1 /* 2 * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP 27 28 #include "gc_implementation/g1/g1AllocationContext.hpp" 29 #include "gc_implementation/g1/g1Allocator.hpp" 30 #include "gc_implementation/g1/concurrentMark.hpp" 31 #include "gc_implementation/g1/evacuationInfo.hpp" 32 #include "gc_implementation/g1/g1AllocRegion.hpp" 33 #include "gc_implementation/g1/g1BiasedArray.hpp" 34 #include "gc_implementation/g1/g1HRPrinter.hpp" 35 #include "gc_implementation/g1/g1InCSetState.hpp" 36 #include "gc_implementation/g1/g1MonitoringSupport.hpp" 37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp" 38 #include "gc_implementation/g1/g1YCTypes.hpp" 39 #include "gc_implementation/g1/heapRegionManager.hpp" 40 #include "gc_implementation/g1/heapRegionSet.hpp" 41 #include "gc_implementation/shared/gcHeapSummary.hpp" 42 #include "gc_implementation/shared/hSpaceCounters.hpp" 43 #include "gc_implementation/shared/parGCAllocBuffer.hpp" 44 #include "memory/barrierSet.hpp" 45 #include "memory/memRegion.hpp" 46 #include "memory/sharedHeap.hpp" 47 #include "utilities/macros.hpp" 48 #include "utilities/stack.hpp" 49 50 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot. 51 // It uses the "Garbage First" heap organization and algorithm, which 52 // may combine concurrent marking with parallel, incremental compaction of 53 // heap subsets that will yield large amounts of garbage. 54 55 // Forward declarations 56 class HeapRegion; 57 class HRRSCleanupTask; 58 class GenerationSpec; 59 class OopsInHeapRegionClosure; 60 class G1KlassScanClosure; 61 class G1ScanHeapEvacClosure; 62 class ObjectClosure; 63 class SpaceClosure; 64 class CompactibleSpaceClosure; 65 class Space; 66 class G1CollectorPolicy; 67 class GenRemSet; 68 class G1RemSet; 69 class HeapRegionRemSetIterator; 70 class ConcurrentMark; 71 class ConcurrentMarkThread; 72 class ConcurrentG1Refine; 73 class ConcurrentGCTimer; 74 class GenerationCounters; 75 class STWGCTimer; 76 class G1NewTracer; 77 class G1OldTracer; 78 class EvacuationFailedInfo; 79 class nmethod; 80 81 typedef OverflowTaskQueue<StarTask, mtGC> RefToScanQueue; 82 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet; 83 84 typedef int RegionIdx_t; // needs to hold [ 0..max_regions() ) 85 typedef int CardIdx_t; // needs to hold [ 0..CardsPerRegion ) 86 87 class YoungList : public CHeapObj<mtGC> { 88 private: 89 G1CollectedHeap* _g1h; 90 91 HeapRegion* _head; 92 93 HeapRegion* _survivor_head; 94 HeapRegion* _survivor_tail; 95 96 HeapRegion* _curr; 97 98 uint _length; 99 uint _survivor_length; 100 101 size_t _last_sampled_rs_lengths; 102 size_t _sampled_rs_lengths; 103 104 void empty_list(HeapRegion* list); 105 106 public: 107 YoungList(G1CollectedHeap* g1h); 108 109 void push_region(HeapRegion* hr); 110 void add_survivor_region(HeapRegion* hr); 111 112 void empty_list(); 113 bool is_empty() { return _length == 0; } 114 uint length() { return _length; } 115 uint survivor_length() { return _survivor_length; } 116 117 // Currently we do not keep track of the used byte sum for the 118 // young list and the survivors and it'd be quite a lot of work to 119 // do so. When we'll eventually replace the young list with 120 // instances of HeapRegionLinkedList we'll get that for free. So, 121 // we'll report the more accurate information then. 122 size_t eden_used_bytes() { 123 assert(length() >= survivor_length(), "invariant"); 124 return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes; 125 } 126 size_t survivor_used_bytes() { 127 return (size_t) survivor_length() * HeapRegion::GrainBytes; 128 } 129 130 void rs_length_sampling_init(); 131 bool rs_length_sampling_more(); 132 void rs_length_sampling_next(); 133 134 void reset_sampled_info() { 135 _last_sampled_rs_lengths = 0; 136 } 137 size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; } 138 139 // for development purposes 140 void reset_auxilary_lists(); 141 void clear() { _head = NULL; _length = 0; } 142 143 void clear_survivors() { 144 _survivor_head = NULL; 145 _survivor_tail = NULL; 146 _survivor_length = 0; 147 } 148 149 HeapRegion* first_region() { return _head; } 150 HeapRegion* first_survivor_region() { return _survivor_head; } 151 HeapRegion* last_survivor_region() { return _survivor_tail; } 152 153 // debugging 154 bool check_list_well_formed(); 155 bool check_list_empty(bool check_sample = true); 156 void print(); 157 }; 158 159 // The G1 STW is alive closure. 160 // An instance is embedded into the G1CH and used as the 161 // (optional) _is_alive_non_header closure in the STW 162 // reference processor. It is also extensively used during 163 // reference processing during STW evacuation pauses. 164 class G1STWIsAliveClosure: public BoolObjectClosure { 165 G1CollectedHeap* _g1; 166 public: 167 G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {} 168 bool do_object_b(oop p); 169 }; 170 171 class RefineCardTableEntryClosure; 172 173 class G1RegionMappingChangedListener : public G1MappingChangedListener { 174 private: 175 void reset_from_card_cache(uint start_idx, size_t num_regions); 176 public: 177 virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled); 178 }; 179 180 class G1CollectedHeap : public SharedHeap { 181 friend class VM_CollectForMetadataAllocation; 182 friend class VM_G1CollectForAllocation; 183 friend class VM_G1CollectFull; 184 friend class VM_G1IncCollectionPause; 185 friend class VMStructs; 186 friend class MutatorAllocRegion; 187 friend class SurvivorGCAllocRegion; 188 friend class OldGCAllocRegion; 189 friend class G1Allocator; 190 friend class G1DefaultAllocator; 191 friend class G1ResManAllocator; 192 193 // Closures used in implementation. 194 template <G1Barrier barrier, G1Mark do_mark_object> 195 friend class G1ParCopyClosure; 196 friend class G1IsAliveClosure; 197 friend class G1EvacuateFollowersClosure; 198 friend class G1ParScanThreadState; 199 friend class G1ParScanClosureSuper; 200 friend class G1ParEvacuateFollowersClosure; 201 friend class G1ParTask; 202 friend class G1ParGCAllocator; 203 friend class G1DefaultParGCAllocator; 204 friend class G1FreeGarbageRegionClosure; 205 friend class RefineCardTableEntryClosure; 206 friend class G1PrepareCompactClosure; 207 friend class RegionSorter; 208 friend class RegionResetter; 209 friend class CountRCClosure; 210 friend class EvacPopObjClosure; 211 friend class G1ParCleanupCTTask; 212 213 friend class G1FreeHumongousRegionClosure; 214 // Other related classes. 215 friend class G1MarkSweep; 216 217 // Testing classes. 218 friend class G1CheckCSetFastTableClosure; 219 220 private: 221 // The one and only G1CollectedHeap, so static functions can find it. 222 static G1CollectedHeap* _g1h; 223 224 static size_t _humongous_object_threshold_in_words; 225 226 // The secondary free list which contains regions that have been 227 // freed up during the cleanup process. This will be appended to 228 // the master free list when appropriate. 229 FreeRegionList _secondary_free_list; 230 231 // It keeps track of the old regions. 232 HeapRegionSet _old_set; 233 234 // It keeps track of the humongous regions. 235 HeapRegionSet _humongous_set; 236 237 void eagerly_reclaim_humongous_regions(); 238 239 // The number of regions we could create by expansion. 240 uint _expansion_regions; 241 242 // The block offset table for the G1 heap. 243 G1BlockOffsetSharedArray* _bot_shared; 244 245 // Tears down the region sets / lists so that they are empty and the 246 // regions on the heap do not belong to a region set / list. The 247 // only exception is the humongous set which we leave unaltered. If 248 // free_list_only is true, it will only tear down the master free 249 // list. It is called before a Full GC (free_list_only == false) or 250 // before heap shrinking (free_list_only == true). 251 void tear_down_region_sets(bool free_list_only); 252 253 // Rebuilds the region sets / lists so that they are repopulated to 254 // reflect the contents of the heap. The only exception is the 255 // humongous set which was not torn down in the first place. If 256 // free_list_only is true, it will only rebuild the master free 257 // list. It is called after a Full GC (free_list_only == false) or 258 // after heap shrinking (free_list_only == true). 259 void rebuild_region_sets(bool free_list_only); 260 261 // Callback for region mapping changed events. 262 G1RegionMappingChangedListener _listener; 263 264 // The sequence of all heap regions in the heap. 265 HeapRegionManager _hrm; 266 267 // Class that handles the different kinds of allocations. 268 G1Allocator* _allocator; 269 270 // Statistics for each allocation context 271 AllocationContextStats _allocation_context_stats; 272 273 // PLAB sizing policy for survivors. 274 PLABStats _survivor_plab_stats; 275 276 // PLAB sizing policy for tenured objects. 277 PLABStats _old_plab_stats; 278 279 // It specifies whether we should attempt to expand the heap after a 280 // region allocation failure. If heap expansion fails we set this to 281 // false so that we don't re-attempt the heap expansion (it's likely 282 // that subsequent expansion attempts will also fail if one fails). 283 // Currently, it is only consulted during GC and it's reset at the 284 // start of each GC. 285 bool _expand_heap_after_alloc_failure; 286 287 // It resets the mutator alloc region before new allocations can take place. 288 void init_mutator_alloc_region(); 289 290 // It releases the mutator alloc region. 291 void release_mutator_alloc_region(); 292 293 // It initializes the GC alloc regions at the start of a GC. 294 void init_gc_alloc_regions(EvacuationInfo& evacuation_info); 295 296 // It releases the GC alloc regions at the end of a GC. 297 void release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info); 298 299 // It does any cleanup that needs to be done on the GC alloc regions 300 // before a Full GC. 301 void abandon_gc_alloc_regions(); 302 303 // Helper for monitoring and management support. 304 G1MonitoringSupport* _g1mm; 305 306 // Records whether the region at the given index is (still) a 307 // candidate for eager reclaim. Only valid for humongous start 308 // regions; other regions have unspecified values. Humongous start 309 // regions are initialized at start of collection pause, with 310 // candidates removed from the set as they are found reachable from 311 // roots or the young generation. 312 class HumongousReclaimCandidates : public G1BiasedMappedArray<bool> { 313 protected: 314 bool default_value() const { return false; } 315 public: 316 void clear() { G1BiasedMappedArray<bool>::clear(); } 317 void set_candidate(uint region, bool value) { 318 set_by_index(region, value); 319 } 320 bool is_candidate(uint region) { 321 return get_by_index(region); 322 } 323 }; 324 325 HumongousReclaimCandidates _humongous_reclaim_candidates; 326 // Stores whether during humongous object registration we found candidate regions. 327 // If not, we can skip a few steps. 328 bool _has_humongous_reclaim_candidates; 329 330 volatile unsigned _gc_time_stamp; 331 332 size_t* _surviving_young_words; 333 334 G1HRPrinter _hr_printer; 335 336 void setup_surviving_young_words(); 337 void update_surviving_young_words(size_t* surv_young_words); 338 void cleanup_surviving_young_words(); 339 340 // It decides whether an explicit GC should start a concurrent cycle 341 // instead of doing a STW GC. Currently, a concurrent cycle is 342 // explicitly started if: 343 // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or 344 // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent. 345 // (c) cause == _g1_humongous_allocation 346 bool should_do_concurrent_full_gc(GCCause::Cause cause); 347 348 // Keeps track of how many "old marking cycles" (i.e., Full GCs or 349 // concurrent cycles) we have started. 350 volatile uint _old_marking_cycles_started; 351 352 // Keeps track of how many "old marking cycles" (i.e., Full GCs or 353 // concurrent cycles) we have completed. 354 volatile uint _old_marking_cycles_completed; 355 356 bool _concurrent_cycle_started; 357 bool _heap_summary_sent; 358 359 // This is a non-product method that is helpful for testing. It is 360 // called at the end of a GC and artificially expands the heap by 361 // allocating a number of dead regions. This way we can induce very 362 // frequent marking cycles and stress the cleanup / concurrent 363 // cleanup code more (as all the regions that will be allocated by 364 // this method will be found dead by the marking cycle). 365 void allocate_dummy_regions() PRODUCT_RETURN; 366 367 // Clear RSets after a compaction. It also resets the GC time stamps. 368 void clear_rsets_post_compaction(); 369 370 // If the HR printer is active, dump the state of the regions in the 371 // heap after a compaction. 372 void print_hrm_post_compaction(); 373 374 // Create a memory mapper for auxiliary data structures of the given size and 375 // translation factor. 376 static G1RegionToSpaceMapper* create_aux_memory_mapper(const char* description, 377 size_t size, 378 size_t translation_factor); 379 380 void trace_heap(GCWhen::Type when, GCTracer* tracer); 381 382 double verify(bool guard, const char* msg); 383 void verify_before_gc(); 384 void verify_after_gc(); 385 386 void log_gc_header(); 387 void log_gc_footer(double pause_time_sec); 388 389 // These are macros so that, if the assert fires, we get the correct 390 // line number, file, etc. 391 392 #define heap_locking_asserts_err_msg(_extra_message_) \ 393 err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s", \ 394 (_extra_message_), \ 395 BOOL_TO_STR(Heap_lock->owned_by_self()), \ 396 BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()), \ 397 BOOL_TO_STR(Thread::current()->is_VM_thread())) 398 399 #define assert_heap_locked() \ 400 do { \ 401 assert(Heap_lock->owned_by_self(), \ 402 heap_locking_asserts_err_msg("should be holding the Heap_lock")); \ 403 } while (0) 404 405 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_) \ 406 do { \ 407 assert(Heap_lock->owned_by_self() || \ 408 (SafepointSynchronize::is_at_safepoint() && \ 409 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \ 410 heap_locking_asserts_err_msg("should be holding the Heap_lock or " \ 411 "should be at a safepoint")); \ 412 } while (0) 413 414 #define assert_heap_locked_and_not_at_safepoint() \ 415 do { \ 416 assert(Heap_lock->owned_by_self() && \ 417 !SafepointSynchronize::is_at_safepoint(), \ 418 heap_locking_asserts_err_msg("should be holding the Heap_lock and " \ 419 "should not be at a safepoint")); \ 420 } while (0) 421 422 #define assert_heap_not_locked() \ 423 do { \ 424 assert(!Heap_lock->owned_by_self(), \ 425 heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \ 426 } while (0) 427 428 #define assert_heap_not_locked_and_not_at_safepoint() \ 429 do { \ 430 assert(!Heap_lock->owned_by_self() && \ 431 !SafepointSynchronize::is_at_safepoint(), \ 432 heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \ 433 "should not be at a safepoint")); \ 434 } while (0) 435 436 #define assert_at_safepoint(_should_be_vm_thread_) \ 437 do { \ 438 assert(SafepointSynchronize::is_at_safepoint() && \ 439 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \ 440 heap_locking_asserts_err_msg("should be at a safepoint")); \ 441 } while (0) 442 443 #define assert_not_at_safepoint() \ 444 do { \ 445 assert(!SafepointSynchronize::is_at_safepoint(), \ 446 heap_locking_asserts_err_msg("should not be at a safepoint")); \ 447 } while (0) 448 449 protected: 450 451 // The young region list. 452 YoungList* _young_list; 453 454 // The current policy object for the collector. 455 G1CollectorPolicy* _g1_policy; 456 457 // This is the second level of trying to allocate a new region. If 458 // new_region() didn't find a region on the free_list, this call will 459 // check whether there's anything available on the 460 // secondary_free_list and/or wait for more regions to appear on 461 // that list, if _free_regions_coming is set. 462 HeapRegion* new_region_try_secondary_free_list(bool is_old); 463 464 // Try to allocate a single non-humongous HeapRegion sufficient for 465 // an allocation of the given word_size. If do_expand is true, 466 // attempt to expand the heap if necessary to satisfy the allocation 467 // request. If the region is to be used as an old region or for a 468 // humongous object, set is_old to true. If not, to false. 469 HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand); 470 471 // Initialize a contiguous set of free regions of length num_regions 472 // and starting at index first so that they appear as a single 473 // humongous region. 474 HeapWord* humongous_obj_allocate_initialize_regions(uint first, 475 uint num_regions, 476 size_t word_size, 477 AllocationContext_t context); 478 479 // Attempt to allocate a humongous object of the given size. Return 480 // NULL if unsuccessful. 481 HeapWord* humongous_obj_allocate(size_t word_size, AllocationContext_t context); 482 483 // The following two methods, allocate_new_tlab() and 484 // mem_allocate(), are the two main entry points from the runtime 485 // into the G1's allocation routines. They have the following 486 // assumptions: 487 // 488 // * They should both be called outside safepoints. 489 // 490 // * They should both be called without holding the Heap_lock. 491 // 492 // * All allocation requests for new TLABs should go to 493 // allocate_new_tlab(). 494 // 495 // * All non-TLAB allocation requests should go to mem_allocate(). 496 // 497 // * If either call cannot satisfy the allocation request using the 498 // current allocating region, they will try to get a new one. If 499 // this fails, they will attempt to do an evacuation pause and 500 // retry the allocation. 501 // 502 // * If all allocation attempts fail, even after trying to schedule 503 // an evacuation pause, allocate_new_tlab() will return NULL, 504 // whereas mem_allocate() will attempt a heap expansion and/or 505 // schedule a Full GC. 506 // 507 // * We do not allow humongous-sized TLABs. So, allocate_new_tlab 508 // should never be called with word_size being humongous. All 509 // humongous allocation requests should go to mem_allocate() which 510 // will satisfy them with a special path. 511 512 virtual HeapWord* allocate_new_tlab(size_t word_size); 513 514 virtual HeapWord* mem_allocate(size_t word_size, 515 bool* gc_overhead_limit_was_exceeded); 516 517 // The following three methods take a gc_count_before_ret 518 // parameter which is used to return the GC count if the method 519 // returns NULL. Given that we are required to read the GC count 520 // while holding the Heap_lock, and these paths will take the 521 // Heap_lock at some point, it's easier to get them to read the GC 522 // count while holding the Heap_lock before they return NULL instead 523 // of the caller (namely: mem_allocate()) having to also take the 524 // Heap_lock just to read the GC count. 525 526 // First-level mutator allocation attempt: try to allocate out of 527 // the mutator alloc region without taking the Heap_lock. This 528 // should only be used for non-humongous allocations. 529 inline HeapWord* attempt_allocation(size_t word_size, 530 uint* gc_count_before_ret, 531 uint* gclocker_retry_count_ret); 532 533 // Second-level mutator allocation attempt: take the Heap_lock and 534 // retry the allocation attempt, potentially scheduling a GC 535 // pause. This should only be used for non-humongous allocations. 536 HeapWord* attempt_allocation_slow(size_t word_size, 537 AllocationContext_t context, 538 uint* gc_count_before_ret, 539 uint* gclocker_retry_count_ret); 540 541 // Takes the Heap_lock and attempts a humongous allocation. It can 542 // potentially schedule a GC pause. 543 HeapWord* attempt_allocation_humongous(size_t word_size, 544 uint* gc_count_before_ret, 545 uint* gclocker_retry_count_ret); 546 547 // Allocation attempt that should be called during safepoints (e.g., 548 // at the end of a successful GC). expect_null_mutator_alloc_region 549 // specifies whether the mutator alloc region is expected to be NULL 550 // or not. 551 HeapWord* attempt_allocation_at_safepoint(size_t word_size, 552 AllocationContext_t context, 553 bool expect_null_mutator_alloc_region); 554 555 // It dirties the cards that cover the block so that so that the post 556 // write barrier never queues anything when updating objects on this 557 // block. It is assumed (and in fact we assert) that the block 558 // belongs to a young region. 559 inline void dirty_young_block(HeapWord* start, size_t word_size); 560 561 // Allocate blocks during garbage collection. Will ensure an 562 // allocation region, either by picking one or expanding the 563 // heap, and then allocate a block of the given size. The block 564 // may not be a humongous - it must fit into a single heap region. 565 inline HeapWord* par_allocate_during_gc(InCSetState dest, 566 size_t word_size, 567 AllocationContext_t context); 568 // Ensure that no further allocations can happen in "r", bearing in mind 569 // that parallel threads might be attempting allocations. 570 void par_allocate_remaining_space(HeapRegion* r); 571 572 // Allocation attempt during GC for a survivor object / PLAB. 573 inline HeapWord* survivor_attempt_allocation(size_t word_size, 574 AllocationContext_t context); 575 576 // Allocation attempt during GC for an old object / PLAB. 577 inline HeapWord* old_attempt_allocation(size_t word_size, 578 AllocationContext_t context); 579 580 // These methods are the "callbacks" from the G1AllocRegion class. 581 582 // For mutator alloc regions. 583 HeapRegion* new_mutator_alloc_region(size_t word_size, bool force); 584 void retire_mutator_alloc_region(HeapRegion* alloc_region, 585 size_t allocated_bytes); 586 587 // For GC alloc regions. 588 HeapRegion* new_gc_alloc_region(size_t word_size, uint count, 589 InCSetState dest); 590 void retire_gc_alloc_region(HeapRegion* alloc_region, 591 size_t allocated_bytes, InCSetState dest); 592 593 // - if explicit_gc is true, the GC is for a System.gc() or a heap 594 // inspection request and should collect the entire heap 595 // - if clear_all_soft_refs is true, all soft references should be 596 // cleared during the GC 597 // - if explicit_gc is false, word_size describes the allocation that 598 // the GC should attempt (at least) to satisfy 599 // - it returns false if it is unable to do the collection due to the 600 // GC locker being active, true otherwise 601 bool do_collection(bool explicit_gc, 602 bool clear_all_soft_refs, 603 size_t word_size); 604 605 // Callback from VM_G1CollectFull operation. 606 // Perform a full collection. 607 virtual void do_full_collection(bool clear_all_soft_refs); 608 609 // Resize the heap if necessary after a full collection. If this is 610 // after a collect-for allocation, "word_size" is the allocation size, 611 // and will be considered part of the used portion of the heap. 612 void resize_if_necessary_after_full_collection(size_t word_size); 613 614 // Callback from VM_G1CollectForAllocation operation. 615 // This function does everything necessary/possible to satisfy a 616 // failed allocation request (including collection, expansion, etc.) 617 HeapWord* satisfy_failed_allocation(size_t word_size, 618 AllocationContext_t context, 619 bool* succeeded); 620 621 // Attempting to expand the heap sufficiently 622 // to support an allocation of the given "word_size". If 623 // successful, perform the allocation and return the address of the 624 // allocated block, or else "NULL". 625 HeapWord* expand_and_allocate(size_t word_size, AllocationContext_t context); 626 627 // Process any reference objects discovered during 628 // an incremental evacuation pause. 629 void process_discovered_references(uint no_of_gc_workers); 630 631 // Enqueue any remaining discovered references 632 // after processing. 633 void enqueue_discovered_references(uint no_of_gc_workers); 634 635 public: 636 637 G1Allocator* allocator() { 638 return _allocator; 639 } 640 641 G1MonitoringSupport* g1mm() { 642 assert(_g1mm != NULL, "should have been initialized"); 643 return _g1mm; 644 } 645 646 // Expand the garbage-first heap by at least the given size (in bytes!). 647 // Returns true if the heap was expanded by the requested amount; 648 // false otherwise. 649 // (Rounds up to a HeapRegion boundary.) 650 bool expand(size_t expand_bytes); 651 652 // Returns the PLAB statistics for a given destination. 653 inline PLABStats* alloc_buffer_stats(InCSetState dest); 654 655 // Determines PLAB size for a given destination. 656 inline size_t desired_plab_sz(InCSetState dest); 657 658 inline AllocationContextStats& allocation_context_stats(); 659 660 // Do anything common to GC's. 661 virtual void gc_prologue(bool full); 662 virtual void gc_epilogue(bool full); 663 664 // Modify the reclaim candidate set and test for presence. 665 // These are only valid for starts_humongous regions. 666 inline void set_humongous_reclaim_candidate(uint region, bool value); 667 inline bool is_humongous_reclaim_candidate(uint region); 668 669 // Remove from the reclaim candidate set. Also remove from the 670 // collection set so that later encounters avoid the slow path. 671 inline void set_humongous_is_live(oop obj); 672 673 // Register the given region to be part of the collection set. 674 inline void register_humongous_region_with_in_cset_fast_test(uint index); 675 // Register regions with humongous objects (actually on the start region) in 676 // the in_cset_fast_test table. 677 void register_humongous_regions_with_in_cset_fast_test(); 678 // We register a region with the fast "in collection set" test. We 679 // simply set to true the array slot corresponding to this region. 680 void register_young_region_with_in_cset_fast_test(HeapRegion* r) { 681 _in_cset_fast_test.set_in_young(r->hrm_index()); 682 } 683 void register_old_region_with_in_cset_fast_test(HeapRegion* r) { 684 _in_cset_fast_test.set_in_old(r->hrm_index()); 685 } 686 687 // This is a fast test on whether a reference points into the 688 // collection set or not. Assume that the reference 689 // points into the heap. 690 inline bool in_cset_fast_test(oop obj); 691 692 void clear_cset_fast_test() { 693 _in_cset_fast_test.clear(); 694 } 695 696 // This is called at the start of either a concurrent cycle or a Full 697 // GC to update the number of old marking cycles started. 698 void increment_old_marking_cycles_started(); 699 700 // This is called at the end of either a concurrent cycle or a Full 701 // GC to update the number of old marking cycles completed. Those two 702 // can happen in a nested fashion, i.e., we start a concurrent 703 // cycle, a Full GC happens half-way through it which ends first, 704 // and then the cycle notices that a Full GC happened and ends 705 // too. The concurrent parameter is a boolean to help us do a bit 706 // tighter consistency checking in the method. If concurrent is 707 // false, the caller is the inner caller in the nesting (i.e., the 708 // Full GC). If concurrent is true, the caller is the outer caller 709 // in this nesting (i.e., the concurrent cycle). Further nesting is 710 // not currently supported. The end of this call also notifies 711 // the FullGCCount_lock in case a Java thread is waiting for a full 712 // GC to happen (e.g., it called System.gc() with 713 // +ExplicitGCInvokesConcurrent). 714 void increment_old_marking_cycles_completed(bool concurrent); 715 716 uint old_marking_cycles_completed() { 717 return _old_marking_cycles_completed; 718 } 719 720 void register_concurrent_cycle_start(const Ticks& start_time); 721 void register_concurrent_cycle_end(); 722 void trace_heap_after_concurrent_cycle(); 723 724 G1YCType yc_type(); 725 726 G1HRPrinter* hr_printer() { return &_hr_printer; } 727 728 // Frees a non-humongous region by initializing its contents and 729 // adding it to the free list that's passed as a parameter (this is 730 // usually a local list which will be appended to the master free 731 // list later). The used bytes of freed regions are accumulated in 732 // pre_used. If par is true, the region's RSet will not be freed 733 // up. The assumption is that this will be done later. 734 // The locked parameter indicates if the caller has already taken 735 // care of proper synchronization. This may allow some optimizations. 736 void free_region(HeapRegion* hr, 737 FreeRegionList* free_list, 738 bool par, 739 bool locked = false); 740 741 // Frees a humongous region by collapsing it into individual regions 742 // and calling free_region() for each of them. The freed regions 743 // will be added to the free list that's passed as a parameter (this 744 // is usually a local list which will be appended to the master free 745 // list later). The used bytes of freed regions are accumulated in 746 // pre_used. If par is true, the region's RSet will not be freed 747 // up. The assumption is that this will be done later. 748 void free_humongous_region(HeapRegion* hr, 749 FreeRegionList* free_list, 750 bool par); 751 protected: 752 753 // Shrink the garbage-first heap by at most the given size (in bytes!). 754 // (Rounds down to a HeapRegion boundary.) 755 virtual void shrink(size_t expand_bytes); 756 void shrink_helper(size_t expand_bytes); 757 758 #if TASKQUEUE_STATS 759 static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty); 760 void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const; 761 void reset_taskqueue_stats(); 762 #endif // TASKQUEUE_STATS 763 764 // Schedule the VM operation that will do an evacuation pause to 765 // satisfy an allocation request of word_size. *succeeded will 766 // return whether the VM operation was successful (it did do an 767 // evacuation pause) or not (another thread beat us to it or the GC 768 // locker was active). Given that we should not be holding the 769 // Heap_lock when we enter this method, we will pass the 770 // gc_count_before (i.e., total_collections()) as a parameter since 771 // it has to be read while holding the Heap_lock. Currently, both 772 // methods that call do_collection_pause() release the Heap_lock 773 // before the call, so it's easy to read gc_count_before just before. 774 HeapWord* do_collection_pause(size_t word_size, 775 uint gc_count_before, 776 bool* succeeded, 777 GCCause::Cause gc_cause); 778 779 // The guts of the incremental collection pause, executed by the vm 780 // thread. It returns false if it is unable to do the collection due 781 // to the GC locker being active, true otherwise 782 bool do_collection_pause_at_safepoint(double target_pause_time_ms); 783 784 // Actually do the work of evacuating the collection set. 785 void evacuate_collection_set(EvacuationInfo& evacuation_info); 786 787 // The g1 remembered set of the heap. 788 G1RemSet* _g1_rem_set; 789 790 // A set of cards that cover the objects for which the Rsets should be updated 791 // concurrently after the collection. 792 DirtyCardQueueSet _dirty_card_queue_set; 793 794 // The closure used to refine a single card. 795 RefineCardTableEntryClosure* _refine_cte_cl; 796 797 // A function to check the consistency of dirty card logs. 798 void check_ct_logs_at_safepoint(); 799 800 // A DirtyCardQueueSet that is used to hold cards that contain 801 // references into the current collection set. This is used to 802 // update the remembered sets of the regions in the collection 803 // set in the event of an evacuation failure. 804 DirtyCardQueueSet _into_cset_dirty_card_queue_set; 805 806 // After a collection pause, make the regions in the CS into free 807 // regions. 808 void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info); 809 810 // Abandon the current collection set without recording policy 811 // statistics or updating free lists. 812 void abandon_collection_set(HeapRegion* cs_head); 813 814 // The concurrent marker (and the thread it runs in.) 815 ConcurrentMark* _cm; 816 ConcurrentMarkThread* _cmThread; 817 bool _mark_in_progress; 818 819 // The concurrent refiner. 820 ConcurrentG1Refine* _cg1r; 821 822 // The parallel task queues 823 RefToScanQueueSet *_task_queues; 824 825 // True iff a evacuation has failed in the current collection. 826 bool _evacuation_failed; 827 828 EvacuationFailedInfo* _evacuation_failed_info_array; 829 830 // Failed evacuations cause some logical from-space objects to have 831 // forwarding pointers to themselves. Reset them. 832 void remove_self_forwarding_pointers(); 833 834 // Together, these store an object with a preserved mark, and its mark value. 835 Stack<oop, mtGC> _objs_with_preserved_marks; 836 Stack<markOop, mtGC> _preserved_marks_of_objs; 837 838 // Preserve the mark of "obj", if necessary, in preparation for its mark 839 // word being overwritten with a self-forwarding-pointer. 840 void preserve_mark_if_necessary(oop obj, markOop m); 841 842 // The stack of evac-failure objects left to be scanned. 843 GrowableArray<oop>* _evac_failure_scan_stack; 844 // The closure to apply to evac-failure objects. 845 846 OopsInHeapRegionClosure* _evac_failure_closure; 847 // Set the field above. 848 void 849 set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) { 850 _evac_failure_closure = evac_failure_closure; 851 } 852 853 // Push "obj" on the scan stack. 854 void push_on_evac_failure_scan_stack(oop obj); 855 // Process scan stack entries until the stack is empty. 856 void drain_evac_failure_scan_stack(); 857 // True iff an invocation of "drain_scan_stack" is in progress; to 858 // prevent unnecessary recursion. 859 bool _drain_in_progress; 860 861 // Do any necessary initialization for evacuation-failure handling. 862 // "cl" is the closure that will be used to process evac-failure 863 // objects. 864 void init_for_evac_failure(OopsInHeapRegionClosure* cl); 865 // Do any necessary cleanup for evacuation-failure handling data 866 // structures. 867 void finalize_for_evac_failure(); 868 869 // An attempt to evacuate "obj" has failed; take necessary steps. 870 oop handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state, oop obj); 871 void handle_evacuation_failure_common(oop obj, markOop m); 872 873 #ifndef PRODUCT 874 // Support for forcing evacuation failures. Analogous to 875 // PromotionFailureALot for the other collectors. 876 877 // Records whether G1EvacuationFailureALot should be in effect 878 // for the current GC 879 bool _evacuation_failure_alot_for_current_gc; 880 881 // Used to record the GC number for interval checking when 882 // determining whether G1EvaucationFailureALot is in effect 883 // for the current GC. 884 size_t _evacuation_failure_alot_gc_number; 885 886 // Count of the number of evacuations between failures. 887 volatile size_t _evacuation_failure_alot_count; 888 889 // Set whether G1EvacuationFailureALot should be in effect 890 // for the current GC (based upon the type of GC and which 891 // command line flags are set); 892 inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young, 893 bool during_initial_mark, 894 bool during_marking); 895 896 inline void set_evacuation_failure_alot_for_current_gc(); 897 898 // Return true if it's time to cause an evacuation failure. 899 inline bool evacuation_should_fail(); 900 901 // Reset the G1EvacuationFailureALot counters. Should be called at 902 // the end of an evacuation pause in which an evacuation failure occurred. 903 inline void reset_evacuation_should_fail(); 904 #endif // !PRODUCT 905 906 // ("Weak") Reference processing support. 907 // 908 // G1 has 2 instances of the reference processor class. One 909 // (_ref_processor_cm) handles reference object discovery 910 // and subsequent processing during concurrent marking cycles. 911 // 912 // The other (_ref_processor_stw) handles reference object 913 // discovery and processing during full GCs and incremental 914 // evacuation pauses. 915 // 916 // During an incremental pause, reference discovery will be 917 // temporarily disabled for _ref_processor_cm and will be 918 // enabled for _ref_processor_stw. At the end of the evacuation 919 // pause references discovered by _ref_processor_stw will be 920 // processed and discovery will be disabled. The previous 921 // setting for reference object discovery for _ref_processor_cm 922 // will be re-instated. 923 // 924 // At the start of marking: 925 // * Discovery by the CM ref processor is verified to be inactive 926 // and it's discovered lists are empty. 927 // * Discovery by the CM ref processor is then enabled. 928 // 929 // At the end of marking: 930 // * Any references on the CM ref processor's discovered 931 // lists are processed (possibly MT). 932 // 933 // At the start of full GC we: 934 // * Disable discovery by the CM ref processor and 935 // empty CM ref processor's discovered lists 936 // (without processing any entries). 937 // * Verify that the STW ref processor is inactive and it's 938 // discovered lists are empty. 939 // * Temporarily set STW ref processor discovery as single threaded. 940 // * Temporarily clear the STW ref processor's _is_alive_non_header 941 // field. 942 // * Finally enable discovery by the STW ref processor. 943 // 944 // The STW ref processor is used to record any discovered 945 // references during the full GC. 946 // 947 // At the end of a full GC we: 948 // * Enqueue any reference objects discovered by the STW ref processor 949 // that have non-live referents. This has the side-effect of 950 // making the STW ref processor inactive by disabling discovery. 951 // * Verify that the CM ref processor is still inactive 952 // and no references have been placed on it's discovered 953 // lists (also checked as a precondition during initial marking). 954 955 // The (stw) reference processor... 956 ReferenceProcessor* _ref_processor_stw; 957 958 STWGCTimer* _gc_timer_stw; 959 ConcurrentGCTimer* _gc_timer_cm; 960 961 G1OldTracer* _gc_tracer_cm; 962 G1NewTracer* _gc_tracer_stw; 963 964 // During reference object discovery, the _is_alive_non_header 965 // closure (if non-null) is applied to the referent object to 966 // determine whether the referent is live. If so then the 967 // reference object does not need to be 'discovered' and can 968 // be treated as a regular oop. This has the benefit of reducing 969 // the number of 'discovered' reference objects that need to 970 // be processed. 971 // 972 // Instance of the is_alive closure for embedding into the 973 // STW reference processor as the _is_alive_non_header field. 974 // Supplying a value for the _is_alive_non_header field is 975 // optional but doing so prevents unnecessary additions to 976 // the discovered lists during reference discovery. 977 G1STWIsAliveClosure _is_alive_closure_stw; 978 979 // The (concurrent marking) reference processor... 980 ReferenceProcessor* _ref_processor_cm; 981 982 // Instance of the concurrent mark is_alive closure for embedding 983 // into the Concurrent Marking reference processor as the 984 // _is_alive_non_header field. Supplying a value for the 985 // _is_alive_non_header field is optional but doing so prevents 986 // unnecessary additions to the discovered lists during reference 987 // discovery. 988 G1CMIsAliveClosure _is_alive_closure_cm; 989 990 // Cache used by G1CollectedHeap::start_cset_region_for_worker(). 991 HeapRegion** _worker_cset_start_region; 992 993 // Time stamp to validate the regions recorded in the cache 994 // used by G1CollectedHeap::start_cset_region_for_worker(). 995 // The heap region entry for a given worker is valid iff 996 // the associated time stamp value matches the current value 997 // of G1CollectedHeap::_gc_time_stamp. 998 uint* _worker_cset_start_region_time_stamp; 999 1000 volatile bool _free_regions_coming; 1001 1002 public: 1003 1004 void set_refine_cte_cl_concurrency(bool concurrent); 1005 1006 RefToScanQueue *task_queue(int i) const; 1007 1008 // A set of cards where updates happened during the GC 1009 DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; } 1010 1011 // A DirtyCardQueueSet that is used to hold cards that contain 1012 // references into the current collection set. This is used to 1013 // update the remembered sets of the regions in the collection 1014 // set in the event of an evacuation failure. 1015 DirtyCardQueueSet& into_cset_dirty_card_queue_set() 1016 { return _into_cset_dirty_card_queue_set; } 1017 1018 // Create a G1CollectedHeap with the specified policy. 1019 // Must call the initialize method afterwards. 1020 // May not return if something goes wrong. 1021 G1CollectedHeap(G1CollectorPolicy* policy); 1022 1023 // Initialize the G1CollectedHeap to have the initial and 1024 // maximum sizes and remembered and barrier sets 1025 // specified by the policy object. 1026 jint initialize(); 1027 1028 virtual void stop(); 1029 1030 // Return the (conservative) maximum heap alignment for any G1 heap 1031 static size_t conservative_max_heap_alignment(); 1032 1033 // Initialize weak reference processing. 1034 virtual void ref_processing_init(); 1035 1036 // Explicitly import set_par_threads into this scope 1037 using SharedHeap::set_par_threads; 1038 // Set _n_par_threads according to a policy TBD. 1039 void set_par_threads(); 1040 1041 virtual CollectedHeap::Name kind() const { 1042 return CollectedHeap::G1CollectedHeap; 1043 } 1044 1045 // The current policy object for the collector. 1046 G1CollectorPolicy* g1_policy() const { return _g1_policy; } 1047 1048 virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); } 1049 1050 // Adaptive size policy. No such thing for g1. 1051 virtual AdaptiveSizePolicy* size_policy() { return NULL; } 1052 1053 // The rem set and barrier set. 1054 G1RemSet* g1_rem_set() const { return _g1_rem_set; } 1055 1056 unsigned get_gc_time_stamp() { 1057 return _gc_time_stamp; 1058 } 1059 1060 inline void reset_gc_time_stamp(); 1061 1062 void check_gc_time_stamps() PRODUCT_RETURN; 1063 1064 inline void increment_gc_time_stamp(); 1065 1066 // Reset the given region's GC timestamp. If it's starts humongous, 1067 // also reset the GC timestamp of its corresponding 1068 // continues humongous regions too. 1069 void reset_gc_time_stamps(HeapRegion* hr); 1070 1071 void iterate_dirty_card_closure(CardTableEntryClosure* cl, 1072 DirtyCardQueue* into_cset_dcq, 1073 bool concurrent, uint worker_i); 1074 1075 // The shared block offset table array. 1076 G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; } 1077 1078 // Reference Processing accessors 1079 1080 // The STW reference processor.... 1081 ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; } 1082 1083 // The Concurrent Marking reference processor... 1084 ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; } 1085 1086 ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; } 1087 G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; } 1088 1089 virtual size_t capacity() const; 1090 virtual size_t used() const; 1091 // This should be called when we're not holding the heap lock. The 1092 // result might be a bit inaccurate. 1093 size_t used_unlocked() const; 1094 size_t recalculate_used() const; 1095 1096 // These virtual functions do the actual allocation. 1097 // Some heaps may offer a contiguous region for shared non-blocking 1098 // allocation, via inlined code (by exporting the address of the top and 1099 // end fields defining the extent of the contiguous allocation region.) 1100 // But G1CollectedHeap doesn't yet support this. 1101 1102 virtual bool is_maximal_no_gc() const { 1103 return _hrm.available() == 0; 1104 } 1105 1106 // The current number of regions in the heap. 1107 uint num_regions() const { return _hrm.length(); } 1108 1109 // The max number of regions in the heap. 1110 uint max_regions() const { return _hrm.max_length(); } 1111 1112 // The number of regions that are completely free. 1113 uint num_free_regions() const { return _hrm.num_free_regions(); } 1114 1115 MemoryUsage get_auxiliary_data_memory_usage() const { 1116 return _hrm.get_auxiliary_data_memory_usage(); 1117 } 1118 1119 // The number of regions that are not completely free. 1120 uint num_used_regions() const { return num_regions() - num_free_regions(); } 1121 1122 void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN; 1123 void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN; 1124 void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN; 1125 void verify_dirty_young_regions() PRODUCT_RETURN; 1126 1127 #ifndef PRODUCT 1128 // Make sure that the given bitmap has no marked objects in the 1129 // range [from,limit). If it does, print an error message and return 1130 // false. Otherwise, just return true. bitmap_name should be "prev" 1131 // or "next". 1132 bool verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap, 1133 HeapWord* from, HeapWord* limit); 1134 1135 // Verify that the prev / next bitmap range [tams,end) for the given 1136 // region has no marks. Return true if all is well, false if errors 1137 // are detected. 1138 bool verify_bitmaps(const char* caller, HeapRegion* hr); 1139 #endif // PRODUCT 1140 1141 // If G1VerifyBitmaps is set, verify that the marking bitmaps for 1142 // the given region do not have any spurious marks. If errors are 1143 // detected, print appropriate error messages and crash. 1144 void check_bitmaps(const char* caller, HeapRegion* hr) PRODUCT_RETURN; 1145 1146 // If G1VerifyBitmaps is set, verify that the marking bitmaps do not 1147 // have any spurious marks. If errors are detected, print 1148 // appropriate error messages and crash. 1149 void check_bitmaps(const char* caller) PRODUCT_RETURN; 1150 1151 // Do sanity check on the contents of the in-cset fast test table. 1152 bool check_cset_fast_test() PRODUCT_RETURN_( return true; ); 1153 1154 void verify_region_sets(); 1155 1156 // verify_region_sets_optional() is planted in the code for 1157 // list verification in debug builds. 1158 void verify_region_sets_optional() { DEBUG_ONLY(verify_region_sets();) } 1159 1160 #ifdef ASSERT 1161 bool is_on_master_free_list(HeapRegion* hr) { 1162 return _hrm.is_free(hr); 1163 } 1164 #endif // ASSERT 1165 1166 // Wrapper for the region list operations that can be called from 1167 // methods outside this class. 1168 1169 void secondary_free_list_add(FreeRegionList* list) { 1170 _secondary_free_list.add_ordered(list); 1171 } 1172 1173 void append_secondary_free_list() { 1174 _hrm.insert_list_into_free_list(&_secondary_free_list); 1175 } 1176 1177 void append_secondary_free_list_if_not_empty_with_lock() { 1178 // If the secondary free list looks empty there's no reason to 1179 // take the lock and then try to append it. 1180 if (!_secondary_free_list.is_empty()) { 1181 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 1182 append_secondary_free_list(); 1183 } 1184 } 1185 1186 inline void old_set_remove(HeapRegion* hr); 1187 1188 size_t non_young_capacity_bytes() { 1189 return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes(); 1190 } 1191 1192 void set_free_regions_coming(); 1193 void reset_free_regions_coming(); 1194 bool free_regions_coming() { return _free_regions_coming; } 1195 void wait_while_free_regions_coming(); 1196 1197 // Determine whether the given region is one that we are using as an 1198 // old GC alloc region. 1199 bool is_old_gc_alloc_region(HeapRegion* hr) { 1200 return _allocator->is_retained_old_region(hr); 1201 } 1202 1203 // Perform a collection of the heap; intended for use in implementing 1204 // "System.gc". This probably implies as full a collection as the 1205 // "CollectedHeap" supports. 1206 virtual void collect(GCCause::Cause cause); 1207 1208 // The same as above but assume that the caller holds the Heap_lock. 1209 void collect_locked(GCCause::Cause cause); 1210 1211 virtual bool copy_allocation_context_stats(const jint* contexts, 1212 jlong* totals, 1213 jbyte* accuracy, 1214 jint len); 1215 1216 // True iff an evacuation has failed in the most-recent collection. 1217 bool evacuation_failed() { return _evacuation_failed; } 1218 1219 void remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, const HeapRegionSetCount& humongous_regions_removed); 1220 void prepend_to_freelist(FreeRegionList* list); 1221 void decrement_summary_bytes(size_t bytes); 1222 1223 // Returns "TRUE" iff "p" points into the committed areas of the heap. 1224 virtual bool is_in(const void* p) const; 1225 #ifdef ASSERT 1226 // Returns whether p is in one of the available areas of the heap. Slow but 1227 // extensive version. 1228 bool is_in_exact(const void* p) const; 1229 #endif 1230 1231 // Return "TRUE" iff the given object address is within the collection 1232 // set. Slow implementation. 1233 inline bool obj_in_cs(oop obj); 1234 1235 inline bool is_in_cset(oop obj); 1236 1237 inline bool is_in_cset_or_humongous(const oop obj); 1238 1239 private: 1240 // This array is used for a quick test on whether a reference points into 1241 // the collection set or not. Each of the array's elements denotes whether the 1242 // corresponding region is in the collection set or not. 1243 G1InCSetStateFastTestBiasedMappedArray _in_cset_fast_test; 1244 1245 public: 1246 1247 inline InCSetState in_cset_state(const oop obj); 1248 1249 // Return "TRUE" iff the given object address is in the reserved 1250 // region of g1. 1251 bool is_in_g1_reserved(const void* p) const { 1252 return _hrm.reserved().contains(p); 1253 } 1254 1255 // Returns a MemRegion that corresponds to the space that has been 1256 // reserved for the heap 1257 MemRegion g1_reserved() const { 1258 return _hrm.reserved(); 1259 } 1260 1261 virtual bool is_in_closed_subset(const void* p) const; 1262 1263 G1SATBCardTableLoggingModRefBS* g1_barrier_set() { 1264 return (G1SATBCardTableLoggingModRefBS*) barrier_set(); 1265 } 1266 1267 // This resets the card table to all zeros. It is used after 1268 // a collection pause which used the card table to claim cards. 1269 void cleanUpCardTable(); 1270 1271 // Iteration functions. 1272 1273 // Iterate over all the ref-containing fields of all objects, calling 1274 // "cl.do_oop" on each. 1275 virtual void oop_iterate(ExtendedOopClosure* cl); 1276 1277 // Iterate over all objects, calling "cl.do_object" on each. 1278 virtual void object_iterate(ObjectClosure* cl); 1279 1280 virtual void safe_object_iterate(ObjectClosure* cl) { 1281 object_iterate(cl); 1282 } 1283 1284 // Iterate over all spaces in use in the heap, in ascending address order. 1285 virtual void space_iterate(SpaceClosure* cl); 1286 1287 // Iterate over heap regions, in address order, terminating the 1288 // iteration early if the "doHeapRegion" method returns "true". 1289 void heap_region_iterate(HeapRegionClosure* blk) const; 1290 1291 // Return the region with the given index. It assumes the index is valid. 1292 inline HeapRegion* region_at(uint index) const; 1293 1294 // Calculate the region index of the given address. Given address must be 1295 // within the heap. 1296 inline uint addr_to_region(HeapWord* addr) const; 1297 1298 inline HeapWord* bottom_addr_for_region(uint index) const; 1299 1300 // Divide the heap region sequence into "chunks" of some size (the number 1301 // of regions divided by the number of parallel threads times some 1302 // overpartition factor, currently 4). Assumes that this will be called 1303 // in parallel by ParallelGCThreads worker threads with discinct worker 1304 // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel 1305 // calls will use the same "claim_value", and that that claim value is 1306 // different from the claim_value of any heap region before the start of 1307 // the iteration. Applies "blk->doHeapRegion" to each of the regions, by 1308 // attempting to claim the first region in each chunk, and, if 1309 // successful, applying the closure to each region in the chunk (and 1310 // setting the claim value of the second and subsequent regions of the 1311 // chunk.) For now requires that "doHeapRegion" always returns "false", 1312 // i.e., that a closure never attempt to abort a traversal. 1313 void heap_region_par_iterate_chunked(HeapRegionClosure* cl, 1314 uint worker_id, 1315 uint num_workers, 1316 jint claim_value) const; 1317 1318 // It resets all the region claim values to the default. 1319 void reset_heap_region_claim_values(); 1320 1321 // Resets the claim values of regions in the current 1322 // collection set to the default. 1323 void reset_cset_heap_region_claim_values(); 1324 1325 #ifdef ASSERT 1326 bool check_heap_region_claim_values(jint claim_value); 1327 1328 // Same as the routine above but only checks regions in the 1329 // current collection set. 1330 bool check_cset_heap_region_claim_values(jint claim_value); 1331 #endif // ASSERT 1332 1333 // Clear the cached cset start regions and (more importantly) 1334 // the time stamps. Called when we reset the GC time stamp. 1335 void clear_cset_start_regions(); 1336 1337 // Given the id of a worker, obtain or calculate a suitable 1338 // starting region for iterating over the current collection set. 1339 HeapRegion* start_cset_region_for_worker(uint worker_i); 1340 1341 // Iterate over the regions (if any) in the current collection set. 1342 void collection_set_iterate(HeapRegionClosure* blk); 1343 1344 // As above but starting from region r 1345 void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk); 1346 1347 HeapRegion* next_compaction_region(const HeapRegion* from) const; 1348 1349 // A CollectedHeap will contain some number of spaces. This finds the 1350 // space containing a given address, or else returns NULL. 1351 virtual Space* space_containing(const void* addr) const; 1352 1353 // Returns the HeapRegion that contains addr. addr must not be NULL. 1354 template <class T> 1355 inline HeapRegion* heap_region_containing_raw(const T addr) const; 1356 1357 // Returns the HeapRegion that contains addr. addr must not be NULL. 1358 // If addr is within a humongous continues region, it returns its humongous start region. 1359 template <class T> 1360 inline HeapRegion* heap_region_containing(const T addr) const; 1361 1362 // A CollectedHeap is divided into a dense sequence of "blocks"; that is, 1363 // each address in the (reserved) heap is a member of exactly 1364 // one block. The defining characteristic of a block is that it is 1365 // possible to find its size, and thus to progress forward to the next 1366 // block. (Blocks may be of different sizes.) Thus, blocks may 1367 // represent Java objects, or they might be free blocks in a 1368 // free-list-based heap (or subheap), as long as the two kinds are 1369 // distinguishable and the size of each is determinable. 1370 1371 // Returns the address of the start of the "block" that contains the 1372 // address "addr". We say "blocks" instead of "object" since some heaps 1373 // may not pack objects densely; a chunk may either be an object or a 1374 // non-object. 1375 virtual HeapWord* block_start(const void* addr) const; 1376 1377 // Requires "addr" to be the start of a chunk, and returns its size. 1378 // "addr + size" is required to be the start of a new chunk, or the end 1379 // of the active area of the heap. 1380 virtual size_t block_size(const HeapWord* addr) const; 1381 1382 // Requires "addr" to be the start of a block, and returns "TRUE" iff 1383 // the block is an object. 1384 virtual bool block_is_obj(const HeapWord* addr) const; 1385 1386 // Does this heap support heap inspection? (+PrintClassHistogram) 1387 virtual bool supports_heap_inspection() const { return true; } 1388 1389 // Section on thread-local allocation buffers (TLABs) 1390 // See CollectedHeap for semantics. 1391 1392 bool supports_tlab_allocation() const; 1393 size_t tlab_capacity(Thread* ignored) const; 1394 size_t tlab_used(Thread* ignored) const; 1395 size_t max_tlab_size() const; 1396 size_t unsafe_max_tlab_alloc(Thread* ignored) const; 1397 1398 // Can a compiler initialize a new object without store barriers? 1399 // This permission only extends from the creation of a new object 1400 // via a TLAB up to the first subsequent safepoint. If such permission 1401 // is granted for this heap type, the compiler promises to call 1402 // defer_store_barrier() below on any slow path allocation of 1403 // a new object for which such initializing store barriers will 1404 // have been elided. G1, like CMS, allows this, but should be 1405 // ready to provide a compensating write barrier as necessary 1406 // if that storage came out of a non-young region. The efficiency 1407 // of this implementation depends crucially on being able to 1408 // answer very efficiently in constant time whether a piece of 1409 // storage in the heap comes from a young region or not. 1410 // See ReduceInitialCardMarks. 1411 virtual bool can_elide_tlab_store_barriers() const { 1412 return true; 1413 } 1414 1415 virtual bool card_mark_must_follow_store() const { 1416 return true; 1417 } 1418 1419 inline bool is_in_young(const oop obj); 1420 1421 #ifdef ASSERT 1422 virtual bool is_in_partial_collection(const void* p); 1423 #endif 1424 1425 virtual bool is_scavengable(const void* addr); 1426 1427 // We don't need barriers for initializing stores to objects 1428 // in the young gen: for the SATB pre-barrier, there is no 1429 // pre-value that needs to be remembered; for the remembered-set 1430 // update logging post-barrier, we don't maintain remembered set 1431 // information for young gen objects. 1432 virtual inline bool can_elide_initializing_store_barrier(oop new_obj); 1433 1434 // Returns "true" iff the given word_size is "very large". 1435 static bool isHumongous(size_t word_size) { 1436 // Note this has to be strictly greater-than as the TLABs 1437 // are capped at the humongous thresold and we want to 1438 // ensure that we don't try to allocate a TLAB as 1439 // humongous and that we don't allocate a humongous 1440 // object in a TLAB. 1441 return word_size > _humongous_object_threshold_in_words; 1442 } 1443 1444 // Update mod union table with the set of dirty cards. 1445 void updateModUnion(); 1446 1447 // Set the mod union bits corresponding to the given memRegion. Note 1448 // that this is always a safe operation, since it doesn't clear any 1449 // bits. 1450 void markModUnionRange(MemRegion mr); 1451 1452 // Records the fact that a marking phase is no longer in progress. 1453 void set_marking_complete() { 1454 _mark_in_progress = false; 1455 } 1456 void set_marking_started() { 1457 _mark_in_progress = true; 1458 } 1459 bool mark_in_progress() { 1460 return _mark_in_progress; 1461 } 1462 1463 // Print the maximum heap capacity. 1464 virtual size_t max_capacity() const; 1465 1466 virtual jlong millis_since_last_gc(); 1467 1468 1469 // Convenience function to be used in situations where the heap type can be 1470 // asserted to be this type. 1471 static G1CollectedHeap* heap(); 1472 1473 void set_region_short_lived_locked(HeapRegion* hr); 1474 // add appropriate methods for any other surv rate groups 1475 1476 YoungList* young_list() const { return _young_list; } 1477 1478 // debugging 1479 bool check_young_list_well_formed() { 1480 return _young_list->check_list_well_formed(); 1481 } 1482 1483 bool check_young_list_empty(bool check_heap, 1484 bool check_sample = true); 1485 1486 // *** Stuff related to concurrent marking. It's not clear to me that so 1487 // many of these need to be public. 1488 1489 // The functions below are helper functions that a subclass of 1490 // "CollectedHeap" can use in the implementation of its virtual 1491 // functions. 1492 // This performs a concurrent marking of the live objects in a 1493 // bitmap off to the side. 1494 void doConcurrentMark(); 1495 1496 bool isMarkedPrev(oop obj) const; 1497 bool isMarkedNext(oop obj) const; 1498 1499 // Determine if an object is dead, given the object and also 1500 // the region to which the object belongs. An object is dead 1501 // iff a) it was not allocated since the last mark and b) it 1502 // is not marked. 1503 bool is_obj_dead(const oop obj, const HeapRegion* hr) const { 1504 return 1505 !hr->obj_allocated_since_prev_marking(obj) && 1506 !isMarkedPrev(obj); 1507 } 1508 1509 // This function returns true when an object has been 1510 // around since the previous marking and hasn't yet 1511 // been marked during this marking. 1512 bool is_obj_ill(const oop obj, const HeapRegion* hr) const { 1513 return 1514 !hr->obj_allocated_since_next_marking(obj) && 1515 !isMarkedNext(obj); 1516 } 1517 1518 // Determine if an object is dead, given only the object itself. 1519 // This will find the region to which the object belongs and 1520 // then call the region version of the same function. 1521 1522 // Added if it is NULL it isn't dead. 1523 1524 inline bool is_obj_dead(const oop obj) const; 1525 1526 inline bool is_obj_ill(const oop obj) const; 1527 1528 bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo); 1529 HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo); 1530 bool is_marked(oop obj, VerifyOption vo); 1531 const char* top_at_mark_start_str(VerifyOption vo); 1532 1533 ConcurrentMark* concurrent_mark() const { return _cm; } 1534 1535 // Refinement 1536 1537 ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; } 1538 1539 // The dirty cards region list is used to record a subset of regions 1540 // whose cards need clearing. The list if populated during the 1541 // remembered set scanning and drained during the card table 1542 // cleanup. Although the methods are reentrant, population/draining 1543 // phases must not overlap. For synchronization purposes the last 1544 // element on the list points to itself. 1545 HeapRegion* _dirty_cards_region_list; 1546 void push_dirty_cards_region(HeapRegion* hr); 1547 HeapRegion* pop_dirty_cards_region(); 1548 1549 // Optimized nmethod scanning support routines 1550 1551 // Register the given nmethod with the G1 heap 1552 virtual void register_nmethod(nmethod* nm); 1553 1554 // Unregister the given nmethod from the G1 heap 1555 virtual void unregister_nmethod(nmethod* nm); 1556 1557 // Free up superfluous code root memory. 1558 void purge_code_root_memory(); 1559 1560 // Rebuild the stong code root lists for each region 1561 // after a full GC 1562 void rebuild_strong_code_roots(); 1563 1564 // Delete entries for dead interned string and clean up unreferenced symbols 1565 // in symbol table, possibly in parallel. 1566 void unlink_string_and_symbol_table(BoolObjectClosure* is_alive, bool unlink_strings = true, bool unlink_symbols = true); 1567 1568 // Parallel phase of unloading/cleaning after G1 concurrent mark. 1569 void parallel_cleaning(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool class_unloading_occurred); 1570 1571 // Redirty logged cards in the refinement queue. 1572 void redirty_logged_cards(); 1573 // Verification 1574 1575 // The following is just to alert the verification code 1576 // that a full collection has occurred and that the 1577 // remembered sets are no longer up to date. 1578 bool _full_collection; 1579 void set_full_collection() { _full_collection = true;} 1580 void clear_full_collection() {_full_collection = false;} 1581 bool full_collection() {return _full_collection;} 1582 1583 // Perform any cleanup actions necessary before allowing a verification. 1584 virtual void prepare_for_verify(); 1585 1586 // Perform verification. 1587 1588 // vo == UsePrevMarking -> use "prev" marking information, 1589 // vo == UseNextMarking -> use "next" marking information 1590 // vo == UseMarkWord -> use the mark word in the object header 1591 // 1592 // NOTE: Only the "prev" marking information is guaranteed to be 1593 // consistent most of the time, so most calls to this should use 1594 // vo == UsePrevMarking. 1595 // Currently, there is only one case where this is called with 1596 // vo == UseNextMarking, which is to verify the "next" marking 1597 // information at the end of remark. 1598 // Currently there is only one place where this is called with 1599 // vo == UseMarkWord, which is to verify the marking during a 1600 // full GC. 1601 void verify(bool silent, VerifyOption vo); 1602 1603 // Override; it uses the "prev" marking information 1604 virtual void verify(bool silent); 1605 1606 // The methods below are here for convenience and dispatch the 1607 // appropriate method depending on value of the given VerifyOption 1608 // parameter. The values for that parameter, and their meanings, 1609 // are the same as those above. 1610 1611 bool is_obj_dead_cond(const oop obj, 1612 const HeapRegion* hr, 1613 const VerifyOption vo) const; 1614 1615 bool is_obj_dead_cond(const oop obj, 1616 const VerifyOption vo) const; 1617 1618 G1HeapSummary create_g1_heap_summary(); 1619 1620 // Printing 1621 1622 virtual void print_on(outputStream* st) const; 1623 virtual void print_extended_on(outputStream* st) const; 1624 virtual void print_on_error(outputStream* st) const; 1625 1626 virtual void print_gc_threads_on(outputStream* st) const; 1627 virtual void gc_threads_do(ThreadClosure* tc) const; 1628 1629 // Override 1630 void print_tracing_info() const; 1631 1632 // The following two methods are helpful for debugging RSet issues. 1633 void print_cset_rsets() PRODUCT_RETURN; 1634 void print_all_rsets() PRODUCT_RETURN; 1635 1636 public: 1637 size_t pending_card_num(); 1638 size_t cards_scanned(); 1639 1640 protected: 1641 size_t _max_heap_capacity; 1642 }; 1643 1644 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP