1 /* 2 * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "ci/bcEscapeAnalyzer.hpp" 27 #include "compiler/compileLog.hpp" 28 #include "libadt/vectset.hpp" 29 #include "memory/allocation.hpp" 30 #include "opto/c2compiler.hpp" 31 #include "opto/callnode.hpp" 32 #include "opto/cfgnode.hpp" 33 #include "opto/compile.hpp" 34 #include "opto/escape.hpp" 35 #include "opto/phaseX.hpp" 36 #include "opto/rootnode.hpp" 37 #if INCLUDE_ALL_GCS 38 #include "gc_implementation/shenandoah/c2/shenandoahSupport.hpp" 39 #endif 40 41 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) : 42 _nodes(C->comp_arena(), C->unique(), C->unique(), NULL), 43 _in_worklist(C->comp_arena()), 44 _next_pidx(0), 45 _collecting(true), 46 _verify(false), 47 _compile(C), 48 _igvn(igvn), 49 _node_map(C->comp_arena()) { 50 // Add unknown java object. 51 add_java_object(C->top(), PointsToNode::GlobalEscape); 52 phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject(); 53 // Add ConP(#NULL) and ConN(#NULL) nodes. 54 Node* oop_null = igvn->zerocon(T_OBJECT); 55 assert(oop_null->_idx < nodes_size(), "should be created already"); 56 add_java_object(oop_null, PointsToNode::NoEscape); 57 null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject(); 58 if (UseCompressedOops) { 59 Node* noop_null = igvn->zerocon(T_NARROWOOP); 60 assert(noop_null->_idx < nodes_size(), "should be created already"); 61 map_ideal_node(noop_null, null_obj); 62 } 63 _pcmp_neq = NULL; // Should be initialized 64 _pcmp_eq = NULL; 65 } 66 67 bool ConnectionGraph::has_candidates(Compile *C) { 68 // EA brings benefits only when the code has allocations and/or locks which 69 // are represented by ideal Macro nodes. 70 int cnt = C->macro_count(); 71 for (int i = 0; i < cnt; i++) { 72 Node *n = C->macro_node(i); 73 if (n->is_Allocate()) 74 return true; 75 if (n->is_Lock()) { 76 Node* obj = n->as_Lock()->obj_node()->uncast(); 77 if (!(obj->is_Parm() || obj->is_Con())) 78 return true; 79 } 80 if (n->is_CallStaticJava() && 81 n->as_CallStaticJava()->is_boxing_method()) { 82 return true; 83 } 84 } 85 return false; 86 } 87 88 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) { 89 Compile::TracePhase t2("escapeAnalysis", &Phase::_t_escapeAnalysis, true); 90 ResourceMark rm; 91 92 // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction 93 // to create space for them in ConnectionGraph::_nodes[]. 94 Node* oop_null = igvn->zerocon(T_OBJECT); 95 Node* noop_null = igvn->zerocon(T_NARROWOOP); 96 ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn); 97 // Perform escape analysis 98 if (congraph->compute_escape()) { 99 // There are non escaping objects. 100 C->set_congraph(congraph); 101 } 102 // Cleanup. 103 if (oop_null->outcnt() == 0) 104 igvn->hash_delete(oop_null); 105 if (noop_null->outcnt() == 0) 106 igvn->hash_delete(noop_null); 107 } 108 109 bool ConnectionGraph::compute_escape() { 110 Compile* C = _compile; 111 PhaseGVN* igvn = _igvn; 112 113 // Worklists used by EA. 114 Unique_Node_List delayed_worklist; 115 GrowableArray<Node*> alloc_worklist; 116 GrowableArray<Node*> ptr_cmp_worklist; 117 GrowableArray<Node*> storestore_worklist; 118 GrowableArray<PointsToNode*> ptnodes_worklist; 119 GrowableArray<JavaObjectNode*> java_objects_worklist; 120 GrowableArray<JavaObjectNode*> non_escaped_worklist; 121 GrowableArray<FieldNode*> oop_fields_worklist; 122 DEBUG_ONLY( GrowableArray<Node*> addp_worklist; ) 123 124 { Compile::TracePhase t3("connectionGraph", &Phase::_t_connectionGraph, true); 125 126 // 1. Populate Connection Graph (CG) with PointsTo nodes. 127 ideal_nodes.map(C->live_nodes(), NULL); // preallocate space 128 // Initialize worklist 129 if (C->root() != NULL) { 130 ideal_nodes.push(C->root()); 131 } 132 // Processed ideal nodes are unique on ideal_nodes list 133 // but several ideal nodes are mapped to the phantom_obj. 134 // To avoid duplicated entries on the following worklists 135 // add the phantom_obj only once to them. 136 ptnodes_worklist.append(phantom_obj); 137 java_objects_worklist.append(phantom_obj); 138 for( uint next = 0; next < ideal_nodes.size(); ++next ) { 139 Node* n = ideal_nodes.at(next); 140 // Create PointsTo nodes and add them to Connection Graph. Called 141 // only once per ideal node since ideal_nodes is Unique_Node list. 142 add_node_to_connection_graph(n, &delayed_worklist); 143 PointsToNode* ptn = ptnode_adr(n->_idx); 144 if (ptn != NULL && ptn != phantom_obj) { 145 ptnodes_worklist.append(ptn); 146 if (ptn->is_JavaObject()) { 147 java_objects_worklist.append(ptn->as_JavaObject()); 148 if ((n->is_Allocate() || n->is_CallStaticJava()) && 149 (ptn->escape_state() < PointsToNode::GlobalEscape)) { 150 // Only allocations and java static calls results are interesting. 151 non_escaped_worklist.append(ptn->as_JavaObject()); 152 } 153 } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) { 154 oop_fields_worklist.append(ptn->as_Field()); 155 } 156 } 157 if (n->is_MergeMem()) { 158 // Collect all MergeMem nodes to add memory slices for 159 // scalar replaceable objects in split_unique_types(). 160 _mergemem_worklist.append(n->as_MergeMem()); 161 } else if (OptimizePtrCompare && n->is_Cmp() && 162 (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) { 163 // Collect compare pointers nodes. 164 ptr_cmp_worklist.append(n); 165 } else if (n->is_MemBarStoreStore()) { 166 // Collect all MemBarStoreStore nodes so that depending on the 167 // escape status of the associated Allocate node some of them 168 // may be eliminated. 169 storestore_worklist.append(n); 170 } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) && 171 (n->req() > MemBarNode::Precedent)) { 172 record_for_optimizer(n); 173 #ifdef ASSERT 174 } else if (n->is_AddP()) { 175 // Collect address nodes for graph verification. 176 addp_worklist.append(n); 177 #endif 178 } 179 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 180 Node* m = n->fast_out(i); // Get user 181 ideal_nodes.push(m); 182 } 183 } 184 if (non_escaped_worklist.length() == 0) { 185 _collecting = false; 186 return false; // Nothing to do. 187 } 188 // Add final simple edges to graph. 189 while(delayed_worklist.size() > 0) { 190 Node* n = delayed_worklist.pop(); 191 add_final_edges(n); 192 } 193 int ptnodes_length = ptnodes_worklist.length(); 194 195 #ifdef ASSERT 196 if (VerifyConnectionGraph) { 197 // Verify that no new simple edges could be created and all 198 // local vars has edges. 199 _verify = true; 200 for (int next = 0; next < ptnodes_length; ++next) { 201 PointsToNode* ptn = ptnodes_worklist.at(next); 202 add_final_edges(ptn->ideal_node()); 203 if (ptn->is_LocalVar() && ptn->edge_count() == 0) { 204 ptn->dump(); 205 assert(ptn->as_LocalVar()->edge_count() > 0, "sanity"); 206 } 207 } 208 _verify = false; 209 } 210 #endif 211 // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes 212 // processing, calls to CI to resolve symbols (types, fields, methods) 213 // referenced in bytecode. During symbol resolution VM may throw 214 // an exception which CI cleans and converts to compilation failure. 215 if (C->failing()) return false; 216 217 // 2. Finish Graph construction by propagating references to all 218 // java objects through graph. 219 if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist, 220 java_objects_worklist, oop_fields_worklist)) { 221 // All objects escaped or hit time or iterations limits. 222 _collecting = false; 223 return false; 224 } 225 226 // 3. Adjust scalar_replaceable state of nonescaping objects and push 227 // scalar replaceable allocations on alloc_worklist for processing 228 // in split_unique_types(). 229 int non_escaped_length = non_escaped_worklist.length(); 230 for (int next = 0; next < non_escaped_length; next++) { 231 JavaObjectNode* ptn = non_escaped_worklist.at(next); 232 bool noescape = (ptn->escape_state() == PointsToNode::NoEscape); 233 Node* n = ptn->ideal_node(); 234 if (n->is_Allocate()) { 235 n->as_Allocate()->_is_non_escaping = noescape; 236 } 237 if (n->is_CallStaticJava()) { 238 n->as_CallStaticJava()->_is_non_escaping = noescape; 239 } 240 if (noescape && ptn->scalar_replaceable()) { 241 adjust_scalar_replaceable_state(ptn); 242 if (ptn->scalar_replaceable()) { 243 alloc_worklist.append(ptn->ideal_node()); 244 } 245 } 246 } 247 248 #ifdef ASSERT 249 if (VerifyConnectionGraph) { 250 // Verify that graph is complete - no new edges could be added or needed. 251 verify_connection_graph(ptnodes_worklist, non_escaped_worklist, 252 java_objects_worklist, addp_worklist); 253 } 254 assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build"); 255 assert(null_obj->escape_state() == PointsToNode::NoEscape && 256 null_obj->edge_count() == 0 && 257 !null_obj->arraycopy_src() && 258 !null_obj->arraycopy_dst(), "sanity"); 259 #endif 260 261 _collecting = false; 262 263 } // TracePhase t3("connectionGraph") 264 265 // 4. Optimize ideal graph based on EA information. 266 bool has_non_escaping_obj = (non_escaped_worklist.length() > 0); 267 if (has_non_escaping_obj) { 268 optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist); 269 } 270 271 #ifndef PRODUCT 272 if (PrintEscapeAnalysis) { 273 dump(ptnodes_worklist); // Dump ConnectionGraph 274 } 275 #endif 276 277 bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0); 278 #ifdef ASSERT 279 if (VerifyConnectionGraph) { 280 int alloc_length = alloc_worklist.length(); 281 for (int next = 0; next < alloc_length; ++next) { 282 Node* n = alloc_worklist.at(next); 283 PointsToNode* ptn = ptnode_adr(n->_idx); 284 assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity"); 285 } 286 } 287 #endif 288 289 // 5. Separate memory graph for scalar replaceable allcations. 290 if (has_scalar_replaceable_candidates && 291 C->AliasLevel() >= 3 && EliminateAllocations) { 292 // Now use the escape information to create unique types for 293 // scalar replaceable objects. 294 split_unique_types(alloc_worklist); 295 if (C->failing()) return false; 296 C->print_method(PHASE_AFTER_EA, 2); 297 298 #ifdef ASSERT 299 } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) { 300 tty->print("=== No allocations eliminated for "); 301 C->method()->print_short_name(); 302 if(!EliminateAllocations) { 303 tty->print(" since EliminateAllocations is off ==="); 304 } else if(!has_scalar_replaceable_candidates) { 305 tty->print(" since there are no scalar replaceable candidates ==="); 306 } else if(C->AliasLevel() < 3) { 307 tty->print(" since AliasLevel < 3 ==="); 308 } 309 tty->cr(); 310 #endif 311 } 312 return has_non_escaping_obj; 313 } 314 315 // Utility function for nodes that load an object 316 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) { 317 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because 318 // ThreadLocal has RawPtr type. 319 const Type* t = _igvn->type(n); 320 if (t->make_ptr() != NULL) { 321 Node* adr = n->in(MemNode::Address); 322 #ifdef ASSERT 323 if (!adr->is_AddP()) { 324 assert(_igvn->type(adr)->isa_rawptr(), "sanity"); 325 } else { 326 assert((ptnode_adr(adr->_idx) == NULL || 327 ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity"); 328 } 329 #endif 330 add_local_var_and_edge(n, PointsToNode::NoEscape, 331 adr, delayed_worklist); 332 } 333 } 334 335 // Populate Connection Graph with PointsTo nodes and create simple 336 // connection graph edges. 337 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) { 338 assert(!_verify, "this method sould not be called for verification"); 339 PhaseGVN* igvn = _igvn; 340 uint n_idx = n->_idx; 341 PointsToNode* n_ptn = ptnode_adr(n_idx); 342 if (n_ptn != NULL) 343 return; // No need to redefine PointsTo node during first iteration. 344 345 if (n->is_Call()) { 346 // Arguments to allocation and locking don't escape. 347 if (n->is_AbstractLock()) { 348 // Put Lock and Unlock nodes on IGVN worklist to process them during 349 // first IGVN optimization when escape information is still available. 350 record_for_optimizer(n); 351 } else if (n->is_Allocate()) { 352 add_call_node(n->as_Call()); 353 record_for_optimizer(n); 354 } else { 355 if (n->is_CallStaticJava()) { 356 const char* name = n->as_CallStaticJava()->_name; 357 if (name != NULL && strcmp(name, "uncommon_trap") == 0) 358 return; // Skip uncommon traps 359 } 360 // Don't mark as processed since call's arguments have to be processed. 361 delayed_worklist->push(n); 362 // Check if a call returns an object. 363 if ((n->as_Call()->returns_pointer() && 364 n->as_Call()->proj_out(TypeFunc::Parms) != NULL) || 365 (n->is_CallStaticJava() && 366 n->as_CallStaticJava()->is_boxing_method())) { 367 add_call_node(n->as_Call()); 368 } 369 } 370 return; 371 } 372 // Put this check here to process call arguments since some call nodes 373 // point to phantom_obj. 374 if (n_ptn == phantom_obj || n_ptn == null_obj) 375 return; // Skip predefined nodes. 376 377 int opcode = n->Opcode(); 378 switch (opcode) { 379 case Op_AddP: { 380 Node* base = get_addp_base(n); 381 PointsToNode* ptn_base = ptnode_adr(base->_idx); 382 // Field nodes are created for all field types. They are used in 383 // adjust_scalar_replaceable_state() and split_unique_types(). 384 // Note, non-oop fields will have only base edges in Connection 385 // Graph because such fields are not used for oop loads and stores. 386 int offset = address_offset(n, igvn); 387 add_field(n, PointsToNode::NoEscape, offset); 388 if (ptn_base == NULL) { 389 delayed_worklist->push(n); // Process it later. 390 } else { 391 n_ptn = ptnode_adr(n_idx); 392 add_base(n_ptn->as_Field(), ptn_base); 393 } 394 break; 395 } 396 case Op_CastX2P: { 397 map_ideal_node(n, phantom_obj); 398 break; 399 } 400 case Op_CastPP: 401 case Op_CheckCastPP: 402 case Op_EncodeP: 403 case Op_DecodeN: 404 case Op_EncodePKlass: 405 case Op_DecodeNKlass: { 406 add_local_var_and_edge(n, PointsToNode::NoEscape, 407 n->in(1), delayed_worklist); 408 break; 409 } 410 case Op_CMoveP: { 411 add_local_var(n, PointsToNode::NoEscape); 412 // Do not add edges during first iteration because some could be 413 // not defined yet. 414 delayed_worklist->push(n); 415 break; 416 } 417 case Op_ConP: 418 case Op_ConN: 419 case Op_ConNKlass: { 420 // assume all oop constants globally escape except for null 421 PointsToNode::EscapeState es; 422 const Type* t = igvn->type(n); 423 if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) { 424 es = PointsToNode::NoEscape; 425 } else { 426 es = PointsToNode::GlobalEscape; 427 } 428 add_java_object(n, es); 429 break; 430 } 431 case Op_CreateEx: { 432 // assume that all exception objects globally escape 433 map_ideal_node(n, phantom_obj); 434 break; 435 } 436 case Op_LoadKlass: 437 case Op_LoadNKlass: { 438 // Unknown class is loaded 439 map_ideal_node(n, phantom_obj); 440 break; 441 } 442 case Op_LoadP: 443 case Op_LoadN: 444 case Op_LoadPLocked: { 445 add_objload_to_connection_graph(n, delayed_worklist); 446 break; 447 } 448 case Op_Parm: { 449 map_ideal_node(n, phantom_obj); 450 break; 451 } 452 case Op_PartialSubtypeCheck: { 453 // Produces Null or notNull and is used in only in CmpP so 454 // phantom_obj could be used. 455 map_ideal_node(n, phantom_obj); // Result is unknown 456 break; 457 } 458 case Op_Phi: { 459 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because 460 // ThreadLocal has RawPtr type. 461 const Type* t = n->as_Phi()->type(); 462 if (t->make_ptr() != NULL) { 463 add_local_var(n, PointsToNode::NoEscape); 464 // Do not add edges during first iteration because some could be 465 // not defined yet. 466 delayed_worklist->push(n); 467 } 468 break; 469 } 470 case Op_Proj: { 471 // we are only interested in the oop result projection from a call 472 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() && 473 n->in(0)->as_Call()->returns_pointer()) { 474 add_local_var_and_edge(n, PointsToNode::NoEscape, 475 n->in(0), delayed_worklist); 476 } 477 break; 478 } 479 case Op_Rethrow: // Exception object escapes 480 case Op_Return: { 481 if (n->req() > TypeFunc::Parms && 482 igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) { 483 // Treat Return value as LocalVar with GlobalEscape escape state. 484 add_local_var_and_edge(n, PointsToNode::GlobalEscape, 485 n->in(TypeFunc::Parms), delayed_worklist); 486 } 487 break; 488 } 489 case Op_GetAndSetP: 490 case Op_GetAndSetN: { 491 add_objload_to_connection_graph(n, delayed_worklist); 492 // fallthrough 493 } 494 case Op_StoreP: 495 case Op_StoreN: 496 case Op_StoreNKlass: 497 case Op_StorePConditional: 498 case Op_CompareAndSwapP: 499 case Op_CompareAndSwapN: { 500 Node* adr = n->in(MemNode::Address); 501 const Type *adr_type = igvn->type(adr); 502 adr_type = adr_type->make_ptr(); 503 if (adr_type == NULL) { 504 break; // skip dead nodes 505 } 506 if (adr_type->isa_oopptr() || 507 (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) && 508 (adr_type == TypeRawPtr::NOTNULL && 509 adr->in(AddPNode::Address)->is_Proj() && 510 adr->in(AddPNode::Address)->in(0)->is_Allocate())) { 511 delayed_worklist->push(n); // Process it later. 512 #ifdef ASSERT 513 assert(adr->is_AddP(), "expecting an AddP"); 514 if (adr_type == TypeRawPtr::NOTNULL) { 515 // Verify a raw address for a store captured by Initialize node. 516 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot); 517 assert(offs != Type::OffsetBot, "offset must be a constant"); 518 } 519 #endif 520 } else { 521 // Ignore copy the displaced header to the BoxNode (OSR compilation). 522 if (adr->is_BoxLock()) 523 break; 524 // Stored value escapes in unsafe access. 525 if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) { 526 // Pointer stores in G1 barriers looks like unsafe access. 527 // Ignore such stores to be able scalar replace non-escaping 528 // allocations. 529 if ((UseG1GC || UseShenandoahGC) && adr->is_AddP()) { 530 Node* base = get_addp_base(adr); 531 if (base->Opcode() == Op_LoadP && 532 base->in(MemNode::Address)->is_AddP()) { 533 adr = base->in(MemNode::Address); 534 Node* tls = get_addp_base(adr); 535 if (tls->Opcode() == Op_ThreadLocal) { 536 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot); 537 if (offs == in_bytes(JavaThread::satb_mark_queue_offset() + 538 PtrQueue::byte_offset_of_buf())) { 539 break; // G1 pre barier previous oop value store. 540 } 541 if (offs == in_bytes(JavaThread::dirty_card_queue_offset() + 542 PtrQueue::byte_offset_of_buf())) { 543 break; // G1 post barier card address store. 544 } 545 } 546 } 547 } 548 delayed_worklist->push(n); // Process unsafe access later. 549 break; 550 } 551 #ifdef ASSERT 552 n->dump(1); 553 assert(false, "not unsafe or G1 barrier raw StoreP"); 554 #endif 555 } 556 break; 557 } 558 case Op_AryEq: 559 case Op_StrComp: 560 case Op_StrEquals: 561 case Op_StrIndexOf: 562 case Op_EncodeISOArray: { 563 add_local_var(n, PointsToNode::ArgEscape); 564 delayed_worklist->push(n); // Process it later. 565 break; 566 } 567 case Op_ThreadLocal: { 568 add_java_object(n, PointsToNode::ArgEscape); 569 break; 570 } 571 #if INCLUDE_ALL_GCS 572 case Op_ShenandoahLoadReferenceBarrier: 573 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahLoadReferenceBarrierNode::ValueIn), delayed_worklist); 574 break; 575 #endif 576 default: 577 ; // Do nothing for nodes not related to EA. 578 } 579 return; 580 } 581 582 #ifdef ASSERT 583 #define ELSE_FAIL(name) \ 584 /* Should not be called for not pointer type. */ \ 585 n->dump(1); \ 586 assert(false, name); \ 587 break; 588 #else 589 #define ELSE_FAIL(name) \ 590 break; 591 #endif 592 593 // Add final simple edges to graph. 594 void ConnectionGraph::add_final_edges(Node *n) { 595 PointsToNode* n_ptn = ptnode_adr(n->_idx); 596 #ifdef ASSERT 597 if (_verify && n_ptn->is_JavaObject()) 598 return; // This method does not change graph for JavaObject. 599 #endif 600 601 if (n->is_Call()) { 602 process_call_arguments(n->as_Call()); 603 return; 604 } 605 assert(n->is_Store() || n->is_LoadStore() || 606 (n_ptn != NULL) && (n_ptn->ideal_node() != NULL), 607 "node should be registered already"); 608 int opcode = n->Opcode(); 609 switch (opcode) { 610 case Op_AddP: { 611 Node* base = get_addp_base(n); 612 PointsToNode* ptn_base = ptnode_adr(base->_idx); 613 assert(ptn_base != NULL, "field's base should be registered"); 614 add_base(n_ptn->as_Field(), ptn_base); 615 break; 616 } 617 case Op_CastPP: 618 case Op_CheckCastPP: 619 case Op_EncodeP: 620 case Op_DecodeN: 621 case Op_EncodePKlass: 622 case Op_DecodeNKlass: { 623 add_local_var_and_edge(n, PointsToNode::NoEscape, 624 n->in(1), NULL); 625 break; 626 } 627 case Op_CMoveP: { 628 for (uint i = CMoveNode::IfFalse; i < n->req(); i++) { 629 Node* in = n->in(i); 630 if (in == NULL) 631 continue; // ignore NULL 632 Node* uncast_in = in->uncast(); 633 if (uncast_in->is_top() || uncast_in == n) 634 continue; // ignore top or inputs which go back this node 635 PointsToNode* ptn = ptnode_adr(in->_idx); 636 assert(ptn != NULL, "node should be registered"); 637 add_edge(n_ptn, ptn); 638 } 639 break; 640 } 641 case Op_LoadP: 642 case Op_LoadN: 643 case Op_LoadPLocked: { 644 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because 645 // ThreadLocal has RawPtr type. 646 const Type* t = _igvn->type(n); 647 if (t->make_ptr() != NULL) { 648 Node* adr = n->in(MemNode::Address); 649 add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL); 650 break; 651 } 652 ELSE_FAIL("Op_LoadP"); 653 } 654 case Op_Phi: { 655 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because 656 // ThreadLocal has RawPtr type. 657 const Type* t = n->as_Phi()->type(); 658 if (t->make_ptr() != NULL) { 659 for (uint i = 1; i < n->req(); i++) { 660 Node* in = n->in(i); 661 if (in == NULL) 662 continue; // ignore NULL 663 Node* uncast_in = in->uncast(); 664 if (uncast_in->is_top() || uncast_in == n) 665 continue; // ignore top or inputs which go back this node 666 PointsToNode* ptn = ptnode_adr(in->_idx); 667 assert(ptn != NULL, "node should be registered"); 668 add_edge(n_ptn, ptn); 669 } 670 break; 671 } 672 ELSE_FAIL("Op_Phi"); 673 } 674 case Op_Proj: { 675 // we are only interested in the oop result projection from a call 676 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() && 677 n->in(0)->as_Call()->returns_pointer()) { 678 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL); 679 break; 680 } 681 ELSE_FAIL("Op_Proj"); 682 } 683 case Op_Rethrow: // Exception object escapes 684 case Op_Return: { 685 if (n->req() > TypeFunc::Parms && 686 _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) { 687 // Treat Return value as LocalVar with GlobalEscape escape state. 688 add_local_var_and_edge(n, PointsToNode::GlobalEscape, 689 n->in(TypeFunc::Parms), NULL); 690 break; 691 } 692 ELSE_FAIL("Op_Return"); 693 } 694 case Op_StoreP: 695 case Op_StoreN: 696 case Op_StoreNKlass: 697 case Op_StorePConditional: 698 case Op_CompareAndSwapP: 699 case Op_CompareAndSwapN: 700 case Op_GetAndSetP: 701 case Op_GetAndSetN: { 702 Node* adr = n->in(MemNode::Address); 703 const Type *adr_type = _igvn->type(adr); 704 adr_type = adr_type->make_ptr(); 705 #ifdef ASSERT 706 if (adr_type == NULL) { 707 n->dump(1); 708 assert(adr_type != NULL, "dead node should not be on list"); 709 break; 710 } 711 #endif 712 if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN) { 713 add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL); 714 } 715 if (adr_type->isa_oopptr() || 716 (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) && 717 (adr_type == TypeRawPtr::NOTNULL && 718 adr->in(AddPNode::Address)->is_Proj() && 719 adr->in(AddPNode::Address)->in(0)->is_Allocate())) { 720 // Point Address to Value 721 PointsToNode* adr_ptn = ptnode_adr(adr->_idx); 722 assert(adr_ptn != NULL && 723 adr_ptn->as_Field()->is_oop(), "node should be registered"); 724 Node *val = n->in(MemNode::ValueIn); 725 PointsToNode* ptn = ptnode_adr(val->_idx); 726 assert(ptn != NULL, "node should be registered"); 727 add_edge(adr_ptn, ptn); 728 break; 729 } else if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) { 730 // Stored value escapes in unsafe access. 731 Node *val = n->in(MemNode::ValueIn); 732 PointsToNode* ptn = ptnode_adr(val->_idx); 733 assert(ptn != NULL, "node should be registered"); 734 set_escape_state(ptn, PointsToNode::GlobalEscape); 735 // Add edge to object for unsafe access with offset. 736 PointsToNode* adr_ptn = ptnode_adr(adr->_idx); 737 assert(adr_ptn != NULL, "node should be registered"); 738 if (adr_ptn->is_Field()) { 739 assert(adr_ptn->as_Field()->is_oop(), "should be oop field"); 740 add_edge(adr_ptn, ptn); 741 } 742 break; 743 } 744 ELSE_FAIL("Op_StoreP"); 745 } 746 case Op_AryEq: 747 case Op_StrComp: 748 case Op_StrEquals: 749 case Op_StrIndexOf: 750 case Op_EncodeISOArray: { 751 // char[] arrays passed to string intrinsic do not escape but 752 // they are not scalar replaceable. Adjust escape state for them. 753 // Start from in(2) edge since in(1) is memory edge. 754 for (uint i = 2; i < n->req(); i++) { 755 Node* adr = n->in(i); 756 const Type* at = _igvn->type(adr); 757 if (!adr->is_top() && at->isa_ptr()) { 758 assert(at == Type::TOP || at == TypePtr::NULL_PTR || 759 at->isa_ptr() != NULL, "expecting a pointer"); 760 if (adr->is_AddP()) { 761 adr = get_addp_base(adr); 762 } 763 PointsToNode* ptn = ptnode_adr(adr->_idx); 764 assert(ptn != NULL, "node should be registered"); 765 add_edge(n_ptn, ptn); 766 } 767 } 768 break; 769 } 770 #if INCLUDE_ALL_GCS 771 case Op_ShenandoahLoadReferenceBarrier: 772 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahLoadReferenceBarrierNode::ValueIn), NULL); 773 break; 774 #endif 775 default: { 776 // This method should be called only for EA specific nodes which may 777 // miss some edges when they were created. 778 #ifdef ASSERT 779 n->dump(1); 780 #endif 781 guarantee(false, "unknown node"); 782 } 783 } 784 return; 785 } 786 787 void ConnectionGraph::add_call_node(CallNode* call) { 788 assert(call->returns_pointer(), "only for call which returns pointer"); 789 uint call_idx = call->_idx; 790 if (call->is_Allocate()) { 791 Node* k = call->in(AllocateNode::KlassNode); 792 const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr(); 793 assert(kt != NULL, "TypeKlassPtr required."); 794 ciKlass* cik = kt->klass(); 795 PointsToNode::EscapeState es = PointsToNode::NoEscape; 796 bool scalar_replaceable = true; 797 if (call->is_AllocateArray()) { 798 if (!cik->is_array_klass()) { // StressReflectiveCode 799 es = PointsToNode::GlobalEscape; 800 } else { 801 int length = call->in(AllocateNode::ALength)->find_int_con(-1); 802 if (length < 0 || length > EliminateAllocationArraySizeLimit) { 803 // Not scalar replaceable if the length is not constant or too big. 804 scalar_replaceable = false; 805 } 806 } 807 } else { // Allocate instance 808 if (cik->is_subclass_of(_compile->env()->Thread_klass()) || 809 cik->is_subclass_of(_compile->env()->Reference_klass()) || 810 !cik->is_instance_klass() || // StressReflectiveCode 811 cik->as_instance_klass()->has_finalizer()) { 812 es = PointsToNode::GlobalEscape; 813 } 814 } 815 add_java_object(call, es); 816 PointsToNode* ptn = ptnode_adr(call_idx); 817 if (!scalar_replaceable && ptn->scalar_replaceable()) { 818 ptn->set_scalar_replaceable(false); 819 } 820 } else if (call->is_CallStaticJava()) { 821 // Call nodes could be different types: 822 // 823 // 1. CallDynamicJavaNode (what happened during call is unknown): 824 // 825 // - mapped to GlobalEscape JavaObject node if oop is returned; 826 // 827 // - all oop arguments are escaping globally; 828 // 829 // 2. CallStaticJavaNode (execute bytecode analysis if possible): 830 // 831 // - the same as CallDynamicJavaNode if can't do bytecode analysis; 832 // 833 // - mapped to GlobalEscape JavaObject node if unknown oop is returned; 834 // - mapped to NoEscape JavaObject node if non-escaping object allocated 835 // during call is returned; 836 // - mapped to ArgEscape LocalVar node pointed to object arguments 837 // which are returned and does not escape during call; 838 // 839 // - oop arguments escaping status is defined by bytecode analysis; 840 // 841 // For a static call, we know exactly what method is being called. 842 // Use bytecode estimator to record whether the call's return value escapes. 843 ciMethod* meth = call->as_CallJava()->method(); 844 if (meth == NULL) { 845 const char* name = call->as_CallStaticJava()->_name; 846 assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check"); 847 // Returns a newly allocated unescaped object. 848 add_java_object(call, PointsToNode::NoEscape); 849 ptnode_adr(call_idx)->set_scalar_replaceable(false); 850 } else if (meth->is_boxing_method()) { 851 // Returns boxing object 852 PointsToNode::EscapeState es; 853 vmIntrinsics::ID intr = meth->intrinsic_id(); 854 if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) { 855 // It does not escape if object is always allocated. 856 es = PointsToNode::NoEscape; 857 } else { 858 // It escapes globally if object could be loaded from cache. 859 es = PointsToNode::GlobalEscape; 860 } 861 add_java_object(call, es); 862 } else { 863 BCEscapeAnalyzer* call_analyzer = meth->get_bcea(); 864 call_analyzer->copy_dependencies(_compile->dependencies()); 865 if (call_analyzer->is_return_allocated()) { 866 // Returns a newly allocated unescaped object, simply 867 // update dependency information. 868 // Mark it as NoEscape so that objects referenced by 869 // it's fields will be marked as NoEscape at least. 870 add_java_object(call, PointsToNode::NoEscape); 871 ptnode_adr(call_idx)->set_scalar_replaceable(false); 872 } else { 873 // Determine whether any arguments are returned. 874 const TypeTuple* d = call->tf()->domain(); 875 bool ret_arg = false; 876 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 877 if (d->field_at(i)->isa_ptr() != NULL && 878 call_analyzer->is_arg_returned(i - TypeFunc::Parms)) { 879 ret_arg = true; 880 break; 881 } 882 } 883 if (ret_arg) { 884 add_local_var(call, PointsToNode::ArgEscape); 885 } else { 886 // Returns unknown object. 887 map_ideal_node(call, phantom_obj); 888 } 889 } 890 } 891 } else { 892 // An other type of call, assume the worst case: 893 // returned value is unknown and globally escapes. 894 assert(call->Opcode() == Op_CallDynamicJava, "add failed case check"); 895 map_ideal_node(call, phantom_obj); 896 } 897 } 898 899 void ConnectionGraph::process_call_arguments(CallNode *call) { 900 bool is_arraycopy = false; 901 switch (call->Opcode()) { 902 #ifdef ASSERT 903 case Op_Allocate: 904 case Op_AllocateArray: 905 case Op_Lock: 906 case Op_Unlock: 907 assert(false, "should be done already"); 908 break; 909 #endif 910 case Op_CallLeafNoFP: 911 is_arraycopy = (call->as_CallLeaf()->_name != NULL && 912 strstr(call->as_CallLeaf()->_name, "arraycopy") != 0); 913 // fall through 914 case Op_CallLeaf: { 915 // Stub calls, objects do not escape but they are not scale replaceable. 916 // Adjust escape state for outgoing arguments. 917 const TypeTuple * d = call->tf()->domain(); 918 bool src_has_oops = false; 919 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 920 const Type* at = d->field_at(i); 921 Node *arg = call->in(i); 922 const Type *aat = _igvn->type(arg); 923 if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr()) 924 continue; 925 if (arg->is_AddP()) { 926 // 927 // The inline_native_clone() case when the arraycopy stub is called 928 // after the allocation before Initialize and CheckCastPP nodes. 929 // Or normal arraycopy for object arrays case. 930 // 931 // Set AddP's base (Allocate) as not scalar replaceable since 932 // pointer to the base (with offset) is passed as argument. 933 // 934 arg = get_addp_base(arg); 935 } 936 PointsToNode* arg_ptn = ptnode_adr(arg->_idx); 937 assert(arg_ptn != NULL, "should be registered"); 938 PointsToNode::EscapeState arg_esc = arg_ptn->escape_state(); 939 if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) { 940 assert(aat == Type::TOP || aat == TypePtr::NULL_PTR || 941 aat->isa_ptr() != NULL, "expecting an Ptr"); 942 bool arg_has_oops = aat->isa_oopptr() && 943 (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() || 944 (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass())); 945 if (i == TypeFunc::Parms) { 946 src_has_oops = arg_has_oops; 947 } 948 // 949 // src or dst could be j.l.Object when other is basic type array: 950 // 951 // arraycopy(char[],0,Object*,0,size); 952 // arraycopy(Object*,0,char[],0,size); 953 // 954 // Don't add edges in such cases. 955 // 956 bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy && 957 arg_has_oops && (i > TypeFunc::Parms); 958 #ifdef ASSERT 959 if (!(is_arraycopy || 960 (call->as_CallLeaf()->_name != NULL && 961 (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre") == 0 || 962 strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 || 963 strcmp(call->as_CallLeaf()->_name, "shenandoah_clone_barrier") == 0 || 964 strcmp(call->as_CallLeaf()->_name, "shenandoah_cas_obj") == 0 || 965 strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 || 966 strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 || 967 strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 || 968 strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 || 969 strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 || 970 strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 || 971 strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 || 972 strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 || 973 strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 || 974 strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 || 975 strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 || 976 strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 || 977 strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 || 978 strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 || 979 strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 || 980 strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 || 981 strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0) 982 ))) { 983 call->dump(); 984 fatal(err_msg_res("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name)); 985 } 986 #endif 987 // Always process arraycopy's destination object since 988 // we need to add all possible edges to references in 989 // source object. 990 if (arg_esc >= PointsToNode::ArgEscape && 991 !arg_is_arraycopy_dest) { 992 continue; 993 } 994 set_escape_state(arg_ptn, PointsToNode::ArgEscape); 995 if (arg_is_arraycopy_dest) { 996 Node* src = call->in(TypeFunc::Parms); 997 if (src->is_AddP()) { 998 src = get_addp_base(src); 999 } 1000 PointsToNode* src_ptn = ptnode_adr(src->_idx); 1001 assert(src_ptn != NULL, "should be registered"); 1002 if (arg_ptn != src_ptn) { 1003 // Special arraycopy edge: 1004 // A destination object's field can't have the source object 1005 // as base since objects escape states are not related. 1006 // Only escape state of destination object's fields affects 1007 // escape state of fields in source object. 1008 add_arraycopy(call, PointsToNode::ArgEscape, src_ptn, arg_ptn); 1009 } 1010 } 1011 } 1012 } 1013 break; 1014 } 1015 case Op_CallStaticJava: { 1016 // For a static call, we know exactly what method is being called. 1017 // Use bytecode estimator to record the call's escape affects 1018 #ifdef ASSERT 1019 const char* name = call->as_CallStaticJava()->_name; 1020 assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only"); 1021 #endif 1022 ciMethod* meth = call->as_CallJava()->method(); 1023 if ((meth != NULL) && meth->is_boxing_method()) { 1024 break; // Boxing methods do not modify any oops. 1025 } 1026 BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL; 1027 // fall-through if not a Java method or no analyzer information 1028 if (call_analyzer != NULL) { 1029 PointsToNode* call_ptn = ptnode_adr(call->_idx); 1030 const TypeTuple* d = call->tf()->domain(); 1031 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 1032 const Type* at = d->field_at(i); 1033 int k = i - TypeFunc::Parms; 1034 Node* arg = call->in(i); 1035 PointsToNode* arg_ptn = ptnode_adr(arg->_idx); 1036 if (at->isa_ptr() != NULL && 1037 call_analyzer->is_arg_returned(k)) { 1038 // The call returns arguments. 1039 if (call_ptn != NULL) { // Is call's result used? 1040 assert(call_ptn->is_LocalVar(), "node should be registered"); 1041 assert(arg_ptn != NULL, "node should be registered"); 1042 add_edge(call_ptn, arg_ptn); 1043 } 1044 } 1045 if (at->isa_oopptr() != NULL && 1046 arg_ptn->escape_state() < PointsToNode::GlobalEscape) { 1047 if (!call_analyzer->is_arg_stack(k)) { 1048 // The argument global escapes 1049 set_escape_state(arg_ptn, PointsToNode::GlobalEscape); 1050 } else { 1051 set_escape_state(arg_ptn, PointsToNode::ArgEscape); 1052 if (!call_analyzer->is_arg_local(k)) { 1053 // The argument itself doesn't escape, but any fields might 1054 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape); 1055 } 1056 } 1057 } 1058 } 1059 if (call_ptn != NULL && call_ptn->is_LocalVar()) { 1060 // The call returns arguments. 1061 assert(call_ptn->edge_count() > 0, "sanity"); 1062 if (!call_analyzer->is_return_local()) { 1063 // Returns also unknown object. 1064 add_edge(call_ptn, phantom_obj); 1065 } 1066 } 1067 break; 1068 } 1069 } 1070 default: { 1071 // Fall-through here if not a Java method or no analyzer information 1072 // or some other type of call, assume the worst case: all arguments 1073 // globally escape. 1074 const TypeTuple* d = call->tf()->domain(); 1075 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 1076 const Type* at = d->field_at(i); 1077 if (at->isa_oopptr() != NULL) { 1078 Node* arg = call->in(i); 1079 if (arg->is_AddP()) { 1080 arg = get_addp_base(arg); 1081 } 1082 assert(ptnode_adr(arg->_idx) != NULL, "should be defined already"); 1083 set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape); 1084 } 1085 } 1086 } 1087 } 1088 } 1089 1090 1091 // Finish Graph construction. 1092 bool ConnectionGraph::complete_connection_graph( 1093 GrowableArray<PointsToNode*>& ptnodes_worklist, 1094 GrowableArray<JavaObjectNode*>& non_escaped_worklist, 1095 GrowableArray<JavaObjectNode*>& java_objects_worklist, 1096 GrowableArray<FieldNode*>& oop_fields_worklist) { 1097 // Normally only 1-3 passes needed to build Connection Graph depending 1098 // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler. 1099 // Set limit to 20 to catch situation when something did go wrong and 1100 // bailout Escape Analysis. 1101 // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag. 1102 #define CG_BUILD_ITER_LIMIT 20 1103 1104 // Propagate GlobalEscape and ArgEscape escape states and check that 1105 // we still have non-escaping objects. The method pushs on _worklist 1106 // Field nodes which reference phantom_object. 1107 if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) { 1108 return false; // Nothing to do. 1109 } 1110 // Now propagate references to all JavaObject nodes. 1111 int java_objects_length = java_objects_worklist.length(); 1112 elapsedTimer time; 1113 bool timeout = false; 1114 int new_edges = 1; 1115 int iterations = 0; 1116 do { 1117 while ((new_edges > 0) && 1118 (iterations++ < CG_BUILD_ITER_LIMIT)) { 1119 double start_time = time.seconds(); 1120 time.start(); 1121 new_edges = 0; 1122 // Propagate references to phantom_object for nodes pushed on _worklist 1123 // by find_non_escaped_objects() and find_field_value(). 1124 new_edges += add_java_object_edges(phantom_obj, false); 1125 for (int next = 0; next < java_objects_length; ++next) { 1126 JavaObjectNode* ptn = java_objects_worklist.at(next); 1127 new_edges += add_java_object_edges(ptn, true); 1128 1129 #define SAMPLE_SIZE 4 1130 if ((next % SAMPLE_SIZE) == 0) { 1131 // Each 4 iterations calculate how much time it will take 1132 // to complete graph construction. 1133 time.stop(); 1134 // Poll for requests from shutdown mechanism to quiesce compiler 1135 // because Connection graph construction may take long time. 1136 CompileBroker::maybe_block(); 1137 double stop_time = time.seconds(); 1138 double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE; 1139 double time_until_end = time_per_iter * (double)(java_objects_length - next); 1140 if ((start_time + time_until_end) >= EscapeAnalysisTimeout) { 1141 timeout = true; 1142 break; // Timeout 1143 } 1144 start_time = stop_time; 1145 time.start(); 1146 } 1147 #undef SAMPLE_SIZE 1148 1149 } 1150 if (timeout) break; 1151 if (new_edges > 0) { 1152 // Update escape states on each iteration if graph was updated. 1153 if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) { 1154 return false; // Nothing to do. 1155 } 1156 } 1157 time.stop(); 1158 if (time.seconds() >= EscapeAnalysisTimeout) { 1159 timeout = true; 1160 break; 1161 } 1162 } 1163 if ((iterations < CG_BUILD_ITER_LIMIT) && !timeout) { 1164 time.start(); 1165 // Find fields which have unknown value. 1166 int fields_length = oop_fields_worklist.length(); 1167 for (int next = 0; next < fields_length; next++) { 1168 FieldNode* field = oop_fields_worklist.at(next); 1169 if (field->edge_count() == 0) { 1170 new_edges += find_field_value(field); 1171 // This code may added new edges to phantom_object. 1172 // Need an other cycle to propagate references to phantom_object. 1173 } 1174 } 1175 time.stop(); 1176 if (time.seconds() >= EscapeAnalysisTimeout) { 1177 timeout = true; 1178 break; 1179 } 1180 } else { 1181 new_edges = 0; // Bailout 1182 } 1183 } while (new_edges > 0); 1184 1185 // Bailout if passed limits. 1186 if ((iterations >= CG_BUILD_ITER_LIMIT) || timeout) { 1187 Compile* C = _compile; 1188 if (C->log() != NULL) { 1189 C->log()->begin_elem("connectionGraph_bailout reason='reached "); 1190 C->log()->text("%s", timeout ? "time" : "iterations"); 1191 C->log()->end_elem(" limit'"); 1192 } 1193 assert(ExitEscapeAnalysisOnTimeout, err_msg_res("infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d", 1194 time.seconds(), iterations, nodes_size(), ptnodes_worklist.length())); 1195 // Possible infinite build_connection_graph loop, 1196 // bailout (no changes to ideal graph were made). 1197 return false; 1198 } 1199 #ifdef ASSERT 1200 if (Verbose && PrintEscapeAnalysis) { 1201 tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d", 1202 iterations, nodes_size(), ptnodes_worklist.length()); 1203 } 1204 #endif 1205 1206 #undef CG_BUILD_ITER_LIMIT 1207 1208 // Find fields initialized by NULL for non-escaping Allocations. 1209 int non_escaped_length = non_escaped_worklist.length(); 1210 for (int next = 0; next < non_escaped_length; next++) { 1211 JavaObjectNode* ptn = non_escaped_worklist.at(next); 1212 PointsToNode::EscapeState es = ptn->escape_state(); 1213 assert(es <= PointsToNode::ArgEscape, "sanity"); 1214 if (es == PointsToNode::NoEscape) { 1215 if (find_init_values(ptn, null_obj, _igvn) > 0) { 1216 // Adding references to NULL object does not change escape states 1217 // since it does not escape. Also no fields are added to NULL object. 1218 add_java_object_edges(null_obj, false); 1219 } 1220 } 1221 Node* n = ptn->ideal_node(); 1222 if (n->is_Allocate()) { 1223 // The object allocated by this Allocate node will never be 1224 // seen by an other thread. Mark it so that when it is 1225 // expanded no MemBarStoreStore is added. 1226 InitializeNode* ini = n->as_Allocate()->initialization(); 1227 if (ini != NULL) 1228 ini->set_does_not_escape(); 1229 } 1230 } 1231 return true; // Finished graph construction. 1232 } 1233 1234 // Propagate GlobalEscape and ArgEscape escape states to all nodes 1235 // and check that we still have non-escaping java objects. 1236 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist, 1237 GrowableArray<JavaObjectNode*>& non_escaped_worklist) { 1238 GrowableArray<PointsToNode*> escape_worklist; 1239 // First, put all nodes with GlobalEscape and ArgEscape states on worklist. 1240 int ptnodes_length = ptnodes_worklist.length(); 1241 for (int next = 0; next < ptnodes_length; ++next) { 1242 PointsToNode* ptn = ptnodes_worklist.at(next); 1243 if (ptn->escape_state() >= PointsToNode::ArgEscape || 1244 ptn->fields_escape_state() >= PointsToNode::ArgEscape) { 1245 escape_worklist.push(ptn); 1246 } 1247 } 1248 // Set escape states to referenced nodes (edges list). 1249 while (escape_worklist.length() > 0) { 1250 PointsToNode* ptn = escape_worklist.pop(); 1251 PointsToNode::EscapeState es = ptn->escape_state(); 1252 PointsToNode::EscapeState field_es = ptn->fields_escape_state(); 1253 if (ptn->is_Field() && ptn->as_Field()->is_oop() && 1254 es >= PointsToNode::ArgEscape) { 1255 // GlobalEscape or ArgEscape state of field means it has unknown value. 1256 if (add_edge(ptn, phantom_obj)) { 1257 // New edge was added 1258 add_field_uses_to_worklist(ptn->as_Field()); 1259 } 1260 } 1261 for (EdgeIterator i(ptn); i.has_next(); i.next()) { 1262 PointsToNode* e = i.get(); 1263 if (e->is_Arraycopy()) { 1264 assert(ptn->arraycopy_dst(), "sanity"); 1265 // Propagate only fields escape state through arraycopy edge. 1266 if (e->fields_escape_state() < field_es) { 1267 set_fields_escape_state(e, field_es); 1268 escape_worklist.push(e); 1269 } 1270 } else if (es >= field_es) { 1271 // fields_escape_state is also set to 'es' if it is less than 'es'. 1272 if (e->escape_state() < es) { 1273 set_escape_state(e, es); 1274 escape_worklist.push(e); 1275 } 1276 } else { 1277 // Propagate field escape state. 1278 bool es_changed = false; 1279 if (e->fields_escape_state() < field_es) { 1280 set_fields_escape_state(e, field_es); 1281 es_changed = true; 1282 } 1283 if ((e->escape_state() < field_es) && 1284 e->is_Field() && ptn->is_JavaObject() && 1285 e->as_Field()->is_oop()) { 1286 // Change escape state of referenced fileds. 1287 set_escape_state(e, field_es); 1288 es_changed = true;; 1289 } else if (e->escape_state() < es) { 1290 set_escape_state(e, es); 1291 es_changed = true;; 1292 } 1293 if (es_changed) { 1294 escape_worklist.push(e); 1295 } 1296 } 1297 } 1298 } 1299 // Remove escaped objects from non_escaped list. 1300 for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) { 1301 JavaObjectNode* ptn = non_escaped_worklist.at(next); 1302 if (ptn->escape_state() >= PointsToNode::GlobalEscape) { 1303 non_escaped_worklist.delete_at(next); 1304 } 1305 if (ptn->escape_state() == PointsToNode::NoEscape) { 1306 // Find fields in non-escaped allocations which have unknown value. 1307 find_init_values(ptn, phantom_obj, NULL); 1308 } 1309 } 1310 return (non_escaped_worklist.length() > 0); 1311 } 1312 1313 // Add all references to JavaObject node by walking over all uses. 1314 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) { 1315 int new_edges = 0; 1316 if (populate_worklist) { 1317 // Populate _worklist by uses of jobj's uses. 1318 for (UseIterator i(jobj); i.has_next(); i.next()) { 1319 PointsToNode* use = i.get(); 1320 if (use->is_Arraycopy()) 1321 continue; 1322 add_uses_to_worklist(use); 1323 if (use->is_Field() && use->as_Field()->is_oop()) { 1324 // Put on worklist all field's uses (loads) and 1325 // related field nodes (same base and offset). 1326 add_field_uses_to_worklist(use->as_Field()); 1327 } 1328 } 1329 } 1330 for (int l = 0; l < _worklist.length(); l++) { 1331 PointsToNode* use = _worklist.at(l); 1332 if (PointsToNode::is_base_use(use)) { 1333 // Add reference from jobj to field and from field to jobj (field's base). 1334 use = PointsToNode::get_use_node(use)->as_Field(); 1335 if (add_base(use->as_Field(), jobj)) { 1336 new_edges++; 1337 } 1338 continue; 1339 } 1340 assert(!use->is_JavaObject(), "sanity"); 1341 if (use->is_Arraycopy()) { 1342 if (jobj == null_obj) // NULL object does not have field edges 1343 continue; 1344 // Added edge from Arraycopy node to arraycopy's source java object 1345 if (add_edge(use, jobj)) { 1346 jobj->set_arraycopy_src(); 1347 new_edges++; 1348 } 1349 // and stop here. 1350 continue; 1351 } 1352 if (!add_edge(use, jobj)) 1353 continue; // No new edge added, there was such edge already. 1354 new_edges++; 1355 if (use->is_LocalVar()) { 1356 add_uses_to_worklist(use); 1357 if (use->arraycopy_dst()) { 1358 for (EdgeIterator i(use); i.has_next(); i.next()) { 1359 PointsToNode* e = i.get(); 1360 if (e->is_Arraycopy()) { 1361 if (jobj == null_obj) // NULL object does not have field edges 1362 continue; 1363 // Add edge from arraycopy's destination java object to Arraycopy node. 1364 if (add_edge(jobj, e)) { 1365 new_edges++; 1366 jobj->set_arraycopy_dst(); 1367 } 1368 } 1369 } 1370 } 1371 } else { 1372 // Added new edge to stored in field values. 1373 // Put on worklist all field's uses (loads) and 1374 // related field nodes (same base and offset). 1375 add_field_uses_to_worklist(use->as_Field()); 1376 } 1377 } 1378 _worklist.clear(); 1379 _in_worklist.Reset(); 1380 return new_edges; 1381 } 1382 1383 // Put on worklist all related field nodes. 1384 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) { 1385 assert(field->is_oop(), "sanity"); 1386 int offset = field->offset(); 1387 add_uses_to_worklist(field); 1388 // Loop over all bases of this field and push on worklist Field nodes 1389 // with the same offset and base (since they may reference the same field). 1390 for (BaseIterator i(field); i.has_next(); i.next()) { 1391 PointsToNode* base = i.get(); 1392 add_fields_to_worklist(field, base); 1393 // Check if the base was source object of arraycopy and go over arraycopy's 1394 // destination objects since values stored to a field of source object are 1395 // accessable by uses (loads) of fields of destination objects. 1396 if (base->arraycopy_src()) { 1397 for (UseIterator j(base); j.has_next(); j.next()) { 1398 PointsToNode* arycp = j.get(); 1399 if (arycp->is_Arraycopy()) { 1400 for (UseIterator k(arycp); k.has_next(); k.next()) { 1401 PointsToNode* abase = k.get(); 1402 if (abase->arraycopy_dst() && abase != base) { 1403 // Look for the same arracopy reference. 1404 add_fields_to_worklist(field, abase); 1405 } 1406 } 1407 } 1408 } 1409 } 1410 } 1411 } 1412 1413 // Put on worklist all related field nodes. 1414 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) { 1415 int offset = field->offset(); 1416 if (base->is_LocalVar()) { 1417 for (UseIterator j(base); j.has_next(); j.next()) { 1418 PointsToNode* f = j.get(); 1419 if (PointsToNode::is_base_use(f)) { // Field 1420 f = PointsToNode::get_use_node(f); 1421 if (f == field || !f->as_Field()->is_oop()) 1422 continue; 1423 int offs = f->as_Field()->offset(); 1424 if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) { 1425 add_to_worklist(f); 1426 } 1427 } 1428 } 1429 } else { 1430 assert(base->is_JavaObject(), "sanity"); 1431 if (// Skip phantom_object since it is only used to indicate that 1432 // this field's content globally escapes. 1433 (base != phantom_obj) && 1434 // NULL object node does not have fields. 1435 (base != null_obj)) { 1436 for (EdgeIterator i(base); i.has_next(); i.next()) { 1437 PointsToNode* f = i.get(); 1438 // Skip arraycopy edge since store to destination object field 1439 // does not update value in source object field. 1440 if (f->is_Arraycopy()) { 1441 assert(base->arraycopy_dst(), "sanity"); 1442 continue; 1443 } 1444 if (f == field || !f->as_Field()->is_oop()) 1445 continue; 1446 int offs = f->as_Field()->offset(); 1447 if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) { 1448 add_to_worklist(f); 1449 } 1450 } 1451 } 1452 } 1453 } 1454 1455 // Find fields which have unknown value. 1456 int ConnectionGraph::find_field_value(FieldNode* field) { 1457 // Escaped fields should have init value already. 1458 assert(field->escape_state() == PointsToNode::NoEscape, "sanity"); 1459 int new_edges = 0; 1460 for (BaseIterator i(field); i.has_next(); i.next()) { 1461 PointsToNode* base = i.get(); 1462 if (base->is_JavaObject()) { 1463 // Skip Allocate's fields which will be processed later. 1464 if (base->ideal_node()->is_Allocate()) 1465 return 0; 1466 assert(base == null_obj, "only NULL ptr base expected here"); 1467 } 1468 } 1469 if (add_edge(field, phantom_obj)) { 1470 // New edge was added 1471 new_edges++; 1472 add_field_uses_to_worklist(field); 1473 } 1474 return new_edges; 1475 } 1476 1477 // Find fields initializing values for allocations. 1478 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) { 1479 assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only"); 1480 int new_edges = 0; 1481 Node* alloc = pta->ideal_node(); 1482 if (init_val == phantom_obj) { 1483 // Do nothing for Allocate nodes since its fields values are "known". 1484 if (alloc->is_Allocate()) 1485 return 0; 1486 assert(alloc->as_CallStaticJava(), "sanity"); 1487 #ifdef ASSERT 1488 if (alloc->as_CallStaticJava()->method() == NULL) { 1489 const char* name = alloc->as_CallStaticJava()->_name; 1490 assert(strncmp(name, "_multianewarray", 15) == 0, "sanity"); 1491 } 1492 #endif 1493 // Non-escaped allocation returned from Java or runtime call have 1494 // unknown values in fields. 1495 for (EdgeIterator i(pta); i.has_next(); i.next()) { 1496 PointsToNode* field = i.get(); 1497 if (field->is_Field() && field->as_Field()->is_oop()) { 1498 if (add_edge(field, phantom_obj)) { 1499 // New edge was added 1500 new_edges++; 1501 add_field_uses_to_worklist(field->as_Field()); 1502 } 1503 } 1504 } 1505 return new_edges; 1506 } 1507 assert(init_val == null_obj, "sanity"); 1508 // Do nothing for Call nodes since its fields values are unknown. 1509 if (!alloc->is_Allocate()) 1510 return 0; 1511 1512 InitializeNode* ini = alloc->as_Allocate()->initialization(); 1513 Compile* C = _compile; 1514 bool visited_bottom_offset = false; 1515 GrowableArray<int> offsets_worklist; 1516 1517 // Check if an oop field's initializing value is recorded and add 1518 // a corresponding NULL if field's value if it is not recorded. 1519 // Connection Graph does not record a default initialization by NULL 1520 // captured by Initialize node. 1521 // 1522 for (EdgeIterator i(pta); i.has_next(); i.next()) { 1523 PointsToNode* field = i.get(); // Field (AddP) 1524 if (!field->is_Field() || !field->as_Field()->is_oop()) 1525 continue; // Not oop field 1526 int offset = field->as_Field()->offset(); 1527 if (offset == Type::OffsetBot) { 1528 if (!visited_bottom_offset) { 1529 // OffsetBot is used to reference array's element, 1530 // always add reference to NULL to all Field nodes since we don't 1531 // known which element is referenced. 1532 if (add_edge(field, null_obj)) { 1533 // New edge was added 1534 new_edges++; 1535 add_field_uses_to_worklist(field->as_Field()); 1536 visited_bottom_offset = true; 1537 } 1538 } 1539 } else { 1540 // Check only oop fields. 1541 const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type(); 1542 if (adr_type->isa_rawptr()) { 1543 #ifdef ASSERT 1544 // Raw pointers are used for initializing stores so skip it 1545 // since it should be recorded already 1546 Node* base = get_addp_base(field->ideal_node()); 1547 assert(adr_type->isa_rawptr() && base->is_Proj() && 1548 (base->in(0) == alloc),"unexpected pointer type"); 1549 #endif 1550 continue; 1551 } 1552 if (!offsets_worklist.contains(offset)) { 1553 offsets_worklist.append(offset); 1554 Node* value = NULL; 1555 if (ini != NULL) { 1556 // StoreP::memory_type() == T_ADDRESS 1557 BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS; 1558 Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase); 1559 // Make sure initializing store has the same type as this AddP. 1560 // This AddP may reference non existing field because it is on a 1561 // dead branch of bimorphic call which is not eliminated yet. 1562 if (store != NULL && store->is_Store() && 1563 store->as_Store()->memory_type() == ft) { 1564 value = store->in(MemNode::ValueIn); 1565 #ifdef ASSERT 1566 if (VerifyConnectionGraph) { 1567 // Verify that AddP already points to all objects the value points to. 1568 PointsToNode* val = ptnode_adr(value->_idx); 1569 assert((val != NULL), "should be processed already"); 1570 PointsToNode* missed_obj = NULL; 1571 if (val->is_JavaObject()) { 1572 if (!field->points_to(val->as_JavaObject())) { 1573 missed_obj = val; 1574 } 1575 } else { 1576 if (!val->is_LocalVar() || (val->edge_count() == 0)) { 1577 tty->print_cr("----------init store has invalid value -----"); 1578 store->dump(); 1579 val->dump(); 1580 assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already"); 1581 } 1582 for (EdgeIterator j(val); j.has_next(); j.next()) { 1583 PointsToNode* obj = j.get(); 1584 if (obj->is_JavaObject()) { 1585 if (!field->points_to(obj->as_JavaObject())) { 1586 missed_obj = obj; 1587 break; 1588 } 1589 } 1590 } 1591 } 1592 if (missed_obj != NULL) { 1593 tty->print_cr("----------field---------------------------------"); 1594 field->dump(); 1595 tty->print_cr("----------missed referernce to object-----------"); 1596 missed_obj->dump(); 1597 tty->print_cr("----------object referernced by init store -----"); 1598 store->dump(); 1599 val->dump(); 1600 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference"); 1601 } 1602 } 1603 #endif 1604 } else { 1605 // There could be initializing stores which follow allocation. 1606 // For example, a volatile field store is not collected 1607 // by Initialize node. 1608 // 1609 // Need to check for dependent loads to separate such stores from 1610 // stores which follow loads. For now, add initial value NULL so 1611 // that compare pointers optimization works correctly. 1612 } 1613 } 1614 if (value == NULL) { 1615 // A field's initializing value was not recorded. Add NULL. 1616 if (add_edge(field, null_obj)) { 1617 // New edge was added 1618 new_edges++; 1619 add_field_uses_to_worklist(field->as_Field()); 1620 } 1621 } 1622 } 1623 } 1624 } 1625 return new_edges; 1626 } 1627 1628 // Adjust scalar_replaceable state after Connection Graph is built. 1629 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) { 1630 // Search for non-escaping objects which are not scalar replaceable 1631 // and mark them to propagate the state to referenced objects. 1632 1633 // 1. An object is not scalar replaceable if the field into which it is 1634 // stored has unknown offset (stored into unknown element of an array). 1635 // 1636 for (UseIterator i(jobj); i.has_next(); i.next()) { 1637 PointsToNode* use = i.get(); 1638 assert(!use->is_Arraycopy(), "sanity"); 1639 if (use->is_Field()) { 1640 FieldNode* field = use->as_Field(); 1641 assert(field->is_oop() && field->scalar_replaceable() && 1642 field->fields_escape_state() == PointsToNode::NoEscape, "sanity"); 1643 if (field->offset() == Type::OffsetBot) { 1644 jobj->set_scalar_replaceable(false); 1645 return; 1646 } 1647 // 2. An object is not scalar replaceable if the field into which it is 1648 // stored has multiple bases one of which is null. 1649 if (field->base_count() > 1) { 1650 for (BaseIterator i(field); i.has_next(); i.next()) { 1651 PointsToNode* base = i.get(); 1652 if (base == null_obj) { 1653 jobj->set_scalar_replaceable(false); 1654 return; 1655 } 1656 } 1657 } 1658 } 1659 assert(use->is_Field() || use->is_LocalVar(), "sanity"); 1660 // 3. An object is not scalar replaceable if it is merged with other objects. 1661 for (EdgeIterator j(use); j.has_next(); j.next()) { 1662 PointsToNode* ptn = j.get(); 1663 if (ptn->is_JavaObject() && ptn != jobj) { 1664 // Mark all objects. 1665 jobj->set_scalar_replaceable(false); 1666 ptn->set_scalar_replaceable(false); 1667 } 1668 } 1669 if (!jobj->scalar_replaceable()) { 1670 return; 1671 } 1672 } 1673 1674 for (EdgeIterator j(jobj); j.has_next(); j.next()) { 1675 // Non-escaping object node should point only to field nodes. 1676 FieldNode* field = j.get()->as_Field(); 1677 int offset = field->as_Field()->offset(); 1678 1679 // 4. An object is not scalar replaceable if it has a field with unknown 1680 // offset (array's element is accessed in loop). 1681 if (offset == Type::OffsetBot) { 1682 jobj->set_scalar_replaceable(false); 1683 return; 1684 } 1685 // 5. Currently an object is not scalar replaceable if a LoadStore node 1686 // access its field since the field value is unknown after it. 1687 // 1688 Node* n = field->ideal_node(); 1689 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 1690 if (n->fast_out(i)->is_LoadStore()) { 1691 jobj->set_scalar_replaceable(false); 1692 return; 1693 } 1694 } 1695 1696 // 6. Or the address may point to more then one object. This may produce 1697 // the false positive result (set not scalar replaceable) 1698 // since the flow-insensitive escape analysis can't separate 1699 // the case when stores overwrite the field's value from the case 1700 // when stores happened on different control branches. 1701 // 1702 // Note: it will disable scalar replacement in some cases: 1703 // 1704 // Point p[] = new Point[1]; 1705 // p[0] = new Point(); // Will be not scalar replaced 1706 // 1707 // but it will save us from incorrect optimizations in next cases: 1708 // 1709 // Point p[] = new Point[1]; 1710 // if ( x ) p[0] = new Point(); // Will be not scalar replaced 1711 // 1712 if (field->base_count() > 1) { 1713 for (BaseIterator i(field); i.has_next(); i.next()) { 1714 PointsToNode* base = i.get(); 1715 // Don't take into account LocalVar nodes which 1716 // may point to only one object which should be also 1717 // this field's base by now. 1718 if (base->is_JavaObject() && base != jobj) { 1719 // Mark all bases. 1720 jobj->set_scalar_replaceable(false); 1721 base->set_scalar_replaceable(false); 1722 } 1723 } 1724 } 1725 } 1726 } 1727 1728 #ifdef ASSERT 1729 void ConnectionGraph::verify_connection_graph( 1730 GrowableArray<PointsToNode*>& ptnodes_worklist, 1731 GrowableArray<JavaObjectNode*>& non_escaped_worklist, 1732 GrowableArray<JavaObjectNode*>& java_objects_worklist, 1733 GrowableArray<Node*>& addp_worklist) { 1734 // Verify that graph is complete - no new edges could be added. 1735 int java_objects_length = java_objects_worklist.length(); 1736 int non_escaped_length = non_escaped_worklist.length(); 1737 int new_edges = 0; 1738 for (int next = 0; next < java_objects_length; ++next) { 1739 JavaObjectNode* ptn = java_objects_worklist.at(next); 1740 new_edges += add_java_object_edges(ptn, true); 1741 } 1742 assert(new_edges == 0, "graph was not complete"); 1743 // Verify that escape state is final. 1744 int length = non_escaped_worklist.length(); 1745 find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist); 1746 assert((non_escaped_length == non_escaped_worklist.length()) && 1747 (non_escaped_length == length) && 1748 (_worklist.length() == 0), "escape state was not final"); 1749 1750 // Verify fields information. 1751 int addp_length = addp_worklist.length(); 1752 for (int next = 0; next < addp_length; ++next ) { 1753 Node* n = addp_worklist.at(next); 1754 FieldNode* field = ptnode_adr(n->_idx)->as_Field(); 1755 if (field->is_oop()) { 1756 // Verify that field has all bases 1757 Node* base = get_addp_base(n); 1758 PointsToNode* ptn = ptnode_adr(base->_idx); 1759 if (ptn->is_JavaObject()) { 1760 assert(field->has_base(ptn->as_JavaObject()), "sanity"); 1761 } else { 1762 assert(ptn->is_LocalVar(), "sanity"); 1763 for (EdgeIterator i(ptn); i.has_next(); i.next()) { 1764 PointsToNode* e = i.get(); 1765 if (e->is_JavaObject()) { 1766 assert(field->has_base(e->as_JavaObject()), "sanity"); 1767 } 1768 } 1769 } 1770 // Verify that all fields have initializing values. 1771 if (field->edge_count() == 0) { 1772 tty->print_cr("----------field does not have references----------"); 1773 field->dump(); 1774 for (BaseIterator i(field); i.has_next(); i.next()) { 1775 PointsToNode* base = i.get(); 1776 tty->print_cr("----------field has next base---------------------"); 1777 base->dump(); 1778 if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) { 1779 tty->print_cr("----------base has fields-------------------------"); 1780 for (EdgeIterator j(base); j.has_next(); j.next()) { 1781 j.get()->dump(); 1782 } 1783 tty->print_cr("----------base has references---------------------"); 1784 for (UseIterator j(base); j.has_next(); j.next()) { 1785 j.get()->dump(); 1786 } 1787 } 1788 } 1789 for (UseIterator i(field); i.has_next(); i.next()) { 1790 i.get()->dump(); 1791 } 1792 assert(field->edge_count() > 0, "sanity"); 1793 } 1794 } 1795 } 1796 } 1797 #endif 1798 1799 // Optimize ideal graph. 1800 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist, 1801 GrowableArray<Node*>& storestore_worklist) { 1802 Compile* C = _compile; 1803 PhaseIterGVN* igvn = _igvn; 1804 if (EliminateLocks) { 1805 // Mark locks before changing ideal graph. 1806 int cnt = C->macro_count(); 1807 for( int i=0; i < cnt; i++ ) { 1808 Node *n = C->macro_node(i); 1809 if (n->is_AbstractLock()) { // Lock and Unlock nodes 1810 AbstractLockNode* alock = n->as_AbstractLock(); 1811 if (!alock->is_non_esc_obj()) { 1812 if (not_global_escape(alock->obj_node())) { 1813 assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity"); 1814 // The lock could be marked eliminated by lock coarsening 1815 // code during first IGVN before EA. Replace coarsened flag 1816 // to eliminate all associated locks/unlocks. 1817 #ifdef ASSERT 1818 alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3"); 1819 #endif 1820 alock->set_non_esc_obj(); 1821 } 1822 } 1823 } 1824 } 1825 } 1826 1827 if (OptimizePtrCompare) { 1828 // Add ConI(#CC_GT) and ConI(#CC_EQ). 1829 _pcmp_neq = igvn->makecon(TypeInt::CC_GT); 1830 _pcmp_eq = igvn->makecon(TypeInt::CC_EQ); 1831 // Optimize objects compare. 1832 while (ptr_cmp_worklist.length() != 0) { 1833 Node *n = ptr_cmp_worklist.pop(); 1834 Node *res = optimize_ptr_compare(n); 1835 if (res != NULL) { 1836 #ifndef PRODUCT 1837 if (PrintOptimizePtrCompare) { 1838 tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ")); 1839 if (Verbose) { 1840 n->dump(1); 1841 } 1842 } 1843 #endif 1844 igvn->replace_node(n, res); 1845 } 1846 } 1847 // cleanup 1848 if (_pcmp_neq->outcnt() == 0) 1849 igvn->hash_delete(_pcmp_neq); 1850 if (_pcmp_eq->outcnt() == 0) 1851 igvn->hash_delete(_pcmp_eq); 1852 } 1853 1854 // For MemBarStoreStore nodes added in library_call.cpp, check 1855 // escape status of associated AllocateNode and optimize out 1856 // MemBarStoreStore node if the allocated object never escapes. 1857 while (storestore_worklist.length() != 0) { 1858 Node *n = storestore_worklist.pop(); 1859 MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore(); 1860 Node *alloc = storestore->in(MemBarNode::Precedent)->in(0); 1861 assert (alloc->is_Allocate(), "storestore should point to AllocateNode"); 1862 if (not_global_escape(alloc)) { 1863 MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot); 1864 mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory)); 1865 mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control)); 1866 igvn->register_new_node_with_optimizer(mb); 1867 igvn->replace_node(storestore, mb); 1868 } 1869 } 1870 } 1871 1872 // Optimize objects compare. 1873 Node* ConnectionGraph::optimize_ptr_compare(Node* n) { 1874 assert(OptimizePtrCompare, "sanity"); 1875 PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx); 1876 PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx); 1877 JavaObjectNode* jobj1 = unique_java_object(n->in(1)); 1878 JavaObjectNode* jobj2 = unique_java_object(n->in(2)); 1879 assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity"); 1880 assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity"); 1881 1882 // Check simple cases first. 1883 if (jobj1 != NULL) { 1884 if (jobj1->escape_state() == PointsToNode::NoEscape) { 1885 if (jobj1 == jobj2) { 1886 // Comparing the same not escaping object. 1887 return _pcmp_eq; 1888 } 1889 Node* obj = jobj1->ideal_node(); 1890 // Comparing not escaping allocation. 1891 if ((obj->is_Allocate() || obj->is_CallStaticJava()) && 1892 !ptn2->points_to(jobj1)) { 1893 return _pcmp_neq; // This includes nullness check. 1894 } 1895 } 1896 } 1897 if (jobj2 != NULL) { 1898 if (jobj2->escape_state() == PointsToNode::NoEscape) { 1899 Node* obj = jobj2->ideal_node(); 1900 // Comparing not escaping allocation. 1901 if ((obj->is_Allocate() || obj->is_CallStaticJava()) && 1902 !ptn1->points_to(jobj2)) { 1903 return _pcmp_neq; // This includes nullness check. 1904 } 1905 } 1906 } 1907 if (jobj1 != NULL && jobj1 != phantom_obj && 1908 jobj2 != NULL && jobj2 != phantom_obj && 1909 jobj1->ideal_node()->is_Con() && 1910 jobj2->ideal_node()->is_Con()) { 1911 // Klass or String constants compare. Need to be careful with 1912 // compressed pointers - compare types of ConN and ConP instead of nodes. 1913 const Type* t1 = jobj1->ideal_node()->get_ptr_type(); 1914 const Type* t2 = jobj2->ideal_node()->get_ptr_type(); 1915 if (t1->make_ptr() == t2->make_ptr()) { 1916 return _pcmp_eq; 1917 } else { 1918 return _pcmp_neq; 1919 } 1920 } 1921 if (ptn1->meet(ptn2)) { 1922 return NULL; // Sets are not disjoint 1923 } 1924 1925 // Sets are disjoint. 1926 bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj); 1927 bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj); 1928 bool set1_has_null_ptr = ptn1->points_to(null_obj); 1929 bool set2_has_null_ptr = ptn2->points_to(null_obj); 1930 if (set1_has_unknown_ptr && set2_has_null_ptr || 1931 set2_has_unknown_ptr && set1_has_null_ptr) { 1932 // Check nullness of unknown object. 1933 return NULL; 1934 } 1935 1936 // Disjointness by itself is not sufficient since 1937 // alias analysis is not complete for escaped objects. 1938 // Disjoint sets are definitely unrelated only when 1939 // at least one set has only not escaping allocations. 1940 if (!set1_has_unknown_ptr && !set1_has_null_ptr) { 1941 if (ptn1->non_escaping_allocation()) { 1942 return _pcmp_neq; 1943 } 1944 } 1945 if (!set2_has_unknown_ptr && !set2_has_null_ptr) { 1946 if (ptn2->non_escaping_allocation()) { 1947 return _pcmp_neq; 1948 } 1949 } 1950 return NULL; 1951 } 1952 1953 // Connection Graph constuction functions. 1954 1955 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) { 1956 PointsToNode* ptadr = _nodes.at(n->_idx); 1957 if (ptadr != NULL) { 1958 assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity"); 1959 return; 1960 } 1961 Compile* C = _compile; 1962 ptadr = new (C->comp_arena()) LocalVarNode(this, n, es); 1963 _nodes.at_put(n->_idx, ptadr); 1964 } 1965 1966 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) { 1967 PointsToNode* ptadr = _nodes.at(n->_idx); 1968 if (ptadr != NULL) { 1969 assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity"); 1970 return; 1971 } 1972 Compile* C = _compile; 1973 ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es); 1974 _nodes.at_put(n->_idx, ptadr); 1975 } 1976 1977 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) { 1978 PointsToNode* ptadr = _nodes.at(n->_idx); 1979 if (ptadr != NULL) { 1980 assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity"); 1981 return; 1982 } 1983 bool unsafe = false; 1984 bool is_oop = is_oop_field(n, offset, &unsafe); 1985 if (unsafe) { 1986 es = PointsToNode::GlobalEscape; 1987 } 1988 Compile* C = _compile; 1989 FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop); 1990 _nodes.at_put(n->_idx, field); 1991 } 1992 1993 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es, 1994 PointsToNode* src, PointsToNode* dst) { 1995 assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar"); 1996 assert((src != null_obj) && (dst != null_obj), "not for ConP NULL"); 1997 PointsToNode* ptadr = _nodes.at(n->_idx); 1998 if (ptadr != NULL) { 1999 assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity"); 2000 return; 2001 } 2002 Compile* C = _compile; 2003 ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es); 2004 _nodes.at_put(n->_idx, ptadr); 2005 // Add edge from arraycopy node to source object. 2006 (void)add_edge(ptadr, src); 2007 src->set_arraycopy_src(); 2008 // Add edge from destination object to arraycopy node. 2009 (void)add_edge(dst, ptadr); 2010 dst->set_arraycopy_dst(); 2011 } 2012 2013 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) { 2014 const Type* adr_type = n->as_AddP()->bottom_type(); 2015 BasicType bt = T_INT; 2016 if (offset == Type::OffsetBot) { 2017 // Check only oop fields. 2018 if (!adr_type->isa_aryptr() || 2019 (adr_type->isa_aryptr()->klass() == NULL) || 2020 adr_type->isa_aryptr()->klass()->is_obj_array_klass()) { 2021 // OffsetBot is used to reference array's element. Ignore first AddP. 2022 if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) { 2023 bt = T_OBJECT; 2024 } 2025 } 2026 } else if (offset != oopDesc::klass_offset_in_bytes()) { 2027 if (adr_type->isa_instptr()) { 2028 ciField* field = _compile->alias_type(adr_type->isa_instptr())->field(); 2029 if (field != NULL) { 2030 bt = field->layout_type(); 2031 } else { 2032 // Check for unsafe oop field access 2033 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2034 int opcode = n->fast_out(i)->Opcode(); 2035 if (opcode == Op_StoreP || opcode == Op_StoreN || 2036 opcode == Op_LoadP || opcode == Op_LoadN || 2037 opcode == Op_GetAndSetP || opcode == Op_GetAndSetN || 2038 opcode == Op_CompareAndSwapP || opcode == Op_CompareAndSwapN) { 2039 bt = T_OBJECT; 2040 (*unsafe) = true; 2041 break; 2042 } 2043 } 2044 } 2045 } else if (adr_type->isa_aryptr()) { 2046 if (offset == arrayOopDesc::length_offset_in_bytes()) { 2047 // Ignore array length load. 2048 } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) { 2049 // Ignore first AddP. 2050 } else { 2051 const Type* elemtype = adr_type->isa_aryptr()->elem(); 2052 bt = elemtype->array_element_basic_type(); 2053 } 2054 } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) { 2055 // Allocation initialization, ThreadLocal field access, unsafe access 2056 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2057 int opcode = n->fast_out(i)->Opcode(); 2058 if (opcode == Op_StoreP || opcode == Op_StoreN || 2059 opcode == Op_LoadP || opcode == Op_LoadN || 2060 opcode == Op_GetAndSetP || opcode == Op_GetAndSetN || 2061 opcode == Op_CompareAndSwapP || opcode == Op_CompareAndSwapN) { 2062 bt = T_OBJECT; 2063 break; 2064 } 2065 } 2066 } 2067 } 2068 return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY); 2069 } 2070 2071 // Returns unique pointed java object or NULL. 2072 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) { 2073 assert(!_collecting, "should not call when contructed graph"); 2074 // If the node was created after the escape computation we can't answer. 2075 uint idx = n->_idx; 2076 if (idx >= nodes_size()) { 2077 return NULL; 2078 } 2079 PointsToNode* ptn = ptnode_adr(idx); 2080 if (ptn == NULL) { 2081 return NULL; 2082 } 2083 if (ptn->is_JavaObject()) { 2084 return ptn->as_JavaObject(); 2085 } 2086 assert(ptn->is_LocalVar(), "sanity"); 2087 // Check all java objects it points to. 2088 JavaObjectNode* jobj = NULL; 2089 for (EdgeIterator i(ptn); i.has_next(); i.next()) { 2090 PointsToNode* e = i.get(); 2091 if (e->is_JavaObject()) { 2092 if (jobj == NULL) { 2093 jobj = e->as_JavaObject(); 2094 } else if (jobj != e) { 2095 return NULL; 2096 } 2097 } 2098 } 2099 return jobj; 2100 } 2101 2102 // Return true if this node points only to non-escaping allocations. 2103 bool PointsToNode::non_escaping_allocation() { 2104 if (is_JavaObject()) { 2105 Node* n = ideal_node(); 2106 if (n->is_Allocate() || n->is_CallStaticJava()) { 2107 return (escape_state() == PointsToNode::NoEscape); 2108 } else { 2109 return false; 2110 } 2111 } 2112 assert(is_LocalVar(), "sanity"); 2113 // Check all java objects it points to. 2114 for (EdgeIterator i(this); i.has_next(); i.next()) { 2115 PointsToNode* e = i.get(); 2116 if (e->is_JavaObject()) { 2117 Node* n = e->ideal_node(); 2118 if ((e->escape_state() != PointsToNode::NoEscape) || 2119 !(n->is_Allocate() || n->is_CallStaticJava())) { 2120 return false; 2121 } 2122 } 2123 } 2124 return true; 2125 } 2126 2127 // Return true if we know the node does not escape globally. 2128 bool ConnectionGraph::not_global_escape(Node *n) { 2129 assert(!_collecting, "should not call during graph construction"); 2130 // If the node was created after the escape computation we can't answer. 2131 uint idx = n->_idx; 2132 if (idx >= nodes_size()) { 2133 return false; 2134 } 2135 PointsToNode* ptn = ptnode_adr(idx); 2136 if (ptn == NULL) { 2137 return false; // not in congraph (e.g. ConI) 2138 } 2139 PointsToNode::EscapeState es = ptn->escape_state(); 2140 // If we have already computed a value, return it. 2141 if (es >= PointsToNode::GlobalEscape) 2142 return false; 2143 if (ptn->is_JavaObject()) { 2144 return true; // (es < PointsToNode::GlobalEscape); 2145 } 2146 assert(ptn->is_LocalVar(), "sanity"); 2147 // Check all java objects it points to. 2148 for (EdgeIterator i(ptn); i.has_next(); i.next()) { 2149 if (i.get()->escape_state() >= PointsToNode::GlobalEscape) 2150 return false; 2151 } 2152 return true; 2153 } 2154 2155 2156 // Helper functions 2157 2158 // Return true if this node points to specified node or nodes it points to. 2159 bool PointsToNode::points_to(JavaObjectNode* ptn) const { 2160 if (is_JavaObject()) { 2161 return (this == ptn); 2162 } 2163 assert(is_LocalVar() || is_Field(), "sanity"); 2164 for (EdgeIterator i(this); i.has_next(); i.next()) { 2165 if (i.get() == ptn) 2166 return true; 2167 } 2168 return false; 2169 } 2170 2171 // Return true if one node points to an other. 2172 bool PointsToNode::meet(PointsToNode* ptn) { 2173 if (this == ptn) { 2174 return true; 2175 } else if (ptn->is_JavaObject()) { 2176 return this->points_to(ptn->as_JavaObject()); 2177 } else if (this->is_JavaObject()) { 2178 return ptn->points_to(this->as_JavaObject()); 2179 } 2180 assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity"); 2181 int ptn_count = ptn->edge_count(); 2182 for (EdgeIterator i(this); i.has_next(); i.next()) { 2183 PointsToNode* this_e = i.get(); 2184 for (int j = 0; j < ptn_count; j++) { 2185 if (this_e == ptn->edge(j)) 2186 return true; 2187 } 2188 } 2189 return false; 2190 } 2191 2192 #ifdef ASSERT 2193 // Return true if bases point to this java object. 2194 bool FieldNode::has_base(JavaObjectNode* jobj) const { 2195 for (BaseIterator i(this); i.has_next(); i.next()) { 2196 if (i.get() == jobj) 2197 return true; 2198 } 2199 return false; 2200 } 2201 #endif 2202 2203 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) { 2204 const Type *adr_type = phase->type(adr); 2205 if (adr->is_AddP() && adr_type->isa_oopptr() == NULL && 2206 adr->in(AddPNode::Address)->is_Proj() && 2207 adr->in(AddPNode::Address)->in(0)->is_Allocate()) { 2208 // We are computing a raw address for a store captured by an Initialize 2209 // compute an appropriate address type. AddP cases #3 and #5 (see below). 2210 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot); 2211 assert(offs != Type::OffsetBot || 2212 adr->in(AddPNode::Address)->in(0)->is_AllocateArray(), 2213 "offset must be a constant or it is initialization of array"); 2214 return offs; 2215 } 2216 const TypePtr *t_ptr = adr_type->isa_ptr(); 2217 assert(t_ptr != NULL, "must be a pointer type"); 2218 return t_ptr->offset(); 2219 } 2220 2221 Node* ConnectionGraph::get_addp_base(Node *addp) { 2222 assert(addp->is_AddP(), "must be AddP"); 2223 // 2224 // AddP cases for Base and Address inputs: 2225 // case #1. Direct object's field reference: 2226 // Allocate 2227 // | 2228 // Proj #5 ( oop result ) 2229 // | 2230 // CheckCastPP (cast to instance type) 2231 // | | 2232 // AddP ( base == address ) 2233 // 2234 // case #2. Indirect object's field reference: 2235 // Phi 2236 // | 2237 // CastPP (cast to instance type) 2238 // | | 2239 // AddP ( base == address ) 2240 // 2241 // case #3. Raw object's field reference for Initialize node: 2242 // Allocate 2243 // | 2244 // Proj #5 ( oop result ) 2245 // top | 2246 // \ | 2247 // AddP ( base == top ) 2248 // 2249 // case #4. Array's element reference: 2250 // {CheckCastPP | CastPP} 2251 // | | | 2252 // | AddP ( array's element offset ) 2253 // | | 2254 // AddP ( array's offset ) 2255 // 2256 // case #5. Raw object's field reference for arraycopy stub call: 2257 // The inline_native_clone() case when the arraycopy stub is called 2258 // after the allocation before Initialize and CheckCastPP nodes. 2259 // Allocate 2260 // | 2261 // Proj #5 ( oop result ) 2262 // | | 2263 // AddP ( base == address ) 2264 // 2265 // case #6. Constant Pool, ThreadLocal, CastX2P or 2266 // Raw object's field reference: 2267 // {ConP, ThreadLocal, CastX2P, raw Load} 2268 // top | 2269 // \ | 2270 // AddP ( base == top ) 2271 // 2272 // case #7. Klass's field reference. 2273 // LoadKlass 2274 // | | 2275 // AddP ( base == address ) 2276 // 2277 // case #8. narrow Klass's field reference. 2278 // LoadNKlass 2279 // | 2280 // DecodeN 2281 // | | 2282 // AddP ( base == address ) 2283 // 2284 Node *base = addp->in(AddPNode::Base); 2285 if (base->uncast()->is_top()) { // The AddP case #3 and #6. 2286 base = addp->in(AddPNode::Address); 2287 while (base->is_AddP()) { 2288 // Case #6 (unsafe access) may have several chained AddP nodes. 2289 assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only"); 2290 base = base->in(AddPNode::Address); 2291 } 2292 Node* uncast_base = base->uncast(); 2293 int opcode = uncast_base->Opcode(); 2294 assert(opcode == Op_ConP || opcode == Op_ThreadLocal || 2295 opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() || 2296 (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) || 2297 (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()) || 2298 (uncast_base->is_Phi() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) || 2299 uncast_base->Opcode() == Op_ShenandoahLoadReferenceBarrier, "sanity"); 2300 } 2301 return base; 2302 } 2303 2304 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) { 2305 assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes"); 2306 Node* addp2 = addp->raw_out(0); 2307 if (addp->outcnt() == 1 && addp2->is_AddP() && 2308 addp2->in(AddPNode::Base) == n && 2309 addp2->in(AddPNode::Address) == addp) { 2310 assert(addp->in(AddPNode::Base) == n, "expecting the same base"); 2311 // 2312 // Find array's offset to push it on worklist first and 2313 // as result process an array's element offset first (pushed second) 2314 // to avoid CastPP for the array's offset. 2315 // Otherwise the inserted CastPP (LocalVar) will point to what 2316 // the AddP (Field) points to. Which would be wrong since 2317 // the algorithm expects the CastPP has the same point as 2318 // as AddP's base CheckCastPP (LocalVar). 2319 // 2320 // ArrayAllocation 2321 // | 2322 // CheckCastPP 2323 // | 2324 // memProj (from ArrayAllocation CheckCastPP) 2325 // | || 2326 // | || Int (element index) 2327 // | || | ConI (log(element size)) 2328 // | || | / 2329 // | || LShift 2330 // | || / 2331 // | AddP (array's element offset) 2332 // | | 2333 // | | ConI (array's offset: #12(32-bits) or #24(64-bits)) 2334 // | / / 2335 // AddP (array's offset) 2336 // | 2337 // Load/Store (memory operation on array's element) 2338 // 2339 return addp2; 2340 } 2341 return NULL; 2342 } 2343 2344 // 2345 // Adjust the type and inputs of an AddP which computes the 2346 // address of a field of an instance 2347 // 2348 bool ConnectionGraph::split_AddP(Node *addp, Node *base) { 2349 PhaseGVN* igvn = _igvn; 2350 const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr(); 2351 assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr"); 2352 const TypeOopPtr *t = igvn->type(addp)->isa_oopptr(); 2353 if (t == NULL) { 2354 // We are computing a raw address for a store captured by an Initialize 2355 // compute an appropriate address type (cases #3 and #5). 2356 assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer"); 2357 assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation"); 2358 intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot); 2359 assert(offs != Type::OffsetBot, "offset must be a constant"); 2360 t = base_t->add_offset(offs)->is_oopptr(); 2361 } 2362 int inst_id = base_t->instance_id(); 2363 assert(!t->is_known_instance() || t->instance_id() == inst_id, 2364 "old type must be non-instance or match new type"); 2365 2366 // The type 't' could be subclass of 'base_t'. 2367 // As result t->offset() could be large then base_t's size and it will 2368 // cause the failure in add_offset() with narrow oops since TypeOopPtr() 2369 // constructor verifies correctness of the offset. 2370 // 2371 // It could happened on subclass's branch (from the type profiling 2372 // inlining) which was not eliminated during parsing since the exactness 2373 // of the allocation type was not propagated to the subclass type check. 2374 // 2375 // Or the type 't' could be not related to 'base_t' at all. 2376 // It could happened when CHA type is different from MDO type on a dead path 2377 // (for example, from instanceof check) which is not collapsed during parsing. 2378 // 2379 // Do nothing for such AddP node and don't process its users since 2380 // this code branch will go away. 2381 // 2382 if (!t->is_known_instance() && 2383 !base_t->klass()->is_subtype_of(t->klass())) { 2384 return false; // bail out 2385 } 2386 const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr(); 2387 // Do NOT remove the next line: ensure a new alias index is allocated 2388 // for the instance type. Note: C++ will not remove it since the call 2389 // has side effect. 2390 int alias_idx = _compile->get_alias_index(tinst); 2391 igvn->set_type(addp, tinst); 2392 // record the allocation in the node map 2393 set_map(addp, get_map(base->_idx)); 2394 // Set addp's Base and Address to 'base'. 2395 Node *abase = addp->in(AddPNode::Base); 2396 Node *adr = addp->in(AddPNode::Address); 2397 if (adr->is_Proj() && adr->in(0)->is_Allocate() && 2398 adr->in(0)->_idx == (uint)inst_id) { 2399 // Skip AddP cases #3 and #5. 2400 } else { 2401 assert(!abase->is_top(), "sanity"); // AddP case #3 2402 if (abase != base) { 2403 igvn->hash_delete(addp); 2404 addp->set_req(AddPNode::Base, base); 2405 if (abase == adr) { 2406 addp->set_req(AddPNode::Address, base); 2407 } else { 2408 // AddP case #4 (adr is array's element offset AddP node) 2409 #ifdef ASSERT 2410 const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr(); 2411 assert(adr->is_AddP() && atype != NULL && 2412 atype->instance_id() == inst_id, "array's element offset should be processed first"); 2413 #endif 2414 } 2415 igvn->hash_insert(addp); 2416 } 2417 } 2418 // Put on IGVN worklist since at least addp's type was changed above. 2419 record_for_optimizer(addp); 2420 return true; 2421 } 2422 2423 // 2424 // Create a new version of orig_phi if necessary. Returns either the newly 2425 // created phi or an existing phi. Sets create_new to indicate whether a new 2426 // phi was created. Cache the last newly created phi in the node map. 2427 // 2428 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, bool &new_created) { 2429 Compile *C = _compile; 2430 PhaseGVN* igvn = _igvn; 2431 new_created = false; 2432 int phi_alias_idx = C->get_alias_index(orig_phi->adr_type()); 2433 // nothing to do if orig_phi is bottom memory or matches alias_idx 2434 if (phi_alias_idx == alias_idx) { 2435 return orig_phi; 2436 } 2437 // Have we recently created a Phi for this alias index? 2438 PhiNode *result = get_map_phi(orig_phi->_idx); 2439 if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) { 2440 return result; 2441 } 2442 // Previous check may fail when the same wide memory Phi was split into Phis 2443 // for different memory slices. Search all Phis for this region. 2444 if (result != NULL) { 2445 Node* region = orig_phi->in(0); 2446 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) { 2447 Node* phi = region->fast_out(i); 2448 if (phi->is_Phi() && 2449 C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) { 2450 assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice"); 2451 return phi->as_Phi(); 2452 } 2453 } 2454 } 2455 if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) { 2456 if (C->do_escape_analysis() == true && !C->failing()) { 2457 // Retry compilation without escape analysis. 2458 // If this is the first failure, the sentinel string will "stick" 2459 // to the Compile object, and the C2Compiler will see it and retry. 2460 C->record_failure(C2Compiler::retry_no_escape_analysis()); 2461 } 2462 return NULL; 2463 } 2464 orig_phi_worklist.append_if_missing(orig_phi); 2465 const TypePtr *atype = C->get_adr_type(alias_idx); 2466 result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype); 2467 C->copy_node_notes_to(result, orig_phi); 2468 igvn->set_type(result, result->bottom_type()); 2469 record_for_optimizer(result); 2470 set_map(orig_phi, result); 2471 new_created = true; 2472 return result; 2473 } 2474 2475 // 2476 // Return a new version of Memory Phi "orig_phi" with the inputs having the 2477 // specified alias index. 2478 // 2479 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist) { 2480 assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory"); 2481 Compile *C = _compile; 2482 PhaseGVN* igvn = _igvn; 2483 bool new_phi_created; 2484 PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created); 2485 if (!new_phi_created) { 2486 return result; 2487 } 2488 GrowableArray<PhiNode *> phi_list; 2489 GrowableArray<uint> cur_input; 2490 PhiNode *phi = orig_phi; 2491 uint idx = 1; 2492 bool finished = false; 2493 while(!finished) { 2494 while (idx < phi->req()) { 2495 Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist); 2496 if (mem != NULL && mem->is_Phi()) { 2497 PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created); 2498 if (new_phi_created) { 2499 // found an phi for which we created a new split, push current one on worklist and begin 2500 // processing new one 2501 phi_list.push(phi); 2502 cur_input.push(idx); 2503 phi = mem->as_Phi(); 2504 result = newphi; 2505 idx = 1; 2506 continue; 2507 } else { 2508 mem = newphi; 2509 } 2510 } 2511 if (C->failing()) { 2512 return NULL; 2513 } 2514 result->set_req(idx++, mem); 2515 } 2516 #ifdef ASSERT 2517 // verify that the new Phi has an input for each input of the original 2518 assert( phi->req() == result->req(), "must have same number of inputs."); 2519 assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match"); 2520 #endif 2521 // Check if all new phi's inputs have specified alias index. 2522 // Otherwise use old phi. 2523 for (uint i = 1; i < phi->req(); i++) { 2524 Node* in = result->in(i); 2525 assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond."); 2526 } 2527 // we have finished processing a Phi, see if there are any more to do 2528 finished = (phi_list.length() == 0 ); 2529 if (!finished) { 2530 phi = phi_list.pop(); 2531 idx = cur_input.pop(); 2532 PhiNode *prev_result = get_map_phi(phi->_idx); 2533 prev_result->set_req(idx++, result); 2534 result = prev_result; 2535 } 2536 } 2537 return result; 2538 } 2539 2540 // 2541 // The next methods are derived from methods in MemNode. 2542 // 2543 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) { 2544 Node *mem = mmem; 2545 // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally 2546 // means an array I have not precisely typed yet. Do not do any 2547 // alias stuff with it any time soon. 2548 if (toop->base() != Type::AnyPtr && 2549 !(toop->klass() != NULL && 2550 toop->klass()->is_java_lang_Object() && 2551 toop->offset() == Type::OffsetBot)) { 2552 mem = mmem->memory_at(alias_idx); 2553 // Update input if it is progress over what we have now 2554 } 2555 return mem; 2556 } 2557 2558 // 2559 // Move memory users to their memory slices. 2560 // 2561 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *> &orig_phis) { 2562 Compile* C = _compile; 2563 PhaseGVN* igvn = _igvn; 2564 const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr(); 2565 assert(tp != NULL, "ptr type"); 2566 int alias_idx = C->get_alias_index(tp); 2567 int general_idx = C->get_general_index(alias_idx); 2568 2569 // Move users first 2570 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2571 Node* use = n->fast_out(i); 2572 if (use->is_MergeMem()) { 2573 MergeMemNode* mmem = use->as_MergeMem(); 2574 assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice"); 2575 if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) { 2576 continue; // Nothing to do 2577 } 2578 // Replace previous general reference to mem node. 2579 uint orig_uniq = C->unique(); 2580 Node* m = find_inst_mem(n, general_idx, orig_phis); 2581 assert(orig_uniq == C->unique(), "no new nodes"); 2582 mmem->set_memory_at(general_idx, m); 2583 --imax; 2584 --i; 2585 } else if (use->is_MemBar()) { 2586 assert(!use->is_Initialize(), "initializing stores should not be moved"); 2587 if (use->req() > MemBarNode::Precedent && 2588 use->in(MemBarNode::Precedent) == n) { 2589 // Don't move related membars. 2590 record_for_optimizer(use); 2591 continue; 2592 } 2593 tp = use->as_MemBar()->adr_type()->isa_ptr(); 2594 if (tp != NULL && C->get_alias_index(tp) == alias_idx || 2595 alias_idx == general_idx) { 2596 continue; // Nothing to do 2597 } 2598 // Move to general memory slice. 2599 uint orig_uniq = C->unique(); 2600 Node* m = find_inst_mem(n, general_idx, orig_phis); 2601 assert(orig_uniq == C->unique(), "no new nodes"); 2602 igvn->hash_delete(use); 2603 imax -= use->replace_edge(n, m); 2604 igvn->hash_insert(use); 2605 record_for_optimizer(use); 2606 --i; 2607 #ifdef ASSERT 2608 } else if (use->is_Mem()) { 2609 if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) { 2610 // Don't move related cardmark. 2611 continue; 2612 } 2613 // Memory nodes should have new memory input. 2614 tp = igvn->type(use->in(MemNode::Address))->isa_ptr(); 2615 assert(tp != NULL, "ptr type"); 2616 int idx = C->get_alias_index(tp); 2617 assert(get_map(use->_idx) != NULL || idx == alias_idx, 2618 "Following memory nodes should have new memory input or be on the same memory slice"); 2619 } else if (use->is_Phi()) { 2620 // Phi nodes should be split and moved already. 2621 tp = use->as_Phi()->adr_type()->isa_ptr(); 2622 assert(tp != NULL, "ptr type"); 2623 int idx = C->get_alias_index(tp); 2624 assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice"); 2625 } else { 2626 use->dump(); 2627 assert(false, "should not be here"); 2628 #endif 2629 } 2630 } 2631 } 2632 2633 // 2634 // Search memory chain of "mem" to find a MemNode whose address 2635 // is the specified alias index. 2636 // 2637 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *> &orig_phis) { 2638 if (orig_mem == NULL) 2639 return orig_mem; 2640 Compile* C = _compile; 2641 PhaseGVN* igvn = _igvn; 2642 const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr(); 2643 bool is_instance = (toop != NULL) && toop->is_known_instance(); 2644 Node *start_mem = C->start()->proj_out(TypeFunc::Memory); 2645 Node *prev = NULL; 2646 Node *result = orig_mem; 2647 while (prev != result) { 2648 prev = result; 2649 if (result == start_mem) 2650 break; // hit one of our sentinels 2651 if (result->is_Mem()) { 2652 const Type *at = igvn->type(result->in(MemNode::Address)); 2653 if (at == Type::TOP) 2654 break; // Dead 2655 assert (at->isa_ptr() != NULL, "pointer type required."); 2656 int idx = C->get_alias_index(at->is_ptr()); 2657 if (idx == alias_idx) 2658 break; // Found 2659 if (!is_instance && (at->isa_oopptr() == NULL || 2660 !at->is_oopptr()->is_known_instance())) { 2661 break; // Do not skip store to general memory slice. 2662 } 2663 result = result->in(MemNode::Memory); 2664 } 2665 if (!is_instance) 2666 continue; // don't search further for non-instance types 2667 // skip over a call which does not affect this memory slice 2668 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) { 2669 Node *proj_in = result->in(0); 2670 if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) { 2671 break; // hit one of our sentinels 2672 } else if (proj_in->is_Call()) { 2673 CallNode *call = proj_in->as_Call(); 2674 if (!call->may_modify(toop, igvn)) { 2675 result = call->in(TypeFunc::Memory); 2676 } 2677 } else if (proj_in->is_Initialize()) { 2678 AllocateNode* alloc = proj_in->as_Initialize()->allocation(); 2679 // Stop if this is the initialization for the object instance which 2680 // which contains this memory slice, otherwise skip over it. 2681 if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) { 2682 result = proj_in->in(TypeFunc::Memory); 2683 } 2684 } else if (proj_in->is_MemBar()) { 2685 result = proj_in->in(TypeFunc::Memory); 2686 } 2687 } else if (result->is_MergeMem()) { 2688 MergeMemNode *mmem = result->as_MergeMem(); 2689 result = step_through_mergemem(mmem, alias_idx, toop); 2690 if (result == mmem->base_memory()) { 2691 // Didn't find instance memory, search through general slice recursively. 2692 result = mmem->memory_at(C->get_general_index(alias_idx)); 2693 result = find_inst_mem(result, alias_idx, orig_phis); 2694 if (C->failing()) { 2695 return NULL; 2696 } 2697 mmem->set_memory_at(alias_idx, result); 2698 } 2699 } else if (result->is_Phi() && 2700 C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) { 2701 Node *un = result->as_Phi()->unique_input(igvn); 2702 if (un != NULL) { 2703 orig_phis.append_if_missing(result->as_Phi()); 2704 result = un; 2705 } else { 2706 break; 2707 } 2708 } else if (result->is_ClearArray()) { 2709 if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) { 2710 // Can not bypass initialization of the instance 2711 // we are looking for. 2712 break; 2713 } 2714 // Otherwise skip it (the call updated 'result' value). 2715 } else if (result->Opcode() == Op_SCMemProj) { 2716 Node* mem = result->in(0); 2717 Node* adr = NULL; 2718 if (mem->is_LoadStore()) { 2719 adr = mem->in(MemNode::Address); 2720 } else { 2721 assert(mem->Opcode() == Op_EncodeISOArray, "sanity"); 2722 adr = mem->in(3); // Memory edge corresponds to destination array 2723 } 2724 const Type *at = igvn->type(adr); 2725 if (at != Type::TOP) { 2726 assert (at->isa_ptr() != NULL, "pointer type required."); 2727 int idx = C->get_alias_index(at->is_ptr()); 2728 assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field"); 2729 break; 2730 } 2731 result = mem->in(MemNode::Memory); 2732 } 2733 } 2734 if (result->is_Phi()) { 2735 PhiNode *mphi = result->as_Phi(); 2736 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required"); 2737 const TypePtr *t = mphi->adr_type(); 2738 if (!is_instance) { 2739 // Push all non-instance Phis on the orig_phis worklist to update inputs 2740 // during Phase 4 if needed. 2741 orig_phis.append_if_missing(mphi); 2742 } else if (C->get_alias_index(t) != alias_idx) { 2743 // Create a new Phi with the specified alias index type. 2744 result = split_memory_phi(mphi, alias_idx, orig_phis); 2745 } 2746 } 2747 // the result is either MemNode, PhiNode, InitializeNode. 2748 return result; 2749 } 2750 2751 // 2752 // Convert the types of unescaped object to instance types where possible, 2753 // propagate the new type information through the graph, and update memory 2754 // edges and MergeMem inputs to reflect the new type. 2755 // 2756 // We start with allocations (and calls which may be allocations) on alloc_worklist. 2757 // The processing is done in 4 phases: 2758 // 2759 // Phase 1: Process possible allocations from alloc_worklist. Create instance 2760 // types for the CheckCastPP for allocations where possible. 2761 // Propagate the the new types through users as follows: 2762 // casts and Phi: push users on alloc_worklist 2763 // AddP: cast Base and Address inputs to the instance type 2764 // push any AddP users on alloc_worklist and push any memnode 2765 // users onto memnode_worklist. 2766 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and 2767 // search the Memory chain for a store with the appropriate type 2768 // address type. If a Phi is found, create a new version with 2769 // the appropriate memory slices from each of the Phi inputs. 2770 // For stores, process the users as follows: 2771 // MemNode: push on memnode_worklist 2772 // MergeMem: push on mergemem_worklist 2773 // Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice 2774 // moving the first node encountered of each instance type to the 2775 // the input corresponding to its alias index. 2776 // appropriate memory slice. 2777 // Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes. 2778 // 2779 // In the following example, the CheckCastPP nodes are the cast of allocation 2780 // results and the allocation of node 29 is unescaped and eligible to be an 2781 // instance type. 2782 // 2783 // We start with: 2784 // 2785 // 7 Parm #memory 2786 // 10 ConI "12" 2787 // 19 CheckCastPP "Foo" 2788 // 20 AddP _ 19 19 10 Foo+12 alias_index=4 2789 // 29 CheckCastPP "Foo" 2790 // 30 AddP _ 29 29 10 Foo+12 alias_index=4 2791 // 2792 // 40 StoreP 25 7 20 ... alias_index=4 2793 // 50 StoreP 35 40 30 ... alias_index=4 2794 // 60 StoreP 45 50 20 ... alias_index=4 2795 // 70 LoadP _ 60 30 ... alias_index=4 2796 // 80 Phi 75 50 60 Memory alias_index=4 2797 // 90 LoadP _ 80 30 ... alias_index=4 2798 // 100 LoadP _ 80 20 ... alias_index=4 2799 // 2800 // 2801 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24 2802 // and creating a new alias index for node 30. This gives: 2803 // 2804 // 7 Parm #memory 2805 // 10 ConI "12" 2806 // 19 CheckCastPP "Foo" 2807 // 20 AddP _ 19 19 10 Foo+12 alias_index=4 2808 // 29 CheckCastPP "Foo" iid=24 2809 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24 2810 // 2811 // 40 StoreP 25 7 20 ... alias_index=4 2812 // 50 StoreP 35 40 30 ... alias_index=6 2813 // 60 StoreP 45 50 20 ... alias_index=4 2814 // 70 LoadP _ 60 30 ... alias_index=6 2815 // 80 Phi 75 50 60 Memory alias_index=4 2816 // 90 LoadP _ 80 30 ... alias_index=6 2817 // 100 LoadP _ 80 20 ... alias_index=4 2818 // 2819 // In phase 2, new memory inputs are computed for the loads and stores, 2820 // And a new version of the phi is created. In phase 4, the inputs to 2821 // node 80 are updated and then the memory nodes are updated with the 2822 // values computed in phase 2. This results in: 2823 // 2824 // 7 Parm #memory 2825 // 10 ConI "12" 2826 // 19 CheckCastPP "Foo" 2827 // 20 AddP _ 19 19 10 Foo+12 alias_index=4 2828 // 29 CheckCastPP "Foo" iid=24 2829 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24 2830 // 2831 // 40 StoreP 25 7 20 ... alias_index=4 2832 // 50 StoreP 35 7 30 ... alias_index=6 2833 // 60 StoreP 45 40 20 ... alias_index=4 2834 // 70 LoadP _ 50 30 ... alias_index=6 2835 // 80 Phi 75 40 60 Memory alias_index=4 2836 // 120 Phi 75 50 50 Memory alias_index=6 2837 // 90 LoadP _ 120 30 ... alias_index=6 2838 // 100 LoadP _ 80 20 ... alias_index=4 2839 // 2840 void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist) { 2841 GrowableArray<Node *> memnode_worklist; 2842 GrowableArray<PhiNode *> orig_phis; 2843 PhaseIterGVN *igvn = _igvn; 2844 uint new_index_start = (uint) _compile->num_alias_types(); 2845 Arena* arena = Thread::current()->resource_area(); 2846 VectorSet visited(arena); 2847 ideal_nodes.clear(); // Reset for use with set_map/get_map. 2848 uint unique_old = _compile->unique(); 2849 2850 // Phase 1: Process possible allocations from alloc_worklist. 2851 // Create instance types for the CheckCastPP for allocations where possible. 2852 // 2853 // (Note: don't forget to change the order of the second AddP node on 2854 // the alloc_worklist if the order of the worklist processing is changed, 2855 // see the comment in find_second_addp().) 2856 // 2857 while (alloc_worklist.length() != 0) { 2858 Node *n = alloc_worklist.pop(); 2859 uint ni = n->_idx; 2860 if (n->is_Call()) { 2861 CallNode *alloc = n->as_Call(); 2862 // copy escape information to call node 2863 PointsToNode* ptn = ptnode_adr(alloc->_idx); 2864 PointsToNode::EscapeState es = ptn->escape_state(); 2865 // We have an allocation or call which returns a Java object, 2866 // see if it is unescaped. 2867 if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable()) 2868 continue; 2869 // Find CheckCastPP for the allocate or for the return value of a call 2870 n = alloc->result_cast(); 2871 if (n == NULL) { // No uses except Initialize node 2872 if (alloc->is_Allocate()) { 2873 // Set the scalar_replaceable flag for allocation 2874 // so it could be eliminated if it has no uses. 2875 alloc->as_Allocate()->_is_scalar_replaceable = true; 2876 } 2877 if (alloc->is_CallStaticJava()) { 2878 // Set the scalar_replaceable flag for boxing method 2879 // so it could be eliminated if it has no uses. 2880 alloc->as_CallStaticJava()->_is_scalar_replaceable = true; 2881 } 2882 continue; 2883 } 2884 if (!n->is_CheckCastPP()) { // not unique CheckCastPP. 2885 assert(!alloc->is_Allocate(), "allocation should have unique type"); 2886 continue; 2887 } 2888 2889 // The inline code for Object.clone() casts the allocation result to 2890 // java.lang.Object and then to the actual type of the allocated 2891 // object. Detect this case and use the second cast. 2892 // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when 2893 // the allocation result is cast to java.lang.Object and then 2894 // to the actual Array type. 2895 if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL 2896 && (alloc->is_AllocateArray() || 2897 igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) { 2898 Node *cast2 = NULL; 2899 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2900 Node *use = n->fast_out(i); 2901 if (use->is_CheckCastPP()) { 2902 cast2 = use; 2903 break; 2904 } 2905 } 2906 if (cast2 != NULL) { 2907 n = cast2; 2908 } else { 2909 // Non-scalar replaceable if the allocation type is unknown statically 2910 // (reflection allocation), the object can't be restored during 2911 // deoptimization without precise type. 2912 continue; 2913 } 2914 } 2915 2916 const TypeOopPtr *t = igvn->type(n)->isa_oopptr(); 2917 if (t == NULL) 2918 continue; // not a TypeOopPtr 2919 if (!t->klass_is_exact()) 2920 continue; // not an unique type 2921 2922 if (alloc->is_Allocate()) { 2923 // Set the scalar_replaceable flag for allocation 2924 // so it could be eliminated. 2925 alloc->as_Allocate()->_is_scalar_replaceable = true; 2926 } 2927 if (alloc->is_CallStaticJava()) { 2928 // Set the scalar_replaceable flag for boxing method 2929 // so it could be eliminated. 2930 alloc->as_CallStaticJava()->_is_scalar_replaceable = true; 2931 } 2932 set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state 2933 // in order for an object to be scalar-replaceable, it must be: 2934 // - a direct allocation (not a call returning an object) 2935 // - non-escaping 2936 // - eligible to be a unique type 2937 // - not determined to be ineligible by escape analysis 2938 set_map(alloc, n); 2939 set_map(n, alloc); 2940 const TypeOopPtr* tinst = t->cast_to_instance_id(ni); 2941 igvn->hash_delete(n); 2942 igvn->set_type(n, tinst); 2943 n->raise_bottom_type(tinst); 2944 igvn->hash_insert(n); 2945 record_for_optimizer(n); 2946 if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) { 2947 2948 // First, put on the worklist all Field edges from Connection Graph 2949 // which is more accurate then putting immediate users from Ideal Graph. 2950 for (EdgeIterator e(ptn); e.has_next(); e.next()) { 2951 PointsToNode* tgt = e.get(); 2952 Node* use = tgt->ideal_node(); 2953 assert(tgt->is_Field() && use->is_AddP(), 2954 "only AddP nodes are Field edges in CG"); 2955 if (use->outcnt() > 0) { // Don't process dead nodes 2956 Node* addp2 = find_second_addp(use, use->in(AddPNode::Base)); 2957 if (addp2 != NULL) { 2958 assert(alloc->is_AllocateArray(),"array allocation was expected"); 2959 alloc_worklist.append_if_missing(addp2); 2960 } 2961 alloc_worklist.append_if_missing(use); 2962 } 2963 } 2964 2965 // An allocation may have an Initialize which has raw stores. Scan 2966 // the users of the raw allocation result and push AddP users 2967 // on alloc_worklist. 2968 Node *raw_result = alloc->proj_out(TypeFunc::Parms); 2969 assert (raw_result != NULL, "must have an allocation result"); 2970 for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) { 2971 Node *use = raw_result->fast_out(i); 2972 if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes 2973 Node* addp2 = find_second_addp(use, raw_result); 2974 if (addp2 != NULL) { 2975 assert(alloc->is_AllocateArray(),"array allocation was expected"); 2976 alloc_worklist.append_if_missing(addp2); 2977 } 2978 alloc_worklist.append_if_missing(use); 2979 } else if (use->is_MemBar()) { 2980 memnode_worklist.append_if_missing(use); 2981 } 2982 } 2983 } 2984 } else if (n->is_AddP()) { 2985 JavaObjectNode* jobj = unique_java_object(get_addp_base(n)); 2986 if (jobj == NULL || jobj == phantom_obj) { 2987 #ifdef ASSERT 2988 ptnode_adr(get_addp_base(n)->_idx)->dump(); 2989 ptnode_adr(n->_idx)->dump(); 2990 assert(jobj != NULL && jobj != phantom_obj, "escaped allocation"); 2991 #endif 2992 _compile->record_failure(C2Compiler::retry_no_escape_analysis()); 2993 return; 2994 } 2995 Node *base = get_map(jobj->idx()); // CheckCastPP node 2996 if (!split_AddP(n, base)) continue; // wrong type from dead path 2997 } else if (n->is_Phi() || 2998 n->is_CheckCastPP() || 2999 n->is_EncodeP() || 3000 n->is_DecodeN() || 3001 (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) { 3002 if (visited.test_set(n->_idx)) { 3003 assert(n->is_Phi(), "loops only through Phi's"); 3004 continue; // already processed 3005 } 3006 JavaObjectNode* jobj = unique_java_object(n); 3007 if (jobj == NULL || jobj == phantom_obj) { 3008 #ifdef ASSERT 3009 ptnode_adr(n->_idx)->dump(); 3010 assert(jobj != NULL && jobj != phantom_obj, "escaped allocation"); 3011 #endif 3012 _compile->record_failure(C2Compiler::retry_no_escape_analysis()); 3013 return; 3014 } else { 3015 Node *val = get_map(jobj->idx()); // CheckCastPP node 3016 TypeNode *tn = n->as_Type(); 3017 const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr(); 3018 assert(tinst != NULL && tinst->is_known_instance() && 3019 tinst->instance_id() == jobj->idx() , "instance type expected."); 3020 3021 const Type *tn_type = igvn->type(tn); 3022 const TypeOopPtr *tn_t; 3023 if (tn_type->isa_narrowoop()) { 3024 tn_t = tn_type->make_ptr()->isa_oopptr(); 3025 } else { 3026 tn_t = tn_type->isa_oopptr(); 3027 } 3028 if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) { 3029 if (tn_type->isa_narrowoop()) { 3030 tn_type = tinst->make_narrowoop(); 3031 } else { 3032 tn_type = tinst; 3033 } 3034 igvn->hash_delete(tn); 3035 igvn->set_type(tn, tn_type); 3036 tn->set_type(tn_type); 3037 igvn->hash_insert(tn); 3038 record_for_optimizer(n); 3039 } else { 3040 assert(tn_type == TypePtr::NULL_PTR || 3041 tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()), 3042 "unexpected type"); 3043 continue; // Skip dead path with different type 3044 } 3045 } 3046 } else { 3047 debug_only(n->dump();) 3048 assert(false, "EA: unexpected node"); 3049 continue; 3050 } 3051 // push allocation's users on appropriate worklist 3052 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3053 Node *use = n->fast_out(i); 3054 if(use->is_Mem() && use->in(MemNode::Address) == n) { 3055 // Load/store to instance's field 3056 memnode_worklist.append_if_missing(use); 3057 } else if (use->is_MemBar()) { 3058 if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge 3059 memnode_worklist.append_if_missing(use); 3060 } 3061 } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes 3062 Node* addp2 = find_second_addp(use, n); 3063 if (addp2 != NULL) { 3064 alloc_worklist.append_if_missing(addp2); 3065 } 3066 alloc_worklist.append_if_missing(use); 3067 } else if (use->is_Phi() || 3068 use->is_CheckCastPP() || 3069 use->is_EncodeNarrowPtr() || 3070 use->is_DecodeNarrowPtr() || 3071 (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) { 3072 alloc_worklist.append_if_missing(use); 3073 #ifdef ASSERT 3074 } else if (use->is_Mem()) { 3075 assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path"); 3076 } else if (use->is_MergeMem()) { 3077 assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist"); 3078 } else if (use->is_SafePoint()) { 3079 // Look for MergeMem nodes for calls which reference unique allocation 3080 // (through CheckCastPP nodes) even for debug info. 3081 Node* m = use->in(TypeFunc::Memory); 3082 if (m->is_MergeMem()) { 3083 assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist"); 3084 } 3085 } else if (use->Opcode() == Op_EncodeISOArray) { 3086 if (use->in(MemNode::Memory) == n || use->in(3) == n) { 3087 // EncodeISOArray overwrites destination array 3088 memnode_worklist.append_if_missing(use); 3089 } 3090 } else { 3091 uint op = use->Opcode(); 3092 if (!(op == Op_CmpP || op == Op_Conv2B || 3093 op == Op_CastP2X || op == Op_StoreCM || 3094 op == Op_FastLock || op == Op_AryEq || op == Op_StrComp || 3095 op == Op_StrEquals || op == Op_StrIndexOf)) { 3096 n->dump(); 3097 use->dump(); 3098 assert(false, "EA: missing allocation reference path"); 3099 } 3100 #endif 3101 } 3102 } 3103 3104 } 3105 // New alias types were created in split_AddP(). 3106 uint new_index_end = (uint) _compile->num_alias_types(); 3107 assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1"); 3108 3109 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and 3110 // compute new values for Memory inputs (the Memory inputs are not 3111 // actually updated until phase 4.) 3112 if (memnode_worklist.length() == 0) 3113 return; // nothing to do 3114 while (memnode_worklist.length() != 0) { 3115 Node *n = memnode_worklist.pop(); 3116 if (visited.test_set(n->_idx)) 3117 continue; 3118 if (n->is_Phi() || n->is_ClearArray()) { 3119 // we don't need to do anything, but the users must be pushed 3120 } else if (n->is_MemBar()) { // Initialize, MemBar nodes 3121 // we don't need to do anything, but the users must be pushed 3122 n = n->as_MemBar()->proj_out(TypeFunc::Memory); 3123 if (n == NULL) 3124 continue; 3125 } else if (n->Opcode() == Op_EncodeISOArray) { 3126 // get the memory projection 3127 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3128 Node *use = n->fast_out(i); 3129 if (use->Opcode() == Op_SCMemProj) { 3130 n = use; 3131 break; 3132 } 3133 } 3134 assert(n->Opcode() == Op_SCMemProj, "memory projection required"); 3135 } else { 3136 assert(n->is_Mem(), "memory node required."); 3137 Node *addr = n->in(MemNode::Address); 3138 const Type *addr_t = igvn->type(addr); 3139 if (addr_t == Type::TOP) 3140 continue; 3141 assert (addr_t->isa_ptr() != NULL, "pointer type required."); 3142 int alias_idx = _compile->get_alias_index(addr_t->is_ptr()); 3143 assert ((uint)alias_idx < new_index_end, "wrong alias index"); 3144 Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis); 3145 if (_compile->failing()) { 3146 return; 3147 } 3148 if (mem != n->in(MemNode::Memory)) { 3149 // We delay the memory edge update since we need old one in 3150 // MergeMem code below when instances memory slices are separated. 3151 set_map(n, mem); 3152 } 3153 if (n->is_Load()) { 3154 continue; // don't push users 3155 } else if (n->is_LoadStore()) { 3156 // get the memory projection 3157 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3158 Node *use = n->fast_out(i); 3159 if (use->Opcode() == Op_SCMemProj) { 3160 n = use; 3161 break; 3162 } 3163 } 3164 assert(n->Opcode() == Op_SCMemProj, "memory projection required"); 3165 } 3166 } 3167 // push user on appropriate worklist 3168 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3169 Node *use = n->fast_out(i); 3170 if (use->is_Phi() || use->is_ClearArray()) { 3171 memnode_worklist.append_if_missing(use); 3172 } else if (use->is_Mem() && use->in(MemNode::Memory) == n) { 3173 if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores 3174 continue; 3175 memnode_worklist.append_if_missing(use); 3176 } else if (use->is_MemBar()) { 3177 if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge 3178 memnode_worklist.append_if_missing(use); 3179 } 3180 #ifdef ASSERT 3181 } else if(use->is_Mem()) { 3182 assert(use->in(MemNode::Memory) != n, "EA: missing memory path"); 3183 } else if (use->is_MergeMem()) { 3184 assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist"); 3185 } else if (use->Opcode() == Op_EncodeISOArray) { 3186 if (use->in(MemNode::Memory) == n || use->in(3) == n) { 3187 // EncodeISOArray overwrites destination array 3188 memnode_worklist.append_if_missing(use); 3189 } 3190 } else { 3191 uint op = use->Opcode(); 3192 if (!(op == Op_StoreCM || 3193 (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL && 3194 strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) || 3195 op == Op_AryEq || op == Op_StrComp || 3196 op == Op_StrEquals || op == Op_StrIndexOf)) { 3197 n->dump(); 3198 use->dump(); 3199 assert(false, "EA: missing memory path"); 3200 } 3201 #endif 3202 } 3203 } 3204 } 3205 3206 // Phase 3: Process MergeMem nodes from mergemem_worklist. 3207 // Walk each memory slice moving the first node encountered of each 3208 // instance type to the the input corresponding to its alias index. 3209 uint length = _mergemem_worklist.length(); 3210 for( uint next = 0; next < length; ++next ) { 3211 MergeMemNode* nmm = _mergemem_worklist.at(next); 3212 assert(!visited.test_set(nmm->_idx), "should not be visited before"); 3213 // Note: we don't want to use MergeMemStream here because we only want to 3214 // scan inputs which exist at the start, not ones we add during processing. 3215 // Note 2: MergeMem may already contains instance memory slices added 3216 // during find_inst_mem() call when memory nodes were processed above. 3217 igvn->hash_delete(nmm); 3218 uint nslices = MIN2(nmm->req(), new_index_start); 3219 for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) { 3220 Node* mem = nmm->in(i); 3221 Node* cur = NULL; 3222 if (mem == NULL || mem->is_top()) 3223 continue; 3224 // First, update mergemem by moving memory nodes to corresponding slices 3225 // if their type became more precise since this mergemem was created. 3226 while (mem->is_Mem()) { 3227 const Type *at = igvn->type(mem->in(MemNode::Address)); 3228 if (at != Type::TOP) { 3229 assert (at->isa_ptr() != NULL, "pointer type required."); 3230 uint idx = (uint)_compile->get_alias_index(at->is_ptr()); 3231 if (idx == i) { 3232 if (cur == NULL) 3233 cur = mem; 3234 } else { 3235 if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) { 3236 nmm->set_memory_at(idx, mem); 3237 } 3238 } 3239 } 3240 mem = mem->in(MemNode::Memory); 3241 } 3242 nmm->set_memory_at(i, (cur != NULL) ? cur : mem); 3243 // Find any instance of the current type if we haven't encountered 3244 // already a memory slice of the instance along the memory chain. 3245 for (uint ni = new_index_start; ni < new_index_end; ni++) { 3246 if((uint)_compile->get_general_index(ni) == i) { 3247 Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni); 3248 if (nmm->is_empty_memory(m)) { 3249 Node* result = find_inst_mem(mem, ni, orig_phis); 3250 if (_compile->failing()) { 3251 return; 3252 } 3253 nmm->set_memory_at(ni, result); 3254 } 3255 } 3256 } 3257 } 3258 // Find the rest of instances values 3259 for (uint ni = new_index_start; ni < new_index_end; ni++) { 3260 const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr(); 3261 Node* result = step_through_mergemem(nmm, ni, tinst); 3262 if (result == nmm->base_memory()) { 3263 // Didn't find instance memory, search through general slice recursively. 3264 result = nmm->memory_at(_compile->get_general_index(ni)); 3265 result = find_inst_mem(result, ni, orig_phis); 3266 if (_compile->failing()) { 3267 return; 3268 } 3269 nmm->set_memory_at(ni, result); 3270 } 3271 } 3272 igvn->hash_insert(nmm); 3273 record_for_optimizer(nmm); 3274 } 3275 3276 // Phase 4: Update the inputs of non-instance memory Phis and 3277 // the Memory input of memnodes 3278 // First update the inputs of any non-instance Phi's from 3279 // which we split out an instance Phi. Note we don't have 3280 // to recursively process Phi's encounted on the input memory 3281 // chains as is done in split_memory_phi() since they will 3282 // also be processed here. 3283 for (int j = 0; j < orig_phis.length(); j++) { 3284 PhiNode *phi = orig_phis.at(j); 3285 int alias_idx = _compile->get_alias_index(phi->adr_type()); 3286 igvn->hash_delete(phi); 3287 for (uint i = 1; i < phi->req(); i++) { 3288 Node *mem = phi->in(i); 3289 Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis); 3290 if (_compile->failing()) { 3291 return; 3292 } 3293 if (mem != new_mem) { 3294 phi->set_req(i, new_mem); 3295 } 3296 } 3297 igvn->hash_insert(phi); 3298 record_for_optimizer(phi); 3299 } 3300 3301 // Update the memory inputs of MemNodes with the value we computed 3302 // in Phase 2 and move stores memory users to corresponding memory slices. 3303 // Disable memory split verification code until the fix for 6984348. 3304 // Currently it produces false negative results since it does not cover all cases. 3305 #if 0 // ifdef ASSERT 3306 visited.Reset(); 3307 Node_Stack old_mems(arena, _compile->unique() >> 2); 3308 #endif 3309 for (uint i = 0; i < ideal_nodes.size(); i++) { 3310 Node* n = ideal_nodes.at(i); 3311 Node* nmem = get_map(n->_idx); 3312 assert(nmem != NULL, "sanity"); 3313 if (n->is_Mem()) { 3314 #if 0 // ifdef ASSERT 3315 Node* old_mem = n->in(MemNode::Memory); 3316 if (!visited.test_set(old_mem->_idx)) { 3317 old_mems.push(old_mem, old_mem->outcnt()); 3318 } 3319 #endif 3320 assert(n->in(MemNode::Memory) != nmem, "sanity"); 3321 if (!n->is_Load()) { 3322 // Move memory users of a store first. 3323 move_inst_mem(n, orig_phis); 3324 } 3325 // Now update memory input 3326 igvn->hash_delete(n); 3327 n->set_req(MemNode::Memory, nmem); 3328 igvn->hash_insert(n); 3329 record_for_optimizer(n); 3330 } else { 3331 assert(n->is_Allocate() || n->is_CheckCastPP() || 3332 n->is_AddP() || n->is_Phi(), "unknown node used for set_map()"); 3333 } 3334 } 3335 #if 0 // ifdef ASSERT 3336 // Verify that memory was split correctly 3337 while (old_mems.is_nonempty()) { 3338 Node* old_mem = old_mems.node(); 3339 uint old_cnt = old_mems.index(); 3340 old_mems.pop(); 3341 assert(old_cnt == old_mem->outcnt(), "old mem could be lost"); 3342 } 3343 #endif 3344 } 3345 3346 #ifndef PRODUCT 3347 static const char *node_type_names[] = { 3348 "UnknownType", 3349 "JavaObject", 3350 "LocalVar", 3351 "Field", 3352 "Arraycopy" 3353 }; 3354 3355 static const char *esc_names[] = { 3356 "UnknownEscape", 3357 "NoEscape", 3358 "ArgEscape", 3359 "GlobalEscape" 3360 }; 3361 3362 void PointsToNode::dump(bool print_state) const { 3363 NodeType nt = node_type(); 3364 tty->print("%s ", node_type_names[(int) nt]); 3365 if (print_state) { 3366 EscapeState es = escape_state(); 3367 EscapeState fields_es = fields_escape_state(); 3368 tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]); 3369 if (nt == PointsToNode::JavaObject && !this->scalar_replaceable()) 3370 tty->print("NSR "); 3371 } 3372 if (is_Field()) { 3373 FieldNode* f = (FieldNode*)this; 3374 if (f->is_oop()) 3375 tty->print("oop "); 3376 if (f->offset() > 0) 3377 tty->print("+%d ", f->offset()); 3378 tty->print("("); 3379 for (BaseIterator i(f); i.has_next(); i.next()) { 3380 PointsToNode* b = i.get(); 3381 tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : "")); 3382 } 3383 tty->print(" )"); 3384 } 3385 tty->print("["); 3386 for (EdgeIterator i(this); i.has_next(); i.next()) { 3387 PointsToNode* e = i.get(); 3388 tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : ""); 3389 } 3390 tty->print(" ["); 3391 for (UseIterator i(this); i.has_next(); i.next()) { 3392 PointsToNode* u = i.get(); 3393 bool is_base = false; 3394 if (PointsToNode::is_base_use(u)) { 3395 is_base = true; 3396 u = PointsToNode::get_use_node(u)->as_Field(); 3397 } 3398 tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : ""); 3399 } 3400 tty->print(" ]] "); 3401 if (_node == NULL) 3402 tty->print_cr("<null>"); 3403 else 3404 _node->dump(); 3405 } 3406 3407 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) { 3408 bool first = true; 3409 int ptnodes_length = ptnodes_worklist.length(); 3410 for (int i = 0; i < ptnodes_length; i++) { 3411 PointsToNode *ptn = ptnodes_worklist.at(i); 3412 if (ptn == NULL || !ptn->is_JavaObject()) 3413 continue; 3414 PointsToNode::EscapeState es = ptn->escape_state(); 3415 if ((es != PointsToNode::NoEscape) && !Verbose) { 3416 continue; 3417 } 3418 Node* n = ptn->ideal_node(); 3419 if (n->is_Allocate() || (n->is_CallStaticJava() && 3420 n->as_CallStaticJava()->is_boxing_method())) { 3421 if (first) { 3422 tty->cr(); 3423 tty->print("======== Connection graph for "); 3424 _compile->method()->print_short_name(); 3425 tty->cr(); 3426 first = false; 3427 } 3428 ptn->dump(); 3429 // Print all locals and fields which reference this allocation 3430 for (UseIterator j(ptn); j.has_next(); j.next()) { 3431 PointsToNode* use = j.get(); 3432 if (use->is_LocalVar()) { 3433 use->dump(Verbose); 3434 } else if (Verbose) { 3435 use->dump(); 3436 } 3437 } 3438 tty->cr(); 3439 } 3440 } 3441 } 3442 #endif