1 /* 2 * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 // output_h.cpp - Class HPP file output routines for architecture definition 26 #include "adlc.hpp" 27 28 // The comment delimiter used in format statements after assembler instructions. 29 #if defined(PPC64) 30 #define commentSeperator "\t//" 31 #else 32 #define commentSeperator "!" 33 #endif 34 35 // Generate the #define that describes the number of registers. 36 static void defineRegCount(FILE *fp, RegisterForm *registers) { 37 if (registers) { 38 int regCount = AdlcVMDeps::Physical + registers->_rdefs.count(); 39 fprintf(fp,"\n"); 40 fprintf(fp,"// the number of reserved registers + machine registers.\n"); 41 fprintf(fp,"#define REG_COUNT %d\n", regCount); 42 } 43 } 44 45 // Output enumeration of machine register numbers 46 // (1) 47 // // Enumerate machine registers starting after reserved regs. 48 // // in the order of occurrence in the register block. 49 // enum MachRegisterNumbers { 50 // EAX_num = 0, 51 // ... 52 // _last_Mach_Reg 53 // } 54 void ArchDesc::buildMachRegisterNumbers(FILE *fp_hpp) { 55 if (_register) { 56 RegDef *reg_def = NULL; 57 58 // Output a #define for the number of machine registers 59 defineRegCount(fp_hpp, _register); 60 61 // Count all the Save_On_Entry and Always_Save registers 62 int saved_on_entry = 0; 63 int c_saved_on_entry = 0; 64 _register->reset_RegDefs(); 65 while( (reg_def = _register->iter_RegDefs()) != NULL ) { 66 if( strcmp(reg_def->_callconv,"SOE") == 0 || 67 strcmp(reg_def->_callconv,"AS") == 0 ) ++saved_on_entry; 68 if( strcmp(reg_def->_c_conv,"SOE") == 0 || 69 strcmp(reg_def->_c_conv,"AS") == 0 ) ++c_saved_on_entry; 70 } 71 fprintf(fp_hpp, "\n"); 72 fprintf(fp_hpp, "// the number of save_on_entry + always_saved registers.\n"); 73 fprintf(fp_hpp, "#define MAX_SAVED_ON_ENTRY_REG_COUNT %d\n", max(saved_on_entry,c_saved_on_entry)); 74 fprintf(fp_hpp, "#define SAVED_ON_ENTRY_REG_COUNT %d\n", saved_on_entry); 75 fprintf(fp_hpp, "#define C_SAVED_ON_ENTRY_REG_COUNT %d\n", c_saved_on_entry); 76 77 // (1) 78 // Build definition for enumeration of register numbers 79 fprintf(fp_hpp, "\n"); 80 fprintf(fp_hpp, "// Enumerate machine register numbers starting after reserved regs.\n"); 81 fprintf(fp_hpp, "// in the order of occurrence in the register block.\n"); 82 fprintf(fp_hpp, "enum MachRegisterNumbers {\n"); 83 84 // Output the register number for each register in the allocation classes 85 _register->reset_RegDefs(); 86 int i = 0; 87 while( (reg_def = _register->iter_RegDefs()) != NULL ) { 88 fprintf(fp_hpp," %s_num,", reg_def->_regname); 89 for (int j = 0; j < 20-(int)strlen(reg_def->_regname); j++) fprintf(fp_hpp, " "); 90 fprintf(fp_hpp," // enum %3d, regnum %3d, reg encode %3s\n", 91 i++, 92 reg_def->register_num(), 93 reg_def->register_encode()); 94 } 95 // Finish defining enumeration 96 fprintf(fp_hpp, " _last_Mach_Reg // %d\n", i); 97 fprintf(fp_hpp, "};\n"); 98 } 99 100 fprintf(fp_hpp, "\n// Size of register-mask in ints\n"); 101 fprintf(fp_hpp, "#define RM_SIZE %d\n",RegisterForm::RegMask_Size()); 102 fprintf(fp_hpp, "// Unroll factor for loops over the data in a RegMask\n"); 103 fprintf(fp_hpp, "#define FORALL_BODY "); 104 int len = RegisterForm::RegMask_Size(); 105 for( int i = 0; i < len; i++ ) 106 fprintf(fp_hpp, "BODY(%d) ",i); 107 fprintf(fp_hpp, "\n\n"); 108 109 fprintf(fp_hpp,"class RegMask;\n"); 110 // All RegMasks are declared "extern const ..." in ad_<arch>.hpp 111 // fprintf(fp_hpp,"extern RegMask STACK_OR_STACK_SLOTS_mask;\n\n"); 112 } 113 114 115 // Output enumeration of machine register encodings 116 // (2) 117 // // Enumerate machine registers starting after reserved regs. 118 // // in the order of occurrence in the alloc_class(es). 119 // enum MachRegisterEncodes { 120 // EAX_enc = 0x00, 121 // ... 122 // } 123 void ArchDesc::buildMachRegisterEncodes(FILE *fp_hpp) { 124 if (_register) { 125 RegDef *reg_def = NULL; 126 RegDef *reg_def_next = NULL; 127 128 // (2) 129 // Build definition for enumeration of encode values 130 fprintf(fp_hpp, "\n"); 131 fprintf(fp_hpp, "// Enumerate machine registers starting after reserved regs.\n"); 132 fprintf(fp_hpp, "// in the order of occurrence in the alloc_class(es).\n"); 133 fprintf(fp_hpp, "enum MachRegisterEncodes {\n"); 134 135 // Find max enum string length. 136 size_t maxlen = 0; 137 _register->reset_RegDefs(); 138 reg_def = _register->iter_RegDefs(); 139 while (reg_def != NULL) { 140 size_t len = strlen(reg_def->_regname); 141 if (len > maxlen) maxlen = len; 142 reg_def = _register->iter_RegDefs(); 143 } 144 145 // Output the register encoding for each register in the allocation classes 146 _register->reset_RegDefs(); 147 reg_def_next = _register->iter_RegDefs(); 148 while( (reg_def = reg_def_next) != NULL ) { 149 reg_def_next = _register->iter_RegDefs(); 150 fprintf(fp_hpp," %s_enc", reg_def->_regname); 151 for (size_t i = strlen(reg_def->_regname); i < maxlen; i++) fprintf(fp_hpp, " "); 152 fprintf(fp_hpp," = %3s%s\n", reg_def->register_encode(), reg_def_next == NULL? "" : "," ); 153 } 154 // Finish defining enumeration 155 fprintf(fp_hpp, "};\n"); 156 157 } // Done with register form 158 } 159 160 161 // Declare an array containing the machine register names, strings. 162 static void declareRegNames(FILE *fp, RegisterForm *registers) { 163 if (registers) { 164 // fprintf(fp,"\n"); 165 // fprintf(fp,"// An array of character pointers to machine register names.\n"); 166 // fprintf(fp,"extern const char *regName[];\n"); 167 } 168 } 169 170 // Declare an array containing the machine register sizes in 32-bit words. 171 void ArchDesc::declareRegSizes(FILE *fp) { 172 // regSize[] is not used 173 } 174 175 // Declare an array containing the machine register encoding values 176 static void declareRegEncodes(FILE *fp, RegisterForm *registers) { 177 if (registers) { 178 // // // 179 // fprintf(fp,"\n"); 180 // fprintf(fp,"// An array containing the machine register encode values\n"); 181 // fprintf(fp,"extern const char regEncode[];\n"); 182 } 183 } 184 185 186 // --------------------------------------------------------------------------- 187 //------------------------------Utilities to build Instruction Classes-------- 188 // --------------------------------------------------------------------------- 189 static void out_RegMask(FILE *fp) { 190 fprintf(fp," virtual const RegMask &out_RegMask() const;\n"); 191 } 192 193 // --------------------------------------------------------------------------- 194 //--------Utilities to build MachOper and MachNode derived Classes------------ 195 // --------------------------------------------------------------------------- 196 197 //------------------------------Utilities to build Operand Classes------------ 198 static void in_RegMask(FILE *fp) { 199 fprintf(fp," virtual const RegMask *in_RegMask(int index) const;\n"); 200 } 201 202 static void declareConstStorage(FILE *fp, FormDict &globals, OperandForm *oper) { 203 int i = 0; 204 Component *comp; 205 206 if (oper->num_consts(globals) == 0) return; 207 // Iterate over the component list looking for constants 208 oper->_components.reset(); 209 if ((comp = oper->_components.iter()) == NULL) { 210 assert(oper->num_consts(globals) == 1, "Bad component list detected.\n"); 211 const char *type = oper->ideal_type(globals); 212 if (!strcmp(type, "ConI")) { 213 if (i > 0) fprintf(fp,", "); 214 fprintf(fp," int32 _c%d;\n", i); 215 } 216 else if (!strcmp(type, "ConP")) { 217 if (i > 0) fprintf(fp,", "); 218 fprintf(fp," const TypePtr *_c%d;\n", i); 219 } 220 else if (!strcmp(type, "ConN")) { 221 if (i > 0) fprintf(fp,", "); 222 fprintf(fp," const TypeNarrowOop *_c%d;\n", i); 223 } 224 else if (!strcmp(type, "ConNKlass")) { 225 if (i > 0) fprintf(fp,", "); 226 fprintf(fp," const TypeNarrowKlass *_c%d;\n", i); 227 } 228 else if (!strcmp(type, "ConL")) { 229 if (i > 0) fprintf(fp,", "); 230 fprintf(fp," jlong _c%d;\n", i); 231 } 232 else if (!strcmp(type, "ConF")) { 233 if (i > 0) fprintf(fp,", "); 234 fprintf(fp," jfloat _c%d;\n", i); 235 } 236 else if (!strcmp(type, "ConD")) { 237 if (i > 0) fprintf(fp,", "); 238 fprintf(fp," jdouble _c%d;\n", i); 239 } 240 else if (!strcmp(type, "Bool")) { 241 fprintf(fp,"private:\n"); 242 fprintf(fp," BoolTest::mask _c%d;\n", i); 243 fprintf(fp,"public:\n"); 244 } 245 else { 246 assert(0, "Non-constant operand lacks component list."); 247 } 248 } // end if NULL 249 else { 250 oper->_components.reset(); 251 while ((comp = oper->_components.iter()) != NULL) { 252 if (!strcmp(comp->base_type(globals), "ConI")) { 253 fprintf(fp," jint _c%d;\n", i); 254 i++; 255 } 256 else if (!strcmp(comp->base_type(globals), "ConP")) { 257 fprintf(fp," const TypePtr *_c%d;\n", i); 258 i++; 259 } 260 else if (!strcmp(comp->base_type(globals), "ConN")) { 261 fprintf(fp," const TypePtr *_c%d;\n", i); 262 i++; 263 } 264 else if (!strcmp(comp->base_type(globals), "ConNKlass")) { 265 fprintf(fp," const TypePtr *_c%d;\n", i); 266 i++; 267 } 268 else if (!strcmp(comp->base_type(globals), "ConL")) { 269 fprintf(fp," jlong _c%d;\n", i); 270 i++; 271 } 272 else if (!strcmp(comp->base_type(globals), "ConF")) { 273 fprintf(fp," jfloat _c%d;\n", i); 274 i++; 275 } 276 else if (!strcmp(comp->base_type(globals), "ConD")) { 277 fprintf(fp," jdouble _c%d;\n", i); 278 i++; 279 } 280 } 281 } 282 } 283 284 // Declare constructor. 285 // Parameters start with condition code, then all other constants 286 // 287 // (0) public: 288 // (1) MachXOper(int32 ccode, int32 c0, int32 c1, ..., int32 cn) 289 // (2) : _ccode(ccode), _c0(c0), _c1(c1), ..., _cn(cn) { } 290 // 291 static void defineConstructor(FILE *fp, const char *name, uint num_consts, 292 ComponentList &lst, bool is_ideal_bool, 293 Form::DataType constant_type, FormDict &globals) { 294 fprintf(fp,"public:\n"); 295 // generate line (1) 296 fprintf(fp," %sOper(", name); 297 if( num_consts == 0 ) { 298 fprintf(fp,") {}\n"); 299 return; 300 } 301 302 // generate parameters for constants 303 uint i = 0; 304 Component *comp; 305 lst.reset(); 306 if ((comp = lst.iter()) == NULL) { 307 assert(num_consts == 1, "Bad component list detected.\n"); 308 switch( constant_type ) { 309 case Form::idealI : { 310 fprintf(fp,is_ideal_bool ? "BoolTest::mask c%d" : "int32 c%d", i); 311 break; 312 } 313 case Form::idealN : { fprintf(fp,"const TypeNarrowOop *c%d", i); break; } 314 case Form::idealNKlass : { fprintf(fp,"const TypeNarrowKlass *c%d", i); break; } 315 case Form::idealP : { fprintf(fp,"const TypePtr *c%d", i); break; } 316 case Form::idealL : { fprintf(fp,"jlong c%d", i); break; } 317 case Form::idealF : { fprintf(fp,"jfloat c%d", i); break; } 318 case Form::idealD : { fprintf(fp,"jdouble c%d", i); break; } 319 default: 320 assert(!is_ideal_bool, "Non-constant operand lacks component list."); 321 break; 322 } 323 } // end if NULL 324 else { 325 lst.reset(); 326 while((comp = lst.iter()) != NULL) { 327 if (!strcmp(comp->base_type(globals), "ConI")) { 328 if (i > 0) fprintf(fp,", "); 329 fprintf(fp,"int32 c%d", i); 330 i++; 331 } 332 else if (!strcmp(comp->base_type(globals), "ConP")) { 333 if (i > 0) fprintf(fp,", "); 334 fprintf(fp,"const TypePtr *c%d", i); 335 i++; 336 } 337 else if (!strcmp(comp->base_type(globals), "ConN")) { 338 if (i > 0) fprintf(fp,", "); 339 fprintf(fp,"const TypePtr *c%d", i); 340 i++; 341 } 342 else if (!strcmp(comp->base_type(globals), "ConNKlass")) { 343 if (i > 0) fprintf(fp,", "); 344 fprintf(fp,"const TypePtr *c%d", i); 345 i++; 346 } 347 else if (!strcmp(comp->base_type(globals), "ConL")) { 348 if (i > 0) fprintf(fp,", "); 349 fprintf(fp,"jlong c%d", i); 350 i++; 351 } 352 else if (!strcmp(comp->base_type(globals), "ConF")) { 353 if (i > 0) fprintf(fp,", "); 354 fprintf(fp,"jfloat c%d", i); 355 i++; 356 } 357 else if (!strcmp(comp->base_type(globals), "ConD")) { 358 if (i > 0) fprintf(fp,", "); 359 fprintf(fp,"jdouble c%d", i); 360 i++; 361 } 362 else if (!strcmp(comp->base_type(globals), "Bool")) { 363 if (i > 0) fprintf(fp,", "); 364 fprintf(fp,"BoolTest::mask c%d", i); 365 i++; 366 } 367 } 368 } 369 // finish line (1) and start line (2) 370 fprintf(fp,") : "); 371 // generate initializers for constants 372 i = 0; 373 fprintf(fp,"_c%d(c%d)", i, i); 374 for( i = 1; i < num_consts; ++i) { 375 fprintf(fp,", _c%d(c%d)", i, i); 376 } 377 // The body for the constructor is empty 378 fprintf(fp," {}\n"); 379 } 380 381 // --------------------------------------------------------------------------- 382 // Utilities to generate format rules for machine operands and instructions 383 // --------------------------------------------------------------------------- 384 385 // Generate the format rule for condition codes 386 static void defineCCodeDump(OperandForm* oper, FILE *fp, int i) { 387 assert(oper != NULL, "what"); 388 CondInterface* cond = oper->_interface->is_CondInterface(); 389 fprintf(fp, " if( _c%d == BoolTest::eq ) st->print_raw(\"%s\");\n",i,cond->_equal_format); 390 fprintf(fp, " else if( _c%d == BoolTest::ne ) st->print_raw(\"%s\");\n",i,cond->_not_equal_format); 391 fprintf(fp, " else if( _c%d == BoolTest::le ) st->print_raw(\"%s\");\n",i,cond->_less_equal_format); 392 fprintf(fp, " else if( _c%d == BoolTest::ge ) st->print_raw(\"%s\");\n",i,cond->_greater_equal_format); 393 fprintf(fp, " else if( _c%d == BoolTest::lt ) st->print_raw(\"%s\");\n",i,cond->_less_format); 394 fprintf(fp, " else if( _c%d == BoolTest::gt ) st->print_raw(\"%s\");\n",i,cond->_greater_format); 395 fprintf(fp, " else if( _c%d == BoolTest::overflow ) st->print_raw(\"%s\");\n",i,cond->_overflow_format); 396 fprintf(fp, " else if( _c%d == BoolTest::no_overflow ) st->print_raw(\"%s\");\n",i,cond->_no_overflow_format); 397 } 398 399 // Output code that dumps constant values, increment "i" if type is constant 400 static uint dump_spec_constant(FILE *fp, const char *ideal_type, uint i, OperandForm* oper) { 401 if (!strcmp(ideal_type, "ConI")) { 402 fprintf(fp," st->print(\"#%%d\", _c%d);\n", i); 403 fprintf(fp," st->print(\"/0x%%08x\", _c%d);\n", i); 404 ++i; 405 } 406 else if (!strcmp(ideal_type, "ConP")) { 407 fprintf(fp," _c%d->dump_on(st);\n", i); 408 ++i; 409 } 410 else if (!strcmp(ideal_type, "ConN")) { 411 fprintf(fp," _c%d->dump_on(st);\n", i); 412 ++i; 413 } 414 else if (!strcmp(ideal_type, "ConNKlass")) { 415 fprintf(fp," _c%d->dump_on(st);\n", i); 416 ++i; 417 } 418 else if (!strcmp(ideal_type, "ConL")) { 419 fprintf(fp," st->print(\"#\" INT64_FORMAT, (int64_t)_c%d);\n", i); 420 fprintf(fp," st->print(\"/\" PTR64_FORMAT, (uint64_t)_c%d);\n", i); 421 ++i; 422 } 423 else if (!strcmp(ideal_type, "ConF")) { 424 fprintf(fp," st->print(\"#%%f\", _c%d);\n", i); 425 fprintf(fp," jint _c%di = JavaValue(_c%d).get_jint();\n", i, i); 426 fprintf(fp," st->print(\"/0x%%x/\", _c%di);\n", i); 427 ++i; 428 } 429 else if (!strcmp(ideal_type, "ConD")) { 430 fprintf(fp," st->print(\"#%%f\", _c%d);\n", i); 431 fprintf(fp," jlong _c%dl = JavaValue(_c%d).get_jlong();\n", i, i); 432 fprintf(fp," st->print(\"/\" PTR64_FORMAT, (uint64_t)_c%dl);\n", i); 433 ++i; 434 } 435 else if (!strcmp(ideal_type, "Bool")) { 436 defineCCodeDump(oper, fp,i); 437 ++i; 438 } 439 440 return i; 441 } 442 443 // Generate the format rule for an operand 444 void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file = false) { 445 if (!for_c_file) { 446 // invoked after output #ifndef PRODUCT to ad_<arch>.hpp 447 // compile the bodies separately, to cut down on recompilations 448 fprintf(fp," virtual void int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const;\n"); 449 fprintf(fp," virtual void ext_format(PhaseRegAlloc *ra, const MachNode *node, int idx, outputStream *st) const;\n"); 450 return; 451 } 452 453 // Local pointer indicates remaining part of format rule 454 int idx = 0; // position of operand in match rule 455 456 // Generate internal format function, used when stored locally 457 fprintf(fp, "\n#ifndef PRODUCT\n"); 458 fprintf(fp,"void %sOper::int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const {\n", oper._ident); 459 // Generate the user-defined portion of the format 460 if (oper._format) { 461 if ( oper._format->_strings.count() != 0 ) { 462 // No initialization code for int_format 463 464 // Build the format from the entries in strings and rep_vars 465 const char *string = NULL; 466 oper._format->_rep_vars.reset(); 467 oper._format->_strings.reset(); 468 while ( (string = oper._format->_strings.iter()) != NULL ) { 469 470 // Check if this is a standard string or a replacement variable 471 if ( string != NameList::_signal ) { 472 // Normal string 473 // Pass through to st->print 474 fprintf(fp," st->print_raw(\"%s\");\n", string); 475 } else { 476 // Replacement variable 477 const char *rep_var = oper._format->_rep_vars.iter(); 478 // Check that it is a local name, and an operand 479 const Form* form = oper._localNames[rep_var]; 480 if (form == NULL) { 481 globalAD->syntax_err(oper._linenum, 482 "\'%s\' not found in format for %s\n", rep_var, oper._ident); 483 assert(form, "replacement variable was not found in local names"); 484 } 485 OperandForm *op = form->is_operand(); 486 // Get index if register or constant 487 if ( op->_matrule && op->_matrule->is_base_register(globals) ) { 488 idx = oper.register_position( globals, rep_var); 489 } 490 else if (op->_matrule && op->_matrule->is_base_constant(globals)) { 491 idx = oper.constant_position( globals, rep_var); 492 } else { 493 idx = 0; 494 } 495 496 // output invocation of "$..."s format function 497 if ( op != NULL ) op->int_format(fp, globals, idx); 498 499 if ( idx == -1 ) { 500 fprintf(stderr, 501 "Using a name, %s, that isn't in match rule\n", rep_var); 502 assert( strcmp(op->_ident,"label")==0, "Unimplemented"); 503 } 504 } // Done with a replacement variable 505 } // Done with all format strings 506 } else { 507 // Default formats for base operands (RegI, RegP, ConI, ConP, ...) 508 oper.int_format(fp, globals, 0); 509 } 510 511 } else { // oper._format == NULL 512 // Provide a few special case formats where the AD writer cannot. 513 if ( strcmp(oper._ident,"Universe")==0 ) { 514 fprintf(fp, " st->print(\"$$univ\");\n"); 515 } 516 // labelOper::int_format is defined in ad_<...>.cpp 517 } 518 // ALWAYS! Provide a special case output for condition codes. 519 if( oper.is_ideal_bool() ) { 520 defineCCodeDump(&oper, fp,0); 521 } 522 fprintf(fp,"}\n"); 523 524 // Generate external format function, when data is stored externally 525 fprintf(fp,"void %sOper::ext_format(PhaseRegAlloc *ra, const MachNode *node, int idx, outputStream *st) const {\n", oper._ident); 526 // Generate the user-defined portion of the format 527 if (oper._format) { 528 if ( oper._format->_strings.count() != 0 ) { 529 530 // Check for a replacement string "$..." 531 if ( oper._format->_rep_vars.count() != 0 ) { 532 // Initialization code for ext_format 533 } 534 535 // Build the format from the entries in strings and rep_vars 536 const char *string = NULL; 537 oper._format->_rep_vars.reset(); 538 oper._format->_strings.reset(); 539 while ( (string = oper._format->_strings.iter()) != NULL ) { 540 541 // Check if this is a standard string or a replacement variable 542 if ( string != NameList::_signal ) { 543 // Normal string 544 // Pass through to st->print 545 fprintf(fp," st->print_raw(\"%s\");\n", string); 546 } else { 547 // Replacement variable 548 const char *rep_var = oper._format->_rep_vars.iter(); 549 // Check that it is a local name, and an operand 550 const Form* form = oper._localNames[rep_var]; 551 if (form == NULL) { 552 globalAD->syntax_err(oper._linenum, 553 "\'%s\' not found in format for %s\n", rep_var, oper._ident); 554 assert(form, "replacement variable was not found in local names"); 555 } 556 OperandForm *op = form->is_operand(); 557 // Get index if register or constant 558 if ( op->_matrule && op->_matrule->is_base_register(globals) ) { 559 idx = oper.register_position( globals, rep_var); 560 } 561 else if (op->_matrule && op->_matrule->is_base_constant(globals)) { 562 idx = oper.constant_position( globals, rep_var); 563 } else { 564 idx = 0; 565 } 566 // output invocation of "$..."s format function 567 if ( op != NULL ) op->ext_format(fp, globals, idx); 568 569 // Lookup the index position of the replacement variable 570 idx = oper._components.operand_position_format(rep_var, &oper); 571 if ( idx == -1 ) { 572 fprintf(stderr, 573 "Using a name, %s, that isn't in match rule\n", rep_var); 574 assert( strcmp(op->_ident,"label")==0, "Unimplemented"); 575 } 576 } // Done with a replacement variable 577 } // Done with all format strings 578 579 } else { 580 // Default formats for base operands (RegI, RegP, ConI, ConP, ...) 581 oper.ext_format(fp, globals, 0); 582 } 583 } else { // oper._format == NULL 584 // Provide a few special case formats where the AD writer cannot. 585 if ( strcmp(oper._ident,"Universe")==0 ) { 586 fprintf(fp, " st->print(\"$$univ\");\n"); 587 } 588 // labelOper::ext_format is defined in ad_<...>.cpp 589 } 590 // ALWAYS! Provide a special case output for condition codes. 591 if( oper.is_ideal_bool() ) { 592 defineCCodeDump(&oper, fp,0); 593 } 594 fprintf(fp, "}\n"); 595 fprintf(fp, "#endif\n"); 596 } 597 598 599 // Generate the format rule for an instruction 600 void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &inst, bool for_c_file = false) { 601 if (!for_c_file) { 602 // compile the bodies separately, to cut down on recompilations 603 // #ifndef PRODUCT region generated by caller 604 fprintf(fp," virtual void format(PhaseRegAlloc *ra, outputStream *st) const;\n"); 605 return; 606 } 607 608 // Define the format function 609 fprintf(fp, "#ifndef PRODUCT\n"); 610 fprintf(fp, "void %sNode::format(PhaseRegAlloc *ra, outputStream *st) const {\n", inst._ident); 611 612 // Generate the user-defined portion of the format 613 if( inst._format ) { 614 // If there are replacement variables, 615 // Generate index values needed for determining the operand position 616 if( inst._format->_rep_vars.count() ) 617 inst.index_temps(fp, globals); 618 619 // Build the format from the entries in strings and rep_vars 620 const char *string = NULL; 621 inst._format->_rep_vars.reset(); 622 inst._format->_strings.reset(); 623 while( (string = inst._format->_strings.iter()) != NULL ) { 624 fprintf(fp," "); 625 // Check if this is a standard string or a replacement variable 626 if( string == NameList::_signal ) { // Replacement variable 627 const char* rep_var = inst._format->_rep_vars.iter(); 628 inst.rep_var_format( fp, rep_var); 629 } else if( string == NameList::_signal3 ) { // Replacement variable in raw text 630 const char* rep_var = inst._format->_rep_vars.iter(); 631 const Form *form = inst._localNames[rep_var]; 632 if (form == NULL) { 633 fprintf(stderr, "unknown replacement variable in format statement: '%s'\n", rep_var); 634 assert(false, "ShouldNotReachHere()"); 635 } 636 OpClassForm *opc = form->is_opclass(); 637 assert( opc, "replacement variable was not found in local names"); 638 // Lookup the index position of the replacement variable 639 int idx = inst.operand_position_format(rep_var); 640 if ( idx == -1 ) { 641 assert( strcmp(opc->_ident,"label")==0, "Unimplemented"); 642 assert( false, "ShouldNotReachHere()"); 643 } 644 645 if (inst.is_noninput_operand(idx)) { 646 assert( false, "ShouldNotReachHere()"); 647 } else { 648 // Output the format call for this operand 649 fprintf(fp,"opnd_array(%d)",idx); 650 } 651 rep_var = inst._format->_rep_vars.iter(); 652 inst._format->_strings.iter(); 653 if ( strcmp(rep_var,"$constant") == 0 && opc->is_operand()) { 654 Form::DataType constant_type = form->is_operand()->is_base_constant(globals); 655 if ( constant_type == Form::idealD ) { 656 fprintf(fp,"->constantD()"); 657 } else if ( constant_type == Form::idealF ) { 658 fprintf(fp,"->constantF()"); 659 } else if ( constant_type == Form::idealL ) { 660 fprintf(fp,"->constantL()"); 661 } else { 662 fprintf(fp,"->constant()"); 663 } 664 } else if ( strcmp(rep_var,"$cmpcode") == 0) { 665 fprintf(fp,"->ccode()"); 666 } else { 667 assert( false, "ShouldNotReachHere()"); 668 } 669 } else if( string == NameList::_signal2 ) // Raw program text 670 fputs(inst._format->_strings.iter(), fp); 671 else 672 fprintf(fp,"st->print_raw(\"%s\");\n", string); 673 } // Done with all format strings 674 } // Done generating the user-defined portion of the format 675 676 // Add call debug info automatically 677 Form::CallType call_type = inst.is_ideal_call(); 678 if( call_type != Form::invalid_type ) { 679 switch( call_type ) { 680 case Form::JAVA_DYNAMIC: 681 fprintf(fp," _method->print_short_name(st);\n"); 682 break; 683 case Form::JAVA_STATIC: 684 fprintf(fp," if( _method ) _method->print_short_name(st);\n"); 685 fprintf(fp," else st->print(\" wrapper for: %%s\", _name);\n"); 686 fprintf(fp," if( !_method ) dump_trap_args(st);\n"); 687 break; 688 case Form::JAVA_COMPILED: 689 case Form::JAVA_INTERP: 690 break; 691 case Form::JAVA_RUNTIME: 692 case Form::JAVA_LEAF: 693 case Form::JAVA_NATIVE: 694 fprintf(fp," st->print(\" %%s\", _name);"); 695 break; 696 default: 697 assert(0,"ShouldNotReachHere"); 698 } 699 fprintf(fp, " st->cr();\n" ); 700 fprintf(fp, " if (_jvms) _jvms->format(ra, this, st); else st->print_cr(\" No JVM State Info\");\n" ); 701 fprintf(fp, " st->print(\" # \");\n" ); 702 fprintf(fp, " if( _jvms && _oop_map ) _oop_map->print_on(st);\n"); 703 } 704 else if(inst.is_ideal_safepoint()) { 705 fprintf(fp, " st->print_raw(\"\");\n" ); 706 fprintf(fp, " if (_jvms) _jvms->format(ra, this, st); else st->print_cr(\" No JVM State Info\");\n" ); 707 fprintf(fp, " st->print(\" # \");\n" ); 708 fprintf(fp, " if( _jvms && _oop_map ) _oop_map->print_on(st);\n"); 709 } 710 else if( inst.is_ideal_if() ) { 711 fprintf(fp, " st->print(\" P=%%f C=%%f\",_prob,_fcnt);\n" ); 712 } 713 else if( inst.is_ideal_mem() ) { 714 // Print out the field name if available to improve readability 715 fprintf(fp, " if (ra->C->alias_type(adr_type())->field() != NULL) {\n"); 716 fprintf(fp, " ciField* f = ra->C->alias_type(adr_type())->field();\n"); 717 fprintf(fp, " st->print(\" %s Field: \");\n", commentSeperator); 718 fprintf(fp, " if (f->is_volatile())\n"); 719 fprintf(fp, " st->print(\"volatile \");\n"); 720 fprintf(fp, " f->holder()->name()->print_symbol_on(st);\n"); 721 fprintf(fp, " st->print(\".\");\n"); 722 fprintf(fp, " f->name()->print_symbol_on(st);\n"); 723 fprintf(fp, " if (f->is_constant())\n"); 724 fprintf(fp, " st->print(\" (constant)\");\n"); 725 fprintf(fp, " } else {\n"); 726 // Make sure 'Volatile' gets printed out 727 fprintf(fp, " if (ra->C->alias_type(adr_type())->is_volatile())\n"); 728 fprintf(fp, " st->print(\" volatile!\");\n"); 729 fprintf(fp, " }\n"); 730 } 731 732 // Complete the definition of the format function 733 fprintf(fp, "}\n#endif\n"); 734 } 735 736 void ArchDesc::declare_pipe_classes(FILE *fp_hpp) { 737 if (!_pipeline) 738 return; 739 740 fprintf(fp_hpp, "\n"); 741 fprintf(fp_hpp, "// Pipeline_Use_Cycle_Mask Class\n"); 742 fprintf(fp_hpp, "class Pipeline_Use_Cycle_Mask {\n"); 743 744 if (_pipeline->_maxcycleused <= 745 #ifdef SPARC 746 64 747 #else 748 32 749 #endif 750 ) { 751 fprintf(fp_hpp, "protected:\n"); 752 fprintf(fp_hpp, " %s _mask;\n\n", _pipeline->_maxcycleused <= 32 ? "uint" : "uint64_t" ); 753 fprintf(fp_hpp, "public:\n"); 754 fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask() : _mask(0) {}\n\n"); 755 if (_pipeline->_maxcycleused <= 32) 756 fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask(uint mask) : _mask(mask) {}\n\n"); 757 else { 758 fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask(uint mask1, uint mask2) : _mask((((uint64_t)mask1) << 32) | mask2) {}\n\n"); 759 fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask(uint64_t mask) : _mask(mask) {}\n\n"); 760 } 761 fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask& operator=(const Pipeline_Use_Cycle_Mask &in) {\n"); 762 fprintf(fp_hpp, " _mask = in._mask;\n"); 763 fprintf(fp_hpp, " return *this;\n"); 764 fprintf(fp_hpp, " }\n\n"); 765 fprintf(fp_hpp, " bool overlaps(const Pipeline_Use_Cycle_Mask &in2) const {\n"); 766 fprintf(fp_hpp, " return ((_mask & in2._mask) != 0);\n"); 767 fprintf(fp_hpp, " }\n\n"); 768 fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask& operator<<=(int n) {\n"); 769 fprintf(fp_hpp, " _mask <<= n;\n"); 770 fprintf(fp_hpp, " return *this;\n"); 771 fprintf(fp_hpp, " }\n\n"); 772 fprintf(fp_hpp, " void Or(const Pipeline_Use_Cycle_Mask &in2) {\n"); 773 fprintf(fp_hpp, " _mask |= in2._mask;\n"); 774 fprintf(fp_hpp, " }\n\n"); 775 fprintf(fp_hpp, " friend Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n"); 776 fprintf(fp_hpp, " friend Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n\n"); 777 } 778 else { 779 fprintf(fp_hpp, "protected:\n"); 780 uint masklen = (_pipeline->_maxcycleused + 31) >> 5; 781 uint l; 782 fprintf(fp_hpp, " uint "); 783 for (l = 1; l <= masklen; l++) 784 fprintf(fp_hpp, "_mask%d%s", l, l < masklen ? ", " : ";\n\n"); 785 fprintf(fp_hpp, "public:\n"); 786 fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask() : "); 787 for (l = 1; l <= masklen; l++) 788 fprintf(fp_hpp, "_mask%d(0)%s", l, l < masklen ? ", " : " {}\n\n"); 789 fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask("); 790 for (l = 1; l <= masklen; l++) 791 fprintf(fp_hpp, "uint mask%d%s", l, l < masklen ? ", " : ") : "); 792 for (l = 1; l <= masklen; l++) 793 fprintf(fp_hpp, "_mask%d(mask%d)%s", l, l, l < masklen ? ", " : " {}\n\n"); 794 795 fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask& operator=(const Pipeline_Use_Cycle_Mask &in) {\n"); 796 for (l = 1; l <= masklen; l++) 797 fprintf(fp_hpp, " _mask%d = in._mask%d;\n", l, l); 798 fprintf(fp_hpp, " return *this;\n"); 799 fprintf(fp_hpp, " }\n\n"); 800 fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask intersect(const Pipeline_Use_Cycle_Mask &in2) {\n"); 801 fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask out;\n"); 802 for (l = 1; l <= masklen; l++) 803 fprintf(fp_hpp, " out._mask%d = _mask%d & in2._mask%d;\n", l, l, l); 804 fprintf(fp_hpp, " return out;\n"); 805 fprintf(fp_hpp, " }\n\n"); 806 fprintf(fp_hpp, " bool overlaps(const Pipeline_Use_Cycle_Mask &in2) const {\n"); 807 fprintf(fp_hpp, " return ("); 808 for (l = 1; l <= masklen; l++) 809 fprintf(fp_hpp, "((_mask%d & in2._mask%d) != 0)%s", l, l, l < masklen ? " || " : ""); 810 fprintf(fp_hpp, ") ? true : false;\n"); 811 fprintf(fp_hpp, " }\n\n"); 812 fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask& operator<<=(int n) {\n"); 813 fprintf(fp_hpp, " if (n >= 32)\n"); 814 fprintf(fp_hpp, " do {\n "); 815 for (l = masklen; l > 1; l--) 816 fprintf(fp_hpp, " _mask%d = _mask%d;", l, l-1); 817 fprintf(fp_hpp, " _mask%d = 0;\n", 1); 818 fprintf(fp_hpp, " } while ((n -= 32) >= 32);\n\n"); 819 fprintf(fp_hpp, " if (n > 0) {\n"); 820 fprintf(fp_hpp, " uint m = 32 - n;\n"); 821 fprintf(fp_hpp, " uint mask = (1 << n) - 1;\n"); 822 fprintf(fp_hpp, " uint temp%d = mask & (_mask%d >> m); _mask%d <<= n;\n", 2, 1, 1); 823 for (l = 2; l < masklen; l++) { 824 fprintf(fp_hpp, " uint temp%d = mask & (_mask%d >> m); _mask%d <<= n; _mask%d |= temp%d;\n", l+1, l, l, l, l); 825 } 826 fprintf(fp_hpp, " _mask%d <<= n; _mask%d |= temp%d;\n", masklen, masklen, masklen); 827 fprintf(fp_hpp, " }\n"); 828 829 fprintf(fp_hpp, " return *this;\n"); 830 fprintf(fp_hpp, " }\n\n"); 831 fprintf(fp_hpp, " void Or(const Pipeline_Use_Cycle_Mask &);\n\n"); 832 fprintf(fp_hpp, " friend Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n"); 833 fprintf(fp_hpp, " friend Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n\n"); 834 } 835 836 fprintf(fp_hpp, " friend class Pipeline_Use;\n\n"); 837 fprintf(fp_hpp, " friend class Pipeline_Use_Element;\n\n"); 838 fprintf(fp_hpp, "};\n\n"); 839 840 uint rescount = 0; 841 const char *resource; 842 843 for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) { 844 int mask = _pipeline->_resdict[resource]->is_resource()->mask(); 845 if ((mask & (mask-1)) == 0) 846 rescount++; 847 } 848 849 fprintf(fp_hpp, "// Pipeline_Use_Element Class\n"); 850 fprintf(fp_hpp, "class Pipeline_Use_Element {\n"); 851 fprintf(fp_hpp, "protected:\n"); 852 fprintf(fp_hpp, " // Mask of used functional units\n"); 853 fprintf(fp_hpp, " uint _used;\n\n"); 854 fprintf(fp_hpp, " // Lower and upper bound of functional unit number range\n"); 855 fprintf(fp_hpp, " uint _lb, _ub;\n\n"); 856 fprintf(fp_hpp, " // Indicates multiple functionals units available\n"); 857 fprintf(fp_hpp, " bool _multiple;\n\n"); 858 fprintf(fp_hpp, " // Mask of specific used cycles\n"); 859 fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask _mask;\n\n"); 860 fprintf(fp_hpp, "public:\n"); 861 fprintf(fp_hpp, " Pipeline_Use_Element() {}\n\n"); 862 fprintf(fp_hpp, " Pipeline_Use_Element(uint used, uint lb, uint ub, bool multiple, Pipeline_Use_Cycle_Mask mask)\n"); 863 fprintf(fp_hpp, " : _used(used), _lb(lb), _ub(ub), _multiple(multiple), _mask(mask) {}\n\n"); 864 fprintf(fp_hpp, " uint used() const { return _used; }\n\n"); 865 fprintf(fp_hpp, " uint lowerBound() const { return _lb; }\n\n"); 866 fprintf(fp_hpp, " uint upperBound() const { return _ub; }\n\n"); 867 fprintf(fp_hpp, " bool multiple() const { return _multiple; }\n\n"); 868 fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask mask() const { return _mask; }\n\n"); 869 fprintf(fp_hpp, " bool overlaps(const Pipeline_Use_Element &in2) const {\n"); 870 fprintf(fp_hpp, " return ((_used & in2._used) != 0 && _mask.overlaps(in2._mask));\n"); 871 fprintf(fp_hpp, " }\n\n"); 872 fprintf(fp_hpp, " void step(uint cycles) {\n"); 873 fprintf(fp_hpp, " _used = 0;\n"); 874 fprintf(fp_hpp, " _mask <<= cycles;\n"); 875 fprintf(fp_hpp, " }\n\n"); 876 fprintf(fp_hpp, " friend class Pipeline_Use;\n"); 877 fprintf(fp_hpp, "};\n\n"); 878 879 fprintf(fp_hpp, "// Pipeline_Use Class\n"); 880 fprintf(fp_hpp, "class Pipeline_Use {\n"); 881 fprintf(fp_hpp, "protected:\n"); 882 fprintf(fp_hpp, " // These resources can be used\n"); 883 fprintf(fp_hpp, " uint _resources_used;\n\n"); 884 fprintf(fp_hpp, " // These resources are used; excludes multiple choice functional units\n"); 885 fprintf(fp_hpp, " uint _resources_used_exclusively;\n\n"); 886 fprintf(fp_hpp, " // Number of elements\n"); 887 fprintf(fp_hpp, " uint _count;\n\n"); 888 fprintf(fp_hpp, " // This is the array of Pipeline_Use_Elements\n"); 889 fprintf(fp_hpp, " Pipeline_Use_Element * _elements;\n\n"); 890 fprintf(fp_hpp, "public:\n"); 891 fprintf(fp_hpp, " Pipeline_Use(uint resources_used, uint resources_used_exclusively, uint count, Pipeline_Use_Element *elements)\n"); 892 fprintf(fp_hpp, " : _resources_used(resources_used)\n"); 893 fprintf(fp_hpp, " , _resources_used_exclusively(resources_used_exclusively)\n"); 894 fprintf(fp_hpp, " , _count(count)\n"); 895 fprintf(fp_hpp, " , _elements(elements)\n"); 896 fprintf(fp_hpp, " {}\n\n"); 897 fprintf(fp_hpp, " uint resourcesUsed() const { return _resources_used; }\n\n"); 898 fprintf(fp_hpp, " uint resourcesUsedExclusively() const { return _resources_used_exclusively; }\n\n"); 899 fprintf(fp_hpp, " uint count() const { return _count; }\n\n"); 900 fprintf(fp_hpp, " Pipeline_Use_Element * element(uint i) const { return &_elements[i]; }\n\n"); 901 fprintf(fp_hpp, " uint full_latency(uint delay, const Pipeline_Use &pred) const;\n\n"); 902 fprintf(fp_hpp, " void add_usage(const Pipeline_Use &pred);\n\n"); 903 fprintf(fp_hpp, " void reset() {\n"); 904 fprintf(fp_hpp, " _resources_used = _resources_used_exclusively = 0;\n"); 905 fprintf(fp_hpp, " };\n\n"); 906 fprintf(fp_hpp, " void step(uint cycles) {\n"); 907 fprintf(fp_hpp, " reset();\n"); 908 fprintf(fp_hpp, " for (uint i = 0; i < %d; i++)\n", 909 rescount); 910 fprintf(fp_hpp, " (&_elements[i])->step(cycles);\n"); 911 fprintf(fp_hpp, " };\n\n"); 912 fprintf(fp_hpp, " static const Pipeline_Use elaborated_use;\n"); 913 fprintf(fp_hpp, " static const Pipeline_Use_Element elaborated_elements[%d];\n\n", 914 rescount); 915 fprintf(fp_hpp, " friend class Pipeline;\n"); 916 fprintf(fp_hpp, "};\n\n"); 917 918 fprintf(fp_hpp, "// Pipeline Class\n"); 919 fprintf(fp_hpp, "class Pipeline {\n"); 920 fprintf(fp_hpp, "public:\n"); 921 922 fprintf(fp_hpp, " static bool enabled() { return %s; }\n\n", 923 _pipeline ? "true" : "false" ); 924 925 assert( _pipeline->_maxInstrsPerBundle && 926 ( _pipeline->_instrUnitSize || _pipeline->_bundleUnitSize) && 927 _pipeline->_instrFetchUnitSize && 928 _pipeline->_instrFetchUnits, 929 "unspecified pipeline architecture units"); 930 931 uint unitSize = _pipeline->_instrUnitSize ? _pipeline->_instrUnitSize : _pipeline->_bundleUnitSize; 932 933 fprintf(fp_hpp, " enum {\n"); 934 fprintf(fp_hpp, " _variable_size_instructions = %d,\n", 935 _pipeline->_variableSizeInstrs ? 1 : 0); 936 fprintf(fp_hpp, " _fixed_size_instructions = %d,\n", 937 _pipeline->_variableSizeInstrs ? 0 : 1); 938 fprintf(fp_hpp, " _branch_has_delay_slot = %d,\n", 939 _pipeline->_branchHasDelaySlot ? 1 : 0); 940 fprintf(fp_hpp, " _max_instrs_per_bundle = %d,\n", 941 _pipeline->_maxInstrsPerBundle); 942 fprintf(fp_hpp, " _max_bundles_per_cycle = %d,\n", 943 _pipeline->_maxBundlesPerCycle); 944 fprintf(fp_hpp, " _max_instrs_per_cycle = %d\n", 945 _pipeline->_maxBundlesPerCycle * _pipeline->_maxInstrsPerBundle); 946 fprintf(fp_hpp, " };\n\n"); 947 948 fprintf(fp_hpp, " static bool instr_has_unit_size() { return %s; }\n\n", 949 _pipeline->_instrUnitSize != 0 ? "true" : "false" ); 950 if( _pipeline->_bundleUnitSize != 0 ) 951 if( _pipeline->_instrUnitSize != 0 ) 952 fprintf(fp_hpp, "// Individual Instructions may be bundled together by the hardware\n\n"); 953 else 954 fprintf(fp_hpp, "// Instructions exist only in bundles\n\n"); 955 else 956 fprintf(fp_hpp, "// Bundling is not supported\n\n"); 957 if( _pipeline->_instrUnitSize != 0 ) 958 fprintf(fp_hpp, " // Size of an instruction\n"); 959 else 960 fprintf(fp_hpp, " // Size of an individual instruction does not exist - unsupported\n"); 961 fprintf(fp_hpp, " static uint instr_unit_size() {"); 962 if( _pipeline->_instrUnitSize == 0 ) 963 fprintf(fp_hpp, " assert( false, \"Instructions are only in bundles\" );"); 964 fprintf(fp_hpp, " return %d; };\n\n", _pipeline->_instrUnitSize); 965 966 if( _pipeline->_bundleUnitSize != 0 ) 967 fprintf(fp_hpp, " // Size of a bundle\n"); 968 else 969 fprintf(fp_hpp, " // Bundles do not exist - unsupported\n"); 970 fprintf(fp_hpp, " static uint bundle_unit_size() {"); 971 if( _pipeline->_bundleUnitSize == 0 ) 972 fprintf(fp_hpp, " assert( false, \"Bundles are not supported\" );"); 973 fprintf(fp_hpp, " return %d; };\n\n", _pipeline->_bundleUnitSize); 974 975 fprintf(fp_hpp, " static bool requires_bundling() { return %s; }\n\n", 976 _pipeline->_bundleUnitSize != 0 && _pipeline->_instrUnitSize == 0 ? "true" : "false" ); 977 978 fprintf(fp_hpp, "private:\n"); 979 fprintf(fp_hpp, " Pipeline(); // Not a legal constructor\n"); 980 fprintf(fp_hpp, "\n"); 981 fprintf(fp_hpp, " const unsigned char _read_stage_count;\n"); 982 fprintf(fp_hpp, " const unsigned char _write_stage;\n"); 983 fprintf(fp_hpp, " const unsigned char _fixed_latency;\n"); 984 fprintf(fp_hpp, " const unsigned char _instruction_count;\n"); 985 fprintf(fp_hpp, " const bool _has_fixed_latency;\n"); 986 fprintf(fp_hpp, " const bool _has_branch_delay;\n"); 987 fprintf(fp_hpp, " const bool _has_multiple_bundles;\n"); 988 fprintf(fp_hpp, " const bool _force_serialization;\n"); 989 fprintf(fp_hpp, " const bool _may_have_no_code;\n"); 990 fprintf(fp_hpp, " const enum machPipelineStages * const _read_stages;\n"); 991 fprintf(fp_hpp, " const enum machPipelineStages * const _resource_stage;\n"); 992 fprintf(fp_hpp, " const uint * const _resource_cycles;\n"); 993 fprintf(fp_hpp, " const Pipeline_Use _resource_use;\n"); 994 fprintf(fp_hpp, "\n"); 995 fprintf(fp_hpp, "public:\n"); 996 fprintf(fp_hpp, " Pipeline(uint write_stage,\n"); 997 fprintf(fp_hpp, " uint count,\n"); 998 fprintf(fp_hpp, " bool has_fixed_latency,\n"); 999 fprintf(fp_hpp, " uint fixed_latency,\n"); 1000 fprintf(fp_hpp, " uint instruction_count,\n"); 1001 fprintf(fp_hpp, " bool has_branch_delay,\n"); 1002 fprintf(fp_hpp, " bool has_multiple_bundles,\n"); 1003 fprintf(fp_hpp, " bool force_serialization,\n"); 1004 fprintf(fp_hpp, " bool may_have_no_code,\n"); 1005 fprintf(fp_hpp, " enum machPipelineStages * const dst,\n"); 1006 fprintf(fp_hpp, " enum machPipelineStages * const stage,\n"); 1007 fprintf(fp_hpp, " uint * const cycles,\n"); 1008 fprintf(fp_hpp, " Pipeline_Use resource_use)\n"); 1009 fprintf(fp_hpp, " : _write_stage(write_stage)\n"); 1010 fprintf(fp_hpp, " , _read_stage_count(count)\n"); 1011 fprintf(fp_hpp, " , _has_fixed_latency(has_fixed_latency)\n"); 1012 fprintf(fp_hpp, " , _fixed_latency(fixed_latency)\n"); 1013 fprintf(fp_hpp, " , _read_stages(dst)\n"); 1014 fprintf(fp_hpp, " , _resource_stage(stage)\n"); 1015 fprintf(fp_hpp, " , _resource_cycles(cycles)\n"); 1016 fprintf(fp_hpp, " , _resource_use(resource_use)\n"); 1017 fprintf(fp_hpp, " , _instruction_count(instruction_count)\n"); 1018 fprintf(fp_hpp, " , _has_branch_delay(has_branch_delay)\n"); 1019 fprintf(fp_hpp, " , _has_multiple_bundles(has_multiple_bundles)\n"); 1020 fprintf(fp_hpp, " , _force_serialization(force_serialization)\n"); 1021 fprintf(fp_hpp, " , _may_have_no_code(may_have_no_code)\n"); 1022 fprintf(fp_hpp, " {};\n"); 1023 fprintf(fp_hpp, "\n"); 1024 fprintf(fp_hpp, " uint writeStage() const {\n"); 1025 fprintf(fp_hpp, " return (_write_stage);\n"); 1026 fprintf(fp_hpp, " }\n"); 1027 fprintf(fp_hpp, "\n"); 1028 fprintf(fp_hpp, " enum machPipelineStages readStage(int ndx) const {\n"); 1029 fprintf(fp_hpp, " return (ndx < _read_stage_count ? _read_stages[ndx] : stage_undefined);"); 1030 fprintf(fp_hpp, " }\n\n"); 1031 fprintf(fp_hpp, " uint resourcesUsed() const {\n"); 1032 fprintf(fp_hpp, " return _resource_use.resourcesUsed();\n }\n\n"); 1033 fprintf(fp_hpp, " uint resourcesUsedExclusively() const {\n"); 1034 fprintf(fp_hpp, " return _resource_use.resourcesUsedExclusively();\n }\n\n"); 1035 fprintf(fp_hpp, " bool hasFixedLatency() const {\n"); 1036 fprintf(fp_hpp, " return (_has_fixed_latency);\n }\n\n"); 1037 fprintf(fp_hpp, " uint fixedLatency() const {\n"); 1038 fprintf(fp_hpp, " return (_fixed_latency);\n }\n\n"); 1039 fprintf(fp_hpp, " uint functional_unit_latency(uint start, const Pipeline *pred) const;\n\n"); 1040 fprintf(fp_hpp, " uint operand_latency(uint opnd, const Pipeline *pred) const;\n\n"); 1041 fprintf(fp_hpp, " const Pipeline_Use& resourceUse() const {\n"); 1042 fprintf(fp_hpp, " return (_resource_use); }\n\n"); 1043 fprintf(fp_hpp, " const Pipeline_Use_Element * resourceUseElement(uint i) const {\n"); 1044 fprintf(fp_hpp, " return (&_resource_use._elements[i]); }\n\n"); 1045 fprintf(fp_hpp, " uint resourceUseCount() const {\n"); 1046 fprintf(fp_hpp, " return (_resource_use._count); }\n\n"); 1047 fprintf(fp_hpp, " uint instructionCount() const {\n"); 1048 fprintf(fp_hpp, " return (_instruction_count); }\n\n"); 1049 fprintf(fp_hpp, " bool hasBranchDelay() const {\n"); 1050 fprintf(fp_hpp, " return (_has_branch_delay); }\n\n"); 1051 fprintf(fp_hpp, " bool hasMultipleBundles() const {\n"); 1052 fprintf(fp_hpp, " return (_has_multiple_bundles); }\n\n"); 1053 fprintf(fp_hpp, " bool forceSerialization() const {\n"); 1054 fprintf(fp_hpp, " return (_force_serialization); }\n\n"); 1055 fprintf(fp_hpp, " bool mayHaveNoCode() const {\n"); 1056 fprintf(fp_hpp, " return (_may_have_no_code); }\n\n"); 1057 fprintf(fp_hpp, "//const Pipeline_Use_Cycle_Mask& resourceUseMask(int resource) const {\n"); 1058 fprintf(fp_hpp, "// return (_resource_use_masks[resource]); }\n\n"); 1059 fprintf(fp_hpp, "\n#ifndef PRODUCT\n"); 1060 fprintf(fp_hpp, " static const char * stageName(uint i);\n"); 1061 fprintf(fp_hpp, "#endif\n"); 1062 fprintf(fp_hpp, "};\n\n"); 1063 1064 fprintf(fp_hpp, "// Bundle class\n"); 1065 fprintf(fp_hpp, "class Bundle {\n"); 1066 1067 uint mshift = 0; 1068 for (uint msize = _pipeline->_maxInstrsPerBundle * _pipeline->_maxBundlesPerCycle; msize != 0; msize >>= 1) 1069 mshift++; 1070 1071 uint rshift = rescount; 1072 1073 fprintf(fp_hpp, "protected:\n"); 1074 fprintf(fp_hpp, " enum {\n"); 1075 fprintf(fp_hpp, " _unused_delay = 0x%x,\n", 0); 1076 fprintf(fp_hpp, " _use_nop_delay = 0x%x,\n", 1); 1077 fprintf(fp_hpp, " _use_unconditional_delay = 0x%x,\n", 2); 1078 fprintf(fp_hpp, " _use_conditional_delay = 0x%x,\n", 3); 1079 fprintf(fp_hpp, " _used_in_conditional_delay = 0x%x,\n", 4); 1080 fprintf(fp_hpp, " _used_in_unconditional_delay = 0x%x,\n", 5); 1081 fprintf(fp_hpp, " _used_in_all_conditional_delays = 0x%x,\n", 6); 1082 fprintf(fp_hpp, "\n"); 1083 fprintf(fp_hpp, " _use_delay = 0x%x,\n", 3); 1084 fprintf(fp_hpp, " _used_in_delay = 0x%x\n", 4); 1085 fprintf(fp_hpp, " };\n\n"); 1086 fprintf(fp_hpp, " uint _flags : 3,\n"); 1087 fprintf(fp_hpp, " _starts_bundle : 1,\n"); 1088 fprintf(fp_hpp, " _instr_count : %d,\n", mshift); 1089 fprintf(fp_hpp, " _resources_used : %d;\n", rshift); 1090 fprintf(fp_hpp, "public:\n"); 1091 fprintf(fp_hpp, " Bundle() : _flags(_unused_delay), _starts_bundle(0), _instr_count(0), _resources_used(0) {}\n\n"); 1092 fprintf(fp_hpp, " void set_instr_count(uint i) { _instr_count = i; }\n"); 1093 fprintf(fp_hpp, " void set_resources_used(uint i) { _resources_used = i; }\n"); 1094 fprintf(fp_hpp, " void clear_usage() { _flags = _unused_delay; }\n"); 1095 fprintf(fp_hpp, " void set_starts_bundle() { _starts_bundle = true; }\n"); 1096 1097 fprintf(fp_hpp, " uint flags() const { return (_flags); }\n"); 1098 fprintf(fp_hpp, " uint instr_count() const { return (_instr_count); }\n"); 1099 fprintf(fp_hpp, " uint resources_used() const { return (_resources_used); }\n"); 1100 fprintf(fp_hpp, " bool starts_bundle() const { return (_starts_bundle != 0); }\n"); 1101 1102 fprintf(fp_hpp, " void set_use_nop_delay() { _flags = _use_nop_delay; }\n"); 1103 fprintf(fp_hpp, " void set_use_unconditional_delay() { _flags = _use_unconditional_delay; }\n"); 1104 fprintf(fp_hpp, " void set_use_conditional_delay() { _flags = _use_conditional_delay; }\n"); 1105 fprintf(fp_hpp, " void set_used_in_unconditional_delay() { _flags = _used_in_unconditional_delay; }\n"); 1106 fprintf(fp_hpp, " void set_used_in_conditional_delay() { _flags = _used_in_conditional_delay; }\n"); 1107 fprintf(fp_hpp, " void set_used_in_all_conditional_delays() { _flags = _used_in_all_conditional_delays; }\n"); 1108 1109 fprintf(fp_hpp, " bool use_nop_delay() { return (_flags == _use_nop_delay); }\n"); 1110 fprintf(fp_hpp, " bool use_unconditional_delay() { return (_flags == _use_unconditional_delay); }\n"); 1111 fprintf(fp_hpp, " bool use_conditional_delay() { return (_flags == _use_conditional_delay); }\n"); 1112 fprintf(fp_hpp, " bool used_in_unconditional_delay() { return (_flags == _used_in_unconditional_delay); }\n"); 1113 fprintf(fp_hpp, " bool used_in_conditional_delay() { return (_flags == _used_in_conditional_delay); }\n"); 1114 fprintf(fp_hpp, " bool used_in_all_conditional_delays() { return (_flags == _used_in_all_conditional_delays); }\n"); 1115 fprintf(fp_hpp, " bool use_delay() { return ((_flags & _use_delay) != 0); }\n"); 1116 fprintf(fp_hpp, " bool used_in_delay() { return ((_flags & _used_in_delay) != 0); }\n\n"); 1117 1118 fprintf(fp_hpp, " enum {\n"); 1119 fprintf(fp_hpp, " _nop_count = %d\n", 1120 _pipeline->_nopcnt); 1121 fprintf(fp_hpp, " };\n\n"); 1122 fprintf(fp_hpp, " static void initialize_nops(MachNode *nop_list[%d], Compile* C);\n\n", 1123 _pipeline->_nopcnt); 1124 fprintf(fp_hpp, "#ifndef PRODUCT\n"); 1125 fprintf(fp_hpp, " void dump(outputStream *st = tty) const;\n"); 1126 fprintf(fp_hpp, "#endif\n"); 1127 fprintf(fp_hpp, "};\n\n"); 1128 1129 // const char *classname; 1130 // for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) { 1131 // PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass(); 1132 // fprintf(fp_hpp, "// Pipeline Class Instance for \"%s\"\n", classname); 1133 // } 1134 } 1135 1136 //------------------------------declareClasses--------------------------------- 1137 // Construct the class hierarchy of MachNode classes from the instruction & 1138 // operand lists 1139 void ArchDesc::declareClasses(FILE *fp) { 1140 1141 // Declare an array containing the machine register names, strings. 1142 declareRegNames(fp, _register); 1143 1144 // Declare an array containing the machine register encoding values 1145 declareRegEncodes(fp, _register); 1146 1147 // Generate declarations for the total number of operands 1148 fprintf(fp,"\n"); 1149 fprintf(fp,"// Total number of operands defined in architecture definition\n"); 1150 int num_operands = 0; 1151 OperandForm *op; 1152 for (_operands.reset(); (op = (OperandForm*)_operands.iter()) != NULL; ) { 1153 // Ensure this is a machine-world instruction 1154 if (op->ideal_only()) continue; 1155 1156 ++num_operands; 1157 } 1158 int first_operand_class = num_operands; 1159 OpClassForm *opc; 1160 for (_opclass.reset(); (opc = (OpClassForm*)_opclass.iter()) != NULL; ) { 1161 // Ensure this is a machine-world instruction 1162 if (opc->ideal_only()) continue; 1163 1164 ++num_operands; 1165 } 1166 fprintf(fp,"#define FIRST_OPERAND_CLASS %d\n", first_operand_class); 1167 fprintf(fp,"#define NUM_OPERANDS %d\n", num_operands); 1168 fprintf(fp,"\n"); 1169 // Generate declarations for the total number of instructions 1170 fprintf(fp,"// Total number of instructions defined in architecture definition\n"); 1171 fprintf(fp,"#define NUM_INSTRUCTIONS %d\n",instructFormCount()); 1172 1173 1174 // Generate Machine Classes for each operand defined in AD file 1175 fprintf(fp,"\n"); 1176 fprintf(fp,"//----------------------------Declare classes derived from MachOper----------\n"); 1177 // Iterate through all operands 1178 _operands.reset(); 1179 OperandForm *oper; 1180 for( ; (oper = (OperandForm*)_operands.iter()) != NULL;) { 1181 // Ensure this is a machine-world instruction 1182 if (oper->ideal_only() ) continue; 1183 // The declaration of labelOper is in machine-independent file: machnode 1184 if ( strcmp(oper->_ident,"label") == 0 ) continue; 1185 // The declaration of methodOper is in machine-independent file: machnode 1186 if ( strcmp(oper->_ident,"method") == 0 ) continue; 1187 1188 // Build class definition for this operand 1189 fprintf(fp,"\n"); 1190 fprintf(fp,"class %sOper : public MachOper { \n",oper->_ident); 1191 fprintf(fp,"private:\n"); 1192 // Operand definitions that depend upon number of input edges 1193 { 1194 uint num_edges = oper->num_edges(_globalNames); 1195 if( num_edges != 1 ) { // Use MachOper::num_edges() {return 1;} 1196 fprintf(fp," virtual uint num_edges() const { return %d; }\n", 1197 num_edges ); 1198 } 1199 if( num_edges > 0 ) { 1200 in_RegMask(fp); 1201 } 1202 } 1203 1204 // Support storing constants inside the MachOper 1205 declareConstStorage(fp,_globalNames,oper); 1206 1207 // Support storage of the condition codes 1208 if( oper->is_ideal_bool() ) { 1209 fprintf(fp," virtual int ccode() const { \n"); 1210 fprintf(fp," switch (_c0) {\n"); 1211 fprintf(fp," case BoolTest::eq : return equal();\n"); 1212 fprintf(fp," case BoolTest::gt : return greater();\n"); 1213 fprintf(fp," case BoolTest::lt : return less();\n"); 1214 fprintf(fp," case BoolTest::ne : return not_equal();\n"); 1215 fprintf(fp," case BoolTest::le : return less_equal();\n"); 1216 fprintf(fp," case BoolTest::ge : return greater_equal();\n"); 1217 fprintf(fp," case BoolTest::overflow : return overflow();\n"); 1218 fprintf(fp," case BoolTest::no_overflow: return no_overflow();\n"); 1219 fprintf(fp," default : ShouldNotReachHere(); return 0;\n"); 1220 fprintf(fp," }\n"); 1221 fprintf(fp," };\n"); 1222 } 1223 1224 // Support storage of the condition codes 1225 if( oper->is_ideal_bool() ) { 1226 fprintf(fp," virtual void negate() { \n"); 1227 fprintf(fp," _c0 = (BoolTest::mask)((int)_c0^0x4); \n"); 1228 fprintf(fp," };\n"); 1229 } 1230 1231 // Declare constructor. 1232 // Parameters start with condition code, then all other constants 1233 // 1234 // (1) MachXOper(int32 ccode, int32 c0, int32 c1, ..., int32 cn) 1235 // (2) : _ccode(ccode), _c0(c0), _c1(c1), ..., _cn(cn) { } 1236 // 1237 Form::DataType constant_type = oper->simple_type(_globalNames); 1238 defineConstructor(fp, oper->_ident, oper->num_consts(_globalNames), 1239 oper->_components, oper->is_ideal_bool(), 1240 constant_type, _globalNames); 1241 1242 // Clone function 1243 fprintf(fp," virtual MachOper *clone(Compile* C) const;\n"); 1244 1245 // Support setting a spill offset into a constant operand. 1246 // We only support setting an 'int' offset, while in the 1247 // LP64 build spill offsets are added with an AddP which 1248 // requires a long constant. Thus we don't support spilling 1249 // in frames larger than 4Gig. 1250 if( oper->has_conI(_globalNames) || 1251 oper->has_conL(_globalNames) ) 1252 fprintf(fp, " virtual void set_con( jint c0 ) { _c0 = c0; }\n"); 1253 1254 // virtual functions for encoding and format 1255 // fprintf(fp," virtual void encode() const {\n %s }\n", 1256 // (oper->_encrule)?(oper->_encrule->_encrule):""); 1257 // Check the interface type, and generate the correct query functions 1258 // encoding queries based upon MEMORY_INTER, REG_INTER, CONST_INTER. 1259 1260 fprintf(fp," virtual uint opcode() const { return %s; }\n", 1261 machOperEnum(oper->_ident)); 1262 1263 // virtual function to look up ideal return type of machine instruction 1264 // 1265 // (1) virtual const Type *type() const { return .....; } 1266 // 1267 if ((oper->_matrule) && (oper->_matrule->_lChild == NULL) && 1268 (oper->_matrule->_rChild == NULL)) { 1269 unsigned int position = 0; 1270 const char *opret, *opname, *optype; 1271 oper->_matrule->base_operand(position,_globalNames,opret,opname,optype); 1272 fprintf(fp," virtual const Type *type() const {"); 1273 const char *type = getIdealType(optype); 1274 if( type != NULL ) { 1275 Form::DataType data_type = oper->is_base_constant(_globalNames); 1276 // Check if we are an ideal pointer type 1277 if( data_type == Form::idealP || data_type == Form::idealN || data_type == Form::idealNKlass ) { 1278 // Return the ideal type we already have: <TypePtr *> 1279 fprintf(fp," return _c0;"); 1280 } else { 1281 // Return the appropriate bottom type 1282 fprintf(fp," return %s;", getIdealType(optype)); 1283 } 1284 } else { 1285 fprintf(fp," ShouldNotCallThis(); return Type::BOTTOM;"); 1286 } 1287 fprintf(fp," }\n"); 1288 } else { 1289 // Check for user-defined stack slots, based upon sRegX 1290 Form::DataType data_type = oper->is_user_name_for_sReg(); 1291 if( data_type != Form::none ){ 1292 const char *type = NULL; 1293 switch( data_type ) { 1294 case Form::idealI: type = "TypeInt::INT"; break; 1295 case Form::idealP: type = "TypePtr::BOTTOM";break; 1296 case Form::idealF: type = "Type::FLOAT"; break; 1297 case Form::idealD: type = "Type::DOUBLE"; break; 1298 case Form::idealL: type = "TypeLong::LONG"; break; 1299 case Form::none: // fall through 1300 default: 1301 assert( false, "No support for this type of stackSlot"); 1302 } 1303 fprintf(fp," virtual const Type *type() const { return %s; } // stackSlotX\n", type); 1304 } 1305 } 1306 1307 1308 // 1309 // virtual functions for defining the encoding interface. 1310 // 1311 // Access the linearized ideal register mask, 1312 // map to physical register encoding 1313 if ( oper->_matrule && oper->_matrule->is_base_register(_globalNames) ) { 1314 // Just use the default virtual 'reg' call 1315 } else if ( oper->ideal_to_sReg_type(oper->_ident) != Form::none ) { 1316 // Special handling for operand 'sReg', a Stack Slot Register. 1317 // Map linearized ideal register mask to stack slot number 1318 fprintf(fp," virtual int reg(PhaseRegAlloc *ra_, const Node *node) const {\n"); 1319 fprintf(fp," return (int)OptoReg::reg2stack(ra_->get_reg_first(node));/* sReg */\n"); 1320 fprintf(fp," }\n"); 1321 fprintf(fp," virtual int reg(PhaseRegAlloc *ra_, const Node *node, int idx) const {\n"); 1322 fprintf(fp," return (int)OptoReg::reg2stack(ra_->get_reg_first(node->in(idx)));/* sReg */\n"); 1323 fprintf(fp," }\n"); 1324 } 1325 1326 // Output the operand specific access functions used by an enc_class 1327 // These are only defined when we want to override the default virtual func 1328 if (oper->_interface != NULL) { 1329 fprintf(fp,"\n"); 1330 // Check if it is a Memory Interface 1331 if ( oper->_interface->is_MemInterface() != NULL ) { 1332 MemInterface *mem_interface = oper->_interface->is_MemInterface(); 1333 const char *base = mem_interface->_base; 1334 if( base != NULL ) { 1335 define_oper_interface(fp, *oper, _globalNames, "base", base); 1336 } 1337 char *index = mem_interface->_index; 1338 if( index != NULL ) { 1339 define_oper_interface(fp, *oper, _globalNames, "index", index); 1340 } 1341 const char *scale = mem_interface->_scale; 1342 if( scale != NULL ) { 1343 define_oper_interface(fp, *oper, _globalNames, "scale", scale); 1344 } 1345 const char *disp = mem_interface->_disp; 1346 if( disp != NULL ) { 1347 define_oper_interface(fp, *oper, _globalNames, "disp", disp); 1348 oper->disp_is_oop(fp, _globalNames); 1349 } 1350 if( oper->stack_slots_only(_globalNames) ) { 1351 // should not call this: 1352 fprintf(fp," virtual int constant_disp() const { return Type::OffsetBot; }"); 1353 } else if ( disp != NULL ) { 1354 define_oper_interface(fp, *oper, _globalNames, "constant_disp", disp); 1355 } 1356 } // end Memory Interface 1357 // Check if it is a Conditional Interface 1358 else if (oper->_interface->is_CondInterface() != NULL) { 1359 CondInterface *cInterface = oper->_interface->is_CondInterface(); 1360 const char *equal = cInterface->_equal; 1361 if( equal != NULL ) { 1362 define_oper_interface(fp, *oper, _globalNames, "equal", equal); 1363 } 1364 const char *not_equal = cInterface->_not_equal; 1365 if( not_equal != NULL ) { 1366 define_oper_interface(fp, *oper, _globalNames, "not_equal", not_equal); 1367 } 1368 const char *less = cInterface->_less; 1369 if( less != NULL ) { 1370 define_oper_interface(fp, *oper, _globalNames, "less", less); 1371 } 1372 const char *greater_equal = cInterface->_greater_equal; 1373 if( greater_equal != NULL ) { 1374 define_oper_interface(fp, *oper, _globalNames, "greater_equal", greater_equal); 1375 } 1376 const char *less_equal = cInterface->_less_equal; 1377 if( less_equal != NULL ) { 1378 define_oper_interface(fp, *oper, _globalNames, "less_equal", less_equal); 1379 } 1380 const char *greater = cInterface->_greater; 1381 if( greater != NULL ) { 1382 define_oper_interface(fp, *oper, _globalNames, "greater", greater); 1383 } 1384 const char *overflow = cInterface->_overflow; 1385 if( overflow != NULL ) { 1386 define_oper_interface(fp, *oper, _globalNames, "overflow", overflow); 1387 } 1388 const char *no_overflow = cInterface->_no_overflow; 1389 if( no_overflow != NULL ) { 1390 define_oper_interface(fp, *oper, _globalNames, "no_overflow", no_overflow); 1391 } 1392 } // end Conditional Interface 1393 // Check if it is a Constant Interface 1394 else if (oper->_interface->is_ConstInterface() != NULL ) { 1395 assert( oper->num_consts(_globalNames) == 1, 1396 "Must have one constant when using CONST_INTER encoding"); 1397 if (!strcmp(oper->ideal_type(_globalNames), "ConI")) { 1398 // Access the locally stored constant 1399 fprintf(fp," virtual intptr_t constant() const {"); 1400 fprintf(fp, " return (intptr_t)_c0;"); 1401 fprintf(fp," }\n"); 1402 } 1403 else if (!strcmp(oper->ideal_type(_globalNames), "ConP")) { 1404 // Access the locally stored constant 1405 fprintf(fp," virtual intptr_t constant() const {"); 1406 fprintf(fp, " return _c0->get_con();"); 1407 fprintf(fp, " }\n"); 1408 // Generate query to determine if this pointer is an oop 1409 fprintf(fp," virtual relocInfo::relocType constant_reloc() const {"); 1410 fprintf(fp, " return _c0->reloc();"); 1411 fprintf(fp, " }\n"); 1412 } 1413 else if (!strcmp(oper->ideal_type(_globalNames), "ConN")) { 1414 // Access the locally stored constant 1415 fprintf(fp," virtual intptr_t constant() const {"); 1416 fprintf(fp, " return _c0->get_ptrtype()->get_con();"); 1417 fprintf(fp, " }\n"); 1418 // Generate query to determine if this pointer is an oop 1419 fprintf(fp," virtual relocInfo::relocType constant_reloc() const {"); 1420 fprintf(fp, " return _c0->get_ptrtype()->reloc();"); 1421 fprintf(fp, " }\n"); 1422 } 1423 else if (!strcmp(oper->ideal_type(_globalNames), "ConNKlass")) { 1424 // Access the locally stored constant 1425 fprintf(fp," virtual intptr_t constant() const {"); 1426 fprintf(fp, " return _c0->get_ptrtype()->get_con();"); 1427 fprintf(fp, " }\n"); 1428 // Generate query to determine if this pointer is an oop 1429 fprintf(fp," virtual relocInfo::relocType constant_reloc() const {"); 1430 fprintf(fp, " return _c0->get_ptrtype()->reloc();"); 1431 fprintf(fp, " }\n"); 1432 } 1433 else if (!strcmp(oper->ideal_type(_globalNames), "ConL")) { 1434 fprintf(fp," virtual intptr_t constant() const {"); 1435 // We don't support addressing modes with > 4Gig offsets. 1436 // Truncate to int. 1437 fprintf(fp, " return (intptr_t)_c0;"); 1438 fprintf(fp, " }\n"); 1439 fprintf(fp," virtual jlong constantL() const {"); 1440 fprintf(fp, " return _c0;"); 1441 fprintf(fp, " }\n"); 1442 } 1443 else if (!strcmp(oper->ideal_type(_globalNames), "ConF")) { 1444 fprintf(fp," virtual intptr_t constant() const {"); 1445 fprintf(fp, " ShouldNotReachHere(); return 0; "); 1446 fprintf(fp, " }\n"); 1447 fprintf(fp," virtual jfloat constantF() const {"); 1448 fprintf(fp, " return (jfloat)_c0;"); 1449 fprintf(fp, " }\n"); 1450 } 1451 else if (!strcmp(oper->ideal_type(_globalNames), "ConD")) { 1452 fprintf(fp," virtual intptr_t constant() const {"); 1453 fprintf(fp, " ShouldNotReachHere(); return 0; "); 1454 fprintf(fp, " }\n"); 1455 fprintf(fp," virtual jdouble constantD() const {"); 1456 fprintf(fp, " return _c0;"); 1457 fprintf(fp, " }\n"); 1458 } 1459 } 1460 else if (oper->_interface->is_RegInterface() != NULL) { 1461 // make sure that a fixed format string isn't used for an 1462 // operand which might be assiged to multiple registers. 1463 // Otherwise the opto assembly output could be misleading. 1464 if (oper->_format->_strings.count() != 0 && !oper->is_bound_register()) { 1465 syntax_err(oper->_linenum, 1466 "Only bound registers can have fixed formats: %s\n", 1467 oper->_ident); 1468 } 1469 } 1470 else { 1471 assert( false, "ShouldNotReachHere();"); 1472 } 1473 } 1474 1475 fprintf(fp,"\n"); 1476 // // Currently all XXXOper::hash() methods are identical (990820) 1477 // declare_hash(fp); 1478 // // Currently all XXXOper::Cmp() methods are identical (990820) 1479 // declare_cmp(fp); 1480 1481 // Do not place dump_spec() and Name() into PRODUCT code 1482 // int_format and ext_format are not needed in PRODUCT code either 1483 fprintf(fp, "#ifndef PRODUCT\n"); 1484 1485 // Declare int_format() and ext_format() 1486 gen_oper_format(fp, _globalNames, *oper); 1487 1488 // Machine independent print functionality for debugging 1489 // IF we have constants, create a dump_spec function for the derived class 1490 // 1491 // (1) virtual void dump_spec() const { 1492 // (2) st->print("#%d", _c#); // Constant != ConP 1493 // OR _c#->dump_on(st); // Type ConP 1494 // ... 1495 // (3) } 1496 uint num_consts = oper->num_consts(_globalNames); 1497 if( num_consts > 0 ) { 1498 // line (1) 1499 fprintf(fp, " virtual void dump_spec(outputStream *st) const {\n"); 1500 // generate format string for st->print 1501 // Iterate over the component list & spit out the right thing 1502 uint i = 0; 1503 const char *type = oper->ideal_type(_globalNames); 1504 Component *comp; 1505 oper->_components.reset(); 1506 if ((comp = oper->_components.iter()) == NULL) { 1507 assert(num_consts == 1, "Bad component list detected.\n"); 1508 i = dump_spec_constant( fp, type, i, oper ); 1509 // Check that type actually matched 1510 assert( i != 0, "Non-constant operand lacks component list."); 1511 } // end if NULL 1512 else { 1513 // line (2) 1514 // dump all components 1515 oper->_components.reset(); 1516 while((comp = oper->_components.iter()) != NULL) { 1517 type = comp->base_type(_globalNames); 1518 i = dump_spec_constant( fp, type, i, NULL ); 1519 } 1520 } 1521 // finish line (3) 1522 fprintf(fp," }\n"); 1523 } 1524 1525 fprintf(fp," virtual const char *Name() const { return \"%s\";}\n", 1526 oper->_ident); 1527 1528 fprintf(fp,"#endif\n"); 1529 1530 // Close definition of this XxxMachOper 1531 fprintf(fp,"};\n"); 1532 } 1533 1534 1535 // Generate Machine Classes for each instruction defined in AD file 1536 fprintf(fp,"\n"); 1537 fprintf(fp,"//----------------------------Declare classes for Pipelines-----------------\n"); 1538 declare_pipe_classes(fp); 1539 1540 // Generate Machine Classes for each instruction defined in AD file 1541 fprintf(fp,"\n"); 1542 fprintf(fp,"//----------------------------Declare classes derived from MachNode----------\n"); 1543 _instructions.reset(); 1544 InstructForm *instr; 1545 for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) { 1546 // Ensure this is a machine-world instruction 1547 if ( instr->ideal_only() ) continue; 1548 1549 // Build class definition for this instruction 1550 fprintf(fp,"\n"); 1551 fprintf(fp,"class %sNode : public %s { \n", 1552 instr->_ident, instr->mach_base_class(_globalNames) ); 1553 fprintf(fp,"private:\n"); 1554 fprintf(fp," MachOper *_opnd_array[%d];\n", instr->num_opnds() ); 1555 if ( instr->is_ideal_jump() ) { 1556 fprintf(fp, " GrowableArray<Label*> _index2label;\n"); 1557 } 1558 1559 fprintf(fp, "public:\n"); 1560 1561 Attribute *att = instr->_attribs; 1562 // Fields of the node specified in the ad file. 1563 while (att != NULL) { 1564 if (strncmp(att->_ident, "ins_field_", 10) == 0) { 1565 const char *field_name = att->_ident+10; 1566 const char *field_type = att->_val; 1567 fprintf(fp, " %s _%s;\n", field_type, field_name); 1568 } 1569 att = (Attribute *)att->_next; 1570 } 1571 1572 fprintf(fp," MachOper *opnd_array(uint operand_index) const {\n"); 1573 fprintf(fp," assert(operand_index < _num_opnds, \"invalid _opnd_array index\");\n"); 1574 fprintf(fp," return _opnd_array[operand_index];\n"); 1575 fprintf(fp," }\n"); 1576 fprintf(fp," void set_opnd_array(uint operand_index, MachOper *operand) {\n"); 1577 fprintf(fp," assert(operand_index < _num_opnds, \"invalid _opnd_array index\");\n"); 1578 fprintf(fp," _opnd_array[operand_index] = operand;\n"); 1579 fprintf(fp," }\n"); 1580 fprintf(fp,"private:\n"); 1581 if ( instr->is_ideal_jump() ) { 1582 fprintf(fp," virtual void add_case_label(int index_num, Label* blockLabel) {\n"); 1583 fprintf(fp," _index2label.at_put_grow(index_num, blockLabel);\n"); 1584 fprintf(fp," }\n"); 1585 } 1586 if( can_cisc_spill() && (instr->cisc_spill_alternate() != NULL) ) { 1587 fprintf(fp," const RegMask *_cisc_RegMask;\n"); 1588 } 1589 1590 out_RegMask(fp); // output register mask 1591 fprintf(fp," virtual uint rule() const { return %s_rule; }\n", 1592 instr->_ident); 1593 1594 // If this instruction contains a labelOper 1595 // Declare Node::methods that set operand Label's contents 1596 int label_position = instr->label_position(); 1597 if( label_position != -1 ) { 1598 // Set/Save the label, stored in labelOper::_branch_label 1599 fprintf(fp," virtual void label_set( Label* label, uint block_num );\n"); 1600 fprintf(fp," virtual void save_label( Label** label, uint* block_num );\n"); 1601 } 1602 1603 // If this instruction contains a methodOper 1604 // Declare Node::methods that set operand method's contents 1605 int method_position = instr->method_position(); 1606 if( method_position != -1 ) { 1607 // Set the address method, stored in methodOper::_method 1608 fprintf(fp," virtual void method_set( intptr_t method );\n"); 1609 } 1610 1611 // virtual functions for attributes 1612 // 1613 // Each instruction attribute results in a virtual call of same name. 1614 // The ins_cost is not handled here. 1615 Attribute *attr = instr->_attribs; 1616 Attribute *avoid_back_to_back_attr = NULL; 1617 while (attr != NULL) { 1618 if (strcmp (attr->_ident, "ins_is_TrapBasedCheckNode") == 0) { 1619 fprintf(fp, " virtual bool is_TrapBasedCheckNode() const { return %s; }\n", attr->_val); 1620 } else if (strcmp (attr->_ident, "ins_cost") != 0 && 1621 strncmp(attr->_ident, "ins_field_", 10) != 0 && 1622 // Must match function in node.hpp: return type bool, no prefix "ins_". 1623 strcmp (attr->_ident, "ins_is_TrapBasedCheckNode") != 0 && 1624 strcmp (attr->_ident, "ins_short_branch") != 0) { 1625 fprintf(fp, " virtual int %s() const { return %s; }\n", attr->_ident, attr->_val); 1626 } 1627 if (strcmp(attr->_ident, "ins_avoid_back_to_back") == 0) { 1628 avoid_back_to_back_attr = attr; 1629 } 1630 attr = (Attribute *)attr->_next; 1631 } 1632 1633 // virtual functions for encode and format 1634 1635 // Virtual function for evaluating the constant. 1636 if (instr->is_mach_constant()) { 1637 fprintf(fp," virtual void eval_constant(Compile* C);\n"); 1638 } 1639 1640 // Output the opcode function and the encode function here using the 1641 // encoding class information in the _insencode slot. 1642 if ( instr->_insencode ) { 1643 if (instr->postalloc_expands()) { 1644 fprintf(fp," virtual bool requires_postalloc_expand() const { return true; }\n"); 1645 fprintf(fp," virtual void postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_);\n"); 1646 } else { 1647 fprintf(fp," virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;\n"); 1648 } 1649 } 1650 1651 // virtual function for getting the size of an instruction 1652 if ( instr->_size ) { 1653 fprintf(fp," virtual uint size(PhaseRegAlloc *ra_) const;\n"); 1654 } 1655 1656 // Return the top-level ideal opcode. 1657 // Use MachNode::ideal_Opcode() for nodes based on MachNode class 1658 // if the ideal_Opcode == Op_Node. 1659 if ( strcmp("Node", instr->ideal_Opcode(_globalNames)) != 0 || 1660 strcmp("MachNode", instr->mach_base_class(_globalNames)) != 0 ) { 1661 fprintf(fp," virtual int ideal_Opcode() const { return Op_%s; }\n", 1662 instr->ideal_Opcode(_globalNames) ); 1663 } 1664 1665 if (instr->needs_constant_base() && 1666 !instr->is_mach_constant()) { // These inherit the funcion from MachConstantNode. 1667 fprintf(fp," virtual uint mach_constant_base_node_input() const { "); 1668 if (instr->is_ideal_call() != Form::invalid_type && 1669 instr->is_ideal_call() != Form::JAVA_LEAF) { 1670 // MachConstantBase goes behind arguments, but before jvms. 1671 fprintf(fp,"assert(tf() && tf()->domain(), \"\"); return tf()->domain()->cnt();"); 1672 } else { 1673 fprintf(fp,"return req()-1;"); 1674 } 1675 fprintf(fp," }\n"); 1676 } 1677 1678 // Allow machine-independent optimization, invert the sense of the IF test 1679 if( instr->is_ideal_if() ) { 1680 fprintf(fp," virtual void negate() { \n"); 1681 // Identify which operand contains the negate(able) ideal condition code 1682 int idx = 0; 1683 instr->_components.reset(); 1684 for( Component *comp; (comp = instr->_components.iter()) != NULL; ) { 1685 // Check that component is an operand 1686 Form *form = (Form*)_globalNames[comp->_type]; 1687 OperandForm *opForm = form ? form->is_operand() : NULL; 1688 if( opForm == NULL ) continue; 1689 1690 // Lookup the position of the operand in the instruction. 1691 if( opForm->is_ideal_bool() ) { 1692 idx = instr->operand_position(comp->_name, comp->_usedef); 1693 assert( idx != NameList::Not_in_list, "Did not find component in list that contained it."); 1694 break; 1695 } 1696 } 1697 fprintf(fp," opnd_array(%d)->negate();\n", idx); 1698 fprintf(fp," _prob = 1.0f - _prob;\n"); 1699 fprintf(fp," };\n"); 1700 } 1701 1702 1703 // Identify which input register matches the input register. 1704 uint matching_input = instr->two_address(_globalNames); 1705 1706 // Generate the method if it returns != 0 otherwise use MachNode::two_adr() 1707 if( matching_input != 0 ) { 1708 fprintf(fp," virtual uint two_adr() const "); 1709 fprintf(fp,"{ return oper_input_base()"); 1710 for( uint i = 2; i <= matching_input; i++ ) 1711 fprintf(fp," + opnd_array(%d)->num_edges()",i-1); 1712 fprintf(fp,"; }\n"); 1713 } 1714 1715 // Declare cisc_version, if applicable 1716 // MachNode *cisc_version( int offset /* ,... */ ); 1717 instr->declare_cisc_version(*this, fp); 1718 1719 // If there is an explicit peephole rule, build it 1720 if ( instr->peepholes() != NULL ) { 1721 fprintf(fp," virtual MachNode *peephole(Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted, Compile *C);\n"); 1722 } 1723 1724 // Output the declaration for number of relocation entries 1725 if ( instr->reloc(_globalNames) != 0 ) { 1726 fprintf(fp," virtual int reloc() const;\n"); 1727 } 1728 1729 if (instr->alignment() != 1) { 1730 fprintf(fp," virtual int alignment_required() const { return %d; }\n", instr->alignment()); 1731 fprintf(fp," virtual int compute_padding(int current_offset) const;\n"); 1732 } 1733 1734 // Starting point for inputs matcher wants. 1735 // Use MachNode::oper_input_base() for nodes based on MachNode class 1736 // if the base == 1. 1737 if ( instr->oper_input_base(_globalNames) != 1 || 1738 strcmp("MachNode", instr->mach_base_class(_globalNames)) != 0 ) { 1739 fprintf(fp," virtual uint oper_input_base() const { return %d; }\n", 1740 instr->oper_input_base(_globalNames)); 1741 } 1742 1743 // Make the constructor and following methods 'public:' 1744 fprintf(fp,"public:\n"); 1745 1746 // Constructor 1747 if ( instr->is_ideal_jump() ) { 1748 fprintf(fp," %sNode() : _index2label(MinJumpTableSize*2) { ", instr->_ident); 1749 } else { 1750 fprintf(fp," %sNode() { ", instr->_ident); 1751 if( can_cisc_spill() && (instr->cisc_spill_alternate() != NULL) ) { 1752 fprintf(fp,"_cisc_RegMask = NULL; "); 1753 } 1754 } 1755 1756 fprintf(fp," _num_opnds = %d; _opnds = _opnd_array; ", instr->num_opnds()); 1757 1758 bool node_flags_set = false; 1759 // flag: if this instruction matches an ideal 'Copy*' node 1760 if ( instr->is_ideal_copy() != 0 ) { 1761 fprintf(fp,"init_flags(Flag_is_Copy"); 1762 node_flags_set = true; 1763 } 1764 1765 // Is an instruction is a constant? If so, get its type 1766 Form::DataType data_type; 1767 const char *opType = NULL; 1768 const char *result = NULL; 1769 data_type = instr->is_chain_of_constant(_globalNames, opType, result); 1770 // Check if this instruction is a constant 1771 if ( data_type != Form::none ) { 1772 if ( node_flags_set ) { 1773 fprintf(fp," | Flag_is_Con"); 1774 } else { 1775 fprintf(fp,"init_flags(Flag_is_Con"); 1776 node_flags_set = true; 1777 } 1778 } 1779 1780 // flag: if this instruction is cisc alternate 1781 if ( can_cisc_spill() && instr->is_cisc_alternate() ) { 1782 if ( node_flags_set ) { 1783 fprintf(fp," | Flag_is_cisc_alternate"); 1784 } else { 1785 fprintf(fp,"init_flags(Flag_is_cisc_alternate"); 1786 node_flags_set = true; 1787 } 1788 } 1789 1790 // flag: if this instruction has short branch form 1791 if ( instr->has_short_branch_form() ) { 1792 if ( node_flags_set ) { 1793 fprintf(fp," | Flag_may_be_short_branch"); 1794 } else { 1795 fprintf(fp,"init_flags(Flag_may_be_short_branch"); 1796 node_flags_set = true; 1797 } 1798 } 1799 1800 // flag: if this instruction should not be generated back to back. 1801 if (avoid_back_to_back_attr != NULL) { 1802 if (node_flags_set) { 1803 fprintf(fp," | (%s)", avoid_back_to_back_attr->_val); 1804 } else { 1805 fprintf(fp,"init_flags((%s)", avoid_back_to_back_attr->_val); 1806 node_flags_set = true; 1807 } 1808 } 1809 1810 // Check if machine instructions that USE memory, but do not DEF memory, 1811 // depend upon a node that defines memory in machine-independent graph. 1812 if ( instr->needs_anti_dependence_check(_globalNames) ) { 1813 if ( node_flags_set ) { 1814 fprintf(fp," | Flag_needs_anti_dependence_check"); 1815 } else { 1816 fprintf(fp,"init_flags(Flag_needs_anti_dependence_check"); 1817 node_flags_set = true; 1818 } 1819 } 1820 1821 // flag: if this instruction is implemented with a call 1822 if ( instr->_has_call ) { 1823 if ( node_flags_set ) { 1824 fprintf(fp," | Flag_has_call"); 1825 } else { 1826 fprintf(fp,"init_flags(Flag_has_call"); 1827 node_flags_set = true; 1828 } 1829 } 1830 1831 if ( node_flags_set ) { 1832 fprintf(fp,"); "); 1833 } 1834 1835 fprintf(fp,"}\n"); 1836 1837 // size_of, used by base class's clone to obtain the correct size. 1838 fprintf(fp," virtual uint size_of() const {"); 1839 fprintf(fp, " return sizeof(%sNode);", instr->_ident); 1840 fprintf(fp, " }\n"); 1841 1842 // Virtual methods which are only generated to override base class 1843 if( instr->expands() || instr->needs_projections() || 1844 instr->has_temps() || 1845 instr->is_mach_constant() || 1846 instr->needs_constant_base() || 1847 instr->_matrule != NULL && 1848 instr->num_opnds() != instr->num_unique_opnds() ) { 1849 fprintf(fp," virtual MachNode *Expand(State *state, Node_List &proj_list, Node* mem);\n"); 1850 } 1851 1852 if (instr->is_pinned(_globalNames)) { 1853 fprintf(fp," virtual bool pinned() const { return "); 1854 if (instr->is_parm(_globalNames)) { 1855 fprintf(fp,"_in[0]->pinned();"); 1856 } else { 1857 fprintf(fp,"true;"); 1858 } 1859 fprintf(fp," }\n"); 1860 } 1861 if (instr->is_projection(_globalNames)) { 1862 fprintf(fp," virtual const Node *is_block_proj() const { return this; }\n"); 1863 } 1864 if ( instr->num_post_match_opnds() != 0 1865 || instr->is_chain_of_constant(_globalNames) ) { 1866 fprintf(fp," friend MachNode *State::MachNodeGenerator(int opcode, Compile* C);\n"); 1867 } 1868 if ( instr->rematerialize(_globalNames, get_registers()) ) { 1869 fprintf(fp," // Rematerialize %s\n", instr->_ident); 1870 } 1871 1872 // Declare short branch methods, if applicable 1873 instr->declare_short_branch_methods(fp); 1874 1875 // See if there is an "ins_pipe" declaration for this instruction 1876 if (instr->_ins_pipe) { 1877 fprintf(fp," static const Pipeline *pipeline_class();\n"); 1878 fprintf(fp," virtual const Pipeline *pipeline() const;\n"); 1879 } 1880 1881 // Generate virtual function for MachNodeX::bottom_type when necessary 1882 // 1883 // Note on accuracy: Pointer-types of machine nodes need to be accurate, 1884 // or else alias analysis on the matched graph may produce bad code. 1885 // Moreover, the aliasing decisions made on machine-node graph must be 1886 // no less accurate than those made on the ideal graph, or else the graph 1887 // may fail to schedule. (Reason: Memory ops which are reordered in 1888 // the ideal graph might look interdependent in the machine graph, 1889 // thereby removing degrees of scheduling freedom that the optimizer 1890 // assumed would be available.) 1891 // 1892 // %%% We should handle many of these cases with an explicit ADL clause: 1893 // instruct foo() %{ ... bottom_type(TypeRawPtr::BOTTOM); ... %} 1894 if( data_type != Form::none ) { 1895 // A constant's bottom_type returns a Type containing its constant value 1896 1897 // !!!!! 1898 // Convert all ints, floats, ... to machine-independent TypeXs 1899 // as is done for pointers 1900 // 1901 // Construct appropriate constant type containing the constant value. 1902 fprintf(fp," virtual const class Type *bottom_type() const {\n"); 1903 switch( data_type ) { 1904 case Form::idealI: 1905 fprintf(fp," return TypeInt::make(opnd_array(1)->constant());\n"); 1906 break; 1907 case Form::idealP: 1908 case Form::idealN: 1909 case Form::idealNKlass: 1910 fprintf(fp," return opnd_array(1)->type();\n"); 1911 break; 1912 case Form::idealD: 1913 fprintf(fp," return TypeD::make(opnd_array(1)->constantD());\n"); 1914 break; 1915 case Form::idealF: 1916 fprintf(fp," return TypeF::make(opnd_array(1)->constantF());\n"); 1917 break; 1918 case Form::idealL: 1919 fprintf(fp," return TypeLong::make(opnd_array(1)->constantL());\n"); 1920 break; 1921 default: 1922 assert( false, "Unimplemented()" ); 1923 break; 1924 } 1925 fprintf(fp," };\n"); 1926 } 1927 /* else if ( instr->_matrule && instr->_matrule->_rChild && 1928 ( strcmp("ConvF2I",instr->_matrule->_rChild->_opType)==0 1929 || strcmp("ConvD2I",instr->_matrule->_rChild->_opType)==0 ) ) { 1930 // !!!!! !!!!! 1931 // Provide explicit bottom type for conversions to int 1932 // On Intel the result operand is a stackSlot, untyped. 1933 fprintf(fp," virtual const class Type *bottom_type() const {"); 1934 fprintf(fp, " return TypeInt::INT;"); 1935 fprintf(fp, " };\n"); 1936 }*/ 1937 else if( instr->is_ideal_copy() && 1938 !strcmp(instr->_matrule->_lChild->_opType,"stackSlotP") ) { 1939 // !!!!! 1940 // Special hack for ideal Copy of pointer. Bottom type is oop or not depending on input. 1941 fprintf(fp," const Type *bottom_type() const { return in(1)->bottom_type(); } // Copy?\n"); 1942 } 1943 else if( instr->is_ideal_loadPC() ) { 1944 // LoadPCNode provides the return address of a call to native code. 1945 // Define its bottom type to be TypeRawPtr::BOTTOM instead of TypePtr::BOTTOM 1946 // since it is a pointer to an internal VM location and must have a zero offset. 1947 // Allocation detects derived pointers, in part, by their non-zero offsets. 1948 fprintf(fp," const Type *bottom_type() const { return TypeRawPtr::BOTTOM; } // LoadPC?\n"); 1949 } 1950 else if( instr->is_ideal_box() ) { 1951 // BoxNode provides the address of a stack slot. 1952 // Define its bottom type to be TypeRawPtr::BOTTOM instead of TypePtr::BOTTOM 1953 // This prevent s insert_anti_dependencies from complaining. It will 1954 // complain if it sees that the pointer base is TypePtr::BOTTOM since 1955 // it doesn't understand what that might alias. 1956 fprintf(fp," const Type *bottom_type() const { return TypeRawPtr::BOTTOM; } // Box?\n"); 1957 } 1958 else if( instr->_matrule && instr->_matrule->_rChild && !strcmp(instr->_matrule->_rChild->_opType,"CMoveP") ) { 1959 int offset = 1; 1960 // Special special hack to see if the Cmp? has been incorporated in the conditional move 1961 MatchNode *rl = instr->_matrule->_rChild->_lChild; 1962 if( rl && !strcmp(rl->_opType, "Binary") ) { 1963 MatchNode *rlr = rl->_rChild; 1964 if (rlr && strncmp(rlr->_opType, "Cmp", 3) == 0) 1965 offset = 2; 1966 } 1967 // Special hack for ideal CMoveP; ideal type depends on inputs 1968 fprintf(fp," const Type *bottom_type() const { const Type *t = in(oper_input_base()+%d)->bottom_type(); return (req() <= oper_input_base()+%d) ? t : t->meet(in(oper_input_base()+%d)->bottom_type()); } // CMoveP\n", 1969 offset, offset+1, offset+1); 1970 } 1971 else if( instr->_matrule && instr->_matrule->_rChild && !strcmp(instr->_matrule->_rChild->_opType,"CMoveN") ) { 1972 int offset = 1; 1973 // Special special hack to see if the Cmp? has been incorporated in the conditional move 1974 MatchNode *rl = instr->_matrule->_rChild->_lChild; 1975 if( rl && !strcmp(rl->_opType, "Binary") ) { 1976 MatchNode *rlr = rl->_rChild; 1977 if (rlr && strncmp(rlr->_opType, "Cmp", 3) == 0) 1978 offset = 2; 1979 } 1980 // Special hack for ideal CMoveN; ideal type depends on inputs 1981 fprintf(fp," const Type *bottom_type() const { const Type *t = in(oper_input_base()+%d)->bottom_type(); return (req() <= oper_input_base()+%d) ? t : t->meet(in(oper_input_base()+%d)->bottom_type()); } // CMoveN\n", 1982 offset, offset+1, offset+1); 1983 } 1984 else if (instr->is_tls_instruction()) { 1985 // Special hack for tlsLoadP 1986 fprintf(fp," const Type *bottom_type() const { return TypeRawPtr::BOTTOM; } // tlsLoadP\n"); 1987 } 1988 else if ( instr->is_ideal_if() ) { 1989 fprintf(fp," const Type *bottom_type() const { return TypeTuple::IFBOTH; } // matched IfNode\n"); 1990 } 1991 else if ( instr->is_ideal_membar() ) { 1992 fprintf(fp," const Type *bottom_type() const { return TypeTuple::MEMBAR; } // matched MemBar\n"); 1993 } 1994 1995 // Check where 'ideal_type' must be customized 1996 /* 1997 if ( instr->_matrule && instr->_matrule->_rChild && 1998 ( strcmp("ConvF2I",instr->_matrule->_rChild->_opType)==0 1999 || strcmp("ConvD2I",instr->_matrule->_rChild->_opType)==0 ) ) { 2000 fprintf(fp," virtual uint ideal_reg() const { return Compile::current()->matcher()->base2reg[Type::Int]; }\n"); 2001 }*/ 2002 2003 // Analyze machine instructions that either USE or DEF memory. 2004 int memory_operand = instr->memory_operand(_globalNames); 2005 // Some guys kill all of memory 2006 if ( instr->is_wide_memory_kill(_globalNames) ) { 2007 memory_operand = InstructForm::MANY_MEMORY_OPERANDS; 2008 } 2009 if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) { 2010 if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) { 2011 fprintf(fp," virtual const TypePtr *adr_type() const;\n"); 2012 } 2013 fprintf(fp," virtual const MachOper *memory_operand() const;\n"); 2014 } 2015 2016 fprintf(fp, "#ifndef PRODUCT\n"); 2017 2018 // virtual function for generating the user's assembler output 2019 gen_inst_format(fp, _globalNames,*instr); 2020 2021 // Machine independent print functionality for debugging 2022 fprintf(fp," virtual const char *Name() const { return \"%s\";}\n", 2023 instr->_ident); 2024 2025 fprintf(fp, "#endif\n"); 2026 2027 // Close definition of this XxxMachNode 2028 fprintf(fp,"};\n"); 2029 }; 2030 2031 } 2032 2033 void ArchDesc::defineStateClass(FILE *fp) { 2034 static const char *state__valid = "_valid[((uint)index) >> 5] & (0x1 << (((uint)index) & 0x0001F))"; 2035 static const char *state__set_valid= "_valid[((uint)index) >> 5] |= (0x1 << (((uint)index) & 0x0001F))"; 2036 2037 fprintf(fp,"\n"); 2038 fprintf(fp,"// MACROS to inline and constant fold State::valid(index)...\n"); 2039 fprintf(fp,"// when given a constant 'index' in dfa_<arch>.cpp\n"); 2040 fprintf(fp,"// uint word = index >> 5; // Shift out bit position\n"); 2041 fprintf(fp,"// uint bitpos = index & 0x0001F; // Mask off word bits\n"); 2042 fprintf(fp,"#define STATE__VALID(index) "); 2043 fprintf(fp," (%s)\n", state__valid); 2044 fprintf(fp,"\n"); 2045 fprintf(fp,"#define STATE__NOT_YET_VALID(index) "); 2046 fprintf(fp," ( (%s) == 0 )\n", state__valid); 2047 fprintf(fp,"\n"); 2048 fprintf(fp,"#define STATE__VALID_CHILD(state,index) "); 2049 fprintf(fp," ( state && (state->%s) )\n", state__valid); 2050 fprintf(fp,"\n"); 2051 fprintf(fp,"#define STATE__SET_VALID(index) "); 2052 fprintf(fp," (%s)\n", state__set_valid); 2053 fprintf(fp,"\n"); 2054 fprintf(fp, 2055 "//---------------------------State-------------------------------------------\n"); 2056 fprintf(fp,"// State contains an integral cost vector, indexed by machine operand opcodes,\n"); 2057 fprintf(fp,"// a rule vector consisting of machine operand/instruction opcodes, and also\n"); 2058 fprintf(fp,"// indexed by machine operand opcodes, pointers to the children in the label\n"); 2059 fprintf(fp,"// tree generated by the Label routines in ideal nodes (currently limited to\n"); 2060 fprintf(fp,"// two for convenience, but this could change).\n"); 2061 fprintf(fp,"class State : public ResourceObj {\n"); 2062 fprintf(fp,"public:\n"); 2063 fprintf(fp," int _id; // State identifier\n"); 2064 fprintf(fp," Node *_leaf; // Ideal (non-machine-node) leaf of match tree\n"); 2065 fprintf(fp," State *_kids[2]; // Children of state node in label tree\n"); 2066 fprintf(fp," unsigned int _cost[_LAST_MACH_OPER]; // Cost vector, indexed by operand opcodes\n"); 2067 fprintf(fp," unsigned int _rule[_LAST_MACH_OPER]; // Rule vector, indexed by operand opcodes\n"); 2068 fprintf(fp," unsigned int _valid[(_LAST_MACH_OPER/32)+1]; // Bit Map of valid Cost/Rule entries\n"); 2069 fprintf(fp,"\n"); 2070 fprintf(fp," State(void); // Constructor\n"); 2071 fprintf(fp," DEBUG_ONLY( ~State(void); ) // Destructor\n"); 2072 fprintf(fp,"\n"); 2073 fprintf(fp," // Methods created by ADLC and invoked by Reduce\n"); 2074 fprintf(fp," MachOper *MachOperGenerator( int opcode, Compile* C );\n"); 2075 fprintf(fp," MachNode *MachNodeGenerator( int opcode, Compile* C );\n"); 2076 fprintf(fp,"\n"); 2077 fprintf(fp," // Assign a state to a node, definition of method produced by ADLC\n"); 2078 fprintf(fp," bool DFA( int opcode, const Node *ideal );\n"); 2079 fprintf(fp,"\n"); 2080 fprintf(fp," // Access function for _valid bit vector\n"); 2081 fprintf(fp," bool valid(uint index) {\n"); 2082 fprintf(fp," return( STATE__VALID(index) != 0 );\n"); 2083 fprintf(fp," }\n"); 2084 fprintf(fp,"\n"); 2085 fprintf(fp," // Set function for _valid bit vector\n"); 2086 fprintf(fp," void set_valid(uint index) {\n"); 2087 fprintf(fp," STATE__SET_VALID(index);\n"); 2088 fprintf(fp," }\n"); 2089 fprintf(fp,"\n"); 2090 fprintf(fp,"#ifndef PRODUCT\n"); 2091 fprintf(fp," void dump(); // Debugging prints\n"); 2092 fprintf(fp," void dump(int depth);\n"); 2093 fprintf(fp,"#endif\n"); 2094 if (_dfa_small) { 2095 // Generate the routine name we'll need 2096 for (int i = 1; i < _last_opcode; i++) { 2097 if (_mlistab[i] == NULL) continue; 2098 fprintf(fp, " void _sub_Op_%s(const Node *n);\n", NodeClassNames[i]); 2099 } 2100 } 2101 fprintf(fp,"};\n"); 2102 fprintf(fp,"\n"); 2103 fprintf(fp,"\n"); 2104 2105 } 2106 2107 2108 //---------------------------buildMachOperEnum--------------------------------- 2109 // Build enumeration for densely packed operands. 2110 // This enumeration is used to index into the arrays in the State objects 2111 // that indicate cost and a successfull rule match. 2112 2113 // Information needed to generate the ReduceOp mapping for the DFA 2114 class OutputMachOperands : public OutputMap { 2115 public: 2116 OutputMachOperands(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD) 2117 : OutputMap(hpp, cpp, globals, AD, "MachOperands") {}; 2118 2119 void declaration() { } 2120 void definition() { fprintf(_cpp, "enum MachOperands {\n"); } 2121 void closing() { fprintf(_cpp, " _LAST_MACH_OPER\n"); 2122 OutputMap::closing(); 2123 } 2124 void map(OpClassForm &opc) { 2125 const char* opc_ident_to_upper = _AD.machOperEnum(opc._ident); 2126 fprintf(_cpp, " %s", opc_ident_to_upper); 2127 delete[] opc_ident_to_upper; 2128 } 2129 void map(OperandForm &oper) { 2130 const char* oper_ident_to_upper = _AD.machOperEnum(oper._ident); 2131 fprintf(_cpp, " %s", oper_ident_to_upper); 2132 delete[] oper_ident_to_upper; 2133 } 2134 void map(char *name) { 2135 const char* name_to_upper = _AD.machOperEnum(name); 2136 fprintf(_cpp, " %s", name_to_upper); 2137 delete[] name_to_upper; 2138 } 2139 2140 bool do_instructions() { return false; } 2141 void map(InstructForm &inst){ assert( false, "ShouldNotCallThis()"); } 2142 }; 2143 2144 2145 void ArchDesc::buildMachOperEnum(FILE *fp_hpp) { 2146 // Construct the table for MachOpcodes 2147 OutputMachOperands output_mach_operands(fp_hpp, fp_hpp, _globalNames, *this); 2148 build_map(output_mach_operands); 2149 } 2150 2151 2152 //---------------------------buildMachEnum---------------------------------- 2153 // Build enumeration for all MachOpers and all MachNodes 2154 2155 // Information needed to generate the ReduceOp mapping for the DFA 2156 class OutputMachOpcodes : public OutputMap { 2157 int begin_inst_chain_rule; 2158 int end_inst_chain_rule; 2159 int begin_rematerialize; 2160 int end_rematerialize; 2161 int end_instructions; 2162 public: 2163 OutputMachOpcodes(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD) 2164 : OutputMap(hpp, cpp, globals, AD, "MachOpcodes"), 2165 begin_inst_chain_rule(-1), end_inst_chain_rule(-1), 2166 begin_rematerialize(-1), end_rematerialize(-1), 2167 end_instructions(-1) 2168 {}; 2169 2170 void declaration() { } 2171 void definition() { fprintf(_cpp, "enum MachOpcodes {\n"); } 2172 void closing() { 2173 if( begin_inst_chain_rule != -1 ) 2174 fprintf(_cpp, " _BEGIN_INST_CHAIN_RULE = %d,\n", begin_inst_chain_rule); 2175 if( end_inst_chain_rule != -1 ) 2176 fprintf(_cpp, " _END_INST_CHAIN_RULE = %d,\n", end_inst_chain_rule); 2177 if( begin_rematerialize != -1 ) 2178 fprintf(_cpp, " _BEGIN_REMATERIALIZE = %d,\n", begin_rematerialize); 2179 if( end_rematerialize != -1 ) 2180 fprintf(_cpp, " _END_REMATERIALIZE = %d,\n", end_rematerialize); 2181 // always execute since do_instructions() is true, and avoids trailing comma 2182 fprintf(_cpp, " _last_Mach_Node = %d \n", end_instructions); 2183 OutputMap::closing(); 2184 } 2185 void map(OpClassForm &opc) { fprintf(_cpp, " %s_rule", opc._ident ); } 2186 void map(OperandForm &oper) { fprintf(_cpp, " %s_rule", oper._ident ); } 2187 void map(char *name) { if (name) fprintf(_cpp, " %s_rule", name); 2188 else fprintf(_cpp, " 0"); } 2189 void map(InstructForm &inst) {fprintf(_cpp, " %s_rule", inst._ident ); } 2190 2191 void record_position(OutputMap::position place, int idx ) { 2192 switch(place) { 2193 case OutputMap::BEGIN_INST_CHAIN_RULES : 2194 begin_inst_chain_rule = idx; 2195 break; 2196 case OutputMap::END_INST_CHAIN_RULES : 2197 end_inst_chain_rule = idx; 2198 break; 2199 case OutputMap::BEGIN_REMATERIALIZE : 2200 begin_rematerialize = idx; 2201 break; 2202 case OutputMap::END_REMATERIALIZE : 2203 end_rematerialize = idx; 2204 break; 2205 case OutputMap::END_INSTRUCTIONS : 2206 end_instructions = idx; 2207 break; 2208 default: 2209 break; 2210 } 2211 } 2212 }; 2213 2214 2215 void ArchDesc::buildMachOpcodesEnum(FILE *fp_hpp) { 2216 // Construct the table for MachOpcodes 2217 OutputMachOpcodes output_mach_opcodes(fp_hpp, fp_hpp, _globalNames, *this); 2218 build_map(output_mach_opcodes); 2219 } 2220 2221 2222 // Generate an enumeration of the pipeline states, and both 2223 // the functional units (resources) and the masks for 2224 // specifying resources 2225 void ArchDesc::build_pipeline_enums(FILE *fp_hpp) { 2226 int stagelen = (int)strlen("undefined"); 2227 int stagenum = 0; 2228 2229 if (_pipeline) { // Find max enum string length 2230 const char *stage; 2231 for ( _pipeline->_stages.reset(); (stage = _pipeline->_stages.iter()) != NULL; ) { 2232 int len = (int)strlen(stage); 2233 if (stagelen < len) stagelen = len; 2234 } 2235 } 2236 2237 // Generate a list of stages 2238 fprintf(fp_hpp, "\n"); 2239 fprintf(fp_hpp, "// Pipeline Stages\n"); 2240 fprintf(fp_hpp, "enum machPipelineStages {\n"); 2241 fprintf(fp_hpp, " stage_%-*s = 0,\n", stagelen, "undefined"); 2242 2243 if( _pipeline ) { 2244 const char *stage; 2245 for ( _pipeline->_stages.reset(); (stage = _pipeline->_stages.iter()) != NULL; ) 2246 fprintf(fp_hpp, " stage_%-*s = %d,\n", stagelen, stage, ++stagenum); 2247 } 2248 2249 fprintf(fp_hpp, " stage_%-*s = %d\n", stagelen, "count", stagenum); 2250 fprintf(fp_hpp, "};\n"); 2251 2252 fprintf(fp_hpp, "\n"); 2253 fprintf(fp_hpp, "// Pipeline Resources\n"); 2254 fprintf(fp_hpp, "enum machPipelineResources {\n"); 2255 int rescount = 0; 2256 2257 if( _pipeline ) { 2258 const char *resource; 2259 int reslen = 0; 2260 2261 // Generate a list of resources, and masks 2262 for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) { 2263 int len = (int)strlen(resource); 2264 if (reslen < len) 2265 reslen = len; 2266 } 2267 2268 for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) { 2269 const ResourceForm *resform = _pipeline->_resdict[resource]->is_resource(); 2270 int mask = resform->mask(); 2271 if ((mask & (mask-1)) == 0) 2272 fprintf(fp_hpp, " resource_%-*s = %d,\n", reslen, resource, rescount++); 2273 } 2274 fprintf(fp_hpp, "\n"); 2275 for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) { 2276 const ResourceForm *resform = _pipeline->_resdict[resource]->is_resource(); 2277 fprintf(fp_hpp, " res_mask_%-*s = 0x%08x,\n", reslen, resource, resform->mask()); 2278 } 2279 fprintf(fp_hpp, "\n"); 2280 } 2281 fprintf(fp_hpp, " resource_count = %d\n", rescount); 2282 fprintf(fp_hpp, "};\n"); 2283 }