1 /* 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/systemDictionary.hpp" 27 #include "memory/allocation.inline.hpp" 28 #include "oops/objArrayKlass.hpp" 29 #include "opto/addnode.hpp" 30 #include "opto/cfgnode.hpp" 31 #include "opto/connode.hpp" 32 #include "opto/loopnode.hpp" 33 #include "opto/machnode.hpp" 34 #include "opto/mulnode.hpp" 35 #include "opto/phaseX.hpp" 36 #include "opto/regmask.hpp" 37 #include "opto/runtime.hpp" 38 #include "opto/subnode.hpp" 39 #if INCLUDE_ALL_GCS 40 #include "gc_implementation/shenandoah/c2/shenandoahBarrierSetC2.hpp" 41 #include "gc_implementation/shenandoah/c2/shenandoahSupport.hpp" 42 #endif 43 44 // Portions of code courtesy of Clifford Click 45 46 // Optimization - Graph Style 47 48 //============================================================================= 49 //------------------------------Value------------------------------------------ 50 // Compute the type of the RegionNode. 51 const Type *RegionNode::Value( PhaseTransform *phase ) const { 52 for( uint i=1; i<req(); ++i ) { // For all paths in 53 Node *n = in(i); // Get Control source 54 if( !n ) continue; // Missing inputs are TOP 55 if( phase->type(n) == Type::CONTROL ) 56 return Type::CONTROL; 57 } 58 return Type::TOP; // All paths dead? Then so are we 59 } 60 61 //------------------------------Identity--------------------------------------- 62 // Check for Region being Identity. 63 Node *RegionNode::Identity( PhaseTransform *phase ) { 64 // Cannot have Region be an identity, even if it has only 1 input. 65 // Phi users cannot have their Region input folded away for them, 66 // since they need to select the proper data input 67 return this; 68 } 69 70 //------------------------------merge_region----------------------------------- 71 // If a Region flows into a Region, merge into one big happy merge. This is 72 // hard to do if there is stuff that has to happen 73 static Node *merge_region(RegionNode *region, PhaseGVN *phase) { 74 if( region->Opcode() != Op_Region ) // Do not do to LoopNodes 75 return NULL; 76 Node *progress = NULL; // Progress flag 77 PhaseIterGVN *igvn = phase->is_IterGVN(); 78 79 uint rreq = region->req(); 80 for( uint i = 1; i < rreq; i++ ) { 81 Node *r = region->in(i); 82 if( r && r->Opcode() == Op_Region && // Found a region? 83 r->in(0) == r && // Not already collapsed? 84 r != region && // Avoid stupid situations 85 r->outcnt() == 2 ) { // Self user and 'region' user only? 86 assert(!r->as_Region()->has_phi(), "no phi users"); 87 if( !progress ) { // No progress 88 if (region->has_phi()) { 89 return NULL; // Only flatten if no Phi users 90 // igvn->hash_delete( phi ); 91 } 92 igvn->hash_delete( region ); 93 progress = region; // Making progress 94 } 95 igvn->hash_delete( r ); 96 97 // Append inputs to 'r' onto 'region' 98 for( uint j = 1; j < r->req(); j++ ) { 99 // Move an input from 'r' to 'region' 100 region->add_req(r->in(j)); 101 r->set_req(j, phase->C->top()); 102 // Update phis of 'region' 103 //for( uint k = 0; k < max; k++ ) { 104 // Node *phi = region->out(k); 105 // if( phi->is_Phi() ) { 106 // phi->add_req(phi->in(i)); 107 // } 108 //} 109 110 rreq++; // One more input to Region 111 } // Found a region to merge into Region 112 // Clobber pointer to the now dead 'r' 113 region->set_req(i, phase->C->top()); 114 } 115 } 116 117 return progress; 118 } 119 120 121 122 //--------------------------------has_phi-------------------------------------- 123 // Helper function: Return any PhiNode that uses this region or NULL 124 PhiNode* RegionNode::has_phi() const { 125 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 126 Node* phi = fast_out(i); 127 if (phi->is_Phi()) { // Check for Phi users 128 assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)"); 129 return phi->as_Phi(); // this one is good enough 130 } 131 } 132 133 return NULL; 134 } 135 136 137 //-----------------------------has_unique_phi---------------------------------- 138 // Helper function: Return the only PhiNode that uses this region or NULL 139 PhiNode* RegionNode::has_unique_phi() const { 140 // Check that only one use is a Phi 141 PhiNode* only_phi = NULL; 142 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 143 Node* phi = fast_out(i); 144 if (phi->is_Phi()) { // Check for Phi users 145 assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)"); 146 if (only_phi == NULL) { 147 only_phi = phi->as_Phi(); 148 } else { 149 return NULL; // multiple phis 150 } 151 } 152 } 153 154 return only_phi; 155 } 156 157 158 //------------------------------check_phi_clipping----------------------------- 159 // Helper function for RegionNode's identification of FP clipping 160 // Check inputs to the Phi 161 static bool check_phi_clipping( PhiNode *phi, ConNode * &min, uint &min_idx, ConNode * &max, uint &max_idx, Node * &val, uint &val_idx ) { 162 min = NULL; 163 max = NULL; 164 val = NULL; 165 min_idx = 0; 166 max_idx = 0; 167 val_idx = 0; 168 uint phi_max = phi->req(); 169 if( phi_max == 4 ) { 170 for( uint j = 1; j < phi_max; ++j ) { 171 Node *n = phi->in(j); 172 int opcode = n->Opcode(); 173 switch( opcode ) { 174 case Op_ConI: 175 { 176 if( min == NULL ) { 177 min = n->Opcode() == Op_ConI ? (ConNode*)n : NULL; 178 min_idx = j; 179 } else { 180 max = n->Opcode() == Op_ConI ? (ConNode*)n : NULL; 181 max_idx = j; 182 if( min->get_int() > max->get_int() ) { 183 // Swap min and max 184 ConNode *temp; 185 uint temp_idx; 186 temp = min; min = max; max = temp; 187 temp_idx = min_idx; min_idx = max_idx; max_idx = temp_idx; 188 } 189 } 190 } 191 break; 192 default: 193 { 194 val = n; 195 val_idx = j; 196 } 197 break; 198 } 199 } 200 } 201 return ( min && max && val && (min->get_int() <= 0) && (max->get_int() >=0) ); 202 } 203 204 205 //------------------------------check_if_clipping------------------------------ 206 // Helper function for RegionNode's identification of FP clipping 207 // Check that inputs to Region come from two IfNodes, 208 // 209 // If 210 // False True 211 // If | 212 // False True | 213 // | | | 214 // RegionNode_inputs 215 // 216 static bool check_if_clipping( const RegionNode *region, IfNode * &bot_if, IfNode * &top_if ) { 217 top_if = NULL; 218 bot_if = NULL; 219 220 // Check control structure above RegionNode for (if ( if ) ) 221 Node *in1 = region->in(1); 222 Node *in2 = region->in(2); 223 Node *in3 = region->in(3); 224 // Check that all inputs are projections 225 if( in1->is_Proj() && in2->is_Proj() && in3->is_Proj() ) { 226 Node *in10 = in1->in(0); 227 Node *in20 = in2->in(0); 228 Node *in30 = in3->in(0); 229 // Check that #1 and #2 are ifTrue and ifFalse from same If 230 if( in10 != NULL && in10->is_If() && 231 in20 != NULL && in20->is_If() && 232 in30 != NULL && in30->is_If() && in10 == in20 && 233 (in1->Opcode() != in2->Opcode()) ) { 234 Node *in100 = in10->in(0); 235 Node *in1000 = (in100 != NULL && in100->is_Proj()) ? in100->in(0) : NULL; 236 // Check that control for in10 comes from other branch of IF from in3 237 if( in1000 != NULL && in1000->is_If() && 238 in30 == in1000 && (in3->Opcode() != in100->Opcode()) ) { 239 // Control pattern checks 240 top_if = (IfNode*)in1000; 241 bot_if = (IfNode*)in10; 242 } 243 } 244 } 245 246 return (top_if != NULL); 247 } 248 249 250 //------------------------------check_convf2i_clipping------------------------- 251 // Helper function for RegionNode's identification of FP clipping 252 // Verify that the value input to the phi comes from "ConvF2I; LShift; RShift" 253 static bool check_convf2i_clipping( PhiNode *phi, uint idx, ConvF2INode * &convf2i, Node *min, Node *max) { 254 convf2i = NULL; 255 256 // Check for the RShiftNode 257 Node *rshift = phi->in(idx); 258 assert( rshift, "Previous checks ensure phi input is present"); 259 if( rshift->Opcode() != Op_RShiftI ) { return false; } 260 261 // Check for the LShiftNode 262 Node *lshift = rshift->in(1); 263 assert( lshift, "Previous checks ensure phi input is present"); 264 if( lshift->Opcode() != Op_LShiftI ) { return false; } 265 266 // Check for the ConvF2INode 267 Node *conv = lshift->in(1); 268 if( conv->Opcode() != Op_ConvF2I ) { return false; } 269 270 // Check that shift amounts are only to get sign bits set after F2I 271 jint max_cutoff = max->get_int(); 272 jint min_cutoff = min->get_int(); 273 jint left_shift = lshift->in(2)->get_int(); 274 jint right_shift = rshift->in(2)->get_int(); 275 jint max_post_shift = nth_bit(BitsPerJavaInteger - left_shift - 1); 276 if( left_shift != right_shift || 277 0 > left_shift || left_shift >= BitsPerJavaInteger || 278 max_post_shift < max_cutoff || 279 max_post_shift < -min_cutoff ) { 280 // Shifts are necessary but current transformation eliminates them 281 return false; 282 } 283 284 // OK to return the result of ConvF2I without shifting 285 convf2i = (ConvF2INode*)conv; 286 return true; 287 } 288 289 290 //------------------------------check_compare_clipping------------------------- 291 // Helper function for RegionNode's identification of FP clipping 292 static bool check_compare_clipping( bool less_than, IfNode *iff, ConNode *limit, Node * & input ) { 293 Node *i1 = iff->in(1); 294 if ( !i1->is_Bool() ) { return false; } 295 BoolNode *bool1 = i1->as_Bool(); 296 if( less_than && bool1->_test._test != BoolTest::le ) { return false; } 297 else if( !less_than && bool1->_test._test != BoolTest::lt ) { return false; } 298 const Node *cmpF = bool1->in(1); 299 if( cmpF->Opcode() != Op_CmpF ) { return false; } 300 // Test that the float value being compared against 301 // is equivalent to the int value used as a limit 302 Node *nodef = cmpF->in(2); 303 if( nodef->Opcode() != Op_ConF ) { return false; } 304 jfloat conf = nodef->getf(); 305 jint coni = limit->get_int(); 306 if( ((int)conf) != coni ) { return false; } 307 input = cmpF->in(1); 308 return true; 309 } 310 311 //------------------------------is_unreachable_region-------------------------- 312 // Find if the Region node is reachable from the root. 313 bool RegionNode::is_unreachable_region(PhaseGVN *phase) const { 314 assert(req() == 2, ""); 315 316 // First, cut the simple case of fallthrough region when NONE of 317 // region's phis references itself directly or through a data node. 318 uint max = outcnt(); 319 uint i; 320 for (i = 0; i < max; i++) { 321 Node* phi = raw_out(i); 322 if (phi != NULL && phi->is_Phi()) { 323 assert(phase->eqv(phi->in(0), this) && phi->req() == 2, ""); 324 if (phi->outcnt() == 0) 325 continue; // Safe case - no loops 326 if (phi->outcnt() == 1) { 327 Node* u = phi->raw_out(0); 328 // Skip if only one use is an other Phi or Call or Uncommon trap. 329 // It is safe to consider this case as fallthrough. 330 if (u != NULL && (u->is_Phi() || u->is_CFG())) 331 continue; 332 } 333 // Check when phi references itself directly or through an other node. 334 if (phi->as_Phi()->simple_data_loop_check(phi->in(1)) >= PhiNode::Unsafe) 335 break; // Found possible unsafe data loop. 336 } 337 } 338 if (i >= max) 339 return false; // An unsafe case was NOT found - don't need graph walk. 340 341 // Unsafe case - check if the Region node is reachable from root. 342 ResourceMark rm; 343 344 Arena *a = Thread::current()->resource_area(); 345 Node_List nstack(a); 346 VectorSet visited(a); 347 348 // Mark all control nodes reachable from root outputs 349 Node *n = (Node*)phase->C->root(); 350 nstack.push(n); 351 visited.set(n->_idx); 352 while (nstack.size() != 0) { 353 n = nstack.pop(); 354 uint max = n->outcnt(); 355 for (uint i = 0; i < max; i++) { 356 Node* m = n->raw_out(i); 357 if (m != NULL && m->is_CFG()) { 358 if (phase->eqv(m, this)) { 359 return false; // We reached the Region node - it is not dead. 360 } 361 if (!visited.test_set(m->_idx)) 362 nstack.push(m); 363 } 364 } 365 } 366 367 return true; // The Region node is unreachable - it is dead. 368 } 369 370 bool RegionNode::try_clean_mem_phi(PhaseGVN *phase) { 371 // Incremental inlining + PhaseStringOpts sometimes produce: 372 // 373 // cmpP with 1 top input 374 // | 375 // If 376 // / \ 377 // IfFalse IfTrue /- Some Node 378 // \ / / / 379 // Region / /-MergeMem 380 // \---Phi 381 // 382 // 383 // It's expected by PhaseStringOpts that the Region goes away and is 384 // replaced by If's control input but because there's still a Phi, 385 // the Region stays in the graph. The top input from the cmpP is 386 // propagated forward and a subgraph that is useful goes away. The 387 // code below replaces the Phi with the MergeMem so that the Region 388 // is simplified. 389 390 PhiNode* phi = has_unique_phi(); 391 if (phi && phi->type() == Type::MEMORY && req() == 3 && phi->is_diamond_phi(true)) { 392 MergeMemNode* m = NULL; 393 assert(phi->req() == 3, "same as region"); 394 for (uint i = 1; i < 3; ++i) { 395 Node *mem = phi->in(i); 396 if (mem && mem->is_MergeMem() && in(i)->outcnt() == 1) { 397 // Nothing is control-dependent on path #i except the region itself. 398 m = mem->as_MergeMem(); 399 uint j = 3 - i; 400 Node* other = phi->in(j); 401 if (other && other == m->base_memory()) { 402 // m is a successor memory to other, and is not pinned inside the diamond, so push it out. 403 // This will allow the diamond to collapse completely. 404 phase->is_IterGVN()->replace_node(phi, m); 405 return true; 406 } 407 } 408 } 409 } 410 return false; 411 } 412 413 //------------------------------Ideal------------------------------------------ 414 // Return a node which is more "ideal" than the current node. Must preserve 415 // the CFG, but we can still strip out dead paths. 416 Node *RegionNode::Ideal(PhaseGVN *phase, bool can_reshape) { 417 if( !can_reshape && !in(0) ) return NULL; // Already degraded to a Copy 418 assert(!in(0) || !in(0)->is_Root(), "not a specially hidden merge"); 419 420 // Check for RegionNode with no Phi users and both inputs come from either 421 // arm of the same IF. If found, then the control-flow split is useless. 422 bool has_phis = false; 423 if (can_reshape) { // Need DU info to check for Phi users 424 has_phis = (has_phi() != NULL); // Cache result 425 if (has_phis && try_clean_mem_phi(phase)) { 426 has_phis = false; 427 } 428 429 if (!has_phis) { // No Phi users? Nothing merging? 430 for (uint i = 1; i < req()-1; i++) { 431 Node *if1 = in(i); 432 if( !if1 ) continue; 433 Node *iff = if1->in(0); 434 if( !iff || !iff->is_If() ) continue; 435 for( uint j=i+1; j<req(); j++ ) { 436 if( in(j) && in(j)->in(0) == iff && 437 if1->Opcode() != in(j)->Opcode() ) { 438 // Add the IF Projections to the worklist. They (and the IF itself) 439 // will be eliminated if dead. 440 phase->is_IterGVN()->add_users_to_worklist(iff); 441 set_req(i, iff->in(0));// Skip around the useless IF diamond 442 set_req(j, NULL); 443 return this; // Record progress 444 } 445 } 446 } 447 } 448 } 449 450 // Remove TOP or NULL input paths. If only 1 input path remains, this Region 451 // degrades to a copy. 452 bool add_to_worklist = false; 453 int cnt = 0; // Count of values merging 454 DEBUG_ONLY( int cnt_orig = req(); ) // Save original inputs count 455 int del_it = 0; // The last input path we delete 456 // For all inputs... 457 for( uint i=1; i<req(); ++i ){// For all paths in 458 Node *n = in(i); // Get the input 459 if( n != NULL ) { 460 // Remove useless control copy inputs 461 if( n->is_Region() && n->as_Region()->is_copy() ) { 462 set_req(i, n->nonnull_req()); 463 i--; 464 continue; 465 } 466 if( n->is_Proj() ) { // Remove useless rethrows 467 Node *call = n->in(0); 468 if (call->is_Call() && call->as_Call()->entry_point() == OptoRuntime::rethrow_stub()) { 469 set_req(i, call->in(0)); 470 i--; 471 continue; 472 } 473 } 474 if( phase->type(n) == Type::TOP ) { 475 set_req(i, NULL); // Ignore TOP inputs 476 i--; 477 continue; 478 } 479 cnt++; // One more value merging 480 481 } else if (can_reshape) { // Else found dead path with DU info 482 PhaseIterGVN *igvn = phase->is_IterGVN(); 483 del_req(i); // Yank path from self 484 del_it = i; 485 uint max = outcnt(); 486 DUIterator j; 487 bool progress = true; 488 while(progress) { // Need to establish property over all users 489 progress = false; 490 for (j = outs(); has_out(j); j++) { 491 Node *n = out(j); 492 if( n->req() != req() && n->is_Phi() ) { 493 assert( n->in(0) == this, "" ); 494 igvn->hash_delete(n); // Yank from hash before hacking edges 495 n->set_req_X(i,NULL,igvn);// Correct DU info 496 n->del_req(i); // Yank path from Phis 497 if( max != outcnt() ) { 498 progress = true; 499 j = refresh_out_pos(j); 500 max = outcnt(); 501 } 502 } 503 } 504 } 505 add_to_worklist = true; 506 i--; 507 } 508 } 509 510 if (can_reshape && cnt == 1) { 511 // Is it dead loop? 512 // If it is LoopNopde it had 2 (+1 itself) inputs and 513 // one of them was cut. The loop is dead if it was EntryContol. 514 // Loop node may have only one input because entry path 515 // is removed in PhaseIdealLoop::Dominators(). 516 assert(!this->is_Loop() || cnt_orig <= 3, "Loop node should have 3 or less inputs"); 517 if (this->is_Loop() && (del_it == LoopNode::EntryControl || 518 del_it == 0 && is_unreachable_region(phase)) || 519 !this->is_Loop() && has_phis && is_unreachable_region(phase)) { 520 // Yes, the region will be removed during the next step below. 521 // Cut the backedge input and remove phis since no data paths left. 522 // We don't cut outputs to other nodes here since we need to put them 523 // on the worklist. 524 del_req(1); 525 cnt = 0; 526 assert( req() == 1, "no more inputs expected" ); 527 uint max = outcnt(); 528 bool progress = true; 529 Node *top = phase->C->top(); 530 PhaseIterGVN *igvn = phase->is_IterGVN(); 531 DUIterator j; 532 while(progress) { 533 progress = false; 534 for (j = outs(); has_out(j); j++) { 535 Node *n = out(j); 536 if( n->is_Phi() ) { 537 assert( igvn->eqv(n->in(0), this), "" ); 538 assert( n->req() == 2 && n->in(1) != NULL, "Only one data input expected" ); 539 // Break dead loop data path. 540 // Eagerly replace phis with top to avoid phis copies generation. 541 igvn->replace_node(n, top); 542 if( max != outcnt() ) { 543 progress = true; 544 j = refresh_out_pos(j); 545 max = outcnt(); 546 } 547 } 548 } 549 } 550 add_to_worklist = true; 551 } 552 } 553 if (add_to_worklist) { 554 phase->is_IterGVN()->add_users_to_worklist(this); // Revisit collapsed Phis 555 } 556 557 if( cnt <= 1 ) { // Only 1 path in? 558 set_req(0, NULL); // Null control input for region copy 559 if( cnt == 0 && !can_reshape) { // Parse phase - leave the node as it is. 560 // No inputs or all inputs are NULL. 561 return NULL; 562 } else if (can_reshape) { // Optimization phase - remove the node 563 PhaseIterGVN *igvn = phase->is_IterGVN(); 564 Node *parent_ctrl; 565 if( cnt == 0 ) { 566 assert( req() == 1, "no inputs expected" ); 567 // During IGVN phase such region will be subsumed by TOP node 568 // so region's phis will have TOP as control node. 569 // Kill phis here to avoid it. PhiNode::is_copy() will be always false. 570 // Also set other user's input to top. 571 parent_ctrl = phase->C->top(); 572 } else { 573 // The fallthrough case since we already checked dead loops above. 574 parent_ctrl = in(1); 575 assert(parent_ctrl != NULL, "Region is a copy of some non-null control"); 576 assert(!igvn->eqv(parent_ctrl, this), "Close dead loop"); 577 } 578 if (!add_to_worklist) 579 igvn->add_users_to_worklist(this); // Check for further allowed opts 580 for (DUIterator_Last imin, i = last_outs(imin); i >= imin; --i) { 581 Node* n = last_out(i); 582 igvn->hash_delete(n); // Remove from worklist before modifying edges 583 if( n->is_Phi() ) { // Collapse all Phis 584 // Eagerly replace phis to avoid copies generation. 585 Node* in; 586 if( cnt == 0 ) { 587 assert( n->req() == 1, "No data inputs expected" ); 588 in = parent_ctrl; // replaced by top 589 } else { 590 assert( n->req() == 2 && n->in(1) != NULL, "Only one data input expected" ); 591 in = n->in(1); // replaced by unique input 592 if( n->as_Phi()->is_unsafe_data_reference(in) ) 593 in = phase->C->top(); // replaced by top 594 } 595 if (n->outcnt() == 0) { 596 in = phase->C->top(); 597 } 598 igvn->replace_node(n, in); 599 } 600 else if( n->is_Region() ) { // Update all incoming edges 601 assert( !igvn->eqv(n, this), "Must be removed from DefUse edges"); 602 uint uses_found = 0; 603 for( uint k=1; k < n->req(); k++ ) { 604 if( n->in(k) == this ) { 605 n->set_req(k, parent_ctrl); 606 uses_found++; 607 } 608 } 609 if( uses_found > 1 ) { // (--i) done at the end of the loop. 610 i -= (uses_found - 1); 611 } 612 } 613 else { 614 assert( igvn->eqv(n->in(0), this), "Expect RegionNode to be control parent"); 615 n->set_req(0, parent_ctrl); 616 } 617 #ifdef ASSERT 618 for( uint k=0; k < n->req(); k++ ) { 619 assert( !igvn->eqv(n->in(k), this), "All uses of RegionNode should be gone"); 620 } 621 #endif 622 } 623 // Remove the RegionNode itself from DefUse info 624 igvn->remove_dead_node(this); 625 return NULL; 626 } 627 return this; // Record progress 628 } 629 630 631 // If a Region flows into a Region, merge into one big happy merge. 632 if (can_reshape) { 633 Node *m = merge_region(this, phase); 634 if (m != NULL) return m; 635 } 636 637 // Check if this region is the root of a clipping idiom on floats 638 if( ConvertFloat2IntClipping && can_reshape && req() == 4 ) { 639 // Check that only one use is a Phi and that it simplifies to two constants + 640 PhiNode* phi = has_unique_phi(); 641 if (phi != NULL) { // One Phi user 642 // Check inputs to the Phi 643 ConNode *min; 644 ConNode *max; 645 Node *val; 646 uint min_idx; 647 uint max_idx; 648 uint val_idx; 649 if( check_phi_clipping( phi, min, min_idx, max, max_idx, val, val_idx ) ) { 650 IfNode *top_if; 651 IfNode *bot_if; 652 if( check_if_clipping( this, bot_if, top_if ) ) { 653 // Control pattern checks, now verify compares 654 Node *top_in = NULL; // value being compared against 655 Node *bot_in = NULL; 656 if( check_compare_clipping( true, bot_if, min, bot_in ) && 657 check_compare_clipping( false, top_if, max, top_in ) ) { 658 if( bot_in == top_in ) { 659 PhaseIterGVN *gvn = phase->is_IterGVN(); 660 assert( gvn != NULL, "Only had DefUse info in IterGVN"); 661 // Only remaining check is that bot_in == top_in == (Phi's val + mods) 662 663 // Check for the ConvF2INode 664 ConvF2INode *convf2i; 665 if( check_convf2i_clipping( phi, val_idx, convf2i, min, max ) && 666 convf2i->in(1) == bot_in ) { 667 // Matched pattern, including LShiftI; RShiftI, replace with integer compares 668 // max test 669 Node *cmp = gvn->register_new_node_with_optimizer(new (phase->C) CmpINode( convf2i, min )); 670 Node *boo = gvn->register_new_node_with_optimizer(new (phase->C) BoolNode( cmp, BoolTest::lt )); 671 IfNode *iff = (IfNode*)gvn->register_new_node_with_optimizer(new (phase->C) IfNode( top_if->in(0), boo, PROB_UNLIKELY_MAG(5), top_if->_fcnt )); 672 Node *if_min= gvn->register_new_node_with_optimizer(new (phase->C) IfTrueNode (iff)); 673 Node *ifF = gvn->register_new_node_with_optimizer(new (phase->C) IfFalseNode(iff)); 674 // min test 675 cmp = gvn->register_new_node_with_optimizer(new (phase->C) CmpINode( convf2i, max )); 676 boo = gvn->register_new_node_with_optimizer(new (phase->C) BoolNode( cmp, BoolTest::gt )); 677 iff = (IfNode*)gvn->register_new_node_with_optimizer(new (phase->C) IfNode( ifF, boo, PROB_UNLIKELY_MAG(5), bot_if->_fcnt )); 678 Node *if_max= gvn->register_new_node_with_optimizer(new (phase->C) IfTrueNode (iff)); 679 ifF = gvn->register_new_node_with_optimizer(new (phase->C) IfFalseNode(iff)); 680 // update input edges to region node 681 set_req_X( min_idx, if_min, gvn ); 682 set_req_X( max_idx, if_max, gvn ); 683 set_req_X( val_idx, ifF, gvn ); 684 // remove unnecessary 'LShiftI; RShiftI' idiom 685 gvn->hash_delete(phi); 686 phi->set_req_X( val_idx, convf2i, gvn ); 687 gvn->hash_find_insert(phi); 688 // Return transformed region node 689 return this; 690 } 691 } 692 } 693 } 694 } 695 } 696 } 697 698 return NULL; 699 } 700 701 702 703 const RegMask &RegionNode::out_RegMask() const { 704 return RegMask::Empty; 705 } 706 707 // Find the one non-null required input. RegionNode only 708 Node *Node::nonnull_req() const { 709 assert( is_Region(), "" ); 710 for( uint i = 1; i < _cnt; i++ ) 711 if( in(i) ) 712 return in(i); 713 ShouldNotReachHere(); 714 return NULL; 715 } 716 717 718 //============================================================================= 719 // note that these functions assume that the _adr_type field is flattened 720 uint PhiNode::hash() const { 721 const Type* at = _adr_type; 722 return TypeNode::hash() + (at ? at->hash() : 0); 723 } 724 uint PhiNode::cmp( const Node &n ) const { 725 return TypeNode::cmp(n) && _adr_type == ((PhiNode&)n)._adr_type; 726 } 727 static inline 728 const TypePtr* flatten_phi_adr_type(const TypePtr* at) { 729 if (at == NULL || at == TypePtr::BOTTOM) return at; 730 return Compile::current()->alias_type(at)->adr_type(); 731 } 732 733 //----------------------------make--------------------------------------------- 734 // create a new phi with edges matching r and set (initially) to x 735 PhiNode* PhiNode::make(Node* r, Node* x, const Type *t, const TypePtr* at) { 736 uint preds = r->req(); // Number of predecessor paths 737 assert(t != Type::MEMORY || at == flatten_phi_adr_type(at), "flatten at"); 738 PhiNode* p = new (Compile::current()) PhiNode(r, t, at); 739 for (uint j = 1; j < preds; j++) { 740 // Fill in all inputs, except those which the region does not yet have 741 if (r->in(j) != NULL) 742 p->init_req(j, x); 743 } 744 return p; 745 } 746 PhiNode* PhiNode::make(Node* r, Node* x) { 747 const Type* t = x->bottom_type(); 748 const TypePtr* at = NULL; 749 if (t == Type::MEMORY) at = flatten_phi_adr_type(x->adr_type()); 750 return make(r, x, t, at); 751 } 752 PhiNode* PhiNode::make_blank(Node* r, Node* x) { 753 const Type* t = x->bottom_type(); 754 const TypePtr* at = NULL; 755 if (t == Type::MEMORY) at = flatten_phi_adr_type(x->adr_type()); 756 return new (Compile::current()) PhiNode(r, t, at); 757 } 758 759 760 //------------------------slice_memory----------------------------------------- 761 // create a new phi with narrowed memory type 762 PhiNode* PhiNode::slice_memory(const TypePtr* adr_type) const { 763 PhiNode* mem = (PhiNode*) clone(); 764 *(const TypePtr**)&mem->_adr_type = adr_type; 765 // convert self-loops, or else we get a bad graph 766 for (uint i = 1; i < req(); i++) { 767 if ((const Node*)in(i) == this) mem->set_req(i, mem); 768 } 769 mem->verify_adr_type(); 770 return mem; 771 } 772 773 //------------------------split_out_instance----------------------------------- 774 // Split out an instance type from a bottom phi. 775 PhiNode* PhiNode::split_out_instance(const TypePtr* at, PhaseIterGVN *igvn) const { 776 const TypeOopPtr *t_oop = at->isa_oopptr(); 777 assert(t_oop != NULL && t_oop->is_known_instance(), "expecting instance oopptr"); 778 const TypePtr *t = adr_type(); 779 assert(type() == Type::MEMORY && 780 (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM || 781 t->isa_oopptr() && !t->is_oopptr()->is_known_instance() && 782 t->is_oopptr()->cast_to_exactness(true) 783 ->is_oopptr()->cast_to_ptr_type(t_oop->ptr()) 784 ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop), 785 "bottom or raw memory required"); 786 787 // Check if an appropriate node already exists. 788 Node *region = in(0); 789 for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) { 790 Node* use = region->fast_out(k); 791 if( use->is_Phi()) { 792 PhiNode *phi2 = use->as_Phi(); 793 if (phi2->type() == Type::MEMORY && phi2->adr_type() == at) { 794 return phi2; 795 } 796 } 797 } 798 Compile *C = igvn->C; 799 Arena *a = Thread::current()->resource_area(); 800 Node_Array node_map = new Node_Array(a); 801 Node_Stack stack(a, C->live_nodes() >> 4); 802 PhiNode *nphi = slice_memory(at); 803 igvn->register_new_node_with_optimizer( nphi ); 804 node_map.map(_idx, nphi); 805 stack.push((Node *)this, 1); 806 while(!stack.is_empty()) { 807 PhiNode *ophi = stack.node()->as_Phi(); 808 uint i = stack.index(); 809 assert(i >= 1, "not control edge"); 810 stack.pop(); 811 nphi = node_map[ophi->_idx]->as_Phi(); 812 for (; i < ophi->req(); i++) { 813 Node *in = ophi->in(i); 814 if (in == NULL || igvn->type(in) == Type::TOP) 815 continue; 816 Node *opt = MemNode::optimize_simple_memory_chain(in, t_oop, NULL, igvn); 817 PhiNode *optphi = opt->is_Phi() ? opt->as_Phi() : NULL; 818 if (optphi != NULL && optphi->adr_type() == TypePtr::BOTTOM) { 819 opt = node_map[optphi->_idx]; 820 if (opt == NULL) { 821 stack.push(ophi, i); 822 nphi = optphi->slice_memory(at); 823 igvn->register_new_node_with_optimizer( nphi ); 824 node_map.map(optphi->_idx, nphi); 825 ophi = optphi; 826 i = 0; // will get incremented at top of loop 827 continue; 828 } 829 } 830 nphi->set_req(i, opt); 831 } 832 } 833 return nphi; 834 } 835 836 //------------------------verify_adr_type-------------------------------------- 837 #ifdef ASSERT 838 void PhiNode::verify_adr_type(VectorSet& visited, const TypePtr* at) const { 839 if (visited.test_set(_idx)) return; //already visited 840 841 // recheck constructor invariants: 842 verify_adr_type(false); 843 844 // recheck local phi/phi consistency: 845 assert(_adr_type == at || _adr_type == TypePtr::BOTTOM, 846 "adr_type must be consistent across phi nest"); 847 848 // walk around 849 for (uint i = 1; i < req(); i++) { 850 Node* n = in(i); 851 if (n == NULL) continue; 852 const Node* np = in(i); 853 if (np->is_Phi()) { 854 np->as_Phi()->verify_adr_type(visited, at); 855 } else if (n->bottom_type() == Type::TOP 856 || (n->is_Mem() && n->in(MemNode::Address)->bottom_type() == Type::TOP)) { 857 // ignore top inputs 858 } else { 859 const TypePtr* nat = flatten_phi_adr_type(n->adr_type()); 860 // recheck phi/non-phi consistency at leaves: 861 assert((nat != NULL) == (at != NULL), ""); 862 assert(nat == at || nat == TypePtr::BOTTOM, 863 "adr_type must be consistent at leaves of phi nest"); 864 } 865 } 866 } 867 868 // Verify a whole nest of phis rooted at this one. 869 void PhiNode::verify_adr_type(bool recursive) const { 870 if (is_error_reported()) return; // muzzle asserts when debugging an error 871 if (Node::in_dump()) return; // muzzle asserts when printing 872 873 assert((_type == Type::MEMORY) == (_adr_type != NULL), "adr_type for memory phis only"); 874 875 if (!VerifyAliases) return; // verify thoroughly only if requested 876 877 assert(_adr_type == flatten_phi_adr_type(_adr_type), 878 "Phi::adr_type must be pre-normalized"); 879 880 if (recursive) { 881 VectorSet visited(Thread::current()->resource_area()); 882 verify_adr_type(visited, _adr_type); 883 } 884 } 885 #endif 886 887 888 //------------------------------Value------------------------------------------ 889 // Compute the type of the PhiNode 890 const Type *PhiNode::Value( PhaseTransform *phase ) const { 891 Node *r = in(0); // RegionNode 892 if( !r ) // Copy or dead 893 return in(1) ? phase->type(in(1)) : Type::TOP; 894 895 // Note: During parsing, phis are often transformed before their regions. 896 // This means we have to use type_or_null to defend against untyped regions. 897 if( phase->type_or_null(r) == Type::TOP ) // Dead code? 898 return Type::TOP; 899 900 // Check for trip-counted loop. If so, be smarter. 901 CountedLoopNode *l = r->is_CountedLoop() ? r->as_CountedLoop() : NULL; 902 if( l && l->can_be_counted_loop(phase) && 903 ((const Node*)l->phi() == this) ) { // Trip counted loop! 904 // protect against init_trip() or limit() returning NULL 905 const Node *init = l->init_trip(); 906 const Node *limit = l->limit(); 907 if( init != NULL && limit != NULL && l->stride_is_con() ) { 908 const TypeInt *lo = init ->bottom_type()->isa_int(); 909 const TypeInt *hi = limit->bottom_type()->isa_int(); 910 if( lo && hi ) { // Dying loops might have TOP here 911 int stride = l->stride_con(); 912 if( stride < 0 ) { // Down-counter loop 913 const TypeInt *tmp = lo; lo = hi; hi = tmp; 914 stride = -stride; 915 } 916 if( lo->_hi < hi->_lo ) // Reversed endpoints are well defined :-( 917 return TypeInt::make(lo->_lo,hi->_hi,3); 918 } 919 } 920 } 921 922 // Until we have harmony between classes and interfaces in the type 923 // lattice, we must tread carefully around phis which implicitly 924 // convert the one to the other. 925 const TypePtr* ttp = _type->make_ptr(); 926 const TypeInstPtr* ttip = (ttp != NULL) ? ttp->isa_instptr() : NULL; 927 const TypeKlassPtr* ttkp = (ttp != NULL) ? ttp->isa_klassptr() : NULL; 928 bool is_intf = false; 929 if (ttip != NULL) { 930 ciKlass* k = ttip->klass(); 931 if (k->is_loaded() && k->is_interface()) 932 is_intf = true; 933 } 934 if (ttkp != NULL) { 935 ciKlass* k = ttkp->klass(); 936 if (k->is_loaded() && k->is_interface()) 937 is_intf = true; 938 } 939 940 // Default case: merge all inputs 941 const Type *t = Type::TOP; // Merged type starting value 942 for (uint i = 1; i < req(); ++i) {// For all paths in 943 // Reachable control path? 944 if (r->in(i) && phase->type(r->in(i)) == Type::CONTROL) { 945 const Type* ti = phase->type(in(i)); 946 // We assume that each input of an interface-valued Phi is a true 947 // subtype of that interface. This might not be true of the meet 948 // of all the input types. The lattice is not distributive in 949 // such cases. Ward off asserts in type.cpp by refusing to do 950 // meets between interfaces and proper classes. 951 const TypePtr* tip = ti->make_ptr(); 952 const TypeInstPtr* tiip = (tip != NULL) ? tip->isa_instptr() : NULL; 953 if (tiip) { 954 bool ti_is_intf = false; 955 ciKlass* k = tiip->klass(); 956 if (k->is_loaded() && k->is_interface()) 957 ti_is_intf = true; 958 if (is_intf != ti_is_intf) 959 { t = _type; break; } 960 } 961 t = t->meet_speculative(ti); 962 } 963 } 964 965 // The worst-case type (from ciTypeFlow) should be consistent with "t". 966 // That is, we expect that "t->higher_equal(_type)" holds true. 967 // There are various exceptions: 968 // - Inputs which are phis might in fact be widened unnecessarily. 969 // For example, an input might be a widened int while the phi is a short. 970 // - Inputs might be BotPtrs but this phi is dependent on a null check, 971 // and postCCP has removed the cast which encodes the result of the check. 972 // - The type of this phi is an interface, and the inputs are classes. 973 // - Value calls on inputs might produce fuzzy results. 974 // (Occurrences of this case suggest improvements to Value methods.) 975 // 976 // It is not possible to see Type::BOTTOM values as phi inputs, 977 // because the ciTypeFlow pre-pass produces verifier-quality types. 978 const Type* ft = t->filter_speculative(_type); // Worst case type 979 980 #ifdef ASSERT 981 // The following logic has been moved into TypeOopPtr::filter. 982 const Type* jt = t->join_speculative(_type); 983 if (jt->empty()) { // Emptied out??? 984 985 // Check for evil case of 't' being a class and '_type' expecting an 986 // interface. This can happen because the bytecodes do not contain 987 // enough type info to distinguish a Java-level interface variable 988 // from a Java-level object variable. If we meet 2 classes which 989 // both implement interface I, but their meet is at 'j/l/O' which 990 // doesn't implement I, we have no way to tell if the result should 991 // be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows 992 // into a Phi which "knows" it's an Interface type we'll have to 993 // uplift the type. 994 if (!t->empty() && ttip && ttip->is_loaded() && ttip->klass()->is_interface()) { 995 assert(ft == _type, ""); // Uplift to interface 996 } else if (!t->empty() && ttkp && ttkp->is_loaded() && ttkp->klass()->is_interface()) { 997 assert(ft == _type, ""); // Uplift to interface 998 } else { 999 // We also have to handle 'evil cases' of interface- vs. class-arrays 1000 Type::get_arrays_base_elements(jt, _type, NULL, &ttip); 1001 if (!t->empty() && ttip != NULL && ttip->is_loaded() && ttip->klass()->is_interface()) { 1002 assert(ft == _type, ""); // Uplift to array of interface 1003 } else { 1004 // Otherwise it's something stupid like non-overlapping int ranges 1005 // found on dying counted loops. 1006 assert(ft == Type::TOP, ""); // Canonical empty value 1007 } 1008 } 1009 } 1010 1011 else { 1012 1013 // If we have an interface-typed Phi and we narrow to a class type, the join 1014 // should report back the class. However, if we have a J/L/Object 1015 // class-typed Phi and an interface flows in, it's possible that the meet & 1016 // join report an interface back out. This isn't possible but happens 1017 // because the type system doesn't interact well with interfaces. 1018 const TypePtr *jtp = jt->make_ptr(); 1019 const TypeInstPtr *jtip = (jtp != NULL) ? jtp->isa_instptr() : NULL; 1020 const TypeKlassPtr *jtkp = (jtp != NULL) ? jtp->isa_klassptr() : NULL; 1021 if( jtip && ttip ) { 1022 if( jtip->is_loaded() && jtip->klass()->is_interface() && 1023 ttip->is_loaded() && !ttip->klass()->is_interface() ) { 1024 // Happens in a CTW of rt.jar, 320-341, no extra flags 1025 assert(ft == ttip->cast_to_ptr_type(jtip->ptr()) || 1026 ft->isa_narrowoop() && ft->make_ptr() == ttip->cast_to_ptr_type(jtip->ptr()), ""); 1027 jt = ft; 1028 } 1029 } 1030 if( jtkp && ttkp ) { 1031 if( jtkp->is_loaded() && jtkp->klass()->is_interface() && 1032 !jtkp->klass_is_exact() && // Keep exact interface klass (6894807) 1033 ttkp->is_loaded() && !ttkp->klass()->is_interface() ) { 1034 assert(ft == ttkp->cast_to_ptr_type(jtkp->ptr()) || 1035 ft->isa_narrowklass() && ft->make_ptr() == ttkp->cast_to_ptr_type(jtkp->ptr()), ""); 1036 jt = ft; 1037 } 1038 } 1039 if (jt != ft && jt->base() == ft->base()) { 1040 if (jt->isa_int() && 1041 jt->is_int()->_lo == ft->is_int()->_lo && 1042 jt->is_int()->_hi == ft->is_int()->_hi) 1043 jt = ft; 1044 if (jt->isa_long() && 1045 jt->is_long()->_lo == ft->is_long()->_lo && 1046 jt->is_long()->_hi == ft->is_long()->_hi) 1047 jt = ft; 1048 } 1049 if (jt != ft) { 1050 tty->print("merge type: "); t->dump(); tty->cr(); 1051 tty->print("kill type: "); _type->dump(); tty->cr(); 1052 tty->print("join type: "); jt->dump(); tty->cr(); 1053 tty->print("filter type: "); ft->dump(); tty->cr(); 1054 } 1055 assert(jt == ft, ""); 1056 } 1057 #endif //ASSERT 1058 1059 // Deal with conversion problems found in data loops. 1060 ft = phase->saturate(ft, phase->type_or_null(this), _type); 1061 1062 return ft; 1063 } 1064 1065 1066 //------------------------------is_diamond_phi--------------------------------- 1067 // Does this Phi represent a simple well-shaped diamond merge? Return the 1068 // index of the true path or 0 otherwise. 1069 // If check_control_only is true, do not inspect the If node at the 1070 // top, and return -1 (not an edge number) on success. 1071 int PhiNode::is_diamond_phi(bool check_control_only) const { 1072 // Check for a 2-path merge 1073 Node *region = in(0); 1074 if( !region ) return 0; 1075 if( region->req() != 3 ) return 0; 1076 if( req() != 3 ) return 0; 1077 // Check that both paths come from the same If 1078 Node *ifp1 = region->in(1); 1079 Node *ifp2 = region->in(2); 1080 if( !ifp1 || !ifp2 ) return 0; 1081 Node *iff = ifp1->in(0); 1082 if( !iff || !iff->is_If() ) return 0; 1083 if( iff != ifp2->in(0) ) return 0; 1084 if (check_control_only) return -1; 1085 // Check for a proper bool/cmp 1086 const Node *b = iff->in(1); 1087 if( !b->is_Bool() ) return 0; 1088 const Node *cmp = b->in(1); 1089 if( !cmp->is_Cmp() ) return 0; 1090 1091 // Check for branching opposite expected 1092 if( ifp2->Opcode() == Op_IfTrue ) { 1093 assert( ifp1->Opcode() == Op_IfFalse, "" ); 1094 return 2; 1095 } else { 1096 assert( ifp1->Opcode() == Op_IfTrue, "" ); 1097 return 1; 1098 } 1099 } 1100 1101 //----------------------------check_cmove_id----------------------------------- 1102 // Check for CMove'ing a constant after comparing against the constant. 1103 // Happens all the time now, since if we compare equality vs a constant in 1104 // the parser, we "know" the variable is constant on one path and we force 1105 // it. Thus code like "if( x==0 ) {/*EMPTY*/}" ends up inserting a 1106 // conditional move: "x = (x==0)?0:x;". Yucko. This fix is slightly more 1107 // general in that we don't need constants. Since CMove's are only inserted 1108 // in very special circumstances, we do it here on generic Phi's. 1109 Node* PhiNode::is_cmove_id(PhaseTransform* phase, int true_path) { 1110 assert(true_path !=0, "only diamond shape graph expected"); 1111 1112 // is_diamond_phi() has guaranteed the correctness of the nodes sequence: 1113 // phi->region->if_proj->ifnode->bool->cmp 1114 Node* region = in(0); 1115 Node* iff = region->in(1)->in(0); 1116 BoolNode* b = iff->in(1)->as_Bool(); 1117 Node* cmp = b->in(1); 1118 Node* tval = in(true_path); 1119 Node* fval = in(3-true_path); 1120 Node* id = CMoveNode::is_cmove_id(phase, cmp, tval, fval, b); 1121 if (id == NULL) 1122 return NULL; 1123 1124 // Either value might be a cast that depends on a branch of 'iff'. 1125 // Since the 'id' value will float free of the diamond, either 1126 // decast or return failure. 1127 Node* ctl = id->in(0); 1128 if (ctl != NULL && ctl->in(0) == iff) { 1129 if (id->is_ConstraintCast()) { 1130 return id->in(1); 1131 } else { 1132 // Don't know how to disentangle this value. 1133 return NULL; 1134 } 1135 } 1136 1137 return id; 1138 } 1139 1140 //------------------------------Identity--------------------------------------- 1141 // Check for Region being Identity. 1142 Node *PhiNode::Identity( PhaseTransform *phase ) { 1143 // Check for no merging going on 1144 // (There used to be special-case code here when this->region->is_Loop. 1145 // It would check for a tributary phi on the backedge that the main phi 1146 // trivially, perhaps with a single cast. The unique_input method 1147 // does all this and more, by reducing such tributaries to 'this'.) 1148 Node* uin = unique_input(phase); 1149 if (uin != NULL) { 1150 return uin; 1151 } 1152 1153 int true_path = is_diamond_phi(); 1154 if (true_path != 0) { 1155 Node* id = is_cmove_id(phase, true_path); 1156 if (id != NULL) return id; 1157 } 1158 1159 return this; // No identity 1160 } 1161 1162 //-----------------------------unique_input------------------------------------ 1163 // Find the unique value, discounting top, self-loops, and casts. 1164 // Return top if there are no inputs, and self if there are multiple. 1165 Node* PhiNode::unique_input(PhaseTransform* phase) { 1166 // 1) One unique direct input, or 1167 // 2) some of the inputs have an intervening ConstraintCast and 1168 // the type of input is the same or sharper (more specific) 1169 // than the phi's type. 1170 // 3) an input is a self loop 1171 // 1172 // 1) input or 2) input or 3) input __ 1173 // / \ / \ \ / \ 1174 // \ / | cast phi cast 1175 // phi \ / / \ / 1176 // phi / -- 1177 1178 Node* r = in(0); // RegionNode 1179 if (r == NULL) return in(1); // Already degraded to a Copy 1180 Node* uncasted_input = NULL; // The unique uncasted input (ConstraintCasts removed) 1181 Node* direct_input = NULL; // The unique direct input 1182 1183 for (uint i = 1, cnt = req(); i < cnt; ++i) { 1184 Node* rc = r->in(i); 1185 if (rc == NULL || phase->type(rc) == Type::TOP) 1186 continue; // ignore unreachable control path 1187 Node* n = in(i); 1188 if (n == NULL) 1189 continue; 1190 Node* un = n->uncast(); 1191 if (un == NULL || un == this || phase->type(un) == Type::TOP) { 1192 continue; // ignore if top, or in(i) and "this" are in a data cycle 1193 } 1194 // Check for a unique uncasted input 1195 if (uncasted_input == NULL) { 1196 uncasted_input = un; 1197 } else if (uncasted_input != un) { 1198 uncasted_input = NodeSentinel; // no unique uncasted input 1199 } 1200 // Check for a unique direct input 1201 if (direct_input == NULL) { 1202 direct_input = n; 1203 } else if (direct_input != n) { 1204 direct_input = NodeSentinel; // no unique direct input 1205 } 1206 } 1207 if (direct_input == NULL) { 1208 return phase->C->top(); // no inputs 1209 } 1210 assert(uncasted_input != NULL,""); 1211 1212 if (direct_input != NodeSentinel) { 1213 return direct_input; // one unique direct input 1214 } 1215 if (uncasted_input != NodeSentinel && 1216 phase->type(uncasted_input)->higher_equal(type())) { 1217 return uncasted_input; // one unique uncasted input 1218 } 1219 1220 // Nothing. 1221 return NULL; 1222 } 1223 1224 //------------------------------is_x2logic------------------------------------- 1225 // Check for simple convert-to-boolean pattern 1226 // If:(C Bool) Region:(IfF IfT) Phi:(Region 0 1) 1227 // Convert Phi to an ConvIB. 1228 static Node *is_x2logic( PhaseGVN *phase, PhiNode *phi, int true_path ) { 1229 assert(true_path !=0, "only diamond shape graph expected"); 1230 // Convert the true/false index into an expected 0/1 return. 1231 // Map 2->0 and 1->1. 1232 int flipped = 2-true_path; 1233 1234 // is_diamond_phi() has guaranteed the correctness of the nodes sequence: 1235 // phi->region->if_proj->ifnode->bool->cmp 1236 Node *region = phi->in(0); 1237 Node *iff = region->in(1)->in(0); 1238 BoolNode *b = (BoolNode*)iff->in(1); 1239 const CmpNode *cmp = (CmpNode*)b->in(1); 1240 1241 Node *zero = phi->in(1); 1242 Node *one = phi->in(2); 1243 const Type *tzero = phase->type( zero ); 1244 const Type *tone = phase->type( one ); 1245 1246 // Check for compare vs 0 1247 const Type *tcmp = phase->type(cmp->in(2)); 1248 if( tcmp != TypeInt::ZERO && tcmp != TypePtr::NULL_PTR ) { 1249 // Allow cmp-vs-1 if the other input is bounded by 0-1 1250 if( !(tcmp == TypeInt::ONE && phase->type(cmp->in(1)) == TypeInt::BOOL) ) 1251 return NULL; 1252 flipped = 1-flipped; // Test is vs 1 instead of 0! 1253 } 1254 1255 // Check for setting zero/one opposite expected 1256 if( tzero == TypeInt::ZERO ) { 1257 if( tone == TypeInt::ONE ) { 1258 } else return NULL; 1259 } else if( tzero == TypeInt::ONE ) { 1260 if( tone == TypeInt::ZERO ) { 1261 flipped = 1-flipped; 1262 } else return NULL; 1263 } else return NULL; 1264 1265 // Check for boolean test backwards 1266 if( b->_test._test == BoolTest::ne ) { 1267 } else if( b->_test._test == BoolTest::eq ) { 1268 flipped = 1-flipped; 1269 } else return NULL; 1270 1271 // Build int->bool conversion 1272 Node *n = new (phase->C) Conv2BNode( cmp->in(1) ); 1273 if( flipped ) 1274 n = new (phase->C) XorINode( phase->transform(n), phase->intcon(1) ); 1275 1276 return n; 1277 } 1278 1279 //------------------------------is_cond_add------------------------------------ 1280 // Check for simple conditional add pattern: "(P < Q) ? X+Y : X;" 1281 // To be profitable the control flow has to disappear; there can be no other 1282 // values merging here. We replace the test-and-branch with: 1283 // "(sgn(P-Q))&Y) + X". Basically, convert "(P < Q)" into 0 or -1 by 1284 // moving the carry bit from (P-Q) into a register with 'sbb EAX,EAX'. 1285 // Then convert Y to 0-or-Y and finally add. 1286 // This is a key transform for SpecJava _201_compress. 1287 static Node* is_cond_add(PhaseGVN *phase, PhiNode *phi, int true_path) { 1288 assert(true_path !=0, "only diamond shape graph expected"); 1289 1290 // is_diamond_phi() has guaranteed the correctness of the nodes sequence: 1291 // phi->region->if_proj->ifnode->bool->cmp 1292 RegionNode *region = (RegionNode*)phi->in(0); 1293 Node *iff = region->in(1)->in(0); 1294 BoolNode* b = iff->in(1)->as_Bool(); 1295 const CmpNode *cmp = (CmpNode*)b->in(1); 1296 1297 // Make sure only merging this one phi here 1298 if (region->has_unique_phi() != phi) return NULL; 1299 1300 // Make sure each arm of the diamond has exactly one output, which we assume 1301 // is the region. Otherwise, the control flow won't disappear. 1302 if (region->in(1)->outcnt() != 1) return NULL; 1303 if (region->in(2)->outcnt() != 1) return NULL; 1304 1305 // Check for "(P < Q)" of type signed int 1306 if (b->_test._test != BoolTest::lt) return NULL; 1307 if (cmp->Opcode() != Op_CmpI) return NULL; 1308 1309 Node *p = cmp->in(1); 1310 Node *q = cmp->in(2); 1311 Node *n1 = phi->in( true_path); 1312 Node *n2 = phi->in(3-true_path); 1313 1314 int op = n1->Opcode(); 1315 if( op != Op_AddI // Need zero as additive identity 1316 /*&&op != Op_SubI && 1317 op != Op_AddP && 1318 op != Op_XorI && 1319 op != Op_OrI*/ ) 1320 return NULL; 1321 1322 Node *x = n2; 1323 Node *y = NULL; 1324 if( x == n1->in(1) ) { 1325 y = n1->in(2); 1326 } else if( x == n1->in(2) ) { 1327 y = n1->in(1); 1328 } else return NULL; 1329 1330 // Not so profitable if compare and add are constants 1331 if( q->is_Con() && phase->type(q) != TypeInt::ZERO && y->is_Con() ) 1332 return NULL; 1333 1334 Node *cmplt = phase->transform( new (phase->C) CmpLTMaskNode(p,q) ); 1335 Node *j_and = phase->transform( new (phase->C) AndINode(cmplt,y) ); 1336 return new (phase->C) AddINode(j_and,x); 1337 } 1338 1339 //------------------------------is_absolute------------------------------------ 1340 // Check for absolute value. 1341 static Node* is_absolute( PhaseGVN *phase, PhiNode *phi_root, int true_path) { 1342 assert(true_path !=0, "only diamond shape graph expected"); 1343 1344 int cmp_zero_idx = 0; // Index of compare input where to look for zero 1345 int phi_x_idx = 0; // Index of phi input where to find naked x 1346 1347 // ABS ends with the merge of 2 control flow paths. 1348 // Find the false path from the true path. With only 2 inputs, 3 - x works nicely. 1349 int false_path = 3 - true_path; 1350 1351 // is_diamond_phi() has guaranteed the correctness of the nodes sequence: 1352 // phi->region->if_proj->ifnode->bool->cmp 1353 BoolNode *bol = phi_root->in(0)->in(1)->in(0)->in(1)->as_Bool(); 1354 1355 // Check bool sense 1356 switch( bol->_test._test ) { 1357 case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = true_path; break; 1358 case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = false_path; break; 1359 case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = true_path; break; 1360 case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = false_path; break; 1361 default: return NULL; break; 1362 } 1363 1364 // Test is next 1365 Node *cmp = bol->in(1); 1366 const Type *tzero = NULL; 1367 switch( cmp->Opcode() ) { 1368 case Op_CmpF: tzero = TypeF::ZERO; break; // Float ABS 1369 case Op_CmpD: tzero = TypeD::ZERO; break; // Double ABS 1370 default: return NULL; 1371 } 1372 1373 // Find zero input of compare; the other input is being abs'd 1374 Node *x = NULL; 1375 bool flip = false; 1376 if( phase->type(cmp->in(cmp_zero_idx)) == tzero ) { 1377 x = cmp->in(3 - cmp_zero_idx); 1378 } else if( phase->type(cmp->in(3 - cmp_zero_idx)) == tzero ) { 1379 // The test is inverted, we should invert the result... 1380 x = cmp->in(cmp_zero_idx); 1381 flip = true; 1382 } else { 1383 return NULL; 1384 } 1385 1386 // Next get the 2 pieces being selected, one is the original value 1387 // and the other is the negated value. 1388 if( phi_root->in(phi_x_idx) != x ) return NULL; 1389 1390 // Check other phi input for subtract node 1391 Node *sub = phi_root->in(3 - phi_x_idx); 1392 1393 // Allow only Sub(0,X) and fail out for all others; Neg is not OK 1394 if( tzero == TypeF::ZERO ) { 1395 if( sub->Opcode() != Op_SubF || 1396 sub->in(2) != x || 1397 phase->type(sub->in(1)) != tzero ) return NULL; 1398 x = new (phase->C) AbsFNode(x); 1399 if (flip) { 1400 x = new (phase->C) SubFNode(sub->in(1), phase->transform(x)); 1401 } 1402 } else { 1403 if( sub->Opcode() != Op_SubD || 1404 sub->in(2) != x || 1405 phase->type(sub->in(1)) != tzero ) return NULL; 1406 x = new (phase->C) AbsDNode(x); 1407 if (flip) { 1408 x = new (phase->C) SubDNode(sub->in(1), phase->transform(x)); 1409 } 1410 } 1411 1412 return x; 1413 } 1414 1415 //------------------------------split_once------------------------------------- 1416 // Helper for split_flow_path 1417 static void split_once(PhaseIterGVN *igvn, Node *phi, Node *val, Node *n, Node *newn) { 1418 igvn->hash_delete(n); // Remove from hash before hacking edges 1419 1420 uint j = 1; 1421 for (uint i = phi->req()-1; i > 0; i--) { 1422 if (phi->in(i) == val) { // Found a path with val? 1423 // Add to NEW Region/Phi, no DU info 1424 newn->set_req( j++, n->in(i) ); 1425 // Remove from OLD Region/Phi 1426 n->del_req(i); 1427 } 1428 } 1429 1430 // Register the new node but do not transform it. Cannot transform until the 1431 // entire Region/Phi conglomerate has been hacked as a single huge transform. 1432 igvn->register_new_node_with_optimizer( newn ); 1433 1434 // Now I can point to the new node. 1435 n->add_req(newn); 1436 igvn->_worklist.push(n); 1437 } 1438 1439 //------------------------------split_flow_path-------------------------------- 1440 // Check for merging identical values and split flow paths 1441 static Node* split_flow_path(PhaseGVN *phase, PhiNode *phi) { 1442 BasicType bt = phi->type()->basic_type(); 1443 if( bt == T_ILLEGAL || type2size[bt] <= 0 ) 1444 return NULL; // Bail out on funny non-value stuff 1445 if( phi->req() <= 3 ) // Need at least 2 matched inputs and a 1446 return NULL; // third unequal input to be worth doing 1447 1448 // Scan for a constant 1449 uint i; 1450 for( i = 1; i < phi->req()-1; i++ ) { 1451 Node *n = phi->in(i); 1452 if( !n ) return NULL; 1453 if( phase->type(n) == Type::TOP ) return NULL; 1454 if( n->Opcode() == Op_ConP || n->Opcode() == Op_ConN || n->Opcode() == Op_ConNKlass ) 1455 break; 1456 } 1457 if( i >= phi->req() ) // Only split for constants 1458 return NULL; 1459 1460 Node *val = phi->in(i); // Constant to split for 1461 uint hit = 0; // Number of times it occurs 1462 Node *r = phi->region(); 1463 1464 for( ; i < phi->req(); i++ ){ // Count occurrences of constant 1465 Node *n = phi->in(i); 1466 if( !n ) return NULL; 1467 if( phase->type(n) == Type::TOP ) return NULL; 1468 if( phi->in(i) == val ) { 1469 hit++; 1470 if (PhaseIdealLoop::find_predicate(r->in(i)) != NULL) { 1471 return NULL; // don't split loop entry path 1472 } 1473 } 1474 } 1475 1476 if( hit <= 1 || // Make sure we find 2 or more 1477 hit == phi->req()-1 ) // and not ALL the same value 1478 return NULL; 1479 1480 // Now start splitting out the flow paths that merge the same value. 1481 // Split first the RegionNode. 1482 PhaseIterGVN *igvn = phase->is_IterGVN(); 1483 RegionNode *newr = new (phase->C) RegionNode(hit+1); 1484 split_once(igvn, phi, val, r, newr); 1485 1486 // Now split all other Phis than this one 1487 for (DUIterator_Fast kmax, k = r->fast_outs(kmax); k < kmax; k++) { 1488 Node* phi2 = r->fast_out(k); 1489 if( phi2->is_Phi() && phi2->as_Phi() != phi ) { 1490 PhiNode *newphi = PhiNode::make_blank(newr, phi2); 1491 split_once(igvn, phi, val, phi2, newphi); 1492 } 1493 } 1494 1495 // Clean up this guy 1496 igvn->hash_delete(phi); 1497 for( i = phi->req()-1; i > 0; i-- ) { 1498 if( phi->in(i) == val ) { 1499 phi->del_req(i); 1500 } 1501 } 1502 phi->add_req(val); 1503 1504 return phi; 1505 } 1506 1507 //============================================================================= 1508 //------------------------------simple_data_loop_check------------------------- 1509 // Try to determining if the phi node in a simple safe/unsafe data loop. 1510 // Returns: 1511 // enum LoopSafety { Safe = 0, Unsafe, UnsafeLoop }; 1512 // Safe - safe case when the phi and it's inputs reference only safe data 1513 // nodes; 1514 // Unsafe - the phi and it's inputs reference unsafe data nodes but there 1515 // is no reference back to the phi - need a graph walk 1516 // to determine if it is in a loop; 1517 // UnsafeLoop - unsafe case when the phi references itself directly or through 1518 // unsafe data node. 1519 // Note: a safe data node is a node which could/never reference itself during 1520 // GVN transformations. For now it is Con, Proj, Phi, CastPP, CheckCastPP. 1521 // I mark Phi nodes as safe node not only because they can reference itself 1522 // but also to prevent mistaking the fallthrough case inside an outer loop 1523 // as dead loop when the phi references itselfs through an other phi. 1524 PhiNode::LoopSafety PhiNode::simple_data_loop_check(Node *in) const { 1525 // It is unsafe loop if the phi node references itself directly. 1526 if (in == (Node*)this) 1527 return UnsafeLoop; // Unsafe loop 1528 // Unsafe loop if the phi node references itself through an unsafe data node. 1529 // Exclude cases with null inputs or data nodes which could reference 1530 // itself (safe for dead loops). 1531 if (in != NULL && !in->is_dead_loop_safe()) { 1532 // Check inputs of phi's inputs also. 1533 // It is much less expensive then full graph walk. 1534 uint cnt = in->req(); 1535 uint i = (in->is_Proj() && !in->is_CFG()) ? 0 : 1; 1536 for (; i < cnt; ++i) { 1537 Node* m = in->in(i); 1538 if (m == (Node*)this) 1539 return UnsafeLoop; // Unsafe loop 1540 if (m != NULL && !m->is_dead_loop_safe()) { 1541 // Check the most common case (about 30% of all cases): 1542 // phi->Load/Store->AddP->(ConP ConP Con)/(Parm Parm Con). 1543 Node *m1 = (m->is_AddP() && m->req() > 3) ? m->in(1) : NULL; 1544 if (m1 == (Node*)this) 1545 return UnsafeLoop; // Unsafe loop 1546 if (m1 != NULL && m1 == m->in(2) && 1547 m1->is_dead_loop_safe() && m->in(3)->is_Con()) { 1548 continue; // Safe case 1549 } 1550 // The phi references an unsafe node - need full analysis. 1551 return Unsafe; 1552 } 1553 } 1554 } 1555 return Safe; // Safe case - we can optimize the phi node. 1556 } 1557 1558 //------------------------------is_unsafe_data_reference----------------------- 1559 // If phi can be reached through the data input - it is data loop. 1560 bool PhiNode::is_unsafe_data_reference(Node *in) const { 1561 assert(req() > 1, ""); 1562 // First, check simple cases when phi references itself directly or 1563 // through an other node. 1564 LoopSafety safety = simple_data_loop_check(in); 1565 if (safety == UnsafeLoop) 1566 return true; // phi references itself - unsafe loop 1567 else if (safety == Safe) 1568 return false; // Safe case - phi could be replaced with the unique input. 1569 1570 // Unsafe case when we should go through data graph to determine 1571 // if the phi references itself. 1572 1573 ResourceMark rm; 1574 1575 Arena *a = Thread::current()->resource_area(); 1576 Node_List nstack(a); 1577 VectorSet visited(a); 1578 1579 nstack.push(in); // Start with unique input. 1580 visited.set(in->_idx); 1581 while (nstack.size() != 0) { 1582 Node* n = nstack.pop(); 1583 uint cnt = n->req(); 1584 uint i = (n->is_Proj() && !n->is_CFG()) ? 0 : 1; 1585 for (; i < cnt; i++) { 1586 Node* m = n->in(i); 1587 if (m == (Node*)this) { 1588 return true; // Data loop 1589 } 1590 if (m != NULL && !m->is_dead_loop_safe()) { // Only look for unsafe cases. 1591 if (!visited.test_set(m->_idx)) 1592 nstack.push(m); 1593 } 1594 } 1595 } 1596 return false; // The phi is not reachable from its inputs 1597 } 1598 1599 1600 //------------------------------Ideal------------------------------------------ 1601 // Return a node which is more "ideal" than the current node. Must preserve 1602 // the CFG, but we can still strip out dead paths. 1603 Node *PhiNode::Ideal(PhaseGVN *phase, bool can_reshape) { 1604 // The next should never happen after 6297035 fix. 1605 if( is_copy() ) // Already degraded to a Copy ? 1606 return NULL; // No change 1607 1608 Node *r = in(0); // RegionNode 1609 assert(r->in(0) == NULL || !r->in(0)->is_Root(), "not a specially hidden merge"); 1610 1611 // Note: During parsing, phis are often transformed before their regions. 1612 // This means we have to use type_or_null to defend against untyped regions. 1613 if( phase->type_or_null(r) == Type::TOP ) // Dead code? 1614 return NULL; // No change 1615 1616 Node *top = phase->C->top(); 1617 bool new_phi = (outcnt() == 0); // transforming new Phi 1618 // No change for igvn if new phi is not hooked 1619 if (new_phi && can_reshape) 1620 return NULL; 1621 1622 // The are 2 situations when only one valid phi's input is left 1623 // (in addition to Region input). 1624 // One: region is not loop - replace phi with this input. 1625 // Two: region is loop - replace phi with top since this data path is dead 1626 // and we need to break the dead data loop. 1627 Node* progress = NULL; // Record if any progress made 1628 for( uint j = 1; j < req(); ++j ){ // For all paths in 1629 // Check unreachable control paths 1630 Node* rc = r->in(j); 1631 Node* n = in(j); // Get the input 1632 if (rc == NULL || phase->type(rc) == Type::TOP) { 1633 if (n != top) { // Not already top? 1634 PhaseIterGVN *igvn = phase->is_IterGVN(); 1635 if (can_reshape && igvn != NULL) { 1636 igvn->_worklist.push(r); 1637 } 1638 // Nuke it down 1639 if (can_reshape) { 1640 set_req_X(j, top, igvn); 1641 } else { 1642 set_req(j, top); 1643 } 1644 progress = this; // Record progress 1645 } 1646 } 1647 } 1648 1649 if (can_reshape && outcnt() == 0) { 1650 // set_req() above may kill outputs if Phi is referenced 1651 // only by itself on the dead (top) control path. 1652 return top; 1653 } 1654 1655 Node* uin = unique_input(phase); 1656 if (uin == top) { // Simplest case: no alive inputs. 1657 if (can_reshape) // IGVN transformation 1658 return top; 1659 else 1660 return NULL; // Identity will return TOP 1661 } else if (uin != NULL) { 1662 // Only one not-NULL unique input path is left. 1663 // Determine if this input is backedge of a loop. 1664 // (Skip new phis which have no uses and dead regions). 1665 if (outcnt() > 0 && r->in(0) != NULL) { 1666 // First, take the short cut when we know it is a loop and 1667 // the EntryControl data path is dead. 1668 // Loop node may have only one input because entry path 1669 // is removed in PhaseIdealLoop::Dominators(). 1670 assert(!r->is_Loop() || r->req() <= 3, "Loop node should have 3 or less inputs"); 1671 bool is_loop = (r->is_Loop() && r->req() == 3); 1672 // Then, check if there is a data loop when phi references itself directly 1673 // or through other data nodes. 1674 if (is_loop && !uin->eqv_uncast(in(LoopNode::EntryControl)) || 1675 !is_loop && is_unsafe_data_reference(uin)) { 1676 // Break this data loop to avoid creation of a dead loop. 1677 if (can_reshape) { 1678 return top; 1679 } else { 1680 // We can't return top if we are in Parse phase - cut inputs only 1681 // let Identity to handle the case. 1682 replace_edge(uin, top); 1683 return NULL; 1684 } 1685 } 1686 } 1687 1688 // One unique input. 1689 debug_only(Node* ident = Identity(phase)); 1690 // The unique input must eventually be detected by the Identity call. 1691 #ifdef ASSERT 1692 if (ident != uin && !ident->is_top()) { 1693 // print this output before failing assert 1694 r->dump(3); 1695 this->dump(3); 1696 ident->dump(); 1697 uin->dump(); 1698 } 1699 #endif 1700 assert(ident == uin || ident->is_top(), "Identity must clean this up"); 1701 return NULL; 1702 } 1703 1704 1705 Node* opt = NULL; 1706 int true_path = is_diamond_phi(); 1707 if( true_path != 0 ) { 1708 // Check for CMove'ing identity. If it would be unsafe, 1709 // handle it here. In the safe case, let Identity handle it. 1710 Node* unsafe_id = is_cmove_id(phase, true_path); 1711 if( unsafe_id != NULL && is_unsafe_data_reference(unsafe_id) ) 1712 opt = unsafe_id; 1713 1714 // Check for simple convert-to-boolean pattern 1715 if( opt == NULL ) 1716 opt = is_x2logic(phase, this, true_path); 1717 1718 // Check for absolute value 1719 if( opt == NULL ) 1720 opt = is_absolute(phase, this, true_path); 1721 1722 // Check for conditional add 1723 if( opt == NULL && can_reshape ) 1724 opt = is_cond_add(phase, this, true_path); 1725 1726 // These 4 optimizations could subsume the phi: 1727 // have to check for a dead data loop creation. 1728 if( opt != NULL ) { 1729 if( opt == unsafe_id || is_unsafe_data_reference(opt) ) { 1730 // Found dead loop. 1731 if( can_reshape ) 1732 return top; 1733 // We can't return top if we are in Parse phase - cut inputs only 1734 // to stop further optimizations for this phi. Identity will return TOP. 1735 assert(req() == 3, "only diamond merge phi here"); 1736 set_req(1, top); 1737 set_req(2, top); 1738 return NULL; 1739 } else { 1740 return opt; 1741 } 1742 } 1743 } 1744 1745 // Check for merging identical values and split flow paths 1746 if (can_reshape) { 1747 opt = split_flow_path(phase, this); 1748 // This optimization only modifies phi - don't need to check for dead loop. 1749 assert(opt == NULL || phase->eqv(opt, this), "do not elide phi"); 1750 if (opt != NULL) return opt; 1751 } 1752 1753 if (in(1) != NULL && in(1)->Opcode() == Op_AddP && can_reshape) { 1754 // Try to undo Phi of AddP: 1755 // (Phi (AddP base base y) (AddP base2 base2 y)) 1756 // becomes: 1757 // newbase := (Phi base base2) 1758 // (AddP newbase newbase y) 1759 // 1760 // This occurs as a result of unsuccessful split_thru_phi and 1761 // interferes with taking advantage of addressing modes. See the 1762 // clone_shift_expressions code in matcher.cpp 1763 Node* addp = in(1); 1764 const Type* type = addp->in(AddPNode::Base)->bottom_type(); 1765 Node* y = addp->in(AddPNode::Offset); 1766 if (y != NULL && addp->in(AddPNode::Base) == addp->in(AddPNode::Address)) { 1767 // make sure that all the inputs are similar to the first one, 1768 // i.e. AddP with base == address and same offset as first AddP 1769 bool doit = true; 1770 for (uint i = 2; i < req(); i++) { 1771 if (in(i) == NULL || 1772 in(i)->Opcode() != Op_AddP || 1773 in(i)->in(AddPNode::Base) != in(i)->in(AddPNode::Address) || 1774 in(i)->in(AddPNode::Offset) != y) { 1775 doit = false; 1776 break; 1777 } 1778 // Accumulate type for resulting Phi 1779 type = type->meet_speculative(in(i)->in(AddPNode::Base)->bottom_type()); 1780 } 1781 Node* base = NULL; 1782 if (doit) { 1783 // Check for neighboring AddP nodes in a tree. 1784 // If they have a base, use that it. 1785 for (DUIterator_Fast kmax, k = this->fast_outs(kmax); k < kmax; k++) { 1786 Node* u = this->fast_out(k); 1787 if (u->is_AddP()) { 1788 Node* base2 = u->in(AddPNode::Base); 1789 if (base2 != NULL && !base2->is_top()) { 1790 if (base == NULL) 1791 base = base2; 1792 else if (base != base2) 1793 { doit = false; break; } 1794 } 1795 } 1796 } 1797 } 1798 if (doit) { 1799 if (base == NULL) { 1800 base = new (phase->C) PhiNode(in(0), type, NULL); 1801 for (uint i = 1; i < req(); i++) { 1802 base->init_req(i, in(i)->in(AddPNode::Base)); 1803 } 1804 phase->is_IterGVN()->register_new_node_with_optimizer(base); 1805 } 1806 return new (phase->C) AddPNode(base, base, y); 1807 } 1808 } 1809 } 1810 1811 // Split phis through memory merges, so that the memory merges will go away. 1812 // Piggy-back this transformation on the search for a unique input.... 1813 // It will be as if the merged memory is the unique value of the phi. 1814 // (Do not attempt this optimization unless parsing is complete. 1815 // It would make the parser's memory-merge logic sick.) 1816 // (MergeMemNode is not dead_loop_safe - need to check for dead loop.) 1817 if (progress == NULL && can_reshape && type() == Type::MEMORY) { 1818 // see if this phi should be sliced 1819 uint merge_width = 0; 1820 bool saw_self = false; 1821 for( uint i=1; i<req(); ++i ) {// For all paths in 1822 Node *ii = in(i); 1823 if (ii->is_MergeMem()) { 1824 MergeMemNode* n = ii->as_MergeMem(); 1825 merge_width = MAX2(merge_width, n->req()); 1826 saw_self = saw_self || phase->eqv(n->base_memory(), this); 1827 } 1828 } 1829 1830 // This restriction is temporarily necessary to ensure termination: 1831 if (!saw_self && adr_type() == TypePtr::BOTTOM) merge_width = 0; 1832 1833 if (merge_width > Compile::AliasIdxRaw) { 1834 // found at least one non-empty MergeMem 1835 const TypePtr* at = adr_type(); 1836 if (at != TypePtr::BOTTOM) { 1837 // Patch the existing phi to select an input from the merge: 1838 // Phi:AT1(...MergeMem(m0, m1, m2)...) into 1839 // Phi:AT1(...m1...) 1840 int alias_idx = phase->C->get_alias_index(at); 1841 for (uint i=1; i<req(); ++i) { 1842 Node *ii = in(i); 1843 if (ii->is_MergeMem()) { 1844 MergeMemNode* n = ii->as_MergeMem(); 1845 // compress paths and change unreachable cycles to TOP 1846 // If not, we can update the input infinitely along a MergeMem cycle 1847 // Equivalent code is in MemNode::Ideal_common 1848 Node *m = phase->transform(n); 1849 if (outcnt() == 0) { // Above transform() may kill us! 1850 return top; 1851 } 1852 // If transformed to a MergeMem, get the desired slice 1853 // Otherwise the returned node represents memory for every slice 1854 Node *new_mem = (m->is_MergeMem()) ? 1855 m->as_MergeMem()->memory_at(alias_idx) : m; 1856 // Update input if it is progress over what we have now 1857 if (new_mem != ii) { 1858 set_req(i, new_mem); 1859 progress = this; 1860 } 1861 } 1862 } 1863 } else { 1864 // We know that at least one MergeMem->base_memory() == this 1865 // (saw_self == true). If all other inputs also references this phi 1866 // (directly or through data nodes) - it is dead loop. 1867 bool saw_safe_input = false; 1868 for (uint j = 1; j < req(); ++j) { 1869 Node *n = in(j); 1870 if (n->is_MergeMem() && n->as_MergeMem()->base_memory() == this) 1871 continue; // skip known cases 1872 if (!is_unsafe_data_reference(n)) { 1873 saw_safe_input = true; // found safe input 1874 break; 1875 } 1876 } 1877 if (!saw_safe_input) 1878 return top; // all inputs reference back to this phi - dead loop 1879 1880 // Phi(...MergeMem(m0, m1:AT1, m2:AT2)...) into 1881 // MergeMem(Phi(...m0...), Phi:AT1(...m1...), Phi:AT2(...m2...)) 1882 PhaseIterGVN *igvn = phase->is_IterGVN(); 1883 Node* hook = new (phase->C) Node(1); 1884 PhiNode* new_base = (PhiNode*) clone(); 1885 // Must eagerly register phis, since they participate in loops. 1886 if (igvn) { 1887 igvn->register_new_node_with_optimizer(new_base); 1888 hook->add_req(new_base); 1889 } 1890 MergeMemNode* result = MergeMemNode::make(phase->C, new_base); 1891 for (uint i = 1; i < req(); ++i) { 1892 Node *ii = in(i); 1893 if (ii->is_MergeMem()) { 1894 MergeMemNode* n = ii->as_MergeMem(); 1895 for (MergeMemStream mms(result, n); mms.next_non_empty2(); ) { 1896 // If we have not seen this slice yet, make a phi for it. 1897 bool made_new_phi = false; 1898 if (mms.is_empty()) { 1899 Node* new_phi = new_base->slice_memory(mms.adr_type(phase->C)); 1900 made_new_phi = true; 1901 if (igvn) { 1902 igvn->register_new_node_with_optimizer(new_phi); 1903 hook->add_req(new_phi); 1904 } 1905 mms.set_memory(new_phi); 1906 } 1907 Node* phi = mms.memory(); 1908 assert(made_new_phi || phi->in(i) == n, "replace the i-th merge by a slice"); 1909 phi->set_req(i, mms.memory2()); 1910 } 1911 } 1912 } 1913 // Distribute all self-loops. 1914 { // (Extra braces to hide mms.) 1915 for (MergeMemStream mms(result); mms.next_non_empty(); ) { 1916 Node* phi = mms.memory(); 1917 for (uint i = 1; i < req(); ++i) { 1918 if (phi->in(i) == this) phi->set_req(i, phi); 1919 } 1920 } 1921 } 1922 // now transform the new nodes, and return the mergemem 1923 for (MergeMemStream mms(result); mms.next_non_empty(); ) { 1924 Node* phi = mms.memory(); 1925 mms.set_memory(phase->transform(phi)); 1926 } 1927 if (igvn) { // Unhook. 1928 igvn->hash_delete(hook); 1929 for (uint i = 1; i < hook->req(); i++) { 1930 hook->set_req(i, NULL); 1931 } 1932 } 1933 // Replace self with the result. 1934 return result; 1935 } 1936 } 1937 // 1938 // Other optimizations on the memory chain 1939 // 1940 const TypePtr* at = adr_type(); 1941 for( uint i=1; i<req(); ++i ) {// For all paths in 1942 Node *ii = in(i); 1943 Node *new_in = MemNode::optimize_memory_chain(ii, at, NULL, phase); 1944 if (ii != new_in ) { 1945 set_req(i, new_in); 1946 progress = this; 1947 } 1948 } 1949 } 1950 1951 #ifdef _LP64 1952 // Push DecodeN/DecodeNKlass down through phi. 1953 // The rest of phi graph will transform by split EncodeP node though phis up. 1954 if ((UseCompressedOops || UseCompressedClassPointers) && can_reshape && progress == NULL) { 1955 bool may_push = true; 1956 bool has_decodeN = false; 1957 bool is_decodeN = false; 1958 for (uint i=1; i<req(); ++i) {// For all paths in 1959 Node *ii = in(i); 1960 if (ii->is_DecodeNarrowPtr() && ii->bottom_type() == bottom_type()) { 1961 // Do optimization if a non dead path exist. 1962 if (ii->in(1)->bottom_type() != Type::TOP) { 1963 has_decodeN = true; 1964 is_decodeN = ii->is_DecodeN(); 1965 } 1966 } else if (!ii->is_Phi()) { 1967 may_push = false; 1968 } 1969 } 1970 1971 if (has_decodeN && may_push) { 1972 PhaseIterGVN *igvn = phase->is_IterGVN(); 1973 // Make narrow type for new phi. 1974 const Type* narrow_t; 1975 if (is_decodeN) { 1976 narrow_t = TypeNarrowOop::make(this->bottom_type()->is_ptr()); 1977 } else { 1978 narrow_t = TypeNarrowKlass::make(this->bottom_type()->is_ptr()); 1979 } 1980 PhiNode* new_phi = new (phase->C) PhiNode(r, narrow_t); 1981 uint orig_cnt = req(); 1982 for (uint i=1; i<req(); ++i) {// For all paths in 1983 Node *ii = in(i); 1984 Node* new_ii = NULL; 1985 if (ii->is_DecodeNarrowPtr()) { 1986 assert(ii->bottom_type() == bottom_type(), "sanity"); 1987 new_ii = ii->in(1); 1988 } else { 1989 assert(ii->is_Phi(), "sanity"); 1990 if (ii->as_Phi() == this) { 1991 new_ii = new_phi; 1992 } else { 1993 if (is_decodeN) { 1994 new_ii = new (phase->C) EncodePNode(ii, narrow_t); 1995 } else { 1996 new_ii = new (phase->C) EncodePKlassNode(ii, narrow_t); 1997 } 1998 igvn->register_new_node_with_optimizer(new_ii); 1999 } 2000 } 2001 new_phi->set_req(i, new_ii); 2002 } 2003 igvn->register_new_node_with_optimizer(new_phi, this); 2004 if (is_decodeN) { 2005 progress = new (phase->C) DecodeNNode(new_phi, bottom_type()); 2006 } else { 2007 progress = new (phase->C) DecodeNKlassNode(new_phi, bottom_type()); 2008 } 2009 } 2010 } 2011 #endif 2012 2013 return progress; // Return any progress 2014 } 2015 2016 //------------------------------is_tripcount----------------------------------- 2017 bool PhiNode::is_tripcount() const { 2018 return (in(0) != NULL && in(0)->is_CountedLoop() && 2019 in(0)->as_CountedLoop()->phi() == this); 2020 } 2021 2022 //------------------------------out_RegMask------------------------------------ 2023 const RegMask &PhiNode::in_RegMask(uint i) const { 2024 return i ? out_RegMask() : RegMask::Empty; 2025 } 2026 2027 const RegMask &PhiNode::out_RegMask() const { 2028 uint ideal_reg = _type->ideal_reg(); 2029 assert( ideal_reg != Node::NotAMachineReg, "invalid type at Phi" ); 2030 if( ideal_reg == 0 ) return RegMask::Empty; 2031 assert(ideal_reg != Op_RegFlags, "flags register is not spillable"); 2032 return *(Compile::current()->matcher()->idealreg2spillmask[ideal_reg]); 2033 } 2034 2035 #ifndef PRODUCT 2036 void PhiNode::dump_spec(outputStream *st) const { 2037 TypeNode::dump_spec(st); 2038 if (is_tripcount()) { 2039 st->print(" #tripcount"); 2040 } 2041 } 2042 #endif 2043 2044 2045 //============================================================================= 2046 const Type *GotoNode::Value( PhaseTransform *phase ) const { 2047 // If the input is reachable, then we are executed. 2048 // If the input is not reachable, then we are not executed. 2049 return phase->type(in(0)); 2050 } 2051 2052 Node *GotoNode::Identity( PhaseTransform *phase ) { 2053 return in(0); // Simple copy of incoming control 2054 } 2055 2056 const RegMask &GotoNode::out_RegMask() const { 2057 return RegMask::Empty; 2058 } 2059 2060 //============================================================================= 2061 const RegMask &JumpNode::out_RegMask() const { 2062 return RegMask::Empty; 2063 } 2064 2065 //============================================================================= 2066 const RegMask &JProjNode::out_RegMask() const { 2067 return RegMask::Empty; 2068 } 2069 2070 //============================================================================= 2071 const RegMask &CProjNode::out_RegMask() const { 2072 return RegMask::Empty; 2073 } 2074 2075 2076 2077 //============================================================================= 2078 2079 uint PCTableNode::hash() const { return Node::hash() + _size; } 2080 uint PCTableNode::cmp( const Node &n ) const 2081 { return _size == ((PCTableNode&)n)._size; } 2082 2083 const Type *PCTableNode::bottom_type() const { 2084 const Type** f = TypeTuple::fields(_size); 2085 for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL; 2086 return TypeTuple::make(_size, f); 2087 } 2088 2089 //------------------------------Value------------------------------------------ 2090 // Compute the type of the PCTableNode. If reachable it is a tuple of 2091 // Control, otherwise the table targets are not reachable 2092 const Type *PCTableNode::Value( PhaseTransform *phase ) const { 2093 if( phase->type(in(0)) == Type::CONTROL ) 2094 return bottom_type(); 2095 return Type::TOP; // All paths dead? Then so are we 2096 } 2097 2098 //------------------------------Ideal------------------------------------------ 2099 // Return a node which is more "ideal" than the current node. Strip out 2100 // control copies 2101 Node *PCTableNode::Ideal(PhaseGVN *phase, bool can_reshape) { 2102 return remove_dead_region(phase, can_reshape) ? this : NULL; 2103 } 2104 2105 //============================================================================= 2106 uint JumpProjNode::hash() const { 2107 return Node::hash() + _dest_bci; 2108 } 2109 2110 uint JumpProjNode::cmp( const Node &n ) const { 2111 return ProjNode::cmp(n) && 2112 _dest_bci == ((JumpProjNode&)n)._dest_bci; 2113 } 2114 2115 #ifndef PRODUCT 2116 void JumpProjNode::dump_spec(outputStream *st) const { 2117 ProjNode::dump_spec(st); 2118 st->print("@bci %d ",_dest_bci); 2119 } 2120 #endif 2121 2122 //============================================================================= 2123 //------------------------------Value------------------------------------------ 2124 // Check for being unreachable, or for coming from a Rethrow. Rethrow's cannot 2125 // have the default "fall_through_index" path. 2126 const Type *CatchNode::Value( PhaseTransform *phase ) const { 2127 // Unreachable? Then so are all paths from here. 2128 if( phase->type(in(0)) == Type::TOP ) return Type::TOP; 2129 // First assume all paths are reachable 2130 const Type** f = TypeTuple::fields(_size); 2131 for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL; 2132 // Identify cases that will always throw an exception 2133 // () rethrow call 2134 // () virtual or interface call with NULL receiver 2135 // () call is a check cast with incompatible arguments 2136 if( in(1)->is_Proj() ) { 2137 Node *i10 = in(1)->in(0); 2138 if( i10->is_Call() ) { 2139 CallNode *call = i10->as_Call(); 2140 // Rethrows always throw exceptions, never return 2141 if (call->entry_point() == OptoRuntime::rethrow_stub()) { 2142 f[CatchProjNode::fall_through_index] = Type::TOP; 2143 } else if( call->req() > TypeFunc::Parms ) { 2144 const Type *arg0 = phase->type( call->in(TypeFunc::Parms) ); 2145 // Check for null receiver to virtual or interface calls 2146 if( call->is_CallDynamicJava() && 2147 arg0->higher_equal(TypePtr::NULL_PTR) ) { 2148 f[CatchProjNode::fall_through_index] = Type::TOP; 2149 } 2150 } // End of if not a runtime stub 2151 } // End of if have call above me 2152 } // End of slot 1 is not a projection 2153 return TypeTuple::make(_size, f); 2154 } 2155 2156 //============================================================================= 2157 uint CatchProjNode::hash() const { 2158 return Node::hash() + _handler_bci; 2159 } 2160 2161 2162 uint CatchProjNode::cmp( const Node &n ) const { 2163 return ProjNode::cmp(n) && 2164 _handler_bci == ((CatchProjNode&)n)._handler_bci; 2165 } 2166 2167 2168 //------------------------------Identity--------------------------------------- 2169 // If only 1 target is possible, choose it if it is the main control 2170 Node *CatchProjNode::Identity( PhaseTransform *phase ) { 2171 // If my value is control and no other value is, then treat as ID 2172 const TypeTuple *t = phase->type(in(0))->is_tuple(); 2173 if (t->field_at(_con) != Type::CONTROL) return this; 2174 // If we remove the last CatchProj and elide the Catch/CatchProj, then we 2175 // also remove any exception table entry. Thus we must know the call 2176 // feeding the Catch will not really throw an exception. This is ok for 2177 // the main fall-thru control (happens when we know a call can never throw 2178 // an exception) or for "rethrow", because a further optimization will 2179 // yank the rethrow (happens when we inline a function that can throw an 2180 // exception and the caller has no handler). Not legal, e.g., for passing 2181 // a NULL receiver to a v-call, or passing bad types to a slow-check-cast. 2182 // These cases MUST throw an exception via the runtime system, so the VM 2183 // will be looking for a table entry. 2184 Node *proj = in(0)->in(1); // Expect a proj feeding CatchNode 2185 CallNode *call; 2186 if (_con != TypeFunc::Control && // Bail out if not the main control. 2187 !(proj->is_Proj() && // AND NOT a rethrow 2188 proj->in(0)->is_Call() && 2189 (call = proj->in(0)->as_Call()) && 2190 call->entry_point() == OptoRuntime::rethrow_stub())) 2191 return this; 2192 2193 // Search for any other path being control 2194 for (uint i = 0; i < t->cnt(); i++) { 2195 if (i != _con && t->field_at(i) == Type::CONTROL) 2196 return this; 2197 } 2198 // Only my path is possible; I am identity on control to the jump 2199 return in(0)->in(0); 2200 } 2201 2202 2203 #ifndef PRODUCT 2204 void CatchProjNode::dump_spec(outputStream *st) const { 2205 ProjNode::dump_spec(st); 2206 st->print("@bci %d ",_handler_bci); 2207 } 2208 #endif 2209 2210 //============================================================================= 2211 //------------------------------Identity--------------------------------------- 2212 // Check for CreateEx being Identity. 2213 Node *CreateExNode::Identity( PhaseTransform *phase ) { 2214 if( phase->type(in(1)) == Type::TOP ) return in(1); 2215 if( phase->type(in(0)) == Type::TOP ) return in(0); 2216 // We only come from CatchProj, unless the CatchProj goes away. 2217 // If the CatchProj is optimized away, then we just carry the 2218 // exception oop through. 2219 CallNode *call = in(1)->in(0)->as_Call(); 2220 2221 return ( in(0)->is_CatchProj() && in(0)->in(0)->in(1) == in(1) ) 2222 ? this 2223 : call->in(TypeFunc::Parms); 2224 } 2225 2226 //============================================================================= 2227 //------------------------------Value------------------------------------------ 2228 // Check for being unreachable. 2229 const Type *NeverBranchNode::Value( PhaseTransform *phase ) const { 2230 if (!in(0) || in(0)->is_top()) return Type::TOP; 2231 return bottom_type(); 2232 } 2233 2234 //------------------------------Ideal------------------------------------------ 2235 // Check for no longer being part of a loop 2236 Node *NeverBranchNode::Ideal(PhaseGVN *phase, bool can_reshape) { 2237 if (can_reshape && !in(0)->is_Loop()) { 2238 // Dead code elimination can sometimes delete this projection so 2239 // if it's not there, there's nothing to do. 2240 Node* fallthru = proj_out(0); 2241 if (fallthru != NULL) { 2242 phase->is_IterGVN()->replace_node(fallthru, in(0)); 2243 } 2244 return phase->C->top(); 2245 } 2246 return NULL; 2247 } 2248 2249 #ifndef PRODUCT 2250 void NeverBranchNode::format( PhaseRegAlloc *ra_, outputStream *st) const { 2251 st->print("%s", Name()); 2252 } 2253 #endif