1 /* 2 * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/systemDictionary.hpp" 27 #include "gc_implementation/shared/gcHeapSummary.hpp" 28 #include "gc_implementation/shared/gcTrace.hpp" 29 #include "gc_implementation/shared/gcTraceTime.hpp" 30 #include "gc_implementation/shared/gcWhen.hpp" 31 #include "gc_implementation/shared/vmGCOperations.hpp" 32 #include "gc_interface/allocTracer.hpp" 33 #include "gc_interface/collectedHeap.hpp" 34 #include "gc_interface/collectedHeap.inline.hpp" 35 #include "memory/metaspace.hpp" 36 #include "oops/oop.inline.hpp" 37 #include "oops/instanceMirrorKlass.hpp" 38 #include "runtime/init.hpp" 39 #include "runtime/thread.inline.hpp" 40 #include "services/heapDumper.hpp" 41 42 43 #ifdef ASSERT 44 int CollectedHeap::_fire_out_of_memory_count = 0; 45 #endif 46 47 size_t CollectedHeap::_filler_array_max_size = 0; 48 49 template <> 50 void EventLogBase<GCMessage>::print(outputStream* st, GCMessage& m) { 51 st->print_cr("GC heap %s", m.is_before ? "before" : "after"); 52 st->print_raw(m); 53 } 54 55 void GCHeapLog::log_heap(bool before) { 56 if (!should_log()) { 57 return; 58 } 59 60 double timestamp = fetch_timestamp(); 61 MutexLockerEx ml(&_mutex, Mutex::_no_safepoint_check_flag); 62 int index = compute_log_index(); 63 _records[index].thread = NULL; // Its the GC thread so it's not that interesting. 64 _records[index].timestamp = timestamp; 65 _records[index].data.is_before = before; 66 stringStream st(_records[index].data.buffer(), _records[index].data.size()); 67 if (before) { 68 Universe::print_heap_before_gc(&st, true); 69 } else { 70 Universe::print_heap_after_gc(&st, true); 71 } 72 } 73 74 VirtualSpaceSummary CollectedHeap::create_heap_space_summary() { 75 size_t capacity_in_words = capacity() / HeapWordSize; 76 77 return VirtualSpaceSummary( 78 reserved_region().start(), reserved_region().start() + capacity_in_words, reserved_region().end()); 79 } 80 81 GCHeapSummary CollectedHeap::create_heap_summary() { 82 VirtualSpaceSummary heap_space = create_heap_space_summary(); 83 return GCHeapSummary(heap_space, used()); 84 } 85 86 MetaspaceSummary CollectedHeap::create_metaspace_summary() { 87 const MetaspaceSizes meta_space( 88 MetaspaceAux::committed_bytes(), 89 MetaspaceAux::used_bytes(), 90 MetaspaceAux::reserved_bytes()); 91 const MetaspaceSizes data_space( 92 MetaspaceAux::committed_bytes(Metaspace::NonClassType), 93 MetaspaceAux::used_bytes(Metaspace::NonClassType), 94 MetaspaceAux::reserved_bytes(Metaspace::NonClassType)); 95 const MetaspaceSizes class_space( 96 MetaspaceAux::committed_bytes(Metaspace::ClassType), 97 MetaspaceAux::used_bytes(Metaspace::ClassType), 98 MetaspaceAux::reserved_bytes(Metaspace::ClassType)); 99 100 const MetaspaceChunkFreeListSummary& ms_chunk_free_list_summary = 101 MetaspaceAux::chunk_free_list_summary(Metaspace::NonClassType); 102 const MetaspaceChunkFreeListSummary& class_chunk_free_list_summary = 103 MetaspaceAux::chunk_free_list_summary(Metaspace::ClassType); 104 105 return MetaspaceSummary(MetaspaceGC::capacity_until_GC(), meta_space, data_space, class_space, 106 ms_chunk_free_list_summary, class_chunk_free_list_summary); 107 } 108 109 void CollectedHeap::print_heap_before_gc() { 110 if (PrintHeapAtGC) { 111 Universe::print_heap_before_gc(); 112 } 113 if (_gc_heap_log != NULL) { 114 _gc_heap_log->log_heap_before(); 115 } 116 } 117 118 void CollectedHeap::print_heap_after_gc() { 119 if (PrintHeapAtGC) { 120 Universe::print_heap_after_gc(); 121 } 122 if (_gc_heap_log != NULL) { 123 _gc_heap_log->log_heap_after(); 124 } 125 } 126 127 void CollectedHeap::register_nmethod(nmethod* nm) { 128 assert_locked_or_safepoint(CodeCache_lock); 129 } 130 131 void CollectedHeap::unregister_nmethod(nmethod* nm) { 132 assert_locked_or_safepoint(CodeCache_lock); 133 } 134 135 void CollectedHeap::trace_heap(GCWhen::Type when, GCTracer* gc_tracer) { 136 const GCHeapSummary& heap_summary = create_heap_summary(); 137 gc_tracer->report_gc_heap_summary(when, heap_summary); 138 139 const MetaspaceSummary& metaspace_summary = create_metaspace_summary(); 140 gc_tracer->report_metaspace_summary(when, metaspace_summary); 141 } 142 143 void CollectedHeap::trace_heap_before_gc(GCTracer* gc_tracer) { 144 trace_heap(GCWhen::BeforeGC, gc_tracer); 145 } 146 147 void CollectedHeap::trace_heap_after_gc(GCTracer* gc_tracer) { 148 trace_heap(GCWhen::AfterGC, gc_tracer); 149 } 150 151 // Memory state functions. 152 153 154 CollectedHeap::CollectedHeap() : _n_par_threads(0) 155 { 156 const size_t max_len = size_t(arrayOopDesc::max_array_length(T_INT)); 157 const size_t elements_per_word = HeapWordSize / sizeof(jint); 158 _filler_array_max_size = align_object_size(filler_array_hdr_size() + 159 max_len / elements_per_word); 160 161 _barrier_set = NULL; 162 _is_gc_active = false; 163 _total_collections = _total_full_collections = 0; 164 _gc_cause = _gc_lastcause = GCCause::_no_gc; 165 NOT_PRODUCT(_promotion_failure_alot_count = 0;) 166 NOT_PRODUCT(_promotion_failure_alot_gc_number = 0;) 167 168 if (UsePerfData) { 169 EXCEPTION_MARK; 170 171 // create the gc cause jvmstat counters 172 _perf_gc_cause = PerfDataManager::create_string_variable(SUN_GC, "cause", 173 80, GCCause::to_string(_gc_cause), CHECK); 174 175 _perf_gc_lastcause = 176 PerfDataManager::create_string_variable(SUN_GC, "lastCause", 177 80, GCCause::to_string(_gc_lastcause), CHECK); 178 } 179 _defer_initial_card_mark = false; // strengthened by subclass in pre_initialize() below. 180 // Create the ring log 181 if (LogEvents) { 182 _gc_heap_log = new GCHeapLog(); 183 } else { 184 _gc_heap_log = NULL; 185 } 186 } 187 188 // This interface assumes that it's being called by the 189 // vm thread. It collects the heap assuming that the 190 // heap lock is already held and that we are executing in 191 // the context of the vm thread. 192 void CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) { 193 assert(Thread::current()->is_VM_thread(), "Precondition#1"); 194 assert(Heap_lock->is_locked(), "Precondition#2"); 195 GCCauseSetter gcs(this, cause); 196 switch (cause) { 197 case GCCause::_heap_inspection: 198 case GCCause::_heap_dump: 199 case GCCause::_metadata_GC_threshold : { 200 HandleMark hm; 201 do_full_collection(false); // don't clear all soft refs 202 break; 203 } 204 case GCCause::_last_ditch_collection: { 205 HandleMark hm; 206 do_full_collection(true); // do clear all soft refs 207 break; 208 } 209 default: 210 ShouldNotReachHere(); // Unexpected use of this function 211 } 212 } 213 214 void CollectedHeap::pre_initialize() { 215 // Used for ReduceInitialCardMarks (when COMPILER2 is used); 216 // otherwise remains unused. 217 #ifdef COMPILER2 218 _defer_initial_card_mark = ReduceInitialCardMarks && can_elide_tlab_store_barriers() 219 && (DeferInitialCardMark || card_mark_must_follow_store()); 220 #else 221 assert(_defer_initial_card_mark == false, "Who would set it?"); 222 #endif 223 } 224 225 #ifndef PRODUCT 226 void CollectedHeap::check_for_bad_heap_word_value(HeapWord* addr, size_t size) { 227 if (CheckMemoryInitialization && ZapUnusedHeapArea) { 228 for (size_t slot = 0; slot < size; slot += 1) { 229 assert((*(intptr_t*) (addr + slot)) != ((intptr_t) badHeapWordVal), 230 "Found badHeapWordValue in post-allocation check"); 231 } 232 } 233 } 234 235 void CollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr, size_t size) { 236 if (CheckMemoryInitialization && ZapUnusedHeapArea) { 237 for (size_t slot = 0; slot < size; slot += 1) { 238 assert((*(intptr_t*) (addr + slot)) == ((intptr_t) badHeapWordVal), 239 "Found non badHeapWordValue in pre-allocation check"); 240 } 241 } 242 } 243 #endif // PRODUCT 244 245 #ifdef ASSERT 246 void CollectedHeap::check_for_valid_allocation_state() { 247 Thread *thread = Thread::current(); 248 // How to choose between a pending exception and a potential 249 // OutOfMemoryError? Don't allow pending exceptions. 250 // This is a VM policy failure, so how do we exhaustively test it? 251 assert(!thread->has_pending_exception(), 252 "shouldn't be allocating with pending exception"); 253 if (StrictSafepointChecks) { 254 assert(thread->allow_allocation(), 255 "Allocation done by thread for which allocation is blocked " 256 "by No_Allocation_Verifier!"); 257 // Allocation of an oop can always invoke a safepoint, 258 // hence, the true argument 259 thread->check_for_valid_safepoint_state(true); 260 } 261 } 262 #endif 263 264 HeapWord* CollectedHeap::allocate_from_tlab_slow(KlassHandle klass, Thread* thread, size_t size) { 265 266 // Retain tlab and allocate object in shared space if 267 // the amount free in the tlab is too large to discard. 268 if (thread->tlab().free() > thread->tlab().refill_waste_limit()) { 269 thread->tlab().record_slow_allocation(size); 270 return NULL; 271 } 272 273 // Discard tlab and allocate a new one. 274 // To minimize fragmentation, the last TLAB may be smaller than the rest. 275 size_t new_tlab_size = thread->tlab().compute_size(size); 276 277 thread->tlab().clear_before_allocation(); 278 279 if (new_tlab_size == 0) { 280 return NULL; 281 } 282 283 // Allocate a new TLAB... 284 HeapWord* obj = Universe::heap()->allocate_new_tlab(new_tlab_size); 285 if (obj == NULL) { 286 return NULL; 287 } 288 289 if (ZeroTLAB) { 290 // ..and clear it. 291 Copy::zero_to_words(obj, new_tlab_size); 292 } else { 293 // ...and zap just allocated object. 294 #ifdef ASSERT 295 // Skip mangling the space corresponding to the object header to 296 // ensure that the returned space is not considered parsable by 297 // any concurrent GC thread. 298 size_t hdr_size = oopDesc::header_size(); 299 Copy::fill_to_words(obj + hdr_size, new_tlab_size - hdr_size, badHeapWordVal); 300 #endif // ASSERT 301 } 302 thread->tlab().fill(obj, obj + size, new_tlab_size); 303 return obj; 304 } 305 306 void CollectedHeap::flush_deferred_store_barrier(JavaThread* thread) { 307 MemRegion deferred = thread->deferred_card_mark(); 308 if (!deferred.is_empty()) { 309 assert(_defer_initial_card_mark, "Otherwise should be empty"); 310 { 311 // Verify that the storage points to a parsable object in heap 312 DEBUG_ONLY(oop old_obj = oop(deferred.start());) 313 assert(is_in(old_obj), "Not in allocated heap"); 314 assert(!can_elide_initializing_store_barrier(old_obj), 315 "Else should have been filtered in new_store_pre_barrier()"); 316 assert(old_obj->is_oop(true), "Not an oop"); 317 assert(deferred.word_size() == (size_t)(old_obj->size()), 318 "Mismatch: multiple objects?"); 319 } 320 BarrierSet* bs = barrier_set(); 321 assert(bs->has_write_region_opt(), "No write_region() on BarrierSet"); 322 bs->write_region(deferred); 323 // "Clear" the deferred_card_mark field 324 thread->set_deferred_card_mark(MemRegion()); 325 } 326 assert(thread->deferred_card_mark().is_empty(), "invariant"); 327 } 328 329 size_t CollectedHeap::max_tlab_size() const { 330 // TLABs can't be bigger than we can fill with a int[Integer.MAX_VALUE]. 331 // This restriction could be removed by enabling filling with multiple arrays. 332 // If we compute that the reasonable way as 333 // header_size + ((sizeof(jint) * max_jint) / HeapWordSize) 334 // we'll overflow on the multiply, so we do the divide first. 335 // We actually lose a little by dividing first, 336 // but that just makes the TLAB somewhat smaller than the biggest array, 337 // which is fine, since we'll be able to fill that. 338 size_t max_int_size = typeArrayOopDesc::header_size(T_INT) + 339 sizeof(jint) * 340 ((juint) max_jint / (size_t) HeapWordSize); 341 return align_size_down(max_int_size, MinObjAlignment); 342 } 343 344 // Helper for ReduceInitialCardMarks. For performance, 345 // compiled code may elide card-marks for initializing stores 346 // to a newly allocated object along the fast-path. We 347 // compensate for such elided card-marks as follows: 348 // (a) Generational, non-concurrent collectors, such as 349 // GenCollectedHeap(ParNew,DefNew,Tenured) and 350 // ParallelScavengeHeap(ParallelGC, ParallelOldGC) 351 // need the card-mark if and only if the region is 352 // in the old gen, and do not care if the card-mark 353 // succeeds or precedes the initializing stores themselves, 354 // so long as the card-mark is completed before the next 355 // scavenge. For all these cases, we can do a card mark 356 // at the point at which we do a slow path allocation 357 // in the old gen, i.e. in this call. 358 // (b) GenCollectedHeap(ConcurrentMarkSweepGeneration) requires 359 // in addition that the card-mark for an old gen allocated 360 // object strictly follow any associated initializing stores. 361 // In these cases, the memRegion remembered below is 362 // used to card-mark the entire region either just before the next 363 // slow-path allocation by this thread or just before the next scavenge or 364 // CMS-associated safepoint, whichever of these events happens first. 365 // (The implicit assumption is that the object has been fully 366 // initialized by this point, a fact that we assert when doing the 367 // card-mark.) 368 // (c) G1CollectedHeap(G1) uses two kinds of write barriers. When a 369 // G1 concurrent marking is in progress an SATB (pre-write-)barrier is 370 // is used to remember the pre-value of any store. Initializing 371 // stores will not need this barrier, so we need not worry about 372 // compensating for the missing pre-barrier here. Turning now 373 // to the post-barrier, we note that G1 needs a RS update barrier 374 // which simply enqueues a (sequence of) dirty cards which may 375 // optionally be refined by the concurrent update threads. Note 376 // that this barrier need only be applied to a non-young write, 377 // but, like in CMS, because of the presence of concurrent refinement 378 // (much like CMS' precleaning), must strictly follow the oop-store. 379 // Thus, using the same protocol for maintaining the intended 380 // invariants turns out, serendepitously, to be the same for both 381 // G1 and CMS. 382 // 383 // For any future collector, this code should be reexamined with 384 // that specific collector in mind, and the documentation above suitably 385 // extended and updated. 386 oop CollectedHeap::new_store_pre_barrier(JavaThread* thread, oop new_obj) { 387 // If a previous card-mark was deferred, flush it now. 388 flush_deferred_store_barrier(thread); 389 if (can_elide_initializing_store_barrier(new_obj)) { 390 // The deferred_card_mark region should be empty 391 // following the flush above. 392 assert(thread->deferred_card_mark().is_empty(), "Error"); 393 } else { 394 MemRegion mr((HeapWord*)new_obj, new_obj->size()); 395 assert(!mr.is_empty(), "Error"); 396 if (_defer_initial_card_mark) { 397 // Defer the card mark 398 thread->set_deferred_card_mark(mr); 399 } else { 400 // Do the card mark 401 BarrierSet* bs = barrier_set(); 402 assert(bs->has_write_region_opt(), "No write_region() on BarrierSet"); 403 bs->write_region(mr); 404 } 405 } 406 return new_obj; 407 } 408 409 size_t CollectedHeap::filler_array_hdr_size() { 410 return size_t(align_object_offset(arrayOopDesc::header_size(T_INT))); // align to Long 411 } 412 413 size_t CollectedHeap::filler_array_min_size() { 414 return align_object_size(filler_array_hdr_size()); // align to MinObjAlignment 415 } 416 417 #ifdef ASSERT 418 void CollectedHeap::fill_args_check(HeapWord* start, size_t words) 419 { 420 assert(words >= min_fill_size(), "too small to fill"); 421 assert(words % MinObjAlignment == 0, "unaligned size"); 422 assert(Universe::heap()->is_in_reserved(start), "not in heap"); 423 assert(Universe::heap()->is_in_reserved(start + words - 1), "not in heap"); 424 } 425 426 void CollectedHeap::zap_filler_array(HeapWord* start, size_t words, bool zap) 427 { 428 if (ZapFillerObjects && zap) { 429 Copy::fill_to_words(start + filler_array_hdr_size(), 430 words - filler_array_hdr_size(), 0XDEAFBABE); 431 } 432 } 433 #endif // ASSERT 434 435 void 436 CollectedHeap::fill_with_array(HeapWord* start, size_t words, bool zap) 437 { 438 assert(words >= filler_array_min_size(), "too small for an array"); 439 assert(words <= filler_array_max_size(), "too big for a single object"); 440 441 const size_t payload_size = words - filler_array_hdr_size(); 442 const size_t len = payload_size * HeapWordSize / sizeof(jint); 443 assert((int)len >= 0, err_msg("size too large " SIZE_FORMAT " becomes %d", words, (int)len)); 444 445 // Set the length first for concurrent GC. 446 ((arrayOop)start)->set_length((int)len); 447 post_allocation_setup_common(Universe::intArrayKlassObj(), start); 448 DEBUG_ONLY(zap_filler_array(start, words, zap);) 449 } 450 451 void 452 CollectedHeap::fill_with_object_impl(HeapWord* start, size_t words, bool zap) 453 { 454 assert(words <= filler_array_max_size(), "too big for a single object"); 455 456 if (words >= filler_array_min_size()) { 457 fill_with_array(start, words, zap); 458 } else if (words > 0) { 459 assert(words == min_fill_size(), "unaligned size"); 460 post_allocation_setup_common(SystemDictionary::Object_klass(), start); 461 } 462 } 463 464 void CollectedHeap::fill_with_object(HeapWord* start, size_t words, bool zap) 465 { 466 DEBUG_ONLY(fill_args_check(start, words);) 467 HandleMark hm; // Free handles before leaving. 468 fill_with_object_impl(start, words, zap); 469 } 470 471 void CollectedHeap::fill_with_objects(HeapWord* start, size_t words, bool zap) 472 { 473 DEBUG_ONLY(fill_args_check(start, words);) 474 HandleMark hm; // Free handles before leaving. 475 476 #ifdef _LP64 477 // A single array can fill ~8G, so multiple objects are needed only in 64-bit. 478 // First fill with arrays, ensuring that any remaining space is big enough to 479 // fill. The remainder is filled with a single object. 480 const size_t min = min_fill_size(); 481 const size_t max = filler_array_max_size(); 482 while (words > max) { 483 const size_t cur = words - max >= min ? max : max - min; 484 fill_with_array(start, cur, zap); 485 start += cur; 486 words -= cur; 487 } 488 #endif 489 490 fill_with_object_impl(start, words, zap); 491 } 492 493 void CollectedHeap::post_initialize() { 494 collector_policy()->post_heap_initialize(); 495 } 496 497 HeapWord* CollectedHeap::allocate_new_tlab(size_t size) { 498 guarantee(false, "thread-local allocation buffers not supported"); 499 return NULL; 500 } 501 502 void CollectedHeap::ensure_parsability(bool retire_tlabs) { 503 // The second disjunct in the assertion below makes a concession 504 // for the start-up verification done while the VM is being 505 // created. Callers be careful that you know that mutators 506 // aren't going to interfere -- for instance, this is permissible 507 // if we are still single-threaded and have either not yet 508 // started allocating (nothing much to verify) or we have 509 // started allocating but are now a full-fledged JavaThread 510 // (and have thus made our TLAB's) available for filling. 511 assert(SafepointSynchronize::is_at_safepoint() || 512 !is_init_completed(), 513 "Should only be called at a safepoint or at start-up" 514 " otherwise concurrent mutator activity may make heap " 515 " unparsable again"); 516 const bool use_tlab = UseTLAB; 517 const bool deferred = _defer_initial_card_mark; 518 // The main thread starts allocating via a TLAB even before it 519 // has added itself to the threads list at vm boot-up. 520 assert(!use_tlab || Threads::first() != NULL, 521 "Attempt to fill tlabs before main thread has been added" 522 " to threads list is doomed to failure!"); 523 for (JavaThread *thread = Threads::first(); thread; thread = thread->next()) { 524 if (use_tlab) thread->tlab().make_parsable(retire_tlabs); 525 #ifdef COMPILER2 526 // The deferred store barriers must all have been flushed to the 527 // card-table (or other remembered set structure) before GC starts 528 // processing the card-table (or other remembered set). 529 if (deferred) flush_deferred_store_barrier(thread); 530 #else 531 assert(!deferred, "Should be false"); 532 assert(thread->deferred_card_mark().is_empty(), "Should be empty"); 533 #endif 534 } 535 } 536 537 void CollectedHeap::accumulate_statistics_all_tlabs() { 538 if (UseTLAB) { 539 assert(SafepointSynchronize::is_at_safepoint() || 540 !is_init_completed(), 541 "should only accumulate statistics on tlabs at safepoint"); 542 543 ThreadLocalAllocBuffer::accumulate_statistics_before_gc(); 544 } 545 } 546 547 void CollectedHeap::resize_all_tlabs() { 548 if (UseTLAB) { 549 assert(SafepointSynchronize::is_at_safepoint() || 550 !is_init_completed(), 551 "should only resize tlabs at safepoint"); 552 553 ThreadLocalAllocBuffer::resize_all_tlabs(); 554 } 555 } 556 557 void CollectedHeap::pre_full_gc_dump(GCTimer* timer) { 558 if (HeapDumpBeforeFullGC) { 559 GCTraceTime tt("Heap Dump (before full gc): ", PrintGCDetails, false, timer, GCId::create()); 560 // We are doing a "major" collection and a heap dump before 561 // major collection has been requested. 562 HeapDumper::dump_heap(); 563 } 564 if (PrintClassHistogramBeforeFullGC) { 565 GCTraceTime tt("Class Histogram (before full gc): ", PrintGCDetails, true, timer, GCId::create()); 566 VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */); 567 inspector.doit(); 568 } 569 } 570 571 void CollectedHeap::post_full_gc_dump(GCTimer* timer) { 572 if (HeapDumpAfterFullGC) { 573 GCTraceTime tt("Heap Dump (after full gc): ", PrintGCDetails, false, timer, GCId::create()); 574 HeapDumper::dump_heap(); 575 } 576 if (PrintClassHistogramAfterFullGC) { 577 GCTraceTime tt("Class Histogram (after full gc): ", PrintGCDetails, true, timer, GCId::create()); 578 VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */); 579 inspector.doit(); 580 } 581 } 582 583 /////////////// Unit tests /////////////// 584 585 #ifndef PRODUCT 586 void CollectedHeap::test_is_in() { 587 CollectedHeap* heap = Universe::heap(); 588 589 uintptr_t epsilon = (uintptr_t) MinObjAlignment; 590 uintptr_t heap_start = (uintptr_t) heap->_reserved.start(); 591 uintptr_t heap_end = (uintptr_t) heap->_reserved.end(); 592 593 // Test that NULL is not in the heap. 594 assert(!heap->is_in(NULL), "NULL is unexpectedly in the heap"); 595 596 // Test that a pointer to before the heap start is reported as outside the heap. 597 assert(heap_start >= ((uintptr_t)NULL + epsilon), "sanity"); 598 void* before_heap = (void*)(heap_start - epsilon); 599 assert(!heap->is_in(before_heap), 600 err_msg("before_heap: " PTR_FORMAT " is unexpectedly in the heap", p2i(before_heap))); 601 602 // Test that a pointer to after the heap end is reported as outside the heap. 603 assert(heap_end <= ((uintptr_t)-1 - epsilon), "sanity"); 604 void* after_heap = (void*)(heap_end + epsilon); 605 assert(!heap->is_in(after_heap), 606 err_msg("after_heap: " PTR_FORMAT " is unexpectedly in the heap", p2i(after_heap))); 607 } 608 #endif 609 610 void CollectedHeap::shutdown() { 611 // Default implementation does nothing. 612 } 613 614 void CollectedHeap::accumulate_statistics_all_gclabs() { 615 // Default implementation does nothing. 616 } 617 618 bool CollectedHeap::supports_object_pinning() const { 619 return false; 620 } 621 622 oop CollectedHeap::pin_object(JavaThread* thread, oop obj) { 623 ShouldNotReachHere(); 624 return NULL; 625 } 626 627 void CollectedHeap::unpin_object(JavaThread* thread, oop obj) { 628 ShouldNotReachHere(); 629 }