1 /* 2 * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/codeBuffer.hpp" 27 #include "c1/c1_CodeStubs.hpp" 28 #include "c1/c1_Defs.hpp" 29 #include "c1/c1_FrameMap.hpp" 30 #include "c1/c1_LIRAssembler.hpp" 31 #include "c1/c1_MacroAssembler.hpp" 32 #include "c1/c1_Runtime1.hpp" 33 #include "classfile/systemDictionary.hpp" 34 #include "classfile/vmSymbols.hpp" 35 #include "code/codeBlob.hpp" 36 #include "code/compiledIC.hpp" 37 #include "code/pcDesc.hpp" 38 #include "code/scopeDesc.hpp" 39 #include "code/vtableStubs.hpp" 40 #include "compiler/disassembler.hpp" 41 #include "gc_interface/collectedHeap.hpp" 42 #include "interpreter/bytecode.hpp" 43 #include "interpreter/interpreter.hpp" 44 #include "jfr/support/jfrIntrinsics.hpp" 45 #include "memory/allocation.inline.hpp" 46 #include "memory/barrierSet.hpp" 47 #include "memory/oopFactory.hpp" 48 #include "memory/resourceArea.hpp" 49 #include "oops/objArrayKlass.hpp" 50 #include "oops/oop.inline.hpp" 51 #include "runtime/biasedLocking.hpp" 52 #include "runtime/compilationPolicy.hpp" 53 #include "runtime/interfaceSupport.hpp" 54 #include "runtime/javaCalls.hpp" 55 #include "runtime/sharedRuntime.hpp" 56 #include "runtime/threadCritical.hpp" 57 #include "runtime/vframe.hpp" 58 #include "runtime/vframeArray.hpp" 59 #include "utilities/copy.hpp" 60 #include "utilities/events.hpp" 61 62 63 // Implementation of StubAssembler 64 65 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) { 66 _name = name; 67 _must_gc_arguments = false; 68 _frame_size = no_frame_size; 69 _num_rt_args = 0; 70 _stub_id = stub_id; 71 } 72 73 74 void StubAssembler::set_info(const char* name, bool must_gc_arguments) { 75 _name = name; 76 _must_gc_arguments = must_gc_arguments; 77 } 78 79 80 void StubAssembler::set_frame_size(int size) { 81 if (_frame_size == no_frame_size) { 82 _frame_size = size; 83 } 84 assert(_frame_size == size, "can't change the frame size"); 85 } 86 87 88 void StubAssembler::set_num_rt_args(int args) { 89 if (_num_rt_args == 0) { 90 _num_rt_args = args; 91 } 92 assert(_num_rt_args == args, "can't change the number of args"); 93 } 94 95 // Implementation of Runtime1 96 97 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids]; 98 const char *Runtime1::_blob_names[] = { 99 RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME) 100 }; 101 102 #ifndef PRODUCT 103 // statistics 104 int Runtime1::_generic_arraycopy_cnt = 0; 105 int Runtime1::_primitive_arraycopy_cnt = 0; 106 int Runtime1::_oop_arraycopy_cnt = 0; 107 int Runtime1::_generic_arraycopystub_cnt = 0; 108 int Runtime1::_arraycopy_slowcase_cnt = 0; 109 int Runtime1::_arraycopy_checkcast_cnt = 0; 110 int Runtime1::_arraycopy_checkcast_attempt_cnt = 0; 111 int Runtime1::_new_type_array_slowcase_cnt = 0; 112 int Runtime1::_new_object_array_slowcase_cnt = 0; 113 int Runtime1::_new_instance_slowcase_cnt = 0; 114 int Runtime1::_new_multi_array_slowcase_cnt = 0; 115 int Runtime1::_monitorenter_slowcase_cnt = 0; 116 int Runtime1::_monitorexit_slowcase_cnt = 0; 117 int Runtime1::_patch_code_slowcase_cnt = 0; 118 int Runtime1::_throw_range_check_exception_count = 0; 119 int Runtime1::_throw_index_exception_count = 0; 120 int Runtime1::_throw_div0_exception_count = 0; 121 int Runtime1::_throw_null_pointer_exception_count = 0; 122 int Runtime1::_throw_class_cast_exception_count = 0; 123 int Runtime1::_throw_incompatible_class_change_error_count = 0; 124 int Runtime1::_throw_array_store_exception_count = 0; 125 int Runtime1::_throw_count = 0; 126 127 static int _byte_arraycopy_cnt = 0; 128 static int _short_arraycopy_cnt = 0; 129 static int _int_arraycopy_cnt = 0; 130 static int _long_arraycopy_cnt = 0; 131 static int _oop_arraycopy_cnt = 0; 132 133 address Runtime1::arraycopy_count_address(BasicType type) { 134 switch (type) { 135 case T_BOOLEAN: 136 case T_BYTE: return (address)&_byte_arraycopy_cnt; 137 case T_CHAR: 138 case T_SHORT: return (address)&_short_arraycopy_cnt; 139 case T_FLOAT: 140 case T_INT: return (address)&_int_arraycopy_cnt; 141 case T_DOUBLE: 142 case T_LONG: return (address)&_long_arraycopy_cnt; 143 case T_ARRAY: 144 case T_OBJECT: return (address)&_oop_arraycopy_cnt; 145 default: 146 ShouldNotReachHere(); 147 return NULL; 148 } 149 } 150 151 152 #endif 153 154 // Simple helper to see if the caller of a runtime stub which 155 // entered the VM has been deoptimized 156 157 static bool caller_is_deopted() { 158 JavaThread* thread = JavaThread::current(); 159 RegisterMap reg_map(thread, false); 160 frame runtime_frame = thread->last_frame(); 161 frame caller_frame = runtime_frame.sender(®_map); 162 assert(caller_frame.is_compiled_frame(), "must be compiled"); 163 return caller_frame.is_deoptimized_frame(); 164 } 165 166 // Stress deoptimization 167 static void deopt_caller() { 168 if ( !caller_is_deopted()) { 169 JavaThread* thread = JavaThread::current(); 170 RegisterMap reg_map(thread, false); 171 frame runtime_frame = thread->last_frame(); 172 frame caller_frame = runtime_frame.sender(®_map); 173 Deoptimization::deoptimize_frame(thread, caller_frame.id()); 174 assert(caller_is_deopted(), "Must be deoptimized"); 175 } 176 } 177 178 179 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) { 180 assert(0 <= id && id < number_of_ids, "illegal stub id"); 181 ResourceMark rm; 182 // create code buffer for code storage 183 CodeBuffer code(buffer_blob); 184 185 Compilation::setup_code_buffer(&code, 0); 186 187 // create assembler for code generation 188 StubAssembler* sasm = new StubAssembler(&code, name_for(id), id); 189 // generate code for runtime stub 190 OopMapSet* oop_maps; 191 oop_maps = generate_code_for(id, sasm); 192 assert(oop_maps == NULL || sasm->frame_size() != no_frame_size, 193 "if stub has an oop map it must have a valid frame size"); 194 195 #ifdef ASSERT 196 // Make sure that stubs that need oopmaps have them 197 switch (id) { 198 // These stubs don't need to have an oopmap 199 case dtrace_object_alloc_id: 200 case g1_pre_barrier_slow_id: 201 case g1_post_barrier_slow_id: 202 case slow_subtype_check_id: 203 case fpu2long_stub_id: 204 case unwind_exception_id: 205 case counter_overflow_id: 206 #if defined(SPARC) || defined(PPC) 207 case handle_exception_nofpu_id: // Unused on sparc 208 #endif 209 break; 210 211 // All other stubs should have oopmaps 212 default: 213 assert(oop_maps != NULL, "must have an oopmap"); 214 } 215 #endif 216 217 // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned) 218 sasm->align(BytesPerWord); 219 // make sure all code is in code buffer 220 sasm->flush(); 221 // create blob - distinguish a few special cases 222 CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id), 223 &code, 224 CodeOffsets::frame_never_safe, 225 sasm->frame_size(), 226 oop_maps, 227 sasm->must_gc_arguments()); 228 // install blob 229 assert(blob != NULL, "blob must exist"); 230 _blobs[id] = blob; 231 } 232 233 234 void Runtime1::initialize(BufferBlob* blob) { 235 // platform-dependent initialization 236 initialize_pd(); 237 // generate stubs 238 for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id); 239 // printing 240 #ifndef PRODUCT 241 if (PrintSimpleStubs) { 242 ResourceMark rm; 243 for (int id = 0; id < number_of_ids; id++) { 244 _blobs[id]->print(); 245 if (_blobs[id]->oop_maps() != NULL) { 246 _blobs[id]->oop_maps()->print(); 247 } 248 } 249 } 250 #endif 251 } 252 253 254 CodeBlob* Runtime1::blob_for(StubID id) { 255 assert(0 <= id && id < number_of_ids, "illegal stub id"); 256 return _blobs[id]; 257 } 258 259 260 const char* Runtime1::name_for(StubID id) { 261 assert(0 <= id && id < number_of_ids, "illegal stub id"); 262 return _blob_names[id]; 263 } 264 265 const char* Runtime1::name_for_address(address entry) { 266 for (int id = 0; id < number_of_ids; id++) { 267 if (entry == entry_for((StubID)id)) return name_for((StubID)id); 268 } 269 270 #define FUNCTION_CASE(a, f) \ 271 if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f)) return #f 272 273 FUNCTION_CASE(entry, os::javaTimeMillis); 274 FUNCTION_CASE(entry, os::javaTimeNanos); 275 FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end); 276 FUNCTION_CASE(entry, SharedRuntime::d2f); 277 FUNCTION_CASE(entry, SharedRuntime::d2i); 278 FUNCTION_CASE(entry, SharedRuntime::d2l); 279 FUNCTION_CASE(entry, SharedRuntime::dcos); 280 FUNCTION_CASE(entry, SharedRuntime::dexp); 281 FUNCTION_CASE(entry, SharedRuntime::dlog); 282 FUNCTION_CASE(entry, SharedRuntime::dlog10); 283 FUNCTION_CASE(entry, SharedRuntime::dpow); 284 FUNCTION_CASE(entry, SharedRuntime::drem); 285 FUNCTION_CASE(entry, SharedRuntime::dsin); 286 FUNCTION_CASE(entry, SharedRuntime::dtan); 287 FUNCTION_CASE(entry, SharedRuntime::f2i); 288 FUNCTION_CASE(entry, SharedRuntime::f2l); 289 FUNCTION_CASE(entry, SharedRuntime::frem); 290 FUNCTION_CASE(entry, SharedRuntime::l2d); 291 FUNCTION_CASE(entry, SharedRuntime::l2f); 292 FUNCTION_CASE(entry, SharedRuntime::ldiv); 293 FUNCTION_CASE(entry, SharedRuntime::lmul); 294 FUNCTION_CASE(entry, SharedRuntime::lrem); 295 FUNCTION_CASE(entry, SharedRuntime::lrem); 296 FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry); 297 FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit); 298 FUNCTION_CASE(entry, is_instance_of); 299 FUNCTION_CASE(entry, trace_block_entry); 300 #ifdef JFR_HAVE_INTRINSICS 301 FUNCTION_CASE(entry, JFR_TIME_FUNCTION); 302 #endif 303 FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32()); 304 305 #undef FUNCTION_CASE 306 307 // Soft float adds more runtime names. 308 return pd_name_for_address(entry); 309 } 310 311 312 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, Klass* klass)) 313 NOT_PRODUCT(_new_instance_slowcase_cnt++;) 314 315 assert(klass->is_klass(), "not a class"); 316 Handle holder(THREAD, klass->klass_holder()); // keep the klass alive 317 instanceKlassHandle h(thread, klass); 318 h->check_valid_for_instantiation(true, CHECK); 319 // make sure klass is initialized 320 h->initialize(CHECK); 321 // allocate instance and return via TLS 322 oop obj = h->allocate_instance(CHECK); 323 thread->set_vm_result(obj); 324 JRT_END 325 326 327 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, Klass* klass, jint length)) 328 NOT_PRODUCT(_new_type_array_slowcase_cnt++;) 329 // Note: no handle for klass needed since they are not used 330 // anymore after new_typeArray() and no GC can happen before. 331 // (This may have to change if this code changes!) 332 assert(klass->is_klass(), "not a class"); 333 BasicType elt_type = TypeArrayKlass::cast(klass)->element_type(); 334 oop obj = oopFactory::new_typeArray(elt_type, length, CHECK); 335 thread->set_vm_result(obj); 336 // This is pretty rare but this runtime patch is stressful to deoptimization 337 // if we deoptimize here so force a deopt to stress the path. 338 if (DeoptimizeALot) { 339 deopt_caller(); 340 } 341 342 JRT_END 343 344 345 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, Klass* array_klass, jint length)) 346 NOT_PRODUCT(_new_object_array_slowcase_cnt++;) 347 348 // Note: no handle for klass needed since they are not used 349 // anymore after new_objArray() and no GC can happen before. 350 // (This may have to change if this code changes!) 351 assert(array_klass->is_klass(), "not a class"); 352 Handle holder(THREAD, array_klass->klass_holder()); // keep the klass alive 353 Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass(); 354 objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK); 355 thread->set_vm_result(obj); 356 // This is pretty rare but this runtime patch is stressful to deoptimization 357 // if we deoptimize here so force a deopt to stress the path. 358 if (DeoptimizeALot) { 359 deopt_caller(); 360 } 361 JRT_END 362 363 364 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, Klass* klass, int rank, jint* dims)) 365 NOT_PRODUCT(_new_multi_array_slowcase_cnt++;) 366 367 assert(klass->is_klass(), "not a class"); 368 assert(rank >= 1, "rank must be nonzero"); 369 Handle holder(THREAD, klass->klass_holder()); // keep the klass alive 370 oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK); 371 thread->set_vm_result(obj); 372 JRT_END 373 374 375 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id)) 376 tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id); 377 JRT_END 378 379 380 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread, oopDesc* obj)) 381 ResourceMark rm(thread); 382 const char* klass_name = obj->klass()->external_name(); 383 SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayStoreException(), klass_name); 384 JRT_END 385 386 387 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method 388 // associated with the top activation record. The inlinee (that is possibly included in the enclosing 389 // method) method oop is passed as an argument. In order to do that it is embedded in the code as 390 // a constant. 391 static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, Method* m) { 392 nmethod* osr_nm = NULL; 393 methodHandle method(THREAD, m); 394 395 RegisterMap map(THREAD, false); 396 frame fr = THREAD->last_frame().sender(&map); 397 nmethod* nm = (nmethod*) fr.cb(); 398 assert(nm!= NULL && nm->is_nmethod(), "Sanity check"); 399 methodHandle enclosing_method(THREAD, nm->method()); 400 401 CompLevel level = (CompLevel)nm->comp_level(); 402 int bci = InvocationEntryBci; 403 if (branch_bci != InvocationEntryBci) { 404 // Compute desination bci 405 address pc = method()->code_base() + branch_bci; 406 Bytecodes::Code branch = Bytecodes::code_at(method(), pc); 407 int offset = 0; 408 switch (branch) { 409 case Bytecodes::_if_icmplt: case Bytecodes::_iflt: 410 case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt: 411 case Bytecodes::_if_icmple: case Bytecodes::_ifle: 412 case Bytecodes::_if_icmpge: case Bytecodes::_ifge: 413 case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq: 414 case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne: 415 case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto: 416 offset = (int16_t)Bytes::get_Java_u2(pc + 1); 417 break; 418 case Bytecodes::_goto_w: 419 offset = Bytes::get_Java_u4(pc + 1); 420 break; 421 default: ; 422 } 423 bci = branch_bci + offset; 424 } 425 assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending"); 426 osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, nm, THREAD); 427 assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions"); 428 return osr_nm; 429 } 430 431 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, Method* method)) 432 nmethod* osr_nm; 433 JRT_BLOCK 434 osr_nm = counter_overflow_helper(thread, bci, method); 435 if (osr_nm != NULL) { 436 RegisterMap map(thread, false); 437 frame fr = thread->last_frame().sender(&map); 438 Deoptimization::deoptimize_frame(thread, fr.id()); 439 } 440 JRT_BLOCK_END 441 return NULL; 442 JRT_END 443 444 extern void vm_exit(int code); 445 446 // Enter this method from compiled code handler below. This is where we transition 447 // to VM mode. This is done as a helper routine so that the method called directly 448 // from compiled code does not have to transition to VM. This allows the entry 449 // method to see if the nmethod that we have just looked up a handler for has 450 // been deoptimized while we were in the vm. This simplifies the assembly code 451 // cpu directories. 452 // 453 // We are entering here from exception stub (via the entry method below) 454 // If there is a compiled exception handler in this method, we will continue there; 455 // otherwise we will unwind the stack and continue at the caller of top frame method 456 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to 457 // control the area where we can allow a safepoint. After we exit the safepoint area we can 458 // check to see if the handler we are going to return is now in a nmethod that has 459 // been deoptimized. If that is the case we return the deopt blob 460 // unpack_with_exception entry instead. This makes life for the exception blob easier 461 // because making that same check and diverting is painful from assembly language. 462 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm)) 463 // Reset method handle flag. 464 thread->set_is_method_handle_return(false); 465 466 Handle exception(thread, ex); 467 nm = CodeCache::find_nmethod(pc); 468 assert(nm != NULL, "this is not an nmethod"); 469 // Adjust the pc as needed/ 470 if (nm->is_deopt_pc(pc)) { 471 RegisterMap map(thread, false); 472 frame exception_frame = thread->last_frame().sender(&map); 473 // if the frame isn't deopted then pc must not correspond to the caller of last_frame 474 assert(exception_frame.is_deoptimized_frame(), "must be deopted"); 475 pc = exception_frame.pc(); 476 } 477 #ifdef ASSERT 478 assert(exception.not_null(), "NULL exceptions should be handled by throw_exception"); 479 assert(exception->is_oop(), "just checking"); 480 // Check that exception is a subclass of Throwable, otherwise we have a VerifyError 481 if (!(exception->is_a(SystemDictionary::Throwable_klass()))) { 482 if (ExitVMOnVerifyError) vm_exit(-1); 483 ShouldNotReachHere(); 484 } 485 #endif 486 487 // Check the stack guard pages and reenable them if necessary and there is 488 // enough space on the stack to do so. Use fast exceptions only if the guard 489 // pages are enabled. 490 bool guard_pages_enabled = thread->stack_yellow_zone_enabled(); 491 if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack(); 492 493 if (JvmtiExport::can_post_on_exceptions()) { 494 // To ensure correct notification of exception catches and throws 495 // we have to deoptimize here. If we attempted to notify the 496 // catches and throws during this exception lookup it's possible 497 // we could deoptimize on the way out of the VM and end back in 498 // the interpreter at the throw site. This would result in double 499 // notifications since the interpreter would also notify about 500 // these same catches and throws as it unwound the frame. 501 502 RegisterMap reg_map(thread); 503 frame stub_frame = thread->last_frame(); 504 frame caller_frame = stub_frame.sender(®_map); 505 506 // We don't really want to deoptimize the nmethod itself since we 507 // can actually continue in the exception handler ourselves but I 508 // don't see an easy way to have the desired effect. 509 Deoptimization::deoptimize_frame(thread, caller_frame.id()); 510 assert(caller_is_deopted(), "Must be deoptimized"); 511 512 return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 513 } 514 515 // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions 516 if (guard_pages_enabled) { 517 address fast_continuation = nm->handler_for_exception_and_pc(exception, pc); 518 if (fast_continuation != NULL) { 519 // Set flag if return address is a method handle call site. 520 thread->set_is_method_handle_return(nm->is_method_handle_return(pc)); 521 return fast_continuation; 522 } 523 } 524 525 // If the stack guard pages are enabled, check whether there is a handler in 526 // the current method. Otherwise (guard pages disabled), force an unwind and 527 // skip the exception cache update (i.e., just leave continuation==NULL). 528 address continuation = NULL; 529 if (guard_pages_enabled) { 530 531 // New exception handling mechanism can support inlined methods 532 // with exception handlers since the mappings are from PC to PC 533 534 // debugging support 535 // tracing 536 if (TraceExceptions) { 537 ttyLocker ttyl; 538 ResourceMark rm; 539 tty->print_cr("Exception <%s> (" INTPTR_FORMAT ") thrown in compiled method <%s> at PC " INTPTR_FORMAT " for thread " INTPTR_FORMAT "", 540 exception->print_value_string(), p2i((address)exception()), nm->method()->print_value_string(), p2i(pc), p2i(thread)); 541 } 542 // for AbortVMOnException flag 543 NOT_PRODUCT(Exceptions::debug_check_abort(exception)); 544 545 // Clear out the exception oop and pc since looking up an 546 // exception handler can cause class loading, which might throw an 547 // exception and those fields are expected to be clear during 548 // normal bytecode execution. 549 thread->clear_exception_oop_and_pc(); 550 551 bool recursive_exception = false; 552 continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception); 553 // If an exception was thrown during exception dispatch, the exception oop may have changed 554 thread->set_exception_oop(exception()); 555 thread->set_exception_pc(pc); 556 557 // the exception cache is used only by non-implicit exceptions 558 // Update the exception cache only when there didn't happen 559 // another exception during the computation of the compiled 560 // exception handler. Checking for exception oop equality is not 561 // sufficient because some exceptions are pre-allocated and reused. 562 if (continuation != NULL && !recursive_exception) { 563 nm->add_handler_for_exception_and_pc(exception, pc, continuation); 564 } 565 } 566 567 thread->set_vm_result(exception()); 568 // Set flag if return address is a method handle call site. 569 thread->set_is_method_handle_return(nm->is_method_handle_return(pc)); 570 571 if (TraceExceptions) { 572 ttyLocker ttyl; 573 ResourceMark rm; 574 tty->print_cr("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT " for exception thrown at PC " PTR_FORMAT, 575 p2i(thread), p2i(continuation), p2i(pc)); 576 } 577 578 return continuation; 579 JRT_END 580 581 // Enter this method from compiled code only if there is a Java exception handler 582 // in the method handling the exception. 583 // We are entering here from exception stub. We don't do a normal VM transition here. 584 // We do it in a helper. This is so we can check to see if the nmethod we have just 585 // searched for an exception handler has been deoptimized in the meantime. 586 address Runtime1::exception_handler_for_pc(JavaThread* thread) { 587 oop exception = thread->exception_oop(); 588 address pc = thread->exception_pc(); 589 // Still in Java mode 590 DEBUG_ONLY(ResetNoHandleMark rnhm); 591 nmethod* nm = NULL; 592 address continuation = NULL; 593 { 594 // Enter VM mode by calling the helper 595 ResetNoHandleMark rnhm; 596 continuation = exception_handler_for_pc_helper(thread, exception, pc, nm); 597 } 598 // Back in JAVA, use no oops DON'T safepoint 599 600 // Now check to see if the nmethod we were called from is now deoptimized. 601 // If so we must return to the deopt blob and deoptimize the nmethod 602 if (nm != NULL && caller_is_deopted()) { 603 continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 604 } 605 606 assert(continuation != NULL, "no handler found"); 607 return continuation; 608 } 609 610 611 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index)) 612 NOT_PRODUCT(_throw_range_check_exception_count++;) 613 char message[jintAsStringSize]; 614 sprintf(message, "%d", index); 615 SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message); 616 JRT_END 617 618 619 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index)) 620 NOT_PRODUCT(_throw_index_exception_count++;) 621 char message[16]; 622 sprintf(message, "%d", index); 623 SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message); 624 JRT_END 625 626 627 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread)) 628 NOT_PRODUCT(_throw_div0_exception_count++;) 629 SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 630 JRT_END 631 632 633 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread)) 634 NOT_PRODUCT(_throw_null_pointer_exception_count++;) 635 SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException()); 636 JRT_END 637 638 639 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object)) 640 NOT_PRODUCT(_throw_class_cast_exception_count++;) 641 ResourceMark rm(thread); 642 char* message = SharedRuntime::generate_class_cast_message( 643 thread, object->klass()->external_name()); 644 SharedRuntime::throw_and_post_jvmti_exception( 645 thread, vmSymbols::java_lang_ClassCastException(), message); 646 JRT_END 647 648 649 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread)) 650 NOT_PRODUCT(_throw_incompatible_class_change_error_count++;) 651 ResourceMark rm(thread); 652 SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError()); 653 JRT_END 654 655 656 JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock)) 657 NOT_PRODUCT(_monitorenter_slowcase_cnt++;) 658 if (PrintBiasedLockingStatistics) { 659 Atomic::inc(BiasedLocking::slow_path_entry_count_addr()); 660 } 661 Handle h_obj(thread, obj); 662 assert(h_obj()->is_oop(), "must be NULL or an object"); 663 if (UseBiasedLocking) { 664 // Retry fast entry if bias is revoked to avoid unnecessary inflation 665 ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK); 666 } else { 667 if (UseFastLocking) { 668 // When using fast locking, the compiled code has already tried the fast case 669 assert(obj == lock->obj(), "must match"); 670 ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD); 671 } else { 672 lock->set_obj(obj); 673 ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD); 674 } 675 } 676 JRT_END 677 678 679 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock)) 680 NOT_PRODUCT(_monitorexit_slowcase_cnt++;) 681 assert(thread == JavaThread::current(), "threads must correspond"); 682 assert(thread->last_Java_sp(), "last_Java_sp must be set"); 683 // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown 684 EXCEPTION_MARK; 685 686 oop obj = lock->obj(); 687 assert(obj->is_oop(), "must be NULL or an object"); 688 if (UseFastLocking) { 689 // When using fast locking, the compiled code has already tried the fast case 690 ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD); 691 } else { 692 ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD); 693 } 694 JRT_END 695 696 // Cf. OptoRuntime::deoptimize_caller_frame 697 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* thread)) 698 // Called from within the owner thread, so no need for safepoint 699 RegisterMap reg_map(thread, false); 700 frame stub_frame = thread->last_frame(); 701 assert(stub_frame.is_runtime_frame(), "sanity check"); 702 frame caller_frame = stub_frame.sender(®_map); 703 704 // We are coming from a compiled method; check this is true. 705 assert(CodeCache::find_nmethod(caller_frame.pc()) != NULL, "sanity"); 706 707 // Deoptimize the caller frame. 708 Deoptimization::deoptimize_frame(thread, caller_frame.id()); 709 710 // Return to the now deoptimized frame. 711 JRT_END 712 713 714 static Klass* resolve_field_return_klass(methodHandle caller, int bci, TRAPS) { 715 Bytecode_field field_access(caller, bci); 716 // This can be static or non-static field access 717 Bytecodes::Code code = field_access.code(); 718 719 // We must load class, initialize class and resolvethe field 720 fieldDescriptor result; // initialize class if needed 721 constantPoolHandle constants(THREAD, caller->constants()); 722 LinkResolver::resolve_field_access(result, constants, field_access.index(), Bytecodes::java_code(code), CHECK_NULL); 723 return result.field_holder(); 724 } 725 726 727 // 728 // This routine patches sites where a class wasn't loaded or 729 // initialized at the time the code was generated. It handles 730 // references to classes, fields and forcing of initialization. Most 731 // of the cases are straightforward and involving simply forcing 732 // resolution of a class, rewriting the instruction stream with the 733 // needed constant and replacing the call in this function with the 734 // patched code. The case for static field is more complicated since 735 // the thread which is in the process of initializing a class can 736 // access it's static fields but other threads can't so the code 737 // either has to deoptimize when this case is detected or execute a 738 // check that the current thread is the initializing thread. The 739 // current 740 // 741 // Patches basically look like this: 742 // 743 // 744 // patch_site: jmp patch stub ;; will be patched 745 // continue: ... 746 // ... 747 // ... 748 // ... 749 // 750 // They have a stub which looks like this: 751 // 752 // ;; patch body 753 // movl <const>, reg (for class constants) 754 // <or> movl [reg1 + <const>], reg (for field offsets) 755 // <or> movl reg, [reg1 + <const>] (for field offsets) 756 // <being_init offset> <bytes to copy> <bytes to skip> 757 // patch_stub: call Runtime1::patch_code (through a runtime stub) 758 // jmp patch_site 759 // 760 // 761 // A normal patch is done by rewriting the patch body, usually a move, 762 // and then copying it into place over top of the jmp instruction 763 // being careful to flush caches and doing it in an MP-safe way. The 764 // constants following the patch body are used to find various pieces 765 // of the patch relative to the call site for Runtime1::patch_code. 766 // The case for getstatic and putstatic is more complicated because 767 // getstatic and putstatic have special semantics when executing while 768 // the class is being initialized. getstatic/putstatic on a class 769 // which is being_initialized may be executed by the initializing 770 // thread but other threads have to block when they execute it. This 771 // is accomplished in compiled code by executing a test of the current 772 // thread against the initializing thread of the class. It's emitted 773 // as boilerplate in their stub which allows the patched code to be 774 // executed before it's copied back into the main body of the nmethod. 775 // 776 // being_init: get_thread(<tmp reg> 777 // cmpl [reg1 + <init_thread_offset>], <tmp reg> 778 // jne patch_stub 779 // movl [reg1 + <const>], reg (for field offsets) <or> 780 // movl reg, [reg1 + <const>] (for field offsets) 781 // jmp continue 782 // <being_init offset> <bytes to copy> <bytes to skip> 783 // patch_stub: jmp Runtim1::patch_code (through a runtime stub) 784 // jmp patch_site 785 // 786 // If the class is being initialized the patch body is rewritten and 787 // the patch site is rewritten to jump to being_init, instead of 788 // patch_stub. Whenever this code is executed it checks the current 789 // thread against the intializing thread so other threads will enter 790 // the runtime and end up blocked waiting the class to finish 791 // initializing inside the calls to resolve_field below. The 792 // initializing class will continue on it's way. Once the class is 793 // fully_initialized, the intializing_thread of the class becomes 794 // NULL, so the next thread to execute this code will fail the test, 795 // call into patch_code and complete the patching process by copying 796 // the patch body back into the main part of the nmethod and resume 797 // executing. 798 // 799 // 800 801 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id )) 802 NOT_PRODUCT(_patch_code_slowcase_cnt++;) 803 804 #ifdef AARCH64 805 // AArch64 does not patch C1-generated code. 806 ShouldNotReachHere(); 807 #endif 808 809 ResourceMark rm(thread); 810 RegisterMap reg_map(thread, false); 811 frame runtime_frame = thread->last_frame(); 812 frame caller_frame = runtime_frame.sender(®_map); 813 814 // last java frame on stack 815 vframeStream vfst(thread, true); 816 assert(!vfst.at_end(), "Java frame must exist"); 817 818 methodHandle caller_method(THREAD, vfst.method()); 819 // Note that caller_method->code() may not be same as caller_code because of OSR's 820 // Note also that in the presence of inlining it is not guaranteed 821 // that caller_method() == caller_code->method() 822 823 int bci = vfst.bci(); 824 Bytecodes::Code code = caller_method()->java_code_at(bci); 825 826 #ifndef PRODUCT 827 // this is used by assertions in the access_field_patching_id 828 BasicType patch_field_type = T_ILLEGAL; 829 #endif // PRODUCT 830 bool deoptimize_for_volatile = false; 831 int patch_field_offset = -1; 832 KlassHandle init_klass(THREAD, NULL); // klass needed by load_klass_patching code 833 KlassHandle load_klass(THREAD, NULL); // klass needed by load_klass_patching code 834 Handle mirror(THREAD, NULL); // oop needed by load_mirror_patching code 835 Handle appendix(THREAD, NULL); // oop needed by appendix_patching code 836 bool load_klass_or_mirror_patch_id = 837 (stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id); 838 839 if (stub_id == Runtime1::access_field_patching_id) { 840 841 Bytecode_field field_access(caller_method, bci); 842 fieldDescriptor result; // initialize class if needed 843 Bytecodes::Code code = field_access.code(); 844 constantPoolHandle constants(THREAD, caller_method->constants()); 845 LinkResolver::resolve_field_access(result, constants, field_access.index(), Bytecodes::java_code(code), CHECK); 846 patch_field_offset = result.offset(); 847 848 // If we're patching a field which is volatile then at compile it 849 // must not have been know to be volatile, so the generated code 850 // isn't correct for a volatile reference. The nmethod has to be 851 // deoptimized so that the code can be regenerated correctly. 852 // This check is only needed for access_field_patching since this 853 // is the path for patching field offsets. load_klass is only 854 // used for patching references to oops which don't need special 855 // handling in the volatile case. 856 deoptimize_for_volatile = result.access_flags().is_volatile(); 857 858 #ifndef PRODUCT 859 patch_field_type = result.field_type(); 860 #endif 861 } else if (load_klass_or_mirror_patch_id) { 862 Klass* k = NULL; 863 switch (code) { 864 case Bytecodes::_putstatic: 865 case Bytecodes::_getstatic: 866 { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK); 867 init_klass = KlassHandle(THREAD, klass); 868 mirror = Handle(THREAD, klass->java_mirror()); 869 } 870 break; 871 case Bytecodes::_new: 872 { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci)); 873 k = caller_method->constants()->klass_at(bnew.index(), CHECK); 874 } 875 break; 876 case Bytecodes::_multianewarray: 877 { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci)); 878 k = caller_method->constants()->klass_at(mna.index(), CHECK); 879 } 880 break; 881 case Bytecodes::_instanceof: 882 { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci)); 883 k = caller_method->constants()->klass_at(io.index(), CHECK); 884 } 885 break; 886 case Bytecodes::_checkcast: 887 { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci)); 888 k = caller_method->constants()->klass_at(cc.index(), CHECK); 889 } 890 break; 891 case Bytecodes::_anewarray: 892 { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci)); 893 Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK); 894 k = ek->array_klass(CHECK); 895 } 896 break; 897 case Bytecodes::_ldc: 898 case Bytecodes::_ldc_w: 899 { 900 Bytecode_loadconstant cc(caller_method, bci); 901 oop m = cc.resolve_constant(CHECK); 902 mirror = Handle(THREAD, m); 903 } 904 break; 905 default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id"); 906 } 907 // convert to handle 908 load_klass = KlassHandle(THREAD, k); 909 } else if (stub_id == load_appendix_patching_id) { 910 Bytecode_invoke bytecode(caller_method, bci); 911 Bytecodes::Code bc = bytecode.invoke_code(); 912 913 CallInfo info; 914 constantPoolHandle pool(thread, caller_method->constants()); 915 int index = bytecode.index(); 916 LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK); 917 appendix = info.resolved_appendix(); 918 switch (bc) { 919 case Bytecodes::_invokehandle: { 920 int cache_index = ConstantPool::decode_cpcache_index(index, true); 921 assert(cache_index >= 0 && cache_index < pool->cache()->length(), "unexpected cache index"); 922 pool->cache()->entry_at(cache_index)->set_method_handle(pool, info); 923 break; 924 } 925 case Bytecodes::_invokedynamic: { 926 pool->invokedynamic_cp_cache_entry_at(index)->set_dynamic_call(pool, info); 927 break; 928 } 929 default: fatal("unexpected bytecode for load_appendix_patching_id"); 930 } 931 } else { 932 ShouldNotReachHere(); 933 } 934 935 if (deoptimize_for_volatile) { 936 // At compile time we assumed the field wasn't volatile but after 937 // loading it turns out it was volatile so we have to throw the 938 // compiled code out and let it be regenerated. 939 if (TracePatching) { 940 tty->print_cr("Deoptimizing for patching volatile field reference"); 941 } 942 // It's possible the nmethod was invalidated in the last 943 // safepoint, but if it's still alive then make it not_entrant. 944 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 945 if (nm != NULL) { 946 nm->make_not_entrant(); 947 } 948 949 Deoptimization::deoptimize_frame(thread, caller_frame.id()); 950 951 // Return to the now deoptimized frame. 952 } 953 954 // Now copy code back 955 { 956 MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag); 957 // 958 // Deoptimization may have happened while we waited for the lock. 959 // In that case we don't bother to do any patching we just return 960 // and let the deopt happen 961 if (!caller_is_deopted()) { 962 NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc()); 963 address instr_pc = jump->jump_destination(); 964 NativeInstruction* ni = nativeInstruction_at(instr_pc); 965 if (ni->is_jump() ) { 966 // the jump has not been patched yet 967 // The jump destination is slow case and therefore not part of the stubs 968 // (stubs are only for StaticCalls) 969 970 // format of buffer 971 // .... 972 // instr byte 0 <-- copy_buff 973 // instr byte 1 974 // .. 975 // instr byte n-1 976 // n 977 // .... <-- call destination 978 979 address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset(); 980 unsigned char* byte_count = (unsigned char*) (stub_location - 1); 981 unsigned char* byte_skip = (unsigned char*) (stub_location - 2); 982 unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3); 983 address copy_buff = stub_location - *byte_skip - *byte_count; 984 address being_initialized_entry = stub_location - *being_initialized_entry_offset; 985 if (TracePatching) { 986 ttyLocker ttyl; 987 tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT " (%s)", Bytecodes::name(code), bci, 988 p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass"); 989 nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc()); 990 assert(caller_code != NULL, "nmethod not found"); 991 992 // NOTE we use pc() not original_pc() because we already know they are 993 // identical otherwise we'd have never entered this block of code 994 995 OopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc()); 996 assert(map != NULL, "null check"); 997 map->print(); 998 tty->cr(); 999 1000 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); 1001 } 1002 // depending on the code below, do_patch says whether to copy the patch body back into the nmethod 1003 bool do_patch = true; 1004 if (stub_id == Runtime1::access_field_patching_id) { 1005 // The offset may not be correct if the class was not loaded at code generation time. 1006 // Set it now. 1007 NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff); 1008 assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type"); 1009 assert(patch_field_offset >= 0, "illegal offset"); 1010 n_move->add_offset_in_bytes(patch_field_offset); 1011 } else if (load_klass_or_mirror_patch_id) { 1012 // If a getstatic or putstatic is referencing a klass which 1013 // isn't fully initialized, the patch body isn't copied into 1014 // place until initialization is complete. In this case the 1015 // patch site is setup so that any threads besides the 1016 // initializing thread are forced to come into the VM and 1017 // block. 1018 do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) || 1019 InstanceKlass::cast(init_klass())->is_initialized(); 1020 NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc); 1021 if (jump->jump_destination() == being_initialized_entry) { 1022 assert(do_patch == true, "initialization must be complete at this point"); 1023 } else { 1024 // patch the instruction <move reg, klass> 1025 NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff); 1026 1027 assert(n_copy->data() == 0 || 1028 n_copy->data() == (intptr_t)Universe::non_oop_word(), 1029 "illegal init value"); 1030 if (stub_id == Runtime1::load_klass_patching_id) { 1031 assert(load_klass() != NULL, "klass not set"); 1032 n_copy->set_data((intx) (load_klass())); 1033 } else { 1034 assert(mirror() != NULL, "klass not set"); 1035 // Don't need a G1 pre-barrier here since we assert above that data isn't an oop. 1036 n_copy->set_data(cast_from_oop<intx>(mirror())); 1037 } 1038 1039 if (TracePatching) { 1040 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); 1041 } 1042 } 1043 } else if (stub_id == Runtime1::load_appendix_patching_id) { 1044 NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff); 1045 assert(n_copy->data() == 0 || 1046 n_copy->data() == (intptr_t)Universe::non_oop_word(), 1047 "illegal init value"); 1048 n_copy->set_data(cast_from_oop<intx>(appendix())); 1049 1050 if (TracePatching) { 1051 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); 1052 } 1053 } else { 1054 ShouldNotReachHere(); 1055 } 1056 1057 #if defined(SPARC) || defined(PPC) 1058 if (load_klass_or_mirror_patch_id || 1059 stub_id == Runtime1::load_appendix_patching_id) { 1060 // Update the location in the nmethod with the proper 1061 // metadata. When the code was generated, a NULL was stuffed 1062 // in the metadata table and that table needs to be update to 1063 // have the right value. On intel the value is kept 1064 // directly in the instruction instead of in the metadata 1065 // table, so set_data above effectively updated the value. 1066 nmethod* nm = CodeCache::find_nmethod(instr_pc); 1067 assert(nm != NULL, "invalid nmethod_pc"); 1068 RelocIterator mds(nm, copy_buff, copy_buff + 1); 1069 bool found = false; 1070 while (mds.next() && !found) { 1071 if (mds.type() == relocInfo::oop_type) { 1072 assert(stub_id == Runtime1::load_mirror_patching_id || 1073 stub_id == Runtime1::load_appendix_patching_id, "wrong stub id"); 1074 oop_Relocation* r = mds.oop_reloc(); 1075 oop* oop_adr = r->oop_addr(); 1076 *oop_adr = stub_id == Runtime1::load_mirror_patching_id ? mirror() : appendix(); 1077 r->fix_oop_relocation(); 1078 found = true; 1079 } else if (mds.type() == relocInfo::metadata_type) { 1080 assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id"); 1081 metadata_Relocation* r = mds.metadata_reloc(); 1082 Metadata** metadata_adr = r->metadata_addr(); 1083 *metadata_adr = load_klass(); 1084 r->fix_metadata_relocation(); 1085 found = true; 1086 } 1087 } 1088 assert(found, "the metadata must exist!"); 1089 } 1090 #endif 1091 if (do_patch) { 1092 // replace instructions 1093 // first replace the tail, then the call 1094 #ifdef ARM 1095 if((load_klass_or_mirror_patch_id || 1096 stub_id == Runtime1::load_appendix_patching_id) && 1097 nativeMovConstReg_at(copy_buff)->is_pc_relative()) { 1098 nmethod* nm = CodeCache::find_nmethod(instr_pc); 1099 address addr = NULL; 1100 assert(nm != NULL, "invalid nmethod_pc"); 1101 RelocIterator mds(nm, copy_buff, copy_buff + 1); 1102 while (mds.next()) { 1103 if (mds.type() == relocInfo::oop_type) { 1104 assert(stub_id == Runtime1::load_mirror_patching_id || 1105 stub_id == Runtime1::load_appendix_patching_id, "wrong stub id"); 1106 oop_Relocation* r = mds.oop_reloc(); 1107 addr = (address)r->oop_addr(); 1108 break; 1109 } else if (mds.type() == relocInfo::metadata_type) { 1110 assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id"); 1111 metadata_Relocation* r = mds.metadata_reloc(); 1112 addr = (address)r->metadata_addr(); 1113 break; 1114 } 1115 } 1116 assert(addr != NULL, "metadata relocation must exist"); 1117 copy_buff -= *byte_count; 1118 NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff); 1119 n_copy2->set_pc_relative_offset(addr, instr_pc); 1120 } 1121 #endif 1122 1123 for (int i = NativeCall::instruction_size; i < *byte_count; i++) { 1124 address ptr = copy_buff + i; 1125 int a_byte = (*ptr) & 0xFF; 1126 address dst = instr_pc + i; 1127 *(unsigned char*)dst = (unsigned char) a_byte; 1128 } 1129 ICache::invalidate_range(instr_pc, *byte_count); 1130 NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff); 1131 1132 if (load_klass_or_mirror_patch_id || 1133 stub_id == Runtime1::load_appendix_patching_id) { 1134 relocInfo::relocType rtype = 1135 (stub_id == Runtime1::load_klass_patching_id) ? 1136 relocInfo::metadata_type : 1137 relocInfo::oop_type; 1138 // update relocInfo to metadata 1139 nmethod* nm = CodeCache::find_nmethod(instr_pc); 1140 assert(nm != NULL, "invalid nmethod_pc"); 1141 1142 // The old patch site is now a move instruction so update 1143 // the reloc info so that it will get updated during 1144 // future GCs. 1145 RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1)); 1146 relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc, 1147 relocInfo::none, rtype); 1148 #ifdef SPARC 1149 // Sparc takes two relocations for an metadata so update the second one. 1150 address instr_pc2 = instr_pc + NativeMovConstReg::add_offset; 1151 RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1); 1152 relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2, 1153 relocInfo::none, rtype); 1154 #endif 1155 #ifdef PPC 1156 { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset; 1157 RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1); 1158 relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2, 1159 relocInfo::none, rtype); 1160 } 1161 #endif 1162 } 1163 1164 } else { 1165 ICache::invalidate_range(copy_buff, *byte_count); 1166 NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry); 1167 } 1168 } 1169 } 1170 } 1171 1172 // If we are patching in a non-perm oop, make sure the nmethod 1173 // is on the right list. 1174 if (ScavengeRootsInCode && ((mirror.not_null() && mirror()->is_scavengable()) || 1175 (appendix.not_null() && appendix->is_scavengable()))) { 1176 MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag); 1177 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1178 guarantee(nm != NULL, "only nmethods can contain non-perm oops"); 1179 if (!nm->on_scavenge_root_list()) { 1180 CodeCache::add_scavenge_root_nmethod(nm); 1181 } 1182 1183 // Since we've patched some oops in the nmethod, 1184 // (re)register it with the heap. 1185 Universe::heap()->register_nmethod(nm); 1186 } 1187 JRT_END 1188 1189 // 1190 // Entry point for compiled code. We want to patch a nmethod. 1191 // We don't do a normal VM transition here because we want to 1192 // know after the patching is complete and any safepoint(s) are taken 1193 // if the calling nmethod was deoptimized. We do this by calling a 1194 // helper method which does the normal VM transition and when it 1195 // completes we can check for deoptimization. This simplifies the 1196 // assembly code in the cpu directories. 1197 // 1198 #ifndef TARGET_ARCH_aarch64 1199 int Runtime1::move_klass_patching(JavaThread* thread) { 1200 // 1201 // NOTE: we are still in Java 1202 // 1203 Thread* THREAD = thread; 1204 debug_only(NoHandleMark nhm;) 1205 { 1206 // Enter VM mode 1207 1208 ResetNoHandleMark rnhm; 1209 patch_code(thread, load_klass_patching_id); 1210 } 1211 // Back in JAVA, use no oops DON'T safepoint 1212 1213 // Return true if calling code is deoptimized 1214 1215 return caller_is_deopted(); 1216 } 1217 1218 int Runtime1::move_mirror_patching(JavaThread* thread) { 1219 // 1220 // NOTE: we are still in Java 1221 // 1222 Thread* THREAD = thread; 1223 debug_only(NoHandleMark nhm;) 1224 { 1225 // Enter VM mode 1226 1227 ResetNoHandleMark rnhm; 1228 patch_code(thread, load_mirror_patching_id); 1229 } 1230 // Back in JAVA, use no oops DON'T safepoint 1231 1232 // Return true if calling code is deoptimized 1233 1234 return caller_is_deopted(); 1235 } 1236 1237 int Runtime1::move_appendix_patching(JavaThread* thread) { 1238 // 1239 // NOTE: we are still in Java 1240 // 1241 Thread* THREAD = thread; 1242 debug_only(NoHandleMark nhm;) 1243 { 1244 // Enter VM mode 1245 1246 ResetNoHandleMark rnhm; 1247 patch_code(thread, load_appendix_patching_id); 1248 } 1249 // Back in JAVA, use no oops DON'T safepoint 1250 1251 // Return true if calling code is deoptimized 1252 1253 return caller_is_deopted(); 1254 } 1255 // 1256 // Entry point for compiled code. We want to patch a nmethod. 1257 // We don't do a normal VM transition here because we want to 1258 // know after the patching is complete and any safepoint(s) are taken 1259 // if the calling nmethod was deoptimized. We do this by calling a 1260 // helper method which does the normal VM transition and when it 1261 // completes we can check for deoptimization. This simplifies the 1262 // assembly code in the cpu directories. 1263 // 1264 1265 int Runtime1::access_field_patching(JavaThread* thread) { 1266 // 1267 // NOTE: we are still in Java 1268 // 1269 Thread* THREAD = thread; 1270 debug_only(NoHandleMark nhm;) 1271 { 1272 // Enter VM mode 1273 1274 ResetNoHandleMark rnhm; 1275 patch_code(thread, access_field_patching_id); 1276 } 1277 // Back in JAVA, use no oops DON'T safepoint 1278 1279 // Return true if calling code is deoptimized 1280 1281 return caller_is_deopted(); 1282 JRT_END 1283 #endif 1284 1285 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id)) 1286 // for now we just print out the block id 1287 tty->print("%d ", block_id); 1288 JRT_END 1289 1290 1291 // Array copy return codes. 1292 enum { 1293 ac_failed = -1, // arraycopy failed 1294 ac_ok = 0 // arraycopy succeeded 1295 }; 1296 1297 1298 // Below length is the # elements copied. 1299 template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr, 1300 oopDesc* dst, T* dst_addr, 1301 int length) { 1302 1303 // For performance reasons, we assume we are using a card marking write 1304 // barrier. The assert will fail if this is not the case. 1305 // Note that we use the non-virtual inlineable variant of write_ref_array. 1306 BarrierSet* bs = Universe::heap()->barrier_set(); 1307 assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt"); 1308 assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well."); 1309 if (src == dst) { 1310 // same object, no check 1311 bs->write_ref_array_pre(dst_addr, length); 1312 Copy::conjoint_oops_atomic(src_addr, dst_addr, length); 1313 bs->write_ref_array((HeapWord*)dst_addr, length); 1314 return ac_ok; 1315 } else { 1316 Klass* bound = ObjArrayKlass::cast(dst->klass())->element_klass(); 1317 Klass* stype = ObjArrayKlass::cast(src->klass())->element_klass(); 1318 if (stype == bound || stype->is_subtype_of(bound)) { 1319 // Elements are guaranteed to be subtypes, so no check necessary 1320 bs->write_ref_array_pre(dst_addr, length); 1321 Copy::conjoint_oops_atomic(src_addr, dst_addr, length); 1322 bs->write_ref_array((HeapWord*)dst_addr, length); 1323 return ac_ok; 1324 } 1325 } 1326 return ac_failed; 1327 } 1328 1329 // fast and direct copy of arrays; returning -1, means that an exception may be thrown 1330 // and we did not copy anything 1331 JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length)) 1332 #ifndef PRODUCT 1333 _generic_arraycopy_cnt++; // Slow-path oop array copy 1334 #endif 1335 1336 if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed; 1337 if (!dst->is_array() || !src->is_array()) return ac_failed; 1338 if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed; 1339 if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed; 1340 1341 if (length == 0) return ac_ok; 1342 if (src->is_typeArray()) { 1343 Klass* klass_oop = src->klass(); 1344 if (klass_oop != dst->klass()) return ac_failed; 1345 TypeArrayKlass* klass = TypeArrayKlass::cast(klass_oop); 1346 const int l2es = klass->log2_element_size(); 1347 const int ihs = klass->array_header_in_bytes() / wordSize; 1348 char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es); 1349 char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es); 1350 // Potential problem: memmove is not guaranteed to be word atomic 1351 // Revisit in Merlin 1352 memmove(dst_addr, src_addr, length << l2es); 1353 return ac_ok; 1354 } else if (src->is_objArray() && dst->is_objArray()) { 1355 if (UseCompressedOops) { 1356 narrowOop *src_addr = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos); 1357 narrowOop *dst_addr = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos); 1358 return obj_arraycopy_work(src, src_addr, dst, dst_addr, length); 1359 } else { 1360 oop *src_addr = objArrayOop(src)->obj_at_addr<oop>(src_pos); 1361 oop *dst_addr = objArrayOop(dst)->obj_at_addr<oop>(dst_pos); 1362 return obj_arraycopy_work(src, src_addr, dst, dst_addr, length); 1363 } 1364 } 1365 return ac_failed; 1366 JRT_END 1367 1368 1369 JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length)) 1370 #ifndef PRODUCT 1371 _primitive_arraycopy_cnt++; 1372 #endif 1373 1374 if (length == 0) return; 1375 // Not guaranteed to be word atomic, but that doesn't matter 1376 // for anything but an oop array, which is covered by oop_arraycopy. 1377 Copy::conjoint_jbytes(src, dst, length); 1378 JRT_END 1379 1380 JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num)) 1381 #ifndef PRODUCT 1382 _oop_arraycopy_cnt++; 1383 #endif 1384 1385 if (num == 0) return; 1386 BarrierSet* bs = Universe::heap()->barrier_set(); 1387 assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt"); 1388 assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well."); 1389 if (UseCompressedOops) { 1390 bs->write_ref_array_pre((narrowOop*)dst, num); 1391 Copy::conjoint_oops_atomic((narrowOop*) src, (narrowOop*) dst, num); 1392 } else { 1393 bs->write_ref_array_pre((oop*)dst, num); 1394 Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num); 1395 } 1396 bs->write_ref_array(dst, num); 1397 JRT_END 1398 1399 1400 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj)) 1401 // had to return int instead of bool, otherwise there may be a mismatch 1402 // between the C calling convention and the Java one. 1403 // e.g., on x86, GCC may clear only %al when returning a bool false, but 1404 // JVM takes the whole %eax as the return value, which may misinterpret 1405 // the return value as a boolean true. 1406 1407 assert(mirror != NULL, "should null-check on mirror before calling"); 1408 Klass* k = java_lang_Class::as_Klass(mirror); 1409 return (k != NULL && obj != NULL && obj->is_a(k)) ? 1 : 0; 1410 JRT_END 1411 1412 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* thread)) 1413 ResourceMark rm; 1414 1415 assert(!TieredCompilation, "incompatible with tiered compilation"); 1416 1417 RegisterMap reg_map(thread, false); 1418 frame runtime_frame = thread->last_frame(); 1419 frame caller_frame = runtime_frame.sender(®_map); 1420 1421 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc()); 1422 assert (nm != NULL, "no more nmethod?"); 1423 nm->make_not_entrant(); 1424 1425 methodHandle m(nm->method()); 1426 MethodData* mdo = m->method_data(); 1427 1428 if (mdo == NULL && !HAS_PENDING_EXCEPTION) { 1429 // Build an MDO. Ignore errors like OutOfMemory; 1430 // that simply means we won't have an MDO to update. 1431 Method::build_interpreter_method_data(m, THREAD); 1432 if (HAS_PENDING_EXCEPTION) { 1433 assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here"); 1434 CLEAR_PENDING_EXCEPTION; 1435 } 1436 mdo = m->method_data(); 1437 } 1438 1439 if (mdo != NULL) { 1440 mdo->inc_trap_count(Deoptimization::Reason_none); 1441 } 1442 1443 if (TracePredicateFailedTraps) { 1444 stringStream ss1, ss2; 1445 vframeStream vfst(thread); 1446 methodHandle inlinee = methodHandle(vfst.method()); 1447 inlinee->print_short_name(&ss1); 1448 m->print_short_name(&ss2); 1449 tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.as_string(), vfst.bci(), ss2.as_string(), p2i(caller_frame.pc())); 1450 } 1451 1452 1453 Deoptimization::deoptimize_frame(thread, caller_frame.id()); 1454 1455 JRT_END 1456 1457 #ifndef PRODUCT 1458 void Runtime1::print_statistics() { 1459 tty->print_cr("C1 Runtime statistics:"); 1460 tty->print_cr(" _resolve_invoke_virtual_cnt: %d", SharedRuntime::_resolve_virtual_ctr); 1461 tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr); 1462 tty->print_cr(" _resolve_invoke_static_cnt: %d", SharedRuntime::_resolve_static_ctr); 1463 tty->print_cr(" _handle_wrong_method_cnt: %d", SharedRuntime::_wrong_method_ctr); 1464 tty->print_cr(" _ic_miss_cnt: %d", SharedRuntime::_ic_miss_ctr); 1465 tty->print_cr(" _generic_arraycopy_cnt: %d", _generic_arraycopy_cnt); 1466 tty->print_cr(" _generic_arraycopystub_cnt: %d", _generic_arraycopystub_cnt); 1467 tty->print_cr(" _byte_arraycopy_cnt: %d", _byte_arraycopy_cnt); 1468 tty->print_cr(" _short_arraycopy_cnt: %d", _short_arraycopy_cnt); 1469 tty->print_cr(" _int_arraycopy_cnt: %d", _int_arraycopy_cnt); 1470 tty->print_cr(" _long_arraycopy_cnt: %d", _long_arraycopy_cnt); 1471 tty->print_cr(" _primitive_arraycopy_cnt: %d", _primitive_arraycopy_cnt); 1472 tty->print_cr(" _oop_arraycopy_cnt (C): %d", Runtime1::_oop_arraycopy_cnt); 1473 tty->print_cr(" _oop_arraycopy_cnt (stub): %d", _oop_arraycopy_cnt); 1474 tty->print_cr(" _arraycopy_slowcase_cnt: %d", _arraycopy_slowcase_cnt); 1475 tty->print_cr(" _arraycopy_checkcast_cnt: %d", _arraycopy_checkcast_cnt); 1476 tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt); 1477 1478 tty->print_cr(" _new_type_array_slowcase_cnt: %d", _new_type_array_slowcase_cnt); 1479 tty->print_cr(" _new_object_array_slowcase_cnt: %d", _new_object_array_slowcase_cnt); 1480 tty->print_cr(" _new_instance_slowcase_cnt: %d", _new_instance_slowcase_cnt); 1481 tty->print_cr(" _new_multi_array_slowcase_cnt: %d", _new_multi_array_slowcase_cnt); 1482 tty->print_cr(" _monitorenter_slowcase_cnt: %d", _monitorenter_slowcase_cnt); 1483 tty->print_cr(" _monitorexit_slowcase_cnt: %d", _monitorexit_slowcase_cnt); 1484 tty->print_cr(" _patch_code_slowcase_cnt: %d", _patch_code_slowcase_cnt); 1485 1486 tty->print_cr(" _throw_range_check_exception_count: %d:", _throw_range_check_exception_count); 1487 tty->print_cr(" _throw_index_exception_count: %d:", _throw_index_exception_count); 1488 tty->print_cr(" _throw_div0_exception_count: %d:", _throw_div0_exception_count); 1489 tty->print_cr(" _throw_null_pointer_exception_count: %d:", _throw_null_pointer_exception_count); 1490 tty->print_cr(" _throw_class_cast_exception_count: %d:", _throw_class_cast_exception_count); 1491 tty->print_cr(" _throw_incompatible_class_change_error_count: %d:", _throw_incompatible_class_change_error_count); 1492 tty->print_cr(" _throw_array_store_exception_count: %d:", _throw_array_store_exception_count); 1493 tty->print_cr(" _throw_count: %d:", _throw_count); 1494 1495 SharedRuntime::print_ic_miss_histogram(); 1496 tty->cr(); 1497 } 1498 #endif // PRODUCT