1 /*
   2  * Copyright (c) 2005, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Defs.hpp"
  27 #include "c1/c1_Compilation.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "gc_implementation/shenandoah/shenandoahHeap.hpp"
  37 #include "gc_implementation/shenandoah/c1/shenandoahBarrierSetC1.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #include "utilities/bitMap.inline.hpp"
  41 #include "utilities/macros.hpp"
  42 #if INCLUDE_ALL_GCS
  43 #include "gc_implementation/g1/heapRegion.hpp"
  44 #endif // INCLUDE_ALL_GCS
  45 
  46 #ifdef ASSERT
  47 #define __ gen()->lir(__FILE__, __LINE__)->
  48 #else
  49 #define __ gen()->lir()->
  50 #endif
  51 
  52 #ifndef PATCHED_ADDR
  53 #define PATCHED_ADDR  (max_jint)
  54 #endif
  55 
  56 void PhiResolverState::reset(int max_vregs) {
  57   // Initialize array sizes
  58   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  59   _virtual_operands.trunc_to(0);
  60   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  61   _other_operands.trunc_to(0);
  62   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  63   _vreg_table.trunc_to(0);
  64 }
  65 
  66 
  67 
  68 //--------------------------------------------------------------
  69 // PhiResolver
  70 
  71 // Resolves cycles:
  72 //
  73 //  r1 := r2  becomes  temp := r1
  74 //  r2 := r1           r1 := r2
  75 //                     r2 := temp
  76 // and orders moves:
  77 //
  78 //  r2 := r3  becomes  r1 := r2
  79 //  r1 := r2           r2 := r3
  80 
  81 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  82  : _gen(gen)
  83  , _state(gen->resolver_state())
  84  , _temp(LIR_OprFact::illegalOpr)
  85 {
  86   // reinitialize the shared state arrays
  87   _state.reset(max_vregs);
  88 }
  89 
  90 
  91 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  92   assert(src->is_valid(), "");
  93   assert(dest->is_valid(), "");
  94   __ move(src, dest);
  95 }
  96 
  97 
  98 void PhiResolver::move_temp_to(LIR_Opr dest) {
  99   assert(_temp->is_valid(), "");
 100   emit_move(_temp, dest);
 101   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 102 }
 103 
 104 
 105 void PhiResolver::move_to_temp(LIR_Opr src) {
 106   assert(_temp->is_illegal(), "");
 107   _temp = _gen->new_register(src->type());
 108   emit_move(src, _temp);
 109 }
 110 
 111 
 112 // Traverse assignment graph in depth first order and generate moves in post order
 113 // ie. two assignments: b := c, a := b start with node c:
 114 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 115 // Generates moves in this order: move b to a and move c to b
 116 // ie. cycle a := b, b := a start with node a
 117 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 118 // Generates moves in this order: move b to temp, move a to b, move temp to a
 119 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 120   if (!dest->visited()) {
 121     dest->set_visited();
 122     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 123       move(dest, dest->destination_at(i));
 124     }
 125   } else if (!dest->start_node()) {
 126     // cylce in graph detected
 127     assert(_loop == NULL, "only one loop valid!");
 128     _loop = dest;
 129     move_to_temp(src->operand());
 130     return;
 131   } // else dest is a start node
 132 
 133   if (!dest->assigned()) {
 134     if (_loop == dest) {
 135       move_temp_to(dest->operand());
 136       dest->set_assigned();
 137     } else if (src != NULL) {
 138       emit_move(src->operand(), dest->operand());
 139       dest->set_assigned();
 140     }
 141   }
 142 }
 143 
 144 
 145 PhiResolver::~PhiResolver() {
 146   int i;
 147   // resolve any cycles in moves from and to virtual registers
 148   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 149     ResolveNode* node = virtual_operands()[i];
 150     if (!node->visited()) {
 151       _loop = NULL;
 152       move(NULL, node);
 153       node->set_start_node();
 154       assert(_temp->is_illegal(), "move_temp_to() call missing");
 155     }
 156   }
 157 
 158   // generate move for move from non virtual register to abitrary destination
 159   for (i = other_operands().length() - 1; i >= 0; i --) {
 160     ResolveNode* node = other_operands()[i];
 161     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 162       emit_move(node->operand(), node->destination_at(j)->operand());
 163     }
 164   }
 165 }
 166 
 167 
 168 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 169   ResolveNode* node;
 170   if (opr->is_virtual()) {
 171     int vreg_num = opr->vreg_number();
 172     node = vreg_table().at_grow(vreg_num, NULL);
 173     assert(node == NULL || node->operand() == opr, "");
 174     if (node == NULL) {
 175       node = new ResolveNode(opr);
 176       vreg_table()[vreg_num] = node;
 177     }
 178     // Make sure that all virtual operands show up in the list when
 179     // they are used as the source of a move.
 180     if (source && !virtual_operands().contains(node)) {
 181       virtual_operands().append(node);
 182     }
 183   } else {
 184     assert(source, "");
 185     node = new ResolveNode(opr);
 186     other_operands().append(node);
 187   }
 188   return node;
 189 }
 190 
 191 
 192 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 193   assert(dest->is_virtual(), "");
 194   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 195   assert(src->is_valid(), "");
 196   assert(dest->is_valid(), "");
 197   ResolveNode* source = source_node(src);
 198   source->append(destination_node(dest));
 199 }
 200 
 201 
 202 //--------------------------------------------------------------
 203 // LIRItem
 204 
 205 void LIRItem::set_result(LIR_Opr opr) {
 206   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 207   value()->set_operand(opr);
 208 
 209   if (opr->is_virtual()) {
 210     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 211   }
 212 
 213   _result = opr;
 214 }
 215 
 216 void LIRItem::load_item() {
 217   if (result()->is_illegal()) {
 218     // update the items result
 219     _result = value()->operand();
 220   }
 221   if (!result()->is_register()) {
 222     LIR_Opr reg = _gen->new_register(value()->type());
 223     __ move(result(), reg);
 224     if (result()->is_constant()) {
 225       _result = reg;
 226     } else {
 227       set_result(reg);
 228     }
 229   }
 230 }
 231 
 232 
 233 void LIRItem::load_for_store(BasicType type) {
 234   if (_gen->can_store_as_constant(value(), type)) {
 235     _result = value()->operand();
 236     if (!_result->is_constant()) {
 237       _result = LIR_OprFact::value_type(value()->type());
 238     }
 239   } else if (type == T_BYTE || type == T_BOOLEAN) {
 240     load_byte_item();
 241   } else {
 242     load_item();
 243   }
 244 }
 245 
 246 void LIRItem::load_item_force(LIR_Opr reg) {
 247   LIR_Opr r = result();
 248   if (r != reg) {
 249 #if !defined(ARM) && !defined(E500V2)
 250     if (r->type() != reg->type()) {
 251       // moves between different types need an intervening spill slot
 252       r = _gen->force_to_spill(r, reg->type());
 253     }
 254 #endif
 255     __ move(r, reg);
 256     _result = reg;
 257   }
 258 }
 259 
 260 ciObject* LIRItem::get_jobject_constant() const {
 261   ObjectType* oc = type()->as_ObjectType();
 262   if (oc) {
 263     return oc->constant_value();
 264   }
 265   return NULL;
 266 }
 267 
 268 
 269 jint LIRItem::get_jint_constant() const {
 270   assert(is_constant() && value() != NULL, "");
 271   assert(type()->as_IntConstant() != NULL, "type check");
 272   return type()->as_IntConstant()->value();
 273 }
 274 
 275 
 276 jint LIRItem::get_address_constant() const {
 277   assert(is_constant() && value() != NULL, "");
 278   assert(type()->as_AddressConstant() != NULL, "type check");
 279   return type()->as_AddressConstant()->value();
 280 }
 281 
 282 
 283 jfloat LIRItem::get_jfloat_constant() const {
 284   assert(is_constant() && value() != NULL, "");
 285   assert(type()->as_FloatConstant() != NULL, "type check");
 286   return type()->as_FloatConstant()->value();
 287 }
 288 
 289 
 290 jdouble LIRItem::get_jdouble_constant() const {
 291   assert(is_constant() && value() != NULL, "");
 292   assert(type()->as_DoubleConstant() != NULL, "type check");
 293   return type()->as_DoubleConstant()->value();
 294 }
 295 
 296 
 297 jlong LIRItem::get_jlong_constant() const {
 298   assert(is_constant() && value() != NULL, "");
 299   assert(type()->as_LongConstant() != NULL, "type check");
 300   return type()->as_LongConstant()->value();
 301 }
 302 
 303 
 304 
 305 //--------------------------------------------------------------
 306 
 307 
 308 void LIRGenerator::init() {
 309   _bs = Universe::heap()->barrier_set();
 310 }
 311 
 312 
 313 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 314 #ifndef PRODUCT
 315   if (PrintIRWithLIR) {
 316     block->print();
 317   }
 318 #endif
 319 
 320   // set up the list of LIR instructions
 321   assert(block->lir() == NULL, "LIR list already computed for this block");
 322   _lir = new LIR_List(compilation(), block);
 323   block->set_lir(_lir);
 324 
 325   __ branch_destination(block->label());
 326 
 327   if (LIRTraceExecution &&
 328       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 329       !block->is_set(BlockBegin::exception_entry_flag)) {
 330     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 331     trace_block_entry(block);
 332   }
 333 }
 334 
 335 
 336 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 337 #ifndef PRODUCT
 338   if (PrintIRWithLIR) {
 339     tty->cr();
 340   }
 341 #endif
 342 
 343   // LIR_Opr for unpinned constants shouldn't be referenced by other
 344   // blocks so clear them out after processing the block.
 345   for (int i = 0; i < _unpinned_constants.length(); i++) {
 346     _unpinned_constants.at(i)->clear_operand();
 347   }
 348   _unpinned_constants.trunc_to(0);
 349 
 350   // clear our any registers for other local constants
 351   _constants.trunc_to(0);
 352   _reg_for_constants.trunc_to(0);
 353 }
 354 
 355 
 356 void LIRGenerator::block_do(BlockBegin* block) {
 357   CHECK_BAILOUT();
 358 
 359   block_do_prolog(block);
 360   set_block(block);
 361 
 362   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 363     if (instr->is_pinned()) do_root(instr);
 364   }
 365 
 366   set_block(NULL);
 367   block_do_epilog(block);
 368 }
 369 
 370 
 371 //-------------------------LIRGenerator-----------------------------
 372 
 373 // This is where the tree-walk starts; instr must be root;
 374 void LIRGenerator::do_root(Value instr) {
 375   CHECK_BAILOUT();
 376 
 377   InstructionMark im(compilation(), instr);
 378 
 379   assert(instr->is_pinned(), "use only with roots");
 380   assert(instr->subst() == instr, "shouldn't have missed substitution");
 381 
 382   instr->visit(this);
 383 
 384   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 385          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 386 }
 387 
 388 
 389 // This is called for each node in tree; the walk stops if a root is reached
 390 void LIRGenerator::walk(Value instr) {
 391   InstructionMark im(compilation(), instr);
 392   //stop walk when encounter a root
 393   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
 394     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 395   } else {
 396     assert(instr->subst() == instr, "shouldn't have missed substitution");
 397     instr->visit(this);
 398     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 399   }
 400 }
 401 
 402 
 403 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 404   assert(state != NULL, "state must be defined");
 405 
 406 #ifndef PRODUCT
 407   state->verify();
 408 #endif
 409 
 410   ValueStack* s = state;
 411   for_each_state(s) {
 412     if (s->kind() == ValueStack::EmptyExceptionState) {
 413       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 414       continue;
 415     }
 416 
 417     int index;
 418     Value value;
 419     for_each_stack_value(s, index, value) {
 420       assert(value->subst() == value, "missed substitution");
 421       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 422         walk(value);
 423         assert(value->operand()->is_valid(), "must be evaluated now");
 424       }
 425     }
 426 
 427     int bci = s->bci();
 428     IRScope* scope = s->scope();
 429     ciMethod* method = scope->method();
 430 
 431     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 432     if (bci == SynchronizationEntryBCI) {
 433       if (x->as_ExceptionObject() || x->as_Throw()) {
 434         // all locals are dead on exit from the synthetic unlocker
 435         liveness.clear();
 436       } else {
 437         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 438       }
 439     }
 440     if (!liveness.is_valid()) {
 441       // Degenerate or breakpointed method.
 442       bailout("Degenerate or breakpointed method");
 443     } else {
 444       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 445       for_each_local_value(s, index, value) {
 446         assert(value->subst() == value, "missed substition");
 447         if (liveness.at(index) && !value->type()->is_illegal()) {
 448           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 449             walk(value);
 450             assert(value->operand()->is_valid(), "must be evaluated now");
 451           }
 452         } else {
 453           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 454           s->invalidate_local(index);
 455         }
 456       }
 457     }
 458   }
 459 
 460   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 461 }
 462 
 463 
 464 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 465   return state_for(x, x->exception_state());
 466 }
 467 
 468 
 469 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 470   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
 471    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 472    * the class. */
 473   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
 474     assert(info != NULL, "info must be set if class is not loaded");
 475     __ klass2reg_patch(NULL, r, info);
 476   } else {
 477     // no patching needed
 478     __ metadata2reg(obj->constant_encoding(), r);
 479   }
 480 }
 481 
 482 
 483 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 484                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 485   CodeStub* stub = new RangeCheckStub(range_check_info, index);
 486   if (index->is_constant()) {
 487     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 488                 index->as_jint(), null_check_info);
 489     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 490   } else {
 491     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 492                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 493     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 494   }
 495 }
 496 
 497 
 498 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 499   CodeStub* stub = new RangeCheckStub(info, index, true);
 500   if (index->is_constant()) {
 501     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 502     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 503   } else {
 504     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 505                 java_nio_Buffer::limit_offset(), T_INT, info);
 506     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 507   }
 508   __ move(index, result);
 509 }
 510 
 511 
 512 
 513 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 514   LIR_Opr result_op = result;
 515   LIR_Opr left_op   = left;
 516   LIR_Opr right_op  = right;
 517 
 518   if (TwoOperandLIRForm && left_op != result_op) {
 519     assert(right_op != result_op, "malformed");
 520     __ move(left_op, result_op);
 521     left_op = result_op;
 522   }
 523 
 524   switch(code) {
 525     case Bytecodes::_dadd:
 526     case Bytecodes::_fadd:
 527     case Bytecodes::_ladd:
 528     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 529     case Bytecodes::_fmul:
 530     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 531 
 532     case Bytecodes::_dmul:
 533       {
 534         if (is_strictfp) {
 535           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 536         } else {
 537           __ mul(left_op, right_op, result_op); break;
 538         }
 539       }
 540       break;
 541 
 542     case Bytecodes::_imul:
 543       {
 544         bool did_strength_reduce = false;
 545 
 546         if (right->is_constant()) {
 547           jint c = right->as_jint();
 548           if (c > 0 && is_power_of_2(c)) {
 549             // do not need tmp here
 550             __ shift_left(left_op, exact_log2(c), result_op);
 551             did_strength_reduce = true;
 552           } else {
 553             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 554           }
 555         }
 556         // we couldn't strength reduce so just emit the multiply
 557         if (!did_strength_reduce) {
 558           __ mul(left_op, right_op, result_op);
 559         }
 560       }
 561       break;
 562 
 563     case Bytecodes::_dsub:
 564     case Bytecodes::_fsub:
 565     case Bytecodes::_lsub:
 566     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 567 
 568     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 569     // ldiv and lrem are implemented with a direct runtime call
 570 
 571     case Bytecodes::_ddiv:
 572       {
 573         if (is_strictfp) {
 574           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 575         } else {
 576           __ div (left_op, right_op, result_op); break;
 577         }
 578       }
 579       break;
 580 
 581     case Bytecodes::_drem:
 582     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 583 
 584     default: ShouldNotReachHere();
 585   }
 586 }
 587 
 588 
 589 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 590   arithmetic_op(code, result, left, right, false, tmp);
 591 }
 592 
 593 
 594 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 595   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 596 }
 597 
 598 
 599 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 600   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 601 }
 602 
 603 
 604 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 605   if (TwoOperandLIRForm && value != result_op) {
 606     assert(count != result_op, "malformed");
 607     __ move(value, result_op);
 608     value = result_op;
 609   }
 610 
 611   assert(count->is_constant() || count->is_register(), "must be");
 612   switch(code) {
 613   case Bytecodes::_ishl:
 614   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 615   case Bytecodes::_ishr:
 616   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 617   case Bytecodes::_iushr:
 618   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 619   default: ShouldNotReachHere();
 620   }
 621 }
 622 
 623 
 624 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 625   if (TwoOperandLIRForm && left_op != result_op) {
 626     assert(right_op != result_op, "malformed");
 627     __ move(left_op, result_op);
 628     left_op = result_op;
 629   }
 630 
 631   switch(code) {
 632     case Bytecodes::_iand:
 633     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 634 
 635     case Bytecodes::_ior:
 636     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 637 
 638     case Bytecodes::_ixor:
 639     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 640 
 641     default: ShouldNotReachHere();
 642   }
 643 }
 644 
 645 
 646 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 647   if (!GenerateSynchronizationCode) return;
 648   // for slow path, use debug info for state after successful locking
 649   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 650   __ load_stack_address_monitor(monitor_no, lock);
 651   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 652   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 653 }
 654 
 655 
 656 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 657   if (!GenerateSynchronizationCode) return;
 658   // setup registers
 659   LIR_Opr hdr = lock;
 660   lock = new_hdr;
 661   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 662   __ load_stack_address_monitor(monitor_no, lock);
 663   __ unlock_object(hdr, object, lock, scratch, slow_path);
 664 }
 665 
 666 #ifndef PRODUCT
 667 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 668   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 669     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 670   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
 671     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 672   }
 673 }
 674 #endif
 675 
 676 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 677   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 678   // If klass is not loaded we do not know if the klass has finalizers:
 679   if (UseFastNewInstance && klass->is_loaded()
 680       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 681 
 682     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 683 
 684     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 685 
 686     assert(klass->is_loaded(), "must be loaded");
 687     // allocate space for instance
 688     assert(klass->size_helper() >= 0, "illegal instance size");
 689     const int instance_size = align_object_size(klass->size_helper());
 690     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 691                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 692   } else {
 693     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 694     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 695     __ branch_destination(slow_path->continuation());
 696   }
 697 }
 698 
 699 
 700 static bool is_constant_zero(Instruction* inst) {
 701   IntConstant* c = inst->type()->as_IntConstant();
 702   if (c) {
 703     return (c->value() == 0);
 704   }
 705   return false;
 706 }
 707 
 708 
 709 static bool positive_constant(Instruction* inst) {
 710   IntConstant* c = inst->type()->as_IntConstant();
 711   if (c) {
 712     return (c->value() >= 0);
 713   }
 714   return false;
 715 }
 716 
 717 
 718 static ciArrayKlass* as_array_klass(ciType* type) {
 719   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 720     return (ciArrayKlass*)type;
 721   } else {
 722     return NULL;
 723   }
 724 }
 725 
 726 static ciType* phi_declared_type(Phi* phi) {
 727   ciType* t = phi->operand_at(0)->declared_type();
 728   if (t == NULL) {
 729     return NULL;
 730   }
 731   for(int i = 1; i < phi->operand_count(); i++) {
 732     if (t != phi->operand_at(i)->declared_type()) {
 733       return NULL;
 734     }
 735   }
 736   return t;
 737 }
 738 
 739 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 740   Instruction* src     = x->argument_at(0);
 741   Instruction* src_pos = x->argument_at(1);
 742   Instruction* dst     = x->argument_at(2);
 743   Instruction* dst_pos = x->argument_at(3);
 744   Instruction* length  = x->argument_at(4);
 745 
 746   // first try to identify the likely type of the arrays involved
 747   ciArrayKlass* expected_type = NULL;
 748   bool is_exact = false, src_objarray = false, dst_objarray = false;
 749   {
 750     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 751     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 752     Phi* phi;
 753     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 754       src_declared_type = as_array_klass(phi_declared_type(phi));
 755     }
 756     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 757     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 758     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 759       dst_declared_type = as_array_klass(phi_declared_type(phi));
 760     }
 761 
 762     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 763       // the types exactly match so the type is fully known
 764       is_exact = true;
 765       expected_type = src_exact_type;
 766     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 767       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 768       ciArrayKlass* src_type = NULL;
 769       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 770         src_type = (ciArrayKlass*) src_exact_type;
 771       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 772         src_type = (ciArrayKlass*) src_declared_type;
 773       }
 774       if (src_type != NULL) {
 775         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 776           is_exact = true;
 777           expected_type = dst_type;
 778         }
 779       }
 780     }
 781     // at least pass along a good guess
 782     if (expected_type == NULL) expected_type = dst_exact_type;
 783     if (expected_type == NULL) expected_type = src_declared_type;
 784     if (expected_type == NULL) expected_type = dst_declared_type;
 785 
 786     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 787     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 788   }
 789 
 790   // if a probable array type has been identified, figure out if any
 791   // of the required checks for a fast case can be elided.
 792   int flags = LIR_OpArrayCopy::all_flags;
 793 
 794   if (!src_objarray)
 795     flags &= ~LIR_OpArrayCopy::src_objarray;
 796   if (!dst_objarray)
 797     flags &= ~LIR_OpArrayCopy::dst_objarray;
 798 
 799   if (!x->arg_needs_null_check(0))
 800     flags &= ~LIR_OpArrayCopy::src_null_check;
 801   if (!x->arg_needs_null_check(2))
 802     flags &= ~LIR_OpArrayCopy::dst_null_check;
 803 
 804 
 805   if (expected_type != NULL) {
 806     Value length_limit = NULL;
 807 
 808     IfOp* ifop = length->as_IfOp();
 809     if (ifop != NULL) {
 810       // look for expressions like min(v, a.length) which ends up as
 811       //   x > y ? y : x  or  x >= y ? y : x
 812       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 813           ifop->x() == ifop->fval() &&
 814           ifop->y() == ifop->tval()) {
 815         length_limit = ifop->y();
 816       }
 817     }
 818 
 819     // try to skip null checks and range checks
 820     NewArray* src_array = src->as_NewArray();
 821     if (src_array != NULL) {
 822       flags &= ~LIR_OpArrayCopy::src_null_check;
 823       if (length_limit != NULL &&
 824           src_array->length() == length_limit &&
 825           is_constant_zero(src_pos)) {
 826         flags &= ~LIR_OpArrayCopy::src_range_check;
 827       }
 828     }
 829 
 830     NewArray* dst_array = dst->as_NewArray();
 831     if (dst_array != NULL) {
 832       flags &= ~LIR_OpArrayCopy::dst_null_check;
 833       if (length_limit != NULL &&
 834           dst_array->length() == length_limit &&
 835           is_constant_zero(dst_pos)) {
 836         flags &= ~LIR_OpArrayCopy::dst_range_check;
 837       }
 838     }
 839 
 840     // check from incoming constant values
 841     if (positive_constant(src_pos))
 842       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 843     if (positive_constant(dst_pos))
 844       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 845     if (positive_constant(length))
 846       flags &= ~LIR_OpArrayCopy::length_positive_check;
 847 
 848     // see if the range check can be elided, which might also imply
 849     // that src or dst is non-null.
 850     ArrayLength* al = length->as_ArrayLength();
 851     if (al != NULL) {
 852       if (al->array() == src) {
 853         // it's the length of the source array
 854         flags &= ~LIR_OpArrayCopy::length_positive_check;
 855         flags &= ~LIR_OpArrayCopy::src_null_check;
 856         if (is_constant_zero(src_pos))
 857           flags &= ~LIR_OpArrayCopy::src_range_check;
 858       }
 859       if (al->array() == dst) {
 860         // it's the length of the destination array
 861         flags &= ~LIR_OpArrayCopy::length_positive_check;
 862         flags &= ~LIR_OpArrayCopy::dst_null_check;
 863         if (is_constant_zero(dst_pos))
 864           flags &= ~LIR_OpArrayCopy::dst_range_check;
 865       }
 866     }
 867     if (is_exact) {
 868       flags &= ~LIR_OpArrayCopy::type_check;
 869     }
 870   }
 871 
 872   IntConstant* src_int = src_pos->type()->as_IntConstant();
 873   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 874   if (src_int && dst_int) {
 875     int s_offs = src_int->value();
 876     int d_offs = dst_int->value();
 877     if (src_int->value() >= dst_int->value()) {
 878       flags &= ~LIR_OpArrayCopy::overlapping;
 879     }
 880     if (expected_type != NULL) {
 881       BasicType t = expected_type->element_type()->basic_type();
 882       int element_size = type2aelembytes(t);
 883       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 884           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 885         flags &= ~LIR_OpArrayCopy::unaligned;
 886       }
 887     }
 888   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 889     // src and dest positions are the same, or dst is zero so assume
 890     // nonoverlapping copy.
 891     flags &= ~LIR_OpArrayCopy::overlapping;
 892   }
 893 
 894   if (src == dst) {
 895     // moving within a single array so no type checks are needed
 896     if (flags & LIR_OpArrayCopy::type_check) {
 897       flags &= ~LIR_OpArrayCopy::type_check;
 898     }
 899   }
 900   *flagsp = flags;
 901   *expected_typep = (ciArrayKlass*)expected_type;
 902 }
 903 
 904 
 905 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 906   assert(opr->is_register(), "why spill if item is not register?");
 907 
 908   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 909     LIR_Opr result = new_register(T_FLOAT);
 910     set_vreg_flag(result, must_start_in_memory);
 911     assert(opr->is_register(), "only a register can be spilled");
 912     assert(opr->value_type()->is_float(), "rounding only for floats available");
 913     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 914     return result;
 915   }
 916   return opr;
 917 }
 918 
 919 
 920 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 921   assert(type2size[t] == type2size[value->type()],
 922          err_msg_res("size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())));
 923   if (!value->is_register()) {
 924     // force into a register
 925     LIR_Opr r = new_register(value->type());
 926     __ move(value, r);
 927     value = r;
 928   }
 929 
 930   // create a spill location
 931   LIR_Opr tmp = new_register(t);
 932   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 933 
 934   // move from register to spill
 935   __ move(value, tmp);
 936   return tmp;
 937 }
 938 
 939 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 940   if (if_instr->should_profile()) {
 941     ciMethod* method = if_instr->profiled_method();
 942     assert(method != NULL, "method should be set if branch is profiled");
 943     ciMethodData* md = method->method_data_or_null();
 944     assert(md != NULL, "Sanity");
 945     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 946     assert(data != NULL, "must have profiling data");
 947     assert(data->is_BranchData(), "need BranchData for two-way branches");
 948     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 949     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 950     if (if_instr->is_swapped()) {
 951       int t = taken_count_offset;
 952       taken_count_offset = not_taken_count_offset;
 953       not_taken_count_offset = t;
 954     }
 955 
 956     LIR_Opr md_reg = new_register(T_METADATA);
 957     __ metadata2reg(md->constant_encoding(), md_reg);
 958 
 959     LIR_Opr data_offset_reg = new_pointer_register();
 960     __ cmove(lir_cond(cond),
 961              LIR_OprFact::intptrConst(taken_count_offset),
 962              LIR_OprFact::intptrConst(not_taken_count_offset),
 963              data_offset_reg, as_BasicType(if_instr->x()->type()));
 964 
 965     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 966     LIR_Opr data_reg = new_pointer_register();
 967     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 968     __ move(data_addr, data_reg);
 969     // Use leal instead of add to avoid destroying condition codes on x86
 970     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 971     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 972     __ move(data_reg, data_addr);
 973   }
 974 }
 975 
 976 // Phi technique:
 977 // This is about passing live values from one basic block to the other.
 978 // In code generated with Java it is rather rare that more than one
 979 // value is on the stack from one basic block to the other.
 980 // We optimize our technique for efficient passing of one value
 981 // (of type long, int, double..) but it can be extended.
 982 // When entering or leaving a basic block, all registers and all spill
 983 // slots are release and empty. We use the released registers
 984 // and spill slots to pass the live values from one block
 985 // to the other. The topmost value, i.e., the value on TOS of expression
 986 // stack is passed in registers. All other values are stored in spilling
 987 // area. Every Phi has an index which designates its spill slot
 988 // At exit of a basic block, we fill the register(s) and spill slots.
 989 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 990 // and locks necessary registers and spilling slots.
 991 
 992 
 993 // move current value to referenced phi function
 994 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 995   Phi* phi = sux_val->as_Phi();
 996   // cur_val can be null without phi being null in conjunction with inlining
 997   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
 998     LIR_Opr operand = cur_val->operand();
 999     if (cur_val->operand()->is_illegal()) {
1000       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1001              "these can be produced lazily");
1002       operand = operand_for_instruction(cur_val);
1003     }
1004     resolver->move(operand, operand_for_instruction(phi));
1005   }
1006 }
1007 
1008 
1009 // Moves all stack values into their PHI position
1010 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1011   BlockBegin* bb = block();
1012   if (bb->number_of_sux() == 1) {
1013     BlockBegin* sux = bb->sux_at(0);
1014     assert(sux->number_of_preds() > 0, "invalid CFG");
1015 
1016     // a block with only one predecessor never has phi functions
1017     if (sux->number_of_preds() > 1) {
1018       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1019       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1020 
1021       ValueStack* sux_state = sux->state();
1022       Value sux_value;
1023       int index;
1024 
1025       assert(cur_state->scope() == sux_state->scope(), "not matching");
1026       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1027       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1028 
1029       for_each_stack_value(sux_state, index, sux_value) {
1030         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1031       }
1032 
1033       for_each_local_value(sux_state, index, sux_value) {
1034         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1035       }
1036 
1037       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1038     }
1039   }
1040 }
1041 
1042 
1043 LIR_Opr LIRGenerator::new_register(BasicType type) {
1044   int vreg = _virtual_register_number;
1045   // add a little fudge factor for the bailout, since the bailout is
1046   // only checked periodically.  This gives a few extra registers to
1047   // hand out before we really run out, which helps us keep from
1048   // tripping over assertions.
1049   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1050     bailout("out of virtual registers");
1051     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1052       // wrap it around
1053       _virtual_register_number = LIR_OprDesc::vreg_base;
1054     }
1055   }
1056   _virtual_register_number += 1;
1057   return LIR_OprFact::virtual_register(vreg, type);
1058 }
1059 
1060 
1061 // Try to lock using register in hint
1062 LIR_Opr LIRGenerator::rlock(Value instr) {
1063   return new_register(instr->type());
1064 }
1065 
1066 
1067 // does an rlock and sets result
1068 LIR_Opr LIRGenerator::rlock_result(Value x) {
1069   LIR_Opr reg = rlock(x);
1070   set_result(x, reg);
1071   return reg;
1072 }
1073 
1074 
1075 // does an rlock and sets result
1076 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1077   LIR_Opr reg;
1078   switch (type) {
1079   case T_BYTE:
1080   case T_BOOLEAN:
1081     reg = rlock_byte(type);
1082     break;
1083   default:
1084     reg = rlock(x);
1085     break;
1086   }
1087 
1088   set_result(x, reg);
1089   return reg;
1090 }
1091 
1092 
1093 //---------------------------------------------------------------------
1094 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1095   ObjectType* oc = value->type()->as_ObjectType();
1096   if (oc) {
1097     return oc->constant_value();
1098   }
1099   return NULL;
1100 }
1101 
1102 
1103 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1104   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1105   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1106 
1107   // no moves are created for phi functions at the begin of exception
1108   // handlers, so assign operands manually here
1109   for_each_phi_fun(block(), phi,
1110                    operand_for_instruction(phi));
1111 
1112   LIR_Opr thread_reg = getThreadPointer();
1113   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1114                exceptionOopOpr());
1115   __ move_wide(LIR_OprFact::oopConst(NULL),
1116                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1117   __ move_wide(LIR_OprFact::oopConst(NULL),
1118                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1119 
1120   LIR_Opr result = new_register(T_OBJECT);
1121   __ move(exceptionOopOpr(), result);
1122   set_result(x, result);
1123 }
1124 
1125 
1126 //----------------------------------------------------------------------
1127 //----------------------------------------------------------------------
1128 //----------------------------------------------------------------------
1129 //----------------------------------------------------------------------
1130 //                        visitor functions
1131 //----------------------------------------------------------------------
1132 //----------------------------------------------------------------------
1133 //----------------------------------------------------------------------
1134 //----------------------------------------------------------------------
1135 
1136 void LIRGenerator::do_Phi(Phi* x) {
1137   // phi functions are never visited directly
1138   ShouldNotReachHere();
1139 }
1140 
1141 
1142 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1143 void LIRGenerator::do_Constant(Constant* x) {
1144   if (x->state_before() != NULL) {
1145     // Any constant with a ValueStack requires patching so emit the patch here
1146     LIR_Opr reg = rlock_result(x);
1147     CodeEmitInfo* info = state_for(x, x->state_before());
1148     __ oop2reg_patch(NULL, reg, info);
1149   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1150     if (!x->is_pinned()) {
1151       // unpinned constants are handled specially so that they can be
1152       // put into registers when they are used multiple times within a
1153       // block.  After the block completes their operand will be
1154       // cleared so that other blocks can't refer to that register.
1155       set_result(x, load_constant(x));
1156     } else {
1157       LIR_Opr res = x->operand();
1158       if (!res->is_valid()) {
1159         res = LIR_OprFact::value_type(x->type());
1160       }
1161       if (res->is_constant()) {
1162         LIR_Opr reg = rlock_result(x);
1163         __ move(res, reg);
1164       } else {
1165         set_result(x, res);
1166       }
1167     }
1168   } else {
1169     set_result(x, LIR_OprFact::value_type(x->type()));
1170   }
1171 }
1172 
1173 
1174 void LIRGenerator::do_Local(Local* x) {
1175   // operand_for_instruction has the side effect of setting the result
1176   // so there's no need to do it here.
1177   operand_for_instruction(x);
1178 }
1179 
1180 
1181 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1182   Unimplemented();
1183 }
1184 
1185 
1186 void LIRGenerator::do_Return(Return* x) {
1187   if (compilation()->env()->dtrace_method_probes()) {
1188     BasicTypeList signature;
1189     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1190     signature.append(T_METADATA); // Method*
1191     LIR_OprList* args = new LIR_OprList();
1192     args->append(getThreadPointer());
1193     LIR_Opr meth = new_register(T_METADATA);
1194     __ metadata2reg(method()->constant_encoding(), meth);
1195     args->append(meth);
1196     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1197   }
1198 
1199   if (x->type()->is_void()) {
1200     __ return_op(LIR_OprFact::illegalOpr);
1201   } else {
1202     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1203     LIRItem result(x->result(), this);
1204 
1205     result.load_item_force(reg);
1206     __ return_op(result.result());
1207   }
1208   set_no_result(x);
1209 }
1210 
1211 // Examble: ref.get()
1212 // Combination of LoadField and g1 pre-write barrier
1213 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1214 
1215   const int referent_offset = java_lang_ref_Reference::referent_offset;
1216   guarantee(referent_offset > 0, "referent offset not initialized");
1217 
1218   assert(x->number_of_arguments() == 1, "wrong type");
1219 
1220   LIRItem reference(x->argument_at(0), this);
1221   reference.load_item();
1222 
1223   // need to perform the null check on the reference objecy
1224   CodeEmitInfo* info = NULL;
1225   if (x->needs_null_check()) {
1226     info = state_for(x);
1227   }
1228 
1229   LIR_Address* referent_field_adr =
1230     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
1231 
1232   LIR_Opr result = rlock_result(x);
1233 
1234 #if INCLUDE_ALL_GCS
1235   if (UseShenandoahGC) {
1236     LIR_Opr tmp = new_register(T_OBJECT);
1237     LIR_Opr addr = ShenandoahBarrierSet::barrier_set()->bsc1()->resolve_address(this, referent_field_adr, T_OBJECT, NULL);
1238     __ load(addr->as_address_ptr(), tmp, info);
1239     tmp = ShenandoahBarrierSet::barrier_set()->bsc1()->load_reference_barrier(this, tmp, addr);
1240     __ move(tmp, result);
1241   } else
1242 #endif
1243   __ load(referent_field_adr, result, info);
1244 
1245   // Register the value in the referent field with the pre-barrier
1246   pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
1247               result /* pre_val */,
1248               false  /* do_load */,
1249               false  /* patch */,
1250               NULL   /* info */);
1251 }
1252 
1253 // Example: clazz.isInstance(object)
1254 void LIRGenerator::do_isInstance(Intrinsic* x) {
1255   assert(x->number_of_arguments() == 2, "wrong type");
1256 
1257   // TODO could try to substitute this node with an equivalent InstanceOf
1258   // if clazz is known to be a constant Class. This will pick up newly found
1259   // constants after HIR construction. I'll leave this to a future change.
1260 
1261   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1262   // could follow the aastore example in a future change.
1263 
1264   LIRItem clazz(x->argument_at(0), this);
1265   LIRItem object(x->argument_at(1), this);
1266   clazz.load_item();
1267   object.load_item();
1268   LIR_Opr result = rlock_result(x);
1269 
1270   // need to perform null check on clazz
1271   if (x->needs_null_check()) {
1272     CodeEmitInfo* info = state_for(x);
1273     __ null_check(clazz.result(), info);
1274   }
1275 
1276   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1277                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1278                                      x->type(),
1279                                      NULL); // NULL CodeEmitInfo results in a leaf call
1280   __ move(call_result, result);
1281 }
1282 
1283 // Example: object.getClass ()
1284 void LIRGenerator::do_getClass(Intrinsic* x) {
1285   assert(x->number_of_arguments() == 1, "wrong type");
1286 
1287   LIRItem rcvr(x->argument_at(0), this);
1288   rcvr.load_item();
1289   LIR_Opr temp = new_register(T_METADATA);
1290   LIR_Opr result = rlock_result(x);
1291 
1292   // need to perform the null check on the rcvr
1293   CodeEmitInfo* info = NULL;
1294   if (x->needs_null_check()) {
1295     info = state_for(x);
1296   }
1297 
1298   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1299   // meaning of these two is mixed up (see JDK-8026837).
1300   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1301   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
1302 }
1303 
1304 
1305 // Example: Thread.currentThread()
1306 void LIRGenerator::do_currentThread(Intrinsic* x) {
1307   assert(x->number_of_arguments() == 0, "wrong type");
1308   LIR_Opr reg = rlock_result(x);
1309   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1310 }
1311 
1312 
1313 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1314   assert(x->number_of_arguments() == 1, "wrong type");
1315   LIRItem receiver(x->argument_at(0), this);
1316 
1317   receiver.load_item();
1318   BasicTypeList signature;
1319   signature.append(T_OBJECT); // receiver
1320   LIR_OprList* args = new LIR_OprList();
1321   args->append(receiver.result());
1322   CodeEmitInfo* info = state_for(x, x->state());
1323   call_runtime(&signature, args,
1324                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1325                voidType, info);
1326 
1327   set_no_result(x);
1328 }
1329 
1330 
1331 //------------------------local access--------------------------------------
1332 
1333 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1334   if (x->operand()->is_illegal()) {
1335     Constant* c = x->as_Constant();
1336     if (c != NULL) {
1337       x->set_operand(LIR_OprFact::value_type(c->type()));
1338     } else {
1339       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1340       // allocate a virtual register for this local or phi
1341       x->set_operand(rlock(x));
1342       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1343     }
1344   }
1345   return x->operand();
1346 }
1347 
1348 
1349 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1350   if (opr->is_virtual()) {
1351     return instruction_for_vreg(opr->vreg_number());
1352   }
1353   return NULL;
1354 }
1355 
1356 
1357 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1358   if (reg_num < _instruction_for_operand.length()) {
1359     return _instruction_for_operand.at(reg_num);
1360   }
1361   return NULL;
1362 }
1363 
1364 
1365 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1366   if (_vreg_flags.size_in_bits() == 0) {
1367     BitMap2D temp(100, num_vreg_flags);
1368     temp.clear();
1369     _vreg_flags = temp;
1370   }
1371   _vreg_flags.at_put_grow(vreg_num, f, true);
1372 }
1373 
1374 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1375   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1376     return false;
1377   }
1378   return _vreg_flags.at(vreg_num, f);
1379 }
1380 
1381 
1382 // Block local constant handling.  This code is useful for keeping
1383 // unpinned constants and constants which aren't exposed in the IR in
1384 // registers.  Unpinned Constant instructions have their operands
1385 // cleared when the block is finished so that other blocks can't end
1386 // up referring to their registers.
1387 
1388 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1389   assert(!x->is_pinned(), "only for unpinned constants");
1390   _unpinned_constants.append(x);
1391   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1392 }
1393 
1394 
1395 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1396   BasicType t = c->type();
1397   for (int i = 0; i < _constants.length(); i++) {
1398     LIR_Const* other = _constants.at(i);
1399     if (t == other->type()) {
1400       switch (t) {
1401       case T_INT:
1402       case T_FLOAT:
1403         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1404         break;
1405       case T_LONG:
1406       case T_DOUBLE:
1407         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1408         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1409         break;
1410       case T_OBJECT:
1411         if (c->as_jobject() != other->as_jobject()) continue;
1412         break;
1413       }
1414       return _reg_for_constants.at(i);
1415     }
1416   }
1417 
1418   LIR_Opr result = new_register(t);
1419   __ move((LIR_Opr)c, result);
1420   _constants.append(c);
1421   _reg_for_constants.append(result);
1422   return result;
1423 }
1424 
1425 // Various barriers
1426 
1427 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1428                                bool do_load, bool patch, CodeEmitInfo* info) {
1429   // Do the pre-write barrier, if any.
1430   switch (_bs->kind()) {
1431 #if INCLUDE_ALL_GCS
1432     case BarrierSet::G1SATBCT:
1433     case BarrierSet::G1SATBCTLogging:
1434       G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1435       break;
1436     case BarrierSet::ShenandoahBarrierSet:
1437       if (ShenandoahSATBBarrier) {
1438         G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1439       }
1440       break;
1441 #endif // INCLUDE_ALL_GCS
1442     case BarrierSet::CardTableModRef:
1443     case BarrierSet::CardTableExtension:
1444       // No pre barriers
1445       break;
1446     case BarrierSet::ModRef:
1447     case BarrierSet::Other:
1448       // No pre barriers
1449       break;
1450     default      :
1451       ShouldNotReachHere();
1452 
1453   }
1454 }
1455 
1456 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1457   switch (_bs->kind()) {
1458 #if INCLUDE_ALL_GCS
1459     case BarrierSet::G1SATBCT:
1460     case BarrierSet::G1SATBCTLogging:
1461       G1SATBCardTableModRef_post_barrier(addr,  new_val);
1462       break;
1463     case BarrierSet::ShenandoahBarrierSet:
1464       ShenandoahBarrierSetC1::bsc1()->storeval_barrier(this, new_val, NULL, false);
1465       break;
1466 #endif // INCLUDE_ALL_GCS
1467     case BarrierSet::CardTableModRef:
1468     case BarrierSet::CardTableExtension:
1469       CardTableModRef_post_barrier(addr,  new_val);
1470       break;
1471     case BarrierSet::ModRef:
1472     case BarrierSet::Other:
1473       // No post barriers
1474       break;
1475     default      :
1476       ShouldNotReachHere();
1477     }
1478 }
1479 
1480 ////////////////////////////////////////////////////////////////////////
1481 #if INCLUDE_ALL_GCS
1482 
1483 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1484                                                      bool do_load, bool patch, CodeEmitInfo* info) {
1485   // First we test whether marking is in progress.
1486   BasicType flag_type;
1487   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
1488     flag_type = T_INT;
1489   } else {
1490     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
1491               "Assumption");
1492     flag_type = T_BYTE;
1493   }
1494   LIR_Opr thrd = getThreadPointer();
1495   LIR_Address* mark_active_flag_addr =
1496     new LIR_Address(thrd,
1497                     in_bytes(JavaThread::satb_mark_queue_offset() +
1498                              PtrQueue::byte_offset_of_active()),
1499                     flag_type);
1500   // Read the marking-in-progress flag.
1501   LIR_Opr flag_val = new_register(T_INT);
1502   __ load(mark_active_flag_addr, flag_val);
1503   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1504 
1505   LIR_PatchCode pre_val_patch_code = lir_patch_none;
1506 
1507   CodeStub* slow;
1508 
1509   if (do_load) {
1510     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
1511     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
1512 
1513     if (patch)
1514       pre_val_patch_code = lir_patch_normal;
1515 
1516     pre_val = new_register(T_OBJECT);
1517 
1518     if (!addr_opr->is_address()) {
1519       assert(addr_opr->is_register(), "must be");
1520       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1521     }
1522     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
1523   } else {
1524     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
1525     assert(pre_val->is_register(), "must be");
1526     assert(pre_val->type() == T_OBJECT, "must be an object");
1527     assert(info == NULL, "sanity");
1528 
1529     slow = new G1PreBarrierStub(pre_val);
1530   }
1531 
1532   __ branch(lir_cond_notEqual, T_INT, slow);
1533   __ branch_destination(slow->continuation());
1534 }
1535 
1536 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1537   // If the "new_val" is a constant NULL, no barrier is necessary.
1538   if (new_val->is_constant() &&
1539       new_val->as_constant_ptr()->as_jobject() == NULL) return;
1540 
1541   if (!new_val->is_register()) {
1542     LIR_Opr new_val_reg = new_register(T_OBJECT);
1543     if (new_val->is_constant()) {
1544       __ move(new_val, new_val_reg);
1545     } else {
1546       __ leal(new_val, new_val_reg);
1547     }
1548     new_val = new_val_reg;
1549   }
1550   assert(new_val->is_register(), "must be a register at this point");
1551 
1552   if (addr->is_address()) {
1553     LIR_Address* address = addr->as_address_ptr();
1554     LIR_Opr ptr = new_pointer_register();
1555     if (!address->index()->is_valid() && address->disp() == 0) {
1556       __ move(address->base(), ptr);
1557     } else {
1558       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1559       __ leal(addr, ptr);
1560     }
1561     addr = ptr;
1562   }
1563   assert(addr->is_register(), "must be a register at this point");
1564 
1565   LIR_Opr xor_res = new_pointer_register();
1566   LIR_Opr xor_shift_res = new_pointer_register();
1567   if (TwoOperandLIRForm ) {
1568     __ move(addr, xor_res);
1569     __ logical_xor(xor_res, new_val, xor_res);
1570     __ move(xor_res, xor_shift_res);
1571     __ unsigned_shift_right(xor_shift_res,
1572                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1573                             xor_shift_res,
1574                             LIR_OprDesc::illegalOpr());
1575   } else {
1576     __ logical_xor(addr, new_val, xor_res);
1577     __ unsigned_shift_right(xor_res,
1578                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1579                             xor_shift_res,
1580                             LIR_OprDesc::illegalOpr());
1581   }
1582 
1583   if (!new_val->is_register()) {
1584     LIR_Opr new_val_reg = new_register(T_OBJECT);
1585     __ leal(new_val, new_val_reg);
1586     new_val = new_val_reg;
1587   }
1588   assert(new_val->is_register(), "must be a register at this point");
1589 
1590   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1591 
1592   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1593   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1594   __ branch_destination(slow->continuation());
1595 }
1596 
1597 #endif // INCLUDE_ALL_GCS
1598 ////////////////////////////////////////////////////////////////////////
1599 
1600 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1601 
1602   assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
1603   LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
1604   if (addr->is_address()) {
1605     LIR_Address* address = addr->as_address_ptr();
1606     // ptr cannot be an object because we use this barrier for array card marks
1607     // and addr can point in the middle of an array.
1608     LIR_Opr ptr = new_pointer_register();
1609     if (!address->index()->is_valid() && address->disp() == 0) {
1610       __ move(address->base(), ptr);
1611     } else {
1612       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1613       __ leal(addr, ptr);
1614     }
1615     addr = ptr;
1616   }
1617   assert(addr->is_register(), "must be a register at this point");
1618 
1619 #ifdef CARDTABLEMODREF_POST_BARRIER_HELPER
1620   CardTableModRef_post_barrier_helper(addr, card_table_base);
1621 #else
1622   LIR_Opr tmp = new_pointer_register();
1623   if (TwoOperandLIRForm) {
1624     __ move(addr, tmp);
1625     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1626   } else {
1627     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1628   }
1629 
1630   if (UseConcMarkSweepGC && CMSPrecleaningEnabled) {
1631     __ membar_storestore();
1632   }
1633 
1634   if (can_inline_as_constant(card_table_base)) {
1635     __ move(LIR_OprFact::intConst(0),
1636               new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
1637   } else {
1638     __ move(LIR_OprFact::intConst(0),
1639               new LIR_Address(tmp, load_constant(card_table_base),
1640                               T_BYTE));
1641   }
1642 #endif
1643 }
1644 
1645 
1646 //------------------------field access--------------------------------------
1647 
1648 // Comment copied form templateTable_i486.cpp
1649 // ----------------------------------------------------------------------------
1650 // Volatile variables demand their effects be made known to all CPU's in
1651 // order.  Store buffers on most chips allow reads & writes to reorder; the
1652 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1653 // memory barrier (i.e., it's not sufficient that the interpreter does not
1654 // reorder volatile references, the hardware also must not reorder them).
1655 //
1656 // According to the new Java Memory Model (JMM):
1657 // (1) All volatiles are serialized wrt to each other.
1658 // ALSO reads & writes act as aquire & release, so:
1659 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1660 // the read float up to before the read.  It's OK for non-volatile memory refs
1661 // that happen before the volatile read to float down below it.
1662 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1663 // that happen BEFORE the write float down to after the write.  It's OK for
1664 // non-volatile memory refs that happen after the volatile write to float up
1665 // before it.
1666 //
1667 // We only put in barriers around volatile refs (they are expensive), not
1668 // _between_ memory refs (that would require us to track the flavor of the
1669 // previous memory refs).  Requirements (2) and (3) require some barriers
1670 // before volatile stores and after volatile loads.  These nearly cover
1671 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1672 // case is placed after volatile-stores although it could just as well go
1673 // before volatile-loads.
1674 
1675 
1676 void LIRGenerator::do_StoreField(StoreField* x) {
1677   bool needs_patching = x->needs_patching();
1678   bool is_volatile = x->field()->is_volatile();
1679   BasicType field_type = x->field_type();
1680   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1681 
1682   CodeEmitInfo* info = NULL;
1683   if (needs_patching) {
1684     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1685     info = state_for(x, x->state_before());
1686   } else if (x->needs_null_check()) {
1687     NullCheck* nc = x->explicit_null_check();
1688     if (nc == NULL) {
1689       info = state_for(x);
1690     } else {
1691       info = state_for(nc);
1692     }
1693   }
1694 
1695 
1696   LIRItem object(x->obj(), this);
1697   LIRItem value(x->value(),  this);
1698 
1699   object.load_item();
1700 
1701   if (is_volatile || needs_patching) {
1702     // load item if field is volatile (fewer special cases for volatiles)
1703     // load item if field not initialized
1704     // load item if field not constant
1705     // because of code patching we cannot inline constants
1706     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1707       value.load_byte_item();
1708     } else  {
1709       value.load_item();
1710     }
1711   } else {
1712     value.load_for_store(field_type);
1713   }
1714 
1715   set_no_result(x);
1716 
1717 #ifndef PRODUCT
1718   if (PrintNotLoaded && needs_patching) {
1719     tty->print_cr("   ###class not loaded at store_%s bci %d",
1720                   x->is_static() ?  "static" : "field", x->printable_bci());
1721   }
1722 #endif
1723 
1724   if (x->needs_null_check() &&
1725       (needs_patching ||
1726        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1727     // Emit an explicit null check because the offset is too large.
1728     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1729     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1730     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1731   }
1732 
1733   LIR_Address* address;
1734   if (needs_patching) {
1735     // we need to patch the offset in the instruction so don't allow
1736     // generate_address to try to be smart about emitting the -1.
1737     // Otherwise the patching code won't know how to find the
1738     // instruction to patch.
1739     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1740   } else {
1741     address = generate_address(object.result(), x->offset(), field_type);
1742   }
1743 
1744   if (is_volatile && os::is_MP()) {
1745     __ membar_release();
1746   }
1747 
1748   if (is_oop) {
1749     // Do the pre-write barrier, if any.
1750     pre_barrier(LIR_OprFact::address(address),
1751                 LIR_OprFact::illegalOpr /* pre_val */,
1752                 true /* do_load*/,
1753                 needs_patching,
1754                 (info ? new CodeEmitInfo(info) : NULL));
1755   }
1756 
1757   if (is_volatile && !needs_patching) {
1758     volatile_field_store(value.result(), address, info);
1759   } else {
1760     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1761     __ store(value.result(), address, info, patch_code);
1762   }
1763 
1764   if (is_oop) {
1765     // Store to object so mark the card of the header
1766     post_barrier(object.result(), value.result());
1767   }
1768 
1769   if (is_volatile && os::is_MP()) {
1770     __ membar();
1771   }
1772 }
1773 
1774 
1775 void LIRGenerator::do_LoadField(LoadField* x) {
1776   bool needs_patching = x->needs_patching();
1777   bool is_volatile = x->field()->is_volatile();
1778   BasicType field_type = x->field_type();
1779 
1780   CodeEmitInfo* info = NULL;
1781   if (needs_patching) {
1782     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1783     info = state_for(x, x->state_before());
1784   } else if (x->needs_null_check()) {
1785     NullCheck* nc = x->explicit_null_check();
1786     if (nc == NULL) {
1787       info = state_for(x);
1788     } else {
1789       info = state_for(nc);
1790     }
1791   }
1792 
1793   LIRItem object(x->obj(), this);
1794 
1795   object.load_item();
1796 
1797 #ifndef PRODUCT
1798   if (PrintNotLoaded && needs_patching) {
1799     tty->print_cr("   ###class not loaded at load_%s bci %d",
1800                   x->is_static() ?  "static" : "field", x->printable_bci());
1801   }
1802 #endif
1803 
1804   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1805   if (x->needs_null_check() &&
1806       (needs_patching ||
1807        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1808        stress_deopt)) {
1809     LIR_Opr obj = object.result();
1810     if (stress_deopt) {
1811       obj = new_register(T_OBJECT);
1812       __ move(LIR_OprFact::oopConst(NULL), obj);
1813     }
1814     // Emit an explicit null check because the offset is too large.
1815     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1816     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1817     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1818   }
1819 
1820   LIR_Opr reg = rlock_result(x, field_type);
1821   LIR_Address* address;
1822   if (needs_patching) {
1823     // we need to patch the offset in the instruction so don't allow
1824     // generate_address to try to be smart about emitting the -1.
1825     // Otherwise the patching code won't know how to find the
1826     // instruction to patch.
1827     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1828   } else {
1829     address = generate_address(object.result(), x->offset(), field_type);
1830   }
1831 
1832 #if INCLUDE_ALL_GCS
1833   if (UseShenandoahGC && (field_type == T_OBJECT || field_type == T_ARRAY)) {
1834     LIR_Opr tmp = new_register(T_OBJECT);
1835     LIR_Opr addr = ShenandoahBarrierSet::barrier_set()->bsc1()->resolve_address(this, address, field_type, needs_patching ? info : NULL);
1836     if (is_volatile) {
1837       volatile_field_load(addr->as_address_ptr(), tmp, info);
1838     } else {
1839       __ load(addr->as_address_ptr(), tmp, info);
1840     }
1841     if (is_volatile && os::is_MP()) {
1842       __ membar_acquire();
1843     }
1844     tmp = ShenandoahBarrierSet::barrier_set()->bsc1()->load_reference_barrier(this, tmp, addr);
1845     __ move(tmp, reg);
1846   } else
1847 #endif
1848   {
1849   if (is_volatile && !needs_patching) {
1850     volatile_field_load(address, reg, info);
1851   } else {
1852     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1853     __ load(address, reg, info, patch_code);
1854   }
1855   if (is_volatile && os::is_MP()) {
1856     __ membar_acquire();
1857   }
1858   }
1859 }
1860 
1861 
1862 //------------------------java.nio.Buffer.checkIndex------------------------
1863 
1864 // int java.nio.Buffer.checkIndex(int)
1865 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1866   // NOTE: by the time we are in checkIndex() we are guaranteed that
1867   // the buffer is non-null (because checkIndex is package-private and
1868   // only called from within other methods in the buffer).
1869   assert(x->number_of_arguments() == 2, "wrong type");
1870   LIRItem buf  (x->argument_at(0), this);
1871   LIRItem index(x->argument_at(1), this);
1872   buf.load_item();
1873   index.load_item();
1874 
1875   LIR_Opr result = rlock_result(x);
1876   if (GenerateRangeChecks) {
1877     CodeEmitInfo* info = state_for(x);
1878     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1879     if (index.result()->is_constant()) {
1880       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1881       __ branch(lir_cond_belowEqual, T_INT, stub);
1882     } else {
1883       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1884                   java_nio_Buffer::limit_offset(), T_INT, info);
1885       __ branch(lir_cond_aboveEqual, T_INT, stub);
1886     }
1887     __ move(index.result(), result);
1888   } else {
1889     // Just load the index into the result register
1890     __ move(index.result(), result);
1891   }
1892 }
1893 
1894 
1895 //------------------------array access--------------------------------------
1896 
1897 
1898 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1899   LIRItem array(x->array(), this);
1900   array.load_item();
1901   LIR_Opr reg = rlock_result(x);
1902 
1903   CodeEmitInfo* info = NULL;
1904   if (x->needs_null_check()) {
1905     NullCheck* nc = x->explicit_null_check();
1906     if (nc == NULL) {
1907       info = state_for(x);
1908     } else {
1909       info = state_for(nc);
1910     }
1911     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1912       LIR_Opr obj = new_register(T_OBJECT);
1913       __ move(LIR_OprFact::oopConst(NULL), obj);
1914       __ null_check(obj, new CodeEmitInfo(info));
1915     }
1916   }
1917   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1918 }
1919 
1920 
1921 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1922   bool use_length = x->length() != NULL;
1923   LIRItem array(x->array(), this);
1924   LIRItem index(x->index(), this);
1925   LIRItem length(this);
1926   bool needs_range_check = x->compute_needs_range_check();
1927 
1928   if (use_length && needs_range_check) {
1929     length.set_instruction(x->length());
1930     length.load_item();
1931   }
1932 
1933   array.load_item();
1934   if (index.is_constant() && can_inline_as_constant(x->index())) {
1935     // let it be a constant
1936     index.dont_load_item();
1937   } else {
1938     index.load_item();
1939   }
1940 
1941   CodeEmitInfo* range_check_info = state_for(x);
1942   CodeEmitInfo* null_check_info = NULL;
1943   if (x->needs_null_check()) {
1944     NullCheck* nc = x->explicit_null_check();
1945     if (nc != NULL) {
1946       null_check_info = state_for(nc);
1947     } else {
1948       null_check_info = range_check_info;
1949     }
1950     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1951       LIR_Opr obj = new_register(T_OBJECT);
1952       __ move(LIR_OprFact::oopConst(NULL), obj);
1953       __ null_check(obj, new CodeEmitInfo(null_check_info));
1954     }
1955   }
1956 
1957   // emit array address setup early so it schedules better
1958   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1959 
1960   if (GenerateRangeChecks && needs_range_check) {
1961     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1962       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
1963     } else if (use_length) {
1964       // TODO: use a (modified) version of array_range_check that does not require a
1965       //       constant length to be loaded to a register
1966       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1967       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1968     } else {
1969       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1970       // The range check performs the null check, so clear it out for the load
1971       null_check_info = NULL;
1972     }
1973   }
1974 
1975   LIR_Opr result = rlock_result(x, x->elt_type());
1976 
1977 #if INCLUDE_ALL_GCS
1978   if (UseShenandoahGC && (x->elt_type() == T_OBJECT || x->elt_type() == T_ARRAY)) {
1979     LIR_Opr tmp = new_register(T_OBJECT);
1980     LIR_Opr addr = ShenandoahBarrierSet::barrier_set()->bsc1()->resolve_address(this, array_addr, x->elt_type(), NULL);
1981     __ move(addr->as_address_ptr(), tmp, null_check_info);
1982     tmp = ShenandoahBarrierSet::barrier_set()->bsc1()->load_reference_barrier(this, tmp, addr);
1983     __ move(tmp, result);
1984   } else
1985 #endif
1986   __ move(array_addr, result, null_check_info);
1987 
1988 }
1989 
1990 
1991 void LIRGenerator::do_NullCheck(NullCheck* x) {
1992   if (x->can_trap()) {
1993     LIRItem value(x->obj(), this);
1994     value.load_item();
1995     CodeEmitInfo* info = state_for(x);
1996     __ null_check(value.result(), info);
1997   }
1998 }
1999 
2000 
2001 void LIRGenerator::do_TypeCast(TypeCast* x) {
2002   LIRItem value(x->obj(), this);
2003   value.load_item();
2004   // the result is the same as from the node we are casting
2005   set_result(x, value.result());
2006 }
2007 
2008 
2009 void LIRGenerator::do_Throw(Throw* x) {
2010   LIRItem exception(x->exception(), this);
2011   exception.load_item();
2012   set_no_result(x);
2013   LIR_Opr exception_opr = exception.result();
2014   CodeEmitInfo* info = state_for(x, x->state());
2015 
2016 #ifndef PRODUCT
2017   if (PrintC1Statistics) {
2018     increment_counter(Runtime1::throw_count_address(), T_INT);
2019   }
2020 #endif
2021 
2022   // check if the instruction has an xhandler in any of the nested scopes
2023   bool unwind = false;
2024   if (info->exception_handlers()->length() == 0) {
2025     // this throw is not inside an xhandler
2026     unwind = true;
2027   } else {
2028     // get some idea of the throw type
2029     bool type_is_exact = true;
2030     ciType* throw_type = x->exception()->exact_type();
2031     if (throw_type == NULL) {
2032       type_is_exact = false;
2033       throw_type = x->exception()->declared_type();
2034     }
2035     if (throw_type != NULL && throw_type->is_instance_klass()) {
2036       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2037       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2038     }
2039   }
2040 
2041   // do null check before moving exception oop into fixed register
2042   // to avoid a fixed interval with an oop during the null check.
2043   // Use a copy of the CodeEmitInfo because debug information is
2044   // different for null_check and throw.
2045   if (GenerateCompilerNullChecks &&
2046       (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
2047     // if the exception object wasn't created using new then it might be null.
2048     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2049   }
2050 
2051   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2052     // we need to go through the exception lookup path to get JVMTI
2053     // notification done
2054     unwind = false;
2055   }
2056 
2057   // move exception oop into fixed register
2058   __ move(exception_opr, exceptionOopOpr());
2059 
2060   if (unwind) {
2061     __ unwind_exception(exceptionOopOpr());
2062   } else {
2063     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2064   }
2065 }
2066 
2067 
2068 void LIRGenerator::do_RoundFP(RoundFP* x) {
2069   LIRItem input(x->input(), this);
2070   input.load_item();
2071   LIR_Opr input_opr = input.result();
2072   assert(input_opr->is_register(), "why round if value is not in a register?");
2073   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2074   if (input_opr->is_single_fpu()) {
2075     set_result(x, round_item(input_opr)); // This code path not currently taken
2076   } else {
2077     LIR_Opr result = new_register(T_DOUBLE);
2078     set_vreg_flag(result, must_start_in_memory);
2079     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2080     set_result(x, result);
2081   }
2082 }
2083 
2084 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
2085 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2086 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2087   LIRItem base(x->base(), this);
2088   LIRItem idx(this);
2089 
2090   base.load_item();
2091   if (x->has_index()) {
2092     idx.set_instruction(x->index());
2093     idx.load_nonconstant();
2094   }
2095 
2096   LIR_Opr reg = rlock_result(x, x->basic_type());
2097 
2098   int   log2_scale = 0;
2099   if (x->has_index()) {
2100     log2_scale = x->log2_scale();
2101   }
2102 
2103   assert(!x->has_index() || idx.value() == x->index(), "should match");
2104 
2105   LIR_Opr base_op = base.result();
2106   LIR_Opr index_op = idx.result();
2107 #ifndef _LP64
2108   if (base_op->type() == T_LONG) {
2109     base_op = new_register(T_INT);
2110     __ convert(Bytecodes::_l2i, base.result(), base_op);
2111   }
2112   if (x->has_index()) {
2113     if (index_op->type() == T_LONG) {
2114       LIR_Opr long_index_op = index_op;
2115       if (index_op->is_constant()) {
2116         long_index_op = new_register(T_LONG);
2117         __ move(index_op, long_index_op);
2118       }
2119       index_op = new_register(T_INT);
2120       __ convert(Bytecodes::_l2i, long_index_op, index_op);
2121     } else {
2122       assert(x->index()->type()->tag() == intTag, "must be");
2123     }
2124   }
2125   // At this point base and index should be all ints.
2126   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2127   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2128 #else
2129   if (x->has_index()) {
2130     if (index_op->type() == T_INT) {
2131       if (!index_op->is_constant()) {
2132         index_op = new_register(T_LONG);
2133         __ convert(Bytecodes::_i2l, idx.result(), index_op);
2134       }
2135     } else {
2136       assert(index_op->type() == T_LONG, "must be");
2137       if (index_op->is_constant()) {
2138         index_op = new_register(T_LONG);
2139         __ move(idx.result(), index_op);
2140       }
2141     }
2142   }
2143   // At this point base is a long non-constant
2144   // Index is a long register or a int constant.
2145   // We allow the constant to stay an int because that would allow us a more compact encoding by
2146   // embedding an immediate offset in the address expression. If we have a long constant, we have to
2147   // move it into a register first.
2148   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2149   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2150                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2151 #endif
2152 
2153   BasicType dst_type = x->basic_type();
2154 
2155   LIR_Address* addr;
2156   if (index_op->is_constant()) {
2157     assert(log2_scale == 0, "must not have a scale");
2158     assert(index_op->type() == T_INT, "only int constants supported");
2159     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2160   } else {
2161 #if defined(X86) || defined(AARCH64)
2162     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2163 #elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2164     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2165 #else
2166     if (index_op->is_illegal() || log2_scale == 0) {
2167       addr = new LIR_Address(base_op, index_op, dst_type);
2168     } else {
2169       LIR_Opr tmp = new_pointer_register();
2170       __ shift_left(index_op, log2_scale, tmp);
2171       addr = new LIR_Address(base_op, tmp, dst_type);
2172     }
2173 #endif
2174   }
2175 
2176   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2177     __ unaligned_move(addr, reg);
2178   } else {
2179     if (dst_type == T_OBJECT && x->is_wide()) {
2180       __ move_wide(addr, reg);
2181     } else {
2182       __ move(addr, reg);
2183     }
2184   }
2185 }
2186 
2187 
2188 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2189   int  log2_scale = 0;
2190   BasicType type = x->basic_type();
2191 
2192   if (x->has_index()) {
2193     log2_scale = x->log2_scale();
2194   }
2195 
2196   LIRItem base(x->base(), this);
2197   LIRItem value(x->value(), this);
2198   LIRItem idx(this);
2199 
2200   base.load_item();
2201   if (x->has_index()) {
2202     idx.set_instruction(x->index());
2203     idx.load_item();
2204   }
2205 
2206   if (type == T_BYTE || type == T_BOOLEAN) {
2207     value.load_byte_item();
2208   } else {
2209     value.load_item();
2210   }
2211 
2212   set_no_result(x);
2213 
2214   LIR_Opr base_op = base.result();
2215   LIR_Opr index_op = idx.result();
2216 
2217 #ifdef GENERATE_ADDRESS_IS_PREFERRED
2218   LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2219 #else
2220 #ifndef _LP64
2221   if (base_op->type() == T_LONG) {
2222     base_op = new_register(T_INT);
2223     __ convert(Bytecodes::_l2i, base.result(), base_op);
2224   }
2225   if (x->has_index()) {
2226     if (index_op->type() == T_LONG) {
2227       index_op = new_register(T_INT);
2228       __ convert(Bytecodes::_l2i, idx.result(), index_op);
2229     }
2230   }
2231   // At this point base and index should be all ints and not constants
2232   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2233   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2234 #else
2235   if (x->has_index()) {
2236     if (index_op->type() == T_INT) {
2237       index_op = new_register(T_LONG);
2238       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2239     }
2240   }
2241   // At this point base and index are long and non-constant
2242   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2243   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2244 #endif
2245 
2246   if (log2_scale != 0) {
2247     // temporary fix (platform dependent code without shift on Intel would be better)
2248     // TODO: ARM also allows embedded shift in the address
2249     LIR_Opr tmp = new_pointer_register();
2250     if (TwoOperandLIRForm) {
2251       __ move(index_op, tmp);
2252       index_op = tmp;
2253     }
2254     __ shift_left(index_op, log2_scale, tmp);
2255     if (!TwoOperandLIRForm) {
2256       index_op = tmp;
2257     }
2258   }
2259 
2260   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2261 #endif // !GENERATE_ADDRESS_IS_PREFERRED
2262   __ move(value.result(), addr);
2263 }
2264 
2265 
2266 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2267   BasicType type = x->basic_type();
2268   LIRItem src(x->object(), this);
2269   LIRItem off(x->offset(), this);
2270 
2271   off.load_item();
2272   src.load_item();
2273 
2274   LIR_Opr value = rlock_result(x, x->basic_type());
2275 
2276 #if INCLUDE_ALL_GCS
2277   if (UseShenandoahGC && (type == T_OBJECT || type == T_ARRAY)) {
2278     LIR_Opr tmp = new_register(T_OBJECT);
2279     get_Object_unsafe(tmp, src.result(), off.result(), type, x->is_volatile());
2280     tmp = ShenandoahBarrierSet::barrier_set()->bsc1()->load_reference_barrier(this, tmp, LIR_OprFact::addressConst(0));
2281     __ move(tmp, value);
2282   } else
2283 #endif
2284   get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
2285 
2286 #if INCLUDE_ALL_GCS
2287   // We might be reading the value of the referent field of a
2288   // Reference object in order to attach it back to the live
2289   // object graph. If G1 is enabled then we need to record
2290   // the value that is being returned in an SATB log buffer.
2291   //
2292   // We need to generate code similar to the following...
2293   //
2294   // if (offset == java_lang_ref_Reference::referent_offset) {
2295   //   if (src != NULL) {
2296   //     if (klass(src)->reference_type() != REF_NONE) {
2297   //       pre_barrier(..., value, ...);
2298   //     }
2299   //   }
2300   // }
2301 
2302   if ((UseShenandoahGC || UseG1GC) && type == T_OBJECT) {
2303     bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
2304     bool gen_offset_check = true;    // Assume we need to generate the offset guard.
2305     bool gen_source_check = true;    // Assume we need to check the src object for null.
2306     bool gen_type_check = true;      // Assume we need to check the reference_type.
2307 
2308     if (off.is_constant()) {
2309       jlong off_con = (off.type()->is_int() ?
2310                         (jlong) off.get_jint_constant() :
2311                         off.get_jlong_constant());
2312 
2313 
2314       if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
2315         // The constant offset is something other than referent_offset.
2316         // We can skip generating/checking the remaining guards and
2317         // skip generation of the code stub.
2318         gen_pre_barrier = false;
2319       } else {
2320         // The constant offset is the same as referent_offset -
2321         // we do not need to generate a runtime offset check.
2322         gen_offset_check = false;
2323       }
2324     }
2325 
2326     // We don't need to generate stub if the source object is an array
2327     if (gen_pre_barrier && src.type()->is_array()) {
2328       gen_pre_barrier = false;
2329     }
2330 
2331     if (gen_pre_barrier) {
2332       // We still need to continue with the checks.
2333       if (src.is_constant()) {
2334         ciObject* src_con = src.get_jobject_constant();
2335         guarantee(src_con != NULL, "no source constant");
2336 
2337         if (src_con->is_null_object()) {
2338           // The constant src object is null - We can skip
2339           // generating the code stub.
2340           gen_pre_barrier = false;
2341         } else {
2342           // Non-null constant source object. We still have to generate
2343           // the slow stub - but we don't need to generate the runtime
2344           // null object check.
2345           gen_source_check = false;
2346         }
2347       }
2348     }
2349     if (gen_pre_barrier && !PatchALot) {
2350       // Can the klass of object be statically determined to be
2351       // a sub-class of Reference?
2352       ciType* type = src.value()->declared_type();
2353       if ((type != NULL) && type->is_loaded()) {
2354         if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
2355           gen_type_check = false;
2356         } else if (type->is_klass() &&
2357                    !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
2358           // Not Reference and not Object klass.
2359           gen_pre_barrier = false;
2360         }
2361       }
2362     }
2363 
2364     if (gen_pre_barrier) {
2365       LabelObj* Lcont = new LabelObj();
2366 
2367       // We can have generate one runtime check here. Let's start with
2368       // the offset check.
2369       // Allocate temp register to src and load it here, otherwise
2370       // control flow below may confuse register allocator.
2371       LIR_Opr src_reg = new_register(T_OBJECT);
2372       __ move(src.result(), src_reg);
2373       if (gen_offset_check) {
2374         // if (offset != referent_offset) -> continue
2375         // If offset is an int then we can do the comparison with the
2376         // referent_offset constant; otherwise we need to move
2377         // referent_offset into a temporary register and generate
2378         // a reg-reg compare.
2379 
2380         LIR_Opr referent_off;
2381 
2382         if (off.type()->is_int()) {
2383           referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
2384         } else {
2385           assert(off.type()->is_long(), "what else?");
2386           referent_off = new_register(T_LONG);
2387           __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
2388         }
2389         __ cmp(lir_cond_notEqual, off.result(), referent_off);
2390         __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
2391       }
2392       if (gen_source_check) {
2393         // offset is a const and equals referent offset
2394         // if (source == null) -> continue
2395         __ cmp(lir_cond_equal, src_reg, LIR_OprFact::oopConst(NULL));
2396         __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
2397       }
2398       LIR_Opr src_klass = new_register(T_METADATA);
2399       if (gen_type_check) {
2400         // We have determined that offset == referent_offset && src != null.
2401         // if (src->_klass->_reference_type == REF_NONE) -> continue
2402         __ move(new LIR_Address(src_reg, oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
2403         LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
2404         LIR_Opr reference_type = new_register(T_INT);
2405         __ move(reference_type_addr, reference_type);
2406         __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
2407         __ branch(lir_cond_equal, T_INT, Lcont->label());
2408       }
2409       {
2410         // We have determined that src->_klass->_reference_type != REF_NONE
2411         // so register the value in the referent field with the pre-barrier.
2412         pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
2413                     value  /* pre_val */,
2414                     false  /* do_load */,
2415                     false  /* patch */,
2416                     NULL   /* info */);
2417       }
2418       __ branch_destination(Lcont->label());
2419     }
2420   }
2421 #endif // INCLUDE_ALL_GCS
2422 
2423   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
2424 }
2425 
2426 
2427 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2428   BasicType type = x->basic_type();
2429   LIRItem src(x->object(), this);
2430   LIRItem off(x->offset(), this);
2431   LIRItem data(x->value(), this);
2432 
2433   src.load_item();
2434   if (type == T_BOOLEAN || type == T_BYTE) {
2435     data.load_byte_item();
2436   } else {
2437     data.load_item();
2438   }
2439   off.load_item();
2440 
2441   set_no_result(x);
2442 
2443   if (x->is_volatile() && os::is_MP()) __ membar_release();
2444   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2445   if (x->is_volatile() && os::is_MP()) __ membar();
2446 }
2447 
2448 
2449 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
2450   LIRItem src(x->object(), this);
2451   LIRItem off(x->offset(), this);
2452 
2453   src.load_item();
2454   if (off.is_constant() && can_inline_as_constant(x->offset())) {
2455     // let it be a constant
2456     off.dont_load_item();
2457   } else {
2458     off.load_item();
2459   }
2460 
2461   set_no_result(x);
2462 
2463   LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
2464   __ prefetch(addr, is_store);
2465 }
2466 
2467 
2468 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
2469   do_UnsafePrefetch(x, false);
2470 }
2471 
2472 
2473 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
2474   do_UnsafePrefetch(x, true);
2475 }
2476 
2477 
2478 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2479   int lng = x->length();
2480 
2481   for (int i = 0; i < lng; i++) {
2482     SwitchRange* one_range = x->at(i);
2483     int low_key = one_range->low_key();
2484     int high_key = one_range->high_key();
2485     BlockBegin* dest = one_range->sux();
2486     if (low_key == high_key) {
2487       __ cmp(lir_cond_equal, value, low_key);
2488       __ branch(lir_cond_equal, T_INT, dest);
2489     } else if (high_key - low_key == 1) {
2490       __ cmp(lir_cond_equal, value, low_key);
2491       __ branch(lir_cond_equal, T_INT, dest);
2492       __ cmp(lir_cond_equal, value, high_key);
2493       __ branch(lir_cond_equal, T_INT, dest);
2494     } else {
2495       LabelObj* L = new LabelObj();
2496       __ cmp(lir_cond_less, value, low_key);
2497       __ branch(lir_cond_less, T_INT, L->label());
2498       __ cmp(lir_cond_lessEqual, value, high_key);
2499       __ branch(lir_cond_lessEqual, T_INT, dest);
2500       __ branch_destination(L->label());
2501     }
2502   }
2503   __ jump(default_sux);
2504 }
2505 
2506 
2507 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2508   SwitchRangeList* res = new SwitchRangeList();
2509   int len = x->length();
2510   if (len > 0) {
2511     BlockBegin* sux = x->sux_at(0);
2512     int key = x->lo_key();
2513     BlockBegin* default_sux = x->default_sux();
2514     SwitchRange* range = new SwitchRange(key, sux);
2515     for (int i = 0; i < len; i++, key++) {
2516       BlockBegin* new_sux = x->sux_at(i);
2517       if (sux == new_sux) {
2518         // still in same range
2519         range->set_high_key(key);
2520       } else {
2521         // skip tests which explicitly dispatch to the default
2522         if (sux != default_sux) {
2523           res->append(range);
2524         }
2525         range = new SwitchRange(key, new_sux);
2526       }
2527       sux = new_sux;
2528     }
2529     if (res->length() == 0 || res->last() != range)  res->append(range);
2530   }
2531   return res;
2532 }
2533 
2534 
2535 // we expect the keys to be sorted by increasing value
2536 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2537   SwitchRangeList* res = new SwitchRangeList();
2538   int len = x->length();
2539   if (len > 0) {
2540     BlockBegin* default_sux = x->default_sux();
2541     int key = x->key_at(0);
2542     BlockBegin* sux = x->sux_at(0);
2543     SwitchRange* range = new SwitchRange(key, sux);
2544     for (int i = 1; i < len; i++) {
2545       int new_key = x->key_at(i);
2546       BlockBegin* new_sux = x->sux_at(i);
2547       if (key+1 == new_key && sux == new_sux) {
2548         // still in same range
2549         range->set_high_key(new_key);
2550       } else {
2551         // skip tests which explicitly dispatch to the default
2552         if (range->sux() != default_sux) {
2553           res->append(range);
2554         }
2555         range = new SwitchRange(new_key, new_sux);
2556       }
2557       key = new_key;
2558       sux = new_sux;
2559     }
2560     if (res->length() == 0 || res->last() != range)  res->append(range);
2561   }
2562   return res;
2563 }
2564 
2565 
2566 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2567   LIRItem tag(x->tag(), this);
2568   tag.load_item();
2569   set_no_result(x);
2570 
2571   if (x->is_safepoint()) {
2572     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2573   }
2574 
2575   // move values into phi locations
2576   move_to_phi(x->state());
2577 
2578   int lo_key = x->lo_key();
2579   int len = x->length();
2580   assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2581   LIR_Opr value = tag.result();
2582   if (UseTableRanges) {
2583     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2584   } else {
2585     for (int i = 0; i < len; i++) {
2586       __ cmp(lir_cond_equal, value, i + lo_key);
2587       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2588     }
2589     __ jump(x->default_sux());
2590   }
2591 }
2592 
2593 
2594 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2595   LIRItem tag(x->tag(), this);
2596   tag.load_item();
2597   set_no_result(x);
2598 
2599   if (x->is_safepoint()) {
2600     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2601   }
2602 
2603   // move values into phi locations
2604   move_to_phi(x->state());
2605 
2606   LIR_Opr value = tag.result();
2607   if (UseTableRanges) {
2608     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2609   } else {
2610     int len = x->length();
2611     for (int i = 0; i < len; i++) {
2612       __ cmp(lir_cond_equal, value, x->key_at(i));
2613       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2614     }
2615     __ jump(x->default_sux());
2616   }
2617 }
2618 
2619 
2620 void LIRGenerator::do_Goto(Goto* x) {
2621   set_no_result(x);
2622 
2623   if (block()->next()->as_OsrEntry()) {
2624     // need to free up storage used for OSR entry point
2625     LIR_Opr osrBuffer = block()->next()->operand();
2626     BasicTypeList signature;
2627     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2628     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2629     __ move(osrBuffer, cc->args()->at(0));
2630     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2631                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2632   }
2633 
2634   if (x->is_safepoint()) {
2635     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2636 
2637     // increment backedge counter if needed
2638     CodeEmitInfo* info = state_for(x, state);
2639     increment_backedge_counter(info, x->profiled_bci());
2640     CodeEmitInfo* safepoint_info = state_for(x, state);
2641     __ safepoint(safepoint_poll_register(), safepoint_info);
2642   }
2643 
2644   // Gotos can be folded Ifs, handle this case.
2645   if (x->should_profile()) {
2646     ciMethod* method = x->profiled_method();
2647     assert(method != NULL, "method should be set if branch is profiled");
2648     ciMethodData* md = method->method_data_or_null();
2649     assert(md != NULL, "Sanity");
2650     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2651     assert(data != NULL, "must have profiling data");
2652     int offset;
2653     if (x->direction() == Goto::taken) {
2654       assert(data->is_BranchData(), "need BranchData for two-way branches");
2655       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2656     } else if (x->direction() == Goto::not_taken) {
2657       assert(data->is_BranchData(), "need BranchData for two-way branches");
2658       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2659     } else {
2660       assert(data->is_JumpData(), "need JumpData for branches");
2661       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2662     }
2663     LIR_Opr md_reg = new_register(T_METADATA);
2664     __ metadata2reg(md->constant_encoding(), md_reg);
2665 
2666     increment_counter(new LIR_Address(md_reg, offset,
2667                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2668   }
2669 
2670   // emit phi-instruction move after safepoint since this simplifies
2671   // describing the state as the safepoint.
2672   move_to_phi(x->state());
2673 
2674   __ jump(x->default_sux());
2675 }
2676 
2677 /**
2678  * Emit profiling code if needed for arguments, parameters, return value types
2679  *
2680  * @param md                    MDO the code will update at runtime
2681  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2682  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2683  * @param profiled_k            current profile
2684  * @param obj                   IR node for the object to be profiled
2685  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2686  *                              Set once we find an update to make and use for next ones.
2687  * @param not_null              true if we know obj cannot be null
2688  * @param signature_at_call_k   signature at call for obj
2689  * @param callee_signature_k    signature of callee for obj
2690  *                              at call and callee signatures differ at method handle call
2691  * @return                      the only klass we know will ever be seen at this profile point
2692  */
2693 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2694                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2695                                     ciKlass* callee_signature_k) {
2696   ciKlass* result = NULL;
2697   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2698   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2699   // known not to be null or null bit already set and already set to
2700   // unknown: nothing we can do to improve profiling
2701   if (!do_null && !do_update) {
2702     return result;
2703   }
2704 
2705   ciKlass* exact_klass = NULL;
2706   Compilation* comp = Compilation::current();
2707   if (do_update) {
2708     // try to find exact type, using CHA if possible, so that loading
2709     // the klass from the object can be avoided
2710     ciType* type = obj->exact_type();
2711     if (type == NULL) {
2712       type = obj->declared_type();
2713       type = comp->cha_exact_type(type);
2714     }
2715     assert(type == NULL || type->is_klass(), "type should be class");
2716     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2717 
2718     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2719   }
2720 
2721   if (!do_null && !do_update) {
2722     return result;
2723   }
2724 
2725   ciKlass* exact_signature_k = NULL;
2726   if (do_update) {
2727     // Is the type from the signature exact (the only one possible)?
2728     exact_signature_k = signature_at_call_k->exact_klass();
2729     if (exact_signature_k == NULL) {
2730       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2731     } else {
2732       result = exact_signature_k;
2733       // Known statically. No need to emit any code: prevent
2734       // LIR_Assembler::emit_profile_type() from emitting useless code
2735       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2736     }
2737     // exact_klass and exact_signature_k can be both non NULL but
2738     // different if exact_klass is loaded after the ciObject for
2739     // exact_signature_k is created.
2740     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2741       // sometimes the type of the signature is better than the best type
2742       // the compiler has
2743       exact_klass = exact_signature_k;
2744     }
2745     if (callee_signature_k != NULL &&
2746         callee_signature_k != signature_at_call_k) {
2747       ciKlass* improved_klass = callee_signature_k->exact_klass();
2748       if (improved_klass == NULL) {
2749         improved_klass = comp->cha_exact_type(callee_signature_k);
2750       }
2751       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2752         exact_klass = exact_signature_k;
2753       }
2754     }
2755     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2756   }
2757 
2758   if (!do_null && !do_update) {
2759     return result;
2760   }
2761 
2762   if (mdp == LIR_OprFact::illegalOpr) {
2763     mdp = new_register(T_METADATA);
2764     __ metadata2reg(md->constant_encoding(), mdp);
2765     if (md_base_offset != 0) {
2766       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2767       mdp = new_pointer_register();
2768       __ leal(LIR_OprFact::address(base_type_address), mdp);
2769     }
2770   }
2771   LIRItem value(obj, this);
2772   value.load_item();
2773   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2774                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2775   return result;
2776 }
2777 
2778 // profile parameters on entry to the root of the compilation
2779 void LIRGenerator::profile_parameters(Base* x) {
2780   if (compilation()->profile_parameters()) {
2781     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2782     ciMethodData* md = scope()->method()->method_data_or_null();
2783     assert(md != NULL, "Sanity");
2784 
2785     if (md->parameters_type_data() != NULL) {
2786       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2787       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2788       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2789       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2790         LIR_Opr src = args->at(i);
2791         assert(!src->is_illegal(), "check");
2792         BasicType t = src->type();
2793         if (t == T_OBJECT || t == T_ARRAY) {
2794           intptr_t profiled_k = parameters->type(j);
2795           Local* local = x->state()->local_at(java_index)->as_Local();
2796           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2797                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2798                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2799           // If the profile is known statically set it once for all and do not emit any code
2800           if (exact != NULL) {
2801             md->set_parameter_type(j, exact);
2802           }
2803           j++;
2804         }
2805         java_index += type2size[t];
2806       }
2807     }
2808   }
2809 }
2810 
2811 void LIRGenerator::do_Base(Base* x) {
2812   __ std_entry(LIR_OprFact::illegalOpr);
2813   // Emit moves from physical registers / stack slots to virtual registers
2814   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2815   IRScope* irScope = compilation()->hir()->top_scope();
2816   int java_index = 0;
2817   for (int i = 0; i < args->length(); i++) {
2818     LIR_Opr src = args->at(i);
2819     assert(!src->is_illegal(), "check");
2820     BasicType t = src->type();
2821 
2822     // Types which are smaller than int are passed as int, so
2823     // correct the type which passed.
2824     switch (t) {
2825     case T_BYTE:
2826     case T_BOOLEAN:
2827     case T_SHORT:
2828     case T_CHAR:
2829       t = T_INT;
2830       break;
2831     }
2832 
2833     LIR_Opr dest = new_register(t);
2834     __ move(src, dest);
2835 
2836     // Assign new location to Local instruction for this local
2837     Local* local = x->state()->local_at(java_index)->as_Local();
2838     assert(local != NULL, "Locals for incoming arguments must have been created");
2839 #ifndef __SOFTFP__
2840     // The java calling convention passes double as long and float as int.
2841     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2842 #endif // __SOFTFP__
2843     local->set_operand(dest);
2844     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2845     java_index += type2size[t];
2846   }
2847 
2848   if (compilation()->env()->dtrace_method_probes()) {
2849     BasicTypeList signature;
2850     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2851     signature.append(T_METADATA); // Method*
2852     LIR_OprList* args = new LIR_OprList();
2853     args->append(getThreadPointer());
2854     LIR_Opr meth = new_register(T_METADATA);
2855     __ metadata2reg(method()->constant_encoding(), meth);
2856     args->append(meth);
2857     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2858   }
2859 
2860   if (method()->is_synchronized()) {
2861     LIR_Opr obj;
2862     if (method()->is_static()) {
2863       obj = new_register(T_OBJECT);
2864       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2865     } else {
2866       Local* receiver = x->state()->local_at(0)->as_Local();
2867       assert(receiver != NULL, "must already exist");
2868       obj = receiver->operand();
2869     }
2870     assert(obj->is_valid(), "must be valid");
2871 
2872     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2873       LIR_Opr lock = new_register(T_INT);
2874       __ load_stack_address_monitor(0, lock);
2875 
2876       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2877       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2878 
2879       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2880       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2881     }
2882   }
2883 
2884   // increment invocation counters if needed
2885   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2886     profile_parameters(x);
2887     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2888     increment_invocation_counter(info);
2889   }
2890 
2891   // all blocks with a successor must end with an unconditional jump
2892   // to the successor even if they are consecutive
2893   __ jump(x->default_sux());
2894 }
2895 
2896 
2897 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2898   // construct our frame and model the production of incoming pointer
2899   // to the OSR buffer.
2900   __ osr_entry(LIR_Assembler::osrBufferPointer());
2901   LIR_Opr result = rlock_result(x);
2902   __ move(LIR_Assembler::osrBufferPointer(), result);
2903 }
2904 
2905 
2906 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2907   assert(args->length() == arg_list->length(),
2908          err_msg_res("args=%d, arg_list=%d", args->length(), arg_list->length()));
2909   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2910     LIRItem* param = args->at(i);
2911     LIR_Opr loc = arg_list->at(i);
2912     if (loc->is_register()) {
2913       param->load_item_force(loc);
2914     } else {
2915       LIR_Address* addr = loc->as_address_ptr();
2916       param->load_for_store(addr->type());
2917       if (addr->type() == T_OBJECT) {
2918         __ move_wide(param->result(), addr);
2919       } else
2920         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2921           __ unaligned_move(param->result(), addr);
2922         } else {
2923           __ move(param->result(), addr);
2924         }
2925     }
2926   }
2927 
2928   if (x->has_receiver()) {
2929     LIRItem* receiver = args->at(0);
2930     LIR_Opr loc = arg_list->at(0);
2931     if (loc->is_register()) {
2932       receiver->load_item_force(loc);
2933     } else {
2934       assert(loc->is_address(), "just checking");
2935       receiver->load_for_store(T_OBJECT);
2936       __ move_wide(receiver->result(), loc->as_address_ptr());
2937     }
2938   }
2939 }
2940 
2941 
2942 // Visits all arguments, returns appropriate items without loading them
2943 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2944   LIRItemList* argument_items = new LIRItemList();
2945   if (x->has_receiver()) {
2946     LIRItem* receiver = new LIRItem(x->receiver(), this);
2947     argument_items->append(receiver);
2948   }
2949   for (int i = 0; i < x->number_of_arguments(); i++) {
2950     LIRItem* param = new LIRItem(x->argument_at(i), this);
2951     argument_items->append(param);
2952   }
2953   return argument_items;
2954 }
2955 
2956 
2957 // The invoke with receiver has following phases:
2958 //   a) traverse and load/lock receiver;
2959 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2960 //   c) push receiver on stack
2961 //   d) load each of the items and push on stack
2962 //   e) unlock receiver
2963 //   f) move receiver into receiver-register %o0
2964 //   g) lock result registers and emit call operation
2965 //
2966 // Before issuing a call, we must spill-save all values on stack
2967 // that are in caller-save register. "spill-save" moves those registers
2968 // either in a free callee-save register or spills them if no free
2969 // callee save register is available.
2970 //
2971 // The problem is where to invoke spill-save.
2972 // - if invoked between e) and f), we may lock callee save
2973 //   register in "spill-save" that destroys the receiver register
2974 //   before f) is executed
2975 // - if we rearrange f) to be earlier (by loading %o0) it
2976 //   may destroy a value on the stack that is currently in %o0
2977 //   and is waiting to be spilled
2978 // - if we keep the receiver locked while doing spill-save,
2979 //   we cannot spill it as it is spill-locked
2980 //
2981 void LIRGenerator::do_Invoke(Invoke* x) {
2982   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2983 
2984   LIR_OprList* arg_list = cc->args();
2985   LIRItemList* args = invoke_visit_arguments(x);
2986   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2987 
2988   // setup result register
2989   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2990   if (x->type() != voidType) {
2991     result_register = result_register_for(x->type());
2992   }
2993 
2994   CodeEmitInfo* info = state_for(x, x->state());
2995 
2996   invoke_load_arguments(x, args, arg_list);
2997 
2998   if (x->has_receiver()) {
2999     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
3000     receiver = args->at(0)->result();
3001   }
3002 
3003   // emit invoke code
3004   bool optimized = x->target_is_loaded() && x->target_is_final();
3005   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
3006 
3007   // JSR 292
3008   // Preserve the SP over MethodHandle call sites, if needed.
3009   ciMethod* target = x->target();
3010   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
3011                                   target->is_method_handle_intrinsic() ||
3012                                   target->is_compiled_lambda_form());
3013   if (is_method_handle_invoke) {
3014     info->set_is_method_handle_invoke(true);
3015     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3016         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
3017     }
3018   }
3019 
3020   switch (x->code()) {
3021     case Bytecodes::_invokestatic:
3022       __ call_static(target, result_register,
3023                      SharedRuntime::get_resolve_static_call_stub(),
3024                      arg_list, info);
3025       break;
3026     case Bytecodes::_invokespecial:
3027     case Bytecodes::_invokevirtual:
3028     case Bytecodes::_invokeinterface:
3029       // for final target we still produce an inline cache, in order
3030       // to be able to call mixed mode
3031       if (x->code() == Bytecodes::_invokespecial || optimized) {
3032         __ call_opt_virtual(target, receiver, result_register,
3033                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
3034                             arg_list, info);
3035       } else if (x->vtable_index() < 0) {
3036         __ call_icvirtual(target, receiver, result_register,
3037                           SharedRuntime::get_resolve_virtual_call_stub(),
3038                           arg_list, info);
3039       } else {
3040         int entry_offset = InstanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
3041         int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
3042         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
3043       }
3044       break;
3045     case Bytecodes::_invokedynamic: {
3046       __ call_dynamic(target, receiver, result_register,
3047                       SharedRuntime::get_resolve_static_call_stub(),
3048                       arg_list, info);
3049       break;
3050     }
3051     default:
3052       fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(x->code())));
3053       break;
3054   }
3055 
3056   // JSR 292
3057   // Restore the SP after MethodHandle call sites, if needed.
3058   if (is_method_handle_invoke
3059       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3060     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
3061   }
3062 
3063   if (x->type()->is_float() || x->type()->is_double()) {
3064     // Force rounding of results from non-strictfp when in strictfp
3065     // scope (or when we don't know the strictness of the callee, to
3066     // be safe.)
3067     if (method()->is_strict()) {
3068       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
3069         result_register = round_item(result_register);
3070       }
3071     }
3072   }
3073 
3074   if (result_register->is_valid()) {
3075     LIR_Opr result = rlock_result(x);
3076     __ move(result_register, result);
3077   }
3078 }
3079 
3080 
3081 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3082   assert(x->number_of_arguments() == 1, "wrong type");
3083   LIRItem value       (x->argument_at(0), this);
3084   LIR_Opr reg = rlock_result(x);
3085   value.load_item();
3086   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3087   __ move(tmp, reg);
3088 }
3089 
3090 
3091 
3092 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3093 void LIRGenerator::do_IfOp(IfOp* x) {
3094 #ifdef ASSERT
3095   {
3096     ValueTag xtag = x->x()->type()->tag();
3097     ValueTag ttag = x->tval()->type()->tag();
3098     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3099     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3100     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3101   }
3102 #endif
3103 
3104   LIRItem left(x->x(), this);
3105   LIRItem right(x->y(), this);
3106   left.load_item();
3107   if (can_inline_as_constant(right.value())) {
3108     right.dont_load_item();
3109   } else {
3110     right.load_item();
3111   }
3112 
3113   LIRItem t_val(x->tval(), this);
3114   LIRItem f_val(x->fval(), this);
3115   t_val.dont_load_item();
3116   f_val.dont_load_item();
3117   LIR_Opr reg = rlock_result(x);
3118 
3119   __ cmp(lir_cond(x->cond()), left.result(), right.result());
3120   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3121 }
3122 
3123 #ifdef JFR_HAVE_INTRINSICS
3124 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
3125   CodeEmitInfo* info = state_for(x);
3126   CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
3127 
3128   assert(info != NULL, "must have info");
3129   LIRItem arg(x->argument_at(0), this);
3130 
3131   arg.load_item();
3132   LIR_Opr klass = new_register(T_METADATA);
3133   __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), klass, info);
3134   LIR_Opr id = new_register(T_LONG);
3135   ByteSize offset = KLASS_TRACE_ID_OFFSET;
3136   LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
3137 
3138   __ move(trace_id_addr, id);
3139   __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
3140   __ store(id, trace_id_addr);
3141 
3142 #ifdef TRACE_ID_META_BITS
3143   __ logical_and(id, LIR_OprFact::longConst(~TRACE_ID_META_BITS), id);
3144 #endif
3145 #ifdef TRACE_ID_SHIFT
3146   __ unsigned_shift_right(id, TRACE_ID_SHIFT, id);
3147 #endif
3148 
3149   __ move(id, rlock_result(x));
3150 }
3151 
3152 void LIRGenerator::do_getEventWriter(Intrinsic* x) {
3153   LabelObj* L_end = new LabelObj();
3154 
3155   LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(),
3156                                            in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR),
3157                                            T_OBJECT);
3158   LIR_Opr result = rlock_result(x);
3159   __ move_wide(jobj_addr, result);
3160   __ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(NULL));
3161   __ branch(lir_cond_equal, T_OBJECT, L_end->label());
3162   __ move_wide(new LIR_Address(result, T_OBJECT), result);
3163 
3164   __ branch_destination(L_end->label());
3165 }
3166 #endif
3167 
3168 void LIRGenerator::do_RuntimeCall(address routine, int expected_arguments, Intrinsic* x) {
3169     assert(x->number_of_arguments() == expected_arguments, "wrong type");
3170     LIR_Opr reg = result_register_for(x->type());
3171     __ call_runtime_leaf(routine, getThreadTemp(),
3172                          reg, new LIR_OprList());
3173     LIR_Opr result = rlock_result(x);
3174     __ move(reg, result);
3175 }
3176 
3177 #ifdef TRACE_HAVE_INTRINSICS
3178 void LIRGenerator::do_ThreadIDIntrinsic(Intrinsic* x) {
3179     LIR_Opr thread = getThreadPointer();
3180     LIR_Opr osthread = new_pointer_register();
3181     __ move(new LIR_Address(thread, in_bytes(JavaThread::osthread_offset()), osthread->type()), osthread);
3182     size_t thread_id_size = OSThread::thread_id_size();
3183     if (thread_id_size == (size_t) BytesPerLong) {
3184       LIR_Opr id = new_register(T_LONG);
3185       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_LONG), id);
3186       __ convert(Bytecodes::_l2i, id, rlock_result(x));
3187     } else if (thread_id_size == (size_t) BytesPerInt) {
3188       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_INT), rlock_result(x));
3189     } else {
3190       ShouldNotReachHere();
3191     }
3192 }
3193 
3194 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
3195     CodeEmitInfo* info = state_for(x);
3196     CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
3197     BasicType klass_pointer_type = NOT_LP64(T_INT) LP64_ONLY(T_LONG);
3198     assert(info != NULL, "must have info");
3199     LIRItem arg(x->argument_at(1), this);
3200     arg.load_item();
3201     LIR_Opr klass = new_pointer_register();
3202     __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), klass_pointer_type), klass, info);
3203     LIR_Opr id = new_register(T_LONG);
3204     ByteSize offset = TRACE_ID_OFFSET;
3205     LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
3206     __ move(trace_id_addr, id);
3207     __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
3208     __ store(id, trace_id_addr);
3209     __ logical_and(id, LIR_OprFact::longConst(~0x3l), id);
3210     __ move(id, rlock_result(x));
3211 }
3212 #endif
3213 
3214 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3215   switch (x->id()) {
3216   case vmIntrinsics::_intBitsToFloat      :
3217   case vmIntrinsics::_doubleToRawLongBits :
3218   case vmIntrinsics::_longBitsToDouble    :
3219   case vmIntrinsics::_floatToRawIntBits   : {
3220     do_FPIntrinsics(x);
3221     break;
3222   }
3223 
3224 #ifdef JFR_HAVE_INTRINSICS
3225   case vmIntrinsics::_getClassId:
3226     do_ClassIDIntrinsic(x);
3227     break;
3228   case vmIntrinsics::_getEventWriter:
3229     do_getEventWriter(x);
3230     break;
3231   case vmIntrinsics::_counterTime:
3232     do_RuntimeCall(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), 0, x);
3233     break;
3234 #endif
3235 
3236   case vmIntrinsics::_currentTimeMillis:
3237     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), 0, x);
3238     break;
3239 
3240   case vmIntrinsics::_nanoTime:
3241     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), 0, x);
3242     break;
3243 
3244   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3245   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3246   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3247   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3248 
3249   case vmIntrinsics::_dlog:           // fall through
3250   case vmIntrinsics::_dlog10:         // fall through
3251   case vmIntrinsics::_dabs:           // fall through
3252   case vmIntrinsics::_dsqrt:          // fall through
3253   case vmIntrinsics::_dtan:           // fall through
3254   case vmIntrinsics::_dsin :          // fall through
3255   case vmIntrinsics::_dcos :          // fall through
3256   case vmIntrinsics::_dexp :          // fall through
3257   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3258   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3259 
3260   // java.nio.Buffer.checkIndex
3261   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3262 
3263   case vmIntrinsics::_compareAndSwapObject:
3264     do_CompareAndSwap(x, objectType);
3265     break;
3266   case vmIntrinsics::_compareAndSwapInt:
3267     do_CompareAndSwap(x, intType);
3268     break;
3269   case vmIntrinsics::_compareAndSwapLong:
3270     do_CompareAndSwap(x, longType);
3271     break;
3272 
3273   case vmIntrinsics::_loadFence :
3274     if (os::is_MP()) __ membar_acquire();
3275     break;
3276   case vmIntrinsics::_storeFence:
3277     if (os::is_MP()) __ membar_release();
3278     break;
3279   case vmIntrinsics::_fullFence :
3280     if (os::is_MP()) __ membar();
3281     break;
3282 
3283   case vmIntrinsics::_Reference_get:
3284     do_Reference_get(x);
3285     break;
3286 
3287   case vmIntrinsics::_updateCRC32:
3288   case vmIntrinsics::_updateBytesCRC32:
3289   case vmIntrinsics::_updateByteBufferCRC32:
3290     do_update_CRC32(x);
3291     break;
3292 
3293   default: ShouldNotReachHere(); break;
3294   }
3295 }
3296 
3297 void LIRGenerator::profile_arguments(ProfileCall* x) {
3298   if (compilation()->profile_arguments()) {
3299     int bci = x->bci_of_invoke();
3300     ciMethodData* md = x->method()->method_data_or_null();
3301     ciProfileData* data = md->bci_to_data(bci);
3302     if (data != NULL) {
3303       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3304           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3305         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3306         int base_offset = md->byte_offset_of_slot(data, extra);
3307         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3308         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3309 
3310         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3311         int start = 0;
3312         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3313         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3314           // first argument is not profiled at call (method handle invoke)
3315           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3316           start = 1;
3317         }
3318         ciSignature* callee_signature = x->callee()->signature();
3319         // method handle call to virtual method
3320         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3321         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3322 
3323         bool ignored_will_link;
3324         ciSignature* signature_at_call = NULL;
3325         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3326         ciSignatureStream signature_at_call_stream(signature_at_call);
3327 
3328         // if called through method handle invoke, some arguments may have been popped
3329         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3330           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3331           ciKlass* exact = profile_type(md, base_offset, off,
3332               args->type(i), x->profiled_arg_at(i+start), mdp,
3333               !x->arg_needs_null_check(i+start),
3334               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3335           if (exact != NULL) {
3336             md->set_argument_type(bci, i, exact);
3337           }
3338         }
3339       } else {
3340 #ifdef ASSERT
3341         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3342         int n = x->nb_profiled_args();
3343         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3344             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3345             "only at JSR292 bytecodes");
3346 #endif
3347       }
3348     }
3349   }
3350 }
3351 
3352 // profile parameters on entry to an inlined method
3353 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3354   if (compilation()->profile_parameters() && x->inlined()) {
3355     ciMethodData* md = x->callee()->method_data_or_null();
3356     if (md != NULL) {
3357       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3358       if (parameters_type_data != NULL) {
3359         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3360         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3361         bool has_receiver = !x->callee()->is_static();
3362         ciSignature* sig = x->callee()->signature();
3363         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3364         int i = 0; // to iterate on the Instructions
3365         Value arg = x->recv();
3366         bool not_null = false;
3367         int bci = x->bci_of_invoke();
3368         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3369         // The first parameter is the receiver so that's what we start
3370         // with if it exists. One exception is method handle call to
3371         // virtual method: the receiver is in the args list
3372         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3373           i = 1;
3374           arg = x->profiled_arg_at(0);
3375           not_null = !x->arg_needs_null_check(0);
3376         }
3377         int k = 0; // to iterate on the profile data
3378         for (;;) {
3379           intptr_t profiled_k = parameters->type(k);
3380           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3381                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3382                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3383           // If the profile is known statically set it once for all and do not emit any code
3384           if (exact != NULL) {
3385             md->set_parameter_type(k, exact);
3386           }
3387           k++;
3388           if (k >= parameters_type_data->number_of_parameters()) {
3389 #ifdef ASSERT
3390             int extra = 0;
3391             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3392                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3393                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3394               extra += 1;
3395             }
3396             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3397 #endif
3398             break;
3399           }
3400           arg = x->profiled_arg_at(i);
3401           not_null = !x->arg_needs_null_check(i);
3402           i++;
3403         }
3404       }
3405     }
3406   }
3407 }
3408 
3409 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3410   // Need recv in a temporary register so it interferes with the other temporaries
3411   LIR_Opr recv = LIR_OprFact::illegalOpr;
3412   LIR_Opr mdo = new_register(T_METADATA);
3413   // tmp is used to hold the counters on SPARC
3414   LIR_Opr tmp = new_pointer_register();
3415 
3416   if (x->nb_profiled_args() > 0) {
3417     profile_arguments(x);
3418   }
3419 
3420   // profile parameters on inlined method entry including receiver
3421   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3422     profile_parameters_at_call(x);
3423   }
3424 
3425   if (x->recv() != NULL) {
3426     LIRItem value(x->recv(), this);
3427     value.load_item();
3428     recv = new_register(T_OBJECT);
3429     __ move(value.result(), recv);
3430   }
3431   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3432 }
3433 
3434 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3435   int bci = x->bci_of_invoke();
3436   ciMethodData* md = x->method()->method_data_or_null();
3437   ciProfileData* data = md->bci_to_data(bci);
3438   if (data != NULL) {
3439     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3440     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3441     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3442 
3443     bool ignored_will_link;
3444     ciSignature* signature_at_call = NULL;
3445     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3446 
3447     // The offset within the MDO of the entry to update may be too large
3448     // to be used in load/store instructions on some platforms. So have
3449     // profile_type() compute the address of the profile in a register.
3450     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3451         ret->type(), x->ret(), mdp,
3452         !x->needs_null_check(),
3453         signature_at_call->return_type()->as_klass(),
3454         x->callee()->signature()->return_type()->as_klass());
3455     if (exact != NULL) {
3456       md->set_return_type(bci, exact);
3457     }
3458   }
3459 }
3460 
3461 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3462   // We can safely ignore accessors here, since c2 will inline them anyway,
3463   // accessors are also always mature.
3464   if (!x->inlinee()->is_accessor()) {
3465     CodeEmitInfo* info = state_for(x, x->state(), true);
3466     // Notify the runtime very infrequently only to take care of counter overflows
3467     increment_event_counter_impl(info, x->inlinee(), (1 << Tier23InlineeNotifyFreqLog) - 1, InvocationEntryBci, false, true);
3468   }
3469 }
3470 
3471 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
3472   int freq_log = 0;
3473   int level = compilation()->env()->comp_level();
3474   if (level == CompLevel_limited_profile) {
3475     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3476   } else if (level == CompLevel_full_profile) {
3477     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3478   } else {
3479     ShouldNotReachHere();
3480   }
3481   // Increment the appropriate invocation/backedge counter and notify the runtime.
3482   increment_event_counter_impl(info, info->scope()->method(), (1 << freq_log) - 1, bci, backedge, true);
3483 }
3484 
3485 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3486                                                 ciMethod *method, int frequency,
3487                                                 int bci, bool backedge, bool notify) {
3488   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3489   int level = _compilation->env()->comp_level();
3490   assert(level > CompLevel_simple, "Shouldn't be here");
3491 
3492   int offset = -1;
3493   LIR_Opr counter_holder = NULL;
3494   if (level == CompLevel_limited_profile) {
3495     MethodCounters* counters_adr = method->ensure_method_counters();
3496     if (counters_adr == NULL) {
3497       bailout("method counters allocation failed");
3498       return;
3499     }
3500     counter_holder = new_pointer_register();
3501     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3502     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3503                                  MethodCounters::invocation_counter_offset());
3504   } else if (level == CompLevel_full_profile) {
3505     counter_holder = new_register(T_METADATA);
3506     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3507                                  MethodData::invocation_counter_offset());
3508     ciMethodData* md = method->method_data_or_null();
3509     assert(md != NULL, "Sanity");
3510     __ metadata2reg(md->constant_encoding(), counter_holder);
3511   } else {
3512     ShouldNotReachHere();
3513   }
3514   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3515   LIR_Opr result = new_register(T_INT);
3516   __ load(counter, result);
3517   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
3518   __ store(result, counter);
3519   if (notify) {
3520     LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
3521     LIR_Opr meth = new_register(T_METADATA);
3522     __ metadata2reg(method->constant_encoding(), meth);
3523     __ logical_and(result, mask, result);
3524     __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3525     // The bci for info can point to cmp for if's we want the if bci
3526     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3527     __ branch(lir_cond_equal, T_INT, overflow);
3528     __ branch_destination(overflow->continuation());
3529   }
3530 }
3531 
3532 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3533   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3534   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3535 
3536   if (x->pass_thread()) {
3537     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3538     args->append(getThreadPointer());
3539   }
3540 
3541   for (int i = 0; i < x->number_of_arguments(); i++) {
3542     Value a = x->argument_at(i);
3543     LIRItem* item = new LIRItem(a, this);
3544     item->load_item();
3545     args->append(item->result());
3546     signature->append(as_BasicType(a->type()));
3547   }
3548 
3549   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3550   if (x->type() == voidType) {
3551     set_no_result(x);
3552   } else {
3553     __ move(result, rlock_result(x));
3554   }
3555 }
3556 
3557 #ifdef ASSERT
3558 void LIRGenerator::do_Assert(Assert *x) {
3559   ValueTag tag = x->x()->type()->tag();
3560   If::Condition cond = x->cond();
3561 
3562   LIRItem xitem(x->x(), this);
3563   LIRItem yitem(x->y(), this);
3564   LIRItem* xin = &xitem;
3565   LIRItem* yin = &yitem;
3566 
3567   assert(tag == intTag, "Only integer assertions are valid!");
3568 
3569   xin->load_item();
3570   yin->dont_load_item();
3571 
3572   set_no_result(x);
3573 
3574   LIR_Opr left = xin->result();
3575   LIR_Opr right = yin->result();
3576 
3577   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3578 }
3579 #endif
3580 
3581 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3582 
3583 
3584   Instruction *a = x->x();
3585   Instruction *b = x->y();
3586   if (!a || StressRangeCheckElimination) {
3587     assert(!b || StressRangeCheckElimination, "B must also be null");
3588 
3589     CodeEmitInfo *info = state_for(x, x->state());
3590     CodeStub* stub = new PredicateFailedStub(info);
3591 
3592     __ jump(stub);
3593   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3594     int a_int = a->type()->as_IntConstant()->value();
3595     int b_int = b->type()->as_IntConstant()->value();
3596 
3597     bool ok = false;
3598 
3599     switch(x->cond()) {
3600       case Instruction::eql: ok = (a_int == b_int); break;
3601       case Instruction::neq: ok = (a_int != b_int); break;
3602       case Instruction::lss: ok = (a_int < b_int); break;
3603       case Instruction::leq: ok = (a_int <= b_int); break;
3604       case Instruction::gtr: ok = (a_int > b_int); break;
3605       case Instruction::geq: ok = (a_int >= b_int); break;
3606       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3607       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3608       default: ShouldNotReachHere();
3609     }
3610 
3611     if (ok) {
3612 
3613       CodeEmitInfo *info = state_for(x, x->state());
3614       CodeStub* stub = new PredicateFailedStub(info);
3615 
3616       __ jump(stub);
3617     }
3618   } else {
3619 
3620     ValueTag tag = x->x()->type()->tag();
3621     If::Condition cond = x->cond();
3622     LIRItem xitem(x->x(), this);
3623     LIRItem yitem(x->y(), this);
3624     LIRItem* xin = &xitem;
3625     LIRItem* yin = &yitem;
3626 
3627     assert(tag == intTag, "Only integer deoptimizations are valid!");
3628 
3629     xin->load_item();
3630     yin->dont_load_item();
3631     set_no_result(x);
3632 
3633     LIR_Opr left = xin->result();
3634     LIR_Opr right = yin->result();
3635 
3636     CodeEmitInfo *info = state_for(x, x->state());
3637     CodeStub* stub = new PredicateFailedStub(info);
3638 
3639     __ cmp(lir_cond(cond), left, right);
3640     __ branch(lir_cond(cond), right->type(), stub);
3641   }
3642 }
3643 
3644 
3645 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3646   LIRItemList args(1);
3647   LIRItem value(arg1, this);
3648   args.append(&value);
3649   BasicTypeList signature;
3650   signature.append(as_BasicType(arg1->type()));
3651 
3652   return call_runtime(&signature, &args, entry, result_type, info);
3653 }
3654 
3655 
3656 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3657   LIRItemList args(2);
3658   LIRItem value1(arg1, this);
3659   LIRItem value2(arg2, this);
3660   args.append(&value1);
3661   args.append(&value2);
3662   BasicTypeList signature;
3663   signature.append(as_BasicType(arg1->type()));
3664   signature.append(as_BasicType(arg2->type()));
3665 
3666   return call_runtime(&signature, &args, entry, result_type, info);
3667 }
3668 
3669 
3670 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3671                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3672   // get a result register
3673   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3674   LIR_Opr result = LIR_OprFact::illegalOpr;
3675   if (result_type->tag() != voidTag) {
3676     result = new_register(result_type);
3677     phys_reg = result_register_for(result_type);
3678   }
3679 
3680   // move the arguments into the correct location
3681   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3682   assert(cc->length() == args->length(), "argument mismatch");
3683   for (int i = 0; i < args->length(); i++) {
3684     LIR_Opr arg = args->at(i);
3685     LIR_Opr loc = cc->at(i);
3686     if (loc->is_register()) {
3687       __ move(arg, loc);
3688     } else {
3689       LIR_Address* addr = loc->as_address_ptr();
3690 //           if (!can_store_as_constant(arg)) {
3691 //             LIR_Opr tmp = new_register(arg->type());
3692 //             __ move(arg, tmp);
3693 //             arg = tmp;
3694 //           }
3695       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3696         __ unaligned_move(arg, addr);
3697       } else {
3698         __ move(arg, addr);
3699       }
3700     }
3701   }
3702 
3703   if (info) {
3704     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3705   } else {
3706     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3707   }
3708   if (result->is_valid()) {
3709     __ move(phys_reg, result);
3710   }
3711   return result;
3712 }
3713 
3714 
3715 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3716                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3717   // get a result register
3718   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3719   LIR_Opr result = LIR_OprFact::illegalOpr;
3720   if (result_type->tag() != voidTag) {
3721     result = new_register(result_type);
3722     phys_reg = result_register_for(result_type);
3723   }
3724 
3725   // move the arguments into the correct location
3726   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3727 
3728   assert(cc->length() == args->length(), "argument mismatch");
3729   for (int i = 0; i < args->length(); i++) {
3730     LIRItem* arg = args->at(i);
3731     LIR_Opr loc = cc->at(i);
3732     if (loc->is_register()) {
3733       arg->load_item_force(loc);
3734     } else {
3735       LIR_Address* addr = loc->as_address_ptr();
3736       arg->load_for_store(addr->type());
3737       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3738         __ unaligned_move(arg->result(), addr);
3739       } else {
3740         __ move(arg->result(), addr);
3741       }
3742     }
3743   }
3744 
3745   if (info) {
3746     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3747   } else {
3748     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3749   }
3750   if (result->is_valid()) {
3751     __ move(phys_reg, result);
3752   }
3753   return result;
3754 }
3755 
3756 void LIRGenerator::do_MemBar(MemBar* x) {
3757   if (os::is_MP()) {
3758     LIR_Code code = x->code();
3759     switch(code) {
3760       case lir_membar_acquire   : __ membar_acquire(); break;
3761       case lir_membar_release   : __ membar_release(); break;
3762       case lir_membar           : __ membar(); break;
3763       case lir_membar_loadload  : __ membar_loadload(); break;
3764       case lir_membar_storestore: __ membar_storestore(); break;
3765       case lir_membar_loadstore : __ membar_loadstore(); break;
3766       case lir_membar_storeload : __ membar_storeload(); break;
3767       default                   : ShouldNotReachHere(); break;
3768     }
3769   }
3770 }
3771 
3772 LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3773   if (x->check_boolean()) {
3774     LIR_Opr value_fixed = rlock_byte(T_BYTE);
3775     if (TwoOperandLIRForm) {
3776       __ move(value, value_fixed);
3777       __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3778     } else {
3779       __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3780     }
3781     LIR_Opr klass = new_register(T_METADATA);
3782     __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info);
3783     null_check_info = NULL;
3784     LIR_Opr layout = new_register(T_INT);
3785     __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3786     int diffbit = Klass::layout_helper_boolean_diffbit();
3787     __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3788     __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3789     __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3790     value = value_fixed;
3791   }
3792   return value;
3793 }