1 /* 2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_VM_OPTO_CALLNODE_HPP 26 #define SHARE_VM_OPTO_CALLNODE_HPP 27 28 #include "opto/connode.hpp" 29 #include "opto/mulnode.hpp" 30 #include "opto/multnode.hpp" 31 #include "opto/opcodes.hpp" 32 #include "opto/phaseX.hpp" 33 #include "opto/replacednodes.hpp" 34 #include "opto/type.hpp" 35 36 // Portions of code courtesy of Clifford Click 37 38 // Optimization - Graph Style 39 40 class Chaitin; 41 class NamedCounter; 42 class MultiNode; 43 class SafePointNode; 44 class CallNode; 45 class CallJavaNode; 46 class CallStaticJavaNode; 47 class CallDynamicJavaNode; 48 class CallRuntimeNode; 49 class CallLeafNode; 50 class CallLeafNoFPNode; 51 class AllocateNode; 52 class AllocateArrayNode; 53 class BoxLockNode; 54 class LockNode; 55 class UnlockNode; 56 class JVMState; 57 class OopMap; 58 class State; 59 class StartNode; 60 class MachCallNode; 61 class FastLockNode; 62 63 //------------------------------StartNode-------------------------------------- 64 // The method start node 65 class StartNode : public MultiNode { 66 virtual uint cmp( const Node &n ) const; 67 virtual uint size_of() const; // Size is bigger 68 public: 69 const TypeTuple *_domain; 70 StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) { 71 init_class_id(Class_Start); 72 init_req(0,this); 73 init_req(1,root); 74 } 75 virtual int Opcode() const; 76 virtual bool pinned() const { return true; }; 77 virtual const Type *bottom_type() const; 78 virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; } 79 virtual const Type *Value( PhaseTransform *phase ) const; 80 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 81 virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const; 82 virtual const RegMask &in_RegMask(uint) const; 83 virtual Node *match( const ProjNode *proj, const Matcher *m ); 84 virtual uint ideal_reg() const { return 0; } 85 #ifndef PRODUCT 86 virtual void dump_spec(outputStream *st) const; 87 #endif 88 }; 89 90 //------------------------------StartOSRNode----------------------------------- 91 // The method start node for on stack replacement code 92 class StartOSRNode : public StartNode { 93 public: 94 StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {} 95 virtual int Opcode() const; 96 static const TypeTuple *osr_domain(); 97 }; 98 99 100 //------------------------------ParmNode--------------------------------------- 101 // Incoming parameters 102 class ParmNode : public ProjNode { 103 static const char * const names[TypeFunc::Parms+1]; 104 public: 105 ParmNode( StartNode *src, uint con ) : ProjNode(src,con) { 106 init_class_id(Class_Parm); 107 } 108 virtual int Opcode() const; 109 virtual bool is_CFG() const { return (_con == TypeFunc::Control); } 110 virtual uint ideal_reg() const; 111 #ifndef PRODUCT 112 virtual void dump_spec(outputStream *st) const; 113 #endif 114 }; 115 116 117 //------------------------------ReturnNode------------------------------------- 118 // Return from subroutine node 119 class ReturnNode : public Node { 120 public: 121 ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr ); 122 virtual int Opcode() const; 123 virtual bool is_CFG() const { return true; } 124 virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash 125 virtual bool depends_only_on_test() const { return false; } 126 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 127 virtual const Type *Value( PhaseTransform *phase ) const; 128 virtual uint ideal_reg() const { return NotAMachineReg; } 129 virtual uint match_edge(uint idx) const; 130 #ifndef PRODUCT 131 virtual void dump_req(outputStream *st = tty) const; 132 #endif 133 }; 134 135 136 //------------------------------RethrowNode------------------------------------ 137 // Rethrow of exception at call site. Ends a procedure before rethrowing; 138 // ends the current basic block like a ReturnNode. Restores registers and 139 // unwinds stack. Rethrow happens in the caller's method. 140 class RethrowNode : public Node { 141 public: 142 RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception ); 143 virtual int Opcode() const; 144 virtual bool is_CFG() const { return true; } 145 virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash 146 virtual bool depends_only_on_test() const { return false; } 147 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 148 virtual const Type *Value( PhaseTransform *phase ) const; 149 virtual uint match_edge(uint idx) const; 150 virtual uint ideal_reg() const { return NotAMachineReg; } 151 #ifndef PRODUCT 152 virtual void dump_req(outputStream *st = tty) const; 153 #endif 154 }; 155 156 157 //------------------------------TailCallNode----------------------------------- 158 // Pop stack frame and jump indirect 159 class TailCallNode : public ReturnNode { 160 public: 161 TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop ) 162 : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) { 163 init_req(TypeFunc::Parms, target); 164 init_req(TypeFunc::Parms+1, moop); 165 } 166 167 virtual int Opcode() const; 168 virtual uint match_edge(uint idx) const; 169 }; 170 171 //------------------------------TailJumpNode----------------------------------- 172 // Pop stack frame and jump indirect 173 class TailJumpNode : public ReturnNode { 174 public: 175 TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop) 176 : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) { 177 init_req(TypeFunc::Parms, target); 178 init_req(TypeFunc::Parms+1, ex_oop); 179 } 180 181 virtual int Opcode() const; 182 virtual uint match_edge(uint idx) const; 183 }; 184 185 //-------------------------------JVMState------------------------------------- 186 // A linked list of JVMState nodes captures the whole interpreter state, 187 // plus GC roots, for all active calls at some call site in this compilation 188 // unit. (If there is no inlining, then the list has exactly one link.) 189 // This provides a way to map the optimized program back into the interpreter, 190 // or to let the GC mark the stack. 191 class JVMState : public ResourceObj { 192 friend class VMStructs; 193 public: 194 typedef enum { 195 Reexecute_Undefined = -1, // not defined -- will be translated into false later 196 Reexecute_False = 0, // false -- do not reexecute 197 Reexecute_True = 1 // true -- reexecute the bytecode 198 } ReexecuteState; //Reexecute State 199 200 private: 201 JVMState* _caller; // List pointer for forming scope chains 202 uint _depth; // One more than caller depth, or one. 203 uint _locoff; // Offset to locals in input edge mapping 204 uint _stkoff; // Offset to stack in input edge mapping 205 uint _monoff; // Offset to monitors in input edge mapping 206 uint _scloff; // Offset to fields of scalar objs in input edge mapping 207 uint _endoff; // Offset to end of input edge mapping 208 uint _sp; // Jave Expression Stack Pointer for this state 209 int _bci; // Byte Code Index of this JVM point 210 ReexecuteState _reexecute; // Whether this bytecode need to be re-executed 211 ciMethod* _method; // Method Pointer 212 SafePointNode* _map; // Map node associated with this scope 213 public: 214 friend class Compile; 215 friend class PreserveReexecuteState; 216 217 // Because JVMState objects live over the entire lifetime of the 218 // Compile object, they are allocated into the comp_arena, which 219 // does not get resource marked or reset during the compile process 220 void *operator new( size_t x, Compile* C ) throw() { return C->comp_arena()->Amalloc(x); } 221 void operator delete( void * ) { } // fast deallocation 222 223 // Create a new JVMState, ready for abstract interpretation. 224 JVMState(ciMethod* method, JVMState* caller); 225 JVMState(int stack_size); // root state; has a null method 226 227 // Access functions for the JVM 228 // ... --|--- loc ---|--- stk ---|--- arg ---|--- mon ---|--- scl ---| 229 // \ locoff \ stkoff \ argoff \ monoff \ scloff \ endoff 230 uint locoff() const { return _locoff; } 231 uint stkoff() const { return _stkoff; } 232 uint argoff() const { return _stkoff + _sp; } 233 uint monoff() const { return _monoff; } 234 uint scloff() const { return _scloff; } 235 uint endoff() const { return _endoff; } 236 uint oopoff() const { return debug_end(); } 237 238 int loc_size() const { return stkoff() - locoff(); } 239 int stk_size() const { return monoff() - stkoff(); } 240 int mon_size() const { return scloff() - monoff(); } 241 int scl_size() const { return endoff() - scloff(); } 242 243 bool is_loc(uint i) const { return locoff() <= i && i < stkoff(); } 244 bool is_stk(uint i) const { return stkoff() <= i && i < monoff(); } 245 bool is_mon(uint i) const { return monoff() <= i && i < scloff(); } 246 bool is_scl(uint i) const { return scloff() <= i && i < endoff(); } 247 248 uint sp() const { return _sp; } 249 int bci() const { return _bci; } 250 bool should_reexecute() const { return _reexecute==Reexecute_True; } 251 bool is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; } 252 bool has_method() const { return _method != NULL; } 253 ciMethod* method() const { assert(has_method(), ""); return _method; } 254 JVMState* caller() const { return _caller; } 255 SafePointNode* map() const { return _map; } 256 uint depth() const { return _depth; } 257 uint debug_start() const; // returns locoff of root caller 258 uint debug_end() const; // returns endoff of self 259 uint debug_size() const { 260 return loc_size() + sp() + mon_size() + scl_size(); 261 } 262 uint debug_depth() const; // returns sum of debug_size values at all depths 263 264 // Returns the JVM state at the desired depth (1 == root). 265 JVMState* of_depth(int d) const; 266 267 // Tells if two JVM states have the same call chain (depth, methods, & bcis). 268 bool same_calls_as(const JVMState* that) const; 269 270 // Monitors (monitors are stored as (boxNode, objNode) pairs 271 enum { logMonitorEdges = 1 }; 272 int nof_monitors() const { return mon_size() >> logMonitorEdges; } 273 int monitor_depth() const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); } 274 int monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; } 275 int monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; } 276 bool is_monitor_box(uint off) const { 277 assert(is_mon(off), "should be called only for monitor edge"); 278 return (0 == bitfield(off - monoff(), 0, logMonitorEdges)); 279 } 280 bool is_monitor_use(uint off) const { return (is_mon(off) 281 && is_monitor_box(off)) 282 || (caller() && caller()->is_monitor_use(off)); } 283 284 // Initialization functions for the JVM 285 void set_locoff(uint off) { _locoff = off; } 286 void set_stkoff(uint off) { _stkoff = off; } 287 void set_monoff(uint off) { _monoff = off; } 288 void set_scloff(uint off) { _scloff = off; } 289 void set_endoff(uint off) { _endoff = off; } 290 void set_offsets(uint off) { 291 _locoff = _stkoff = _monoff = _scloff = _endoff = off; 292 } 293 void set_map(SafePointNode *map) { _map = map; } 294 void set_sp(uint sp) { _sp = sp; } 295 // _reexecute is initialized to "undefined" for a new bci 296 void set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; } 297 void set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;} 298 299 // Miscellaneous utility functions 300 JVMState* clone_deep(Compile* C) const; // recursively clones caller chain 301 JVMState* clone_shallow(Compile* C) const; // retains uncloned caller 302 void set_map_deep(SafePointNode *map);// reset map for all callers 303 void adapt_position(int delta); // Adapt offsets in in-array after adding an edge. 304 int interpreter_frame_size() const; 305 306 #ifndef PRODUCT 307 void format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const; 308 void dump_spec(outputStream *st) const; 309 void dump_on(outputStream* st) const; 310 void dump() const { 311 dump_on(tty); 312 } 313 #endif 314 }; 315 316 //------------------------------SafePointNode---------------------------------- 317 // A SafePointNode is a subclass of a MultiNode for convenience (and 318 // potential code sharing) only - conceptually it is independent of 319 // the Node semantics. 320 class SafePointNode : public MultiNode { 321 virtual uint cmp( const Node &n ) const; 322 virtual uint size_of() const; // Size is bigger 323 324 public: 325 SafePointNode(uint edges, JVMState* jvms, 326 // A plain safepoint advertises no memory effects (NULL): 327 const TypePtr* adr_type = NULL) 328 : MultiNode( edges ), 329 _jvms(jvms), 330 _oop_map(NULL), 331 _adr_type(adr_type) 332 { 333 init_class_id(Class_SafePoint); 334 } 335 336 OopMap* _oop_map; // Array of OopMap info (8-bit char) for GC 337 JVMState* const _jvms; // Pointer to list of JVM State objects 338 const TypePtr* _adr_type; // What type of memory does this node produce? 339 ReplacedNodes _replaced_nodes; // During parsing: list of pair of nodes from calls to GraphKit::replace_in_map() 340 341 // Many calls take *all* of memory as input, 342 // but some produce a limited subset of that memory as output. 343 // The adr_type reports the call's behavior as a store, not a load. 344 345 virtual JVMState* jvms() const { return _jvms; } 346 void set_jvms(JVMState* s) { 347 *(JVMState**)&_jvms = s; // override const attribute in the accessor 348 } 349 OopMap *oop_map() const { return _oop_map; } 350 void set_oop_map(OopMap *om) { _oop_map = om; } 351 352 private: 353 void verify_input(JVMState* jvms, uint idx) const { 354 assert(verify_jvms(jvms), "jvms must match"); 355 Node* n = in(idx); 356 assert((!n->bottom_type()->isa_long() && !n->bottom_type()->isa_double()) || 357 in(idx + 1)->is_top(), "2nd half of long/double"); 358 } 359 360 public: 361 // Functionality from old debug nodes which has changed 362 Node *local(JVMState* jvms, uint idx) const { 363 verify_input(jvms, jvms->locoff() + idx); 364 return in(jvms->locoff() + idx); 365 } 366 Node *stack(JVMState* jvms, uint idx) const { 367 verify_input(jvms, jvms->stkoff() + idx); 368 return in(jvms->stkoff() + idx); 369 } 370 Node *argument(JVMState* jvms, uint idx) const { 371 verify_input(jvms, jvms->argoff() + idx); 372 return in(jvms->argoff() + idx); 373 } 374 Node *monitor_box(JVMState* jvms, uint idx) const { 375 assert(verify_jvms(jvms), "jvms must match"); 376 return in(jvms->monitor_box_offset(idx)); 377 } 378 Node *monitor_obj(JVMState* jvms, uint idx) const { 379 assert(verify_jvms(jvms), "jvms must match"); 380 return in(jvms->monitor_obj_offset(idx)); 381 } 382 383 void set_local(JVMState* jvms, uint idx, Node *c); 384 385 void set_stack(JVMState* jvms, uint idx, Node *c) { 386 assert(verify_jvms(jvms), "jvms must match"); 387 set_req(jvms->stkoff() + idx, c); 388 } 389 void set_argument(JVMState* jvms, uint idx, Node *c) { 390 assert(verify_jvms(jvms), "jvms must match"); 391 set_req(jvms->argoff() + idx, c); 392 } 393 void ensure_stack(JVMState* jvms, uint stk_size) { 394 assert(verify_jvms(jvms), "jvms must match"); 395 int grow_by = (int)stk_size - (int)jvms->stk_size(); 396 if (grow_by > 0) grow_stack(jvms, grow_by); 397 } 398 void grow_stack(JVMState* jvms, uint grow_by); 399 // Handle monitor stack 400 void push_monitor( const FastLockNode *lock ); 401 void pop_monitor (); 402 Node *peek_monitor_box() const; 403 Node *peek_monitor_obj() const; 404 405 // Access functions for the JVM 406 Node *control () const { return in(TypeFunc::Control ); } 407 Node *i_o () const { return in(TypeFunc::I_O ); } 408 Node *memory () const { return in(TypeFunc::Memory ); } 409 Node *returnadr() const { return in(TypeFunc::ReturnAdr); } 410 Node *frameptr () const { return in(TypeFunc::FramePtr ); } 411 412 void set_control ( Node *c ) { set_req(TypeFunc::Control,c); } 413 void set_i_o ( Node *c ) { set_req(TypeFunc::I_O ,c); } 414 void set_memory ( Node *c ) { set_req(TypeFunc::Memory ,c); } 415 416 MergeMemNode* merged_memory() const { 417 return in(TypeFunc::Memory)->as_MergeMem(); 418 } 419 420 // The parser marks useless maps as dead when it's done with them: 421 bool is_killed() { return in(TypeFunc::Control) == NULL; } 422 423 // Exception states bubbling out of subgraphs such as inlined calls 424 // are recorded here. (There might be more than one, hence the "next".) 425 // This feature is used only for safepoints which serve as "maps" 426 // for JVM states during parsing, intrinsic expansion, etc. 427 SafePointNode* next_exception() const; 428 void set_next_exception(SafePointNode* n); 429 bool has_exceptions() const { return next_exception() != NULL; } 430 431 // Helper methods to operate on replaced nodes 432 ReplacedNodes replaced_nodes() const { 433 return _replaced_nodes; 434 } 435 436 void set_replaced_nodes(ReplacedNodes replaced_nodes) { 437 _replaced_nodes = replaced_nodes; 438 } 439 440 void clone_replaced_nodes() { 441 _replaced_nodes.clone(); 442 } 443 void record_replaced_node(Node* initial, Node* improved) { 444 _replaced_nodes.record(initial, improved); 445 } 446 void transfer_replaced_nodes_from(SafePointNode* sfpt, uint idx = 0) { 447 _replaced_nodes.transfer_from(sfpt->_replaced_nodes, idx); 448 } 449 void delete_replaced_nodes() { 450 _replaced_nodes.reset(); 451 } 452 void apply_replaced_nodes(uint idx) { 453 _replaced_nodes.apply(this, idx); 454 } 455 void merge_replaced_nodes_with(SafePointNode* sfpt) { 456 _replaced_nodes.merge_with(sfpt->_replaced_nodes); 457 } 458 bool has_replaced_nodes() const { 459 return !_replaced_nodes.is_empty(); 460 } 461 462 void disconnect_from_root(PhaseIterGVN *igvn); 463 464 // Standard Node stuff 465 virtual int Opcode() const; 466 virtual bool pinned() const { return true; } 467 virtual const Type *Value( PhaseTransform *phase ) const; 468 virtual const Type *bottom_type() const { return Type::CONTROL; } 469 virtual const TypePtr *adr_type() const { return _adr_type; } 470 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 471 virtual Node *Identity( PhaseTransform *phase ); 472 virtual uint ideal_reg() const { return 0; } 473 virtual const RegMask &in_RegMask(uint) const; 474 virtual const RegMask &out_RegMask() const; 475 virtual uint match_edge(uint idx) const; 476 477 static bool needs_polling_address_input(); 478 479 #ifndef PRODUCT 480 virtual void dump_spec(outputStream *st) const; 481 #endif 482 }; 483 484 //------------------------------SafePointScalarObjectNode---------------------- 485 // A SafePointScalarObjectNode represents the state of a scalarized object 486 // at a safepoint. 487 488 class SafePointScalarObjectNode: public TypeNode { 489 uint _first_index; // First input edge relative index of a SafePoint node where 490 // states of the scalarized object fields are collected. 491 // It is relative to the last (youngest) jvms->_scloff. 492 uint _n_fields; // Number of non-static fields of the scalarized object. 493 DEBUG_ONLY(AllocateNode* _alloc;) 494 495 virtual uint hash() const ; // { return NO_HASH; } 496 virtual uint cmp( const Node &n ) const; 497 498 uint first_index() const { return _first_index; } 499 500 public: 501 SafePointScalarObjectNode(const TypeOopPtr* tp, 502 #ifdef ASSERT 503 AllocateNode* alloc, 504 #endif 505 uint first_index, uint n_fields); 506 virtual int Opcode() const; 507 virtual uint ideal_reg() const; 508 virtual const RegMask &in_RegMask(uint) const; 509 virtual const RegMask &out_RegMask() const; 510 virtual uint match_edge(uint idx) const; 511 512 uint first_index(JVMState* jvms) const { 513 assert(jvms != NULL, "missed JVMS"); 514 return jvms->scloff() + _first_index; 515 } 516 uint n_fields() const { return _n_fields; } 517 518 #ifdef ASSERT 519 AllocateNode* alloc() const { return _alloc; } 520 #endif 521 522 virtual uint size_of() const { return sizeof(*this); } 523 524 // Assumes that "this" is an argument to a safepoint node "s", and that 525 // "new_call" is being created to correspond to "s". But the difference 526 // between the start index of the jvmstates of "new_call" and "s" is 527 // "jvms_adj". Produce and return a SafePointScalarObjectNode that 528 // corresponds appropriately to "this" in "new_call". Assumes that 529 // "sosn_map" is a map, specific to the translation of "s" to "new_call", 530 // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies. 531 SafePointScalarObjectNode* clone(Dict* sosn_map) const; 532 533 #ifndef PRODUCT 534 virtual void dump_spec(outputStream *st) const; 535 #endif 536 }; 537 538 539 // Simple container for the outgoing projections of a call. Useful 540 // for serious surgery on calls. 541 class CallProjections : public StackObj { 542 public: 543 Node* fallthrough_proj; 544 Node* fallthrough_catchproj; 545 Node* fallthrough_memproj; 546 Node* fallthrough_ioproj; 547 Node* catchall_catchproj; 548 Node* catchall_memproj; 549 Node* catchall_ioproj; 550 Node* resproj; 551 Node* exobj; 552 }; 553 554 class CallGenerator; 555 556 //------------------------------CallNode--------------------------------------- 557 // Call nodes now subsume the function of debug nodes at callsites, so they 558 // contain the functionality of a full scope chain of debug nodes. 559 class CallNode : public SafePointNode { 560 friend class VMStructs; 561 public: 562 const TypeFunc *_tf; // Function type 563 address _entry_point; // Address of method being called 564 float _cnt; // Estimate of number of times called 565 CallGenerator* _generator; // corresponding CallGenerator for some late inline calls 566 567 CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type) 568 : SafePointNode(tf->domain()->cnt(), NULL, adr_type), 569 _tf(tf), 570 _entry_point(addr), 571 _cnt(COUNT_UNKNOWN), 572 _generator(NULL) 573 { 574 init_class_id(Class_Call); 575 } 576 577 const TypeFunc* tf() const { return _tf; } 578 const address entry_point() const { return _entry_point; } 579 const float cnt() const { return _cnt; } 580 CallGenerator* generator() const { return _generator; } 581 582 void set_tf(const TypeFunc* tf) { _tf = tf; } 583 void set_entry_point(address p) { _entry_point = p; } 584 void set_cnt(float c) { _cnt = c; } 585 void set_generator(CallGenerator* cg) { _generator = cg; } 586 587 virtual const Type *bottom_type() const; 588 virtual const Type *Value( PhaseTransform *phase ) const; 589 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 590 virtual Node *Identity( PhaseTransform *phase ) { return this; } 591 virtual uint cmp( const Node &n ) const; 592 virtual uint size_of() const = 0; 593 virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const; 594 virtual Node *match( const ProjNode *proj, const Matcher *m ); 595 virtual uint ideal_reg() const { return NotAMachineReg; } 596 // Are we guaranteed that this node is a safepoint? Not true for leaf calls and 597 // for some macro nodes whose expansion does not have a safepoint on the fast path. 598 virtual bool guaranteed_safepoint() { return true; } 599 // For macro nodes, the JVMState gets modified during expansion. If calls 600 // use MachConstantBase, it gets modified during matching. So when cloning 601 // the node the JVMState must be cloned. Default is not to clone. 602 virtual void clone_jvms(Compile* C) { 603 if (C->needs_clone_jvms() && jvms() != NULL) { 604 set_jvms(jvms()->clone_deep(C)); 605 jvms()->set_map_deep(this); 606 } 607 } 608 609 // Returns true if the call may modify n 610 virtual bool may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase); 611 // Does this node have a use of n other than in debug information? 612 bool has_non_debug_use(Node *n); 613 // Returns the unique CheckCastPP of a call 614 // or result projection is there are several CheckCastPP 615 // or returns NULL if there is no one. 616 Node *result_cast(); 617 // Does this node returns pointer? 618 bool returns_pointer() const { 619 const TypeTuple *r = tf()->range(); 620 return (r->cnt() > TypeFunc::Parms && 621 r->field_at(TypeFunc::Parms)->isa_ptr()); 622 } 623 624 // Collect all the interesting edges from a call for use in 625 // replacing the call by something else. Used by macro expansion 626 // and the late inlining support. 627 void extract_projections(CallProjections* projs, bool separate_io_proj); 628 629 virtual uint match_edge(uint idx) const; 630 631 #ifndef PRODUCT 632 virtual void dump_req(outputStream *st = tty) const; 633 virtual void dump_spec(outputStream *st) const; 634 #endif 635 }; 636 637 638 //------------------------------CallJavaNode----------------------------------- 639 // Make a static or dynamic subroutine call node using Java calling 640 // convention. (The "Java" calling convention is the compiler's calling 641 // convention, as opposed to the interpreter's or that of native C.) 642 class CallJavaNode : public CallNode { 643 friend class VMStructs; 644 protected: 645 virtual uint cmp( const Node &n ) const; 646 virtual uint size_of() const; // Size is bigger 647 648 bool _optimized_virtual; 649 bool _method_handle_invoke; 650 ciMethod* _method; // Method being direct called 651 public: 652 const int _bci; // Byte Code Index of call byte code 653 CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci) 654 : CallNode(tf, addr, TypePtr::BOTTOM), 655 _method(method), _bci(bci), 656 _optimized_virtual(false), 657 _method_handle_invoke(false) 658 { 659 init_class_id(Class_CallJava); 660 } 661 662 virtual int Opcode() const; 663 ciMethod* method() const { return _method; } 664 void set_method(ciMethod *m) { _method = m; } 665 void set_optimized_virtual(bool f) { _optimized_virtual = f; } 666 bool is_optimized_virtual() const { return _optimized_virtual; } 667 void set_method_handle_invoke(bool f) { _method_handle_invoke = f; } 668 bool is_method_handle_invoke() const { return _method_handle_invoke; } 669 670 #ifndef PRODUCT 671 virtual void dump_spec(outputStream *st) const; 672 #endif 673 }; 674 675 //------------------------------CallStaticJavaNode----------------------------- 676 // Make a direct subroutine call using Java calling convention (for static 677 // calls and optimized virtual calls, plus calls to wrappers for run-time 678 // routines); generates static stub. 679 class CallStaticJavaNode : public CallJavaNode { 680 virtual uint cmp( const Node &n ) const; 681 virtual uint size_of() const; // Size is bigger 682 public: 683 CallStaticJavaNode(Compile* C, const TypeFunc* tf, address addr, ciMethod* method, int bci) 684 : CallJavaNode(tf, addr, method, bci), _name(NULL) { 685 init_class_id(Class_CallStaticJava); 686 if (C->eliminate_boxing() && (method != NULL) && method->is_boxing_method()) { 687 init_flags(Flag_is_macro); 688 C->add_macro_node(this); 689 } 690 _is_scalar_replaceable = false; 691 _is_non_escaping = false; 692 } 693 CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci, 694 const TypePtr* adr_type) 695 : CallJavaNode(tf, addr, NULL, bci), _name(name) { 696 init_class_id(Class_CallStaticJava); 697 // This node calls a runtime stub, which often has narrow memory effects. 698 _adr_type = adr_type; 699 _is_scalar_replaceable = false; 700 _is_non_escaping = false; 701 } 702 const char *_name; // Runtime wrapper name 703 704 // Result of Escape Analysis 705 bool _is_scalar_replaceable; 706 bool _is_non_escaping; 707 708 // If this is an uncommon trap, return the request code, else zero. 709 int uncommon_trap_request() const; 710 static int extract_uncommon_trap_request(const Node* call); 711 712 bool is_boxing_method() const { 713 return is_macro() && (method() != NULL) && method()->is_boxing_method(); 714 } 715 // Later inlining modifies the JVMState, so we need to clone it 716 // when the call node is cloned (because it is macro node). 717 virtual void clone_jvms(Compile* C) { 718 if ((jvms() != NULL) && is_boxing_method()) { 719 set_jvms(jvms()->clone_deep(C)); 720 jvms()->set_map_deep(this); 721 } 722 } 723 724 virtual int Opcode() const; 725 #ifndef PRODUCT 726 virtual void dump_spec(outputStream *st) const; 727 #endif 728 }; 729 730 //------------------------------CallDynamicJavaNode---------------------------- 731 // Make a dispatched call using Java calling convention. 732 class CallDynamicJavaNode : public CallJavaNode { 733 virtual uint cmp( const Node &n ) const; 734 virtual uint size_of() const; // Size is bigger 735 public: 736 CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) { 737 init_class_id(Class_CallDynamicJava); 738 } 739 740 int _vtable_index; 741 virtual int Opcode() const; 742 #ifndef PRODUCT 743 virtual void dump_spec(outputStream *st) const; 744 #endif 745 }; 746 747 //------------------------------CallRuntimeNode-------------------------------- 748 // Make a direct subroutine call node into compiled C++ code. 749 class CallRuntimeNode : public CallNode { 750 virtual uint cmp( const Node &n ) const; 751 virtual uint size_of() const; // Size is bigger 752 public: 753 CallRuntimeNode(const TypeFunc* tf, address addr, const char* name, 754 const TypePtr* adr_type) 755 : CallNode(tf, addr, adr_type), 756 _name(name) 757 { 758 init_class_id(Class_CallRuntime); 759 } 760 761 const char *_name; // Printable name, if _method is NULL 762 virtual int Opcode() const; 763 virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const; 764 765 #ifndef PRODUCT 766 virtual void dump_spec(outputStream *st) const; 767 #endif 768 }; 769 770 //------------------------------CallLeafNode----------------------------------- 771 // Make a direct subroutine call node into compiled C++ code, without 772 // safepoints 773 class CallLeafNode : public CallRuntimeNode { 774 public: 775 CallLeafNode(const TypeFunc* tf, address addr, const char* name, 776 const TypePtr* adr_type) 777 : CallRuntimeNode(tf, addr, name, adr_type) 778 { 779 init_class_id(Class_CallLeaf); 780 } 781 virtual int Opcode() const; 782 virtual bool guaranteed_safepoint() { return false; } 783 #ifndef PRODUCT 784 virtual void dump_spec(outputStream *st) const; 785 #endif 786 }; 787 788 //------------------------------CallLeafNoFPNode------------------------------- 789 // CallLeafNode, not using floating point or using it in the same manner as 790 // the generated code 791 class CallLeafNoFPNode : public CallLeafNode { 792 public: 793 CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name, 794 const TypePtr* adr_type) 795 : CallLeafNode(tf, addr, name, adr_type) 796 { 797 } 798 virtual int Opcode() const; 799 }; 800 801 802 //------------------------------Allocate--------------------------------------- 803 // High-level memory allocation 804 // 805 // AllocateNode and AllocateArrayNode are subclasses of CallNode because they will 806 // get expanded into a code sequence containing a call. Unlike other CallNodes, 807 // they have 2 memory projections and 2 i_o projections (which are distinguished by 808 // the _is_io_use flag in the projection.) This is needed when expanding the node in 809 // order to differentiate the uses of the projection on the normal control path from 810 // those on the exception return path. 811 // 812 class AllocateNode : public CallNode { 813 public: 814 enum { 815 // Output: 816 RawAddress = TypeFunc::Parms, // the newly-allocated raw address 817 // Inputs: 818 AllocSize = TypeFunc::Parms, // size (in bytes) of the new object 819 KlassNode, // type (maybe dynamic) of the obj. 820 InitialTest, // slow-path test (may be constant) 821 ALength, // array length (or TOP if none) 822 ParmLimit 823 }; 824 825 static const TypeFunc* alloc_type(const Type* t) { 826 const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms); 827 fields[AllocSize] = TypeInt::POS; 828 fields[KlassNode] = TypeInstPtr::NOTNULL; 829 fields[InitialTest] = TypeInt::BOOL; 830 fields[ALength] = t; // length (can be a bad length) 831 832 const TypeTuple *domain = TypeTuple::make(ParmLimit, fields); 833 834 // create result type (range) 835 fields = TypeTuple::fields(1); 836 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 837 838 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 839 840 return TypeFunc::make(domain, range); 841 } 842 843 // Result of Escape Analysis 844 bool _is_scalar_replaceable; 845 bool _is_non_escaping; 846 847 virtual uint size_of() const; // Size is bigger 848 AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio, 849 Node *size, Node *klass_node, Node *initial_test); 850 // Expansion modifies the JVMState, so we need to clone it 851 virtual void clone_jvms(Compile* C) { 852 if (jvms() != NULL) { 853 set_jvms(jvms()->clone_deep(C)); 854 jvms()->set_map_deep(this); 855 } 856 } 857 virtual int Opcode() const; 858 virtual uint ideal_reg() const { return Op_RegP; } 859 virtual bool guaranteed_safepoint() { return false; } 860 861 // allocations do not modify their arguments 862 virtual bool may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) { return false;} 863 864 // Pattern-match a possible usage of AllocateNode. 865 // Return null if no allocation is recognized. 866 // The operand is the pointer produced by the (possible) allocation. 867 // It must be a projection of the Allocate or its subsequent CastPP. 868 // (Note: This function is defined in file graphKit.cpp, near 869 // GraphKit::new_instance/new_array, whose output it recognizes.) 870 // The 'ptr' may not have an offset unless the 'offset' argument is given. 871 static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase); 872 873 // Fancy version which uses AddPNode::Ideal_base_and_offset to strip 874 // an offset, which is reported back to the caller. 875 // (Note: AllocateNode::Ideal_allocation is defined in graphKit.cpp.) 876 static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase, 877 intptr_t& offset); 878 879 // Dig the klass operand out of a (possible) allocation site. 880 static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) { 881 AllocateNode* allo = Ideal_allocation(ptr, phase); 882 return (allo == NULL) ? NULL : allo->in(KlassNode); 883 } 884 885 // Conservatively small estimate of offset of first non-header byte. 886 int minimum_header_size() { 887 return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 888 instanceOopDesc::base_offset_in_bytes(); 889 } 890 891 // Return the corresponding initialization barrier (or null if none). 892 // Walks out edges to find it... 893 // (Note: Both InitializeNode::allocation and AllocateNode::initialization 894 // are defined in graphKit.cpp, which sets up the bidirectional relation.) 895 InitializeNode* initialization(); 896 897 // Convenience for initialization->maybe_set_complete(phase) 898 bool maybe_set_complete(PhaseGVN* phase); 899 900 #ifdef AARCH64 901 // Return true if allocation doesn't escape thread, its escape state 902 // needs be noEscape or ArgEscape. InitializeNode._does_not_escape 903 // is true when its allocation's escape state is noEscape or 904 // ArgEscape. In case allocation's InitializeNode is NULL, check 905 // AlllocateNode._is_non_escaping flag. 906 // AlllocateNode._is_non_escaping is true when its escape state is 907 // noEscape. 908 bool does_not_escape_thread() { 909 InitializeNode* init = NULL; 910 return _is_non_escaping || (((init = initialization()) != NULL) && init->does_not_escape()); 911 } 912 #endif 913 }; 914 915 //------------------------------AllocateArray--------------------------------- 916 // 917 // High-level array allocation 918 // 919 class AllocateArrayNode : public AllocateNode { 920 public: 921 AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio, 922 Node* size, Node* klass_node, Node* initial_test, 923 Node* count_val 924 ) 925 : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node, 926 initial_test) 927 { 928 init_class_id(Class_AllocateArray); 929 set_req(AllocateNode::ALength, count_val); 930 } 931 virtual int Opcode() const; 932 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 933 934 // Dig the length operand out of a array allocation site. 935 Node* Ideal_length() { 936 return in(AllocateNode::ALength); 937 } 938 939 // Dig the length operand out of a array allocation site and narrow the 940 // type with a CastII, if necesssary 941 Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true); 942 943 // Pattern-match a possible usage of AllocateArrayNode. 944 // Return null if no allocation is recognized. 945 static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) { 946 AllocateNode* allo = Ideal_allocation(ptr, phase); 947 return (allo == NULL || !allo->is_AllocateArray()) 948 ? NULL : allo->as_AllocateArray(); 949 } 950 }; 951 952 //------------------------------AbstractLockNode----------------------------------- 953 class AbstractLockNode: public CallNode { 954 private: 955 enum { 956 Regular = 0, // Normal lock 957 NonEscObj, // Lock is used for non escaping object 958 Coarsened, // Lock was coarsened 959 Nested // Nested lock 960 } _kind; 961 #ifndef PRODUCT 962 NamedCounter* _counter; 963 #endif 964 965 protected: 966 // helper functions for lock elimination 967 // 968 969 bool find_matching_unlock(const Node* ctrl, LockNode* lock, 970 GrowableArray<AbstractLockNode*> &lock_ops); 971 bool find_lock_and_unlock_through_if(Node* node, LockNode* lock, 972 GrowableArray<AbstractLockNode*> &lock_ops); 973 bool find_unlocks_for_region(const RegionNode* region, LockNode* lock, 974 GrowableArray<AbstractLockNode*> &lock_ops); 975 LockNode *find_matching_lock(UnlockNode* unlock); 976 977 // Update the counter to indicate that this lock was eliminated. 978 void set_eliminated_lock_counter() PRODUCT_RETURN; 979 980 public: 981 AbstractLockNode(const TypeFunc *tf) 982 : CallNode(tf, NULL, TypeRawPtr::BOTTOM), 983 _kind(Regular) 984 { 985 #ifndef PRODUCT 986 _counter = NULL; 987 #endif 988 } 989 virtual int Opcode() const = 0; 990 Node * obj_node() const {return in(TypeFunc::Parms + 0); } 991 Node * box_node() const {return in(TypeFunc::Parms + 1); } 992 Node * fastlock_node() const {return in(TypeFunc::Parms + 2); } 993 void set_box_node(Node* box) { set_req(TypeFunc::Parms + 1, box); } 994 995 const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;} 996 997 virtual uint size_of() const { return sizeof(*this); } 998 999 bool is_eliminated() const { return (_kind != Regular); } 1000 bool is_non_esc_obj() const { return (_kind == NonEscObj); } 1001 bool is_coarsened() const { return (_kind == Coarsened); } 1002 bool is_nested() const { return (_kind == Nested); } 1003 1004 const char * kind_as_string() const; 1005 void log_lock_optimization(Compile* c, const char * tag) const; 1006 1007 void set_non_esc_obj() { _kind = NonEscObj; set_eliminated_lock_counter(); } 1008 void set_coarsened() { _kind = Coarsened; set_eliminated_lock_counter(); } 1009 void set_nested() { _kind = Nested; set_eliminated_lock_counter(); } 1010 1011 // locking does not modify its arguments 1012 virtual bool may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase){ return false;} 1013 1014 #ifndef PRODUCT 1015 void create_lock_counter(JVMState* s); 1016 NamedCounter* counter() const { return _counter; } 1017 #endif 1018 }; 1019 1020 //------------------------------Lock--------------------------------------- 1021 // High-level lock operation 1022 // 1023 // This is a subclass of CallNode because it is a macro node which gets expanded 1024 // into a code sequence containing a call. This node takes 3 "parameters": 1025 // 0 - object to lock 1026 // 1 - a BoxLockNode 1027 // 2 - a FastLockNode 1028 // 1029 class LockNode : public AbstractLockNode { 1030 public: 1031 1032 static const TypeFunc *lock_type() { 1033 // create input type (domain) 1034 const Type **fields = TypeTuple::fields(3); 1035 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 1036 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock 1037 fields[TypeFunc::Parms+2] = TypeInt::BOOL; // FastLock 1038 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields); 1039 1040 // create result type (range) 1041 fields = TypeTuple::fields(0); 1042 1043 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1044 1045 return TypeFunc::make(domain,range); 1046 } 1047 1048 virtual int Opcode() const; 1049 virtual uint size_of() const; // Size is bigger 1050 LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) { 1051 init_class_id(Class_Lock); 1052 init_flags(Flag_is_macro); 1053 C->add_macro_node(this); 1054 } 1055 virtual bool guaranteed_safepoint() { return false; } 1056 1057 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 1058 // Expansion modifies the JVMState, so we need to clone it 1059 virtual void clone_jvms(Compile* C) { 1060 if (jvms() != NULL) { 1061 set_jvms(jvms()->clone_deep(C)); 1062 jvms()->set_map_deep(this); 1063 } 1064 } 1065 1066 bool is_nested_lock_region(); // Is this Lock nested? 1067 bool is_nested_lock_region(Compile * c); // Why isn't this Lock nested? 1068 }; 1069 1070 //------------------------------Unlock--------------------------------------- 1071 // High-level unlock operation 1072 class UnlockNode : public AbstractLockNode { 1073 private: 1074 #ifdef ASSERT 1075 JVMState* const _dbg_jvms; // Pointer to list of JVM State objects 1076 #endif 1077 public: 1078 virtual int Opcode() const; 1079 virtual uint size_of() const; // Size is bigger 1080 UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) 1081 #ifdef ASSERT 1082 , _dbg_jvms(NULL) 1083 #endif 1084 { 1085 init_class_id(Class_Unlock); 1086 init_flags(Flag_is_macro); 1087 C->add_macro_node(this); 1088 } 1089 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 1090 // unlock is never a safepoint 1091 virtual bool guaranteed_safepoint() { return false; } 1092 #ifdef ASSERT 1093 void set_dbg_jvms(JVMState* s) { 1094 *(JVMState**)&_dbg_jvms = s; // override const attribute in the accessor 1095 } 1096 JVMState* dbg_jvms() const { return _dbg_jvms; } 1097 #else 1098 JVMState* dbg_jvms() const { return NULL; } 1099 #endif 1100 }; 1101 1102 #endif // SHARE_VM_OPTO_CALLNODE_HPP