1 /*
   2  * Copyright (c) 2018, Red Hat, Inc. All rights reserved.
   3  *
   4  * This code is free software; you can redistribute it and/or modify it
   5  * under the terms of the GNU General Public License version 2 only, as
   6  * published by the Free Software Foundation.
   7  *
   8  * This code is distributed in the hope that it will be useful, but WITHOUT
   9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  11  * version 2 for more details (a copy is included in the LICENSE file that
  12  * accompanied this code).
  13  *
  14  * You should have received a copy of the GNU General Public License version
  15  * 2 along with this work; if not, write to the Free Software Foundation,
  16  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  17  *
  18  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  19  * or visit www.oracle.com if you need additional information or have any
  20  * questions.
  21  *
  22  */
  23 
  24 #include "precompiled.hpp"
  25 
  26 #include "gc_implementation/shenandoah/heuristics/shenandoahAdaptiveHeuristics.hpp"
  27 #include "gc_implementation/shenandoah/shenandoahCollectionSet.hpp"
  28 #include "gc_implementation/shenandoah/shenandoahFreeSet.hpp"
  29 #include "gc_implementation/shenandoah/shenandoahHeap.inline.hpp"
  30 #include "gc_implementation/shenandoah/shenandoahHeapRegion.inline.hpp"
  31 #include "gc_implementation/shenandoah/shenandoahLogging.hpp"
  32 #include "utilities/quickSort.hpp"
  33 
  34 ShenandoahAdaptiveHeuristics::ShenandoahAdaptiveHeuristics() :
  35   ShenandoahHeuristics() {}
  36 
  37 ShenandoahAdaptiveHeuristics::~ShenandoahAdaptiveHeuristics() {}
  38 
  39 void ShenandoahAdaptiveHeuristics::choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset,
  40                                                                          RegionData* data, size_t size,
  41                                                                          size_t actual_free) {
  42   size_t garbage_threshold = ShenandoahHeapRegion::region_size_bytes() * ShenandoahGarbageThreshold / 100;
  43 
  44   // The logic for cset selection in adaptive is as follows:
  45   //
  46   //   1. We cannot get cset larger than available free space. Otherwise we guarantee OOME
  47   //      during evacuation, and thus guarantee full GC. In practice, we also want to let
  48   //      application to allocate something. This is why we limit CSet to some fraction of
  49   //      available space. In non-overloaded heap, max_cset would contain all plausible candidates
  50   //      over garbage threshold.
  51   //
  52   //   2. We should not get cset too low so that free threshold would not be met right
  53   //      after the cycle. Otherwise we get back-to-back cycles for no reason if heap is
  54   //      too fragmented. In non-overloaded non-fragmented heap min_garbage would be around zero.
  55   //
  56   // Therefore, we start by sorting the regions by garbage. Then we unconditionally add the best candidates
  57   // before we meet min_garbage. Then we add all candidates that fit with a garbage threshold before
  58   // we hit max_cset. When max_cset is hit, we terminate the cset selection. Note that in this scheme,
  59   // ShenandoahGarbageThreshold is the soft threshold which would be ignored until min_garbage is hit.
  60 
  61   size_t capacity    = ShenandoahHeap::heap()->soft_max_capacity();
  62   size_t max_cset    = (size_t)((1.0 * capacity / 100 * ShenandoahEvacReserve) / ShenandoahEvacWaste);
  63   size_t free_target = (capacity / 100 * ShenandoahMinFreeThreshold) + max_cset;
  64   size_t min_garbage = (free_target > actual_free ? (free_target - actual_free) : 0);
  65 
  66   log_info(gc, ergo)("Adaptive CSet Selection. Target Free: " SIZE_FORMAT "%s, Actual Free: "
  67                      SIZE_FORMAT "%s, Max CSet: " SIZE_FORMAT "%s, Min Garbage: " SIZE_FORMAT "%s",
  68                      byte_size_in_proper_unit(free_target), proper_unit_for_byte_size(free_target),
  69                      byte_size_in_proper_unit(actual_free), proper_unit_for_byte_size(actual_free),
  70                      byte_size_in_proper_unit(max_cset),    proper_unit_for_byte_size(max_cset),
  71                      byte_size_in_proper_unit(min_garbage), proper_unit_for_byte_size(min_garbage));
  72 
  73   // Better select garbage-first regions
  74   QuickSort::sort<RegionData>(data, (int)size, compare_by_garbage, false);
  75 
  76   size_t cur_cset = 0;
  77   size_t cur_garbage = 0;
  78 
  79   for (size_t idx = 0; idx < size; idx++) {
  80     ShenandoahHeapRegion* r = data[idx]._region;
  81 
  82     size_t new_cset    = cur_cset + r->get_live_data_bytes();
  83     size_t new_garbage = cur_garbage + r->garbage();
  84 
  85     if (new_cset > max_cset) {
  86       break;
  87     }
  88 
  89     if ((new_garbage < min_garbage) || (r->garbage() > garbage_threshold)) {
  90       cset->add_region(r);
  91       cur_cset = new_cset;
  92       cur_garbage = new_garbage;
  93     }
  94   }
  95 }
  96 
  97 void ShenandoahAdaptiveHeuristics::record_cycle_start() {
  98   ShenandoahHeuristics::record_cycle_start();
  99 }
 100 
 101 bool ShenandoahAdaptiveHeuristics::should_start_gc() const {
 102   ShenandoahHeap* heap = ShenandoahHeap::heap();
 103   size_t max_capacity = heap->max_capacity();
 104   size_t capacity = heap->soft_max_capacity();
 105   size_t available = heap->free_set()->available();
 106 
 107   // Make sure the code below treats available without the soft tail.
 108   size_t soft_tail = max_capacity - capacity;
 109   available = (available > soft_tail) ? (available - soft_tail) : 0;
 110 
 111   // Check if we are falling below the worst limit, time to trigger the GC, regardless of
 112   // anything else.
 113   size_t min_threshold = capacity / 100 * ShenandoahMinFreeThreshold;
 114   if (available < min_threshold) {
 115     log_info(gc)("Trigger: Free (" SIZE_FORMAT "%s) is below minimum threshold (" SIZE_FORMAT "%s)",
 116                  byte_size_in_proper_unit(available),     proper_unit_for_byte_size(available),
 117                  byte_size_in_proper_unit(min_threshold), proper_unit_for_byte_size(min_threshold));
 118     return true;
 119   }
 120 
 121   // Check if are need to learn a bit about the application
 122   const size_t max_learn = ShenandoahLearningSteps;
 123   if (_gc_times_learned < max_learn) {
 124     size_t init_threshold = capacity / 100 * ShenandoahInitFreeThreshold;
 125     if (available < init_threshold) {
 126       log_info(gc)("Trigger: Learning " SIZE_FORMAT " of " SIZE_FORMAT ". Free (" SIZE_FORMAT "%s) is below initial threshold (" SIZE_FORMAT "%s)",
 127                    _gc_times_learned + 1, max_learn,
 128                    byte_size_in_proper_unit(available),      proper_unit_for_byte_size(available),
 129                    byte_size_in_proper_unit(init_threshold), proper_unit_for_byte_size(init_threshold));
 130       return true;
 131     }
 132   }
 133 
 134   // Check if allocation headroom is still okay. This also factors in:
 135   //   1. Some space to absorb allocation spikes
 136   //   2. Accumulated penalties from Degenerated and Full GC
 137 
 138   size_t allocation_headroom = available;
 139 
 140   size_t spike_headroom = capacity / 100 * ShenandoahAllocSpikeFactor;
 141   size_t penalties      = capacity / 100 * _gc_time_penalties;
 142 
 143   allocation_headroom -= MIN2(allocation_headroom, spike_headroom);
 144   allocation_headroom -= MIN2(allocation_headroom, penalties);
 145 
 146   // TODO: Allocation rate is way too averaged to be useful during state changes
 147 
 148   double average_gc = _gc_time_history->avg();
 149   double time_since_last = time_since_last_gc();
 150   double allocation_rate = heap->bytes_allocated_since_gc_start() / time_since_last;
 151 
 152   if (average_gc > allocation_headroom / allocation_rate) {
 153     log_info(gc)("Trigger: Average GC time (%.2f ms) is above the time for allocation rate (%.0f %sB/s) to deplete free headroom (" SIZE_FORMAT "%s)",
 154                  average_gc * 1000,
 155                  byte_size_in_proper_unit(allocation_rate),     proper_unit_for_byte_size(allocation_rate),
 156                  byte_size_in_proper_unit(allocation_headroom), proper_unit_for_byte_size(allocation_headroom));
 157     log_info(gc, ergo)("Free headroom: " SIZE_FORMAT "%s (free) - " SIZE_FORMAT "%s (spike) - " SIZE_FORMAT "%s (penalties) = " SIZE_FORMAT "%s",
 158                  byte_size_in_proper_unit(available),           proper_unit_for_byte_size(available),
 159                  byte_size_in_proper_unit(spike_headroom),      proper_unit_for_byte_size(spike_headroom),
 160                  byte_size_in_proper_unit(penalties),           proper_unit_for_byte_size(penalties),
 161                  byte_size_in_proper_unit(allocation_headroom), proper_unit_for_byte_size(allocation_headroom));
 162     return true;
 163   }
 164 
 165   return ShenandoahHeuristics::should_start_gc();
 166 }