1 /* 2 * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "ci/ciReplay.hpp" 29 #include "classfile/systemDictionary.hpp" 30 #include "code/exceptionHandlerTable.hpp" 31 #include "code/nmethod.hpp" 32 #include "compiler/compileLog.hpp" 33 #include "compiler/disassembler.hpp" 34 #include "compiler/oopMap.hpp" 35 #include "jfr/jfrEvents.hpp" 36 #include "opto/addnode.hpp" 37 #include "opto/block.hpp" 38 #include "opto/c2compiler.hpp" 39 #include "opto/callGenerator.hpp" 40 #include "opto/callnode.hpp" 41 #include "opto/cfgnode.hpp" 42 #include "opto/chaitin.hpp" 43 #include "opto/compile.hpp" 44 #include "opto/connode.hpp" 45 #include "opto/divnode.hpp" 46 #include "opto/escape.hpp" 47 #include "opto/idealGraphPrinter.hpp" 48 #include "opto/loopnode.hpp" 49 #include "opto/machnode.hpp" 50 #include "opto/macro.hpp" 51 #include "opto/matcher.hpp" 52 #include "opto/mathexactnode.hpp" 53 #include "opto/memnode.hpp" 54 #include "opto/mulnode.hpp" 55 #include "opto/node.hpp" 56 #include "opto/opcodes.hpp" 57 #include "opto/output.hpp" 58 #include "opto/parse.hpp" 59 #include "opto/phaseX.hpp" 60 #include "opto/rootnode.hpp" 61 #include "opto/runtime.hpp" 62 #include "opto/stringopts.hpp" 63 #include "opto/type.hpp" 64 #include "opto/vectornode.hpp" 65 #include "runtime/arguments.hpp" 66 #include "runtime/signature.hpp" 67 #include "runtime/stubRoutines.hpp" 68 #include "runtime/timer.hpp" 69 #include "utilities/copy.hpp" 70 #if defined AD_MD_HPP 71 # include AD_MD_HPP 72 #elif defined TARGET_ARCH_MODEL_x86_32 73 # include "adfiles/ad_x86_32.hpp" 74 #elif defined TARGET_ARCH_MODEL_x86_64 75 # include "adfiles/ad_x86_64.hpp" 76 #elif defined TARGET_ARCH_MODEL_aarch64 77 # include "adfiles/ad_aarch64.hpp" 78 #elif defined TARGET_ARCH_MODEL_sparc 79 # include "adfiles/ad_sparc.hpp" 80 #elif defined TARGET_ARCH_MODEL_zero 81 # include "adfiles/ad_zero.hpp" 82 #elif defined TARGET_ARCH_MODEL_ppc_64 83 # include "adfiles/ad_ppc_64.hpp" 84 #endif 85 86 #if INCLUDE_ALL_GCS 87 #include "gc_implementation/shenandoah/shenandoahForwarding.hpp" 88 #include "gc_implementation/shenandoah/c2/shenandoahSupport.hpp" 89 #endif 90 91 // -------------------- Compile::mach_constant_base_node ----------------------- 92 // Constant table base node singleton. 93 MachConstantBaseNode* Compile::mach_constant_base_node() { 94 if (_mach_constant_base_node == NULL) { 95 _mach_constant_base_node = new (C) MachConstantBaseNode(); 96 _mach_constant_base_node->add_req(C->root()); 97 } 98 return _mach_constant_base_node; 99 } 100 101 102 /// Support for intrinsics. 103 104 // Return the index at which m must be inserted (or already exists). 105 // The sort order is by the address of the ciMethod, with is_virtual as minor key. 106 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) { 107 #ifdef ASSERT 108 for (int i = 1; i < _intrinsics->length(); i++) { 109 CallGenerator* cg1 = _intrinsics->at(i-1); 110 CallGenerator* cg2 = _intrinsics->at(i); 111 assert(cg1->method() != cg2->method() 112 ? cg1->method() < cg2->method() 113 : cg1->is_virtual() < cg2->is_virtual(), 114 "compiler intrinsics list must stay sorted"); 115 } 116 #endif 117 // Binary search sorted list, in decreasing intervals [lo, hi]. 118 int lo = 0, hi = _intrinsics->length()-1; 119 while (lo <= hi) { 120 int mid = (uint)(hi + lo) / 2; 121 ciMethod* mid_m = _intrinsics->at(mid)->method(); 122 if (m < mid_m) { 123 hi = mid-1; 124 } else if (m > mid_m) { 125 lo = mid+1; 126 } else { 127 // look at minor sort key 128 bool mid_virt = _intrinsics->at(mid)->is_virtual(); 129 if (is_virtual < mid_virt) { 130 hi = mid-1; 131 } else if (is_virtual > mid_virt) { 132 lo = mid+1; 133 } else { 134 return mid; // exact match 135 } 136 } 137 } 138 return lo; // inexact match 139 } 140 141 void Compile::register_intrinsic(CallGenerator* cg) { 142 if (_intrinsics == NULL) { 143 _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL); 144 } 145 // This code is stolen from ciObjectFactory::insert. 146 // Really, GrowableArray should have methods for 147 // insert_at, remove_at, and binary_search. 148 int len = _intrinsics->length(); 149 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual()); 150 if (index == len) { 151 _intrinsics->append(cg); 152 } else { 153 #ifdef ASSERT 154 CallGenerator* oldcg = _intrinsics->at(index); 155 assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice"); 156 #endif 157 _intrinsics->append(_intrinsics->at(len-1)); 158 int pos; 159 for (pos = len-2; pos >= index; pos--) { 160 _intrinsics->at_put(pos+1,_intrinsics->at(pos)); 161 } 162 _intrinsics->at_put(index, cg); 163 } 164 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked"); 165 } 166 167 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) { 168 assert(m->is_loaded(), "don't try this on unloaded methods"); 169 if (_intrinsics != NULL) { 170 int index = intrinsic_insertion_index(m, is_virtual); 171 if (index < _intrinsics->length() 172 && _intrinsics->at(index)->method() == m 173 && _intrinsics->at(index)->is_virtual() == is_virtual) { 174 return _intrinsics->at(index); 175 } 176 } 177 // Lazily create intrinsics for intrinsic IDs well-known in the runtime. 178 if (m->intrinsic_id() != vmIntrinsics::_none && 179 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) { 180 CallGenerator* cg = make_vm_intrinsic(m, is_virtual); 181 if (cg != NULL) { 182 // Save it for next time: 183 register_intrinsic(cg); 184 return cg; 185 } else { 186 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled); 187 } 188 } 189 return NULL; 190 } 191 192 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined 193 // in library_call.cpp. 194 195 196 #ifndef PRODUCT 197 // statistics gathering... 198 199 juint Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0}; 200 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0}; 201 202 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) { 203 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob"); 204 int oflags = _intrinsic_hist_flags[id]; 205 assert(flags != 0, "what happened?"); 206 if (is_virtual) { 207 flags |= _intrinsic_virtual; 208 } 209 bool changed = (flags != oflags); 210 if ((flags & _intrinsic_worked) != 0) { 211 juint count = (_intrinsic_hist_count[id] += 1); 212 if (count == 1) { 213 changed = true; // first time 214 } 215 // increment the overall count also: 216 _intrinsic_hist_count[vmIntrinsics::_none] += 1; 217 } 218 if (changed) { 219 if (((oflags ^ flags) & _intrinsic_virtual) != 0) { 220 // Something changed about the intrinsic's virtuality. 221 if ((flags & _intrinsic_virtual) != 0) { 222 // This is the first use of this intrinsic as a virtual call. 223 if (oflags != 0) { 224 // We already saw it as a non-virtual, so note both cases. 225 flags |= _intrinsic_both; 226 } 227 } else if ((oflags & _intrinsic_both) == 0) { 228 // This is the first use of this intrinsic as a non-virtual 229 flags |= _intrinsic_both; 230 } 231 } 232 _intrinsic_hist_flags[id] = (jubyte) (oflags | flags); 233 } 234 // update the overall flags also: 235 _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags; 236 return changed; 237 } 238 239 static char* format_flags(int flags, char* buf) { 240 buf[0] = 0; 241 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked"); 242 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed"); 243 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled"); 244 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual"); 245 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual"); 246 if (buf[0] == 0) strcat(buf, ","); 247 assert(buf[0] == ',', "must be"); 248 return &buf[1]; 249 } 250 251 void Compile::print_intrinsic_statistics() { 252 char flagsbuf[100]; 253 ttyLocker ttyl; 254 if (xtty != NULL) xtty->head("statistics type='intrinsic'"); 255 tty->print_cr("Compiler intrinsic usage:"); 256 juint total = _intrinsic_hist_count[vmIntrinsics::_none]; 257 if (total == 0) total = 1; // avoid div0 in case of no successes 258 #define PRINT_STAT_LINE(name, c, f) \ 259 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f); 260 for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) { 261 vmIntrinsics::ID id = (vmIntrinsics::ID) index; 262 int flags = _intrinsic_hist_flags[id]; 263 juint count = _intrinsic_hist_count[id]; 264 if ((flags | count) != 0) { 265 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf)); 266 } 267 } 268 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf)); 269 if (xtty != NULL) xtty->tail("statistics"); 270 } 271 272 void Compile::print_statistics() { 273 { ttyLocker ttyl; 274 if (xtty != NULL) xtty->head("statistics type='opto'"); 275 Parse::print_statistics(); 276 PhaseCCP::print_statistics(); 277 PhaseRegAlloc::print_statistics(); 278 Scheduling::print_statistics(); 279 PhasePeephole::print_statistics(); 280 PhaseIdealLoop::print_statistics(); 281 if (xtty != NULL) xtty->tail("statistics"); 282 } 283 if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) { 284 // put this under its own <statistics> element. 285 print_intrinsic_statistics(); 286 } 287 } 288 #endif //PRODUCT 289 290 // Support for bundling info 291 Bundle* Compile::node_bundling(const Node *n) { 292 assert(valid_bundle_info(n), "oob"); 293 return &_node_bundling_base[n->_idx]; 294 } 295 296 bool Compile::valid_bundle_info(const Node *n) { 297 return (_node_bundling_limit > n->_idx); 298 } 299 300 301 void Compile::gvn_replace_by(Node* n, Node* nn) { 302 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) { 303 Node* use = n->last_out(i); 304 bool is_in_table = initial_gvn()->hash_delete(use); 305 uint uses_found = 0; 306 for (uint j = 0; j < use->len(); j++) { 307 if (use->in(j) == n) { 308 if (j < use->req()) 309 use->set_req(j, nn); 310 else 311 use->set_prec(j, nn); 312 uses_found++; 313 } 314 } 315 if (is_in_table) { 316 // reinsert into table 317 initial_gvn()->hash_find_insert(use); 318 } 319 record_for_igvn(use); 320 i -= uses_found; // we deleted 1 or more copies of this edge 321 } 322 } 323 324 325 static inline bool not_a_node(const Node* n) { 326 if (n == NULL) return true; 327 if (((intptr_t)n & 1) != 0) return true; // uninitialized, etc. 328 if (*(address*)n == badAddress) return true; // kill by Node::destruct 329 return false; 330 } 331 332 // Identify all nodes that are reachable from below, useful. 333 // Use breadth-first pass that records state in a Unique_Node_List, 334 // recursive traversal is slower. 335 void Compile::identify_useful_nodes(Unique_Node_List &useful) { 336 int estimated_worklist_size = live_nodes(); 337 useful.map( estimated_worklist_size, NULL ); // preallocate space 338 339 // Initialize worklist 340 if (root() != NULL) { useful.push(root()); } 341 // If 'top' is cached, declare it useful to preserve cached node 342 if( cached_top_node() ) { useful.push(cached_top_node()); } 343 344 // Push all useful nodes onto the list, breadthfirst 345 for( uint next = 0; next < useful.size(); ++next ) { 346 assert( next < unique(), "Unique useful nodes < total nodes"); 347 Node *n = useful.at(next); 348 uint max = n->len(); 349 for( uint i = 0; i < max; ++i ) { 350 Node *m = n->in(i); 351 if (not_a_node(m)) continue; 352 useful.push(m); 353 } 354 } 355 } 356 357 // Update dead_node_list with any missing dead nodes using useful 358 // list. Consider all non-useful nodes to be useless i.e., dead nodes. 359 void Compile::update_dead_node_list(Unique_Node_List &useful) { 360 uint max_idx = unique(); 361 VectorSet& useful_node_set = useful.member_set(); 362 363 for (uint node_idx = 0; node_idx < max_idx; node_idx++) { 364 // If node with index node_idx is not in useful set, 365 // mark it as dead in dead node list. 366 if (! useful_node_set.test(node_idx) ) { 367 record_dead_node(node_idx); 368 } 369 } 370 } 371 372 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) { 373 int shift = 0; 374 for (int i = 0; i < inlines->length(); i++) { 375 CallGenerator* cg = inlines->at(i); 376 CallNode* call = cg->call_node(); 377 if (shift > 0) { 378 inlines->at_put(i-shift, cg); 379 } 380 if (!useful.member(call)) { 381 shift++; 382 } 383 } 384 inlines->trunc_to(inlines->length()-shift); 385 } 386 387 // Disconnect all useless nodes by disconnecting those at the boundary. 388 void Compile::remove_useless_nodes(Unique_Node_List &useful) { 389 uint next = 0; 390 while (next < useful.size()) { 391 Node *n = useful.at(next++); 392 if (n->is_SafePoint()) { 393 // We're done with a parsing phase. Replaced nodes are not valid 394 // beyond that point. 395 n->as_SafePoint()->delete_replaced_nodes(); 396 } 397 // Use raw traversal of out edges since this code removes out edges 398 int max = n->outcnt(); 399 for (int j = 0; j < max; ++j) { 400 Node* child = n->raw_out(j); 401 if (! useful.member(child)) { 402 assert(!child->is_top() || child != top(), 403 "If top is cached in Compile object it is in useful list"); 404 // Only need to remove this out-edge to the useless node 405 n->raw_del_out(j); 406 --j; 407 --max; 408 } 409 } 410 if (n->outcnt() == 1 && n->has_special_unique_user()) { 411 record_for_igvn(n->unique_out()); 412 } 413 if (n->Opcode() == Op_AddP && CallLeafNode::has_only_g1_wb_pre_uses(n)) { 414 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 415 record_for_igvn(n->fast_out(i)); 416 } 417 } 418 } 419 // Remove useless macro and predicate opaq nodes 420 for (int i = C->macro_count()-1; i >= 0; i--) { 421 Node* n = C->macro_node(i); 422 if (!useful.member(n)) { 423 remove_macro_node(n); 424 } 425 } 426 // Remove useless CastII nodes with range check dependency 427 for (int i = range_check_cast_count() - 1; i >= 0; i--) { 428 Node* cast = range_check_cast_node(i); 429 if (!useful.member(cast)) { 430 remove_range_check_cast(cast); 431 } 432 } 433 // Remove useless expensive node 434 for (int i = C->expensive_count()-1; i >= 0; i--) { 435 Node* n = C->expensive_node(i); 436 if (!useful.member(n)) { 437 remove_expensive_node(n); 438 } 439 } 440 for (int i = C->shenandoah_barriers_count()-1; i >= 0; i--) { 441 ShenandoahLoadReferenceBarrierNode* n = C->shenandoah_barrier(i); 442 if (!useful.member(n)) { 443 remove_shenandoah_barrier(n); 444 } 445 } 446 // clean up the late inline lists 447 remove_useless_late_inlines(&_string_late_inlines, useful); 448 remove_useless_late_inlines(&_boxing_late_inlines, useful); 449 remove_useless_late_inlines(&_late_inlines, useful); 450 debug_only(verify_graph_edges(true/*check for no_dead_code*/);) 451 } 452 453 //------------------------------frame_size_in_words----------------------------- 454 // frame_slots in units of words 455 int Compile::frame_size_in_words() const { 456 // shift is 0 in LP32 and 1 in LP64 457 const int shift = (LogBytesPerWord - LogBytesPerInt); 458 int words = _frame_slots >> shift; 459 assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" ); 460 return words; 461 } 462 463 // To bang the stack of this compiled method we use the stack size 464 // that the interpreter would need in case of a deoptimization. This 465 // removes the need to bang the stack in the deoptimization blob which 466 // in turn simplifies stack overflow handling. 467 int Compile::bang_size_in_bytes() const { 468 return MAX2(_interpreter_frame_size, frame_size_in_bytes()); 469 } 470 471 // ============================================================================ 472 //------------------------------CompileWrapper--------------------------------- 473 class CompileWrapper : public StackObj { 474 Compile *const _compile; 475 public: 476 CompileWrapper(Compile* compile); 477 478 ~CompileWrapper(); 479 }; 480 481 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) { 482 // the Compile* pointer is stored in the current ciEnv: 483 ciEnv* env = compile->env(); 484 assert(env == ciEnv::current(), "must already be a ciEnv active"); 485 assert(env->compiler_data() == NULL, "compile already active?"); 486 env->set_compiler_data(compile); 487 assert(compile == Compile::current(), "sanity"); 488 489 compile->set_type_dict(NULL); 490 compile->set_type_hwm(NULL); 491 compile->set_type_last_size(0); 492 compile->set_last_tf(NULL, NULL); 493 compile->set_indexSet_arena(NULL); 494 compile->set_indexSet_free_block_list(NULL); 495 compile->init_type_arena(); 496 Type::Initialize(compile); 497 _compile->set_scratch_buffer_blob(NULL); 498 _compile->begin_method(); 499 } 500 CompileWrapper::~CompileWrapper() { 501 _compile->end_method(); 502 if (_compile->scratch_buffer_blob() != NULL) 503 BufferBlob::free(_compile->scratch_buffer_blob()); 504 _compile->env()->set_compiler_data(NULL); 505 } 506 507 508 //----------------------------print_compile_messages--------------------------- 509 void Compile::print_compile_messages() { 510 #ifndef PRODUCT 511 // Check if recompiling 512 if (_subsume_loads == false && PrintOpto) { 513 // Recompiling without allowing machine instructions to subsume loads 514 tty->print_cr("*********************************************************"); 515 tty->print_cr("** Bailout: Recompile without subsuming loads **"); 516 tty->print_cr("*********************************************************"); 517 } 518 if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) { 519 // Recompiling without escape analysis 520 tty->print_cr("*********************************************************"); 521 tty->print_cr("** Bailout: Recompile without escape analysis **"); 522 tty->print_cr("*********************************************************"); 523 } 524 if (_eliminate_boxing != EliminateAutoBox && PrintOpto) { 525 // Recompiling without boxing elimination 526 tty->print_cr("*********************************************************"); 527 tty->print_cr("** Bailout: Recompile without boxing elimination **"); 528 tty->print_cr("*********************************************************"); 529 } 530 if (env()->break_at_compile()) { 531 // Open the debugger when compiling this method. 532 tty->print("### Breaking when compiling: "); 533 method()->print_short_name(); 534 tty->cr(); 535 BREAKPOINT; 536 } 537 538 if( PrintOpto ) { 539 if (is_osr_compilation()) { 540 tty->print("[OSR]%3d", _compile_id); 541 } else { 542 tty->print("%3d", _compile_id); 543 } 544 } 545 #endif 546 } 547 548 549 //-----------------------init_scratch_buffer_blob------------------------------ 550 // Construct a temporary BufferBlob and cache it for this compile. 551 void Compile::init_scratch_buffer_blob(int const_size) { 552 // If there is already a scratch buffer blob allocated and the 553 // constant section is big enough, use it. Otherwise free the 554 // current and allocate a new one. 555 BufferBlob* blob = scratch_buffer_blob(); 556 if ((blob != NULL) && (const_size <= _scratch_const_size)) { 557 // Use the current blob. 558 } else { 559 if (blob != NULL) { 560 BufferBlob::free(blob); 561 } 562 563 ResourceMark rm; 564 _scratch_const_size = const_size; 565 int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size); 566 blob = BufferBlob::create("Compile::scratch_buffer", size); 567 // Record the buffer blob for next time. 568 set_scratch_buffer_blob(blob); 569 // Have we run out of code space? 570 if (scratch_buffer_blob() == NULL) { 571 // Let CompilerBroker disable further compilations. 572 record_failure("Not enough space for scratch buffer in CodeCache"); 573 return; 574 } 575 } 576 577 // Initialize the relocation buffers 578 relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size; 579 set_scratch_locs_memory(locs_buf); 580 } 581 582 583 //-----------------------scratch_emit_size------------------------------------- 584 // Helper function that computes size by emitting code 585 uint Compile::scratch_emit_size(const Node* n) { 586 // Start scratch_emit_size section. 587 set_in_scratch_emit_size(true); 588 589 // Emit into a trash buffer and count bytes emitted. 590 // This is a pretty expensive way to compute a size, 591 // but it works well enough if seldom used. 592 // All common fixed-size instructions are given a size 593 // method by the AD file. 594 // Note that the scratch buffer blob and locs memory are 595 // allocated at the beginning of the compile task, and 596 // may be shared by several calls to scratch_emit_size. 597 // The allocation of the scratch buffer blob is particularly 598 // expensive, since it has to grab the code cache lock. 599 BufferBlob* blob = this->scratch_buffer_blob(); 600 assert(blob != NULL, "Initialize BufferBlob at start"); 601 assert(blob->size() > MAX_inst_size, "sanity"); 602 relocInfo* locs_buf = scratch_locs_memory(); 603 address blob_begin = blob->content_begin(); 604 address blob_end = (address)locs_buf; 605 assert(blob->content_contains(blob_end), "sanity"); 606 CodeBuffer buf(blob_begin, blob_end - blob_begin); 607 buf.initialize_consts_size(_scratch_const_size); 608 buf.initialize_stubs_size(MAX_stubs_size); 609 assert(locs_buf != NULL, "sanity"); 610 int lsize = MAX_locs_size / 3; 611 buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize); 612 buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize); 613 buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize); 614 615 // Do the emission. 616 617 Label fakeL; // Fake label for branch instructions. 618 Label* saveL = NULL; 619 uint save_bnum = 0; 620 bool is_branch = n->is_MachBranch(); 621 if (is_branch) { 622 MacroAssembler masm(&buf); 623 masm.bind(fakeL); 624 n->as_MachBranch()->save_label(&saveL, &save_bnum); 625 n->as_MachBranch()->label_set(&fakeL, 0); 626 } 627 n->emit(buf, this->regalloc()); 628 629 // Emitting into the scratch buffer should not fail 630 assert (!failing(), err_msg_res("Must not have pending failure. Reason is: %s", failure_reason())); 631 632 if (is_branch) // Restore label. 633 n->as_MachBranch()->label_set(saveL, save_bnum); 634 635 // End scratch_emit_size section. 636 set_in_scratch_emit_size(false); 637 638 return buf.insts_size(); 639 } 640 641 642 // ============================================================================ 643 //------------------------------Compile standard------------------------------- 644 debug_only( int Compile::_debug_idx = 100000; ) 645 646 // Compile a method. entry_bci is -1 for normal compilations and indicates 647 // the continuation bci for on stack replacement. 648 649 650 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci, 651 bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing ) 652 : Phase(Compiler), 653 _env(ci_env), 654 _log(ci_env->log()), 655 _compile_id(ci_env->compile_id()), 656 _save_argument_registers(false), 657 _stub_name(NULL), 658 _stub_function(NULL), 659 _stub_entry_point(NULL), 660 _method(target), 661 _entry_bci(osr_bci), 662 _initial_gvn(NULL), 663 _for_igvn(NULL), 664 _warm_calls(NULL), 665 _subsume_loads(subsume_loads), 666 _do_escape_analysis(do_escape_analysis), 667 _eliminate_boxing(eliminate_boxing), 668 _failure_reason(NULL), 669 _code_buffer("Compile::Fill_buffer"), 670 _orig_pc_slot(0), 671 _orig_pc_slot_offset_in_bytes(0), 672 _has_method_handle_invokes(false), 673 _mach_constant_base_node(NULL), 674 _node_bundling_limit(0), 675 _node_bundling_base(NULL), 676 _java_calls(0), 677 _inner_loops(0), 678 _scratch_const_size(-1), 679 _in_scratch_emit_size(false), 680 _dead_node_list(comp_arena()), 681 _dead_node_count(0), 682 #ifndef PRODUCT 683 _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")), 684 _in_dump_cnt(0), 685 _printer(IdealGraphPrinter::printer()), 686 #endif 687 _congraph(NULL), 688 _comp_arena(mtCompiler), 689 _node_arena(mtCompiler), 690 _old_arena(mtCompiler), 691 _Compile_types(mtCompiler), 692 _replay_inline_data(NULL), 693 _late_inlines(comp_arena(), 2, 0, NULL), 694 _string_late_inlines(comp_arena(), 2, 0, NULL), 695 _boxing_late_inlines(comp_arena(), 2, 0, NULL), 696 _late_inlines_pos(0), 697 _number_of_mh_late_inlines(0), 698 _inlining_progress(false), 699 _inlining_incrementally(false), 700 _print_inlining_list(NULL), 701 _print_inlining_idx(0), 702 _interpreter_frame_size(0), 703 _max_node_limit(MaxNodeLimit) { 704 C = this; 705 706 CompileWrapper cw(this); 707 #ifndef PRODUCT 708 if (TimeCompiler2) { 709 tty->print(" "); 710 target->holder()->name()->print(); 711 tty->print("."); 712 target->print_short_name(); 713 tty->print(" "); 714 } 715 TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2); 716 TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false); 717 bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly"); 718 if (!print_opto_assembly) { 719 bool print_assembly = (PrintAssembly || _method->should_print_assembly()); 720 if (print_assembly && !Disassembler::can_decode()) { 721 tty->print_cr("PrintAssembly request changed to PrintOptoAssembly"); 722 print_opto_assembly = true; 723 } 724 } 725 set_print_assembly(print_opto_assembly); 726 set_parsed_irreducible_loop(false); 727 728 if (method()->has_option("ReplayInline")) { 729 _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level()); 730 } 731 #endif 732 set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining)); 733 set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics")); 734 set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it 735 736 if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) { 737 // Make sure the method being compiled gets its own MDO, 738 // so we can at least track the decompile_count(). 739 // Need MDO to record RTM code generation state. 740 method()->ensure_method_data(); 741 } 742 743 Init(::AliasLevel); 744 745 746 print_compile_messages(); 747 748 _ilt = InlineTree::build_inline_tree_root(); 749 750 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice 751 assert(num_alias_types() >= AliasIdxRaw, ""); 752 753 #define MINIMUM_NODE_HASH 1023 754 // Node list that Iterative GVN will start with 755 Unique_Node_List for_igvn(comp_arena()); 756 set_for_igvn(&for_igvn); 757 758 // GVN that will be run immediately on new nodes 759 uint estimated_size = method()->code_size()*4+64; 760 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size); 761 PhaseGVN gvn(node_arena(), estimated_size); 762 set_initial_gvn(&gvn); 763 764 if (print_inlining() || print_intrinsics()) { 765 _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer()); 766 } 767 { // Scope for timing the parser 768 TracePhase t3("parse", &_t_parser, true); 769 770 // Put top into the hash table ASAP. 771 initial_gvn()->transform_no_reclaim(top()); 772 773 // Set up tf(), start(), and find a CallGenerator. 774 CallGenerator* cg = NULL; 775 if (is_osr_compilation()) { 776 const TypeTuple *domain = StartOSRNode::osr_domain(); 777 const TypeTuple *range = TypeTuple::make_range(method()->signature()); 778 init_tf(TypeFunc::make(domain, range)); 779 StartNode* s = new (this) StartOSRNode(root(), domain); 780 initial_gvn()->set_type_bottom(s); 781 init_start(s); 782 cg = CallGenerator::for_osr(method(), entry_bci()); 783 } else { 784 // Normal case. 785 init_tf(TypeFunc::make(method())); 786 StartNode* s = new (this) StartNode(root(), tf()->domain()); 787 initial_gvn()->set_type_bottom(s); 788 init_start(s); 789 if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && (UseG1GC || UseShenandoahGC)) { 790 // With java.lang.ref.reference.get() we must go through the 791 // intrinsic when G1 is enabled - even when get() is the root 792 // method of the compile - so that, if necessary, the value in 793 // the referent field of the reference object gets recorded by 794 // the pre-barrier code. 795 // Specifically, if G1 is enabled, the value in the referent 796 // field is recorded by the G1 SATB pre barrier. This will 797 // result in the referent being marked live and the reference 798 // object removed from the list of discovered references during 799 // reference processing. 800 cg = find_intrinsic(method(), false); 801 } 802 if (cg == NULL) { 803 float past_uses = method()->interpreter_invocation_count(); 804 float expected_uses = past_uses; 805 cg = CallGenerator::for_inline(method(), expected_uses); 806 } 807 } 808 if (failing()) return; 809 if (cg == NULL) { 810 record_method_not_compilable_all_tiers("cannot parse method"); 811 return; 812 } 813 JVMState* jvms = build_start_state(start(), tf()); 814 if ((jvms = cg->generate(jvms)) == NULL) { 815 if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) { 816 record_method_not_compilable("method parse failed"); 817 } 818 return; 819 } 820 GraphKit kit(jvms); 821 822 if (!kit.stopped()) { 823 // Accept return values, and transfer control we know not where. 824 // This is done by a special, unique ReturnNode bound to root. 825 return_values(kit.jvms()); 826 } 827 828 if (kit.has_exceptions()) { 829 // Any exceptions that escape from this call must be rethrown 830 // to whatever caller is dynamically above us on the stack. 831 // This is done by a special, unique RethrowNode bound to root. 832 rethrow_exceptions(kit.transfer_exceptions_into_jvms()); 833 } 834 835 assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off"); 836 837 if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) { 838 inline_string_calls(true); 839 } 840 841 if (failing()) return; 842 843 print_method(PHASE_BEFORE_REMOVEUSELESS, 3); 844 845 // Remove clutter produced by parsing. 846 if (!failing()) { 847 ResourceMark rm; 848 PhaseRemoveUseless pru(initial_gvn(), &for_igvn); 849 } 850 } 851 852 // Note: Large methods are capped off in do_one_bytecode(). 853 if (failing()) return; 854 855 // After parsing, node notes are no longer automagic. 856 // They must be propagated by register_new_node_with_optimizer(), 857 // clone(), or the like. 858 set_default_node_notes(NULL); 859 860 for (;;) { 861 int successes = Inline_Warm(); 862 if (failing()) return; 863 if (successes == 0) break; 864 } 865 866 // Drain the list. 867 Finish_Warm(); 868 #ifndef PRODUCT 869 if (_printer) { 870 _printer->print_inlining(this); 871 } 872 #endif 873 874 if (failing()) return; 875 NOT_PRODUCT( verify_graph_edges(); ) 876 877 // Now optimize 878 Optimize(); 879 if (failing()) return; 880 NOT_PRODUCT( verify_graph_edges(); ) 881 882 #ifndef PRODUCT 883 if (PrintIdeal) { 884 ttyLocker ttyl; // keep the following output all in one block 885 // This output goes directly to the tty, not the compiler log. 886 // To enable tools to match it up with the compilation activity, 887 // be sure to tag this tty output with the compile ID. 888 if (xtty != NULL) { 889 xtty->head("ideal compile_id='%d'%s", compile_id(), 890 is_osr_compilation() ? " compile_kind='osr'" : 891 ""); 892 } 893 root()->dump(9999); 894 if (xtty != NULL) { 895 xtty->tail("ideal"); 896 } 897 } 898 #endif 899 900 NOT_PRODUCT( verify_barriers(); ) 901 902 // Dump compilation data to replay it. 903 if (method()->has_option("DumpReplay")) { 904 env()->dump_replay_data(_compile_id); 905 } 906 if (method()->has_option("DumpInline") && (ilt() != NULL)) { 907 env()->dump_inline_data(_compile_id); 908 } 909 910 // Now that we know the size of all the monitors we can add a fixed slot 911 // for the original deopt pc. 912 913 _orig_pc_slot = fixed_slots(); 914 int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size); 915 set_fixed_slots(next_slot); 916 917 // Compute when to use implicit null checks. Used by matching trap based 918 // nodes and NullCheck optimization. 919 set_allowed_deopt_reasons(); 920 921 // Now generate code 922 Code_Gen(); 923 if (failing()) return; 924 925 // Check if we want to skip execution of all compiled code. 926 { 927 #ifndef PRODUCT 928 if (OptoNoExecute) { 929 record_method_not_compilable("+OptoNoExecute"); // Flag as failed 930 return; 931 } 932 TracePhase t2("install_code", &_t_registerMethod, TimeCompiler); 933 #endif 934 935 if (is_osr_compilation()) { 936 _code_offsets.set_value(CodeOffsets::Verified_Entry, 0); 937 _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size); 938 } else { 939 _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size); 940 _code_offsets.set_value(CodeOffsets::OSR_Entry, 0); 941 } 942 943 env()->register_method(_method, _entry_bci, 944 &_code_offsets, 945 _orig_pc_slot_offset_in_bytes, 946 code_buffer(), 947 frame_size_in_words(), _oop_map_set, 948 &_handler_table, &_inc_table, 949 compiler, 950 env()->comp_level(), 951 has_unsafe_access(), 952 SharedRuntime::is_wide_vector(max_vector_size()), 953 rtm_state() 954 ); 955 956 if (log() != NULL) // Print code cache state into compiler log 957 log()->code_cache_state(); 958 } 959 } 960 961 //------------------------------Compile---------------------------------------- 962 // Compile a runtime stub 963 Compile::Compile( ciEnv* ci_env, 964 TypeFunc_generator generator, 965 address stub_function, 966 const char *stub_name, 967 int is_fancy_jump, 968 bool pass_tls, 969 bool save_arg_registers, 970 bool return_pc ) 971 : Phase(Compiler), 972 _env(ci_env), 973 _log(ci_env->log()), 974 _compile_id(0), 975 _save_argument_registers(save_arg_registers), 976 _method(NULL), 977 _stub_name(stub_name), 978 _stub_function(stub_function), 979 _stub_entry_point(NULL), 980 _entry_bci(InvocationEntryBci), 981 _initial_gvn(NULL), 982 _for_igvn(NULL), 983 _warm_calls(NULL), 984 _orig_pc_slot(0), 985 _orig_pc_slot_offset_in_bytes(0), 986 _subsume_loads(true), 987 _do_escape_analysis(false), 988 _eliminate_boxing(false), 989 _failure_reason(NULL), 990 _code_buffer("Compile::Fill_buffer"), 991 _has_method_handle_invokes(false), 992 _mach_constant_base_node(NULL), 993 _node_bundling_limit(0), 994 _node_bundling_base(NULL), 995 _java_calls(0), 996 _inner_loops(0), 997 #ifndef PRODUCT 998 _trace_opto_output(TraceOptoOutput), 999 _in_dump_cnt(0), 1000 _printer(NULL), 1001 #endif 1002 _comp_arena(mtCompiler), 1003 _node_arena(mtCompiler), 1004 _old_arena(mtCompiler), 1005 _Compile_types(mtCompiler), 1006 _dead_node_list(comp_arena()), 1007 _dead_node_count(0), 1008 _congraph(NULL), 1009 _replay_inline_data(NULL), 1010 _number_of_mh_late_inlines(0), 1011 _inlining_progress(false), 1012 _inlining_incrementally(false), 1013 _print_inlining_list(NULL), 1014 _print_inlining_idx(0), 1015 _allowed_reasons(0), 1016 _interpreter_frame_size(0), 1017 _max_node_limit(MaxNodeLimit) { 1018 C = this; 1019 1020 #ifndef PRODUCT 1021 TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false); 1022 TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false); 1023 set_print_assembly(PrintFrameConverterAssembly); 1024 set_parsed_irreducible_loop(false); 1025 #endif 1026 set_has_irreducible_loop(false); // no loops 1027 1028 CompileWrapper cw(this); 1029 Init(/*AliasLevel=*/ 0); 1030 init_tf((*generator)()); 1031 1032 { 1033 // The following is a dummy for the sake of GraphKit::gen_stub 1034 Unique_Node_List for_igvn(comp_arena()); 1035 set_for_igvn(&for_igvn); // not used, but some GraphKit guys push on this 1036 PhaseGVN gvn(Thread::current()->resource_area(),255); 1037 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively 1038 gvn.transform_no_reclaim(top()); 1039 1040 GraphKit kit; 1041 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc); 1042 } 1043 1044 NOT_PRODUCT( verify_graph_edges(); ) 1045 Code_Gen(); 1046 if (failing()) return; 1047 1048 1049 // Entry point will be accessed using compile->stub_entry_point(); 1050 if (code_buffer() == NULL) { 1051 Matcher::soft_match_failure(); 1052 } else { 1053 if (PrintAssembly && (WizardMode || Verbose)) 1054 tty->print_cr("### Stub::%s", stub_name); 1055 1056 if (!failing()) { 1057 assert(_fixed_slots == 0, "no fixed slots used for runtime stubs"); 1058 1059 // Make the NMethod 1060 // For now we mark the frame as never safe for profile stackwalking 1061 RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name, 1062 code_buffer(), 1063 CodeOffsets::frame_never_safe, 1064 // _code_offsets.value(CodeOffsets::Frame_Complete), 1065 frame_size_in_words(), 1066 _oop_map_set, 1067 save_arg_registers); 1068 assert(rs != NULL && rs->is_runtime_stub(), "sanity check"); 1069 1070 _stub_entry_point = rs->entry_point(); 1071 } 1072 } 1073 } 1074 1075 //------------------------------Init------------------------------------------- 1076 // Prepare for a single compilation 1077 void Compile::Init(int aliaslevel) { 1078 _unique = 0; 1079 _regalloc = NULL; 1080 1081 _tf = NULL; // filled in later 1082 _top = NULL; // cached later 1083 _matcher = NULL; // filled in later 1084 _cfg = NULL; // filled in later 1085 1086 set_24_bit_selection_and_mode(Use24BitFP, false); 1087 1088 _node_note_array = NULL; 1089 _default_node_notes = NULL; 1090 1091 _immutable_memory = NULL; // filled in at first inquiry 1092 1093 // Globally visible Nodes 1094 // First set TOP to NULL to give safe behavior during creation of RootNode 1095 set_cached_top_node(NULL); 1096 set_root(new (this) RootNode()); 1097 // Now that you have a Root to point to, create the real TOP 1098 set_cached_top_node( new (this) ConNode(Type::TOP) ); 1099 set_recent_alloc(NULL, NULL); 1100 1101 // Create Debug Information Recorder to record scopes, oopmaps, etc. 1102 env()->set_oop_recorder(new OopRecorder(env()->arena())); 1103 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder())); 1104 env()->set_dependencies(new Dependencies(env())); 1105 1106 _fixed_slots = 0; 1107 set_has_split_ifs(false); 1108 set_has_loops(has_method() && method()->has_loops()); // first approximation 1109 set_has_stringbuilder(false); 1110 set_has_boxed_value(false); 1111 _trap_can_recompile = false; // no traps emitted yet 1112 _major_progress = true; // start out assuming good things will happen 1113 set_has_unsafe_access(false); 1114 set_max_vector_size(0); 1115 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist)); 1116 set_decompile_count(0); 1117 1118 set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency")); 1119 set_num_loop_opts(LoopOptsCount); 1120 set_do_inlining(Inline); 1121 set_max_inline_size(MaxInlineSize); 1122 set_freq_inline_size(FreqInlineSize); 1123 set_do_scheduling(OptoScheduling); 1124 set_do_count_invocations(false); 1125 set_do_method_data_update(false); 1126 set_rtm_state(NoRTM); // No RTM lock eliding by default 1127 method_has_option_value("MaxNodeLimit", _max_node_limit); 1128 #if INCLUDE_RTM_OPT 1129 if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) { 1130 int rtm_state = method()->method_data()->rtm_state(); 1131 if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) { 1132 // Don't generate RTM lock eliding code. 1133 set_rtm_state(NoRTM); 1134 } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) { 1135 // Generate RTM lock eliding code without abort ratio calculation code. 1136 set_rtm_state(UseRTM); 1137 } else if (UseRTMDeopt) { 1138 // Generate RTM lock eliding code and include abort ratio calculation 1139 // code if UseRTMDeopt is on. 1140 set_rtm_state(ProfileRTM); 1141 } 1142 } 1143 #endif 1144 if (debug_info()->recording_non_safepoints()) { 1145 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*> 1146 (comp_arena(), 8, 0, NULL)); 1147 set_default_node_notes(Node_Notes::make(this)); 1148 } 1149 1150 // // -- Initialize types before each compile -- 1151 // // Update cached type information 1152 // if( _method && _method->constants() ) 1153 // Type::update_loaded_types(_method, _method->constants()); 1154 1155 // Init alias_type map. 1156 if (!_do_escape_analysis && aliaslevel == 3) 1157 aliaslevel = 2; // No unique types without escape analysis 1158 _AliasLevel = aliaslevel; 1159 const int grow_ats = 16; 1160 _max_alias_types = grow_ats; 1161 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats); 1162 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats); 1163 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats); 1164 { 1165 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i]; 1166 } 1167 // Initialize the first few types. 1168 _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL); 1169 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM); 1170 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM); 1171 _num_alias_types = AliasIdxRaw+1; 1172 // Zero out the alias type cache. 1173 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache)); 1174 // A NULL adr_type hits in the cache right away. Preload the right answer. 1175 probe_alias_cache(NULL)->_index = AliasIdxTop; 1176 1177 _intrinsics = NULL; 1178 _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL); 1179 _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL); 1180 _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL); 1181 _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL); 1182 _shenandoah_barriers = new(comp_arena()) GrowableArray<ShenandoahLoadReferenceBarrierNode*>(comp_arena(), 8, 0, NULL); 1183 register_library_intrinsics(); 1184 #ifdef ASSERT 1185 _type_verify_symmetry = true; 1186 #endif 1187 } 1188 1189 //---------------------------init_start---------------------------------------- 1190 // Install the StartNode on this compile object. 1191 void Compile::init_start(StartNode* s) { 1192 if (failing()) 1193 return; // already failing 1194 assert(s == start(), ""); 1195 } 1196 1197 StartNode* Compile::start() const { 1198 assert(!failing(), ""); 1199 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) { 1200 Node* start = root()->fast_out(i); 1201 if( start->is_Start() ) 1202 return start->as_Start(); 1203 } 1204 fatal("Did not find Start node!"); 1205 return NULL; 1206 } 1207 1208 //-------------------------------immutable_memory------------------------------------- 1209 // Access immutable memory 1210 Node* Compile::immutable_memory() { 1211 if (_immutable_memory != NULL) { 1212 return _immutable_memory; 1213 } 1214 StartNode* s = start(); 1215 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) { 1216 Node *p = s->fast_out(i); 1217 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) { 1218 _immutable_memory = p; 1219 return _immutable_memory; 1220 } 1221 } 1222 ShouldNotReachHere(); 1223 return NULL; 1224 } 1225 1226 //----------------------set_cached_top_node------------------------------------ 1227 // Install the cached top node, and make sure Node::is_top works correctly. 1228 void Compile::set_cached_top_node(Node* tn) { 1229 if (tn != NULL) verify_top(tn); 1230 Node* old_top = _top; 1231 _top = tn; 1232 // Calling Node::setup_is_top allows the nodes the chance to adjust 1233 // their _out arrays. 1234 if (_top != NULL) _top->setup_is_top(); 1235 if (old_top != NULL) old_top->setup_is_top(); 1236 assert(_top == NULL || top()->is_top(), ""); 1237 } 1238 1239 #ifdef ASSERT 1240 uint Compile::count_live_nodes_by_graph_walk() { 1241 Unique_Node_List useful(comp_arena()); 1242 // Get useful node list by walking the graph. 1243 identify_useful_nodes(useful); 1244 return useful.size(); 1245 } 1246 1247 void Compile::print_missing_nodes() { 1248 1249 // Return if CompileLog is NULL and PrintIdealNodeCount is false. 1250 if ((_log == NULL) && (! PrintIdealNodeCount)) { 1251 return; 1252 } 1253 1254 // This is an expensive function. It is executed only when the user 1255 // specifies VerifyIdealNodeCount option or otherwise knows the 1256 // additional work that needs to be done to identify reachable nodes 1257 // by walking the flow graph and find the missing ones using 1258 // _dead_node_list. 1259 1260 Unique_Node_List useful(comp_arena()); 1261 // Get useful node list by walking the graph. 1262 identify_useful_nodes(useful); 1263 1264 uint l_nodes = C->live_nodes(); 1265 uint l_nodes_by_walk = useful.size(); 1266 1267 if (l_nodes != l_nodes_by_walk) { 1268 if (_log != NULL) { 1269 _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk))); 1270 _log->stamp(); 1271 _log->end_head(); 1272 } 1273 VectorSet& useful_member_set = useful.member_set(); 1274 int last_idx = l_nodes_by_walk; 1275 for (int i = 0; i < last_idx; i++) { 1276 if (useful_member_set.test(i)) { 1277 if (_dead_node_list.test(i)) { 1278 if (_log != NULL) { 1279 _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i); 1280 } 1281 if (PrintIdealNodeCount) { 1282 // Print the log message to tty 1283 tty->print_cr("mismatched_node idx='%d' both live and dead'", i); 1284 useful.at(i)->dump(); 1285 } 1286 } 1287 } 1288 else if (! _dead_node_list.test(i)) { 1289 if (_log != NULL) { 1290 _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i); 1291 } 1292 if (PrintIdealNodeCount) { 1293 // Print the log message to tty 1294 tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i); 1295 } 1296 } 1297 } 1298 if (_log != NULL) { 1299 _log->tail("mismatched_nodes"); 1300 } 1301 } 1302 } 1303 #endif 1304 1305 #ifndef PRODUCT 1306 void Compile::verify_top(Node* tn) const { 1307 if (tn != NULL) { 1308 assert(tn->is_Con(), "top node must be a constant"); 1309 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type"); 1310 assert(tn->in(0) != NULL, "must have live top node"); 1311 } 1312 } 1313 #endif 1314 1315 1316 ///-------------------Managing Per-Node Debug & Profile Info------------------- 1317 1318 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) { 1319 guarantee(arr != NULL, ""); 1320 int num_blocks = arr->length(); 1321 if (grow_by < num_blocks) grow_by = num_blocks; 1322 int num_notes = grow_by * _node_notes_block_size; 1323 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes); 1324 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes)); 1325 while (num_notes > 0) { 1326 arr->append(notes); 1327 notes += _node_notes_block_size; 1328 num_notes -= _node_notes_block_size; 1329 } 1330 assert(num_notes == 0, "exact multiple, please"); 1331 } 1332 1333 bool Compile::copy_node_notes_to(Node* dest, Node* source) { 1334 if (source == NULL || dest == NULL) return false; 1335 1336 if (dest->is_Con()) 1337 return false; // Do not push debug info onto constants. 1338 1339 #ifdef ASSERT 1340 // Leave a bread crumb trail pointing to the original node: 1341 if (dest != NULL && dest != source && dest->debug_orig() == NULL) { 1342 dest->set_debug_orig(source); 1343 } 1344 #endif 1345 1346 if (node_note_array() == NULL) 1347 return false; // Not collecting any notes now. 1348 1349 // This is a copy onto a pre-existing node, which may already have notes. 1350 // If both nodes have notes, do not overwrite any pre-existing notes. 1351 Node_Notes* source_notes = node_notes_at(source->_idx); 1352 if (source_notes == NULL || source_notes->is_clear()) return false; 1353 Node_Notes* dest_notes = node_notes_at(dest->_idx); 1354 if (dest_notes == NULL || dest_notes->is_clear()) { 1355 return set_node_notes_at(dest->_idx, source_notes); 1356 } 1357 1358 Node_Notes merged_notes = (*source_notes); 1359 // The order of operations here ensures that dest notes will win... 1360 merged_notes.update_from(dest_notes); 1361 return set_node_notes_at(dest->_idx, &merged_notes); 1362 } 1363 1364 1365 //--------------------------allow_range_check_smearing------------------------- 1366 // Gating condition for coalescing similar range checks. 1367 // Sometimes we try 'speculatively' replacing a series of a range checks by a 1368 // single covering check that is at least as strong as any of them. 1369 // If the optimization succeeds, the simplified (strengthened) range check 1370 // will always succeed. If it fails, we will deopt, and then give up 1371 // on the optimization. 1372 bool Compile::allow_range_check_smearing() const { 1373 // If this method has already thrown a range-check, 1374 // assume it was because we already tried range smearing 1375 // and it failed. 1376 uint already_trapped = trap_count(Deoptimization::Reason_range_check); 1377 return !already_trapped; 1378 } 1379 1380 1381 //------------------------------flatten_alias_type----------------------------- 1382 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const { 1383 int offset = tj->offset(); 1384 TypePtr::PTR ptr = tj->ptr(); 1385 1386 // Known instance (scalarizable allocation) alias only with itself. 1387 bool is_known_inst = tj->isa_oopptr() != NULL && 1388 tj->is_oopptr()->is_known_instance(); 1389 1390 // Process weird unsafe references. 1391 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) { 1392 assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops"); 1393 assert(!is_known_inst, "scalarizable allocation should not have unsafe references"); 1394 tj = TypeOopPtr::BOTTOM; 1395 ptr = tj->ptr(); 1396 offset = tj->offset(); 1397 } 1398 1399 // Array pointers need some flattening 1400 const TypeAryPtr *ta = tj->isa_aryptr(); 1401 if (ta && ta->is_stable()) { 1402 // Erase stability property for alias analysis. 1403 tj = ta = ta->cast_to_stable(false); 1404 } 1405 if( ta && is_known_inst ) { 1406 if ( offset != Type::OffsetBot && 1407 offset > arrayOopDesc::length_offset_in_bytes() ) { 1408 offset = Type::OffsetBot; // Flatten constant access into array body only 1409 tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id()); 1410 } 1411 } else if( ta && _AliasLevel >= 2 ) { 1412 // For arrays indexed by constant indices, we flatten the alias 1413 // space to include all of the array body. Only the header, klass 1414 // and array length can be accessed un-aliased. 1415 if( offset != Type::OffsetBot ) { 1416 if( ta->const_oop() ) { // MethodData* or Method* 1417 offset = Type::OffsetBot; // Flatten constant access into array body 1418 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset); 1419 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) { 1420 // range is OK as-is. 1421 tj = ta = TypeAryPtr::RANGE; 1422 } else if( offset == oopDesc::klass_offset_in_bytes() ) { 1423 tj = TypeInstPtr::KLASS; // all klass loads look alike 1424 ta = TypeAryPtr::RANGE; // generic ignored junk 1425 ptr = TypePtr::BotPTR; 1426 } else if( offset == oopDesc::mark_offset_in_bytes() ) { 1427 tj = TypeInstPtr::MARK; 1428 ta = TypeAryPtr::RANGE; // generic ignored junk 1429 ptr = TypePtr::BotPTR; 1430 } else { // Random constant offset into array body 1431 offset = Type::OffsetBot; // Flatten constant access into array body 1432 tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset); 1433 } 1434 } 1435 // Arrays of fixed size alias with arrays of unknown size. 1436 if (ta->size() != TypeInt::POS) { 1437 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS); 1438 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset); 1439 } 1440 // Arrays of known objects become arrays of unknown objects. 1441 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) { 1442 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size()); 1443 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset); 1444 } 1445 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) { 1446 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size()); 1447 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset); 1448 } 1449 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so 1450 // cannot be distinguished by bytecode alone. 1451 if (ta->elem() == TypeInt::BOOL) { 1452 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size()); 1453 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE); 1454 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset); 1455 } 1456 // During the 2nd round of IterGVN, NotNull castings are removed. 1457 // Make sure the Bottom and NotNull variants alias the same. 1458 // Also, make sure exact and non-exact variants alias the same. 1459 if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) { 1460 tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset); 1461 } 1462 } 1463 1464 // Oop pointers need some flattening 1465 const TypeInstPtr *to = tj->isa_instptr(); 1466 if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) { 1467 ciInstanceKlass *k = to->klass()->as_instance_klass(); 1468 if( ptr == TypePtr::Constant ) { 1469 if (to->klass() != ciEnv::current()->Class_klass() || 1470 offset < k->size_helper() * wordSize) { 1471 // No constant oop pointers (such as Strings); they alias with 1472 // unknown strings. 1473 assert(!is_known_inst, "not scalarizable allocation"); 1474 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset); 1475 } 1476 } else if( is_known_inst ) { 1477 tj = to; // Keep NotNull and klass_is_exact for instance type 1478 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) { 1479 // During the 2nd round of IterGVN, NotNull castings are removed. 1480 // Make sure the Bottom and NotNull variants alias the same. 1481 // Also, make sure exact and non-exact variants alias the same. 1482 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset); 1483 } 1484 if (to->speculative() != NULL) { 1485 tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id()); 1486 } 1487 // Canonicalize the holder of this field 1488 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) { 1489 // First handle header references such as a LoadKlassNode, even if the 1490 // object's klass is unloaded at compile time (4965979). 1491 if (!is_known_inst) { // Do it only for non-instance types 1492 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset); 1493 } 1494 } else if (offset < 0 || offset >= k->size_helper() * wordSize) { 1495 // Static fields are in the space above the normal instance 1496 // fields in the java.lang.Class instance. 1497 if (to->klass() != ciEnv::current()->Class_klass()) { 1498 to = NULL; 1499 tj = TypeOopPtr::BOTTOM; 1500 offset = tj->offset(); 1501 } 1502 } else { 1503 ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset); 1504 if (!k->equals(canonical_holder) || tj->offset() != offset) { 1505 if( is_known_inst ) { 1506 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id()); 1507 } else { 1508 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset); 1509 } 1510 } 1511 } 1512 } 1513 1514 // Klass pointers to object array klasses need some flattening 1515 const TypeKlassPtr *tk = tj->isa_klassptr(); 1516 if( tk ) { 1517 // If we are referencing a field within a Klass, we need 1518 // to assume the worst case of an Object. Both exact and 1519 // inexact types must flatten to the same alias class so 1520 // use NotNull as the PTR. 1521 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) { 1522 1523 tj = tk = TypeKlassPtr::make(TypePtr::NotNull, 1524 TypeKlassPtr::OBJECT->klass(), 1525 offset); 1526 } 1527 1528 ciKlass* klass = tk->klass(); 1529 if( klass->is_obj_array_klass() ) { 1530 ciKlass* k = TypeAryPtr::OOPS->klass(); 1531 if( !k || !k->is_loaded() ) // Only fails for some -Xcomp runs 1532 k = TypeInstPtr::BOTTOM->klass(); 1533 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset ); 1534 } 1535 1536 // Check for precise loads from the primary supertype array and force them 1537 // to the supertype cache alias index. Check for generic array loads from 1538 // the primary supertype array and also force them to the supertype cache 1539 // alias index. Since the same load can reach both, we need to merge 1540 // these 2 disparate memories into the same alias class. Since the 1541 // primary supertype array is read-only, there's no chance of confusion 1542 // where we bypass an array load and an array store. 1543 int primary_supers_offset = in_bytes(Klass::primary_supers_offset()); 1544 if (offset == Type::OffsetBot || 1545 (offset >= primary_supers_offset && 1546 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) || 1547 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) { 1548 offset = in_bytes(Klass::secondary_super_cache_offset()); 1549 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset ); 1550 } 1551 } 1552 1553 // Flatten all Raw pointers together. 1554 if (tj->base() == Type::RawPtr) 1555 tj = TypeRawPtr::BOTTOM; 1556 1557 if (tj->base() == Type::AnyPtr) 1558 tj = TypePtr::BOTTOM; // An error, which the caller must check for. 1559 1560 // Flatten all to bottom for now 1561 switch( _AliasLevel ) { 1562 case 0: 1563 tj = TypePtr::BOTTOM; 1564 break; 1565 case 1: // Flatten to: oop, static, field or array 1566 switch (tj->base()) { 1567 //case Type::AryPtr: tj = TypeAryPtr::RANGE; break; 1568 case Type::RawPtr: tj = TypeRawPtr::BOTTOM; break; 1569 case Type::AryPtr: // do not distinguish arrays at all 1570 case Type::InstPtr: tj = TypeInstPtr::BOTTOM; break; 1571 case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break; 1572 case Type::AnyPtr: tj = TypePtr::BOTTOM; break; // caller checks it 1573 default: ShouldNotReachHere(); 1574 } 1575 break; 1576 case 2: // No collapsing at level 2; keep all splits 1577 case 3: // No collapsing at level 3; keep all splits 1578 break; 1579 default: 1580 Unimplemented(); 1581 } 1582 1583 offset = tj->offset(); 1584 assert( offset != Type::OffsetTop, "Offset has fallen from constant" ); 1585 1586 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) || 1587 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) || 1588 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) || 1589 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) || 1590 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) || 1591 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) || 1592 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr) , 1593 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" ); 1594 assert( tj->ptr() != TypePtr::TopPTR && 1595 tj->ptr() != TypePtr::AnyNull && 1596 tj->ptr() != TypePtr::Null, "No imprecise addresses" ); 1597 // assert( tj->ptr() != TypePtr::Constant || 1598 // tj->base() == Type::RawPtr || 1599 // tj->base() == Type::KlassPtr, "No constant oop addresses" ); 1600 1601 return tj; 1602 } 1603 1604 void Compile::AliasType::Init(int i, const TypePtr* at) { 1605 _index = i; 1606 _adr_type = at; 1607 _field = NULL; 1608 _element = NULL; 1609 _is_rewritable = true; // default 1610 const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL; 1611 if (atoop != NULL && atoop->is_known_instance()) { 1612 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot); 1613 _general_index = Compile::current()->get_alias_index(gt); 1614 } else { 1615 _general_index = 0; 1616 } 1617 } 1618 1619 BasicType Compile::AliasType::basic_type() const { 1620 if (element() != NULL) { 1621 const Type* element = adr_type()->is_aryptr()->elem(); 1622 return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type(); 1623 } if (field() != NULL) { 1624 return field()->layout_type(); 1625 } else { 1626 return T_ILLEGAL; // unknown 1627 } 1628 } 1629 1630 //---------------------------------print_on------------------------------------ 1631 #ifndef PRODUCT 1632 void Compile::AliasType::print_on(outputStream* st) { 1633 if (index() < 10) 1634 st->print("@ <%d> ", index()); 1635 else st->print("@ <%d>", index()); 1636 st->print(is_rewritable() ? " " : " RO"); 1637 int offset = adr_type()->offset(); 1638 if (offset == Type::OffsetBot) 1639 st->print(" +any"); 1640 else st->print(" +%-3d", offset); 1641 st->print(" in "); 1642 adr_type()->dump_on(st); 1643 const TypeOopPtr* tjp = adr_type()->isa_oopptr(); 1644 if (field() != NULL && tjp) { 1645 if (tjp->klass() != field()->holder() || 1646 tjp->offset() != field()->offset_in_bytes()) { 1647 st->print(" != "); 1648 field()->print(); 1649 st->print(" ***"); 1650 } 1651 } 1652 } 1653 1654 void print_alias_types() { 1655 Compile* C = Compile::current(); 1656 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1); 1657 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) { 1658 C->alias_type(idx)->print_on(tty); 1659 tty->cr(); 1660 } 1661 } 1662 #endif 1663 1664 1665 //----------------------------probe_alias_cache-------------------------------- 1666 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) { 1667 intptr_t key = (intptr_t) adr_type; 1668 key ^= key >> logAliasCacheSize; 1669 return &_alias_cache[key & right_n_bits(logAliasCacheSize)]; 1670 } 1671 1672 1673 //-----------------------------grow_alias_types-------------------------------- 1674 void Compile::grow_alias_types() { 1675 const int old_ats = _max_alias_types; // how many before? 1676 const int new_ats = old_ats; // how many more? 1677 const int grow_ats = old_ats+new_ats; // how many now? 1678 _max_alias_types = grow_ats; 1679 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats); 1680 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats); 1681 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats); 1682 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i]; 1683 } 1684 1685 1686 //--------------------------------find_alias_type------------------------------ 1687 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) { 1688 if (_AliasLevel == 0) 1689 return alias_type(AliasIdxBot); 1690 1691 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1692 if (ace->_adr_type == adr_type) { 1693 return alias_type(ace->_index); 1694 } 1695 1696 // Handle special cases. 1697 if (adr_type == NULL) return alias_type(AliasIdxTop); 1698 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot); 1699 1700 // Do it the slow way. 1701 const TypePtr* flat = flatten_alias_type(adr_type); 1702 1703 #ifdef ASSERT 1704 { 1705 ResourceMark rm; 1706 assert(flat == flatten_alias_type(flat), 1707 err_msg("not idempotent: adr_type = %s; flat = %s => %s", Type::str(adr_type), 1708 Type::str(flat), Type::str(flatten_alias_type(flat)))); 1709 assert(flat != TypePtr::BOTTOM, 1710 err_msg("cannot alias-analyze an untyped ptr: adr_type = %s", Type::str(adr_type))); 1711 if (flat->isa_oopptr() && !flat->isa_klassptr()) { 1712 const TypeOopPtr* foop = flat->is_oopptr(); 1713 // Scalarizable allocations have exact klass always. 1714 bool exact = !foop->klass_is_exact() || foop->is_known_instance(); 1715 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr(); 1716 assert(foop == flatten_alias_type(xoop), 1717 err_msg("exactness must not affect alias type: foop = %s; xoop = %s", 1718 Type::str(foop), Type::str(xoop))); 1719 } 1720 } 1721 #endif 1722 1723 int idx = AliasIdxTop; 1724 for (int i = 0; i < num_alias_types(); i++) { 1725 if (alias_type(i)->adr_type() == flat) { 1726 idx = i; 1727 break; 1728 } 1729 } 1730 1731 if (idx == AliasIdxTop) { 1732 if (no_create) return NULL; 1733 // Grow the array if necessary. 1734 if (_num_alias_types == _max_alias_types) grow_alias_types(); 1735 // Add a new alias type. 1736 idx = _num_alias_types++; 1737 _alias_types[idx]->Init(idx, flat); 1738 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false); 1739 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false); 1740 if (flat->isa_instptr()) { 1741 if (flat->offset() == java_lang_Class::klass_offset_in_bytes() 1742 && flat->is_instptr()->klass() == env()->Class_klass()) 1743 alias_type(idx)->set_rewritable(false); 1744 } 1745 if (flat->isa_aryptr()) { 1746 #ifdef ASSERT 1747 const int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1748 // (T_BYTE has the weakest alignment and size restrictions...) 1749 assert(flat->offset() < header_size_min, "array body reference must be OffsetBot"); 1750 #endif 1751 if (flat->offset() == TypePtr::OffsetBot) { 1752 alias_type(idx)->set_element(flat->is_aryptr()->elem()); 1753 } 1754 } 1755 if (flat->isa_klassptr()) { 1756 if (flat->offset() == in_bytes(Klass::super_check_offset_offset())) 1757 alias_type(idx)->set_rewritable(false); 1758 if (flat->offset() == in_bytes(Klass::modifier_flags_offset())) 1759 alias_type(idx)->set_rewritable(false); 1760 if (flat->offset() == in_bytes(Klass::access_flags_offset())) 1761 alias_type(idx)->set_rewritable(false); 1762 if (flat->offset() == in_bytes(Klass::java_mirror_offset())) 1763 alias_type(idx)->set_rewritable(false); 1764 } 1765 // %%% (We would like to finalize JavaThread::threadObj_offset(), 1766 // but the base pointer type is not distinctive enough to identify 1767 // references into JavaThread.) 1768 1769 // Check for final fields. 1770 const TypeInstPtr* tinst = flat->isa_instptr(); 1771 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) { 1772 ciField* field; 1773 if (tinst->const_oop() != NULL && 1774 tinst->klass() == ciEnv::current()->Class_klass() && 1775 tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) { 1776 // static field 1777 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 1778 field = k->get_field_by_offset(tinst->offset(), true); 1779 } else { 1780 ciInstanceKlass *k = tinst->klass()->as_instance_klass(); 1781 field = k->get_field_by_offset(tinst->offset(), false); 1782 } 1783 assert(field == NULL || 1784 original_field == NULL || 1785 (field->holder() == original_field->holder() && 1786 field->offset() == original_field->offset() && 1787 field->is_static() == original_field->is_static()), "wrong field?"); 1788 // Set field() and is_rewritable() attributes. 1789 if (field != NULL) alias_type(idx)->set_field(field); 1790 } 1791 } 1792 1793 // Fill the cache for next time. 1794 ace->_adr_type = adr_type; 1795 ace->_index = idx; 1796 assert(alias_type(adr_type) == alias_type(idx), "type must be installed"); 1797 1798 // Might as well try to fill the cache for the flattened version, too. 1799 AliasCacheEntry* face = probe_alias_cache(flat); 1800 if (face->_adr_type == NULL) { 1801 face->_adr_type = flat; 1802 face->_index = idx; 1803 assert(alias_type(flat) == alias_type(idx), "flat type must work too"); 1804 } 1805 1806 return alias_type(idx); 1807 } 1808 1809 1810 Compile::AliasType* Compile::alias_type(ciField* field) { 1811 const TypeOopPtr* t; 1812 if (field->is_static()) 1813 t = TypeInstPtr::make(field->holder()->java_mirror()); 1814 else 1815 t = TypeOopPtr::make_from_klass_raw(field->holder()); 1816 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field); 1817 assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct"); 1818 return atp; 1819 } 1820 1821 1822 //------------------------------have_alias_type-------------------------------- 1823 bool Compile::have_alias_type(const TypePtr* adr_type) { 1824 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1825 if (ace->_adr_type == adr_type) { 1826 return true; 1827 } 1828 1829 // Handle special cases. 1830 if (adr_type == NULL) return true; 1831 if (adr_type == TypePtr::BOTTOM) return true; 1832 1833 return find_alias_type(adr_type, true, NULL) != NULL; 1834 } 1835 1836 //-----------------------------must_alias-------------------------------------- 1837 // True if all values of the given address type are in the given alias category. 1838 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) { 1839 if (alias_idx == AliasIdxBot) return true; // the universal category 1840 if (adr_type == NULL) return true; // NULL serves as TypePtr::TOP 1841 if (alias_idx == AliasIdxTop) return false; // the empty category 1842 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins 1843 1844 // the only remaining possible overlap is identity 1845 int adr_idx = get_alias_index(adr_type); 1846 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1847 assert(adr_idx == alias_idx || 1848 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM 1849 && adr_type != TypeOopPtr::BOTTOM), 1850 "should not be testing for overlap with an unsafe pointer"); 1851 return adr_idx == alias_idx; 1852 } 1853 1854 //------------------------------can_alias-------------------------------------- 1855 // True if any values of the given address type are in the given alias category. 1856 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) { 1857 if (alias_idx == AliasIdxTop) return false; // the empty category 1858 if (adr_type == NULL) return false; // NULL serves as TypePtr::TOP 1859 if (alias_idx == AliasIdxBot) return true; // the universal category 1860 if (adr_type->base() == Type::AnyPtr) return true; // TypePtr::BOTTOM or its twins 1861 1862 // the only remaining possible overlap is identity 1863 int adr_idx = get_alias_index(adr_type); 1864 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1865 return adr_idx == alias_idx; 1866 } 1867 1868 1869 1870 //---------------------------pop_warm_call------------------------------------- 1871 WarmCallInfo* Compile::pop_warm_call() { 1872 WarmCallInfo* wci = _warm_calls; 1873 if (wci != NULL) _warm_calls = wci->remove_from(wci); 1874 return wci; 1875 } 1876 1877 //----------------------------Inline_Warm-------------------------------------- 1878 int Compile::Inline_Warm() { 1879 // If there is room, try to inline some more warm call sites. 1880 // %%% Do a graph index compaction pass when we think we're out of space? 1881 if (!InlineWarmCalls) return 0; 1882 1883 int calls_made_hot = 0; 1884 int room_to_grow = NodeCountInliningCutoff - unique(); 1885 int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep); 1886 int amount_grown = 0; 1887 WarmCallInfo* call; 1888 while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) { 1889 int est_size = (int)call->size(); 1890 if (est_size > (room_to_grow - amount_grown)) { 1891 // This one won't fit anyway. Get rid of it. 1892 call->make_cold(); 1893 continue; 1894 } 1895 call->make_hot(); 1896 calls_made_hot++; 1897 amount_grown += est_size; 1898 amount_to_grow -= est_size; 1899 } 1900 1901 if (calls_made_hot > 0) set_major_progress(); 1902 return calls_made_hot; 1903 } 1904 1905 1906 //----------------------------Finish_Warm-------------------------------------- 1907 void Compile::Finish_Warm() { 1908 if (!InlineWarmCalls) return; 1909 if (failing()) return; 1910 if (warm_calls() == NULL) return; 1911 1912 // Clean up loose ends, if we are out of space for inlining. 1913 WarmCallInfo* call; 1914 while ((call = pop_warm_call()) != NULL) { 1915 call->make_cold(); 1916 } 1917 } 1918 1919 //---------------------cleanup_loop_predicates----------------------- 1920 // Remove the opaque nodes that protect the predicates so that all unused 1921 // checks and uncommon_traps will be eliminated from the ideal graph 1922 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) { 1923 if (predicate_count()==0) return; 1924 for (int i = predicate_count(); i > 0; i--) { 1925 Node * n = predicate_opaque1_node(i-1); 1926 assert(n->Opcode() == Op_Opaque1, "must be"); 1927 igvn.replace_node(n, n->in(1)); 1928 } 1929 assert(predicate_count()==0, "should be clean!"); 1930 } 1931 1932 void Compile::add_range_check_cast(Node* n) { 1933 assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency"); 1934 assert(!_range_check_casts->contains(n), "duplicate entry in range check casts"); 1935 _range_check_casts->append(n); 1936 } 1937 1938 // Remove all range check dependent CastIINodes. 1939 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) { 1940 for (int i = range_check_cast_count(); i > 0; i--) { 1941 Node* cast = range_check_cast_node(i-1); 1942 assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency"); 1943 igvn.replace_node(cast, cast->in(1)); 1944 } 1945 assert(range_check_cast_count() == 0, "should be empty"); 1946 } 1947 1948 // StringOpts and late inlining of string methods 1949 void Compile::inline_string_calls(bool parse_time) { 1950 { 1951 // remove useless nodes to make the usage analysis simpler 1952 ResourceMark rm; 1953 PhaseRemoveUseless pru(initial_gvn(), for_igvn()); 1954 } 1955 1956 { 1957 ResourceMark rm; 1958 print_method(PHASE_BEFORE_STRINGOPTS, 3); 1959 PhaseStringOpts pso(initial_gvn(), for_igvn()); 1960 print_method(PHASE_AFTER_STRINGOPTS, 3); 1961 } 1962 1963 // now inline anything that we skipped the first time around 1964 if (!parse_time) { 1965 _late_inlines_pos = _late_inlines.length(); 1966 } 1967 1968 while (_string_late_inlines.length() > 0) { 1969 CallGenerator* cg = _string_late_inlines.pop(); 1970 cg->do_late_inline(); 1971 if (failing()) return; 1972 } 1973 _string_late_inlines.trunc_to(0); 1974 } 1975 1976 // Late inlining of boxing methods 1977 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) { 1978 if (_boxing_late_inlines.length() > 0) { 1979 assert(has_boxed_value(), "inconsistent"); 1980 1981 PhaseGVN* gvn = initial_gvn(); 1982 set_inlining_incrementally(true); 1983 1984 assert( igvn._worklist.size() == 0, "should be done with igvn" ); 1985 for_igvn()->clear(); 1986 gvn->replace_with(&igvn); 1987 1988 _late_inlines_pos = _late_inlines.length(); 1989 1990 while (_boxing_late_inlines.length() > 0) { 1991 CallGenerator* cg = _boxing_late_inlines.pop(); 1992 cg->do_late_inline(); 1993 if (failing()) return; 1994 } 1995 _boxing_late_inlines.trunc_to(0); 1996 1997 { 1998 ResourceMark rm; 1999 PhaseRemoveUseless pru(gvn, for_igvn()); 2000 } 2001 2002 igvn = PhaseIterGVN(gvn); 2003 igvn.optimize(); 2004 2005 set_inlining_progress(false); 2006 set_inlining_incrementally(false); 2007 } 2008 } 2009 2010 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) { 2011 assert(IncrementalInline, "incremental inlining should be on"); 2012 PhaseGVN* gvn = initial_gvn(); 2013 2014 set_inlining_progress(false); 2015 for_igvn()->clear(); 2016 gvn->replace_with(&igvn); 2017 2018 int i = 0; 2019 2020 for (; i <_late_inlines.length() && !inlining_progress(); i++) { 2021 CallGenerator* cg = _late_inlines.at(i); 2022 _late_inlines_pos = i+1; 2023 cg->do_late_inline(); 2024 if (failing()) return; 2025 } 2026 int j = 0; 2027 for (; i < _late_inlines.length(); i++, j++) { 2028 _late_inlines.at_put(j, _late_inlines.at(i)); 2029 } 2030 _late_inlines.trunc_to(j); 2031 2032 { 2033 ResourceMark rm; 2034 PhaseRemoveUseless pru(gvn, for_igvn()); 2035 } 2036 2037 igvn = PhaseIterGVN(gvn); 2038 } 2039 2040 // Perform incremental inlining until bound on number of live nodes is reached 2041 void Compile::inline_incrementally(PhaseIterGVN& igvn) { 2042 PhaseGVN* gvn = initial_gvn(); 2043 2044 set_inlining_incrementally(true); 2045 set_inlining_progress(true); 2046 uint low_live_nodes = 0; 2047 2048 while(inlining_progress() && _late_inlines.length() > 0) { 2049 2050 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2051 if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) { 2052 // PhaseIdealLoop is expensive so we only try it once we are 2053 // out of live nodes and we only try it again if the previous 2054 // helped got the number of nodes down significantly 2055 PhaseIdealLoop ideal_loop( igvn, false, true ); 2056 if (failing()) return; 2057 low_live_nodes = live_nodes(); 2058 _major_progress = true; 2059 } 2060 2061 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2062 break; 2063 } 2064 } 2065 2066 inline_incrementally_one(igvn); 2067 2068 if (failing()) return; 2069 2070 igvn.optimize(); 2071 2072 if (failing()) return; 2073 } 2074 2075 assert( igvn._worklist.size() == 0, "should be done with igvn" ); 2076 2077 if (_string_late_inlines.length() > 0) { 2078 assert(has_stringbuilder(), "inconsistent"); 2079 for_igvn()->clear(); 2080 initial_gvn()->replace_with(&igvn); 2081 2082 inline_string_calls(false); 2083 2084 if (failing()) return; 2085 2086 { 2087 ResourceMark rm; 2088 PhaseRemoveUseless pru(initial_gvn(), for_igvn()); 2089 } 2090 2091 igvn = PhaseIterGVN(gvn); 2092 2093 igvn.optimize(); 2094 } 2095 2096 set_inlining_incrementally(false); 2097 } 2098 2099 2100 // Remove edges from "root" to each SafePoint at a backward branch. 2101 // They were inserted during parsing (see add_safepoint()) to make 2102 // infinite loops without calls or exceptions visible to root, i.e., 2103 // useful. 2104 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) { 2105 Node *r = root(); 2106 if (r != NULL) { 2107 for (uint i = r->req(); i < r->len(); ++i) { 2108 Node *n = r->in(i); 2109 if (n != NULL && n->is_SafePoint()) { 2110 r->rm_prec(i); 2111 if (n->outcnt() == 0) { 2112 igvn.remove_dead_node(n); 2113 } 2114 --i; 2115 } 2116 } 2117 } 2118 } 2119 2120 //------------------------------Optimize--------------------------------------- 2121 // Given a graph, optimize it. 2122 void Compile::Optimize() { 2123 TracePhase t1("optimizer", &_t_optimizer, true); 2124 2125 #ifndef PRODUCT 2126 if (env()->break_at_compile()) { 2127 BREAKPOINT; 2128 } 2129 2130 #endif 2131 2132 ResourceMark rm; 2133 int loop_opts_cnt; 2134 2135 NOT_PRODUCT( verify_graph_edges(); ) 2136 2137 print_method(PHASE_AFTER_PARSING); 2138 2139 { 2140 // Iterative Global Value Numbering, including ideal transforms 2141 // Initialize IterGVN with types and values from parse-time GVN 2142 PhaseIterGVN igvn(initial_gvn()); 2143 { 2144 NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); ) 2145 igvn.optimize(); 2146 } 2147 2148 print_method(PHASE_ITER_GVN1, 2); 2149 2150 if (failing()) return; 2151 2152 { 2153 NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); ) 2154 inline_incrementally(igvn); 2155 } 2156 2157 print_method(PHASE_INCREMENTAL_INLINE, 2); 2158 2159 if (failing()) return; 2160 2161 if (eliminate_boxing()) { 2162 NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); ) 2163 // Inline valueOf() methods now. 2164 inline_boxing_calls(igvn); 2165 2166 if (AlwaysIncrementalInline) { 2167 inline_incrementally(igvn); 2168 } 2169 2170 print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2); 2171 2172 if (failing()) return; 2173 } 2174 2175 // Now that all inlining is over, cut edge from root to loop 2176 // safepoints 2177 remove_root_to_sfpts_edges(igvn); 2178 2179 // Remove the speculative part of types and clean up the graph from 2180 // the extra CastPP nodes whose only purpose is to carry them. Do 2181 // that early so that optimizations are not disrupted by the extra 2182 // CastPP nodes. 2183 remove_speculative_types(igvn); 2184 2185 // No more new expensive nodes will be added to the list from here 2186 // so keep only the actual candidates for optimizations. 2187 cleanup_expensive_nodes(igvn); 2188 2189 if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) { 2190 NOT_PRODUCT(Compile::TracePhase t2("", &_t_renumberLive, TimeCompiler);) 2191 initial_gvn()->replace_with(&igvn); 2192 for_igvn()->clear(); 2193 Unique_Node_List new_worklist(C->comp_arena()); 2194 { 2195 ResourceMark rm; 2196 PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist); 2197 } 2198 set_for_igvn(&new_worklist); 2199 igvn = PhaseIterGVN(initial_gvn()); 2200 igvn.optimize(); 2201 } 2202 2203 // Perform escape analysis 2204 if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) { 2205 if (has_loops()) { 2206 // Cleanup graph (remove dead nodes). 2207 TracePhase t2("idealLoop", &_t_idealLoop, true); 2208 PhaseIdealLoop ideal_loop( igvn, false, true ); 2209 if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2); 2210 if (failing()) return; 2211 } 2212 ConnectionGraph::do_analysis(this, &igvn); 2213 2214 if (failing()) return; 2215 2216 // Optimize out fields loads from scalar replaceable allocations. 2217 igvn.optimize(); 2218 print_method(PHASE_ITER_GVN_AFTER_EA, 2); 2219 2220 if (failing()) return; 2221 2222 if (congraph() != NULL && macro_count() > 0) { 2223 NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); ) 2224 PhaseMacroExpand mexp(igvn); 2225 mexp.eliminate_macro_nodes(); 2226 igvn.set_delay_transform(false); 2227 2228 igvn.optimize(); 2229 print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2); 2230 2231 if (failing()) return; 2232 } 2233 } 2234 2235 // Loop transforms on the ideal graph. Range Check Elimination, 2236 // peeling, unrolling, etc. 2237 2238 // Set loop opts counter 2239 loop_opts_cnt = num_loop_opts(); 2240 if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) { 2241 { 2242 TracePhase t2("idealLoop", &_t_idealLoop, true); 2243 PhaseIdealLoop ideal_loop( igvn, true ); 2244 loop_opts_cnt--; 2245 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2); 2246 if (failing()) return; 2247 } 2248 // Loop opts pass if partial peeling occurred in previous pass 2249 if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) { 2250 TracePhase t3("idealLoop", &_t_idealLoop, true); 2251 PhaseIdealLoop ideal_loop( igvn, false ); 2252 loop_opts_cnt--; 2253 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2); 2254 if (failing()) return; 2255 } 2256 // Loop opts pass for loop-unrolling before CCP 2257 if(major_progress() && (loop_opts_cnt > 0)) { 2258 TracePhase t4("idealLoop", &_t_idealLoop, true); 2259 PhaseIdealLoop ideal_loop( igvn, false ); 2260 loop_opts_cnt--; 2261 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2); 2262 } 2263 if (!failing()) { 2264 // Verify that last round of loop opts produced a valid graph 2265 NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); ) 2266 PhaseIdealLoop::verify(igvn); 2267 } 2268 } 2269 if (failing()) return; 2270 2271 // Conditional Constant Propagation; 2272 PhaseCCP ccp( &igvn ); 2273 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)"); 2274 { 2275 TracePhase t2("ccp", &_t_ccp, true); 2276 ccp.do_transform(); 2277 } 2278 print_method(PHASE_CPP1, 2); 2279 2280 assert( true, "Break here to ccp.dump_old2new_map()"); 2281 2282 // Iterative Global Value Numbering, including ideal transforms 2283 { 2284 NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); ) 2285 igvn = ccp; 2286 igvn.optimize(); 2287 } 2288 2289 print_method(PHASE_ITER_GVN2, 2); 2290 2291 if (failing()) return; 2292 2293 // Loop transforms on the ideal graph. Range Check Elimination, 2294 // peeling, unrolling, etc. 2295 if(loop_opts_cnt > 0) { 2296 debug_only( int cnt = 0; ); 2297 while(major_progress() && (loop_opts_cnt > 0)) { 2298 TracePhase t2("idealLoop", &_t_idealLoop, true); 2299 assert( cnt++ < 40, "infinite cycle in loop optimization" ); 2300 PhaseIdealLoop ideal_loop( igvn, true); 2301 loop_opts_cnt--; 2302 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2); 2303 if (failing()) return; 2304 } 2305 } 2306 2307 { 2308 // Verify that all previous optimizations produced a valid graph 2309 // at least to this point, even if no loop optimizations were done. 2310 NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); ) 2311 PhaseIdealLoop::verify(igvn); 2312 } 2313 2314 if (range_check_cast_count() > 0) { 2315 // No more loop optimizations. Remove all range check dependent CastIINodes. 2316 C->remove_range_check_casts(igvn); 2317 igvn.optimize(); 2318 } 2319 2320 #ifdef ASSERT 2321 if (UseShenandoahGC && ShenandoahVerifyOptoBarriers) { 2322 ShenandoahBarrierC2Support::verify(C->root()); 2323 } 2324 #endif 2325 2326 { 2327 NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); ) 2328 PhaseMacroExpand mex(igvn); 2329 if (mex.expand_macro_nodes()) { 2330 assert(failing(), "must bail out w/ explicit message"); 2331 return; 2332 } 2333 } 2334 2335 #if INCLUDE_ALL_GCS 2336 if (UseShenandoahGC) { 2337 ShenandoahBarrierC2Support::expand(this, igvn); 2338 } 2339 #endif 2340 2341 } // (End scope of igvn; run destructor if necessary for asserts.) 2342 2343 dump_inlining(); 2344 // A method with only infinite loops has no edges entering loops from root 2345 { 2346 NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); ) 2347 if (final_graph_reshaping()) { 2348 assert(failing(), "must bail out w/ explicit message"); 2349 return; 2350 } 2351 } 2352 2353 print_method(PHASE_OPTIMIZE_FINISHED, 2); 2354 } 2355 2356 2357 //------------------------------Code_Gen--------------------------------------- 2358 // Given a graph, generate code for it 2359 void Compile::Code_Gen() { 2360 if (failing()) { 2361 return; 2362 } 2363 2364 // Perform instruction selection. You might think we could reclaim Matcher 2365 // memory PDQ, but actually the Matcher is used in generating spill code. 2366 // Internals of the Matcher (including some VectorSets) must remain live 2367 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage 2368 // set a bit in reclaimed memory. 2369 2370 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 2371 // nodes. Mapping is only valid at the root of each matched subtree. 2372 NOT_PRODUCT( verify_graph_edges(); ) 2373 2374 Matcher matcher; 2375 _matcher = &matcher; 2376 { 2377 TracePhase t2("matcher", &_t_matcher, true); 2378 matcher.match(); 2379 } 2380 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 2381 // nodes. Mapping is only valid at the root of each matched subtree. 2382 NOT_PRODUCT( verify_graph_edges(); ) 2383 2384 // If you have too many nodes, or if matching has failed, bail out 2385 check_node_count(0, "out of nodes matching instructions"); 2386 if (failing()) { 2387 return; 2388 } 2389 2390 // Build a proper-looking CFG 2391 PhaseCFG cfg(node_arena(), root(), matcher); 2392 _cfg = &cfg; 2393 { 2394 NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); ) 2395 bool success = cfg.do_global_code_motion(); 2396 if (!success) { 2397 return; 2398 } 2399 2400 print_method(PHASE_GLOBAL_CODE_MOTION, 2); 2401 NOT_PRODUCT( verify_graph_edges(); ) 2402 debug_only( cfg.verify(); ) 2403 } 2404 2405 PhaseChaitin regalloc(unique(), cfg, matcher); 2406 _regalloc = ®alloc; 2407 { 2408 TracePhase t2("regalloc", &_t_registerAllocation, true); 2409 // Perform register allocation. After Chaitin, use-def chains are 2410 // no longer accurate (at spill code) and so must be ignored. 2411 // Node->LRG->reg mappings are still accurate. 2412 _regalloc->Register_Allocate(); 2413 2414 // Bail out if the allocator builds too many nodes 2415 if (failing()) { 2416 return; 2417 } 2418 } 2419 2420 // Prior to register allocation we kept empty basic blocks in case the 2421 // the allocator needed a place to spill. After register allocation we 2422 // are not adding any new instructions. If any basic block is empty, we 2423 // can now safely remove it. 2424 { 2425 NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); ) 2426 cfg.remove_empty_blocks(); 2427 if (do_freq_based_layout()) { 2428 PhaseBlockLayout layout(cfg); 2429 } else { 2430 cfg.set_loop_alignment(); 2431 } 2432 cfg.fixup_flow(); 2433 } 2434 2435 // Apply peephole optimizations 2436 if( OptoPeephole ) { 2437 NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); ) 2438 PhasePeephole peep( _regalloc, cfg); 2439 peep.do_transform(); 2440 } 2441 2442 // Do late expand if CPU requires this. 2443 if (Matcher::require_postalloc_expand) { 2444 NOT_PRODUCT(TracePhase t2c("postalloc_expand", &_t_postalloc_expand, true)); 2445 cfg.postalloc_expand(_regalloc); 2446 } 2447 2448 // Convert Nodes to instruction bits in a buffer 2449 { 2450 // %%%% workspace merge brought two timers together for one job 2451 TracePhase t2a("output", &_t_output, true); 2452 NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); ) 2453 Output(); 2454 } 2455 2456 print_method(PHASE_FINAL_CODE); 2457 2458 // He's dead, Jim. 2459 _cfg = (PhaseCFG*)((intptr_t)0xdeadbeef); 2460 _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef); 2461 } 2462 2463 2464 //------------------------------dump_asm--------------------------------------- 2465 // Dump formatted assembly 2466 #ifndef PRODUCT 2467 void Compile::dump_asm(int *pcs, uint pc_limit) { 2468 bool cut_short = false; 2469 tty->print_cr("#"); 2470 tty->print("# "); _tf->dump(); tty->cr(); 2471 tty->print_cr("#"); 2472 2473 // For all blocks 2474 int pc = 0x0; // Program counter 2475 char starts_bundle = ' '; 2476 _regalloc->dump_frame(); 2477 2478 Node *n = NULL; 2479 for (uint i = 0; i < _cfg->number_of_blocks(); i++) { 2480 if (VMThread::should_terminate()) { 2481 cut_short = true; 2482 break; 2483 } 2484 Block* block = _cfg->get_block(i); 2485 if (block->is_connector() && !Verbose) { 2486 continue; 2487 } 2488 n = block->head(); 2489 if (pcs && n->_idx < pc_limit) { 2490 tty->print("%3.3x ", pcs[n->_idx]); 2491 } else { 2492 tty->print(" "); 2493 } 2494 block->dump_head(_cfg); 2495 if (block->is_connector()) { 2496 tty->print_cr(" # Empty connector block"); 2497 } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) { 2498 tty->print_cr(" # Block is sole successor of call"); 2499 } 2500 2501 // For all instructions 2502 Node *delay = NULL; 2503 for (uint j = 0; j < block->number_of_nodes(); j++) { 2504 if (VMThread::should_terminate()) { 2505 cut_short = true; 2506 break; 2507 } 2508 n = block->get_node(j); 2509 if (valid_bundle_info(n)) { 2510 Bundle* bundle = node_bundling(n); 2511 if (bundle->used_in_unconditional_delay()) { 2512 delay = n; 2513 continue; 2514 } 2515 if (bundle->starts_bundle()) { 2516 starts_bundle = '+'; 2517 } 2518 } 2519 2520 if (WizardMode) { 2521 n->dump(); 2522 } 2523 2524 if( !n->is_Region() && // Dont print in the Assembly 2525 !n->is_Phi() && // a few noisely useless nodes 2526 !n->is_Proj() && 2527 !n->is_MachTemp() && 2528 !n->is_SafePointScalarObject() && 2529 !n->is_Catch() && // Would be nice to print exception table targets 2530 !n->is_MergeMem() && // Not very interesting 2531 !n->is_top() && // Debug info table constants 2532 !(n->is_Con() && !n->is_Mach())// Debug info table constants 2533 ) { 2534 if (pcs && n->_idx < pc_limit) 2535 tty->print("%3.3x", pcs[n->_idx]); 2536 else 2537 tty->print(" "); 2538 tty->print(" %c ", starts_bundle); 2539 starts_bundle = ' '; 2540 tty->print("\t"); 2541 n->format(_regalloc, tty); 2542 tty->cr(); 2543 } 2544 2545 // If we have an instruction with a delay slot, and have seen a delay, 2546 // then back up and print it 2547 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) { 2548 assert(delay != NULL, "no unconditional delay instruction"); 2549 if (WizardMode) delay->dump(); 2550 2551 if (node_bundling(delay)->starts_bundle()) 2552 starts_bundle = '+'; 2553 if (pcs && n->_idx < pc_limit) 2554 tty->print("%3.3x", pcs[n->_idx]); 2555 else 2556 tty->print(" "); 2557 tty->print(" %c ", starts_bundle); 2558 starts_bundle = ' '; 2559 tty->print("\t"); 2560 delay->format(_regalloc, tty); 2561 tty->cr(); 2562 delay = NULL; 2563 } 2564 2565 // Dump the exception table as well 2566 if( n->is_Catch() && (Verbose || WizardMode) ) { 2567 // Print the exception table for this offset 2568 _handler_table.print_subtable_for(pc); 2569 } 2570 } 2571 2572 if (pcs && n->_idx < pc_limit) 2573 tty->print_cr("%3.3x", pcs[n->_idx]); 2574 else 2575 tty->cr(); 2576 2577 assert(cut_short || delay == NULL, "no unconditional delay branch"); 2578 2579 } // End of per-block dump 2580 tty->cr(); 2581 2582 if (cut_short) tty->print_cr("*** disassembly is cut short ***"); 2583 } 2584 #endif 2585 2586 //------------------------------Final_Reshape_Counts--------------------------- 2587 // This class defines counters to help identify when a method 2588 // may/must be executed using hardware with only 24-bit precision. 2589 struct Final_Reshape_Counts : public StackObj { 2590 int _call_count; // count non-inlined 'common' calls 2591 int _float_count; // count float ops requiring 24-bit precision 2592 int _double_count; // count double ops requiring more precision 2593 int _java_call_count; // count non-inlined 'java' calls 2594 int _inner_loop_count; // count loops which need alignment 2595 VectorSet _visited; // Visitation flags 2596 Node_List _tests; // Set of IfNodes & PCTableNodes 2597 2598 Final_Reshape_Counts() : 2599 _call_count(0), _float_count(0), _double_count(0), 2600 _java_call_count(0), _inner_loop_count(0), 2601 _visited( Thread::current()->resource_area() ) { } 2602 2603 void inc_call_count () { _call_count ++; } 2604 void inc_float_count () { _float_count ++; } 2605 void inc_double_count() { _double_count++; } 2606 void inc_java_call_count() { _java_call_count++; } 2607 void inc_inner_loop_count() { _inner_loop_count++; } 2608 2609 int get_call_count () const { return _call_count ; } 2610 int get_float_count () const { return _float_count ; } 2611 int get_double_count() const { return _double_count; } 2612 int get_java_call_count() const { return _java_call_count; } 2613 int get_inner_loop_count() const { return _inner_loop_count; } 2614 }; 2615 2616 #ifdef ASSERT 2617 static bool oop_offset_is_sane(const TypeInstPtr* tp) { 2618 ciInstanceKlass *k = tp->klass()->as_instance_klass(); 2619 // Make sure the offset goes inside the instance layout. 2620 return k->contains_field_offset(tp->offset()); 2621 // Note that OffsetBot and OffsetTop are very negative. 2622 } 2623 #endif 2624 2625 // Eliminate trivially redundant StoreCMs and accumulate their 2626 // precedence edges. 2627 void Compile::eliminate_redundant_card_marks(Node* n) { 2628 assert(n->Opcode() == Op_StoreCM, "expected StoreCM"); 2629 if (n->in(MemNode::Address)->outcnt() > 1) { 2630 // There are multiple users of the same address so it might be 2631 // possible to eliminate some of the StoreCMs 2632 Node* mem = n->in(MemNode::Memory); 2633 Node* adr = n->in(MemNode::Address); 2634 Node* val = n->in(MemNode::ValueIn); 2635 Node* prev = n; 2636 bool done = false; 2637 // Walk the chain of StoreCMs eliminating ones that match. As 2638 // long as it's a chain of single users then the optimization is 2639 // safe. Eliminating partially redundant StoreCMs would require 2640 // cloning copies down the other paths. 2641 while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) { 2642 if (adr == mem->in(MemNode::Address) && 2643 val == mem->in(MemNode::ValueIn)) { 2644 // redundant StoreCM 2645 if (mem->req() > MemNode::OopStore) { 2646 // Hasn't been processed by this code yet. 2647 n->add_prec(mem->in(MemNode::OopStore)); 2648 } else { 2649 // Already converted to precedence edge 2650 for (uint i = mem->req(); i < mem->len(); i++) { 2651 // Accumulate any precedence edges 2652 if (mem->in(i) != NULL) { 2653 n->add_prec(mem->in(i)); 2654 } 2655 } 2656 // Everything above this point has been processed. 2657 done = true; 2658 } 2659 // Eliminate the previous StoreCM 2660 prev->set_req(MemNode::Memory, mem->in(MemNode::Memory)); 2661 assert(mem->outcnt() == 0, "should be dead"); 2662 mem->disconnect_inputs(NULL, this); 2663 } else { 2664 prev = mem; 2665 } 2666 mem = prev->in(MemNode::Memory); 2667 } 2668 } 2669 } 2670 2671 //------------------------------final_graph_reshaping_impl---------------------- 2672 // Implement items 1-5 from final_graph_reshaping below. 2673 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) { 2674 2675 if ( n->outcnt() == 0 ) return; // dead node 2676 uint nop = n->Opcode(); 2677 2678 // Check for 2-input instruction with "last use" on right input. 2679 // Swap to left input. Implements item (2). 2680 if( n->req() == 3 && // two-input instruction 2681 n->in(1)->outcnt() > 1 && // left use is NOT a last use 2682 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop 2683 n->in(2)->outcnt() == 1 &&// right use IS a last use 2684 !n->in(2)->is_Con() ) { // right use is not a constant 2685 // Check for commutative opcode 2686 switch( nop ) { 2687 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL: 2688 case Op_MaxI: case Op_MinI: 2689 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL: 2690 case Op_AndL: case Op_XorL: case Op_OrL: 2691 case Op_AndI: case Op_XorI: case Op_OrI: { 2692 // Move "last use" input to left by swapping inputs 2693 n->swap_edges(1, 2); 2694 break; 2695 } 2696 default: 2697 break; 2698 } 2699 } 2700 2701 #ifdef ASSERT 2702 if( n->is_Mem() ) { 2703 int alias_idx = get_alias_index(n->as_Mem()->adr_type()); 2704 assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw || 2705 // oop will be recorded in oop map if load crosses safepoint 2706 n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() || 2707 LoadNode::is_immutable_value(n->in(MemNode::Address))), 2708 "raw memory operations should have control edge"); 2709 } 2710 if (n->is_MemBar()) { 2711 MemBarNode* mb = n->as_MemBar(); 2712 if (mb->trailing_store() || mb->trailing_load_store()) { 2713 assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair"); 2714 Node* mem = mb->in(MemBarNode::Precedent); 2715 assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) || 2716 (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op"); 2717 } else if (mb->leading()) { 2718 assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair"); 2719 } 2720 } 2721 #endif 2722 // Count FPU ops and common calls, implements item (3) 2723 switch( nop ) { 2724 // Count all float operations that may use FPU 2725 case Op_AddF: 2726 case Op_SubF: 2727 case Op_MulF: 2728 case Op_DivF: 2729 case Op_NegF: 2730 case Op_ModF: 2731 case Op_ConvI2F: 2732 case Op_ConF: 2733 case Op_CmpF: 2734 case Op_CmpF3: 2735 // case Op_ConvL2F: // longs are split into 32-bit halves 2736 frc.inc_float_count(); 2737 break; 2738 2739 case Op_ConvF2D: 2740 case Op_ConvD2F: 2741 frc.inc_float_count(); 2742 frc.inc_double_count(); 2743 break; 2744 2745 // Count all double operations that may use FPU 2746 case Op_AddD: 2747 case Op_SubD: 2748 case Op_MulD: 2749 case Op_DivD: 2750 case Op_NegD: 2751 case Op_ModD: 2752 case Op_ConvI2D: 2753 case Op_ConvD2I: 2754 // case Op_ConvL2D: // handled by leaf call 2755 // case Op_ConvD2L: // handled by leaf call 2756 case Op_ConD: 2757 case Op_CmpD: 2758 case Op_CmpD3: 2759 frc.inc_double_count(); 2760 break; 2761 case Op_Opaque1: // Remove Opaque Nodes before matching 2762 case Op_Opaque2: // Remove Opaque Nodes before matching 2763 case Op_Opaque3: 2764 n->subsume_by(n->in(1), this); 2765 break; 2766 case Op_CallStaticJava: 2767 case Op_CallJava: 2768 case Op_CallDynamicJava: 2769 frc.inc_java_call_count(); // Count java call site; 2770 case Op_CallRuntime: 2771 case Op_CallLeaf: 2772 case Op_CallLeafNoFP: { 2773 assert( n->is_Call(), "" ); 2774 CallNode *call = n->as_Call(); 2775 if (UseShenandoahGC && call->is_g1_wb_pre_call()) { 2776 uint cnt = OptoRuntime::g1_wb_pre_Type()->domain()->cnt(); 2777 if (call->req() > cnt) { 2778 assert(call->req() == cnt+1, "only one extra input"); 2779 Node* addp = call->in(cnt); 2780 assert(!CallLeafNode::has_only_g1_wb_pre_uses(addp), "useless address computation?"); 2781 call->del_req(cnt); 2782 } 2783 } 2784 // Count call sites where the FP mode bit would have to be flipped. 2785 // Do not count uncommon runtime calls: 2786 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking, 2787 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ... 2788 if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) { 2789 frc.inc_call_count(); // Count the call site 2790 } else { // See if uncommon argument is shared 2791 Node *n = call->in(TypeFunc::Parms); 2792 int nop = n->Opcode(); 2793 // Clone shared simple arguments to uncommon calls, item (1). 2794 if( n->outcnt() > 1 && 2795 !n->is_Proj() && 2796 nop != Op_CreateEx && 2797 nop != Op_CheckCastPP && 2798 nop != Op_DecodeN && 2799 nop != Op_DecodeNKlass && 2800 !n->is_Mem() ) { 2801 Node *x = n->clone(); 2802 call->set_req( TypeFunc::Parms, x ); 2803 } 2804 } 2805 break; 2806 } 2807 2808 case Op_StoreD: 2809 case Op_LoadD: 2810 case Op_LoadD_unaligned: 2811 frc.inc_double_count(); 2812 goto handle_mem; 2813 case Op_StoreF: 2814 case Op_LoadF: 2815 frc.inc_float_count(); 2816 goto handle_mem; 2817 2818 case Op_StoreCM: 2819 { 2820 // Convert OopStore dependence into precedence edge 2821 Node* prec = n->in(MemNode::OopStore); 2822 n->del_req(MemNode::OopStore); 2823 n->add_prec(prec); 2824 eliminate_redundant_card_marks(n); 2825 } 2826 2827 // fall through 2828 2829 case Op_StoreB: 2830 case Op_StoreC: 2831 case Op_StorePConditional: 2832 case Op_StoreI: 2833 case Op_StoreL: 2834 case Op_StoreIConditional: 2835 case Op_StoreLConditional: 2836 case Op_CompareAndSwapI: 2837 case Op_CompareAndSwapL: 2838 case Op_CompareAndSwapP: 2839 case Op_CompareAndSwapN: 2840 case Op_GetAndAddI: 2841 case Op_GetAndAddL: 2842 case Op_GetAndSetI: 2843 case Op_GetAndSetL: 2844 case Op_GetAndSetP: 2845 case Op_GetAndSetN: 2846 case Op_StoreP: 2847 case Op_StoreN: 2848 case Op_StoreNKlass: 2849 case Op_LoadB: 2850 case Op_LoadUB: 2851 case Op_LoadUS: 2852 case Op_LoadI: 2853 case Op_LoadKlass: 2854 case Op_LoadNKlass: 2855 case Op_LoadL: 2856 case Op_LoadL_unaligned: 2857 case Op_LoadPLocked: 2858 case Op_LoadP: 2859 case Op_LoadN: 2860 case Op_LoadRange: 2861 case Op_LoadS: { 2862 handle_mem: 2863 #ifdef ASSERT 2864 if( VerifyOptoOopOffsets ) { 2865 assert( n->is_Mem(), "" ); 2866 MemNode *mem = (MemNode*)n; 2867 // Check to see if address types have grounded out somehow. 2868 const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr(); 2869 assert( !tp || oop_offset_is_sane(tp), "" ); 2870 } 2871 #endif 2872 break; 2873 } 2874 2875 case Op_AddP: { // Assert sane base pointers 2876 Node *addp = n->in(AddPNode::Address); 2877 assert( !addp->is_AddP() || 2878 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation 2879 addp->in(AddPNode::Base) == n->in(AddPNode::Base), 2880 "Base pointers must match" ); 2881 #ifdef _LP64 2882 if ((UseCompressedOops || UseCompressedClassPointers) && 2883 addp->Opcode() == Op_ConP && 2884 addp == n->in(AddPNode::Base) && 2885 n->in(AddPNode::Offset)->is_Con()) { 2886 // Use addressing with narrow klass to load with offset on x86. 2887 // On sparc loading 32-bits constant and decoding it have less 2888 // instructions (4) then load 64-bits constant (7). 2889 // Do this transformation here since IGVN will convert ConN back to ConP. 2890 const Type* t = addp->bottom_type(); 2891 if (t->isa_oopptr() || t->isa_klassptr()) { 2892 Node* nn = NULL; 2893 2894 int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass; 2895 2896 // Look for existing ConN node of the same exact type. 2897 Node* r = root(); 2898 uint cnt = r->outcnt(); 2899 for (uint i = 0; i < cnt; i++) { 2900 Node* m = r->raw_out(i); 2901 if (m!= NULL && m->Opcode() == op && 2902 m->bottom_type()->make_ptr() == t) { 2903 nn = m; 2904 break; 2905 } 2906 } 2907 if (nn != NULL) { 2908 // Decode a narrow oop to match address 2909 // [R12 + narrow_oop_reg<<3 + offset] 2910 if (t->isa_oopptr()) { 2911 nn = new (this) DecodeNNode(nn, t); 2912 } else { 2913 nn = new (this) DecodeNKlassNode(nn, t); 2914 } 2915 n->set_req(AddPNode::Base, nn); 2916 n->set_req(AddPNode::Address, nn); 2917 if (addp->outcnt() == 0) { 2918 addp->disconnect_inputs(NULL, this); 2919 } 2920 } 2921 } 2922 } 2923 #endif 2924 break; 2925 } 2926 2927 case Op_CastPP: { 2928 // Remove CastPP nodes to gain more freedom during scheduling but 2929 // keep the dependency they encode as control or precedence edges 2930 // (if control is set already) on memory operations. Some CastPP 2931 // nodes don't have a control (don't carry a dependency): skip 2932 // those. 2933 if (n->in(0) != NULL) { 2934 ResourceMark rm; 2935 Unique_Node_List wq; 2936 wq.push(n); 2937 for (uint next = 0; next < wq.size(); ++next) { 2938 Node *m = wq.at(next); 2939 for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) { 2940 Node* use = m->fast_out(i); 2941 if (use->is_Mem() || use->is_EncodeNarrowPtr() || use->Opcode() == Op_ShenandoahLoadReferenceBarrier) { 2942 use->ensure_control_or_add_prec(n->in(0)); 2943 } else if (use->in(0) == NULL) { 2944 switch(use->Opcode()) { 2945 case Op_AddP: 2946 case Op_DecodeN: 2947 case Op_DecodeNKlass: 2948 case Op_CheckCastPP: 2949 case Op_CastPP: 2950 wq.push(use); 2951 break; 2952 } 2953 } 2954 } 2955 } 2956 } 2957 const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false); 2958 if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) { 2959 Node* in1 = n->in(1); 2960 const Type* t = n->bottom_type(); 2961 Node* new_in1 = in1->clone(); 2962 new_in1->as_DecodeN()->set_type(t); 2963 2964 if (!Matcher::narrow_oop_use_complex_address()) { 2965 // 2966 // x86, ARM and friends can handle 2 adds in addressing mode 2967 // and Matcher can fold a DecodeN node into address by using 2968 // a narrow oop directly and do implicit NULL check in address: 2969 // 2970 // [R12 + narrow_oop_reg<<3 + offset] 2971 // NullCheck narrow_oop_reg 2972 // 2973 // On other platforms (Sparc) we have to keep new DecodeN node and 2974 // use it to do implicit NULL check in address: 2975 // 2976 // decode_not_null narrow_oop_reg, base_reg 2977 // [base_reg + offset] 2978 // NullCheck base_reg 2979 // 2980 // Pin the new DecodeN node to non-null path on these platform (Sparc) 2981 // to keep the information to which NULL check the new DecodeN node 2982 // corresponds to use it as value in implicit_null_check(). 2983 // 2984 new_in1->set_req(0, n->in(0)); 2985 } 2986 2987 n->subsume_by(new_in1, this); 2988 if (in1->outcnt() == 0) { 2989 in1->disconnect_inputs(NULL, this); 2990 } 2991 } else { 2992 n->subsume_by(n->in(1), this); 2993 if (n->outcnt() == 0) { 2994 n->disconnect_inputs(NULL, this); 2995 } 2996 } 2997 break; 2998 } 2999 #ifdef _LP64 3000 case Op_CmpP: 3001 // Do this transformation here to preserve CmpPNode::sub() and 3002 // other TypePtr related Ideal optimizations (for example, ptr nullness). 3003 if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) { 3004 Node* in1 = n->in(1); 3005 Node* in2 = n->in(2); 3006 if (!in1->is_DecodeNarrowPtr()) { 3007 in2 = in1; 3008 in1 = n->in(2); 3009 } 3010 assert(in1->is_DecodeNarrowPtr(), "sanity"); 3011 3012 Node* new_in2 = NULL; 3013 if (in2->is_DecodeNarrowPtr()) { 3014 assert(in2->Opcode() == in1->Opcode(), "must be same node type"); 3015 new_in2 = in2->in(1); 3016 } else if (in2->Opcode() == Op_ConP) { 3017 const Type* t = in2->bottom_type(); 3018 if (t == TypePtr::NULL_PTR) { 3019 assert(in1->is_DecodeN(), "compare klass to null?"); 3020 // Don't convert CmpP null check into CmpN if compressed 3021 // oops implicit null check is not generated. 3022 // This will allow to generate normal oop implicit null check. 3023 if (Matcher::gen_narrow_oop_implicit_null_checks()) 3024 new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR); 3025 // 3026 // This transformation together with CastPP transformation above 3027 // will generated code for implicit NULL checks for compressed oops. 3028 // 3029 // The original code after Optimize() 3030 // 3031 // LoadN memory, narrow_oop_reg 3032 // decode narrow_oop_reg, base_reg 3033 // CmpP base_reg, NULL 3034 // CastPP base_reg // NotNull 3035 // Load [base_reg + offset], val_reg 3036 // 3037 // after these transformations will be 3038 // 3039 // LoadN memory, narrow_oop_reg 3040 // CmpN narrow_oop_reg, NULL 3041 // decode_not_null narrow_oop_reg, base_reg 3042 // Load [base_reg + offset], val_reg 3043 // 3044 // and the uncommon path (== NULL) will use narrow_oop_reg directly 3045 // since narrow oops can be used in debug info now (see the code in 3046 // final_graph_reshaping_walk()). 3047 // 3048 // At the end the code will be matched to 3049 // on x86: 3050 // 3051 // Load_narrow_oop memory, narrow_oop_reg 3052 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg 3053 // NullCheck narrow_oop_reg 3054 // 3055 // and on sparc: 3056 // 3057 // Load_narrow_oop memory, narrow_oop_reg 3058 // decode_not_null narrow_oop_reg, base_reg 3059 // Load [base_reg + offset], val_reg 3060 // NullCheck base_reg 3061 // 3062 } else if (t->isa_oopptr()) { 3063 new_in2 = ConNode::make(this, t->make_narrowoop()); 3064 } else if (t->isa_klassptr()) { 3065 new_in2 = ConNode::make(this, t->make_narrowklass()); 3066 } 3067 } 3068 if (new_in2 != NULL) { 3069 Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2); 3070 n->subsume_by(cmpN, this); 3071 if (in1->outcnt() == 0) { 3072 in1->disconnect_inputs(NULL, this); 3073 } 3074 if (in2->outcnt() == 0) { 3075 in2->disconnect_inputs(NULL, this); 3076 } 3077 } 3078 } 3079 break; 3080 3081 case Op_DecodeN: 3082 case Op_DecodeNKlass: 3083 assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out"); 3084 // DecodeN could be pinned when it can't be fold into 3085 // an address expression, see the code for Op_CastPP above. 3086 assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control"); 3087 break; 3088 3089 case Op_EncodeP: 3090 case Op_EncodePKlass: { 3091 Node* in1 = n->in(1); 3092 if (in1->is_DecodeNarrowPtr()) { 3093 n->subsume_by(in1->in(1), this); 3094 } else if (in1->Opcode() == Op_ConP) { 3095 const Type* t = in1->bottom_type(); 3096 if (t == TypePtr::NULL_PTR) { 3097 assert(t->isa_oopptr(), "null klass?"); 3098 n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this); 3099 } else if (t->isa_oopptr()) { 3100 n->subsume_by(ConNode::make(this, t->make_narrowoop()), this); 3101 } else if (t->isa_klassptr()) { 3102 n->subsume_by(ConNode::make(this, t->make_narrowklass()), this); 3103 } 3104 } 3105 if (in1->outcnt() == 0) { 3106 in1->disconnect_inputs(NULL, this); 3107 } 3108 break; 3109 } 3110 3111 case Op_Proj: { 3112 if (OptimizeStringConcat) { 3113 ProjNode* p = n->as_Proj(); 3114 if (p->_is_io_use) { 3115 // Separate projections were used for the exception path which 3116 // are normally removed by a late inline. If it wasn't inlined 3117 // then they will hang around and should just be replaced with 3118 // the original one. 3119 Node* proj = NULL; 3120 // Replace with just one 3121 for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) { 3122 Node *use = i.get(); 3123 if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) { 3124 proj = use; 3125 break; 3126 } 3127 } 3128 assert(proj != NULL || p->_con == TypeFunc::I_O, "io may be dropped at an infinite loop"); 3129 if (proj != NULL) { 3130 p->subsume_by(proj, this); 3131 } 3132 } 3133 } 3134 break; 3135 } 3136 3137 case Op_Phi: 3138 if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) { 3139 // The EncodeP optimization may create Phi with the same edges 3140 // for all paths. It is not handled well by Register Allocator. 3141 Node* unique_in = n->in(1); 3142 assert(unique_in != NULL, ""); 3143 uint cnt = n->req(); 3144 for (uint i = 2; i < cnt; i++) { 3145 Node* m = n->in(i); 3146 assert(m != NULL, ""); 3147 if (unique_in != m) 3148 unique_in = NULL; 3149 } 3150 if (unique_in != NULL) { 3151 n->subsume_by(unique_in, this); 3152 } 3153 } 3154 break; 3155 3156 #endif 3157 3158 #ifdef ASSERT 3159 case Op_CastII: 3160 // Verify that all range check dependent CastII nodes were removed. 3161 if (n->isa_CastII()->has_range_check()) { 3162 n->dump(3); 3163 assert(false, "Range check dependent CastII node was not removed"); 3164 } 3165 break; 3166 #endif 3167 3168 case Op_ModI: 3169 if (UseDivMod) { 3170 // Check if a%b and a/b both exist 3171 Node* d = n->find_similar(Op_DivI); 3172 if (d) { 3173 // Replace them with a fused divmod if supported 3174 if (Matcher::has_match_rule(Op_DivModI)) { 3175 DivModINode* divmod = DivModINode::make(this, n); 3176 d->subsume_by(divmod->div_proj(), this); 3177 n->subsume_by(divmod->mod_proj(), this); 3178 } else { 3179 // replace a%b with a-((a/b)*b) 3180 Node* mult = new (this) MulINode(d, d->in(2)); 3181 Node* sub = new (this) SubINode(d->in(1), mult); 3182 n->subsume_by(sub, this); 3183 } 3184 } 3185 } 3186 break; 3187 3188 case Op_ModL: 3189 if (UseDivMod) { 3190 // Check if a%b and a/b both exist 3191 Node* d = n->find_similar(Op_DivL); 3192 if (d) { 3193 // Replace them with a fused divmod if supported 3194 if (Matcher::has_match_rule(Op_DivModL)) { 3195 DivModLNode* divmod = DivModLNode::make(this, n); 3196 d->subsume_by(divmod->div_proj(), this); 3197 n->subsume_by(divmod->mod_proj(), this); 3198 } else { 3199 // replace a%b with a-((a/b)*b) 3200 Node* mult = new (this) MulLNode(d, d->in(2)); 3201 Node* sub = new (this) SubLNode(d->in(1), mult); 3202 n->subsume_by(sub, this); 3203 } 3204 } 3205 } 3206 break; 3207 3208 case Op_LoadVector: 3209 case Op_StoreVector: 3210 break; 3211 3212 case Op_PackB: 3213 case Op_PackS: 3214 case Op_PackI: 3215 case Op_PackF: 3216 case Op_PackL: 3217 case Op_PackD: 3218 if (n->req()-1 > 2) { 3219 // Replace many operand PackNodes with a binary tree for matching 3220 PackNode* p = (PackNode*) n; 3221 Node* btp = p->binary_tree_pack(this, 1, n->req()); 3222 n->subsume_by(btp, this); 3223 } 3224 break; 3225 case Op_Loop: 3226 case Op_CountedLoop: 3227 if (n->as_Loop()->is_inner_loop()) { 3228 frc.inc_inner_loop_count(); 3229 } 3230 break; 3231 case Op_LShiftI: 3232 case Op_RShiftI: 3233 case Op_URShiftI: 3234 case Op_LShiftL: 3235 case Op_RShiftL: 3236 case Op_URShiftL: 3237 if (Matcher::need_masked_shift_count) { 3238 // The cpu's shift instructions don't restrict the count to the 3239 // lower 5/6 bits. We need to do the masking ourselves. 3240 Node* in2 = n->in(2); 3241 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1); 3242 const TypeInt* t = in2->find_int_type(); 3243 if (t != NULL && t->is_con()) { 3244 juint shift = t->get_con(); 3245 if (shift > mask) { // Unsigned cmp 3246 n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask))); 3247 } 3248 } else { 3249 if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) { 3250 Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask))); 3251 n->set_req(2, shift); 3252 } 3253 } 3254 if (in2->outcnt() == 0) { // Remove dead node 3255 in2->disconnect_inputs(NULL, this); 3256 } 3257 } 3258 break; 3259 case Op_MemBarStoreStore: 3260 case Op_MemBarRelease: 3261 // Break the link with AllocateNode: it is no longer useful and 3262 // confuses register allocation. 3263 if (n->req() > MemBarNode::Precedent) { 3264 n->set_req(MemBarNode::Precedent, top()); 3265 } 3266 break; 3267 case Op_ShenandoahLoadReferenceBarrier: 3268 assert(false, "should have been expanded already"); 3269 break; 3270 default: 3271 assert( !n->is_Call(), "" ); 3272 assert( !n->is_Mem(), "" ); 3273 assert( nop != Op_ProfileBoolean, "should be eliminated during IGVN"); 3274 break; 3275 } 3276 3277 // Collect CFG split points 3278 if (n->is_MultiBranch()) 3279 frc._tests.push(n); 3280 } 3281 3282 //------------------------------final_graph_reshaping_walk--------------------- 3283 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(), 3284 // requires that the walk visits a node's inputs before visiting the node. 3285 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) { 3286 ResourceArea *area = Thread::current()->resource_area(); 3287 Unique_Node_List sfpt(area); 3288 3289 frc._visited.set(root->_idx); // first, mark node as visited 3290 uint cnt = root->req(); 3291 Node *n = root; 3292 uint i = 0; 3293 while (true) { 3294 if (i < cnt) { 3295 // Place all non-visited non-null inputs onto stack 3296 Node* m = n->in(i); 3297 ++i; 3298 if (m != NULL && !frc._visited.test_set(m->_idx)) { 3299 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) { 3300 // compute worst case interpreter size in case of a deoptimization 3301 update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size()); 3302 3303 sfpt.push(m); 3304 } 3305 cnt = m->req(); 3306 nstack.push(n, i); // put on stack parent and next input's index 3307 n = m; 3308 i = 0; 3309 } 3310 } else { 3311 // Now do post-visit work 3312 final_graph_reshaping_impl( n, frc ); 3313 if (nstack.is_empty()) 3314 break; // finished 3315 n = nstack.node(); // Get node from stack 3316 cnt = n->req(); 3317 i = nstack.index(); 3318 nstack.pop(); // Shift to the next node on stack 3319 } 3320 } 3321 3322 // Skip next transformation if compressed oops are not used. 3323 if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) || 3324 (!UseCompressedOops && !UseCompressedClassPointers)) 3325 return; 3326 3327 // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges. 3328 // It could be done for an uncommon traps or any safepoints/calls 3329 // if the DecodeN/DecodeNKlass node is referenced only in a debug info. 3330 while (sfpt.size() > 0) { 3331 n = sfpt.pop(); 3332 JVMState *jvms = n->as_SafePoint()->jvms(); 3333 assert(jvms != NULL, "sanity"); 3334 int start = jvms->debug_start(); 3335 int end = n->req(); 3336 bool is_uncommon = (n->is_CallStaticJava() && 3337 n->as_CallStaticJava()->uncommon_trap_request() != 0); 3338 for (int j = start; j < end; j++) { 3339 Node* in = n->in(j); 3340 if (in->is_DecodeNarrowPtr()) { 3341 bool safe_to_skip = true; 3342 if (!is_uncommon ) { 3343 // Is it safe to skip? 3344 for (uint i = 0; i < in->outcnt(); i++) { 3345 Node* u = in->raw_out(i); 3346 if (!u->is_SafePoint() || 3347 u->is_Call() && u->as_Call()->has_non_debug_use(n)) { 3348 safe_to_skip = false; 3349 } 3350 } 3351 } 3352 if (safe_to_skip) { 3353 n->set_req(j, in->in(1)); 3354 } 3355 if (in->outcnt() == 0) { 3356 in->disconnect_inputs(NULL, this); 3357 } 3358 } 3359 } 3360 } 3361 } 3362 3363 //------------------------------final_graph_reshaping-------------------------- 3364 // Final Graph Reshaping. 3365 // 3366 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late 3367 // and not commoned up and forced early. Must come after regular 3368 // optimizations to avoid GVN undoing the cloning. Clone constant 3369 // inputs to Loop Phis; these will be split by the allocator anyways. 3370 // Remove Opaque nodes. 3371 // (2) Move last-uses by commutative operations to the left input to encourage 3372 // Intel update-in-place two-address operations and better register usage 3373 // on RISCs. Must come after regular optimizations to avoid GVN Ideal 3374 // calls canonicalizing them back. 3375 // (3) Count the number of double-precision FP ops, single-precision FP ops 3376 // and call sites. On Intel, we can get correct rounding either by 3377 // forcing singles to memory (requires extra stores and loads after each 3378 // FP bytecode) or we can set a rounding mode bit (requires setting and 3379 // clearing the mode bit around call sites). The mode bit is only used 3380 // if the relative frequency of single FP ops to calls is low enough. 3381 // This is a key transform for SPEC mpeg_audio. 3382 // (4) Detect infinite loops; blobs of code reachable from above but not 3383 // below. Several of the Code_Gen algorithms fail on such code shapes, 3384 // so we simply bail out. Happens a lot in ZKM.jar, but also happens 3385 // from time to time in other codes (such as -Xcomp finalizer loops, etc). 3386 // Detection is by looking for IfNodes where only 1 projection is 3387 // reachable from below or CatchNodes missing some targets. 3388 // (5) Assert for insane oop offsets in debug mode. 3389 3390 bool Compile::final_graph_reshaping() { 3391 // an infinite loop may have been eliminated by the optimizer, 3392 // in which case the graph will be empty. 3393 if (root()->req() == 1) { 3394 record_method_not_compilable("trivial infinite loop"); 3395 return true; 3396 } 3397 3398 // Expensive nodes have their control input set to prevent the GVN 3399 // from freely commoning them. There's no GVN beyond this point so 3400 // no need to keep the control input. We want the expensive nodes to 3401 // be freely moved to the least frequent code path by gcm. 3402 assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?"); 3403 for (int i = 0; i < expensive_count(); i++) { 3404 _expensive_nodes->at(i)->set_req(0, NULL); 3405 } 3406 3407 Final_Reshape_Counts frc; 3408 3409 // Visit everybody reachable! 3410 // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc 3411 Node_Stack nstack(live_nodes() >> 1); 3412 final_graph_reshaping_walk(nstack, root(), frc); 3413 3414 // Check for unreachable (from below) code (i.e., infinite loops). 3415 for( uint i = 0; i < frc._tests.size(); i++ ) { 3416 MultiBranchNode *n = frc._tests[i]->as_MultiBranch(); 3417 // Get number of CFG targets. 3418 // Note that PCTables include exception targets after calls. 3419 uint required_outcnt = n->required_outcnt(); 3420 if (n->outcnt() != required_outcnt) { 3421 // Check for a few special cases. Rethrow Nodes never take the 3422 // 'fall-thru' path, so expected kids is 1 less. 3423 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) { 3424 if (n->in(0)->in(0)->is_Call()) { 3425 CallNode *call = n->in(0)->in(0)->as_Call(); 3426 if (call->entry_point() == OptoRuntime::rethrow_stub()) { 3427 required_outcnt--; // Rethrow always has 1 less kid 3428 } else if (call->req() > TypeFunc::Parms && 3429 call->is_CallDynamicJava()) { 3430 // Check for null receiver. In such case, the optimizer has 3431 // detected that the virtual call will always result in a null 3432 // pointer exception. The fall-through projection of this CatchNode 3433 // will not be populated. 3434 Node *arg0 = call->in(TypeFunc::Parms); 3435 if (arg0->is_Type() && 3436 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) { 3437 required_outcnt--; 3438 } 3439 } else if (call->entry_point() == OptoRuntime::new_array_Java() && 3440 call->req() > TypeFunc::Parms+1 && 3441 call->is_CallStaticJava()) { 3442 // Check for negative array length. In such case, the optimizer has 3443 // detected that the allocation attempt will always result in an 3444 // exception. There is no fall-through projection of this CatchNode . 3445 Node *arg1 = call->in(TypeFunc::Parms+1); 3446 if (arg1->is_Type() && 3447 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) { 3448 required_outcnt--; 3449 } 3450 } 3451 } 3452 } 3453 // Recheck with a better notion of 'required_outcnt' 3454 if (n->outcnt() != required_outcnt) { 3455 record_method_not_compilable("malformed control flow"); 3456 return true; // Not all targets reachable! 3457 } 3458 } 3459 // Check that I actually visited all kids. Unreached kids 3460 // must be infinite loops. 3461 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) 3462 if (!frc._visited.test(n->fast_out(j)->_idx)) { 3463 record_method_not_compilable("infinite loop"); 3464 return true; // Found unvisited kid; must be unreach 3465 } 3466 } 3467 3468 // If original bytecodes contained a mixture of floats and doubles 3469 // check if the optimizer has made it homogenous, item (3). 3470 if( Use24BitFPMode && Use24BitFP && UseSSE == 0 && 3471 frc.get_float_count() > 32 && 3472 frc.get_double_count() == 0 && 3473 (10 * frc.get_call_count() < frc.get_float_count()) ) { 3474 set_24_bit_selection_and_mode( false, true ); 3475 } 3476 3477 set_java_calls(frc.get_java_call_count()); 3478 set_inner_loops(frc.get_inner_loop_count()); 3479 3480 // No infinite loops, no reason to bail out. 3481 return false; 3482 } 3483 3484 //-----------------------------too_many_traps---------------------------------- 3485 // Report if there are too many traps at the current method and bci. 3486 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded. 3487 bool Compile::too_many_traps(ciMethod* method, 3488 int bci, 3489 Deoptimization::DeoptReason reason) { 3490 ciMethodData* md = method->method_data(); 3491 if (md->is_empty()) { 3492 // Assume the trap has not occurred, or that it occurred only 3493 // because of a transient condition during start-up in the interpreter. 3494 return false; 3495 } 3496 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL; 3497 if (md->has_trap_at(bci, m, reason) != 0) { 3498 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic. 3499 // Also, if there are multiple reasons, or if there is no per-BCI record, 3500 // assume the worst. 3501 if (log()) 3502 log()->elem("observe trap='%s' count='%d'", 3503 Deoptimization::trap_reason_name(reason), 3504 md->trap_count(reason)); 3505 return true; 3506 } else { 3507 // Ignore method/bci and see if there have been too many globally. 3508 return too_many_traps(reason, md); 3509 } 3510 } 3511 3512 // Less-accurate variant which does not require a method and bci. 3513 bool Compile::too_many_traps(Deoptimization::DeoptReason reason, 3514 ciMethodData* logmd) { 3515 if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) { 3516 // Too many traps globally. 3517 // Note that we use cumulative trap_count, not just md->trap_count. 3518 if (log()) { 3519 int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason); 3520 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'", 3521 Deoptimization::trap_reason_name(reason), 3522 mcount, trap_count(reason)); 3523 } 3524 return true; 3525 } else { 3526 // The coast is clear. 3527 return false; 3528 } 3529 } 3530 3531 //--------------------------too_many_recompiles-------------------------------- 3532 // Report if there are too many recompiles at the current method and bci. 3533 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff. 3534 // Is not eager to return true, since this will cause the compiler to use 3535 // Action_none for a trap point, to avoid too many recompilations. 3536 bool Compile::too_many_recompiles(ciMethod* method, 3537 int bci, 3538 Deoptimization::DeoptReason reason) { 3539 ciMethodData* md = method->method_data(); 3540 if (md->is_empty()) { 3541 // Assume the trap has not occurred, or that it occurred only 3542 // because of a transient condition during start-up in the interpreter. 3543 return false; 3544 } 3545 // Pick a cutoff point well within PerBytecodeRecompilationCutoff. 3546 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8; 3547 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero 3548 Deoptimization::DeoptReason per_bc_reason 3549 = Deoptimization::reason_recorded_per_bytecode_if_any(reason); 3550 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL; 3551 if ((per_bc_reason == Deoptimization::Reason_none 3552 || md->has_trap_at(bci, m, reason) != 0) 3553 // The trap frequency measure we care about is the recompile count: 3554 && md->trap_recompiled_at(bci, m) 3555 && md->overflow_recompile_count() >= bc_cutoff) { 3556 // Do not emit a trap here if it has already caused recompilations. 3557 // Also, if there are multiple reasons, or if there is no per-BCI record, 3558 // assume the worst. 3559 if (log()) 3560 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'", 3561 Deoptimization::trap_reason_name(reason), 3562 md->trap_count(reason), 3563 md->overflow_recompile_count()); 3564 return true; 3565 } else if (trap_count(reason) != 0 3566 && decompile_count() >= m_cutoff) { 3567 // Too many recompiles globally, and we have seen this sort of trap. 3568 // Use cumulative decompile_count, not just md->decompile_count. 3569 if (log()) 3570 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'", 3571 Deoptimization::trap_reason_name(reason), 3572 md->trap_count(reason), trap_count(reason), 3573 md->decompile_count(), decompile_count()); 3574 return true; 3575 } else { 3576 // The coast is clear. 3577 return false; 3578 } 3579 } 3580 3581 // Compute when not to trap. Used by matching trap based nodes and 3582 // NullCheck optimization. 3583 void Compile::set_allowed_deopt_reasons() { 3584 _allowed_reasons = 0; 3585 if (is_method_compilation()) { 3586 for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) { 3587 assert(rs < BitsPerInt, "recode bit map"); 3588 if (!too_many_traps((Deoptimization::DeoptReason) rs)) { 3589 _allowed_reasons |= nth_bit(rs); 3590 } 3591 } 3592 } 3593 } 3594 3595 #ifndef PRODUCT 3596 //------------------------------verify_graph_edges--------------------------- 3597 // Walk the Graph and verify that there is a one-to-one correspondence 3598 // between Use-Def edges and Def-Use edges in the graph. 3599 void Compile::verify_graph_edges(bool no_dead_code) { 3600 if (VerifyGraphEdges) { 3601 ResourceArea *area = Thread::current()->resource_area(); 3602 Unique_Node_List visited(area); 3603 // Call recursive graph walk to check edges 3604 _root->verify_edges(visited); 3605 if (no_dead_code) { 3606 // Now make sure that no visited node is used by an unvisited node. 3607 bool dead_nodes = false; 3608 Unique_Node_List checked(area); 3609 while (visited.size() > 0) { 3610 Node* n = visited.pop(); 3611 checked.push(n); 3612 for (uint i = 0; i < n->outcnt(); i++) { 3613 Node* use = n->raw_out(i); 3614 if (checked.member(use)) continue; // already checked 3615 if (visited.member(use)) continue; // already in the graph 3616 if (use->is_Con()) continue; // a dead ConNode is OK 3617 // At this point, we have found a dead node which is DU-reachable. 3618 if (!dead_nodes) { 3619 tty->print_cr("*** Dead nodes reachable via DU edges:"); 3620 dead_nodes = true; 3621 } 3622 use->dump(2); 3623 tty->print_cr("---"); 3624 checked.push(use); // No repeats; pretend it is now checked. 3625 } 3626 } 3627 assert(!dead_nodes, "using nodes must be reachable from root"); 3628 } 3629 } 3630 } 3631 3632 // Verify GC barriers consistency 3633 // Currently supported: 3634 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre()) 3635 void Compile::verify_barriers() { 3636 if (UseG1GC || UseShenandoahGC) { 3637 // Verify G1 pre-barriers 3638 const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active()); 3639 3640 ResourceArea *area = Thread::current()->resource_area(); 3641 Unique_Node_List visited(area); 3642 Node_List worklist(area); 3643 // We're going to walk control flow backwards starting from the Root 3644 worklist.push(_root); 3645 while (worklist.size() > 0) { 3646 Node* x = worklist.pop(); 3647 if (x == NULL || x == top()) continue; 3648 if (visited.member(x)) { 3649 continue; 3650 } else { 3651 visited.push(x); 3652 } 3653 3654 if (x->is_Region()) { 3655 for (uint i = 1; i < x->req(); i++) { 3656 worklist.push(x->in(i)); 3657 } 3658 } else { 3659 worklist.push(x->in(0)); 3660 // We are looking for the pattern: 3661 // /->ThreadLocal 3662 // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset) 3663 // \->ConI(0) 3664 // We want to verify that the If and the LoadB have the same control 3665 // See GraphKit::g1_write_barrier_pre() 3666 if (x->is_If()) { 3667 IfNode *iff = x->as_If(); 3668 if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) { 3669 CmpNode *cmp = iff->in(1)->in(1)->as_Cmp(); 3670 if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0 3671 && cmp->in(1)->is_Load()) { 3672 LoadNode* load = cmp->in(1)->as_Load(); 3673 if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal 3674 && load->in(2)->in(3)->is_Con() 3675 && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) { 3676 3677 Node* if_ctrl = iff->in(0); 3678 Node* load_ctrl = load->in(0); 3679 3680 if (if_ctrl != load_ctrl) { 3681 // Skip possible CProj->NeverBranch in infinite loops 3682 if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj) 3683 && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) { 3684 if_ctrl = if_ctrl->in(0)->in(0); 3685 } 3686 } 3687 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match"); 3688 } 3689 } 3690 } 3691 } 3692 } 3693 } 3694 } 3695 } 3696 3697 #endif 3698 3699 // The Compile object keeps track of failure reasons separately from the ciEnv. 3700 // This is required because there is not quite a 1-1 relation between the 3701 // ciEnv and its compilation task and the Compile object. Note that one 3702 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides 3703 // to backtrack and retry without subsuming loads. Other than this backtracking 3704 // behavior, the Compile's failure reason is quietly copied up to the ciEnv 3705 // by the logic in C2Compiler. 3706 void Compile::record_failure(const char* reason) { 3707 if (log() != NULL) { 3708 log()->elem("failure reason='%s' phase='compile'", reason); 3709 } 3710 if (_failure_reason == NULL) { 3711 // Record the first failure reason. 3712 _failure_reason = reason; 3713 } 3714 3715 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) { 3716 C->print_method(PHASE_FAILURE); 3717 } 3718 _root = NULL; // flush the graph, too 3719 } 3720 3721 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog) 3722 : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false), 3723 _phase_name(name), _dolog(dolog) 3724 { 3725 if (dolog) { 3726 C = Compile::current(); 3727 _log = C->log(); 3728 } else { 3729 C = NULL; 3730 _log = NULL; 3731 } 3732 if (_log != NULL) { 3733 _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes()); 3734 _log->stamp(); 3735 _log->end_head(); 3736 } 3737 } 3738 3739 Compile::TracePhase::~TracePhase() { 3740 3741 C = Compile::current(); 3742 if (_dolog) { 3743 _log = C->log(); 3744 } else { 3745 _log = NULL; 3746 } 3747 3748 #ifdef ASSERT 3749 if (PrintIdealNodeCount) { 3750 tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'", 3751 _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk()); 3752 } 3753 3754 if (VerifyIdealNodeCount) { 3755 Compile::current()->print_missing_nodes(); 3756 } 3757 #endif 3758 3759 if (_log != NULL) { 3760 _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes()); 3761 } 3762 } 3763 3764 //============================================================================= 3765 // Two Constant's are equal when the type and the value are equal. 3766 bool Compile::Constant::operator==(const Constant& other) { 3767 if (type() != other.type() ) return false; 3768 if (can_be_reused() != other.can_be_reused()) return false; 3769 // For floating point values we compare the bit pattern. 3770 switch (type()) { 3771 case T_FLOAT: return (_v._value.i == other._v._value.i); 3772 case T_LONG: 3773 case T_DOUBLE: return (_v._value.j == other._v._value.j); 3774 case T_OBJECT: 3775 case T_ADDRESS: return (_v._value.l == other._v._value.l); 3776 case T_VOID: return (_v._value.l == other._v._value.l); // jump-table entries 3777 case T_METADATA: return (_v._metadata == other._v._metadata); 3778 default: ShouldNotReachHere(); 3779 } 3780 return false; 3781 } 3782 3783 static int type_to_size_in_bytes(BasicType t) { 3784 switch (t) { 3785 case T_LONG: return sizeof(jlong ); 3786 case T_FLOAT: return sizeof(jfloat ); 3787 case T_DOUBLE: return sizeof(jdouble); 3788 case T_METADATA: return sizeof(Metadata*); 3789 // We use T_VOID as marker for jump-table entries (labels) which 3790 // need an internal word relocation. 3791 case T_VOID: 3792 case T_ADDRESS: 3793 case T_OBJECT: return sizeof(jobject); 3794 } 3795 3796 ShouldNotReachHere(); 3797 return -1; 3798 } 3799 3800 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) { 3801 // sort descending 3802 if (a->freq() > b->freq()) return -1; 3803 if (a->freq() < b->freq()) return 1; 3804 return 0; 3805 } 3806 3807 void Compile::ConstantTable::calculate_offsets_and_size() { 3808 // First, sort the array by frequencies. 3809 _constants.sort(qsort_comparator); 3810 3811 #ifdef ASSERT 3812 // Make sure all jump-table entries were sorted to the end of the 3813 // array (they have a negative frequency). 3814 bool found_void = false; 3815 for (int i = 0; i < _constants.length(); i++) { 3816 Constant con = _constants.at(i); 3817 if (con.type() == T_VOID) 3818 found_void = true; // jump-tables 3819 else 3820 assert(!found_void, "wrong sorting"); 3821 } 3822 #endif 3823 3824 int offset = 0; 3825 for (int i = 0; i < _constants.length(); i++) { 3826 Constant* con = _constants.adr_at(i); 3827 3828 // Align offset for type. 3829 int typesize = type_to_size_in_bytes(con->type()); 3830 offset = align_size_up(offset, typesize); 3831 con->set_offset(offset); // set constant's offset 3832 3833 if (con->type() == T_VOID) { 3834 MachConstantNode* n = (MachConstantNode*) con->get_jobject(); 3835 offset = offset + typesize * n->outcnt(); // expand jump-table 3836 } else { 3837 offset = offset + typesize; 3838 } 3839 } 3840 3841 // Align size up to the next section start (which is insts; see 3842 // CodeBuffer::align_at_start). 3843 assert(_size == -1, "already set?"); 3844 _size = align_size_up(offset, CodeEntryAlignment); 3845 } 3846 3847 void Compile::ConstantTable::emit(CodeBuffer& cb) { 3848 MacroAssembler _masm(&cb); 3849 for (int i = 0; i < _constants.length(); i++) { 3850 Constant con = _constants.at(i); 3851 address constant_addr = NULL; 3852 switch (con.type()) { 3853 case T_LONG: constant_addr = _masm.long_constant( con.get_jlong() ); break; 3854 case T_FLOAT: constant_addr = _masm.float_constant( con.get_jfloat() ); break; 3855 case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break; 3856 case T_OBJECT: { 3857 jobject obj = con.get_jobject(); 3858 int oop_index = _masm.oop_recorder()->find_index(obj); 3859 constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index)); 3860 break; 3861 } 3862 case T_ADDRESS: { 3863 address addr = (address) con.get_jobject(); 3864 constant_addr = _masm.address_constant(addr); 3865 break; 3866 } 3867 // We use T_VOID as marker for jump-table entries (labels) which 3868 // need an internal word relocation. 3869 case T_VOID: { 3870 MachConstantNode* n = (MachConstantNode*) con.get_jobject(); 3871 // Fill the jump-table with a dummy word. The real value is 3872 // filled in later in fill_jump_table. 3873 address dummy = (address) n; 3874 constant_addr = _masm.address_constant(dummy); 3875 // Expand jump-table 3876 for (uint i = 1; i < n->outcnt(); i++) { 3877 address temp_addr = _masm.address_constant(dummy + i); 3878 assert(temp_addr, "consts section too small"); 3879 } 3880 break; 3881 } 3882 case T_METADATA: { 3883 Metadata* obj = con.get_metadata(); 3884 int metadata_index = _masm.oop_recorder()->find_index(obj); 3885 constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index)); 3886 break; 3887 } 3888 default: ShouldNotReachHere(); 3889 } 3890 assert(constant_addr, "consts section too small"); 3891 assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), 3892 err_msg_res("must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset()))); 3893 } 3894 } 3895 3896 int Compile::ConstantTable::find_offset(Constant& con) const { 3897 int idx = _constants.find(con); 3898 assert(idx != -1, "constant must be in constant table"); 3899 int offset = _constants.at(idx).offset(); 3900 assert(offset != -1, "constant table not emitted yet?"); 3901 return offset; 3902 } 3903 3904 void Compile::ConstantTable::add(Constant& con) { 3905 if (con.can_be_reused()) { 3906 int idx = _constants.find(con); 3907 if (idx != -1 && _constants.at(idx).can_be_reused()) { 3908 _constants.adr_at(idx)->inc_freq(con.freq()); // increase the frequency by the current value 3909 return; 3910 } 3911 } 3912 (void) _constants.append(con); 3913 } 3914 3915 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) { 3916 Block* b = Compile::current()->cfg()->get_block_for_node(n); 3917 Constant con(type, value, b->_freq); 3918 add(con); 3919 return con; 3920 } 3921 3922 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) { 3923 Constant con(metadata); 3924 add(con); 3925 return con; 3926 } 3927 3928 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) { 3929 jvalue value; 3930 BasicType type = oper->type()->basic_type(); 3931 switch (type) { 3932 case T_LONG: value.j = oper->constantL(); break; 3933 case T_FLOAT: value.f = oper->constantF(); break; 3934 case T_DOUBLE: value.d = oper->constantD(); break; 3935 case T_OBJECT: 3936 case T_ADDRESS: value.l = (jobject) oper->constant(); break; 3937 case T_METADATA: return add((Metadata*)oper->constant()); break; 3938 default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type))); 3939 } 3940 return add(n, type, value); 3941 } 3942 3943 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) { 3944 jvalue value; 3945 // We can use the node pointer here to identify the right jump-table 3946 // as this method is called from Compile::Fill_buffer right before 3947 // the MachNodes are emitted and the jump-table is filled (means the 3948 // MachNode pointers do not change anymore). 3949 value.l = (jobject) n; 3950 Constant con(T_VOID, value, next_jump_table_freq(), false); // Labels of a jump-table cannot be reused. 3951 add(con); 3952 return con; 3953 } 3954 3955 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const { 3956 // If called from Compile::scratch_emit_size do nothing. 3957 if (Compile::current()->in_scratch_emit_size()) return; 3958 3959 assert(labels.is_nonempty(), "must be"); 3960 assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt())); 3961 3962 // Since MachConstantNode::constant_offset() also contains 3963 // table_base_offset() we need to subtract the table_base_offset() 3964 // to get the plain offset into the constant table. 3965 int offset = n->constant_offset() - table_base_offset(); 3966 3967 MacroAssembler _masm(&cb); 3968 address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset); 3969 3970 for (uint i = 0; i < n->outcnt(); i++) { 3971 address* constant_addr = &jump_table_base[i]; 3972 assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i))); 3973 *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr); 3974 cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type); 3975 } 3976 } 3977 3978 void Compile::dump_inlining() { 3979 if (print_inlining() || print_intrinsics()) { 3980 // Print inlining message for candidates that we couldn't inline 3981 // for lack of space or non constant receiver 3982 for (int i = 0; i < _late_inlines.length(); i++) { 3983 CallGenerator* cg = _late_inlines.at(i); 3984 cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff"); 3985 } 3986 Unique_Node_List useful; 3987 useful.push(root()); 3988 for (uint next = 0; next < useful.size(); ++next) { 3989 Node* n = useful.at(next); 3990 if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) { 3991 CallNode* call = n->as_Call(); 3992 CallGenerator* cg = call->generator(); 3993 cg->print_inlining_late("receiver not constant"); 3994 } 3995 uint max = n->len(); 3996 for ( uint i = 0; i < max; ++i ) { 3997 Node *m = n->in(i); 3998 if ( m == NULL ) continue; 3999 useful.push(m); 4000 } 4001 } 4002 for (int i = 0; i < _print_inlining_list->length(); i++) { 4003 tty->print("%s", _print_inlining_list->adr_at(i)->ss()->as_string()); 4004 } 4005 } 4006 } 4007 4008 // Dump inlining replay data to the stream. 4009 // Don't change thread state and acquire any locks. 4010 void Compile::dump_inline_data(outputStream* out) { 4011 InlineTree* inl_tree = ilt(); 4012 if (inl_tree != NULL) { 4013 out->print(" inline %d", inl_tree->count()); 4014 inl_tree->dump_replay_data(out); 4015 } 4016 } 4017 4018 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) { 4019 if (n1->Opcode() < n2->Opcode()) return -1; 4020 else if (n1->Opcode() > n2->Opcode()) return 1; 4021 4022 assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req())); 4023 for (uint i = 1; i < n1->req(); i++) { 4024 if (n1->in(i) < n2->in(i)) return -1; 4025 else if (n1->in(i) > n2->in(i)) return 1; 4026 } 4027 4028 return 0; 4029 } 4030 4031 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) { 4032 Node* n1 = *n1p; 4033 Node* n2 = *n2p; 4034 4035 return cmp_expensive_nodes(n1, n2); 4036 } 4037 4038 void Compile::sort_expensive_nodes() { 4039 if (!expensive_nodes_sorted()) { 4040 _expensive_nodes->sort(cmp_expensive_nodes); 4041 } 4042 } 4043 4044 bool Compile::expensive_nodes_sorted() const { 4045 for (int i = 1; i < _expensive_nodes->length(); i++) { 4046 if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) { 4047 return false; 4048 } 4049 } 4050 return true; 4051 } 4052 4053 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) { 4054 if (_expensive_nodes->length() == 0) { 4055 return false; 4056 } 4057 4058 assert(OptimizeExpensiveOps, "optimization off?"); 4059 4060 // Take this opportunity to remove dead nodes from the list 4061 int j = 0; 4062 for (int i = 0; i < _expensive_nodes->length(); i++) { 4063 Node* n = _expensive_nodes->at(i); 4064 if (!n->is_unreachable(igvn)) { 4065 assert(n->is_expensive(), "should be expensive"); 4066 _expensive_nodes->at_put(j, n); 4067 j++; 4068 } 4069 } 4070 _expensive_nodes->trunc_to(j); 4071 4072 // Then sort the list so that similar nodes are next to each other 4073 // and check for at least two nodes of identical kind with same data 4074 // inputs. 4075 sort_expensive_nodes(); 4076 4077 for (int i = 0; i < _expensive_nodes->length()-1; i++) { 4078 if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) { 4079 return true; 4080 } 4081 } 4082 4083 return false; 4084 } 4085 4086 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) { 4087 if (_expensive_nodes->length() == 0) { 4088 return; 4089 } 4090 4091 assert(OptimizeExpensiveOps, "optimization off?"); 4092 4093 // Sort to bring similar nodes next to each other and clear the 4094 // control input of nodes for which there's only a single copy. 4095 sort_expensive_nodes(); 4096 4097 int j = 0; 4098 int identical = 0; 4099 int i = 0; 4100 for (; i < _expensive_nodes->length()-1; i++) { 4101 assert(j <= i, "can't write beyond current index"); 4102 if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) { 4103 identical++; 4104 _expensive_nodes->at_put(j++, _expensive_nodes->at(i)); 4105 continue; 4106 } 4107 if (identical > 0) { 4108 _expensive_nodes->at_put(j++, _expensive_nodes->at(i)); 4109 identical = 0; 4110 } else { 4111 Node* n = _expensive_nodes->at(i); 4112 igvn.hash_delete(n); 4113 n->set_req(0, NULL); 4114 igvn.hash_insert(n); 4115 } 4116 } 4117 if (identical > 0) { 4118 _expensive_nodes->at_put(j++, _expensive_nodes->at(i)); 4119 } else if (_expensive_nodes->length() >= 1) { 4120 Node* n = _expensive_nodes->at(i); 4121 igvn.hash_delete(n); 4122 n->set_req(0, NULL); 4123 igvn.hash_insert(n); 4124 } 4125 _expensive_nodes->trunc_to(j); 4126 } 4127 4128 void Compile::add_expensive_node(Node * n) { 4129 assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list"); 4130 assert(n->is_expensive(), "expensive nodes with non-null control here only"); 4131 assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here"); 4132 if (OptimizeExpensiveOps) { 4133 _expensive_nodes->append(n); 4134 } else { 4135 // Clear control input and let IGVN optimize expensive nodes if 4136 // OptimizeExpensiveOps is off. 4137 n->set_req(0, NULL); 4138 } 4139 } 4140 4141 /** 4142 * Remove the speculative part of types and clean up the graph 4143 */ 4144 void Compile::remove_speculative_types(PhaseIterGVN &igvn) { 4145 if (UseTypeSpeculation) { 4146 Unique_Node_List worklist; 4147 worklist.push(root()); 4148 int modified = 0; 4149 // Go over all type nodes that carry a speculative type, drop the 4150 // speculative part of the type and enqueue the node for an igvn 4151 // which may optimize it out. 4152 for (uint next = 0; next < worklist.size(); ++next) { 4153 Node *n = worklist.at(next); 4154 if (n->is_Type()) { 4155 TypeNode* tn = n->as_Type(); 4156 const Type* t = tn->type(); 4157 const Type* t_no_spec = t->remove_speculative(); 4158 if (t_no_spec != t) { 4159 bool in_hash = igvn.hash_delete(n); 4160 assert(in_hash || n->hash() == Node::NO_HASH, "node should be in igvn hash table"); 4161 tn->set_type(t_no_spec); 4162 igvn.hash_insert(n); 4163 igvn._worklist.push(n); // give it a chance to go away 4164 modified++; 4165 } 4166 } 4167 uint max = n->len(); 4168 for( uint i = 0; i < max; ++i ) { 4169 Node *m = n->in(i); 4170 if (not_a_node(m)) continue; 4171 worklist.push(m); 4172 } 4173 } 4174 // Drop the speculative part of all types in the igvn's type table 4175 igvn.remove_speculative_types(); 4176 if (modified > 0) { 4177 igvn.optimize(); 4178 } 4179 #ifdef ASSERT 4180 // Verify that after the IGVN is over no speculative type has resurfaced 4181 worklist.clear(); 4182 worklist.push(root()); 4183 for (uint next = 0; next < worklist.size(); ++next) { 4184 Node *n = worklist.at(next); 4185 const Type* t = igvn.type_or_null(n); 4186 assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types"); 4187 if (n->is_Type()) { 4188 t = n->as_Type()->type(); 4189 assert(t == t->remove_speculative(), "no more speculative types"); 4190 } 4191 uint max = n->len(); 4192 for( uint i = 0; i < max; ++i ) { 4193 Node *m = n->in(i); 4194 if (not_a_node(m)) continue; 4195 worklist.push(m); 4196 } 4197 } 4198 igvn.check_no_speculative_types(); 4199 #endif 4200 } 4201 } 4202 4203 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 4204 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) { 4205 if (ctrl != NULL) { 4206 // Express control dependency by a CastII node with a narrow type. 4207 value = new (phase->C) CastIINode(value, itype, false, true /* range check dependency */); 4208 // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L 4209 // node from floating above the range check during loop optimizations. Otherwise, the 4210 // ConvI2L node may be eliminated independently of the range check, causing the data path 4211 // to become TOP while the control path is still there (although it's unreachable). 4212 value->set_req(0, ctrl); 4213 // Save CastII node to remove it after loop optimizations. 4214 phase->C->add_range_check_cast(value); 4215 value = phase->transform(value); 4216 } 4217 const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen); 4218 return phase->transform(new (phase->C) ConvI2LNode(value, ltype)); 4219 } 4220 4221 // Auxiliary method to support randomized stressing/fuzzing. 4222 // 4223 // This method can be called the arbitrary number of times, with current count 4224 // as the argument. The logic allows selecting a single candidate from the 4225 // running list of candidates as follows: 4226 // int count = 0; 4227 // Cand* selected = null; 4228 // while(cand = cand->next()) { 4229 // if (randomized_select(++count)) { 4230 // selected = cand; 4231 // } 4232 // } 4233 // 4234 // Including count equalizes the chances any candidate is "selected". 4235 // This is useful when we don't have the complete list of candidates to choose 4236 // from uniformly. In this case, we need to adjust the randomicity of the 4237 // selection, or else we will end up biasing the selection towards the latter 4238 // candidates. 4239 // 4240 // Quick back-envelope calculation shows that for the list of n candidates 4241 // the equal probability for the candidate to persist as "best" can be 4242 // achieved by replacing it with "next" k-th candidate with the probability 4243 // of 1/k. It can be easily shown that by the end of the run, the 4244 // probability for any candidate is converged to 1/n, thus giving the 4245 // uniform distribution among all the candidates. 4246 // 4247 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large. 4248 #define RANDOMIZED_DOMAIN_POW 29 4249 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW) 4250 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1) 4251 bool Compile::randomized_select(int count) { 4252 assert(count > 0, "only positive"); 4253 return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count); 4254 } 4255 4256 void Compile::shenandoah_eliminate_g1_wb_pre(Node* call, PhaseIterGVN* igvn) { 4257 assert(UseShenandoahGC && call->is_g1_wb_pre_call(), ""); 4258 Node* c = call->as_Call()->proj_out(TypeFunc::Control); 4259 c = c->unique_ctrl_out(); 4260 assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?"); 4261 c = c->unique_ctrl_out(); 4262 assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?"); 4263 Node* iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0); 4264 assert(iff->is_If(), "expect test"); 4265 if (!iff->is_shenandoah_marking_if(igvn)) { 4266 c = c->unique_ctrl_out(); 4267 assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?"); 4268 iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0); 4269 assert(iff->is_shenandoah_marking_if(igvn), "expect marking test"); 4270 } 4271 Node* cmpx = iff->in(1)->in(1); 4272 igvn->replace_node(cmpx, igvn->makecon(TypeInt::CC_EQ)); 4273 igvn->rehash_node_delayed(call); 4274 call->del_req(call->req()-1); 4275 }