", 1233 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index ); 1234 fprintf(fp, ") \n"); 1235 break; 1236 } 1237 case Form::conditional_interface: { 1238 // Compare the condition code being tested 1239 assert( false, "Unimplemented()" ); 1240 break; 1241 } 1242 default: { 1243 assert( false, "ShouldNotReachHere()" ); 1244 break; 1245 } 1246 } 1247 1248 // Advance to next constraint 1249 pconstraint = pconstraint->next(); 1250 first_constraint = false; 1251 } 1252 1253 fprintf(fp, ";\n"); 1254 } 1255 } 1256 1257 // // EXPERIMENTAL -- TEMPORARY code 1258 // static Form::DataType get_operand_type(FormDict &globals, InstructForm *instr, const char *op_name ) { 1259 // int op_index = instr->operand_position(op_name, Component::USE); 1260 // if( op_index == -1 ) { 1261 // op_index = instr->operand_position(op_name, Component::DEF); 1262 // if( op_index == -1 ) { 1263 // op_index = instr->operand_position(op_name, Component::USE_DEF); 1264 // } 1265 // } 1266 // assert( op_index != NameList::Not_in_list, "Did not find operand in instruction"); 1267 // 1268 // ComponentList components_right = instr->_components; 1269 // char *right_comp_type = components_right.at(op_index)->_type; 1270 // OpClassForm *right_opclass = globals[right_comp_type]->is_opclass(); 1271 // Form::InterfaceType right_interface_type = right_opclass->interface_type(globals); 1272 // 1273 // return; 1274 // } 1275 1276 // Construct the new sub-tree 1277 static void generate_peepreplace( FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint, PeepReplace *preplace, int max_position ) { 1278 fprintf(fp, " // IF instructions and constraints matched\n"); 1279 fprintf(fp, " if( matches ) {\n"); 1280 fprintf(fp, " // generate the new sub-tree\n"); 1281 fprintf(fp, " assert( true, \"Debug stopping point\");\n"); 1282 if( preplace != NULL ) { 1283 // Get the root of the new sub-tree 1284 const char *root_inst = NULL; 1285 preplace->next_instruction(root_inst); 1286 InstructForm *root_form = globals[root_inst]->is_instruction(); 1287 assert( root_form != NULL, "Replacement instruction was not previously defined"); 1288 fprintf(fp, " %sNode *root = new (C) %sNode();\n", root_inst, root_inst); 1289 1290 int inst_num; 1291 const char *op_name; 1292 int opnds_index = 0; // define result operand 1293 // Then install the use-operands for the new sub-tree 1294 // preplace->reset(); // reset breaks iteration 1295 for( preplace->next_operand( inst_num, op_name ); 1296 op_name != NULL; 1297 preplace->next_operand( inst_num, op_name ) ) { 1298 InstructForm *inst_form; 1299 inst_form = globals[pmatch->instruction_name(inst_num)]->is_instruction(); 1300 assert( inst_form, "Parser should guaranty this is an instruction"); 1301 int inst_op_num = inst_form->operand_position(op_name, Component::USE); 1302 if( inst_op_num == NameList::Not_in_list ) 1303 inst_op_num = inst_form->operand_position(op_name, Component::USE_DEF); 1304 assert( inst_op_num != NameList::Not_in_list, "Did not find operand as USE"); 1305 // find the name of the OperandForm from the local name 1306 const Form *form = inst_form->_localNames[op_name]; 1307 OperandForm *op_form = form->is_operand(); 1308 if( opnds_index == 0 ) { 1309 // Initial setup of new instruction 1310 fprintf(fp, " // ----- Initial setup -----\n"); 1311 // 1312 // Add control edge for this node 1313 fprintf(fp, " root->add_req(_in[0]); // control edge\n"); 1314 // Add unmatched edges from root of match tree 1315 int op_base = root_form->oper_input_base(globals); 1316 for( int unmatched_edge = 1; unmatched_edge < op_base; ++unmatched_edge ) { 1317 fprintf(fp, " root->add_req(inst%d->in(%d)); // unmatched ideal edge\n", 1318 inst_num, unmatched_edge); 1319 } 1320 // If new instruction captures bottom type 1321 if( root_form->captures_bottom_type(globals) ) { 1322 // Get bottom type from instruction whose result we are replacing 1323 fprintf(fp, " root->_bottom_type = inst%d->bottom_type();\n", inst_num); 1324 } 1325 // Define result register and result operand 1326 fprintf(fp, " ra_->add_reference(root, inst%d);\n", inst_num); 1327 fprintf(fp, " ra_->set_oop (root, ra_->is_oop(inst%d));\n", inst_num); 1328 fprintf(fp, " ra_->set_pair(root->_idx, ra_->get_reg_second(inst%d), ra_->get_reg_first(inst%d));\n", inst_num, inst_num); 1329 fprintf(fp, " root->_opnds[0] = inst%d->_opnds[0]->clone(C); // result\n", inst_num); 1330 fprintf(fp, " // ----- Done with initial setup -----\n"); 1331 } else { 1332 if( (op_form == NULL) || (op_form->is_base_constant(globals) == Form::none) ) { 1333 // Do not have ideal edges for constants after matching 1334 fprintf(fp, " for( unsigned x%d = inst%d_idx%d; x%d < inst%d_idx%d; x%d++ )\n", 1335 inst_op_num, inst_num, inst_op_num, 1336 inst_op_num, inst_num, inst_op_num+1, inst_op_num ); 1337 fprintf(fp, " root->add_req( inst%d->in(x%d) );\n", 1338 inst_num, inst_op_num ); 1339 } else { 1340 fprintf(fp, " // no ideal edge for constants after matching\n"); 1341 } 1342 fprintf(fp, " root->_opnds[%d] = inst%d->_opnds[%d]->clone(C);\n", 1343 opnds_index, inst_num, inst_op_num ); 1344 } 1345 ++opnds_index; 1346 } 1347 }else { 1348 // Replacing subtree with empty-tree 1349 assert( false, "ShouldNotReachHere();"); 1350 } 1351 1352 // Return the new sub-tree 1353 fprintf(fp, " deleted = %d;\n", max_position+1 /*zero to one based*/); 1354 fprintf(fp, " return root; // return new root;\n"); 1355 fprintf(fp, " }\n"); 1356 } 1357 1358 1359 // Define the Peephole method for an instruction node 1360 void ArchDesc::definePeephole(FILE *fp, InstructForm *node) { 1361 // Generate Peephole function header 1362 fprintf(fp, "MachNode *%sNode::peephole( Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted, Compile* C ) {\n", node->_ident); 1363 fprintf(fp, " bool matches = true;\n"); 1364 1365 // Identify the maximum instruction position, 1366 // generate temporaries that hold current instruction 1367 // 1368 // MachNode *inst0 = NULL; 1369 // ... 1370 // MachNode *instMAX = NULL; 1371 // 1372 int max_position = 0; 1373 Peephole *peep; 1374 for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) { 1375 PeepMatch *pmatch = peep->match(); 1376 assert( pmatch != NULL, "fatal(), missing peepmatch rule"); 1377 if( max_position < pmatch->max_position() ) max_position = pmatch->max_position(); 1378 } 1379 for( int i = 0; i <= max_position; ++i ) { 1380 if( i == 0 ) { 1381 fprintf(fp, " MachNode *inst0 = this;\n"); 1382 } else { 1383 fprintf(fp, " MachNode *inst%d = NULL;\n", i); 1384 } 1385 } 1386 1387 // For each peephole rule in architecture description 1388 // Construct a test for the desired instruction sub-tree 1389 // then check the constraints 1390 // If these match, Generate the new subtree 1391 for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) { 1392 int peephole_number = peep->peephole_number(); 1393 PeepMatch *pmatch = peep->match(); 1394 PeepConstraint *pconstraint = peep->constraints(); 1395 PeepReplace *preplace = peep->replacement(); 1396 1397 // Root of this peephole is the current MachNode 1398 assert( true, // %%name?%% strcmp( node->_ident, pmatch->name(0) ) == 0, 1399 "root of PeepMatch does not match instruction"); 1400 1401 // Make each peephole rule individually selectable 1402 fprintf(fp, " if( (OptoPeepholeAt == -1) || (OptoPeepholeAt==%d) ) {\n", peephole_number); 1403 fprintf(fp, " matches = true;\n"); 1404 // Scan the peepmatch and output a test for each instruction 1405 check_peepmatch_instruction_sequence( fp, pmatch, pconstraint ); 1406 1407 // Check constraints and build replacement inside scope 1408 fprintf(fp, " // If instruction subtree matches\n"); 1409 fprintf(fp, " if( matches ) {\n"); 1410 1411 // Generate tests for the constraints 1412 check_peepconstraints( fp, _globalNames, pmatch, pconstraint ); 1413 1414 // Construct the new sub-tree 1415 generate_peepreplace( fp, _globalNames, pmatch, pconstraint, preplace, max_position ); 1416 1417 // End of scope for this peephole's constraints 1418 fprintf(fp, " }\n"); 1419 // Closing brace '}' to make each peephole rule individually selectable 1420 fprintf(fp, " } // end of peephole rule #%d\n", peephole_number); 1421 fprintf(fp, "\n"); 1422 } 1423 1424 fprintf(fp, " return NULL; // No peephole rules matched\n"); 1425 fprintf(fp, "}\n"); 1426 fprintf(fp, "\n"); 1427 } 1428 1429 // Define the Expand method for an instruction node 1430 void ArchDesc::defineExpand(FILE *fp, InstructForm *node) { 1431 unsigned cnt = 0; // Count nodes we have expand into 1432 unsigned i; 1433 1434 // Generate Expand function header 1435 fprintf(fp, "MachNode* %sNode::Expand(State* state, Node_List& proj_list, Node* mem) {\n", node->_ident); 1436 fprintf(fp, " Compile* C = Compile::current();\n"); 1437 // Generate expand code 1438 if( node->expands() ) { 1439 const char *opid; 1440 int new_pos, exp_pos; 1441 const char *new_id = NULL; 1442 const Form *frm = NULL; 1443 InstructForm *new_inst = NULL; 1444 OperandForm *new_oper = NULL; 1445 unsigned numo = node->num_opnds() + 1446 node->_exprule->_newopers.count(); 1447 1448 // If necessary, generate any operands created in expand rule 1449 if (node->_exprule->_newopers.count()) { 1450 for(node->_exprule->_newopers.reset(); 1451 (new_id = node->_exprule->_newopers.iter()) != NULL; cnt++) { 1452 frm = node->_localNames[new_id]; 1453 assert(frm, "Invalid entry in new operands list of expand rule"); 1454 new_oper = frm->is_operand(); 1455 char *tmp = (char *)node->_exprule->_newopconst[new_id]; 1456 if (tmp == NULL) { 1457 fprintf(fp," MachOper *op%d = new (C) %sOper();\n", 1458 cnt, new_oper->_ident); 1459 } 1460 else { 1461 fprintf(fp," MachOper *op%d = new (C) %sOper(%s);\n", 1462 cnt, new_oper->_ident, tmp); 1463 } 1464 } 1465 } 1466 cnt = 0; 1467 // Generate the temps to use for DAG building 1468 for(i = 0; i < numo; i++) { 1469 if (i < node->num_opnds()) { 1470 fprintf(fp," MachNode *tmp%d = this;\n", i); 1471 } 1472 else { 1473 fprintf(fp," MachNode *tmp%d = NULL;\n", i); 1474 } 1475 } 1476 // Build mapping from num_edges to local variables 1477 fprintf(fp," unsigned num0 = 0;\n"); 1478 for( i = 1; i < node->num_opnds(); i++ ) { 1479 fprintf(fp," unsigned num%d = opnd_array(%d)->num_edges();\n",i,i); 1480 } 1481 1482 // Build a mapping from operand index to input edges 1483 fprintf(fp," unsigned idx0 = oper_input_base();\n"); 1484 1485 // The order in which the memory input is added to a node is very 1486 // strange. Store nodes get a memory input before Expand is 1487 // called and other nodes get it afterwards or before depending on 1488 // match order so oper_input_base is wrong during expansion. This 1489 // code adjusts it so that expansion will work correctly. 1490 int has_memory_edge = node->_matrule->needs_ideal_memory_edge(_globalNames); 1491 if (has_memory_edge) { 1492 fprintf(fp," if (mem == (Node*)1) {\n"); 1493 fprintf(fp," idx0--; // Adjust base because memory edge hasn't been inserted yet\n"); 1494 fprintf(fp," }\n"); 1495 } 1496 1497 for( i = 0; i < node->num_opnds(); i++ ) { 1498 fprintf(fp," unsigned idx%d = idx%d + num%d;\n", 1499 i+1,i,i); 1500 } 1501 1502 // Declare variable to hold root of expansion 1503 fprintf(fp," MachNode *result = NULL;\n"); 1504 1505 // Iterate over the instructions 'node' expands into 1506 ExpandRule *expand = node->_exprule; 1507 NameAndList *expand_instr = NULL; 1508 for(expand->reset_instructions(); 1509 (expand_instr = expand->iter_instructions()) != NULL; cnt++) { 1510 new_id = expand_instr->name(); 1511 1512 InstructForm* expand_instruction = (InstructForm*)globalAD->globalNames()[new_id]; 1513 1514 if (!expand_instruction) { 1515 globalAD->syntax_err(node->_linenum, "In %s: instruction %s used in expand not declared\n", 1516 node->_ident, new_id); 1517 continue; 1518 } 1519 1520 if (expand_instruction->has_temps()) { 1521 globalAD->syntax_err(node->_linenum, "In %s: expand rules using instructs with TEMPs aren't supported: %s", 1522 node->_ident, new_id); 1523 } 1524 1525 // Build the node for the instruction 1526 fprintf(fp,"\n %sNode *n%d = new (C) %sNode();\n", new_id, cnt, new_id); 1527 // Add control edge for this node 1528 fprintf(fp," n%d->add_req(_in[0]);\n", cnt); 1529 // Build the operand for the value this node defines. 1530 Form *form = (Form*)_globalNames[new_id]; 1531 assert( form, "'new_id' must be a defined form name"); 1532 // Grab the InstructForm for the new instruction 1533 new_inst = form->is_instruction(); 1534 assert( new_inst, "'new_id' must be an instruction name"); 1535 if( node->is_ideal_if() && new_inst->is_ideal_if() ) { 1536 fprintf(fp, " ((MachIfNode*)n%d)->_prob = _prob;\n",cnt); 1537 fprintf(fp, " ((MachIfNode*)n%d)->_fcnt = _fcnt;\n",cnt); 1538 } 1539 1540 if( node->is_ideal_fastlock() && new_inst->is_ideal_fastlock() ) { 1541 fprintf(fp, " ((MachFastLockNode*)n%d)->_counters = _counters;\n",cnt); 1542 fprintf(fp, " ((MachFastLockNode*)n%d)->_rtm_counters = _rtm_counters;\n",cnt); 1543 fprintf(fp, " ((MachFastLockNode*)n%d)->_stack_rtm_counters = _stack_rtm_counters;\n",cnt); 1544 } 1545 1546 // Fill in the bottom_type where requested 1547 if (node->captures_bottom_type(_globalNames) && 1548 new_inst->captures_bottom_type(_globalNames)) { 1549 fprintf(fp, " ((MachTypeNode*)n%d)->_bottom_type = bottom_type();\n", cnt); 1550 } 1551 1552 const char *resultOper = new_inst->reduce_result(); 1553 fprintf(fp," n%d->set_opnd_array(0, state->MachOperGenerator( %s, C ));\n", 1554 cnt, machOperEnum(resultOper)); 1555 1556 // get the formal operand NameList 1557 NameList *formal_lst = &new_inst->_parameters; 1558 formal_lst->reset(); 1559 1560 // Handle any memory operand 1561 int memory_operand = new_inst->memory_operand(_globalNames); 1562 if( memory_operand != InstructForm::NO_MEMORY_OPERAND ) { 1563 int node_mem_op = node->memory_operand(_globalNames); 1564 assert( node_mem_op != InstructForm::NO_MEMORY_OPERAND, 1565 "expand rule member needs memory but top-level inst doesn't have any" ); 1566 if (has_memory_edge) { 1567 // Copy memory edge 1568 fprintf(fp," if (mem != (Node*)1) {\n"); 1569 fprintf(fp," n%d->add_req(_in[1]);\t// Add memory edge\n", cnt); 1570 fprintf(fp," }\n"); 1571 } 1572 } 1573 1574 // Iterate over the new instruction's operands 1575 int prev_pos = -1; 1576 for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) { 1577 // Use 'parameter' at current position in list of new instruction's formals 1578 // instead of 'opid' when looking up info internal to new_inst 1579 const char *parameter = formal_lst->iter(); 1580 if (!parameter) { 1581 globalAD->syntax_err(node->_linenum, "Operand %s of expand instruction %s has" 1582 " no equivalent in new instruction %s.", 1583 opid, node->_ident, new_inst->_ident); 1584 assert(0, "Wrong expand"); 1585 } 1586 1587 // Check for an operand which is created in the expand rule 1588 if ((exp_pos = node->_exprule->_newopers.index(opid)) != -1) { 1589 new_pos = new_inst->operand_position(parameter,Component::USE); 1590 exp_pos += node->num_opnds(); 1591 // If there is no use of the created operand, just skip it 1592 if (new_pos != NameList::Not_in_list) { 1593 //Copy the operand from the original made above 1594 fprintf(fp," n%d->set_opnd_array(%d, op%d->clone(C)); // %s\n", 1595 cnt, new_pos, exp_pos-node->num_opnds(), opid); 1596 // Check for who defines this operand & add edge if needed 1597 fprintf(fp," if(tmp%d != NULL)\n", exp_pos); 1598 fprintf(fp," n%d->add_req(tmp%d);\n", cnt, exp_pos); 1599 } 1600 } 1601 else { 1602 // Use operand name to get an index into instruction component list 1603 // ins = (InstructForm *) _globalNames[new_id]; 1604 exp_pos = node->operand_position_format(opid); 1605 assert(exp_pos != -1, "Bad expand rule"); 1606 if (prev_pos > exp_pos && expand_instruction->_matrule != NULL) { 1607 // For the add_req calls below to work correctly they need 1608 // to added in the same order that a match would add them. 1609 // This means that they would need to be in the order of 1610 // the components list instead of the formal parameters. 1611 // This is a sort of hidden invariant that previously 1612 // wasn't checked and could lead to incorrectly 1613 // constructed nodes. 1614 syntax_err(node->_linenum, "For expand in %s to work, parameter declaration order in %s must follow matchrule\n", 1615 node->_ident, new_inst->_ident); 1616 } 1617 prev_pos = exp_pos; 1618 1619 new_pos = new_inst->operand_position(parameter,Component::USE); 1620 if (new_pos != -1) { 1621 // Copy the operand from the ExpandNode to the new node 1622 fprintf(fp," n%d->set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n", 1623 cnt, new_pos, exp_pos, opid); 1624 // For each operand add appropriate input edges by looking at tmp's 1625 fprintf(fp," if(tmp%d == this) {\n", exp_pos); 1626 // Grab corresponding edges from ExpandNode and insert them here 1627 fprintf(fp," for(unsigned i = 0; i < num%d; i++) {\n", exp_pos); 1628 fprintf(fp," n%d->add_req(_in[i + idx%d]);\n", cnt, exp_pos); 1629 fprintf(fp," }\n"); 1630 fprintf(fp," }\n"); 1631 // This value is generated by one of the new instructions 1632 fprintf(fp," else n%d->add_req(tmp%d);\n", cnt, exp_pos); 1633 } 1634 } 1635 1636 // Update the DAG tmp's for values defined by this instruction 1637 int new_def_pos = new_inst->operand_position(parameter,Component::DEF); 1638 Effect *eform = (Effect *)new_inst->_effects[parameter]; 1639 // If this operand is a definition in either an effects rule 1640 // or a match rule 1641 if((eform) && (is_def(eform->_use_def))) { 1642 // Update the temp associated with this operand 1643 fprintf(fp," tmp%d = n%d;\n", exp_pos, cnt); 1644 } 1645 else if( new_def_pos != -1 ) { 1646 // Instruction defines a value but user did not declare it 1647 // in the 'effect' clause 1648 fprintf(fp," tmp%d = n%d;\n", exp_pos, cnt); 1649 } 1650 } // done iterating over a new instruction's operands 1651 1652 // Invoke Expand() for the newly created instruction. 1653 fprintf(fp," result = n%d->Expand( state, proj_list, mem );\n", cnt); 1654 assert( !new_inst->expands(), "Do not have complete support for recursive expansion"); 1655 } // done iterating over new instructions 1656 fprintf(fp,"\n"); 1657 } // done generating expand rule 1658 1659 // Generate projections for instruction's additional DEFs and KILLs 1660 if( ! node->expands() && (node->needs_projections() || node->has_temps())) { 1661 // Get string representing the MachNode that projections point at 1662 const char *machNode = "this"; 1663 // Generate the projections 1664 fprintf(fp," // Add projection edges for additional defs or kills\n"); 1665 1666 // Examine each component to see if it is a DEF or KILL 1667 node->_components.reset(); 1668 // Skip the first component, if already handled as (SET dst (...)) 1669 Component *comp = NULL; 1670 // For kills, the choice of projection numbers is arbitrary 1671 int proj_no = 1; 1672 bool declared_def = false; 1673 bool declared_kill = false; 1674 1675 while( (comp = node->_components.iter()) != NULL ) { 1676 // Lookup register class associated with operand type 1677 Form *form = (Form*)_globalNames[comp->_type]; 1678 assert( form, "component type must be a defined form"); 1679 OperandForm *op = form->is_operand(); 1680 1681 if (comp->is(Component::TEMP)) { 1682 fprintf(fp, " // TEMP %s\n", comp->_name); 1683 if (!declared_def) { 1684 // Define the variable "def" to hold new MachProjNodes 1685 fprintf(fp, " MachTempNode *def;\n"); 1686 declared_def = true; 1687 } 1688 if (op && op->_interface && op->_interface->is_RegInterface()) { 1689 fprintf(fp," def = new (C) MachTempNode(state->MachOperGenerator( %s, C ));\n", 1690 machOperEnum(op->_ident)); 1691 fprintf(fp," add_req(def);\n"); 1692 // The operand for TEMP is already constructed during 1693 // this mach node construction, see buildMachNode(). 1694 // 1695 // int idx = node->operand_position_format(comp->_name); 1696 // fprintf(fp," set_opnd_array(%d, state->MachOperGenerator( %s, C ));\n", 1697 // idx, machOperEnum(op->_ident)); 1698 } else { 1699 assert(false, "can't have temps which aren't registers"); 1700 } 1701 } else if (comp->isa(Component::KILL)) { 1702 fprintf(fp, " // DEF/KILL %s\n", comp->_name); 1703 1704 if (!declared_kill) { 1705 // Define the variable "kill" to hold new MachProjNodes 1706 fprintf(fp, " MachProjNode *kill;\n"); 1707 declared_kill = true; 1708 } 1709 1710 assert( op, "Support additional KILLS for base operands"); 1711 const char *regmask = reg_mask(*op); 1712 const char *ideal_type = op->ideal_type(_globalNames, _register); 1713 1714 if (!op->is_bound_register()) { 1715 syntax_err(node->_linenum, "In %s only bound registers can be killed: %s %s\n", 1716 node->_ident, comp->_type, comp->_name); 1717 } 1718 1719 fprintf(fp," kill = "); 1720 fprintf(fp,"new (C) MachProjNode( %s, %d, (%s), Op_%s );\n", 1721 machNode, proj_no++, regmask, ideal_type); 1722 fprintf(fp," proj_list.push(kill);\n"); 1723 } 1724 } 1725 } 1726 1727 if( !node->expands() && node->_matrule != NULL ) { 1728 // Remove duplicated operands and inputs which use the same name. 1729 // Seach through match operands for the same name usage. 1730 uint cur_num_opnds = node->num_opnds(); 1731 if( cur_num_opnds > 1 && cur_num_opnds != node->num_unique_opnds() ) { 1732 Component *comp = NULL; 1733 // Build mapping from num_edges to local variables 1734 fprintf(fp," unsigned num0 = 0;\n"); 1735 for( i = 1; i < cur_num_opnds; i++ ) { 1736 fprintf(fp," unsigned num%d = opnd_array(%d)->num_edges();",i,i); 1737 fprintf(fp, " \t// %s\n", node->opnd_ident(i)); 1738 } 1739 // Build a mapping from operand index to input edges 1740 fprintf(fp," unsigned idx0 = oper_input_base();\n"); 1741 for( i = 0; i < cur_num_opnds; i++ ) { 1742 fprintf(fp," unsigned idx%d = idx%d + num%d;\n", 1743 i+1,i,i); 1744 } 1745 1746 uint new_num_opnds = 1; 1747 node->_components.reset(); 1748 // Skip first unique operands. 1749 for( i = 1; i < cur_num_opnds; i++ ) { 1750 comp = node->_components.iter(); 1751 if (i != node->unique_opnds_idx(i)) { 1752 break; 1753 } 1754 new_num_opnds++; 1755 } 1756 // Replace not unique operands with next unique operands. 1757 for( ; i < cur_num_opnds; i++ ) { 1758 comp = node->_components.iter(); 1759 uint j = node->unique_opnds_idx(i); 1760 // unique_opnds_idx(i) is unique if unique_opnds_idx(j) is not unique. 1761 if( j != node->unique_opnds_idx(j) ) { 1762 fprintf(fp," set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n", 1763 new_num_opnds, i, comp->_name); 1764 // delete not unique edges here 1765 fprintf(fp," for(unsigned i = 0; i < num%d; i++) {\n", i); 1766 fprintf(fp," set_req(i + idx%d, _in[i + idx%d]);\n", new_num_opnds, i); 1767 fprintf(fp," }\n"); 1768 fprintf(fp," num%d = num%d;\n", new_num_opnds, i); 1769 fprintf(fp," idx%d = idx%d + num%d;\n", new_num_opnds+1, new_num_opnds, new_num_opnds); 1770 new_num_opnds++; 1771 } 1772 } 1773 // delete the rest of edges 1774 fprintf(fp," for(int i = idx%d - 1; i >= (int)idx%d; i--) {\n", cur_num_opnds, new_num_opnds); 1775 fprintf(fp," del_req(i);\n"); 1776 fprintf(fp," }\n"); 1777 fprintf(fp," _num_opnds = %d;\n", new_num_opnds); 1778 assert(new_num_opnds == node->num_unique_opnds(), "what?"); 1779 } 1780 } 1781 1782 // If the node is a MachConstantNode, insert the MachConstantBaseNode edge. 1783 // NOTE: this edge must be the last input (see MachConstantNode::mach_constant_base_node_input). 1784 // There are nodes that don't use $constantablebase, but still require that it 1785 // is an input to the node. Example: divF_reg_immN, Repl32B_imm on x86_64. 1786 if (node->is_mach_constant() || node->needs_constant_base()) { 1787 if (node->is_ideal_call() != Form::invalid_type && 1788 node->is_ideal_call() != Form::JAVA_LEAF) { 1789 fprintf(fp, " // MachConstantBaseNode added in matcher.\n"); 1790 _needs_clone_jvms = true; 1791 } else { 1792 fprintf(fp, " add_req(C->mach_constant_base_node());\n"); 1793 } 1794 } 1795 1796 fprintf(fp, "\n"); 1797 if (node->expands()) { 1798 fprintf(fp, " return result;\n"); 1799 } else { 1800 fprintf(fp, " return this;\n"); 1801 } 1802 fprintf(fp, "}\n"); 1803 fprintf(fp, "\n"); 1804 } 1805 1806 1807 //------------------------------Emit Routines---------------------------------- 1808 // Special classes and routines for defining node emit routines which output 1809 // target specific instruction object encodings. 1810 // Define the ___Node::emit() routine 1811 // 1812 // (1) void ___Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const { 1813 // (2) // ... encoding defined by user 1814 // (3) 1815 // (4) } 1816 // 1817 1818 class DefineEmitState { 1819 private: 1820 enum reloc_format { RELOC_NONE = -1, 1821 RELOC_IMMEDIATE = 0, 1822 RELOC_DISP = 1, 1823 RELOC_CALL_DISP = 2 }; 1824 enum literal_status{ LITERAL_NOT_SEEN = 0, 1825 LITERAL_SEEN = 1, 1826 LITERAL_ACCESSED = 2, 1827 LITERAL_OUTPUT = 3 }; 1828 // Temporaries that describe current operand 1829 bool _cleared; 1830 OpClassForm *_opclass; 1831 OperandForm *_operand; 1832 int _operand_idx; 1833 const char *_local_name; 1834 const char *_operand_name; 1835 bool _doing_disp; 1836 bool _doing_constant; 1837 Form::DataType _constant_type; 1838 DefineEmitState::literal_status _constant_status; 1839 DefineEmitState::literal_status _reg_status; 1840 bool _doing_emit8; 1841 bool _doing_emit_d32; 1842 bool _doing_emit_d16; 1843 bool _doing_emit_hi; 1844 bool _doing_emit_lo; 1845 bool _may_reloc; 1846 reloc_format _reloc_form; 1847 const char * _reloc_type; 1848 bool _processing_noninput; 1849 1850 NameList _strings_to_emit; 1851 1852 // Stable state, set by constructor 1853 ArchDesc &_AD; 1854 FILE *_fp; 1855 EncClass &_encoding; 1856 InsEncode &_ins_encode; 1857 InstructForm &_inst; 1858 1859 public: 1860 DefineEmitState(FILE *fp, ArchDesc &AD, EncClass &encoding, 1861 InsEncode &ins_encode, InstructForm &inst) 1862 : _AD(AD), _fp(fp), _encoding(encoding), _ins_encode(ins_encode), _inst(inst) { 1863 clear(); 1864 } 1865 1866 void clear() { 1867 _cleared = true; 1868 _opclass = NULL; 1869 _operand = NULL; 1870 _operand_idx = 0; 1871 _local_name = ""; 1872 _operand_name = ""; 1873 _doing_disp = false; 1874 _doing_constant= false; 1875 _constant_type = Form::none; 1876 _constant_status = LITERAL_NOT_SEEN; 1877 _reg_status = LITERAL_NOT_SEEN; 1878 _doing_emit8 = false; 1879 _doing_emit_d32= false; 1880 _doing_emit_d16= false; 1881 _doing_emit_hi = false; 1882 _doing_emit_lo = false; 1883 _may_reloc = false; 1884 _reloc_form = RELOC_NONE; 1885 _reloc_type = AdlcVMDeps::none_reloc_type(); 1886 _strings_to_emit.clear(); 1887 } 1888 1889 // Track necessary state when identifying a replacement variable 1890 // @arg rep_var: The formal parameter of the encoding. 1891 void update_state(const char *rep_var) { 1892 // A replacement variable or one of its subfields 1893 // Obtain replacement variable from list 1894 if ( (*rep_var) != '$' ) { 1895 // A replacement variable, '$' prefix 1896 // check_rep_var( rep_var ); 1897 if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) { 1898 // No state needed. 1899 assert( _opclass == NULL, 1900 "'primary', 'secondary' and 'tertiary' don't follow operand."); 1901 } 1902 else if ((strcmp(rep_var, "constanttablebase") == 0) || 1903 (strcmp(rep_var, "constantoffset") == 0) || 1904 (strcmp(rep_var, "constantaddress") == 0)) { 1905 if (!(_inst.is_mach_constant() || _inst.needs_constant_base())) { 1906 _AD.syntax_err(_encoding._linenum, 1907 "Replacement variable %s not allowed in instruct %s (only in MachConstantNode or MachCall).\n", 1908 rep_var, _encoding._name); 1909 } 1910 } 1911 else { 1912 // Lookup its position in (formal) parameter list of encoding 1913 int param_no = _encoding.rep_var_index(rep_var); 1914 if ( param_no == -1 ) { 1915 _AD.syntax_err( _encoding._linenum, 1916 "Replacement variable %s not found in enc_class %s.\n", 1917 rep_var, _encoding._name); 1918 } 1919 1920 // Lookup the corresponding ins_encode parameter 1921 // This is the argument (actual parameter) to the encoding. 1922 const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no); 1923 if (inst_rep_var == NULL) { 1924 _AD.syntax_err( _ins_encode._linenum, 1925 "Parameter %s not passed to enc_class %s from instruct %s.\n", 1926 rep_var, _encoding._name, _inst._ident); 1927 } 1928 1929 // Check if instruction's actual parameter is a local name in the instruction 1930 const Form *local = _inst._localNames[inst_rep_var]; 1931 OpClassForm *opc = (local != NULL) ? local->is_opclass() : NULL; 1932 // Note: assert removed to allow constant and symbolic parameters 1933 // assert( opc, "replacement variable was not found in local names"); 1934 // Lookup the index position iff the replacement variable is a localName 1935 int idx = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1; 1936 1937 if ( idx != -1 ) { 1938 // This is a local in the instruction 1939 // Update local state info. 1940 _opclass = opc; 1941 _operand_idx = idx; 1942 _local_name = rep_var; 1943 _operand_name = inst_rep_var; 1944 1945 // !!!!! 1946 // Do not support consecutive operands. 1947 assert( _operand == NULL, "Unimplemented()"); 1948 _operand = opc->is_operand(); 1949 } 1950 else if( ADLParser::is_literal_constant(inst_rep_var) ) { 1951 // Instruction provided a constant expression 1952 // Check later that encoding specifies $$$constant to resolve as constant 1953 _constant_status = LITERAL_SEEN; 1954 } 1955 else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) { 1956 // Instruction provided an opcode: "primary", "secondary", "tertiary" 1957 // Check later that encoding specifies $$$constant to resolve as constant 1958 _constant_status = LITERAL_SEEN; 1959 } 1960 else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) { 1961 // Instruction provided a literal register name for this parameter 1962 // Check that encoding specifies $$$reg to resolve.as register. 1963 _reg_status = LITERAL_SEEN; 1964 } 1965 else { 1966 // Check for unimplemented functionality before hard failure 1967 assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label"); 1968 assert( false, "ShouldNotReachHere()"); 1969 } 1970 } // done checking which operand this is. 1971 } else { 1972 // 1973 // A subfield variable, '$$' prefix 1974 // Check for fields that may require relocation information. 1975 // Then check that literal register parameters are accessed with 'reg' or 'constant' 1976 // 1977 if ( strcmp(rep_var,"$disp") == 0 ) { 1978 _doing_disp = true; 1979 assert( _opclass, "Must use operand or operand class before '$disp'"); 1980 if( _operand == NULL ) { 1981 // Only have an operand class, generate run-time check for relocation 1982 _may_reloc = true; 1983 _reloc_form = RELOC_DISP; 1984 _reloc_type = AdlcVMDeps::oop_reloc_type(); 1985 } else { 1986 // Do precise check on operand: is it a ConP or not 1987 // 1988 // Check interface for value of displacement 1989 assert( ( _operand->_interface != NULL ), 1990 "$disp can only follow memory interface operand"); 1991 MemInterface *mem_interface= _operand->_interface->is_MemInterface(); 1992 assert( mem_interface != NULL, 1993 "$disp can only follow memory interface operand"); 1994 const char *disp = mem_interface->_disp; 1995 1996 if( disp != NULL && (*disp == '$') ) { 1997 // MemInterface::disp contains a replacement variable, 1998 // Check if this matches a ConP 1999 // 2000 // Lookup replacement variable, in operand's component list 2001 const char *rep_var_name = disp + 1; // Skip '$' 2002 const Component *comp = _operand->_components.search(rep_var_name); 2003 assert( comp != NULL,"Replacement variable not found in components"); 2004 const char *type = comp->_type; 2005 // Lookup operand form for replacement variable's type 2006 const Form *form = _AD.globalNames()[type]; 2007 assert( form != NULL, "Replacement variable's type not found"); 2008 OperandForm *op = form->is_operand(); 2009 assert( op, "Attempting to emit a non-register or non-constant"); 2010 // Check if this is a constant 2011 if (op->_matrule && op->_matrule->is_base_constant(_AD.globalNames())) { 2012 // Check which constant this name maps to: _c0, _c1, ..., _cn 2013 // const int idx = _operand.constant_position(_AD.globalNames(), comp); 2014 // assert( idx != -1, "Constant component not found in operand"); 2015 Form::DataType dtype = op->is_base_constant(_AD.globalNames()); 2016 if ( dtype == Form::idealP ) { 2017 _may_reloc = true; 2018 // No longer true that idealP is always an oop 2019 _reloc_form = RELOC_DISP; 2020 _reloc_type = AdlcVMDeps::oop_reloc_type(); 2021 } 2022 } 2023 2024 else if( _operand->is_user_name_for_sReg() != Form::none ) { 2025 // The only non-constant allowed access to disp is an operand sRegX in a stackSlotX 2026 assert( op->ideal_to_sReg_type(type) != Form::none, "StackSlots access displacements using 'sRegs'"); 2027 _may_reloc = false; 2028 } else { 2029 assert( false, "fatal(); Only stackSlots can access a non-constant using 'disp'"); 2030 } 2031 } 2032 } // finished with precise check of operand for relocation. 2033 } // finished with subfield variable 2034 else if ( strcmp(rep_var,"$constant") == 0 ) { 2035 _doing_constant = true; 2036 if ( _constant_status == LITERAL_NOT_SEEN ) { 2037 // Check operand for type of constant 2038 assert( _operand, "Must use operand before '$$constant'"); 2039 Form::DataType dtype = _operand->is_base_constant(_AD.globalNames()); 2040 _constant_type = dtype; 2041 if ( dtype == Form::idealP ) { 2042 _may_reloc = true; 2043 // No longer true that idealP is always an oop 2044 // // _must_reloc = true; 2045 _reloc_form = RELOC_IMMEDIATE; 2046 _reloc_type = AdlcVMDeps::oop_reloc_type(); 2047 } else { 2048 // No relocation information needed 2049 } 2050 } else { 2051 // User-provided literals may not require relocation information !!!!! 2052 assert( _constant_status == LITERAL_SEEN, "Must know we are processing a user-provided literal"); 2053 } 2054 } 2055 else if ( strcmp(rep_var,"$label") == 0 ) { 2056 // Calls containing labels require relocation 2057 if ( _inst.is_ideal_call() ) { 2058 _may_reloc = true; 2059 // !!!!! !!!!! 2060 _reloc_type = AdlcVMDeps::none_reloc_type(); 2061 } 2062 } 2063 2064 // literal register parameter must be accessed as a 'reg' field. 2065 if ( _reg_status != LITERAL_NOT_SEEN ) { 2066 assert( _reg_status == LITERAL_SEEN, "Must have seen register literal before now"); 2067 if (strcmp(rep_var,"$reg") == 0 || reg_conversion(rep_var) != NULL) { 2068 _reg_status = LITERAL_ACCESSED; 2069 } else { 2070 _AD.syntax_err(_encoding._linenum, 2071 "Invalid access to literal register parameter '%s' in %s.\n", 2072 rep_var, _encoding._name); 2073 assert( false, "invalid access to literal register parameter"); 2074 } 2075 } 2076 // literal constant parameters must be accessed as a 'constant' field 2077 if (_constant_status != LITERAL_NOT_SEEN) { 2078 assert(_constant_status == LITERAL_SEEN, "Must have seen constant literal before now"); 2079 if (strcmp(rep_var,"$constant") == 0) { 2080 _constant_status = LITERAL_ACCESSED; 2081 } else { 2082 _AD.syntax_err(_encoding._linenum, 2083 "Invalid access to literal constant parameter '%s' in %s.\n", 2084 rep_var, _encoding._name); 2085 } 2086 } 2087 } // end replacement and/or subfield 2088 2089 } 2090 2091 void add_rep_var(const char *rep_var) { 2092 // Handle subfield and replacement variables. 2093 if ( ( *rep_var == '$' ) && ( *(rep_var+1) == '$' ) ) { 2094 // Check for emit prefix, '$$emit32' 2095 assert( _cleared, "Can not nest $$$emit32"); 2096 if ( strcmp(rep_var,"$$emit32") == 0 ) { 2097 _doing_emit_d32 = true; 2098 } 2099 else if ( strcmp(rep_var,"$$emit16") == 0 ) { 2100 _doing_emit_d16 = true; 2101 } 2102 else if ( strcmp(rep_var,"$$emit_hi") == 0 ) { 2103 _doing_emit_hi = true; 2104 } 2105 else if ( strcmp(rep_var,"$$emit_lo") == 0 ) { 2106 _doing_emit_lo = true; 2107 } 2108 else if ( strcmp(rep_var,"$$emit8") == 0 ) { 2109 _doing_emit8 = true; 2110 } 2111 else { 2112 _AD.syntax_err(_encoding._linenum, "Unsupported $$operation '%s'\n",rep_var); 2113 assert( false, "fatal();"); 2114 } 2115 } 2116 else { 2117 // Update state for replacement variables 2118 update_state( rep_var ); 2119 _strings_to_emit.addName(rep_var); 2120 } 2121 _cleared = false; 2122 } 2123 2124 void emit_replacement() { 2125 // A replacement variable or one of its subfields 2126 // Obtain replacement variable from list 2127 // const char *ec_rep_var = encoding->_rep_vars.iter(); 2128 const char *rep_var; 2129 _strings_to_emit.reset(); 2130 while ( (rep_var = _strings_to_emit.iter()) != NULL ) { 2131 2132 if ( (*rep_var) == '$' ) { 2133 // A subfield variable, '$$' prefix 2134 emit_field( rep_var ); 2135 } else { 2136 if (_strings_to_emit.peek() != NULL && 2137 strcmp(_strings_to_emit.peek(), "$Address") == 0) { 2138 fprintf(_fp, "Address::make_raw("); 2139 2140 emit_rep_var( rep_var ); 2141 fprintf(_fp,"->base(ra_,this,idx%d), ", _operand_idx); 2142 2143 _reg_status = LITERAL_ACCESSED; 2144 emit_rep_var( rep_var ); 2145 fprintf(_fp,"->index(ra_,this,idx%d), ", _operand_idx); 2146 2147 _reg_status = LITERAL_ACCESSED; 2148 emit_rep_var( rep_var ); 2149 fprintf(_fp,"->scale(), "); 2150 2151 _reg_status = LITERAL_ACCESSED; 2152 emit_rep_var( rep_var ); 2153 Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none; 2154 if( _operand && _operand_idx==0 && stack_type != Form::none ) { 2155 fprintf(_fp,"->disp(ra_,this,0), "); 2156 } else { 2157 fprintf(_fp,"->disp(ra_,this,idx%d), ", _operand_idx); 2158 } 2159 2160 _reg_status = LITERAL_ACCESSED; 2161 emit_rep_var( rep_var ); 2162 fprintf(_fp,"->disp_reloc())"); 2163 2164 // skip trailing $Address 2165 _strings_to_emit.iter(); 2166 } else { 2167 // A replacement variable, '$' prefix 2168 const char* next = _strings_to_emit.peek(); 2169 const char* next2 = _strings_to_emit.peek(2); 2170 if (next != NULL && next2 != NULL && strcmp(next2, "$Register") == 0 && 2171 (strcmp(next, "$base") == 0 || strcmp(next, "$index") == 0)) { 2172 // handle $rev_var$$base$$Register and $rev_var$$index$$Register by 2173 // producing as_Register(opnd_array(#)->base(ra_,this,idx1)). 2174 fprintf(_fp, "as_Register("); 2175 // emit the operand reference 2176 emit_rep_var( rep_var ); 2177 rep_var = _strings_to_emit.iter(); 2178 assert(strcmp(rep_var, "$base") == 0 || strcmp(rep_var, "$index") == 0, "bad pattern"); 2179 // handle base or index 2180 emit_field(rep_var); 2181 rep_var = _strings_to_emit.iter(); 2182 assert(strcmp(rep_var, "$Register") == 0, "bad pattern"); 2183 // close up the parens 2184 fprintf(_fp, ")"); 2185 } else { 2186 emit_rep_var( rep_var ); 2187 } 2188 } 2189 } // end replacement and/or subfield 2190 } 2191 } 2192 2193 void emit_reloc_type(const char* type) { 2194 fprintf(_fp, "%s", type) 2195 ; 2196 } 2197 2198 2199 void emit() { 2200 // 2201 // "emit_d32_reloc(" or "emit_hi_reloc" or "emit_lo_reloc" 2202 // 2203 // Emit the function name when generating an emit function 2204 if ( _doing_emit_d32 || _doing_emit_hi || _doing_emit_lo ) { 2205 const char *d32_hi_lo = _doing_emit_d32 ? "d32" : (_doing_emit_hi ? "hi" : "lo"); 2206 // In general, relocatable isn't known at compiler compile time. 2207 // Check results of prior scan 2208 if ( ! _may_reloc ) { 2209 // Definitely don't need relocation information 2210 fprintf( _fp, "emit_%s(cbuf, ", d32_hi_lo ); 2211 emit_replacement(); fprintf(_fp, ")"); 2212 } 2213 else { 2214 // Emit RUNTIME CHECK to see if value needs relocation info 2215 // If emitting a relocatable address, use 'emit_d32_reloc' 2216 const char *disp_constant = _doing_disp ? "disp" : _doing_constant ? "constant" : "INVALID"; 2217 assert( (_doing_disp || _doing_constant) 2218 && !(_doing_disp && _doing_constant), 2219 "Must be emitting either a displacement or a constant"); 2220 fprintf(_fp,"\n"); 2221 fprintf(_fp,"if ( opnd_array(%d)->%s_reloc() != relocInfo::none ) {\n", 2222 _operand_idx, disp_constant); 2223 fprintf(_fp," "); 2224 fprintf(_fp,"emit_%s_reloc(cbuf, ", d32_hi_lo ); 2225 emit_replacement(); fprintf(_fp,", "); 2226 fprintf(_fp,"opnd_array(%d)->%s_reloc(), ", 2227 _operand_idx, disp_constant); 2228 fprintf(_fp, "%d", _reloc_form);fprintf(_fp, ");"); 2229 fprintf(_fp,"\n"); 2230 fprintf(_fp,"} else {\n"); 2231 fprintf(_fp," emit_%s(cbuf, ", d32_hi_lo); 2232 emit_replacement(); fprintf(_fp, ");\n"); fprintf(_fp,"}"); 2233 } 2234 } 2235 else if ( _doing_emit_d16 ) { 2236 // Relocation of 16-bit values is not supported 2237 fprintf(_fp,"emit_d16(cbuf, "); 2238 emit_replacement(); fprintf(_fp, ")"); 2239 // No relocation done for 16-bit values 2240 } 2241 else if ( _doing_emit8 ) { 2242 // Relocation of 8-bit values is not supported 2243 fprintf(_fp,"emit_d8(cbuf, "); 2244 emit_replacement(); fprintf(_fp, ")"); 2245 // No relocation done for 8-bit values 2246 } 2247 else { 2248 // Not an emit# command, just output the replacement string. 2249 emit_replacement(); 2250 } 2251 2252 // Get ready for next state collection. 2253 clear(); 2254 } 2255 2256 private: 2257 2258 // recognizes names which represent MacroAssembler register types 2259 // and return the conversion function to build them from OptoReg 2260 const char* reg_conversion(const char* rep_var) { 2261 if (strcmp(rep_var,"$Register") == 0) return "as_Register"; 2262 if (strcmp(rep_var,"$FloatRegister") == 0) return "as_FloatRegister"; 2263 #if defined(IA32) || defined(AMD64) 2264 if (strcmp(rep_var,"$XMMRegister") == 0) return "as_XMMRegister"; 2265 #endif 2266 if (strcmp(rep_var,"$CondRegister") == 0) return "as_ConditionRegister"; 2267 return NULL; 2268 } 2269 2270 void emit_field(const char *rep_var) { 2271 const char* reg_convert = reg_conversion(rep_var); 2272 2273 // A subfield variable, '$$subfield' 2274 if ( strcmp(rep_var, "$reg") == 0 || reg_convert != NULL) { 2275 // $reg form or the $Register MacroAssembler type conversions 2276 assert( _operand_idx != -1, 2277 "Must use this subfield after operand"); 2278 if( _reg_status == LITERAL_NOT_SEEN ) { 2279 if (_processing_noninput) { 2280 const Form *local = _inst._localNames[_operand_name]; 2281 OperandForm *oper = local->is_operand(); 2282 const RegDef* first = oper->get_RegClass()->find_first_elem(); 2283 if (reg_convert != NULL) { 2284 fprintf(_fp, "%s(%s_enc)", reg_convert, first->_regname); 2285 } else { 2286 fprintf(_fp, "%s_enc", first->_regname); 2287 } 2288 } else { 2289 fprintf(_fp,"->%s(ra_,this", reg_convert != NULL ? reg_convert : "reg"); 2290 // Add parameter for index position, if not result operand 2291 if( _operand_idx != 0 ) fprintf(_fp,",idx%d", _operand_idx); 2292 fprintf(_fp,")"); 2293 fprintf(_fp, "/* %s */", _operand_name); 2294 } 2295 } else { 2296 assert( _reg_status == LITERAL_OUTPUT, "should have output register literal in emit_rep_var"); 2297 // Register literal has already been sent to output file, nothing more needed 2298 } 2299 } 2300 else if ( strcmp(rep_var,"$base") == 0 ) { 2301 assert( _operand_idx != -1, 2302 "Must use this subfield after operand"); 2303 assert( ! _may_reloc, "UnImplemented()"); 2304 fprintf(_fp,"->base(ra_,this,idx%d)", _operand_idx); 2305 } 2306 else if ( strcmp(rep_var,"$index") == 0 ) { 2307 assert( _operand_idx != -1, 2308 "Must use this subfield after operand"); 2309 assert( ! _may_reloc, "UnImplemented()"); 2310 fprintf(_fp,"->index(ra_,this,idx%d)", _operand_idx); 2311 } 2312 else if ( strcmp(rep_var,"$scale") == 0 ) { 2313 assert( ! _may_reloc, "UnImplemented()"); 2314 fprintf(_fp,"->scale()"); 2315 } 2316 else if ( strcmp(rep_var,"$cmpcode") == 0 ) { 2317 assert( ! _may_reloc, "UnImplemented()"); 2318 fprintf(_fp,"->ccode()"); 2319 } 2320 else if ( strcmp(rep_var,"$constant") == 0 ) { 2321 if( _constant_status == LITERAL_NOT_SEEN ) { 2322 if ( _constant_type == Form::idealD ) { 2323 fprintf(_fp,"->constantD()"); 2324 } else if ( _constant_type == Form::idealF ) { 2325 fprintf(_fp,"->constantF()"); 2326 } else if ( _constant_type == Form::idealL ) { 2327 fprintf(_fp,"->constantL()"); 2328 } else { 2329 fprintf(_fp,"->constant()"); 2330 } 2331 } else { 2332 assert( _constant_status == LITERAL_OUTPUT, "should have output constant literal in emit_rep_var"); 2333 // Constant literal has already been sent to output file, nothing more needed 2334 } 2335 } 2336 else if ( strcmp(rep_var,"$disp") == 0 ) { 2337 Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none; 2338 if( _operand && _operand_idx==0 && stack_type != Form::none ) { 2339 fprintf(_fp,"->disp(ra_,this,0)"); 2340 } else { 2341 fprintf(_fp,"->disp(ra_,this,idx%d)", _operand_idx); 2342 } 2343 } 2344 else if ( strcmp(rep_var,"$label") == 0 ) { 2345 fprintf(_fp,"->label()"); 2346 } 2347 else if ( strcmp(rep_var,"$method") == 0 ) { 2348 fprintf(_fp,"->method()"); 2349 } 2350 else { 2351 printf("emit_field: %s\n",rep_var); 2352 globalAD->syntax_err(_inst._linenum, "Unknown replacement variable %s in format statement of %s.", 2353 rep_var, _inst._ident); 2354 assert( false, "UnImplemented()"); 2355 } 2356 } 2357 2358 2359 void emit_rep_var(const char *rep_var) { 2360 _processing_noninput = false; 2361 // A replacement variable, originally '$' 2362 if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) { 2363 if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(rep_var) )) { 2364 // Missing opcode 2365 _AD.syntax_err( _inst._linenum, 2366 "Missing $%s opcode definition in %s, used by encoding %s\n", 2367 rep_var, _inst._ident, _encoding._name); 2368 } 2369 } 2370 else if (strcmp(rep_var, "constanttablebase") == 0) { 2371 fprintf(_fp, "as_Register(ra_->get_encode(in(mach_constant_base_node_input())))"); 2372 } 2373 else if (strcmp(rep_var, "constantoffset") == 0) { 2374 fprintf(_fp, "constant_offset()"); 2375 } 2376 else if (strcmp(rep_var, "constantaddress") == 0) { 2377 fprintf(_fp, "InternalAddress(__ code()->consts()->start() + constant_offset())"); 2378 } 2379 else { 2380 // Lookup its position in parameter list 2381 int param_no = _encoding.rep_var_index(rep_var); 2382 if ( param_no == -1 ) { 2383 _AD.syntax_err( _encoding._linenum, 2384 "Replacement variable %s not found in enc_class %s.\n", 2385 rep_var, _encoding._name); 2386 } 2387 // Lookup the corresponding ins_encode parameter 2388 const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no); 2389 2390 // Check if instruction's actual parameter is a local name in the instruction 2391 const Form *local = _inst._localNames[inst_rep_var]; 2392 OpClassForm *opc = (local != NULL) ? local->is_opclass() : NULL; 2393 // Note: assert removed to allow constant and symbolic parameters 2394 // assert( opc, "replacement variable was not found in local names"); 2395 // Lookup the index position iff the replacement variable is a localName 2396 int idx = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1; 2397 if( idx != -1 ) { 2398 if (_inst.is_noninput_operand(idx)) { 2399 // This operand isn't a normal input so printing it is done 2400 // specially. 2401 _processing_noninput = true; 2402 } else { 2403 // Output the emit code for this operand 2404 fprintf(_fp,"opnd_array(%d)",idx); 2405 } 2406 assert( _operand == opc->is_operand(), 2407 "Previous emit $operand does not match current"); 2408 } 2409 else if( ADLParser::is_literal_constant(inst_rep_var) ) { 2410 // else check if it is a constant expression 2411 // Removed following assert to allow primitive C types as arguments to encodings 2412 // assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter"); 2413 fprintf(_fp,"(%s)", inst_rep_var); 2414 _constant_status = LITERAL_OUTPUT; 2415 } 2416 else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) { 2417 // else check if "primary", "secondary", "tertiary" 2418 assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter"); 2419 if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(inst_rep_var) )) { 2420 // Missing opcode 2421 _AD.syntax_err( _inst._linenum, 2422 "Missing $%s opcode definition in %s\n", 2423 rep_var, _inst._ident); 2424 2425 } 2426 _constant_status = LITERAL_OUTPUT; 2427 } 2428 else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) { 2429 // Instruction provided a literal register name for this parameter 2430 // Check that encoding specifies $$$reg to resolve.as register. 2431 assert( _reg_status == LITERAL_ACCESSED, "Must be processing a literal register parameter"); 2432 fprintf(_fp,"(%s_enc)", inst_rep_var); 2433 _reg_status = LITERAL_OUTPUT; 2434 } 2435 else { 2436 // Check for unimplemented functionality before hard failure 2437 assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label"); 2438 assert( false, "ShouldNotReachHere()"); 2439 } 2440 // all done 2441 } 2442 } 2443 2444 }; // end class DefineEmitState 2445 2446 2447 void ArchDesc::defineSize(FILE *fp, InstructForm &inst) { 2448 2449 //(1) 2450 // Output instruction's emit prototype 2451 fprintf(fp,"uint %sNode::size(PhaseRegAlloc *ra_) const {\n", 2452 inst._ident); 2453 2454 fprintf(fp, " assert(VerifyOops || MachNode::size(ra_) <= %s, \"bad fixed size\");\n", inst._size); 2455 2456 //(2) 2457 // Print the size 2458 fprintf(fp, " return (VerifyOops ? MachNode::size(ra_) : %s);\n", inst._size); 2459 2460 // (3) and (4) 2461 fprintf(fp,"}\n\n"); 2462 } 2463 2464 // Emit postalloc expand function. 2465 void ArchDesc::define_postalloc_expand(FILE *fp, InstructForm &inst) { 2466 InsEncode *ins_encode = inst._insencode; 2467 2468 // Output instruction's postalloc_expand prototype. 2469 fprintf(fp, "void %sNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {\n", 2470 inst._ident); 2471 2472 assert((_encode != NULL) && (ins_encode != NULL), "You must define an encode section."); 2473 2474 // Output each operand's offset into the array of registers. 2475 inst.index_temps(fp, _globalNames); 2476 2477 // Output variables "unsigned idx_<par_name>", Node *n_<par_name> and "MachOpnd *op_<par_name>" 2478 // for each parameter <par_name> specified in the encoding. 2479 ins_encode->reset(); 2480 const char *ec_name = ins_encode->encode_class_iter(); 2481 assert(ec_name != NULL, "Postalloc expand must specify an encoding."); 2482 2483 EncClass *encoding = _encode->encClass(ec_name); 2484 if (encoding == NULL) { 2485 fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name); 2486 abort(); 2487 } 2488 if (ins_encode->current_encoding_num_args() != encoding->num_args()) { 2489 globalAD->syntax_err(ins_encode->_linenum, "In %s: passing %d arguments to %s but expecting %d", 2490 inst._ident, ins_encode->current_encoding_num_args(), 2491 ec_name, encoding->num_args()); 2492 } 2493 2494 fprintf(fp, " // Access to ins and operands for postalloc expand.\n"); 2495 const int buflen = 2000; 2496 char idxbuf[buflen]; char *ib = idxbuf; idxbuf[0] = '\0'; 2497 char nbuf [buflen]; char *nb = nbuf; nbuf[0] = '\0'; 2498 char opbuf [buflen]; char *ob = opbuf; opbuf[0] = '\0'; 2499 2500 encoding->_parameter_type.reset(); 2501 encoding->_parameter_name.reset(); 2502 const char *type = encoding->_parameter_type.iter(); 2503 const char *name = encoding->_parameter_name.iter(); 2504 int param_no = 0; 2505 for (; (type != NULL) && (name != NULL); 2506 (type = encoding->_parameter_type.iter()), (name = encoding->_parameter_name.iter())) { 2507 const char* arg_name = ins_encode->rep_var_name(inst, param_no); 2508 int idx = inst.operand_position_format(arg_name); 2509 if (strcmp(arg_name, "constanttablebase") == 0) { 2510 ib += sprintf(ib, " unsigned idx_%-5s = mach_constant_base_node_input(); \t// %s, \t%s\n", 2511 name, type, arg_name); 2512 nb += sprintf(nb, " Node *n_%-7s = lookup(idx_%s);\n", name, name); 2513 // There is no operand for the constanttablebase. 2514 } else if (inst.is_noninput_operand(idx)) { 2515 globalAD->syntax_err(inst._linenum, 2516 "In %s: you can not pass the non-input %s to a postalloc expand encoding.\n", 2517 inst._ident, arg_name); 2518 } else { 2519 ib += sprintf(ib, " unsigned idx_%-5s = idx%d; \t// %s, \t%s\n", 2520 name, idx, type, arg_name); 2521 nb += sprintf(nb, " Node *n_%-7s = lookup(idx_%s);\n", name, name); 2522 ob += sprintf(ob, " %sOper *op_%s = (%sOper *)opnd_array(%d);\n", type, name, type, idx); 2523 } 2524 param_no++; 2525 } 2526 assert(ib < &idxbuf[buflen-1] && nb < &nbuf[buflen-1] && ob < &opbuf[buflen-1], "buffer overflow"); 2527 2528 fprintf(fp, "%s", idxbuf); 2529 fprintf(fp, " Node *n_region = lookup(0);\n"); 2530 fprintf(fp, "%s%s", nbuf, opbuf); 2531 fprintf(fp, " Compile *C = ra_->C;\n"); 2532 2533 // Output this instruction's encodings. 2534 fprintf(fp, " {"); 2535 const char *ec_code = NULL; 2536 const char *ec_rep_var = NULL; 2537 assert(encoding == _encode->encClass(ec_name), ""); 2538 2539 DefineEmitState pending(fp, *this, *encoding, *ins_encode, inst); 2540 encoding->_code.reset(); 2541 encoding->_rep_vars.reset(); 2542 // Process list of user-defined strings, 2543 // and occurrences of replacement variables. 2544 // Replacement Vars are pushed into a list and then output. 2545 while ((ec_code = encoding->_code.iter()) != NULL) { 2546 if (! encoding->_code.is_signal(ec_code)) { 2547 // Emit pending code. 2548 pending.emit(); 2549 pending.clear(); 2550 // Emit this code section. 2551 fprintf(fp, "%s", ec_code); 2552 } else { 2553 // A replacement variable or one of its subfields. 2554 // Obtain replacement variable from list. 2555 ec_rep_var = encoding->_rep_vars.iter(); 2556 pending.add_rep_var(ec_rep_var); 2557 } 2558 } 2559 // Emit pending code. 2560 pending.emit(); 2561 pending.clear(); 2562 fprintf(fp, " }\n"); 2563 2564 fprintf(fp, "}\n\n"); 2565 2566 ec_name = ins_encode->encode_class_iter(); 2567 assert(ec_name == NULL, "Postalloc expand may only have one encoding."); 2568 } 2569 2570 // defineEmit ----------------------------------------------------------------- 2571 void ArchDesc::defineEmit(FILE* fp, InstructForm& inst) { 2572 InsEncode* encode = inst._insencode; 2573 2574 // (1) 2575 // Output instruction's emit prototype 2576 fprintf(fp, "void %sNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {\n", inst._ident); 2577 2578 // If user did not define an encode section, 2579 // provide stub that does not generate any machine code. 2580 if( (_encode == NULL) || (encode == NULL) ) { 2581 fprintf(fp, " // User did not define an encode section.\n"); 2582 fprintf(fp, "}\n"); 2583 return; 2584 } 2585 2586 // Save current instruction's starting address (helps with relocation). 2587 fprintf(fp, " cbuf.set_insts_mark();\n"); 2588 2589 // For MachConstantNodes which are ideal jump nodes, fill the jump table. 2590 if (inst.is_mach_constant() && inst.is_ideal_jump()) { 2591 fprintf(fp, " ra_->C->constant_table().fill_jump_table(cbuf, (MachConstantNode*) this, _index2label);\n"); 2592 } 2593 2594 // Output each operand's offset into the array of registers. 2595 inst.index_temps(fp, _globalNames); 2596 2597 // Output this instruction's encodings 2598 const char *ec_name; 2599 bool user_defined = false; 2600 encode->reset(); 2601 while ((ec_name = encode->encode_class_iter()) != NULL) { 2602 fprintf(fp, " {\n"); 2603 // Output user-defined encoding 2604 user_defined = true; 2605 2606 const char *ec_code = NULL; 2607 const char *ec_rep_var = NULL; 2608 EncClass *encoding = _encode->encClass(ec_name); 2609 if (encoding == NULL) { 2610 fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name); 2611 abort(); 2612 } 2613 2614 if (encode->current_encoding_num_args() != encoding->num_args()) { 2615 globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d", 2616 inst._ident, encode->current_encoding_num_args(), 2617 ec_name, encoding->num_args()); 2618 } 2619 2620 DefineEmitState pending(fp, *this, *encoding, *encode, inst); 2621 encoding->_code.reset(); 2622 encoding->_rep_vars.reset(); 2623 // Process list of user-defined strings, 2624 // and occurrences of replacement variables. 2625 // Replacement Vars are pushed into a list and then output 2626 while ((ec_code = encoding->_code.iter()) != NULL) { 2627 if (!encoding->_code.is_signal(ec_code)) { 2628 // Emit pending code 2629 pending.emit(); 2630 pending.clear(); 2631 // Emit this code section 2632 fprintf(fp, "%s", ec_code); 2633 } else { 2634 // A replacement variable or one of its subfields 2635 // Obtain replacement variable from list 2636 ec_rep_var = encoding->_rep_vars.iter(); 2637 pending.add_rep_var(ec_rep_var); 2638 } 2639 } 2640 // Emit pending code 2641 pending.emit(); 2642 pending.clear(); 2643 fprintf(fp, " }\n"); 2644 } // end while instruction's encodings 2645 2646 // Check if user stated which encoding to user 2647 if ( user_defined == false ) { 2648 fprintf(fp, " // User did not define which encode class to use.\n"); 2649 } 2650 2651 // (3) and (4) 2652 fprintf(fp, "}\n\n"); 2653 } 2654 2655 // defineEvalConstant --------------------------------------------------------- 2656 void ArchDesc::defineEvalConstant(FILE* fp, InstructForm& inst) { 2657 InsEncode* encode = inst._constant; 2658 2659 // (1) 2660 // Output instruction's emit prototype 2661 fprintf(fp, "void %sNode::eval_constant(Compile* C) {\n", inst._ident); 2662 2663 // For ideal jump nodes, add a jump-table entry. 2664 if (inst.is_ideal_jump()) { 2665 fprintf(fp, " _constant = C->constant_table().add_jump_table(this);\n"); 2666 } 2667 2668 // If user did not define an encode section, 2669 // provide stub that does not generate any machine code. 2670 if ((_encode == NULL) || (encode == NULL)) { 2671 fprintf(fp, " // User did not define an encode section.\n"); 2672 fprintf(fp, "}\n"); 2673 return; 2674 } 2675 2676 // Output this instruction's encodings 2677 const char *ec_name; 2678 bool user_defined = false; 2679 encode->reset(); 2680 while ((ec_name = encode->encode_class_iter()) != NULL) { 2681 fprintf(fp, " {\n"); 2682 // Output user-defined encoding 2683 user_defined = true; 2684 2685 const char *ec_code = NULL; 2686 const char *ec_rep_var = NULL; 2687 EncClass *encoding = _encode->encClass(ec_name); 2688 if (encoding == NULL) { 2689 fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name); 2690 abort(); 2691 } 2692 2693 if (encode->current_encoding_num_args() != encoding->num_args()) { 2694 globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d", 2695 inst._ident, encode->current_encoding_num_args(), 2696 ec_name, encoding->num_args()); 2697 } 2698 2699 DefineEmitState pending(fp, *this, *encoding, *encode, inst); 2700 encoding->_code.reset(); 2701 encoding->_rep_vars.reset(); 2702 // Process list of user-defined strings, 2703 // and occurrences of replacement variables. 2704 // Replacement Vars are pushed into a list and then output 2705 while ((ec_code = encoding->_code.iter()) != NULL) { 2706 if (!encoding->_code.is_signal(ec_code)) { 2707 // Emit pending code 2708 pending.emit(); 2709 pending.clear(); 2710 // Emit this code section 2711 fprintf(fp, "%s", ec_code); 2712 } else { 2713 // A replacement variable or one of its subfields 2714 // Obtain replacement variable from list 2715 ec_rep_var = encoding->_rep_vars.iter(); 2716 pending.add_rep_var(ec_rep_var); 2717 } 2718 } 2719 // Emit pending code 2720 pending.emit(); 2721 pending.clear(); 2722 fprintf(fp, " }\n"); 2723 } // end while instruction's encodings 2724 2725 // Check if user stated which encoding to user 2726 if (user_defined == false) { 2727 fprintf(fp, " // User did not define which encode class to use.\n"); 2728 } 2729 2730 // (3) and (4) 2731 fprintf(fp, "}\n"); 2732 } 2733 2734 // --------------------------------------------------------------------------- 2735 //--------Utilities to build MachOper and MachNode derived Classes------------ 2736 // --------------------------------------------------------------------------- 2737 2738 //------------------------------Utilities to build Operand Classes------------ 2739 static void defineIn_RegMask(FILE *fp, FormDict &globals, OperandForm &oper) { 2740 uint num_edges = oper.num_edges(globals); 2741 if( num_edges != 0 ) { 2742 // Method header 2743 fprintf(fp, "const RegMask *%sOper::in_RegMask(int index) const {\n", 2744 oper._ident); 2745 2746 // Assert that the index is in range. 2747 fprintf(fp, " assert(0 <= index && index < %d, \"index out of range\");\n", 2748 num_edges); 2749 2750 // Figure out if all RegMasks are the same. 2751 const char* first_reg_class = oper.in_reg_class(0, globals); 2752 bool all_same = true; 2753 assert(first_reg_class != NULL, "did not find register mask"); 2754 2755 for (uint index = 1; all_same && index < num_edges; index++) { 2756 const char* some_reg_class = oper.in_reg_class(index, globals); 2757 assert(some_reg_class != NULL, "did not find register mask"); 2758 if (strcmp(first_reg_class, some_reg_class) != 0) { 2759 all_same = false; 2760 } 2761 } 2762 2763 if (all_same) { 2764 // Return the sole RegMask. 2765 if (strcmp(first_reg_class, "stack_slots") == 0) { 2766 fprintf(fp," return &(Compile::current()->FIRST_STACK_mask());\n"); 2767 } else { 2768 const char* first_reg_class_to_upper = toUpper(first_reg_class); 2769 fprintf(fp," return &%s_mask();\n", first_reg_class_to_upper); 2770 delete[] first_reg_class_to_upper; 2771 } 2772 } else { 2773 // Build a switch statement to return the desired mask. 2774 fprintf(fp," switch (index) {\n"); 2775 2776 for (uint index = 0; index < num_edges; index++) { 2777 const char *reg_class = oper.in_reg_class(index, globals); 2778 assert(reg_class != NULL, "did not find register mask"); 2779 if( !strcmp(reg_class, "stack_slots") ) { 2780 fprintf(fp, " case %d: return &(Compile::current()->FIRST_STACK_mask());\n", index); 2781 } else { 2782 const char* reg_class_to_upper = toUpper(reg_class); 2783 fprintf(fp, " case %d: return &%s_mask();\n", index, reg_class_to_upper); 2784 delete[] reg_class_to_upper; 2785 } 2786 } 2787 fprintf(fp," }\n"); 2788 fprintf(fp," ShouldNotReachHere();\n"); 2789 fprintf(fp," return NULL;\n"); 2790 } 2791 2792 // Method close 2793 fprintf(fp, "}\n\n"); 2794 } 2795 } 2796 2797 // generate code to create a clone for a class derived from MachOper 2798 // 2799 // (0) MachOper *MachOperXOper::clone(Compile* C) const { 2800 // (1) return new (C) MachXOper( _ccode, _c0, _c1, ..., _cn); 2801 // (2) } 2802 // 2803 static void defineClone(FILE *fp, FormDict &globalNames, OperandForm &oper) { 2804 fprintf(fp,"MachOper *%sOper::clone(Compile* C) const {\n", oper._ident); 2805 // Check for constants that need to be copied over 2806 const int num_consts = oper.num_consts(globalNames); 2807 const bool is_ideal_bool = oper.is_ideal_bool(); 2808 if( (num_consts > 0) ) { 2809 fprintf(fp," return new (C) %sOper(", oper._ident); 2810 // generate parameters for constants 2811 int i = 0; 2812 fprintf(fp,"_c%d", i); 2813 for( i = 1; i < num_consts; ++i) { 2814 fprintf(fp,", _c%d", i); 2815 } 2816 // finish line (1) 2817 fprintf(fp,");\n"); 2818 } 2819 else { 2820 assert( num_consts == 0, "Currently support zero or one constant per operand clone function"); 2821 fprintf(fp," return new (C) %sOper();\n", oper._ident); 2822 } 2823 // finish method 2824 fprintf(fp,"}\n"); 2825 } 2826 2827 // Helper functions for bug 4796752, abstracted with minimal modification 2828 // from define_oper_interface() 2829 OperandForm *rep_var_to_operand(const char *encoding, OperandForm &oper, FormDict &globals) { 2830 OperandForm *op = NULL; 2831 // Check for replacement variable 2832 if( *encoding == '$' ) { 2833 // Replacement variable 2834 const char *rep_var = encoding + 1; 2835 // Lookup replacement variable, rep_var, in operand's component list 2836 const Component *comp = oper._components.search(rep_var); 2837 assert( comp != NULL, "Replacement variable not found in components"); 2838 // Lookup operand form for replacement variable's type 2839 const char *type = comp->_type; 2840 Form *form = (Form*)globals[type]; 2841 assert( form != NULL, "Replacement variable's type not found"); 2842 op = form->is_operand(); 2843 assert( op, "Attempting to emit a non-register or non-constant"); 2844 } 2845 2846 return op; 2847 } 2848 2849 int rep_var_to_constant_index(const char *encoding, OperandForm &oper, FormDict &globals) { 2850 int idx = -1; 2851 // Check for replacement variable 2852 if( *encoding == '$' ) { 2853 // Replacement variable 2854 const char *rep_var = encoding + 1; 2855 // Lookup replacement variable, rep_var, in operand's component list 2856 const Component *comp = oper._components.search(rep_var); 2857 assert( comp != NULL, "Replacement variable not found in components"); 2858 // Lookup operand form for replacement variable's type 2859 const char *type = comp->_type; 2860 Form *form = (Form*)globals[type]; 2861 assert( form != NULL, "Replacement variable's type not found"); 2862 OperandForm *op = form->is_operand(); 2863 assert( op, "Attempting to emit a non-register or non-constant"); 2864 // Check that this is a constant and find constant's index: 2865 if (op->_matrule && op->_matrule->is_base_constant(globals)) { 2866 idx = oper.constant_position(globals, comp); 2867 } 2868 } 2869 2870 return idx; 2871 } 2872 2873 bool is_regI(const char *encoding, OperandForm &oper, FormDict &globals ) { 2874 bool is_regI = false; 2875 2876 OperandForm *op = rep_var_to_operand(encoding, oper, globals); 2877 if( op != NULL ) { 2878 // Check that this is a register 2879 if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) { 2880 // Register 2881 const char* ideal = op->ideal_type(globals); 2882 is_regI = (ideal && (op->ideal_to_Reg_type(ideal) == Form::idealI)); 2883 } 2884 } 2885 2886 return is_regI; 2887 } 2888 2889 bool is_conP(const char *encoding, OperandForm &oper, FormDict &globals ) { 2890 bool is_conP = false; 2891 2892 OperandForm *op = rep_var_to_operand(encoding, oper, globals); 2893 if( op != NULL ) { 2894 // Check that this is a constant pointer 2895 if (op->_matrule && op->_matrule->is_base_constant(globals)) { 2896 // Constant 2897 Form::DataType dtype = op->is_base_constant(globals); 2898 is_conP = (dtype == Form::idealP); 2899 } 2900 } 2901 2902 return is_conP; 2903 } 2904 2905 2906 // Define a MachOper interface methods 2907 void ArchDesc::define_oper_interface(FILE *fp, OperandForm &oper, FormDict &globals, 2908 const char *name, const char *encoding) { 2909 bool emit_position = false; 2910 int position = -1; 2911 2912 fprintf(fp," virtual int %s", name); 2913 // Generate access method for base, index, scale, disp, ... 2914 if( (strcmp(name,"base") == 0) || (strcmp(name,"index") == 0) ) { 2915 fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n"); 2916 emit_position = true; 2917 } else if ( (strcmp(name,"disp") == 0) ) { 2918 fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n"); 2919 } else { 2920 fprintf(fp, "() const {\n"); 2921 } 2922 2923 // Check for hexadecimal value OR replacement variable 2924 if( *encoding == '$' ) { 2925 // Replacement variable 2926 const char *rep_var = encoding + 1; 2927 fprintf(fp," // Replacement variable: %s\n", encoding+1); 2928 // Lookup replacement variable, rep_var, in operand's component list 2929 const Component *comp = oper._components.search(rep_var); 2930 assert( comp != NULL, "Replacement variable not found in components"); 2931 // Lookup operand form for replacement variable's type 2932 const char *type = comp->_type; 2933 Form *form = (Form*)globals[type]; 2934 assert( form != NULL, "Replacement variable's type not found"); 2935 OperandForm *op = form->is_operand(); 2936 assert( op, "Attempting to emit a non-register or non-constant"); 2937 // Check that this is a register or a constant and generate code: 2938 if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) { 2939 // Register 2940 int idx_offset = oper.register_position( globals, rep_var); 2941 position = idx_offset; 2942 fprintf(fp," return (int)ra_->get_encode(node->in(idx"); 2943 if ( idx_offset > 0 ) fprintf(fp, "+%d",idx_offset); 2944 fprintf(fp,"));\n"); 2945 } else if ( op->ideal_to_sReg_type(op->_ident) != Form::none ) { 2946 // StackSlot for an sReg comes either from input node or from self, when idx==0 2947 fprintf(fp," if( idx != 0 ) {\n"); 2948 fprintf(fp," // Access stack offset (register number) for input operand\n"); 2949 fprintf(fp," return ra_->reg2offset(ra_->get_reg_first(node->in(idx)));/* sReg */\n"); 2950 fprintf(fp," }\n"); 2951 fprintf(fp," // Access stack offset (register number) from myself\n"); 2952 fprintf(fp," return ra_->reg2offset(ra_->get_reg_first(node));/* sReg */\n"); 2953 } else if (op->_matrule && op->_matrule->is_base_constant(globals)) { 2954 // Constant 2955 // Check which constant this name maps to: _c0, _c1, ..., _cn 2956 const int idx = oper.constant_position(globals, comp); 2957 assert( idx != -1, "Constant component not found in operand"); 2958 // Output code for this constant, type dependent. 2959 fprintf(fp," return (int)" ); 2960 oper.access_constant(fp, globals, (uint)idx /* , const_type */); 2961 fprintf(fp,";\n"); 2962 } else { 2963 assert( false, "Attempting to emit a non-register or non-constant"); 2964 } 2965 } 2966 else if( *encoding == '0' && *(encoding+1) == 'x' ) { 2967 // Hex value 2968 fprintf(fp," return %s;\n", encoding); 2969 } else { 2970 globalAD->syntax_err(oper._linenum, "In operand %s: Do not support this encode constant: '%s' for %s.", 2971 oper._ident, encoding, name); 2972 assert( false, "Do not support octal or decimal encode constants"); 2973 } 2974 fprintf(fp," }\n"); 2975 2976 if( emit_position && (position != -1) && (oper.num_edges(globals) > 0) ) { 2977 fprintf(fp," virtual int %s_position() const { return %d; }\n", name, position); 2978 MemInterface *mem_interface = oper._interface->is_MemInterface(); 2979 const char *base = mem_interface->_base; 2980 const char *disp = mem_interface->_disp; 2981 if( emit_position && (strcmp(name,"base") == 0) 2982 && base != NULL && is_regI(base, oper, globals) 2983 && disp != NULL && is_conP(disp, oper, globals) ) { 2984 // Found a memory access using a constant pointer for a displacement 2985 // and a base register containing an integer offset. 2986 // In this case the base and disp are reversed with respect to what 2987 // is expected by MachNode::get_base_and_disp() and MachNode::adr_type(). 2988 // Provide a non-NULL return for disp_as_type() that will allow adr_type() 2989 // to correctly compute the access type for alias analysis. 2990 // 2991 // See BugId 4796752, operand indOffset32X in i486.ad 2992 int idx = rep_var_to_constant_index(disp, oper, globals); 2993 fprintf(fp," virtual const TypePtr *disp_as_type() const { return _c%d; }\n", idx); 2994 } 2995 } 2996 } 2997 2998 // 2999 // Construct the method to copy _idx, inputs and operands to new node. 3000 static void define_fill_new_machnode(bool used, FILE *fp_cpp) { 3001 fprintf(fp_cpp, "\n"); 3002 fprintf(fp_cpp, "// Copy _idx, inputs and operands to new node\n"); 3003 fprintf(fp_cpp, "void MachNode::fill_new_machnode( MachNode* node, Compile* C) const {\n"); 3004 if( !used ) { 3005 fprintf(fp_cpp, " // This architecture does not have cisc or short branch instructions\n"); 3006 fprintf(fp_cpp, " ShouldNotCallThis();\n"); 3007 fprintf(fp_cpp, "}\n"); 3008 } else { 3009 // New node must use same node index for access through allocator's tables 3010 fprintf(fp_cpp, " // New node must use same node index\n"); 3011 fprintf(fp_cpp, " node->set_idx( _idx );\n"); 3012 // Copy machine-independent inputs 3013 fprintf(fp_cpp, " // Copy machine-independent inputs\n"); 3014 fprintf(fp_cpp, " for( uint j = 0; j < req(); j++ ) {\n"); 3015 fprintf(fp_cpp, " node->add_req(in(j));\n"); 3016 fprintf(fp_cpp, " }\n"); 3017 // Copy machine operands to new MachNode 3018 fprintf(fp_cpp, " // Copy my operands, except for cisc position\n"); 3019 fprintf(fp_cpp, " int nopnds = num_opnds();\n"); 3020 fprintf(fp_cpp, " assert( node->num_opnds() == (uint)nopnds, \"Must have same number of operands\");\n"); 3021 fprintf(fp_cpp, " MachOper **to = node->_opnds;\n"); 3022 fprintf(fp_cpp, " for( int i = 0; i < nopnds; i++ ) {\n"); 3023 fprintf(fp_cpp, " if( i != cisc_operand() ) \n"); 3024 fprintf(fp_cpp, " to[i] = _opnds[i]->clone(C);\n"); 3025 fprintf(fp_cpp, " }\n"); 3026 fprintf(fp_cpp, "}\n"); 3027 } 3028 fprintf(fp_cpp, "\n"); 3029 } 3030 3031 //------------------------------defineClasses---------------------------------- 3032 // Define members of MachNode and MachOper classes based on 3033 // operand and instruction lists 3034 void ArchDesc::defineClasses(FILE *fp) { 3035 3036 // Define the contents of an array containing the machine register names 3037 defineRegNames(fp, _register); 3038 // Define an array containing the machine register encoding values 3039 defineRegEncodes(fp, _register); 3040 // Generate an enumeration of user-defined register classes 3041 // and a list of register masks, one for each class. 3042 // Only define the RegMask value objects in the expand file. 3043 // Declare each as an extern const RegMask ...; in ad_<arch>.hpp 3044 declare_register_masks(_HPP_file._fp); 3045 // build_register_masks(fp); 3046 build_register_masks(_CPP_EXPAND_file._fp); 3047 // Define the pipe_classes 3048 build_pipe_classes(_CPP_PIPELINE_file._fp); 3049 3050 // Generate Machine Classes for each operand defined in AD file 3051 fprintf(fp,"\n"); 3052 fprintf(fp,"\n"); 3053 fprintf(fp,"//------------------Define classes derived from MachOper---------------------\n"); 3054 // Iterate through all operands 3055 _operands.reset(); 3056 OperandForm *oper; 3057 for( ; (oper = (OperandForm*)_operands.iter()) != NULL; ) { 3058 // Ensure this is a machine-world instruction 3059 if ( oper->ideal_only() ) continue; 3060 // !!!!! 3061 // The declaration of labelOper is in machine-independent file: machnode 3062 if ( strcmp(oper->_ident,"label") == 0 ) { 3063 defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper); 3064 3065 fprintf(fp,"MachOper *%sOper::clone(Compile* C) const {\n", oper->_ident); 3066 fprintf(fp," return new (C) %sOper(_label, _block_num);\n", oper->_ident); 3067 fprintf(fp,"}\n"); 3068 3069 fprintf(fp,"uint %sOper::opcode() const { return %s; }\n", 3070 oper->_ident, machOperEnum(oper->_ident)); 3071 // // Currently all XXXOper::Hash() methods are identical (990820) 3072 // define_hash(fp, oper->_ident); 3073 // // Currently all XXXOper::Cmp() methods are identical (990820) 3074 // define_cmp(fp, oper->_ident); 3075 fprintf(fp,"\n"); 3076 3077 continue; 3078 } 3079 3080 // The declaration of methodOper is in machine-independent file: machnode 3081 if ( strcmp(oper->_ident,"method") == 0 ) { 3082 defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper); 3083 3084 fprintf(fp,"MachOper *%sOper::clone(Compile* C) const {\n", oper->_ident); 3085 fprintf(fp," return new (C) %sOper(_method);\n", oper->_ident); 3086 fprintf(fp,"}\n"); 3087 3088 fprintf(fp,"uint %sOper::opcode() const { return %s; }\n", 3089 oper->_ident, machOperEnum(oper->_ident)); 3090 // // Currently all XXXOper::Hash() methods are identical (990820) 3091 // define_hash(fp, oper->_ident); 3092 // // Currently all XXXOper::Cmp() methods are identical (990820) 3093 // define_cmp(fp, oper->_ident); 3094 fprintf(fp,"\n"); 3095 3096 continue; 3097 } 3098 3099 defineIn_RegMask(fp, _globalNames, *oper); 3100 defineClone(_CPP_CLONE_file._fp, _globalNames, *oper); 3101 // // Currently all XXXOper::Hash() methods are identical (990820) 3102 // define_hash(fp, oper->_ident); 3103 // // Currently all XXXOper::Cmp() methods are identical (990820) 3104 // define_cmp(fp, oper->_ident); 3105 3106 // side-call to generate output that used to be in the header file: 3107 extern void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file); 3108 gen_oper_format(_CPP_FORMAT_file._fp, _globalNames, *oper, true); 3109 3110 } 3111 3112 3113 // Generate Machine Classes for each instruction defined in AD file 3114 fprintf(fp,"//------------------Define members for classes derived from MachNode----------\n"); 3115 // Output the definitions for out_RegMask() // & kill_RegMask() 3116 _instructions.reset(); 3117 InstructForm *instr; 3118 MachNodeForm *machnode; 3119 for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) { 3120 // Ensure this is a machine-world instruction 3121 if ( instr->ideal_only() ) continue; 3122 3123 defineOut_RegMask(_CPP_MISC_file._fp, instr->_ident, reg_mask(*instr)); 3124 } 3125 3126 bool used = false; 3127 // Output the definitions for expand rules & peephole rules 3128 _instructions.reset(); 3129 for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) { 3130 // Ensure this is a machine-world instruction 3131 if ( instr->ideal_only() ) continue; 3132 // If there are multiple defs/kills, or an explicit expand rule, build rule 3133 if( instr->expands() || instr->needs_projections() || 3134 instr->has_temps() || 3135 instr->is_mach_constant() || 3136 instr->needs_constant_base() || 3137 instr->_matrule != NULL && 3138 instr->num_opnds() != instr->num_unique_opnds() ) 3139 defineExpand(_CPP_EXPAND_file._fp, instr); 3140 // If there is an explicit peephole rule, build it 3141 if ( instr->peepholes() ) 3142 definePeephole(_CPP_PEEPHOLE_file._fp, instr); 3143 3144 // Output code to convert to the cisc version, if applicable 3145 used |= instr->define_cisc_version(*this, fp); 3146 3147 // Output code to convert to the short branch version, if applicable 3148 used |= instr->define_short_branch_methods(*this, fp); 3149 } 3150 3151 // Construct the method called by cisc_version() to copy inputs and operands. 3152 define_fill_new_machnode(used, fp); 3153 3154 // Output the definitions for labels 3155 _instructions.reset(); 3156 while( (instr = (InstructForm*)_instructions.iter()) != NULL ) { 3157 // Ensure this is a machine-world instruction 3158 if ( instr->ideal_only() ) continue; 3159 3160 // Access the fields for operand Label 3161 int label_position = instr->label_position(); 3162 if( label_position != -1 ) { 3163 // Set the label 3164 fprintf(fp,"void %sNode::label_set( Label* label, uint block_num ) {\n", instr->_ident); 3165 fprintf(fp," labelOper* oper = (labelOper*)(opnd_array(%d));\n", 3166 label_position ); 3167 fprintf(fp," oper->_label = label;\n"); 3168 fprintf(fp," oper->_block_num = block_num;\n"); 3169 fprintf(fp,"}\n"); 3170 // Save the label 3171 fprintf(fp,"void %sNode::save_label( Label** label, uint* block_num ) {\n", instr->_ident); 3172 fprintf(fp," labelOper* oper = (labelOper*)(opnd_array(%d));\n", 3173 label_position ); 3174 fprintf(fp," *label = oper->_label;\n"); 3175 fprintf(fp," *block_num = oper->_block_num;\n"); 3176 fprintf(fp,"}\n"); 3177 } 3178 } 3179 3180 // Output the definitions for methods 3181 _instructions.reset(); 3182 while( (instr = (InstructForm*)_instructions.iter()) != NULL ) { 3183 // Ensure this is a machine-world instruction 3184 if ( instr->ideal_only() ) continue; 3185 3186 // Access the fields for operand Label 3187 int method_position = instr->method_position(); 3188 if( method_position != -1 ) { 3189 // Access the method's address 3190 fprintf(fp,"void %sNode::method_set( intptr_t method ) {\n", instr->_ident); 3191 fprintf(fp," ((methodOper*)opnd_array(%d))->_method = method;\n", 3192 method_position ); 3193 fprintf(fp,"}\n"); 3194 fprintf(fp,"\n"); 3195 } 3196 } 3197 3198 // Define this instruction's number of relocation entries, base is '0' 3199 _instructions.reset(); 3200 while( (instr = (InstructForm*)_instructions.iter()) != NULL ) { 3201 // Output the definition for number of relocation entries 3202 uint reloc_size = instr->reloc(_globalNames); 3203 if ( reloc_size != 0 ) { 3204 fprintf(fp,"int %sNode::reloc() const {\n", instr->_ident); 3205 fprintf(fp," return %d;\n", reloc_size); 3206 fprintf(fp,"}\n"); 3207 fprintf(fp,"\n"); 3208 } 3209 } 3210 fprintf(fp,"\n"); 3211 3212 // Output the definitions for code generation 3213 // 3214 // address ___Node::emit(address ptr, PhaseRegAlloc *ra_) const { 3215 // // ... encoding defined by user 3216 // return ptr; 3217 // } 3218 // 3219 _instructions.reset(); 3220 for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) { 3221 // Ensure this is a machine-world instruction 3222 if ( instr->ideal_only() ) continue; 3223 3224 if (instr->_insencode) { 3225 if (instr->postalloc_expands()) { 3226 // Don't write this to _CPP_EXPAND_file, as the code generated calls C-code 3227 // from code sections in ad file that is dumped to fp. 3228 define_postalloc_expand(fp, *instr); 3229 } else { 3230 defineEmit(fp, *instr); 3231 } 3232 } 3233 if (instr->is_mach_constant()) defineEvalConstant(fp, *instr); 3234 if (instr->_size) defineSize (fp, *instr); 3235 3236 // side-call to generate output that used to be in the header file: 3237 extern void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &oper, bool for_c_file); 3238 gen_inst_format(_CPP_FORMAT_file._fp, _globalNames, *instr, true); 3239 } 3240 3241 // Output the definitions for alias analysis 3242 _instructions.reset(); 3243 for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) { 3244 // Ensure this is a machine-world instruction 3245 if ( instr->ideal_only() ) continue; 3246 3247 // Analyze machine instructions that either USE or DEF memory. 3248 int memory_operand = instr->memory_operand(_globalNames); 3249 // Some guys kill all of memory 3250 if ( instr->is_wide_memory_kill(_globalNames) ) { 3251 memory_operand = InstructForm::MANY_MEMORY_OPERANDS; 3252 } 3253 3254 if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) { 3255 if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) { 3256 fprintf(fp,"const TypePtr *%sNode::adr_type() const { return TypePtr::BOTTOM; }\n", instr->_ident); 3257 fprintf(fp,"const MachOper* %sNode::memory_operand() const { return (MachOper*)-1; }\n", instr->_ident); 3258 } else { 3259 fprintf(fp,"const MachOper* %sNode::memory_operand() const { return _opnds[%d]; }\n", instr->_ident, memory_operand); 3260 } 3261 } 3262 } 3263 3264 // Get the length of the longest identifier 3265 int max_ident_len = 0; 3266 _instructions.reset(); 3267 3268 for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) { 3269 if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) { 3270 int ident_len = (int)strlen(instr->_ident); 3271 if( max_ident_len < ident_len ) 3272 max_ident_len = ident_len; 3273 } 3274 } 3275 3276 // Emit specifically for Node(s) 3277 fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n", 3278 max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL"); 3279 fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return %s; }\n", 3280 max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL"); 3281 fprintf(_CPP_PIPELINE_file._fp, "\n"); 3282 3283 fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n", 3284 max_ident_len, "MachNode", _pipeline ? "(&pipeline_class_Unknown_Instructions)" : "NULL"); 3285 fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return pipeline_class(); }\n", 3286 max_ident_len, "MachNode"); 3287 fprintf(_CPP_PIPELINE_file._fp, "\n"); 3288 3289 // Output the definitions for machine node specific pipeline data 3290 _machnodes.reset(); 3291 3292 for ( ; (machnode = (MachNodeForm*)_machnodes.iter()) != NULL; ) { 3293 fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %sNode::pipeline() const { return (&pipeline_class_%03d); }\n", 3294 machnode->_ident, ((class PipeClassForm *)_pipeline->_classdict[machnode->_machnode_pipe])->_num); 3295 } 3296 3297 fprintf(_CPP_PIPELINE_file._fp, "\n"); 3298 3299 // Output the definitions for instruction pipeline static data references 3300 _instructions.reset(); 3301 3302 for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) { 3303 if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) { 3304 fprintf(_CPP_PIPELINE_file._fp, "\n"); 3305 fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline_class() { return (&pipeline_class_%03d); }\n", 3306 max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num); 3307 fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline() const { return (&pipeline_class_%03d); }\n", 3308 max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num); 3309 } 3310 } 3311 } 3312 3313 3314 // -------------------------------- maps ------------------------------------ 3315 3316 // Information needed to generate the ReduceOp mapping for the DFA 3317 class OutputReduceOp : public OutputMap { 3318 public: 3319 OutputReduceOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD) 3320 : OutputMap(hpp, cpp, globals, AD, "reduceOp") {}; 3321 3322 void declaration() { fprintf(_hpp, "extern const int reduceOp[];\n"); } 3323 void definition() { fprintf(_cpp, "const int reduceOp[] = {\n"); } 3324 void closing() { fprintf(_cpp, " 0 // no trailing comma\n"); 3325 OutputMap::closing(); 3326 } 3327 void map(OpClassForm &opc) { 3328 const char *reduce = opc._ident; 3329 if( reduce ) fprintf(_cpp, " %s_rule", reduce); 3330 else fprintf(_cpp, " 0"); 3331 } 3332 void map(OperandForm &oper) { 3333 // Most operands without match rules, e.g. eFlagsReg, do not have a result operand 3334 const char *reduce = (oper._matrule ? oper.reduce_result() : NULL); 3335 // operand stackSlot does not have a match rule, but produces a stackSlot 3336 if( oper.is_user_name_for_sReg() != Form::none ) reduce = oper.reduce_result(); 3337 if( reduce ) fprintf(_cpp, " %s_rule", reduce); 3338 else fprintf(_cpp, " 0"); 3339 } 3340 void map(InstructForm &inst) { 3341 const char *reduce = (inst._matrule ? inst.reduce_result() : NULL); 3342 if( reduce ) fprintf(_cpp, " %s_rule", reduce); 3343 else fprintf(_cpp, " 0"); 3344 } 3345 void map(char *reduce) { 3346 if( reduce ) fprintf(_cpp, " %s_rule", reduce); 3347 else fprintf(_cpp, " 0"); 3348 } 3349 }; 3350 3351 // Information needed to generate the LeftOp mapping for the DFA 3352 class OutputLeftOp : public OutputMap { 3353 public: 3354 OutputLeftOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD) 3355 : OutputMap(hpp, cpp, globals, AD, "leftOp") {}; 3356 3357 void declaration() { fprintf(_hpp, "extern const int leftOp[];\n"); } 3358 void definition() { fprintf(_cpp, "const int leftOp[] = {\n"); } 3359 void closing() { fprintf(_cpp, " 0 // no trailing comma\n"); 3360 OutputMap::closing(); 3361 } 3362 void map(OpClassForm &opc) { fprintf(_cpp, " 0"); } 3363 void map(OperandForm &oper) { 3364 const char *reduce = oper.reduce_left(_globals); 3365 if( reduce ) fprintf(_cpp, " %s_rule", reduce); 3366 else fprintf(_cpp, " 0"); 3367 } 3368 void map(char *name) { 3369 const char *reduce = _AD.reduceLeft(name); 3370 if( reduce ) fprintf(_cpp, " %s_rule", reduce); 3371 else fprintf(_cpp, " 0"); 3372 } 3373 void map(InstructForm &inst) { 3374 const char *reduce = inst.reduce_left(_globals); 3375 if( reduce ) fprintf(_cpp, " %s_rule", reduce); 3376 else fprintf(_cpp, " 0"); 3377 } 3378 }; 3379 3380 3381 // Information needed to generate the RightOp mapping for the DFA 3382 class OutputRightOp : public OutputMap { 3383 public: 3384 OutputRightOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD) 3385 : OutputMap(hpp, cpp, globals, AD, "rightOp") {}; 3386 3387 void declaration() { fprintf(_hpp, "extern const int rightOp[];\n"); } 3388 void definition() { fprintf(_cpp, "const int rightOp[] = {\n"); } 3389 void closing() { fprintf(_cpp, " 0 // no trailing comma\n"); 3390 OutputMap::closing(); 3391 } 3392 void map(OpClassForm &opc) { fprintf(_cpp, " 0"); } 3393 void map(OperandForm &oper) { 3394 const char *reduce = oper.reduce_right(_globals); 3395 if( reduce ) fprintf(_cpp, " %s_rule", reduce); 3396 else fprintf(_cpp, " 0"); 3397 } 3398 void map(char *name) { 3399 const char *reduce = _AD.reduceRight(name); 3400 if( reduce ) fprintf(_cpp, " %s_rule", reduce); 3401 else fprintf(_cpp, " 0"); 3402 } 3403 void map(InstructForm &inst) { 3404 const char *reduce = inst.reduce_right(_globals); 3405 if( reduce ) fprintf(_cpp, " %s_rule", reduce); 3406 else fprintf(_cpp, " 0"); 3407 } 3408 }; 3409 3410 3411 // Information needed to generate the Rule names for the DFA 3412 class OutputRuleName : public OutputMap { 3413 public: 3414 OutputRuleName(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD) 3415 : OutputMap(hpp, cpp, globals, AD, "ruleName") {}; 3416 3417 void declaration() { fprintf(_hpp, "extern const char *ruleName[];\n"); } 3418 void definition() { fprintf(_cpp, "const char *ruleName[] = {\n"); } 3419 void closing() { fprintf(_cpp, " \"invalid rule name\" // no trailing comma\n"); 3420 OutputMap::closing(); 3421 } 3422 void map(OpClassForm &opc) { fprintf(_cpp, " \"%s\"", _AD.machOperEnum(opc._ident) ); } 3423 void map(OperandForm &oper) { fprintf(_cpp, " \"%s\"", _AD.machOperEnum(oper._ident) ); } 3424 void map(char *name) { fprintf(_cpp, " \"%s\"", name ? name : "0"); } 3425 void map(InstructForm &inst){ fprintf(_cpp, " \"%s\"", inst._ident ? inst._ident : "0"); } 3426 }; 3427 3428 3429 // Information needed to generate the swallowed mapping for the DFA 3430 class OutputSwallowed : public OutputMap { 3431 public: 3432 OutputSwallowed(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD) 3433 : OutputMap(hpp, cpp, globals, AD, "swallowed") {}; 3434 3435 void declaration() { fprintf(_hpp, "extern const bool swallowed[];\n"); } 3436 void definition() { fprintf(_cpp, "const bool swallowed[] = {\n"); } 3437 void closing() { fprintf(_cpp, " false // no trailing comma\n"); 3438 OutputMap::closing(); 3439 } 3440 void map(OperandForm &oper) { // Generate the entry for this opcode 3441 const char *swallowed = oper.swallowed(_globals) ? "true" : "false"; 3442 fprintf(_cpp, " %s", swallowed); 3443 } 3444 void map(OpClassForm &opc) { fprintf(_cpp, " false"); } 3445 void map(char *name) { fprintf(_cpp, " false"); } 3446 void map(InstructForm &inst){ fprintf(_cpp, " false"); } 3447 }; 3448 3449 3450 // Information needed to generate the decision array for instruction chain rule 3451 class OutputInstChainRule : public OutputMap { 3452 public: 3453 OutputInstChainRule(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD) 3454 : OutputMap(hpp, cpp, globals, AD, "instruction_chain_rule") {}; 3455 3456 void declaration() { fprintf(_hpp, "extern const bool instruction_chain_rule[];\n"); } 3457 void definition() { fprintf(_cpp, "const bool instruction_chain_rule[] = {\n"); } 3458 void closing() { fprintf(_cpp, " false // no trailing comma\n"); 3459 OutputMap::closing(); 3460 } 3461 void map(OpClassForm &opc) { fprintf(_cpp, " false"); } 3462 void map(OperandForm &oper) { fprintf(_cpp, " false"); } 3463 void map(char *name) { fprintf(_cpp, " false"); } 3464 void map(InstructForm &inst) { // Check for simple chain rule 3465 const char *chain = inst.is_simple_chain_rule(_globals) ? "true" : "false"; 3466 fprintf(_cpp, " %s", chain); 3467 } 3468 }; 3469 3470 3471 //---------------------------build_map------------------------------------ 3472 // Build mapping from enumeration for densely packed operands 3473 // TO result and child types. 3474 void ArchDesc::build_map(OutputMap &map) { 3475 FILE *fp_hpp = map.decl_file(); 3476 FILE *fp_cpp = map.def_file(); 3477 int idx = 0; 3478 OperandForm *op; 3479 OpClassForm *opc; 3480 InstructForm *inst; 3481 3482 // Construct this mapping 3483 map.declaration(); 3484 fprintf(fp_cpp,"\n"); 3485 map.definition(); 3486 3487 // Output the mapping for operands 3488 map.record_position(OutputMap::BEGIN_OPERANDS, idx ); 3489 _operands.reset(); 3490 for(; (op = (OperandForm*)_operands.iter()) != NULL; ) { 3491 // Ensure this is a machine-world instruction 3492 if ( op->ideal_only() ) continue; 3493 3494 // Generate the entry for this opcode 3495 fprintf(fp_cpp, " /* %4d */", idx); map.map(*op); fprintf(fp_cpp, ",\n"); 3496 ++idx; 3497 }; 3498 fprintf(fp_cpp, " // last operand\n"); 3499 3500 // Place all user-defined operand classes into the mapping 3501 map.record_position(OutputMap::BEGIN_OPCLASSES, idx ); 3502 _opclass.reset(); 3503 for(; (opc = (OpClassForm*)_opclass.iter()) != NULL; ) { 3504 fprintf(fp_cpp, " /* %4d */", idx); map.map(*opc); fprintf(fp_cpp, ",\n"); 3505 ++idx; 3506 }; 3507 fprintf(fp_cpp, " // last operand class\n"); 3508 3509 // Place all internally defined operands into the mapping 3510 map.record_position(OutputMap::BEGIN_INTERNALS, idx ); 3511 _internalOpNames.reset(); 3512 char *name = NULL; 3513 for(; (name = (char *)_internalOpNames.iter()) != NULL; ) { 3514 fprintf(fp_cpp, " /* %4d */", idx); map.map(name); fprintf(fp_cpp, ",\n"); 3515 ++idx; 3516 }; 3517 fprintf(fp_cpp, " // last internally defined operand\n"); 3518 3519 // Place all user-defined instructions into the mapping 3520 if( map.do_instructions() ) { 3521 map.record_position(OutputMap::BEGIN_INSTRUCTIONS, idx ); 3522 // Output all simple instruction chain rules first 3523 map.record_position(OutputMap::BEGIN_INST_CHAIN_RULES, idx ); 3524 { 3525 _instructions.reset(); 3526 for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) { 3527 // Ensure this is a machine-world instruction 3528 if ( inst->ideal_only() ) continue; 3529 if ( ! inst->is_simple_chain_rule(_globalNames) ) continue; 3530 if ( inst->rematerialize(_globalNames, get_registers()) ) continue; 3531 3532 fprintf(fp_cpp, " /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n"); 3533 ++idx; 3534 }; 3535 map.record_position(OutputMap::BEGIN_REMATERIALIZE, idx ); 3536 _instructions.reset(); 3537 for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) { 3538 // Ensure this is a machine-world instruction 3539 if ( inst->ideal_only() ) continue; 3540 if ( ! inst->is_simple_chain_rule(_globalNames) ) continue; 3541 if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue; 3542 3543 fprintf(fp_cpp, " /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n"); 3544 ++idx; 3545 }; 3546 map.record_position(OutputMap::END_INST_CHAIN_RULES, idx ); 3547 } 3548 // Output all instructions that are NOT simple chain rules 3549 { 3550 _instructions.reset(); 3551 for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) { 3552 // Ensure this is a machine-world instruction 3553 if ( inst->ideal_only() ) continue; 3554 if ( inst->is_simple_chain_rule(_globalNames) ) continue; 3555 if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue; 3556 3557 fprintf(fp_cpp, " /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n"); 3558 ++idx; 3559 }; 3560 map.record_position(OutputMap::END_REMATERIALIZE, idx ); 3561 _instructions.reset(); 3562 for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) { 3563 // Ensure this is a machine-world instruction 3564 if ( inst->ideal_only() ) continue; 3565 if ( inst->is_simple_chain_rule(_globalNames) ) continue; 3566 if ( inst->rematerialize(_globalNames, get_registers()) ) continue; 3567 3568 fprintf(fp_cpp, " /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n"); 3569 ++idx; 3570 }; 3571 } 3572 fprintf(fp_cpp, " // last instruction\n"); 3573 map.record_position(OutputMap::END_INSTRUCTIONS, idx ); 3574 } 3575 // Finish defining table 3576 map.closing(); 3577 }; 3578 3579 3580 // Helper function for buildReduceMaps 3581 char reg_save_policy(const char *calling_convention) { 3582 char callconv; 3583 3584 if (!strcmp(calling_convention, "NS")) callconv = 'N'; 3585 else if (!strcmp(calling_convention, "SOE")) callconv = 'E'; 3586 else if (!strcmp(calling_convention, "SOC")) callconv = 'C'; 3587 else if (!strcmp(calling_convention, "AS")) callconv = 'A'; 3588 else callconv = 'Z'; 3589 3590 return callconv; 3591 } 3592 3593 void ArchDesc::generate_needs_clone_jvms(FILE *fp_cpp) { 3594 fprintf(fp_cpp, "bool Compile::needs_clone_jvms() { return %s; }\n\n", 3595 _needs_clone_jvms ? "true" : "false"); 3596 } 3597 3598 //---------------------------generate_assertion_checks------------------- 3599 void ArchDesc::generate_adlc_verification(FILE *fp_cpp) { 3600 fprintf(fp_cpp, "\n"); 3601 3602 fprintf(fp_cpp, "#ifndef PRODUCT\n"); 3603 fprintf(fp_cpp, "void Compile::adlc_verification() {\n"); 3604 globalDefs().print_asserts(fp_cpp); 3605 fprintf(fp_cpp, "}\n"); 3606 fprintf(fp_cpp, "#endif\n"); 3607 fprintf(fp_cpp, "\n"); 3608 } 3609 3610 //---------------------------addSourceBlocks----------------------------- 3611 void ArchDesc::addSourceBlocks(FILE *fp_cpp) { 3612 if (_source.count() > 0) 3613 _source.output(fp_cpp); 3614 3615 generate_adlc_verification(fp_cpp); 3616 } 3617 //---------------------------addHeaderBlocks----------------------------- 3618 void ArchDesc::addHeaderBlocks(FILE *fp_hpp) { 3619 if (_header.count() > 0) 3620 _header.output(fp_hpp); 3621 } 3622 //-------------------------addPreHeaderBlocks---------------------------- 3623 void ArchDesc::addPreHeaderBlocks(FILE *fp_hpp) { 3624 // Output #defines from definition block 3625 globalDefs().print_defines(fp_hpp); 3626 3627 if (_pre_header.count() > 0) 3628 _pre_header.output(fp_hpp); 3629 } 3630 3631 //---------------------------buildReduceMaps----------------------------- 3632 // Build mapping from enumeration for densely packed operands 3633 // TO result and child types. 3634 void ArchDesc::buildReduceMaps(FILE *fp_hpp, FILE *fp_cpp) { 3635 RegDef *rdef; 3636 RegDef *next; 3637 3638 // The emit bodies currently require functions defined in the source block. 3639 3640 // Build external declarations for mappings 3641 fprintf(fp_hpp, "\n"); 3642 fprintf(fp_hpp, "extern const char register_save_policy[];\n"); 3643 fprintf(fp_hpp, "extern const char c_reg_save_policy[];\n"); 3644 fprintf(fp_hpp, "extern const int register_save_type[];\n"); 3645 fprintf(fp_hpp, "\n"); 3646 3647 // Construct Save-Policy array 3648 fprintf(fp_cpp, "// Map from machine-independent register number to register_save_policy\n"); 3649 fprintf(fp_cpp, "const char register_save_policy[] = {\n"); 3650 _register->reset_RegDefs(); 3651 for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) { 3652 next = _register->iter_RegDefs(); 3653 char policy = reg_save_policy(rdef->_callconv); 3654 const char *comma = (next != NULL) ? "," : " // no trailing comma"; 3655 fprintf(fp_cpp, " '%c'%s // %s\n", policy, comma, rdef->_regname); 3656 } 3657 fprintf(fp_cpp, "};\n\n"); 3658 3659 // Construct Native Save-Policy array 3660 fprintf(fp_cpp, "// Map from machine-independent register number to c_reg_save_policy\n"); 3661 fprintf(fp_cpp, "const char c_reg_save_policy[] = {\n"); 3662 _register->reset_RegDefs(); 3663 for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) { 3664 next = _register->iter_RegDefs(); 3665 char policy = reg_save_policy(rdef->_c_conv); 3666 const char *comma = (next != NULL) ? "," : " // no trailing comma"; 3667 fprintf(fp_cpp, " '%c'%s // %s\n", policy, comma, rdef->_regname); 3668 } 3669 fprintf(fp_cpp, "};\n\n"); 3670 3671 // Construct Register Save Type array 3672 fprintf(fp_cpp, "// Map from machine-independent register number to register_save_type\n"); 3673 fprintf(fp_cpp, "const int register_save_type[] = {\n"); 3674 _register->reset_RegDefs(); 3675 for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) { 3676 next = _register->iter_RegDefs(); 3677 const char *comma = (next != NULL) ? "," : " // no trailing comma"; 3678 fprintf(fp_cpp, " %s%s\n", rdef->_idealtype, comma); 3679 } 3680 fprintf(fp_cpp, "};\n\n"); 3681 3682 // Construct the table for reduceOp 3683 OutputReduceOp output_reduce_op(fp_hpp, fp_cpp, _globalNames, *this); 3684 build_map(output_reduce_op); 3685 // Construct the table for leftOp 3686 OutputLeftOp output_left_op(fp_hpp, fp_cpp, _globalNames, *this); 3687 build_map(output_left_op); 3688 // Construct the table for rightOp 3689 OutputRightOp output_right_op(fp_hpp, fp_cpp, _globalNames, *this); 3690 build_map(output_right_op); 3691 // Construct the table of rule names 3692 OutputRuleName output_rule_name(fp_hpp, fp_cpp, _globalNames, *this); 3693 build_map(output_rule_name); 3694 // Construct the boolean table for subsumed operands 3695 OutputSwallowed output_swallowed(fp_hpp, fp_cpp, _globalNames, *this); 3696 build_map(output_swallowed); 3697 // // // Preserve in case we decide to use this table instead of another 3698 //// Construct the boolean table for instruction chain rules 3699 //OutputInstChainRule output_inst_chain(fp_hpp, fp_cpp, _globalNames, *this); 3700 //build_map(output_inst_chain); 3701 3702 } 3703 3704 3705 //---------------------------buildMachOperGenerator--------------------------- 3706 3707 // Recurse through match tree, building path through corresponding state tree, 3708 // Until we reach the constant we are looking for. 3709 static void path_to_constant(FILE *fp, FormDict &globals, 3710 MatchNode *mnode, uint idx) { 3711 if ( ! mnode) return; 3712 3713 unsigned position = 0; 3714 const char *result = NULL; 3715 const char *name = NULL; 3716 const char *optype = NULL; 3717 3718 // Base Case: access constant in ideal node linked to current state node 3719 // Each type of constant has its own access function 3720 if ( (mnode->_lChild == NULL) && (mnode->_rChild == NULL) 3721 && mnode->base_operand(position, globals, result, name, optype) ) { 3722 if ( strcmp(optype,"ConI") == 0 ) { 3723 fprintf(fp, "_leaf->get_int()"); 3724 } else if ( (strcmp(optype,"ConP") == 0) ) { 3725 fprintf(fp, "_leaf->bottom_type()->is_ptr()"); 3726 } else if ( (strcmp(optype,"ConN") == 0) ) { 3727 fprintf(fp, "_leaf->bottom_type()->is_narrowoop()"); 3728 } else if ( (strcmp(optype,"ConNKlass") == 0) ) { 3729 fprintf(fp, "_leaf->bottom_type()->is_narrowklass()"); 3730 } else if ( (strcmp(optype,"ConF") == 0) ) { 3731 fprintf(fp, "_leaf->getf()"); 3732 } else if ( (strcmp(optype,"ConD") == 0) ) { 3733 fprintf(fp, "_leaf->getd()"); 3734 } else if ( (strcmp(optype,"ConL") == 0) ) { 3735 fprintf(fp, "_leaf->get_long()"); 3736 } else if ( (strcmp(optype,"Con")==0) ) { 3737 // !!!!! - Update if adding a machine-independent constant type 3738 fprintf(fp, "_leaf->get_int()"); 3739 assert( false, "Unsupported constant type, pointer or indefinite"); 3740 } else if ( (strcmp(optype,"Bool") == 0) ) { 3741 fprintf(fp, "_leaf->as_Bool()->_test._test"); 3742 } else { 3743 assert( false, "Unsupported constant type"); 3744 } 3745 return; 3746 } 3747 3748 // If constant is in left child, build path and recurse 3749 uint lConsts = (mnode->_lChild) ? (mnode->_lChild->num_consts(globals) ) : 0; 3750 uint rConsts = (mnode->_rChild) ? (mnode->_rChild->num_consts(globals) ) : 0; 3751 if ( (mnode->_lChild) && (lConsts > idx) ) { 3752 fprintf(fp, "_kids[0]->"); 3753 path_to_constant(fp, globals, mnode->_lChild, idx); 3754 return; 3755 } 3756 // If constant is in right child, build path and recurse 3757 if ( (mnode->_rChild) && (rConsts > (idx - lConsts) ) ) { 3758 idx = idx - lConsts; 3759 fprintf(fp, "_kids[1]->"); 3760 path_to_constant(fp, globals, mnode->_rChild, idx); 3761 return; 3762 } 3763 assert( false, "ShouldNotReachHere()"); 3764 } 3765 3766 // Generate code that is executed when generating a specific Machine Operand 3767 static void genMachOperCase(FILE *fp, FormDict &globalNames, ArchDesc &AD, 3768 OperandForm &op) { 3769 const char *opName = op._ident; 3770 const char *opEnumName = AD.machOperEnum(opName); 3771 uint num_consts = op.num_consts(globalNames); 3772 3773 // Generate the case statement for this opcode 3774 fprintf(fp, " case %s:", opEnumName); 3775 fprintf(fp, "\n return new (C) %sOper(", opName); 3776 // Access parameters for constructor from the stat object 3777 // 3778 // Build access to condition code value 3779 if ( (num_consts > 0) ) { 3780 uint i = 0; 3781 path_to_constant(fp, globalNames, op._matrule, i); 3782 for ( i = 1; i < num_consts; ++i ) { 3783 fprintf(fp, ", "); 3784 path_to_constant(fp, globalNames, op._matrule, i); 3785 } 3786 } 3787 fprintf(fp, " );\n"); 3788 } 3789 3790 3791 // Build switch to invoke "new" MachNode or MachOper 3792 void ArchDesc::buildMachOperGenerator(FILE *fp_cpp) { 3793 int idx = 0; 3794 3795 // Build switch to invoke 'new' for a specific MachOper 3796 fprintf(fp_cpp, "\n"); 3797 fprintf(fp_cpp, "\n"); 3798 fprintf(fp_cpp, 3799 "//------------------------- MachOper Generator ---------------\n"); 3800 fprintf(fp_cpp, 3801 "// A switch statement on the dense-packed user-defined type system\n" 3802 "// that invokes 'new' on the corresponding class constructor.\n"); 3803 fprintf(fp_cpp, "\n"); 3804 fprintf(fp_cpp, "MachOper *State::MachOperGenerator"); 3805 fprintf(fp_cpp, "(int opcode, Compile* C)"); 3806 fprintf(fp_cpp, "{\n"); 3807 fprintf(fp_cpp, "\n"); 3808 fprintf(fp_cpp, " switch(opcode) {\n"); 3809 3810 // Place all user-defined operands into the mapping 3811 _operands.reset(); 3812 int opIndex = 0; 3813 OperandForm *op; 3814 for( ; (op = (OperandForm*)_operands.iter()) != NULL; ) { 3815 // Ensure this is a machine-world instruction 3816 if ( op->ideal_only() ) continue; 3817 3818 genMachOperCase(fp_cpp, _globalNames, *this, *op); 3819 }; 3820 3821 // Do not iterate over operand classes for the operand generator!!! 3822 3823 // Place all internal operands into the mapping 3824 _internalOpNames.reset(); 3825 const char *iopn; 3826 for( ; (iopn = _internalOpNames.iter()) != NULL; ) { 3827 const char *opEnumName = machOperEnum(iopn); 3828 // Generate the case statement for this opcode 3829 fprintf(fp_cpp, " case %s:", opEnumName); 3830 fprintf(fp_cpp, " return NULL;\n"); 3831 }; 3832 3833 // Generate the default case for switch(opcode) 3834 fprintf(fp_cpp, " \n"); 3835 fprintf(fp_cpp, " default:\n"); 3836 fprintf(fp_cpp, " fprintf(stderr, \"Default MachOper Generator invoked for: \\n\");\n"); 3837 fprintf(fp_cpp, " fprintf(stderr, \" opcode = %cd\\n\", opcode);\n", '%'); 3838 fprintf(fp_cpp, " break;\n"); 3839 fprintf(fp_cpp, " }\n"); 3840 3841 // Generate the closing for method Matcher::MachOperGenerator 3842 fprintf(fp_cpp, " return NULL;\n"); 3843 fprintf(fp_cpp, "};\n"); 3844 } 3845 3846 3847 //---------------------------buildMachNode------------------------------------- 3848 // Build a new MachNode, for MachNodeGenerator or cisc-spilling 3849 void ArchDesc::buildMachNode(FILE *fp_cpp, InstructForm *inst, const char *indent) { 3850 const char *opType = NULL; 3851 const char *opClass = inst->_ident; 3852 3853 // Create the MachNode object 3854 fprintf(fp_cpp, "%s %sNode *node = new (C) %sNode();\n",indent, opClass,opClass); 3855 3856 if ( (inst->num_post_match_opnds() != 0) ) { 3857 // Instruction that contains operands which are not in match rule. 3858 // 3859 // Check if the first post-match component may be an interesting def 3860 bool dont_care = false; 3861 ComponentList &comp_list = inst->_components; 3862 Component *comp = NULL; 3863 comp_list.reset(); 3864 if ( comp_list.match_iter() != NULL ) dont_care = true; 3865 3866 // Insert operands that are not in match-rule. 3867 // Only insert a DEF if the do_care flag is set 3868 comp_list.reset(); 3869 while ( comp = comp_list.post_match_iter() ) { 3870 // Check if we don't care about DEFs or KILLs that are not USEs 3871 if ( dont_care && (! comp->isa(Component::USE)) ) { 3872 continue; 3873 } 3874 dont_care = true; 3875 // For each operand not in the match rule, call MachOperGenerator 3876 // with the enum for the opcode that needs to be built. 3877 ComponentList clist = inst->_components; 3878 int index = clist.operand_position(comp->_name, comp->_usedef, inst); 3879 const char *opcode = machOperEnum(comp->_type); 3880 fprintf(fp_cpp, "%s node->set_opnd_array(%d, ", indent, index); 3881 fprintf(fp_cpp, "MachOperGenerator(%s, C));\n", opcode); 3882 } 3883 } 3884 else if ( inst->is_chain_of_constant(_globalNames, opType) ) { 3885 // An instruction that chains from a constant! 3886 // In this case, we need to subsume the constant into the node 3887 // at operand position, oper_input_base(). 3888 // 3889 // Fill in the constant 3890 fprintf(fp_cpp, "%s node->_opnd_array[%d] = ", indent, 3891 inst->oper_input_base(_globalNames)); 3892 // ##### 3893 // Check for multiple constants and then fill them in. 3894 // Just like MachOperGenerator 3895 const char *opName = inst->_matrule->_rChild->_opType; 3896 fprintf(fp_cpp, "new (C) %sOper(", opName); 3897 // Grab operand form 3898 OperandForm *op = (_globalNames[opName])->is_operand(); 3899 // Look up the number of constants 3900 uint num_consts = op->num_consts(_globalNames); 3901 if ( (num_consts > 0) ) { 3902 uint i = 0; 3903 path_to_constant(fp_cpp, _globalNames, op->_matrule, i); 3904 for ( i = 1; i < num_consts; ++i ) { 3905 fprintf(fp_cpp, ", "); 3906 path_to_constant(fp_cpp, _globalNames, op->_matrule, i); 3907 } 3908 } 3909 fprintf(fp_cpp, " );\n"); 3910 // ##### 3911 } 3912 3913 // Fill in the bottom_type where requested 3914 if (inst->captures_bottom_type(_globalNames)) { 3915 if (strncmp("MachCall", inst->mach_base_class(_globalNames), strlen("MachCall"))) { 3916 fprintf(fp_cpp, "%s node->_bottom_type = _leaf->bottom_type();\n", indent); 3917 } 3918 } 3919 if( inst->is_ideal_if() ) { 3920 fprintf(fp_cpp, "%s node->_prob = _leaf->as_If()->_prob;\n", indent); 3921 fprintf(fp_cpp, "%s node->_fcnt = _leaf->as_If()->_fcnt;\n", indent); 3922 } 3923 if( inst->is_ideal_fastlock() ) { 3924 fprintf(fp_cpp, "%s node->_counters = _leaf->as_FastLock()->counters();\n", indent); 3925 fprintf(fp_cpp, "%s node->_rtm_counters = _leaf->as_FastLock()->rtm_counters();\n", indent); 3926 fprintf(fp_cpp, "%s node->_stack_rtm_counters = _leaf->as_FastLock()->stack_rtm_counters();\n", indent); 3927 } 3928 3929 } 3930 3931 //---------------------------declare_cisc_version------------------------------ 3932 // Build CISC version of this instruction 3933 void InstructForm::declare_cisc_version(ArchDesc &AD, FILE *fp_hpp) { 3934 if( AD.can_cisc_spill() ) { 3935 InstructForm *inst_cisc = cisc_spill_alternate(); 3936 if (inst_cisc != NULL) { 3937 fprintf(fp_hpp, " virtual int cisc_operand() const { return %d; }\n", cisc_spill_operand()); 3938 fprintf(fp_hpp, " virtual MachNode *cisc_version(int offset, Compile* C);\n"); 3939 fprintf(fp_hpp, " virtual void use_cisc_RegMask();\n"); 3940 fprintf(fp_hpp, " virtual const RegMask *cisc_RegMask() const { return _cisc_RegMask; }\n"); 3941 } 3942 } 3943 } 3944 3945 //---------------------------define_cisc_version------------------------------- 3946 // Build CISC version of this instruction 3947 bool InstructForm::define_cisc_version(ArchDesc &AD, FILE *fp_cpp) { 3948 InstructForm *inst_cisc = this->cisc_spill_alternate(); 3949 if( AD.can_cisc_spill() && (inst_cisc != NULL) ) { 3950 const char *name = inst_cisc->_ident; 3951 assert( inst_cisc->num_opnds() == this->num_opnds(), "Must have same number of operands"); 3952 OperandForm *cisc_oper = AD.cisc_spill_operand(); 3953 assert( cisc_oper != NULL, "insanity check"); 3954 const char *cisc_oper_name = cisc_oper->_ident; 3955 assert( cisc_oper_name != NULL, "insanity check"); 3956 // 3957 // Set the correct reg_mask_or_stack for the cisc operand 3958 fprintf(fp_cpp, "\n"); 3959 fprintf(fp_cpp, "void %sNode::use_cisc_RegMask() {\n", this->_ident); 3960 // Lookup the correct reg_mask_or_stack 3961 const char *reg_mask_name = cisc_reg_mask_name(); 3962 fprintf(fp_cpp, " _cisc_RegMask = &STACK_OR_%s;\n", reg_mask_name); 3963 fprintf(fp_cpp, "}\n"); 3964 // 3965 // Construct CISC version of this instruction 3966 fprintf(fp_cpp, "\n"); 3967 fprintf(fp_cpp, "// Build CISC version of this instruction\n"); 3968 fprintf(fp_cpp, "MachNode *%sNode::cisc_version( int offset, Compile* C ) {\n", this->_ident); 3969 // Create the MachNode object 3970 fprintf(fp_cpp, " %sNode *node = new (C) %sNode();\n", name, name); 3971 // Fill in the bottom_type where requested 3972 if ( this->captures_bottom_type(AD.globalNames()) ) { 3973 fprintf(fp_cpp, " node->_bottom_type = bottom_type();\n"); 3974 } 3975 3976 uint cur_num_opnds = num_opnds(); 3977 if (cur_num_opnds > 1 && cur_num_opnds != num_unique_opnds()) { 3978 fprintf(fp_cpp," node->_num_opnds = %d;\n", num_unique_opnds()); 3979 } 3980 3981 fprintf(fp_cpp, "\n"); 3982 fprintf(fp_cpp, " // Copy _idx, inputs and operands to new node\n"); 3983 fprintf(fp_cpp, " fill_new_machnode(node, C);\n"); 3984 // Construct operand to access [stack_pointer + offset] 3985 fprintf(fp_cpp, " // Construct operand to access [stack_pointer + offset]\n"); 3986 fprintf(fp_cpp, " node->set_opnd_array(cisc_operand(), new (C) %sOper(offset));\n", cisc_oper_name); 3987 fprintf(fp_cpp, "\n"); 3988 3989 // Return result and exit scope 3990 fprintf(fp_cpp, " return node;\n"); 3991 fprintf(fp_cpp, "}\n"); 3992 fprintf(fp_cpp, "\n"); 3993 return true; 3994 } 3995 return false; 3996 } 3997 3998 //---------------------------declare_short_branch_methods---------------------- 3999 // Build prototypes for short branch methods 4000 void InstructForm::declare_short_branch_methods(FILE *fp_hpp) { 4001 if (has_short_branch_form()) { 4002 fprintf(fp_hpp, " virtual MachNode *short_branch_version(Compile* C);\n"); 4003 } 4004 } 4005 4006 //---------------------------define_short_branch_methods----------------------- 4007 // Build definitions for short branch methods 4008 bool InstructForm::define_short_branch_methods(ArchDesc &AD, FILE *fp_cpp) { 4009 if (has_short_branch_form()) { 4010 InstructForm *short_branch = short_branch_form(); 4011 const char *name = short_branch->_ident; 4012 4013 // Construct short_branch_version() method. 4014 fprintf(fp_cpp, "// Build short branch version of this instruction\n"); 4015 fprintf(fp_cpp, "MachNode *%sNode::short_branch_version(Compile* C) {\n", this->_ident); 4016 // Create the MachNode object 4017 fprintf(fp_cpp, " %sNode *node = new (C) %sNode();\n", name, name); 4018 if( is_ideal_if() ) { 4019 fprintf(fp_cpp, " node->_prob = _prob;\n"); 4020 fprintf(fp_cpp, " node->_fcnt = _fcnt;\n"); 4021 } 4022 // Fill in the bottom_type where requested 4023 if ( this->captures_bottom_type(AD.globalNames()) ) { 4024 fprintf(fp_cpp, " node->_bottom_type = bottom_type();\n"); 4025 } 4026 4027 fprintf(fp_cpp, "\n"); 4028 // Short branch version must use same node index for access 4029 // through allocator's tables 4030 fprintf(fp_cpp, " // Copy _idx, inputs and operands to new node\n"); 4031 fprintf(fp_cpp, " fill_new_machnode(node, C);\n"); 4032 4033 // Return result and exit scope 4034 fprintf(fp_cpp, " return node;\n"); 4035 fprintf(fp_cpp, "}\n"); 4036 fprintf(fp_cpp,"\n"); 4037 return true; 4038 } 4039 return false; 4040 } 4041 4042 4043 //---------------------------buildMachNodeGenerator---------------------------- 4044 // Build switch to invoke appropriate "new" MachNode for an opcode 4045 void ArchDesc::buildMachNodeGenerator(FILE *fp_cpp) { 4046 4047 // Build switch to invoke 'new' for a specific MachNode 4048 fprintf(fp_cpp, "\n"); 4049 fprintf(fp_cpp, "\n"); 4050 fprintf(fp_cpp, 4051 "//------------------------- MachNode Generator ---------------\n"); 4052 fprintf(fp_cpp, 4053 "// A switch statement on the dense-packed user-defined type system\n" 4054 "// that invokes 'new' on the corresponding class constructor.\n"); 4055 fprintf(fp_cpp, "\n"); 4056 fprintf(fp_cpp, "MachNode *State::MachNodeGenerator"); 4057 fprintf(fp_cpp, "(int opcode, Compile* C)"); 4058 fprintf(fp_cpp, "{\n"); 4059 fprintf(fp_cpp, " switch(opcode) {\n"); 4060 4061 // Provide constructor for all user-defined instructions 4062 _instructions.reset(); 4063 int opIndex = operandFormCount(); 4064 InstructForm *inst; 4065 for( ; (inst = (InstructForm*)_instructions.iter()) != NULL; ) { 4066 // Ensure that matrule is defined. 4067 if ( inst->_matrule == NULL ) continue; 4068 4069 int opcode = opIndex++; 4070 const char *opClass = inst->_ident; 4071 char *opType = NULL; 4072 4073 // Generate the case statement for this instruction 4074 fprintf(fp_cpp, " case %s_rule:", opClass); 4075 4076 // Start local scope 4077 fprintf(fp_cpp, " {\n"); 4078 // Generate code to construct the new MachNode 4079 buildMachNode(fp_cpp, inst, " "); 4080 // Return result and exit scope 4081 fprintf(fp_cpp, " return node;\n"); 4082 fprintf(fp_cpp, " }\n"); 4083 } 4084 4085 // Generate the default case for switch(opcode) 4086 fprintf(fp_cpp, " \n"); 4087 fprintf(fp_cpp, " default:\n"); 4088 fprintf(fp_cpp, " fprintf(stderr, \"Default MachNode Generator invoked for: \\n\");\n"); 4089 fprintf(fp_cpp, " fprintf(stderr, \" opcode = %cd\\n\", opcode);\n", '%'); 4090 fprintf(fp_cpp, " break;\n"); 4091 fprintf(fp_cpp, " };\n"); 4092 4093 // Generate the closing for method Matcher::MachNodeGenerator 4094 fprintf(fp_cpp, " return NULL;\n"); 4095 fprintf(fp_cpp, "}\n"); 4096 } 4097 4098 4099 //---------------------------buildInstructMatchCheck-------------------------- 4100 // Output the method to Matcher which checks whether or not a specific 4101 // instruction has a matching rule for the host architecture. 4102 void ArchDesc::buildInstructMatchCheck(FILE *fp_cpp) const { 4103 fprintf(fp_cpp, "\n\n"); 4104 fprintf(fp_cpp, "const bool Matcher::has_match_rule(int opcode) {\n"); 4105 fprintf(fp_cpp, " assert(_last_machine_leaf < opcode && opcode < _last_opcode, \"opcode in range\");\n"); 4106 fprintf(fp_cpp, " return _hasMatchRule[opcode];\n"); 4107 fprintf(fp_cpp, "}\n\n"); 4108 4109 fprintf(fp_cpp, "const bool Matcher::_hasMatchRule[_last_opcode] = {\n"); 4110 int i; 4111 for (i = 0; i < _last_opcode - 1; i++) { 4112 fprintf(fp_cpp, " %-5s, // %s\n", 4113 _has_match_rule[i] ? "true" : "false", 4114 NodeClassNames[i]); 4115 } 4116 fprintf(fp_cpp, " %-5s // %s\n", 4117 _has_match_rule[i] ? "true" : "false", 4118 NodeClassNames[i]); 4119 fprintf(fp_cpp, "};\n"); 4120 } 4121 4122 //---------------------------buildFrameMethods--------------------------------- 4123 // Output the methods to Matcher which specify frame behavior 4124 void ArchDesc::buildFrameMethods(FILE *fp_cpp) { 4125 fprintf(fp_cpp,"\n\n"); 4126 // Stack Direction 4127 fprintf(fp_cpp,"bool Matcher::stack_direction() const { return %s; }\n\n", 4128 _frame->_direction ? "true" : "false"); 4129 // Sync Stack Slots 4130 fprintf(fp_cpp,"int Compile::sync_stack_slots() const { return %s; }\n\n", 4131 _frame->_sync_stack_slots); 4132 // Java Stack Alignment 4133 fprintf(fp_cpp,"uint Matcher::stack_alignment_in_bytes() { return %s; }\n\n", 4134 _frame->_alignment); 4135 // Java Return Address Location 4136 fprintf(fp_cpp,"OptoReg::Name Matcher::return_addr() const {"); 4137 if (_frame->_return_addr_loc) { 4138 fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n", 4139 _frame->_return_addr); 4140 } 4141 else { 4142 fprintf(fp_cpp," return OptoReg::stack2reg(%s); }\n\n", 4143 _frame->_return_addr); 4144 } 4145 // Java Stack Slot Preservation 4146 fprintf(fp_cpp,"uint Compile::in_preserve_stack_slots() "); 4147 fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_in_preserve_slots); 4148 // Top Of Stack Slot Preservation, for both Java and C 4149 fprintf(fp_cpp,"uint Compile::out_preserve_stack_slots() "); 4150 fprintf(fp_cpp,"{ return SharedRuntime::out_preserve_stack_slots(); }\n\n"); 4151 // varargs C out slots killed 4152 fprintf(fp_cpp,"uint Compile::varargs_C_out_slots_killed() const "); 4153 fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_varargs_C_out_slots_killed); 4154 // Java Argument Position 4155 fprintf(fp_cpp,"void Matcher::calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length, bool is_outgoing) {\n"); 4156 fprintf(fp_cpp,"%s\n", _frame->_calling_convention); 4157 fprintf(fp_cpp,"}\n\n"); 4158 // Native Argument Position 4159 fprintf(fp_cpp,"void Matcher::c_calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length) {\n"); 4160 fprintf(fp_cpp,"%s\n", _frame->_c_calling_convention); 4161 fprintf(fp_cpp,"}\n\n"); 4162 // Java Return Value Location 4163 fprintf(fp_cpp,"OptoRegPair Matcher::return_value(uint ideal_reg, bool is_outgoing) {\n"); 4164 fprintf(fp_cpp,"%s\n", _frame->_return_value); 4165 fprintf(fp_cpp,"}\n\n"); 4166 // Native Return Value Location 4167 fprintf(fp_cpp,"OptoRegPair Matcher::c_return_value(uint ideal_reg, bool is_outgoing) {\n"); 4168 fprintf(fp_cpp,"%s\n", _frame->_c_return_value); 4169 fprintf(fp_cpp,"}\n\n"); 4170 4171 // Inline Cache Register, mask definition, and encoding 4172 fprintf(fp_cpp,"OptoReg::Name Matcher::inline_cache_reg() {"); 4173 fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n", 4174 _frame->_inline_cache_reg); 4175 fprintf(fp_cpp,"int Matcher::inline_cache_reg_encode() {"); 4176 fprintf(fp_cpp," return _regEncode[inline_cache_reg()]; }\n\n"); 4177 4178 // Interpreter's Method Oop Register, mask definition, and encoding 4179 fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_method_oop_reg() {"); 4180 fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n", 4181 _frame->_interpreter_method_oop_reg); 4182 fprintf(fp_cpp,"int Matcher::interpreter_method_oop_reg_encode() {"); 4183 fprintf(fp_cpp," return _regEncode[interpreter_method_oop_reg()]; }\n\n"); 4184 4185 // Interpreter's Frame Pointer Register, mask definition, and encoding 4186 fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_frame_pointer_reg() {"); 4187 if (_frame->_interpreter_frame_pointer_reg == NULL) 4188 fprintf(fp_cpp," return OptoReg::Bad; }\n\n"); 4189 else 4190 fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n", 4191 _frame->_interpreter_frame_pointer_reg); 4192 4193 // Frame Pointer definition 4194 /* CNC - I can not contemplate having a different frame pointer between 4195 Java and native code; makes my head hurt to think about it. 4196 fprintf(fp_cpp,"OptoReg::Name Matcher::frame_pointer() const {"); 4197 fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n", 4198 _frame->_frame_pointer); 4199 */ 4200 // (Native) Frame Pointer definition 4201 fprintf(fp_cpp,"OptoReg::Name Matcher::c_frame_pointer() const {"); 4202 fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n", 4203 _frame->_frame_pointer); 4204 4205 // Number of callee-save + always-save registers for calling convention 4206 fprintf(fp_cpp, "// Number of callee-save + always-save registers\n"); 4207 fprintf(fp_cpp, "int Matcher::number_of_saved_registers() {\n"); 4208 RegDef *rdef; 4209 int nof_saved_registers = 0; 4210 _register->reset_RegDefs(); 4211 while( (rdef = _register->iter_RegDefs()) != NULL ) { 4212 if( !strcmp(rdef->_callconv, "SOE") || !strcmp(rdef->_callconv, "AS") ) 4213 ++nof_saved_registers; 4214 } 4215 fprintf(fp_cpp, " return %d;\n", nof_saved_registers); 4216 fprintf(fp_cpp, "};\n\n"); 4217 } 4218 4219 4220 4221 4222 static int PrintAdlcCisc = 0; 4223 //---------------------------identify_cisc_spilling---------------------------- 4224 // Get info for the CISC_oracle and MachNode::cisc_version() 4225 void ArchDesc::identify_cisc_spill_instructions() { 4226 4227 if (_frame == NULL) 4228 return; 4229 4230 // Find the user-defined operand for cisc-spilling 4231 if( _frame->_cisc_spilling_operand_name != NULL ) { 4232 const Form *form = _globalNames[_frame->_cisc_spilling_operand_name]; 4233 OperandForm *oper = form ? form->is_operand() : NULL; 4234 // Verify the user's suggestion 4235 if( oper != NULL ) { 4236 // Ensure that match field is defined. 4237 if ( oper->_matrule != NULL ) { 4238 MatchRule &mrule = *oper->_matrule; 4239 if( strcmp(mrule._opType,"AddP") == 0 ) { 4240 MatchNode *left = mrule._lChild; 4241 MatchNode *right= mrule._rChild; 4242 if( left != NULL && right != NULL ) { 4243 const Form *left_op = _globalNames[left->_opType]->is_operand(); 4244 const Form *right_op = _globalNames[right->_opType]->is_operand(); 4245 if( (left_op != NULL && right_op != NULL) 4246 && (left_op->interface_type(_globalNames) == Form::register_interface) 4247 && (right_op->interface_type(_globalNames) == Form::constant_interface) ) { 4248 // Successfully verified operand 4249 set_cisc_spill_operand( oper ); 4250 if( _cisc_spill_debug ) { 4251 fprintf(stderr, "\n\nVerified CISC-spill operand %s\n\n", oper->_ident); 4252 } 4253 } 4254 } 4255 } 4256 } 4257 } 4258 } 4259 4260 if( cisc_spill_operand() != NULL ) { 4261 // N^2 comparison of instructions looking for a cisc-spilling version 4262 _instructions.reset(); 4263 InstructForm *instr; 4264 for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) { 4265 // Ensure that match field is defined. 4266 if ( instr->_matrule == NULL ) continue; 4267 4268 MatchRule &mrule = *instr->_matrule; 4269 Predicate *pred = instr->build_predicate(); 4270 4271 // Grab the machine type of the operand 4272 const char *rootOp = instr->_ident; 4273 mrule._machType = rootOp; 4274 4275 // Find result type for match 4276 const char *result = instr->reduce_result(); 4277 4278 if( PrintAdlcCisc ) fprintf(stderr, " new instruction %s \n", instr->_ident ? instr->_ident : " "); 4279 bool found_cisc_alternate = false; 4280 _instructions.reset2(); 4281 InstructForm *instr2; 4282 for( ; !found_cisc_alternate && (instr2 = (InstructForm*)_instructions.iter2()) != NULL; ) { 4283 // Ensure that match field is defined. 4284 if( PrintAdlcCisc ) fprintf(stderr, " instr2 == %s \n", instr2->_ident ? instr2->_ident : " "); 4285 if ( instr2->_matrule != NULL 4286 && (instr != instr2 ) // Skip self 4287 && (instr2->reduce_result() != NULL) // want same result 4288 && (strcmp(result, instr2->reduce_result()) == 0)) { 4289 MatchRule &mrule2 = *instr2->_matrule; 4290 Predicate *pred2 = instr2->build_predicate(); 4291 found_cisc_alternate = instr->cisc_spills_to(*this, instr2); 4292 } 4293 } 4294 } 4295 } 4296 } 4297 4298 //---------------------------build_cisc_spilling------------------------------- 4299 // Get info for the CISC_oracle and MachNode::cisc_version() 4300 void ArchDesc::build_cisc_spill_instructions(FILE *fp_hpp, FILE *fp_cpp) { 4301 // Output the table for cisc spilling 4302 fprintf(fp_cpp, "// The following instructions can cisc-spill\n"); 4303 _instructions.reset(); 4304 InstructForm *inst = NULL; 4305 for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) { 4306 // Ensure this is a machine-world instruction 4307 if ( inst->ideal_only() ) continue; 4308 const char *inst_name = inst->_ident; 4309 int operand = inst->cisc_spill_operand(); 4310 if( operand != AdlcVMDeps::Not_cisc_spillable ) { 4311 InstructForm *inst2 = inst->cisc_spill_alternate(); 4312 fprintf(fp_cpp, "// %s can cisc-spill operand %d to %s\n", inst->_ident, operand, inst2->_ident); 4313 } 4314 } 4315 fprintf(fp_cpp, "\n\n"); 4316 } 4317 4318 //---------------------------identify_short_branches---------------------------- 4319 // Get info for our short branch replacement oracle. 4320 void ArchDesc::identify_short_branches() { 4321 // Walk over all instructions, checking to see if they match a short 4322 // branching alternate. 4323 _instructions.reset(); 4324 InstructForm *instr; 4325 while( (instr = (InstructForm*)_instructions.iter()) != NULL ) { 4326 // The instruction must have a match rule. 4327 if (instr->_matrule != NULL && 4328 instr->is_short_branch()) { 4329 4330 _instructions.reset2(); 4331 InstructForm *instr2; 4332 while( (instr2 = (InstructForm*)_instructions.iter2()) != NULL ) { 4333 instr2->check_branch_variant(*this, instr); 4334 } 4335 } 4336 } 4337 } 4338 4339 4340 //---------------------------identify_unique_operands--------------------------- 4341 // Identify unique operands. 4342 void ArchDesc::identify_unique_operands() { 4343 // Walk over all instructions. 4344 _instructions.reset(); 4345 InstructForm *instr; 4346 while( (instr = (InstructForm*)_instructions.iter()) != NULL ) { 4347 // Ensure this is a machine-world instruction 4348 if (!instr->ideal_only()) { 4349 instr->set_unique_opnds(); 4350 } 4351 } 4352 }