1 /*
   2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "jfr/support/jfrIntrinsics.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/callGenerator.hpp"
  34 #include "opto/cfgnode.hpp"
  35 #include "opto/connode.hpp"
  36 #include "opto/idealKit.hpp"
  37 #include "opto/mathexactnode.hpp"
  38 #include "opto/mulnode.hpp"
  39 #include "opto/parse.hpp"
  40 #include "opto/runtime.hpp"
  41 #include "opto/subnode.hpp"
  42 #include "prims/nativeLookup.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 #include "utilities/macros.hpp"
  45 
  46 class LibraryIntrinsic : public InlineCallGenerator {
  47   // Extend the set of intrinsics known to the runtime:
  48  public:
  49  private:
  50   bool             _is_virtual;
  51   bool             _does_virtual_dispatch;
  52   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  53   int8_t           _last_predicate; // Last generated predicate
  54   vmIntrinsics::ID _intrinsic_id;
  55 
  56  public:
  57   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  58     : InlineCallGenerator(m),
  59       _is_virtual(is_virtual),
  60       _does_virtual_dispatch(does_virtual_dispatch),
  61       _predicates_count((int8_t)predicates_count),
  62       _last_predicate((int8_t)-1),
  63       _intrinsic_id(id)
  64   {
  65   }
  66   virtual bool is_intrinsic() const { return true; }
  67   virtual bool is_virtual()   const { return _is_virtual; }
  68   virtual bool is_predicated() const { return _predicates_count > 0; }
  69   virtual int  predicates_count() const { return _predicates_count; }
  70   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  71   virtual JVMState* generate(JVMState* jvms);
  72   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  73   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  74 };
  75 
  76 
  77 // Local helper class for LibraryIntrinsic:
  78 class LibraryCallKit : public GraphKit {
  79  private:
  80   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  81   Node*             _result;        // the result node, if any
  82   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  83 
  84   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  85 
  86  public:
  87   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  88     : GraphKit(jvms),
  89       _intrinsic(intrinsic),
  90       _result(NULL)
  91   {
  92     // Check if this is a root compile.  In that case we don't have a caller.
  93     if (!jvms->has_method()) {
  94       _reexecute_sp = sp();
  95     } else {
  96       // Find out how many arguments the interpreter needs when deoptimizing
  97       // and save the stack pointer value so it can used by uncommon_trap.
  98       // We find the argument count by looking at the declared signature.
  99       bool ignored_will_link;
 100       ciSignature* declared_signature = NULL;
 101       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 102       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 103       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 104     }
 105   }
 106 
 107   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 108 
 109   ciMethod*         caller()    const    { return jvms()->method(); }
 110   int               bci()       const    { return jvms()->bci(); }
 111   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 112   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 113   ciMethod*         callee()    const    { return _intrinsic->method(); }
 114 
 115   bool  try_to_inline(int predicate);
 116   Node* try_to_predicate(int predicate);
 117 
 118   void push_result() {
 119     // Push the result onto the stack.
 120     if (!stopped() && result() != NULL) {
 121       BasicType bt = result()->bottom_type()->basic_type();
 122       push_node(bt, result());
 123     }
 124   }
 125 
 126  private:
 127   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 128     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 129   }
 130 
 131   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 132   void  set_result(RegionNode* region, PhiNode* value);
 133   Node*     result() { return _result; }
 134 
 135   virtual int reexecute_sp() { return _reexecute_sp; }
 136 
 137   // Helper functions to inline natives
 138   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 139   Node* generate_slow_guard(Node* test, RegionNode* region);
 140   Node* generate_fair_guard(Node* test, RegionNode* region);
 141   Node* generate_negative_guard(Node* index, RegionNode* region,
 142                                 // resulting CastII of index:
 143                                 Node* *pos_index = NULL);
 144   Node* generate_nonpositive_guard(Node* index, bool never_negative,
 145                                    // resulting CastII of index:
 146                                    Node* *pos_index = NULL);
 147   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 148                              Node* array_length,
 149                              RegionNode* region);
 150   Node* generate_current_thread(Node* &tls_output);
 151   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
 152                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
 153   Node* load_mirror_from_klass(Node* klass);
 154   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 155                                       RegionNode* region, int null_path,
 156                                       int offset);
 157   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 158                                RegionNode* region, int null_path) {
 159     int offset = java_lang_Class::klass_offset_in_bytes();
 160     return load_klass_from_mirror_common(mirror, never_see_null,
 161                                          region, null_path,
 162                                          offset);
 163   }
 164   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 165                                      RegionNode* region, int null_path) {
 166     int offset = java_lang_Class::array_klass_offset_in_bytes();
 167     return load_klass_from_mirror_common(mirror, never_see_null,
 168                                          region, null_path,
 169                                          offset);
 170   }
 171   Node* generate_access_flags_guard(Node* kls,
 172                                     int modifier_mask, int modifier_bits,
 173                                     RegionNode* region);
 174   Node* generate_interface_guard(Node* kls, RegionNode* region);
 175   Node* generate_array_guard(Node* kls, RegionNode* region) {
 176     return generate_array_guard_common(kls, region, false, false);
 177   }
 178   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 179     return generate_array_guard_common(kls, region, false, true);
 180   }
 181   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 182     return generate_array_guard_common(kls, region, true, false);
 183   }
 184   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 185     return generate_array_guard_common(kls, region, true, true);
 186   }
 187   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 188                                     bool obj_array, bool not_array);
 189   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 190   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 191                                      bool is_virtual = false, bool is_static = false);
 192   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 193     return generate_method_call(method_id, false, true);
 194   }
 195   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 196     return generate_method_call(method_id, true, false);
 197   }
 198   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 199 
 200   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 201   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 202   bool inline_string_compareTo();
 203   bool inline_string_indexOf();
 204   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 205   bool inline_string_equals();
 206   Node* round_double_node(Node* n);
 207   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 208   bool inline_math_native(vmIntrinsics::ID id);
 209   bool inline_trig(vmIntrinsics::ID id);
 210   bool inline_math(vmIntrinsics::ID id);
 211   template <typename OverflowOp>
 212   bool inline_math_overflow(Node* arg1, Node* arg2);
 213   void inline_math_mathExact(Node* math, Node* test);
 214   bool inline_math_addExactI(bool is_increment);
 215   bool inline_math_addExactL(bool is_increment);
 216   bool inline_math_multiplyExactI();
 217   bool inline_math_multiplyExactL();
 218   bool inline_math_negateExactI();
 219   bool inline_math_negateExactL();
 220   bool inline_math_subtractExactI(bool is_decrement);
 221   bool inline_math_subtractExactL(bool is_decrement);
 222   bool inline_exp();
 223   bool inline_pow();
 224   Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 225   bool inline_min_max(vmIntrinsics::ID id);
 226   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 227   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 228   int classify_unsafe_addr(Node* &base, Node* &offset);
 229   Node* make_unsafe_address(Node* base, Node* offset);
 230   // Helper for inline_unsafe_access.
 231   // Generates the guards that check whether the result of
 232   // Unsafe.getObject should be recorded in an SATB log buffer.
 233   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 234   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile, bool is_unaligned);
 235   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 236   static bool klass_needs_init_guard(Node* kls);
 237   bool inline_unsafe_allocate();
 238   bool inline_unsafe_copyMemory();
 239   bool inline_native_currentThread();
 240 #ifdef JFR_HAVE_INTRINSICS
 241   bool inline_native_classID();
 242   bool inline_native_getEventWriter();
 243 #endif
 244   bool inline_native_time_funcs(address method, const char* funcName);
 245   bool inline_native_isInterrupted();
 246   bool inline_native_Class_query(vmIntrinsics::ID id);
 247   bool inline_native_subtype_check();
 248 
 249   bool inline_native_newArray();
 250   bool inline_native_getLength();
 251   bool inline_array_copyOf(bool is_copyOfRange);
 252   bool inline_array_equals();
 253   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 254   bool inline_native_clone(bool is_virtual);
 255   bool inline_native_Reflection_getCallerClass();
 256   // Helper function for inlining native object hash method
 257   bool inline_native_hashcode(bool is_virtual, bool is_static);
 258   bool inline_native_getClass();
 259 
 260   // Helper functions for inlining arraycopy
 261   bool inline_arraycopy();
 262   void generate_arraycopy(const TypePtr* adr_type,
 263                           BasicType basic_elem_type,
 264                           Node* src,  Node* src_offset,
 265                           Node* dest, Node* dest_offset,
 266                           Node* copy_length,
 267                           bool disjoint_bases = false,
 268                           bool length_never_negative = false,
 269                           RegionNode* slow_region = NULL);
 270   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 271                                                 RegionNode* slow_region);
 272   void generate_clear_array(const TypePtr* adr_type,
 273                             Node* dest,
 274                             BasicType basic_elem_type,
 275                             Node* slice_off,
 276                             Node* slice_len,
 277                             Node* slice_end);
 278   bool generate_block_arraycopy(const TypePtr* adr_type,
 279                                 BasicType basic_elem_type,
 280                                 AllocateNode* alloc,
 281                                 Node* src,  Node* src_offset,
 282                                 Node* dest, Node* dest_offset,
 283                                 Node* dest_size, bool dest_uninitialized);
 284   void generate_slow_arraycopy(const TypePtr* adr_type,
 285                                Node* src,  Node* src_offset,
 286                                Node* dest, Node* dest_offset,
 287                                Node* copy_length, bool dest_uninitialized);
 288   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 289                                      Node* dest_elem_klass,
 290                                      Node* src,  Node* src_offset,
 291                                      Node* dest, Node* dest_offset,
 292                                      Node* copy_length, bool dest_uninitialized);
 293   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 294                                    Node* src,  Node* src_offset,
 295                                    Node* dest, Node* dest_offset,
 296                                    Node* copy_length, bool dest_uninitialized);
 297   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 298                                     BasicType basic_elem_type,
 299                                     bool disjoint_bases,
 300                                     Node* src,  Node* src_offset,
 301                                     Node* dest, Node* dest_offset,
 302                                     Node* copy_length, bool dest_uninitialized);
 303   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 304   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 305   bool inline_unsafe_ordered_store(BasicType type);
 306   bool inline_unsafe_fence(vmIntrinsics::ID id);
 307   bool inline_fp_conversions(vmIntrinsics::ID id);
 308   bool inline_number_methods(vmIntrinsics::ID id);
 309   bool inline_reference_get();
 310   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 311   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 312   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 313   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 314   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 315   bool inline_ghash_processBlocks();
 316   bool inline_sha_implCompress(vmIntrinsics::ID id);
 317   bool inline_digestBase_implCompressMB(int predicate);
 318   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 319                                  bool long_state, address stubAddr, const char *stubName,
 320                                  Node* src_start, Node* ofs, Node* limit);
 321   Node* get_state_from_sha_object(Node *sha_object);
 322   Node* get_state_from_sha5_object(Node *sha_object);
 323   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 324   bool inline_encodeISOArray();
 325   bool inline_updateCRC32();
 326   bool inline_updateBytesCRC32();
 327   bool inline_updateByteBufferCRC32();
 328   bool inline_multiplyToLen();
 329   bool inline_squareToLen();
 330   bool inline_mulAdd();
 331   bool inline_montgomeryMultiply();
 332   bool inline_montgomerySquare();
 333 
 334   bool inline_profileBoolean();
 335 };
 336 
 337 
 338 //---------------------------make_vm_intrinsic----------------------------
 339 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 340   vmIntrinsics::ID id = m->intrinsic_id();
 341   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 342 
 343   ccstr disable_intr = NULL;
 344 
 345   if ((DisableIntrinsic[0] != '\0'
 346        && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) ||
 347       (method_has_option_value("DisableIntrinsic", disable_intr)
 348        && strstr(disable_intr, vmIntrinsics::name_at(id)) != NULL)) {
 349     // disabled by a user request on the command line:
 350     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 351     return NULL;
 352   }
 353 
 354   if (!m->is_loaded()) {
 355     // do not attempt to inline unloaded methods
 356     return NULL;
 357   }
 358 
 359   // Only a few intrinsics implement a virtual dispatch.
 360   // They are expensive calls which are also frequently overridden.
 361   if (is_virtual) {
 362     switch (id) {
 363     case vmIntrinsics::_hashCode:
 364     case vmIntrinsics::_clone:
 365       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 366       break;
 367     default:
 368       return NULL;
 369     }
 370   }
 371 
 372   // -XX:-InlineNatives disables nearly all intrinsics:
 373   if (!InlineNatives) {
 374     switch (id) {
 375     case vmIntrinsics::_indexOf:
 376     case vmIntrinsics::_compareTo:
 377     case vmIntrinsics::_equals:
 378     case vmIntrinsics::_equalsC:
 379     case vmIntrinsics::_getAndAddInt:
 380     case vmIntrinsics::_getAndAddLong:
 381     case vmIntrinsics::_getAndSetInt:
 382     case vmIntrinsics::_getAndSetLong:
 383     case vmIntrinsics::_getAndSetObject:
 384     case vmIntrinsics::_loadFence:
 385     case vmIntrinsics::_storeFence:
 386     case vmIntrinsics::_fullFence:
 387       break;  // InlineNatives does not control String.compareTo
 388     case vmIntrinsics::_Reference_get:
 389       break;  // InlineNatives does not control Reference.get
 390     default:
 391       return NULL;
 392     }
 393   }
 394 
 395   int predicates = 0;
 396   bool does_virtual_dispatch = false;
 397 
 398   switch (id) {
 399   case vmIntrinsics::_compareTo:
 400     if (!SpecialStringCompareTo)  return NULL;
 401     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 402     break;
 403   case vmIntrinsics::_indexOf:
 404     if (!SpecialStringIndexOf)  return NULL;
 405     break;
 406   case vmIntrinsics::_equals:
 407     if (!SpecialStringEquals)  return NULL;
 408     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 409     break;
 410   case vmIntrinsics::_equalsC:
 411     if (!SpecialArraysEquals)  return NULL;
 412     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 413     break;
 414   case vmIntrinsics::_arraycopy:
 415     if (!InlineArrayCopy)  return NULL;
 416     break;
 417   case vmIntrinsics::_copyMemory:
 418     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 419     if (!InlineArrayCopy)  return NULL;
 420     break;
 421   case vmIntrinsics::_hashCode:
 422     if (!InlineObjectHash)  return NULL;
 423     does_virtual_dispatch = true;
 424     break;
 425   case vmIntrinsics::_clone:
 426     does_virtual_dispatch = true;
 427   case vmIntrinsics::_copyOf:
 428   case vmIntrinsics::_copyOfRange:
 429     if (!InlineObjectCopy)  return NULL;
 430     // These also use the arraycopy intrinsic mechanism:
 431     if (!InlineArrayCopy)  return NULL;
 432     break;
 433   case vmIntrinsics::_encodeISOArray:
 434     if (!SpecialEncodeISOArray)  return NULL;
 435     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 436     break;
 437   case vmIntrinsics::_checkIndex:
 438     // We do not intrinsify this.  The optimizer does fine with it.
 439     return NULL;
 440 
 441   case vmIntrinsics::_getCallerClass:
 442     if (!UseNewReflection)  return NULL;
 443     if (!InlineReflectionGetCallerClass)  return NULL;
 444     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 445     break;
 446 
 447   case vmIntrinsics::_bitCount_i:
 448     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 449     break;
 450 
 451   case vmIntrinsics::_bitCount_l:
 452     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 453     break;
 454 
 455   case vmIntrinsics::_numberOfLeadingZeros_i:
 456     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 457     break;
 458 
 459   case vmIntrinsics::_numberOfLeadingZeros_l:
 460     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 461     break;
 462 
 463   case vmIntrinsics::_numberOfTrailingZeros_i:
 464     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 465     break;
 466 
 467   case vmIntrinsics::_numberOfTrailingZeros_l:
 468     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 469     break;
 470 
 471   case vmIntrinsics::_reverseBytes_c:
 472     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 473     break;
 474   case vmIntrinsics::_reverseBytes_s:
 475     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 476     break;
 477   case vmIntrinsics::_reverseBytes_i:
 478     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 479     break;
 480   case vmIntrinsics::_reverseBytes_l:
 481     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 482     break;
 483 
 484   case vmIntrinsics::_Reference_get:
 485     // Use the intrinsic version of Reference.get() so that the value in
 486     // the referent field can be registered by the G1 pre-barrier code.
 487     // Also add memory barrier to prevent commoning reads from this field
 488     // across safepoint since GC can change it value.
 489     break;
 490 
 491   case vmIntrinsics::_compareAndSwapObject:
 492 #ifdef _LP64
 493     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 494 #endif
 495     break;
 496 
 497   case vmIntrinsics::_compareAndSwapLong:
 498     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 499     break;
 500 
 501   case vmIntrinsics::_getAndAddInt:
 502     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 503     break;
 504 
 505   case vmIntrinsics::_getAndAddLong:
 506     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 507     break;
 508 
 509   case vmIntrinsics::_getAndSetInt:
 510     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 511     break;
 512 
 513   case vmIntrinsics::_getAndSetLong:
 514     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 515     break;
 516 
 517   case vmIntrinsics::_getAndSetObject:
 518 #ifdef _LP64
 519     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 520     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 521     break;
 522 #else
 523     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 524     break;
 525 #endif
 526 
 527   case vmIntrinsics::_aescrypt_encryptBlock:
 528   case vmIntrinsics::_aescrypt_decryptBlock:
 529     if (!UseAESIntrinsics) return NULL;
 530     break;
 531 
 532   case vmIntrinsics::_multiplyToLen:
 533     if (!UseMultiplyToLenIntrinsic) return NULL;
 534     break;
 535 
 536   case vmIntrinsics::_squareToLen:
 537     if (!UseSquareToLenIntrinsic) return NULL;
 538     break;
 539 
 540   case vmIntrinsics::_mulAdd:
 541     if (!UseMulAddIntrinsic) return NULL;
 542     break;
 543 
 544   case vmIntrinsics::_montgomeryMultiply:
 545      if (!UseMontgomeryMultiplyIntrinsic) return NULL;
 546     break;
 547   case vmIntrinsics::_montgomerySquare:
 548      if (!UseMontgomerySquareIntrinsic) return NULL;
 549     break;
 550 
 551   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 552   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 553     if (!UseAESIntrinsics) return NULL;
 554     // these two require the predicated logic
 555     predicates = 1;
 556     break;
 557 
 558   case vmIntrinsics::_sha_implCompress:
 559     if (!UseSHA1Intrinsics) return NULL;
 560     break;
 561 
 562   case vmIntrinsics::_sha2_implCompress:
 563     if (!UseSHA256Intrinsics) return NULL;
 564     break;
 565 
 566   case vmIntrinsics::_sha5_implCompress:
 567     if (!UseSHA512Intrinsics) return NULL;
 568     break;
 569 
 570   case vmIntrinsics::_digestBase_implCompressMB:
 571     if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) return NULL;
 572     predicates = 3;
 573     break;
 574 
 575   case vmIntrinsics::_ghash_processBlocks:
 576     if (!UseGHASHIntrinsics) return NULL;
 577     break;
 578 
 579   case vmIntrinsics::_updateCRC32:
 580   case vmIntrinsics::_updateBytesCRC32:
 581   case vmIntrinsics::_updateByteBufferCRC32:
 582     if (!UseCRC32Intrinsics) return NULL;
 583     break;
 584 
 585   case vmIntrinsics::_incrementExactI:
 586   case vmIntrinsics::_addExactI:
 587     if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
 588     break;
 589   case vmIntrinsics::_incrementExactL:
 590   case vmIntrinsics::_addExactL:
 591     if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
 592     break;
 593   case vmIntrinsics::_decrementExactI:
 594   case vmIntrinsics::_subtractExactI:
 595     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 596     break;
 597   case vmIntrinsics::_decrementExactL:
 598   case vmIntrinsics::_subtractExactL:
 599     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 600     break;
 601   case vmIntrinsics::_negateExactI:
 602     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 603     break;
 604   case vmIntrinsics::_negateExactL:
 605     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 606     break;
 607   case vmIntrinsics::_multiplyExactI:
 608     if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
 609     break;
 610   case vmIntrinsics::_multiplyExactL:
 611     if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
 612     break;
 613 
 614  default:
 615     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 616     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 617     break;
 618   }
 619 
 620   // -XX:-InlineClassNatives disables natives from the Class class.
 621   // The flag applies to all reflective calls, notably Array.newArray
 622   // (visible to Java programmers as Array.newInstance).
 623   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 624       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 625     if (!InlineClassNatives)  return NULL;
 626   }
 627 
 628   // -XX:-InlineThreadNatives disables natives from the Thread class.
 629   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 630     if (!InlineThreadNatives)  return NULL;
 631   }
 632 
 633   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 634   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 635       m->holder()->name() == ciSymbol::java_lang_Float() ||
 636       m->holder()->name() == ciSymbol::java_lang_Double()) {
 637     if (!InlineMathNatives)  return NULL;
 638   }
 639 
 640   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 641   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 642     if (!InlineUnsafeOps)  return NULL;
 643   }
 644 
 645   return new LibraryIntrinsic(m, is_virtual, predicates, does_virtual_dispatch, (vmIntrinsics::ID) id);
 646 }
 647 
 648 //----------------------register_library_intrinsics-----------------------
 649 // Initialize this file's data structures, for each Compile instance.
 650 void Compile::register_library_intrinsics() {
 651   // Nothing to do here.
 652 }
 653 
 654 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 655   LibraryCallKit kit(jvms, this);
 656   Compile* C = kit.C;
 657   int nodes = C->unique();
 658 #ifndef PRODUCT
 659   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 660     char buf[1000];
 661     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 662     tty->print_cr("Intrinsic %s", str);
 663   }
 664 #endif
 665   ciMethod* callee = kit.callee();
 666   const int bci    = kit.bci();
 667 
 668   // Try to inline the intrinsic.
 669   if (kit.try_to_inline(_last_predicate)) {
 670     if (C->print_intrinsics() || C->print_inlining()) {
 671       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 672     }
 673     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 674     if (C->log()) {
 675       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 676                      vmIntrinsics::name_at(intrinsic_id()),
 677                      (is_virtual() ? " virtual='1'" : ""),
 678                      C->unique() - nodes);
 679     }
 680     // Push the result from the inlined method onto the stack.
 681     kit.push_result();
 682     return kit.transfer_exceptions_into_jvms();
 683   }
 684 
 685   // The intrinsic bailed out
 686   if (C->print_intrinsics() || C->print_inlining()) {
 687     if (jvms->has_method()) {
 688       // Not a root compile.
 689       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 690       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 691     } else {
 692       // Root compile
 693       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 694                vmIntrinsics::name_at(intrinsic_id()),
 695                (is_virtual() ? " (virtual)" : ""), bci);
 696     }
 697   }
 698   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 699   return NULL;
 700 }
 701 
 702 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 703   LibraryCallKit kit(jvms, this);
 704   Compile* C = kit.C;
 705   int nodes = C->unique();
 706   _last_predicate = predicate;
 707 #ifndef PRODUCT
 708   assert(is_predicated() && predicate < predicates_count(), "sanity");
 709   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 710     char buf[1000];
 711     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 712     tty->print_cr("Predicate for intrinsic %s", str);
 713   }
 714 #endif
 715   ciMethod* callee = kit.callee();
 716   const int bci    = kit.bci();
 717 
 718   Node* slow_ctl = kit.try_to_predicate(predicate);
 719   if (!kit.failing()) {
 720     if (C->print_intrinsics() || C->print_inlining()) {
 721       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
 722     }
 723     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 724     if (C->log()) {
 725       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 726                      vmIntrinsics::name_at(intrinsic_id()),
 727                      (is_virtual() ? " virtual='1'" : ""),
 728                      C->unique() - nodes);
 729     }
 730     return slow_ctl; // Could be NULL if the check folds.
 731   }
 732 
 733   // The intrinsic bailed out
 734   if (C->print_intrinsics() || C->print_inlining()) {
 735     if (jvms->has_method()) {
 736       // Not a root compile.
 737       const char* msg = "failed to generate predicate for intrinsic";
 738       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 739     } else {
 740       // Root compile
 741       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 742                                         vmIntrinsics::name_at(intrinsic_id()),
 743                                         (is_virtual() ? " (virtual)" : ""), bci);
 744     }
 745   }
 746   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 747   return NULL;
 748 }
 749 
 750 bool LibraryCallKit::try_to_inline(int predicate) {
 751   // Handle symbolic names for otherwise undistinguished boolean switches:
 752   const bool is_store       = true;
 753   const bool is_native_ptr  = true;
 754   const bool is_static      = true;
 755   const bool is_volatile    = true;
 756 
 757   if (!jvms()->has_method()) {
 758     // Root JVMState has a null method.
 759     assert(map()->memory()->Opcode() == Op_Parm, "");
 760     // Insert the memory aliasing node
 761     set_all_memory(reset_memory());
 762   }
 763   assert(merged_memory(), "");
 764 
 765 
 766   switch (intrinsic_id()) {
 767   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 768   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 769   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 770 
 771   case vmIntrinsics::_dsin:
 772   case vmIntrinsics::_dcos:
 773   case vmIntrinsics::_dtan:
 774   case vmIntrinsics::_dabs:
 775   case vmIntrinsics::_datan2:
 776   case vmIntrinsics::_dsqrt:
 777   case vmIntrinsics::_dexp:
 778   case vmIntrinsics::_dlog:
 779   case vmIntrinsics::_dlog10:
 780   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 781 
 782   case vmIntrinsics::_min:
 783   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 784 
 785   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 786   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 787   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 788   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 789   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 790   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 791   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 792   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 793   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 794   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 795   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 796   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 797 
 798   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 799 
 800   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 801   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 802   case vmIntrinsics::_equals:                   return inline_string_equals();
 803 
 804   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile, false);
 805   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile, false);
 806   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile, false);
 807   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile, false);
 808   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile, false);
 809   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile, false);
 810   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile, false);
 811   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile, false);
 812   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile, false);
 813 
 814   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile, false);
 815   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile, false);
 816   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile, false);
 817   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile, false);
 818   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile, false);
 819   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile, false);
 820   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile, false);
 821   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile, false);
 822   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile, false);
 823 
 824   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile, false);
 825   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile, false);
 826   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile, false);
 827   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile, false);
 828   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile, false);
 829   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile, false);
 830   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile, false);
 831   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile, false);
 832 
 833   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile, false);
 834   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile, false);
 835   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile, false);
 836   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile, false);
 837   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile, false);
 838   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile, false);
 839   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile, false);
 840   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile, false);
 841 
 842   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile, false);
 843   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile, false);
 844   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile, false);
 845   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile, false);
 846   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile, false);
 847   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile, false);
 848   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile, false);
 849   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile, false);
 850   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile, false);
 851 
 852   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile, false);
 853   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile, false);
 854   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile, false);
 855   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile, false);
 856   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile, false);
 857   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile, false);
 858   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile, false);
 859   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile, false);
 860   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile, false);
 861 
 862   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 863   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
 864   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
 865   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
 866 
 867   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 868   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 869   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 870 
 871   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 872   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 873   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 874 
 875   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 876   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 877   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 878   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 879   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 880 
 881   case vmIntrinsics::_loadFence:
 882   case vmIntrinsics::_storeFence:
 883   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 884 
 885   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 886   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 887 
 888 #ifdef JFR_HAVE_INTRINSICS
 889   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), "counterTime");
 890   case vmIntrinsics::_getClassId:               return inline_native_classID();
 891   case vmIntrinsics::_getEventWriter:           return inline_native_getEventWriter();
 892 #endif
 893   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 894   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 895   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 896   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 897   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 898   case vmIntrinsics::_getLength:                return inline_native_getLength();
 899   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 900   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 901   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 902   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 903 
 904   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 905 
 906   case vmIntrinsics::_isInstance:
 907   case vmIntrinsics::_getModifiers:
 908   case vmIntrinsics::_isInterface:
 909   case vmIntrinsics::_isArray:
 910   case vmIntrinsics::_isPrimitive:
 911   case vmIntrinsics::_getSuperclass:
 912   case vmIntrinsics::_getComponentType:
 913   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 914 
 915   case vmIntrinsics::_floatToRawIntBits:
 916   case vmIntrinsics::_floatToIntBits:
 917   case vmIntrinsics::_intBitsToFloat:
 918   case vmIntrinsics::_doubleToRawLongBits:
 919   case vmIntrinsics::_doubleToLongBits:
 920   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 921 
 922   case vmIntrinsics::_numberOfLeadingZeros_i:
 923   case vmIntrinsics::_numberOfLeadingZeros_l:
 924   case vmIntrinsics::_numberOfTrailingZeros_i:
 925   case vmIntrinsics::_numberOfTrailingZeros_l:
 926   case vmIntrinsics::_bitCount_i:
 927   case vmIntrinsics::_bitCount_l:
 928   case vmIntrinsics::_reverseBytes_i:
 929   case vmIntrinsics::_reverseBytes_l:
 930   case vmIntrinsics::_reverseBytes_s:
 931   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 932 
 933   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 934 
 935   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 936 
 937   case vmIntrinsics::_aescrypt_encryptBlock:
 938   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 939 
 940   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 941   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 942     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 943 
 944   case vmIntrinsics::_sha_implCompress:
 945   case vmIntrinsics::_sha2_implCompress:
 946   case vmIntrinsics::_sha5_implCompress:
 947     return inline_sha_implCompress(intrinsic_id());
 948 
 949   case vmIntrinsics::_digestBase_implCompressMB:
 950     return inline_digestBase_implCompressMB(predicate);
 951 
 952   case vmIntrinsics::_multiplyToLen:
 953     return inline_multiplyToLen();
 954 
 955   case vmIntrinsics::_squareToLen:
 956     return inline_squareToLen();
 957 
 958   case vmIntrinsics::_mulAdd:
 959     return inline_mulAdd();
 960 
 961   case vmIntrinsics::_montgomeryMultiply:
 962     return inline_montgomeryMultiply();
 963   case vmIntrinsics::_montgomerySquare:
 964     return inline_montgomerySquare();
 965 
 966   case vmIntrinsics::_ghash_processBlocks:
 967     return inline_ghash_processBlocks();
 968 
 969   case vmIntrinsics::_encodeISOArray:
 970     return inline_encodeISOArray();
 971 
 972   case vmIntrinsics::_updateCRC32:
 973     return inline_updateCRC32();
 974   case vmIntrinsics::_updateBytesCRC32:
 975     return inline_updateBytesCRC32();
 976   case vmIntrinsics::_updateByteBufferCRC32:
 977     return inline_updateByteBufferCRC32();
 978 
 979   case vmIntrinsics::_profileBoolean:
 980     return inline_profileBoolean();
 981 
 982   default:
 983     // If you get here, it may be that someone has added a new intrinsic
 984     // to the list in vmSymbols.hpp without implementing it here.
 985 #ifndef PRODUCT
 986     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 987       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 988                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 989     }
 990 #endif
 991     return false;
 992   }
 993 }
 994 
 995 Node* LibraryCallKit::try_to_predicate(int predicate) {
 996   if (!jvms()->has_method()) {
 997     // Root JVMState has a null method.
 998     assert(map()->memory()->Opcode() == Op_Parm, "");
 999     // Insert the memory aliasing node
1000     set_all_memory(reset_memory());
1001   }
1002   assert(merged_memory(), "");
1003 
1004   switch (intrinsic_id()) {
1005   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
1006     return inline_cipherBlockChaining_AESCrypt_predicate(false);
1007   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
1008     return inline_cipherBlockChaining_AESCrypt_predicate(true);
1009   case vmIntrinsics::_digestBase_implCompressMB:
1010     return inline_digestBase_implCompressMB_predicate(predicate);
1011 
1012   default:
1013     // If you get here, it may be that someone has added a new intrinsic
1014     // to the list in vmSymbols.hpp without implementing it here.
1015 #ifndef PRODUCT
1016     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
1017       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
1018                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
1019     }
1020 #endif
1021     Node* slow_ctl = control();
1022     set_control(top()); // No fast path instrinsic
1023     return slow_ctl;
1024   }
1025 }
1026 
1027 //------------------------------set_result-------------------------------
1028 // Helper function for finishing intrinsics.
1029 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
1030   record_for_igvn(region);
1031   set_control(_gvn.transform(region));
1032   set_result( _gvn.transform(value));
1033   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
1034 }
1035 
1036 //------------------------------generate_guard---------------------------
1037 // Helper function for generating guarded fast-slow graph structures.
1038 // The given 'test', if true, guards a slow path.  If the test fails
1039 // then a fast path can be taken.  (We generally hope it fails.)
1040 // In all cases, GraphKit::control() is updated to the fast path.
1041 // The returned value represents the control for the slow path.
1042 // The return value is never 'top'; it is either a valid control
1043 // or NULL if it is obvious that the slow path can never be taken.
1044 // Also, if region and the slow control are not NULL, the slow edge
1045 // is appended to the region.
1046 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
1047   if (stopped()) {
1048     // Already short circuited.
1049     return NULL;
1050   }
1051 
1052   // Build an if node and its projections.
1053   // If test is true we take the slow path, which we assume is uncommon.
1054   if (_gvn.type(test) == TypeInt::ZERO) {
1055     // The slow branch is never taken.  No need to build this guard.
1056     return NULL;
1057   }
1058 
1059   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
1060 
1061   Node* if_slow = _gvn.transform(new (C) IfTrueNode(iff));
1062   if (if_slow == top()) {
1063     // The slow branch is never taken.  No need to build this guard.
1064     return NULL;
1065   }
1066 
1067   if (region != NULL)
1068     region->add_req(if_slow);
1069 
1070   Node* if_fast = _gvn.transform(new (C) IfFalseNode(iff));
1071   set_control(if_fast);
1072 
1073   return if_slow;
1074 }
1075 
1076 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
1077   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
1078 }
1079 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
1080   return generate_guard(test, region, PROB_FAIR);
1081 }
1082 
1083 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
1084                                                      Node* *pos_index) {
1085   if (stopped())
1086     return NULL;                // already stopped
1087   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
1088     return NULL;                // index is already adequately typed
1089   Node* cmp_lt = _gvn.transform(new (C) CmpINode(index, intcon(0)));
1090   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
1091   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
1092   if (is_neg != NULL && pos_index != NULL) {
1093     // Emulate effect of Parse::adjust_map_after_if.
1094     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
1095     ccast->set_req(0, control());
1096     (*pos_index) = _gvn.transform(ccast);
1097   }
1098   return is_neg;
1099 }
1100 
1101 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
1102                                                         Node* *pos_index) {
1103   if (stopped())
1104     return NULL;                // already stopped
1105   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
1106     return NULL;                // index is already adequately typed
1107   Node* cmp_le = _gvn.transform(new (C) CmpINode(index, intcon(0)));
1108   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
1109   Node* bol_le = _gvn.transform(new (C) BoolNode(cmp_le, le_or_eq));
1110   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
1111   if (is_notp != NULL && pos_index != NULL) {
1112     // Emulate effect of Parse::adjust_map_after_if.
1113     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
1114     ccast->set_req(0, control());
1115     (*pos_index) = _gvn.transform(ccast);
1116   }
1117   return is_notp;
1118 }
1119 
1120 // Make sure that 'position' is a valid limit index, in [0..length].
1121 // There are two equivalent plans for checking this:
1122 //   A. (offset + copyLength)  unsigned<=  arrayLength
1123 //   B. offset  <=  (arrayLength - copyLength)
1124 // We require that all of the values above, except for the sum and
1125 // difference, are already known to be non-negative.
1126 // Plan A is robust in the face of overflow, if offset and copyLength
1127 // are both hugely positive.
1128 //
1129 // Plan B is less direct and intuitive, but it does not overflow at
1130 // all, since the difference of two non-negatives is always
1131 // representable.  Whenever Java methods must perform the equivalent
1132 // check they generally use Plan B instead of Plan A.
1133 // For the moment we use Plan A.
1134 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1135                                                   Node* subseq_length,
1136                                                   Node* array_length,
1137                                                   RegionNode* region) {
1138   if (stopped())
1139     return NULL;                // already stopped
1140   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1141   if (zero_offset && subseq_length->eqv_uncast(array_length))
1142     return NULL;                // common case of whole-array copy
1143   Node* last = subseq_length;
1144   if (!zero_offset)             // last += offset
1145     last = _gvn.transform(new (C) AddINode(last, offset));
1146   Node* cmp_lt = _gvn.transform(new (C) CmpUNode(array_length, last));
1147   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
1148   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1149   return is_over;
1150 }
1151 
1152 
1153 //--------------------------generate_current_thread--------------------
1154 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1155   ciKlass*    thread_klass = env()->Thread_klass();
1156   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1157   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
1158   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1159   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1160   tls_output = thread;
1161   return threadObj;
1162 }
1163 
1164 
1165 //------------------------------make_string_method_node------------------------
1166 // Helper method for String intrinsic functions. This version is called
1167 // with str1 and str2 pointing to String object nodes.
1168 //
1169 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
1170   Node* no_ctrl = NULL;
1171 
1172   // Get start addr of string
1173   Node* str1_value   = load_String_value(no_ctrl, str1);
1174   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1175   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1176 
1177   // Get length of string 1
1178   Node* str1_len  = load_String_length(no_ctrl, str1);
1179 
1180   Node* str2_value   = load_String_value(no_ctrl, str2);
1181   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1182   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1183 
1184   Node* str2_len = NULL;
1185   Node* result = NULL;
1186 
1187   switch (opcode) {
1188   case Op_StrIndexOf:
1189     // Get length of string 2
1190     str2_len = load_String_length(no_ctrl, str2);
1191 
1192     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1193                                  str1_start, str1_len, str2_start, str2_len);
1194     break;
1195   case Op_StrComp:
1196     // Get length of string 2
1197     str2_len = load_String_length(no_ctrl, str2);
1198 
1199     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1200                                  str1_start, str1_len, str2_start, str2_len);
1201     break;
1202   case Op_StrEquals:
1203     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1204                                str1_start, str2_start, str1_len);
1205     break;
1206   default:
1207     ShouldNotReachHere();
1208     return NULL;
1209   }
1210 
1211   // All these intrinsics have checks.
1212   C->set_has_split_ifs(true); // Has chance for split-if optimization
1213 
1214   return _gvn.transform(result);
1215 }
1216 
1217 // Helper method for String intrinsic functions. This version is called
1218 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1219 // to Int nodes containing the lenghts of str1 and str2.
1220 //
1221 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1222   Node* result = NULL;
1223   switch (opcode) {
1224   case Op_StrIndexOf:
1225     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1226                                  str1_start, cnt1, str2_start, cnt2);
1227     break;
1228   case Op_StrComp:
1229     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1230                                  str1_start, cnt1, str2_start, cnt2);
1231     break;
1232   case Op_StrEquals:
1233     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1234                                  str1_start, str2_start, cnt1);
1235     break;
1236   default:
1237     ShouldNotReachHere();
1238     return NULL;
1239   }
1240 
1241   // All these intrinsics have checks.
1242   C->set_has_split_ifs(true); // Has chance for split-if optimization
1243 
1244   return _gvn.transform(result);
1245 }
1246 
1247 //------------------------------inline_string_compareTo------------------------
1248 // public int java.lang.String.compareTo(String anotherString);
1249 bool LibraryCallKit::inline_string_compareTo() {
1250   Node* receiver = null_check(argument(0));
1251   Node* arg      = null_check(argument(1));
1252   if (stopped()) {
1253     return true;
1254   }
1255   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1256   return true;
1257 }
1258 
1259 //------------------------------inline_string_equals------------------------
1260 bool LibraryCallKit::inline_string_equals() {
1261   Node* receiver = null_check_receiver();
1262   // NOTE: Do not null check argument for String.equals() because spec
1263   // allows to specify NULL as argument.
1264   Node* argument = this->argument(1);
1265   if (stopped()) {
1266     return true;
1267   }
1268 
1269   // paths (plus control) merge
1270   RegionNode* region = new (C) RegionNode(5);
1271   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
1272 
1273   // does source == target string?
1274   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
1275   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
1276 
1277   Node* if_eq = generate_slow_guard(bol, NULL);
1278   if (if_eq != NULL) {
1279     // receiver == argument
1280     phi->init_req(2, intcon(1));
1281     region->init_req(2, if_eq);
1282   }
1283 
1284   // get String klass for instanceOf
1285   ciInstanceKlass* klass = env()->String_klass();
1286 
1287   if (!stopped()) {
1288     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1289     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
1290     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
1291 
1292     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1293     //instanceOf == true, fallthrough
1294 
1295     if (inst_false != NULL) {
1296       phi->init_req(3, intcon(0));
1297       region->init_req(3, inst_false);
1298     }
1299   }
1300 
1301   if (!stopped()) {
1302     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1303 
1304     // Properly cast the argument to String
1305     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
1306     // This path is taken only when argument's type is String:NotNull.
1307     argument = cast_not_null(argument, false);
1308 
1309     Node* no_ctrl = NULL;
1310 
1311     // Get start addr of receiver
1312     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1313     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1314     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1315 
1316     // Get length of receiver
1317     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1318 
1319     // Get start addr of argument
1320     Node* argument_val    = load_String_value(no_ctrl, argument);
1321     Node* argument_offset = load_String_offset(no_ctrl, argument);
1322     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1323 
1324     // Get length of argument
1325     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1326 
1327     // Check for receiver count != argument count
1328     Node* cmp = _gvn.transform(new(C) CmpINode(receiver_cnt, argument_cnt));
1329     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::ne));
1330     Node* if_ne = generate_slow_guard(bol, NULL);
1331     if (if_ne != NULL) {
1332       phi->init_req(4, intcon(0));
1333       region->init_req(4, if_ne);
1334     }
1335 
1336     // Check for count == 0 is done by assembler code for StrEquals.
1337 
1338     if (!stopped()) {
1339       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1340       phi->init_req(1, equals);
1341       region->init_req(1, control());
1342     }
1343   }
1344 
1345   // post merge
1346   set_control(_gvn.transform(region));
1347   record_for_igvn(region);
1348 
1349   set_result(_gvn.transform(phi));
1350   return true;
1351 }
1352 
1353 //------------------------------inline_array_equals----------------------------
1354 bool LibraryCallKit::inline_array_equals() {
1355   Node* arg1 = argument(0);
1356   Node* arg2 = argument(1);
1357   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1358   return true;
1359 }
1360 
1361 // Java version of String.indexOf(constant string)
1362 // class StringDecl {
1363 //   StringDecl(char[] ca) {
1364 //     offset = 0;
1365 //     count = ca.length;
1366 //     value = ca;
1367 //   }
1368 //   int offset;
1369 //   int count;
1370 //   char[] value;
1371 // }
1372 //
1373 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1374 //                             int targetOffset, int cache_i, int md2) {
1375 //   int cache = cache_i;
1376 //   int sourceOffset = string_object.offset;
1377 //   int sourceCount = string_object.count;
1378 //   int targetCount = target_object.length;
1379 //
1380 //   int targetCountLess1 = targetCount - 1;
1381 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1382 //
1383 //   char[] source = string_object.value;
1384 //   char[] target = target_object;
1385 //   int lastChar = target[targetCountLess1];
1386 //
1387 //  outer_loop:
1388 //   for (int i = sourceOffset; i < sourceEnd; ) {
1389 //     int src = source[i + targetCountLess1];
1390 //     if (src == lastChar) {
1391 //       // With random strings and a 4-character alphabet,
1392 //       // reverse matching at this point sets up 0.8% fewer
1393 //       // frames, but (paradoxically) makes 0.3% more probes.
1394 //       // Since those probes are nearer the lastChar probe,
1395 //       // there is may be a net D$ win with reverse matching.
1396 //       // But, reversing loop inhibits unroll of inner loop
1397 //       // for unknown reason.  So, does running outer loop from
1398 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1399 //       for (int j = 0; j < targetCountLess1; j++) {
1400 //         if (target[targetOffset + j] != source[i+j]) {
1401 //           if ((cache & (1 << source[i+j])) == 0) {
1402 //             if (md2 < j+1) {
1403 //               i += j+1;
1404 //               continue outer_loop;
1405 //             }
1406 //           }
1407 //           i += md2;
1408 //           continue outer_loop;
1409 //         }
1410 //       }
1411 //       return i - sourceOffset;
1412 //     }
1413 //     if ((cache & (1 << src)) == 0) {
1414 //       i += targetCountLess1;
1415 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1416 //     i++;
1417 //   }
1418 //   return -1;
1419 // }
1420 
1421 //------------------------------string_indexOf------------------------
1422 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1423                                      jint cache_i, jint md2_i) {
1424 
1425   Node* no_ctrl  = NULL;
1426   float likely   = PROB_LIKELY(0.9);
1427   float unlikely = PROB_UNLIKELY(0.9);
1428 
1429   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1430 
1431   Node* source        = load_String_value(no_ctrl, string_object);
1432   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1433   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1434 
1435   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1436   jint target_length = target_array->length();
1437   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1438   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1439 
1440   // String.value field is known to be @Stable.
1441   if (UseImplicitStableValues) {
1442     target = cast_array_to_stable(target, target_type);
1443   }
1444 
1445   IdealKit kit(this, false, true);
1446 #define __ kit.
1447   Node* zero             = __ ConI(0);
1448   Node* one              = __ ConI(1);
1449   Node* cache            = __ ConI(cache_i);
1450   Node* md2              = __ ConI(md2_i);
1451   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1452   Node* targetCount      = __ ConI(target_length);
1453   Node* targetCountLess1 = __ ConI(target_length - 1);
1454   Node* targetOffset     = __ ConI(targetOffset_i);
1455   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1456 
1457   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1458   Node* outer_loop = __ make_label(2 /* goto */);
1459   Node* return_    = __ make_label(1);
1460 
1461   __ set(rtn,__ ConI(-1));
1462   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1463        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1464        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1465        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1466        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1467          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1468               Node* tpj = __ AddI(targetOffset, __ value(j));
1469               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1470               Node* ipj  = __ AddI(__ value(i), __ value(j));
1471               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1472               __ if_then(targ, BoolTest::ne, src2); {
1473                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1474                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1475                     __ increment(i, __ AddI(__ value(j), one));
1476                     __ goto_(outer_loop);
1477                   } __ end_if(); __ dead(j);
1478                 }__ end_if(); __ dead(j);
1479                 __ increment(i, md2);
1480                 __ goto_(outer_loop);
1481               }__ end_if();
1482               __ increment(j, one);
1483          }__ end_loop(); __ dead(j);
1484          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1485          __ goto_(return_);
1486        }__ end_if();
1487        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1488          __ increment(i, targetCountLess1);
1489        }__ end_if();
1490        __ increment(i, one);
1491        __ bind(outer_loop);
1492   }__ end_loop(); __ dead(i);
1493   __ bind(return_);
1494 
1495   // Final sync IdealKit and GraphKit.
1496   final_sync(kit);
1497   Node* result = __ value(rtn);
1498 #undef __
1499   C->set_has_loops(true);
1500   return result;
1501 }
1502 
1503 //------------------------------inline_string_indexOf------------------------
1504 bool LibraryCallKit::inline_string_indexOf() {
1505   Node* receiver = argument(0);
1506   Node* arg      = argument(1);
1507 
1508   Node* result;
1509   // Disable the use of pcmpestri until it can be guaranteed that
1510   // the load doesn't cross into the uncommited space.
1511   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1512       UseSSE42Intrinsics) {
1513     // Generate SSE4.2 version of indexOf
1514     // We currently only have match rules that use SSE4.2
1515 
1516     receiver = null_check(receiver);
1517     arg      = null_check(arg);
1518     if (stopped()) {
1519       return true;
1520     }
1521 
1522     ciInstanceKlass* str_klass = env()->String_klass();
1523     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
1524 
1525     // Make the merge point
1526     RegionNode* result_rgn = new (C) RegionNode(4);
1527     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
1528     Node* no_ctrl  = NULL;
1529 
1530     // Get start addr of source string
1531     Node* source = load_String_value(no_ctrl, receiver);
1532     Node* source_offset = load_String_offset(no_ctrl, receiver);
1533     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1534 
1535     // Get length of source string
1536     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1537 
1538     // Get start addr of substring
1539     Node* substr = load_String_value(no_ctrl, arg);
1540     Node* substr_offset = load_String_offset(no_ctrl, arg);
1541     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1542 
1543     // Get length of source string
1544     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1545 
1546     // Check for substr count > string count
1547     Node* cmp = _gvn.transform(new(C) CmpINode(substr_cnt, source_cnt));
1548     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::gt));
1549     Node* if_gt = generate_slow_guard(bol, NULL);
1550     if (if_gt != NULL) {
1551       result_phi->init_req(2, intcon(-1));
1552       result_rgn->init_req(2, if_gt);
1553     }
1554 
1555     if (!stopped()) {
1556       // Check for substr count == 0
1557       cmp = _gvn.transform(new(C) CmpINode(substr_cnt, intcon(0)));
1558       bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
1559       Node* if_zero = generate_slow_guard(bol, NULL);
1560       if (if_zero != NULL) {
1561         result_phi->init_req(3, intcon(0));
1562         result_rgn->init_req(3, if_zero);
1563       }
1564     }
1565 
1566     if (!stopped()) {
1567       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1568       result_phi->init_req(1, result);
1569       result_rgn->init_req(1, control());
1570     }
1571     set_control(_gvn.transform(result_rgn));
1572     record_for_igvn(result_rgn);
1573     result = _gvn.transform(result_phi);
1574 
1575   } else { // Use LibraryCallKit::string_indexOf
1576     // don't intrinsify if argument isn't a constant string.
1577     if (!arg->is_Con()) {
1578      return false;
1579     }
1580     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1581     if (str_type == NULL) {
1582       return false;
1583     }
1584     ciInstanceKlass* klass = env()->String_klass();
1585     ciObject* str_const = str_type->const_oop();
1586     if (str_const == NULL || str_const->klass() != klass) {
1587       return false;
1588     }
1589     ciInstance* str = str_const->as_instance();
1590     assert(str != NULL, "must be instance");
1591 
1592     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1593     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1594 
1595     int o;
1596     int c;
1597     if (java_lang_String::has_offset_field()) {
1598       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1599       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1600     } else {
1601       o = 0;
1602       c = pat->length();
1603     }
1604 
1605     // constant strings have no offset and count == length which
1606     // simplifies the resulting code somewhat so lets optimize for that.
1607     if (o != 0 || c != pat->length()) {
1608      return false;
1609     }
1610 
1611     receiver = null_check(receiver, T_OBJECT);
1612     // NOTE: No null check on the argument is needed since it's a constant String oop.
1613     if (stopped()) {
1614       return true;
1615     }
1616 
1617     // The null string as a pattern always returns 0 (match at beginning of string)
1618     if (c == 0) {
1619       set_result(intcon(0));
1620       return true;
1621     }
1622 
1623     // Generate default indexOf
1624     jchar lastChar = pat->char_at(o + (c - 1));
1625     int cache = 0;
1626     int i;
1627     for (i = 0; i < c - 1; i++) {
1628       assert(i < pat->length(), "out of range");
1629       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1630     }
1631 
1632     int md2 = c;
1633     for (i = 0; i < c - 1; i++) {
1634       assert(i < pat->length(), "out of range");
1635       if (pat->char_at(o + i) == lastChar) {
1636         md2 = (c - 1) - i;
1637       }
1638     }
1639 
1640     result = string_indexOf(receiver, pat, o, cache, md2);
1641   }
1642   set_result(result);
1643   return true;
1644 }
1645 
1646 //--------------------------round_double_node--------------------------------
1647 // Round a double node if necessary.
1648 Node* LibraryCallKit::round_double_node(Node* n) {
1649   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1650     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
1651   return n;
1652 }
1653 
1654 //------------------------------inline_math-----------------------------------
1655 // public static double Math.abs(double)
1656 // public static double Math.sqrt(double)
1657 // public static double Math.log(double)
1658 // public static double Math.log10(double)
1659 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1660   Node* arg = round_double_node(argument(0));
1661   Node* n = NULL;
1662   switch (id) {
1663   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
1664   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
1665   case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
1666   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
1667   default:  fatal_unexpected_iid(id);  break;
1668   }
1669   set_result(_gvn.transform(n));
1670   return true;
1671 }
1672 
1673 //------------------------------inline_trig----------------------------------
1674 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1675 // argument reduction which will turn into a fast/slow diamond.
1676 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1677   Node* arg = round_double_node(argument(0));
1678   Node* n = NULL;
1679 
1680   switch (id) {
1681   case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
1682   case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
1683   case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
1684   default:  fatal_unexpected_iid(id);  break;
1685   }
1686   n = _gvn.transform(n);
1687 
1688   // Rounding required?  Check for argument reduction!
1689   if (Matcher::strict_fp_requires_explicit_rounding) {
1690     static const double     pi_4 =  0.7853981633974483;
1691     static const double neg_pi_4 = -0.7853981633974483;
1692     // pi/2 in 80-bit extended precision
1693     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1694     // -pi/2 in 80-bit extended precision
1695     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1696     // Cutoff value for using this argument reduction technique
1697     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1698     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1699 
1700     // Pseudocode for sin:
1701     // if (x <= Math.PI / 4.0) {
1702     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1703     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1704     // } else {
1705     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1706     // }
1707     // return StrictMath.sin(x);
1708 
1709     // Pseudocode for cos:
1710     // if (x <= Math.PI / 4.0) {
1711     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1712     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1713     // } else {
1714     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1715     // }
1716     // return StrictMath.cos(x);
1717 
1718     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1719     // requires a special machine instruction to load it.  Instead we'll try
1720     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1721     // probably do the math inside the SIN encoding.
1722 
1723     // Make the merge point
1724     RegionNode* r = new (C) RegionNode(3);
1725     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
1726 
1727     // Flatten arg so we need only 1 test
1728     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
1729     // Node for PI/4 constant
1730     Node *pi4 = makecon(TypeD::make(pi_4));
1731     // Check PI/4 : abs(arg)
1732     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
1733     // Check: If PI/4 < abs(arg) then go slow
1734     Node *bol = _gvn.transform(new (C) BoolNode( cmp, BoolTest::lt ));
1735     // Branch either way
1736     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1737     set_control(opt_iff(r,iff));
1738 
1739     // Set fast path result
1740     phi->init_req(2, n);
1741 
1742     // Slow path - non-blocking leaf call
1743     Node* call = NULL;
1744     switch (id) {
1745     case vmIntrinsics::_dsin:
1746       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1747                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1748                                "Sin", NULL, arg, top());
1749       break;
1750     case vmIntrinsics::_dcos:
1751       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1752                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1753                                "Cos", NULL, arg, top());
1754       break;
1755     case vmIntrinsics::_dtan:
1756       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1757                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1758                                "Tan", NULL, arg, top());
1759       break;
1760     }
1761     assert(control()->in(0) == call, "");
1762     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
1763     r->init_req(1, control());
1764     phi->init_req(1, slow_result);
1765 
1766     // Post-merge
1767     set_control(_gvn.transform(r));
1768     record_for_igvn(r);
1769     n = _gvn.transform(phi);
1770 
1771     C->set_has_split_ifs(true); // Has chance for split-if optimization
1772   }
1773   set_result(n);
1774   return true;
1775 }
1776 
1777 Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1778   //-------------------
1779   //result=(result.isNaN())? funcAddr():result;
1780   // Check: If isNaN() by checking result!=result? then either trap
1781   // or go to runtime
1782   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
1783   // Build the boolean node
1784   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
1785 
1786   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1787     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1788       // The pow or exp intrinsic returned a NaN, which requires a call
1789       // to the runtime.  Recompile with the runtime call.
1790       uncommon_trap(Deoptimization::Reason_intrinsic,
1791                     Deoptimization::Action_make_not_entrant);
1792     }
1793     return result;
1794   } else {
1795     // If this inlining ever returned NaN in the past, we compile a call
1796     // to the runtime to properly handle corner cases
1797 
1798     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1799     Node* if_slow = _gvn.transform(new (C) IfFalseNode(iff));
1800     Node* if_fast = _gvn.transform(new (C) IfTrueNode(iff));
1801 
1802     if (!if_slow->is_top()) {
1803       RegionNode* result_region = new (C) RegionNode(3);
1804       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
1805 
1806       result_region->init_req(1, if_fast);
1807       result_val->init_req(1, result);
1808 
1809       set_control(if_slow);
1810 
1811       const TypePtr* no_memory_effects = NULL;
1812       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1813                                    no_memory_effects,
1814                                    x, top(), y, y ? top() : NULL);
1815       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
1816 #ifdef ASSERT
1817       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
1818       assert(value_top == top(), "second value must be top");
1819 #endif
1820 
1821       result_region->init_req(2, control());
1822       result_val->init_req(2, value);
1823       set_control(_gvn.transform(result_region));
1824       return _gvn.transform(result_val);
1825     } else {
1826       return result;
1827     }
1828   }
1829 }
1830 
1831 //------------------------------inline_exp-------------------------------------
1832 // Inline exp instructions, if possible.  The Intel hardware only misses
1833 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1834 bool LibraryCallKit::inline_exp() {
1835   Node* arg = round_double_node(argument(0));
1836   Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
1837 
1838   n = finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1839   set_result(n);
1840 
1841   C->set_has_split_ifs(true); // Has chance for split-if optimization
1842   return true;
1843 }
1844 
1845 //------------------------------inline_pow-------------------------------------
1846 // Inline power instructions, if possible.
1847 bool LibraryCallKit::inline_pow() {
1848   // Pseudocode for pow
1849   // if (y == 2) {
1850   //   return x * x;
1851   // } else {
1852   //   if (x <= 0.0) {
1853   //     long longy = (long)y;
1854   //     if ((double)longy == y) { // if y is long
1855   //       if (y + 1 == y) longy = 0; // huge number: even
1856   //       result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1857   //     } else {
1858   //       result = NaN;
1859   //     }
1860   //   } else {
1861   //     result = DPow(x,y);
1862   //   }
1863   //   if (result != result)?  {
1864   //     result = uncommon_trap() or runtime_call();
1865   //   }
1866   //   return result;
1867   // }
1868 
1869   Node* x = round_double_node(argument(0));
1870   Node* y = round_double_node(argument(2));
1871 
1872   Node* result = NULL;
1873 
1874   Node*   const_two_node = makecon(TypeD::make(2.0));
1875   Node*   cmp_node       = _gvn.transform(new (C) CmpDNode(y, const_two_node));
1876   Node*   bool_node      = _gvn.transform(new (C) BoolNode(cmp_node, BoolTest::eq));
1877   IfNode* if_node        = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1878   Node*   if_true        = _gvn.transform(new (C) IfTrueNode(if_node));
1879   Node*   if_false       = _gvn.transform(new (C) IfFalseNode(if_node));
1880 
1881   RegionNode* region_node = new (C) RegionNode(3);
1882   region_node->init_req(1, if_true);
1883 
1884   Node* phi_node = new (C) PhiNode(region_node, Type::DOUBLE);
1885   // special case for x^y where y == 2, we can convert it to x * x
1886   phi_node->init_req(1, _gvn.transform(new (C) MulDNode(x, x)));
1887 
1888   // set control to if_false since we will now process the false branch
1889   set_control(if_false);
1890 
1891   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1892     // Short form: skip the fancy tests and just check for NaN result.
1893     result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1894   } else {
1895     // If this inlining ever returned NaN in the past, include all
1896     // checks + call to the runtime.
1897 
1898     // Set the merge point for If node with condition of (x <= 0.0)
1899     // There are four possible paths to region node and phi node
1900     RegionNode *r = new (C) RegionNode(4);
1901     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1902 
1903     // Build the first if node: if (x <= 0.0)
1904     // Node for 0 constant
1905     Node *zeronode = makecon(TypeD::ZERO);
1906     // Check x:0
1907     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
1908     // Check: If (x<=0) then go complex path
1909     Node *bol1 = _gvn.transform(new (C) BoolNode( cmp, BoolTest::le ));
1910     // Branch either way
1911     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1912     // Fast path taken; set region slot 3
1913     Node *fast_taken = _gvn.transform(new (C) IfFalseNode(if1));
1914     r->init_req(3,fast_taken); // Capture fast-control
1915 
1916     // Fast path not-taken, i.e. slow path
1917     Node *complex_path = _gvn.transform(new (C) IfTrueNode(if1));
1918 
1919     // Set fast path result
1920     Node *fast_result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1921     phi->init_req(3, fast_result);
1922 
1923     // Complex path
1924     // Build the second if node (if y is long)
1925     // Node for (long)y
1926     Node *longy = _gvn.transform(new (C) ConvD2LNode(y));
1927     // Node for (double)((long) y)
1928     Node *doublelongy= _gvn.transform(new (C) ConvL2DNode(longy));
1929     // Check (double)((long) y) : y
1930     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
1931     // Check if (y isn't long) then go to slow path
1932 
1933     Node *bol2 = _gvn.transform(new (C) BoolNode( cmplongy, BoolTest::ne ));
1934     // Branch either way
1935     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1936     Node* ylong_path = _gvn.transform(new (C) IfFalseNode(if2));
1937 
1938     Node *slow_path = _gvn.transform(new (C) IfTrueNode(if2));
1939 
1940     // Calculate DPow(abs(x), y)*(1 & (long)y)
1941     // Node for constant 1
1942     Node *conone = longcon(1);
1943     // 1& (long)y
1944     Node *signnode= _gvn.transform(new (C) AndLNode(conone, longy));
1945 
1946     // A huge number is always even. Detect a huge number by checking
1947     // if y + 1 == y and set integer to be tested for parity to 0.
1948     // Required for corner case:
1949     // (long)9.223372036854776E18 = max_jlong
1950     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1951     // max_jlong is odd but 9.223372036854776E18 is even
1952     Node* yplus1 = _gvn.transform(new (C) AddDNode(y, makecon(TypeD::make(1))));
1953     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
1954     Node *bolyplus1 = _gvn.transform(new (C) BoolNode( cmpyplus1, BoolTest::eq ));
1955     Node* correctedsign = NULL;
1956     if (ConditionalMoveLimit != 0) {
1957       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1958     } else {
1959       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1960       RegionNode *r = new (C) RegionNode(3);
1961       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
1962       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyplus1)));
1963       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyplus1)));
1964       phi->init_req(1, signnode);
1965       phi->init_req(2, longcon(0));
1966       correctedsign = _gvn.transform(phi);
1967       ylong_path = _gvn.transform(r);
1968       record_for_igvn(r);
1969     }
1970 
1971     // zero node
1972     Node *conzero = longcon(0);
1973     // Check (1&(long)y)==0?
1974     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
1975     // Check if (1&(long)y)!=0?, if so the result is negative
1976     Node *bol3 = _gvn.transform(new (C) BoolNode( cmpeq1, BoolTest::ne ));
1977     // abs(x)
1978     Node *absx=_gvn.transform(new (C) AbsDNode(x));
1979     // abs(x)^y
1980     Node *absxpowy = _gvn.transform(new (C) PowDNode(C, control(), absx, y));
1981     // -abs(x)^y
1982     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
1983     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1984     Node *signresult = NULL;
1985     if (ConditionalMoveLimit != 0) {
1986       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1987     } else {
1988       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1989       RegionNode *r = new (C) RegionNode(3);
1990       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1991       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyeven)));
1992       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyeven)));
1993       phi->init_req(1, absxpowy);
1994       phi->init_req(2, negabsxpowy);
1995       signresult = _gvn.transform(phi);
1996       ylong_path = _gvn.transform(r);
1997       record_for_igvn(r);
1998     }
1999     // Set complex path fast result
2000     r->init_req(2, ylong_path);
2001     phi->init_req(2, signresult);
2002 
2003     static const jlong nan_bits = CONST64(0x7ff8000000000000);
2004     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
2005     r->init_req(1,slow_path);
2006     phi->init_req(1,slow_result);
2007 
2008     // Post merge
2009     set_control(_gvn.transform(r));
2010     record_for_igvn(r);
2011     result = _gvn.transform(phi);
2012   }
2013 
2014   result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
2015 
2016   // control from finish_pow_exp is now input to the region node
2017   region_node->set_req(2, control());
2018   // the result from finish_pow_exp is now input to the phi node
2019   phi_node->init_req(2, result);
2020   set_control(_gvn.transform(region_node));
2021   record_for_igvn(region_node);
2022   set_result(_gvn.transform(phi_node));
2023 
2024   C->set_has_split_ifs(true); // Has chance for split-if optimization
2025   return true;
2026 }
2027 
2028 //------------------------------runtime_math-----------------------------
2029 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
2030   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
2031          "must be (DD)D or (D)D type");
2032 
2033   // Inputs
2034   Node* a = round_double_node(argument(0));
2035   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
2036 
2037   const TypePtr* no_memory_effects = NULL;
2038   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
2039                                  no_memory_effects,
2040                                  a, top(), b, b ? top() : NULL);
2041   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
2042 #ifdef ASSERT
2043   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
2044   assert(value_top == top(), "second value must be top");
2045 #endif
2046 
2047   set_result(value);
2048   return true;
2049 }
2050 
2051 //------------------------------inline_math_native-----------------------------
2052 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
2053 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
2054   switch (id) {
2055     // These intrinsics are not properly supported on all hardware
2056   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
2057     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
2058   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
2059     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
2060   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
2061     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
2062 
2063   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
2064     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
2065   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
2066     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
2067 
2068     // These intrinsics are supported on all hardware
2069   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
2070   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
2071 
2072   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
2073     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
2074   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
2075     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
2076 #undef FN_PTR
2077 
2078    // These intrinsics are not yet correctly implemented
2079   case vmIntrinsics::_datan2:
2080     return false;
2081 
2082   default:
2083     fatal_unexpected_iid(id);
2084     return false;
2085   }
2086 }
2087 
2088 static bool is_simple_name(Node* n) {
2089   return (n->req() == 1         // constant
2090           || (n->is_Type() && n->as_Type()->type()->singleton())
2091           || n->is_Proj()       // parameter or return value
2092           || n->is_Phi()        // local of some sort
2093           );
2094 }
2095 
2096 //----------------------------inline_min_max-----------------------------------
2097 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
2098   set_result(generate_min_max(id, argument(0), argument(1)));
2099   return true;
2100 }
2101 
2102 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
2103   Node* bol = _gvn.transform( new (C) BoolNode(test, BoolTest::overflow) );
2104   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2105   Node* fast_path = _gvn.transform( new (C) IfFalseNode(check));
2106   Node* slow_path = _gvn.transform( new (C) IfTrueNode(check) );
2107 
2108   {
2109     PreserveJVMState pjvms(this);
2110     PreserveReexecuteState preexecs(this);
2111     jvms()->set_should_reexecute(true);
2112 
2113     set_control(slow_path);
2114     set_i_o(i_o());
2115 
2116     uncommon_trap(Deoptimization::Reason_intrinsic,
2117                   Deoptimization::Action_none);
2118   }
2119 
2120   set_control(fast_path);
2121   set_result(math);
2122 }
2123 
2124 template <typename OverflowOp>
2125 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
2126   typedef typename OverflowOp::MathOp MathOp;
2127 
2128   MathOp* mathOp = new(C) MathOp(arg1, arg2);
2129   Node* operation = _gvn.transform( mathOp );
2130   Node* ofcheck = _gvn.transform( new(C) OverflowOp(arg1, arg2) );
2131   inline_math_mathExact(operation, ofcheck);
2132   return true;
2133 }
2134 
2135 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2136   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2137 }
2138 
2139 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2140   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2141 }
2142 
2143 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2144   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2145 }
2146 
2147 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2148   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2149 }
2150 
2151 bool LibraryCallKit::inline_math_negateExactI() {
2152   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2153 }
2154 
2155 bool LibraryCallKit::inline_math_negateExactL() {
2156   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2157 }
2158 
2159 bool LibraryCallKit::inline_math_multiplyExactI() {
2160   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2161 }
2162 
2163 bool LibraryCallKit::inline_math_multiplyExactL() {
2164   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2165 }
2166 
2167 Node*
2168 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2169   // These are the candidate return value:
2170   Node* xvalue = x0;
2171   Node* yvalue = y0;
2172 
2173   if (xvalue == yvalue) {
2174     return xvalue;
2175   }
2176 
2177   bool want_max = (id == vmIntrinsics::_max);
2178 
2179   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2180   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2181   if (txvalue == NULL || tyvalue == NULL)  return top();
2182   // This is not really necessary, but it is consistent with a
2183   // hypothetical MaxINode::Value method:
2184   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2185 
2186   // %%% This folding logic should (ideally) be in a different place.
2187   // Some should be inside IfNode, and there to be a more reliable
2188   // transformation of ?: style patterns into cmoves.  We also want
2189   // more powerful optimizations around cmove and min/max.
2190 
2191   // Try to find a dominating comparison of these guys.
2192   // It can simplify the index computation for Arrays.copyOf
2193   // and similar uses of System.arraycopy.
2194   // First, compute the normalized version of CmpI(x, y).
2195   int   cmp_op = Op_CmpI;
2196   Node* xkey = xvalue;
2197   Node* ykey = yvalue;
2198   Node* ideal_cmpxy = _gvn.transform(new(C) CmpINode(xkey, ykey));
2199   if (ideal_cmpxy->is_Cmp()) {
2200     // E.g., if we have CmpI(length - offset, count),
2201     // it might idealize to CmpI(length, count + offset)
2202     cmp_op = ideal_cmpxy->Opcode();
2203     xkey = ideal_cmpxy->in(1);
2204     ykey = ideal_cmpxy->in(2);
2205   }
2206 
2207   // Start by locating any relevant comparisons.
2208   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2209   Node* cmpxy = NULL;
2210   Node* cmpyx = NULL;
2211   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2212     Node* cmp = start_from->fast_out(k);
2213     if (cmp->outcnt() > 0 &&            // must have prior uses
2214         cmp->in(0) == NULL &&           // must be context-independent
2215         cmp->Opcode() == cmp_op) {      // right kind of compare
2216       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2217       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2218     }
2219   }
2220 
2221   const int NCMPS = 2;
2222   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2223   int cmpn;
2224   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2225     if (cmps[cmpn] != NULL)  break;     // find a result
2226   }
2227   if (cmpn < NCMPS) {
2228     // Look for a dominating test that tells us the min and max.
2229     int depth = 0;                // Limit search depth for speed
2230     Node* dom = control();
2231     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2232       if (++depth >= 100)  break;
2233       Node* ifproj = dom;
2234       if (!ifproj->is_Proj())  continue;
2235       Node* iff = ifproj->in(0);
2236       if (!iff->is_If())  continue;
2237       Node* bol = iff->in(1);
2238       if (!bol->is_Bool())  continue;
2239       Node* cmp = bol->in(1);
2240       if (cmp == NULL)  continue;
2241       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2242         if (cmps[cmpn] == cmp)  break;
2243       if (cmpn == NCMPS)  continue;
2244       BoolTest::mask btest = bol->as_Bool()->_test._test;
2245       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2246       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2247       // At this point, we know that 'x btest y' is true.
2248       switch (btest) {
2249       case BoolTest::eq:
2250         // They are proven equal, so we can collapse the min/max.
2251         // Either value is the answer.  Choose the simpler.
2252         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2253           return yvalue;
2254         return xvalue;
2255       case BoolTest::lt:          // x < y
2256       case BoolTest::le:          // x <= y
2257         return (want_max ? yvalue : xvalue);
2258       case BoolTest::gt:          // x > y
2259       case BoolTest::ge:          // x >= y
2260         return (want_max ? xvalue : yvalue);
2261       }
2262     }
2263   }
2264 
2265   // We failed to find a dominating test.
2266   // Let's pick a test that might GVN with prior tests.
2267   Node*          best_bol   = NULL;
2268   BoolTest::mask best_btest = BoolTest::illegal;
2269   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2270     Node* cmp = cmps[cmpn];
2271     if (cmp == NULL)  continue;
2272     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2273       Node* bol = cmp->fast_out(j);
2274       if (!bol->is_Bool())  continue;
2275       BoolTest::mask btest = bol->as_Bool()->_test._test;
2276       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2277       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2278       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2279         best_bol   = bol->as_Bool();
2280         best_btest = btest;
2281       }
2282     }
2283   }
2284 
2285   Node* answer_if_true  = NULL;
2286   Node* answer_if_false = NULL;
2287   switch (best_btest) {
2288   default:
2289     if (cmpxy == NULL)
2290       cmpxy = ideal_cmpxy;
2291     best_bol = _gvn.transform(new(C) BoolNode(cmpxy, BoolTest::lt));
2292     // and fall through:
2293   case BoolTest::lt:          // x < y
2294   case BoolTest::le:          // x <= y
2295     answer_if_true  = (want_max ? yvalue : xvalue);
2296     answer_if_false = (want_max ? xvalue : yvalue);
2297     break;
2298   case BoolTest::gt:          // x > y
2299   case BoolTest::ge:          // x >= y
2300     answer_if_true  = (want_max ? xvalue : yvalue);
2301     answer_if_false = (want_max ? yvalue : xvalue);
2302     break;
2303   }
2304 
2305   jint hi, lo;
2306   if (want_max) {
2307     // We can sharpen the minimum.
2308     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2309     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2310   } else {
2311     // We can sharpen the maximum.
2312     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2313     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2314   }
2315 
2316   // Use a flow-free graph structure, to avoid creating excess control edges
2317   // which could hinder other optimizations.
2318   // Since Math.min/max is often used with arraycopy, we want
2319   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2320   Node* cmov = CMoveNode::make(C, NULL, best_bol,
2321                                answer_if_false, answer_if_true,
2322                                TypeInt::make(lo, hi, widen));
2323 
2324   return _gvn.transform(cmov);
2325 
2326   /*
2327   // This is not as desirable as it may seem, since Min and Max
2328   // nodes do not have a full set of optimizations.
2329   // And they would interfere, anyway, with 'if' optimizations
2330   // and with CMoveI canonical forms.
2331   switch (id) {
2332   case vmIntrinsics::_min:
2333     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2334   case vmIntrinsics::_max:
2335     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2336   default:
2337     ShouldNotReachHere();
2338   }
2339   */
2340 }
2341 
2342 inline int
2343 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2344   const TypePtr* base_type = TypePtr::NULL_PTR;
2345   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2346   if (base_type == NULL) {
2347     // Unknown type.
2348     return Type::AnyPtr;
2349   } else if (base_type == TypePtr::NULL_PTR) {
2350     // Since this is a NULL+long form, we have to switch to a rawptr.
2351     base   = _gvn.transform(new (C) CastX2PNode(offset));
2352     offset = MakeConX(0);
2353     return Type::RawPtr;
2354   } else if (base_type->base() == Type::RawPtr) {
2355     return Type::RawPtr;
2356   } else if (base_type->isa_oopptr()) {
2357     // Base is never null => always a heap address.
2358     if (base_type->ptr() == TypePtr::NotNull) {
2359       return Type::OopPtr;
2360     }
2361     // Offset is small => always a heap address.
2362     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2363     if (offset_type != NULL &&
2364         base_type->offset() == 0 &&     // (should always be?)
2365         offset_type->_lo >= 0 &&
2366         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2367       return Type::OopPtr;
2368     }
2369     // Otherwise, it might either be oop+off or NULL+addr.
2370     return Type::AnyPtr;
2371   } else {
2372     // No information:
2373     return Type::AnyPtr;
2374   }
2375 }
2376 
2377 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2378   int kind = classify_unsafe_addr(base, offset);
2379   if (kind == Type::RawPtr) {
2380     return basic_plus_adr(top(), base, offset);
2381   } else {
2382     return basic_plus_adr(base, offset);
2383   }
2384 }
2385 
2386 //--------------------------inline_number_methods-----------------------------
2387 // inline int     Integer.numberOfLeadingZeros(int)
2388 // inline int        Long.numberOfLeadingZeros(long)
2389 //
2390 // inline int     Integer.numberOfTrailingZeros(int)
2391 // inline int        Long.numberOfTrailingZeros(long)
2392 //
2393 // inline int     Integer.bitCount(int)
2394 // inline int        Long.bitCount(long)
2395 //
2396 // inline char  Character.reverseBytes(char)
2397 // inline short     Short.reverseBytes(short)
2398 // inline int     Integer.reverseBytes(int)
2399 // inline long       Long.reverseBytes(long)
2400 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2401   Node* arg = argument(0);
2402   Node* n = NULL;
2403   switch (id) {
2404   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
2405   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
2406   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
2407   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
2408   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
2409   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
2410   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
2411   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
2412   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
2413   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
2414   default:  fatal_unexpected_iid(id);  break;
2415   }
2416   set_result(_gvn.transform(n));
2417   return true;
2418 }
2419 
2420 //----------------------------inline_unsafe_access----------------------------
2421 
2422 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2423 
2424 // Helper that guards and inserts a pre-barrier.
2425 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2426                                         Node* pre_val, bool need_mem_bar) {
2427   // We could be accessing the referent field of a reference object. If so, when G1
2428   // is enabled, we need to log the value in the referent field in an SATB buffer.
2429   // This routine performs some compile time filters and generates suitable
2430   // runtime filters that guard the pre-barrier code.
2431   // Also add memory barrier for non volatile load from the referent field
2432   // to prevent commoning of loads across safepoint.
2433   if (!UseG1GC && !need_mem_bar)
2434     return;
2435 
2436   // Some compile time checks.
2437 
2438   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2439   const TypeX* otype = offset->find_intptr_t_type();
2440   if (otype != NULL && otype->is_con() &&
2441       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2442     // Constant offset but not the reference_offset so just return
2443     return;
2444   }
2445 
2446   // We only need to generate the runtime guards for instances.
2447   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2448   if (btype != NULL) {
2449     if (btype->isa_aryptr()) {
2450       // Array type so nothing to do
2451       return;
2452     }
2453 
2454     const TypeInstPtr* itype = btype->isa_instptr();
2455     if (itype != NULL) {
2456       // Can the klass of base_oop be statically determined to be
2457       // _not_ a sub-class of Reference and _not_ Object?
2458       ciKlass* klass = itype->klass();
2459       if ( klass->is_loaded() &&
2460           !klass->is_subtype_of(env()->Reference_klass()) &&
2461           !env()->Object_klass()->is_subtype_of(klass)) {
2462         return;
2463       }
2464     }
2465   }
2466 
2467   // The compile time filters did not reject base_oop/offset so
2468   // we need to generate the following runtime filters
2469   //
2470   // if (offset == java_lang_ref_Reference::_reference_offset) {
2471   //   if (instance_of(base, java.lang.ref.Reference)) {
2472   //     pre_barrier(_, pre_val, ...);
2473   //   }
2474   // }
2475 
2476   float likely   = PROB_LIKELY(  0.999);
2477   float unlikely = PROB_UNLIKELY(0.999);
2478 
2479   IdealKit ideal(this);
2480 #define __ ideal.
2481 
2482   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2483 
2484   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2485       // Update graphKit memory and control from IdealKit.
2486       sync_kit(ideal);
2487 
2488       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2489       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2490 
2491       // Update IdealKit memory and control from graphKit.
2492       __ sync_kit(this);
2493 
2494       Node* one = __ ConI(1);
2495       // is_instof == 0 if base_oop == NULL
2496       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2497 
2498         // Update graphKit from IdeakKit.
2499         sync_kit(ideal);
2500 
2501         // Use the pre-barrier to record the value in the referent field
2502         pre_barrier(false /* do_load */,
2503                     __ ctrl(),
2504                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2505                     pre_val /* pre_val */,
2506                     T_OBJECT);
2507         if (need_mem_bar) {
2508           // Add memory barrier to prevent commoning reads from this field
2509           // across safepoint since GC can change its value.
2510           insert_mem_bar(Op_MemBarCPUOrder);
2511         }
2512         // Update IdealKit from graphKit.
2513         __ sync_kit(this);
2514 
2515       } __ end_if(); // _ref_type != ref_none
2516   } __ end_if(); // offset == referent_offset
2517 
2518   // Final sync IdealKit and GraphKit.
2519   final_sync(ideal);
2520 #undef __
2521 }
2522 
2523 
2524 // Interpret Unsafe.fieldOffset cookies correctly:
2525 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2526 
2527 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2528   // Attempt to infer a sharper value type from the offset and base type.
2529   ciKlass* sharpened_klass = NULL;
2530 
2531   // See if it is an instance field, with an object type.
2532   if (alias_type->field() != NULL) {
2533     assert(!is_native_ptr, "native pointer op cannot use a java address");
2534     if (alias_type->field()->type()->is_klass()) {
2535       sharpened_klass = alias_type->field()->type()->as_klass();
2536     }
2537   }
2538 
2539   // See if it is a narrow oop array.
2540   if (adr_type->isa_aryptr()) {
2541     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2542       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2543       if (elem_type != NULL) {
2544         sharpened_klass = elem_type->klass();
2545       }
2546     }
2547   }
2548 
2549   // The sharpened class might be unloaded if there is no class loader
2550   // contraint in place.
2551   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2552     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2553 
2554 #ifndef PRODUCT
2555     if (C->print_intrinsics() || C->print_inlining()) {
2556       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2557       tty->print("  sharpened value: ");  tjp->dump();      tty->cr();
2558     }
2559 #endif
2560     // Sharpen the value type.
2561     return tjp;
2562   }
2563   return NULL;
2564 }
2565 
2566 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile, bool unaligned) {
2567   if (callee()->is_static())  return false;  // caller must have the capability!
2568   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2569 
2570 #ifndef PRODUCT
2571   {
2572     ResourceMark rm;
2573     // Check the signatures.
2574     ciSignature* sig = callee()->signature();
2575 #ifdef ASSERT
2576     if (!is_store) {
2577       // Object getObject(Object base, int/long offset), etc.
2578       BasicType rtype = sig->return_type()->basic_type();
2579       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2580           rtype = T_ADDRESS;  // it is really a C void*
2581       assert(rtype == type, "getter must return the expected value");
2582       if (!is_native_ptr) {
2583         assert(sig->count() == 2, "oop getter has 2 arguments");
2584         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2585         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2586       } else {
2587         assert(sig->count() == 1, "native getter has 1 argument");
2588         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2589       }
2590     } else {
2591       // void putObject(Object base, int/long offset, Object x), etc.
2592       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2593       if (!is_native_ptr) {
2594         assert(sig->count() == 3, "oop putter has 3 arguments");
2595         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2596         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2597       } else {
2598         assert(sig->count() == 2, "native putter has 2 arguments");
2599         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2600       }
2601       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2602       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2603         vtype = T_ADDRESS;  // it is really a C void*
2604       assert(vtype == type, "putter must accept the expected value");
2605     }
2606 #endif // ASSERT
2607  }
2608 #endif //PRODUCT
2609 
2610   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2611 
2612   Node* receiver = argument(0);  // type: oop
2613 
2614   // Build address expression.  See the code in inline_unsafe_prefetch.
2615   Node* adr;
2616   Node* heap_base_oop = top();
2617   Node* offset = top();
2618   Node* val;
2619 
2620   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2621   Node* base = argument(1);  // type: oop
2622 
2623   if (!is_native_ptr) {
2624     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2625     offset = argument(2);  // type: long
2626     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2627     // to be plain byte offsets, which are also the same as those accepted
2628     // by oopDesc::field_base.
2629     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2630            "fieldOffset must be byte-scaled");
2631     // 32-bit machines ignore the high half!
2632     offset = ConvL2X(offset);
2633     adr = make_unsafe_address(base, offset);
2634     heap_base_oop = base;
2635     val = is_store ? argument(4) : NULL;
2636   } else {
2637     Node* ptr = argument(1);  // type: long
2638     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2639     adr = make_unsafe_address(NULL, ptr);
2640     val = is_store ? argument(3) : NULL;
2641   }
2642 
2643   if ((_gvn.type(base)->isa_ptr() == TypePtr::NULL_PTR) && type == T_OBJECT) {
2644     return false; // off-heap oop accesses are not supported
2645   }
2646 
2647   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2648 
2649   // Try to categorize the address.
2650   Compile::AliasType* alias_type = C->alias_type(adr_type);
2651   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2652 
2653   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2654       alias_type->adr_type() == TypeAryPtr::RANGE) {
2655     return false; // not supported
2656   }
2657 
2658   bool mismatched = false;
2659   BasicType bt = alias_type->basic_type();
2660   if (bt != T_ILLEGAL) {
2661     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2662     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2663       // Alias type doesn't differentiate between byte[] and boolean[]).
2664       // Use address type to get the element type.
2665       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2666     }
2667     if (bt == T_ARRAY || bt == T_NARROWOOP) {
2668       // accessing an array field with getObject is not a mismatch
2669       bt = T_OBJECT;
2670     }
2671     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2672       // Don't intrinsify mismatched object accesses
2673       return false;
2674     }
2675     mismatched = (bt != type);
2676   }
2677 
2678   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2679 
2680   // First guess at the value type.
2681   const Type *value_type = Type::get_const_basic_type(type);
2682 
2683   // We will need memory barriers unless we can determine a unique
2684   // alias category for this reference.  (Note:  If for some reason
2685   // the barriers get omitted and the unsafe reference begins to "pollute"
2686   // the alias analysis of the rest of the graph, either Compile::can_alias
2687   // or Compile::must_alias will throw a diagnostic assert.)
2688   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2689 
2690   // If we are reading the value of the referent field of a Reference
2691   // object (either by using Unsafe directly or through reflection)
2692   // then, if G1 is enabled, we need to record the referent in an
2693   // SATB log buffer using the pre-barrier mechanism.
2694   // Also we need to add memory barrier to prevent commoning reads
2695   // from this field across safepoint since GC can change its value.
2696   bool need_read_barrier = !is_native_ptr && !is_store &&
2697                            offset != top() && heap_base_oop != top();
2698 
2699   if (!is_store && type == T_OBJECT) {
2700     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2701     if (tjp != NULL) {
2702       value_type = tjp;
2703     }
2704   }
2705 
2706   receiver = null_check(receiver);
2707   if (stopped()) {
2708     return true;
2709   }
2710   // Heap pointers get a null-check from the interpreter,
2711   // as a courtesy.  However, this is not guaranteed by Unsafe,
2712   // and it is not possible to fully distinguish unintended nulls
2713   // from intended ones in this API.
2714 
2715   Node* load = NULL;
2716   Node* store = NULL;
2717   Node* leading_membar = NULL;
2718   if (is_volatile) {
2719     // We need to emit leading and trailing CPU membars (see below) in
2720     // addition to memory membars when is_volatile. This is a little
2721     // too strong, but avoids the need to insert per-alias-type
2722     // volatile membars (for stores; compare Parse::do_put_xxx), which
2723     // we cannot do effectively here because we probably only have a
2724     // rough approximation of type.
2725     need_mem_bar = true;
2726     // For Stores, place a memory ordering barrier now.
2727     if (is_store) {
2728       leading_membar = insert_mem_bar(Op_MemBarRelease);
2729     } else {
2730       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2731         leading_membar = insert_mem_bar(Op_MemBarVolatile);
2732       }
2733     }
2734   }
2735 
2736   // Memory barrier to prevent normal and 'unsafe' accesses from
2737   // bypassing each other.  Happens after null checks, so the
2738   // exception paths do not take memory state from the memory barrier,
2739   // so there's no problems making a strong assert about mixing users
2740   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2741   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2742   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2743 
2744   if (!is_store) {
2745     MemNode::MemOrd mo = is_volatile ? MemNode::acquire : MemNode::unordered;
2746     // To be valid, unsafe loads may depend on other conditions than
2747     // the one that guards them: pin the Load node
2748     load = make_load(control(), adr, value_type, type, adr_type, mo, LoadNode::Pinned, is_volatile, unaligned, mismatched);
2749     // load value
2750     switch (type) {
2751     case T_BOOLEAN:
2752     case T_CHAR:
2753     case T_BYTE:
2754     case T_SHORT:
2755     case T_INT:
2756     case T_LONG:
2757     case T_FLOAT:
2758     case T_DOUBLE:
2759       break;
2760     case T_OBJECT:
2761       if (need_read_barrier) {
2762         insert_pre_barrier(heap_base_oop, offset, load, !(is_volatile || need_mem_bar));
2763       }
2764       break;
2765     case T_ADDRESS:
2766       // Cast to an int type.
2767       load = _gvn.transform(new (C) CastP2XNode(NULL, load));
2768       load = ConvX2UL(load);
2769       break;
2770     default:
2771       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2772       break;
2773     }
2774     // The load node has the control of the preceding MemBarCPUOrder.  All
2775     // following nodes will have the control of the MemBarCPUOrder inserted at
2776     // the end of this method.  So, pushing the load onto the stack at a later
2777     // point is fine.
2778     set_result(load);
2779   } else {
2780     // place effect of store into memory
2781     switch (type) {
2782     case T_DOUBLE:
2783       val = dstore_rounding(val);
2784       break;
2785     case T_ADDRESS:
2786       // Repackage the long as a pointer.
2787       val = ConvL2X(val);
2788       val = _gvn.transform(new (C) CastX2PNode(val));
2789       break;
2790     }
2791 
2792     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
2793     if (type == T_OBJECT ) {
2794       store = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo, mismatched);
2795     } else {
2796       store = store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile, unaligned, mismatched);
2797     }
2798   }
2799 
2800   if (is_volatile) {
2801     if (!is_store) {
2802       Node* mb = insert_mem_bar(Op_MemBarAcquire, load);
2803       mb->as_MemBar()->set_trailing_load();
2804     } else {
2805       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2806         Node* mb = insert_mem_bar(Op_MemBarVolatile, store);
2807         MemBarNode::set_store_pair(leading_membar->as_MemBar(), mb->as_MemBar());
2808       }
2809     }
2810   }
2811 
2812   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2813 
2814   return true;
2815 }
2816 
2817 //----------------------------inline_unsafe_prefetch----------------------------
2818 
2819 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2820 #ifndef PRODUCT
2821   {
2822     ResourceMark rm;
2823     // Check the signatures.
2824     ciSignature* sig = callee()->signature();
2825 #ifdef ASSERT
2826     // Object getObject(Object base, int/long offset), etc.
2827     BasicType rtype = sig->return_type()->basic_type();
2828     if (!is_native_ptr) {
2829       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2830       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2831       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2832     } else {
2833       assert(sig->count() == 1, "native prefetch has 1 argument");
2834       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2835     }
2836 #endif // ASSERT
2837   }
2838 #endif // !PRODUCT
2839 
2840   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2841 
2842   const int idx = is_static ? 0 : 1;
2843   if (!is_static) {
2844     null_check_receiver();
2845     if (stopped()) {
2846       return true;
2847     }
2848   }
2849 
2850   // Build address expression.  See the code in inline_unsafe_access.
2851   Node *adr;
2852   if (!is_native_ptr) {
2853     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2854     Node* base   = argument(idx + 0);  // type: oop
2855     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2856     Node* offset = argument(idx + 1);  // type: long
2857     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2858     // to be plain byte offsets, which are also the same as those accepted
2859     // by oopDesc::field_base.
2860     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2861            "fieldOffset must be byte-scaled");
2862     // 32-bit machines ignore the high half!
2863     offset = ConvL2X(offset);
2864     adr = make_unsafe_address(base, offset);
2865   } else {
2866     Node* ptr = argument(idx + 0);  // type: long
2867     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2868     adr = make_unsafe_address(NULL, ptr);
2869   }
2870 
2871   // Generate the read or write prefetch
2872   Node *prefetch;
2873   if (is_store) {
2874     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
2875   } else {
2876     prefetch = new (C) PrefetchReadNode(i_o(), adr);
2877   }
2878   prefetch->init_req(0, control());
2879   set_i_o(_gvn.transform(prefetch));
2880 
2881   return true;
2882 }
2883 
2884 //----------------------------inline_unsafe_load_store----------------------------
2885 // This method serves a couple of different customers (depending on LoadStoreKind):
2886 //
2887 // LS_cmpxchg:
2888 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2889 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2890 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2891 //
2892 // LS_xadd:
2893 //   public int  getAndAddInt( Object o, long offset, int  delta)
2894 //   public long getAndAddLong(Object o, long offset, long delta)
2895 //
2896 // LS_xchg:
2897 //   int    getAndSet(Object o, long offset, int    newValue)
2898 //   long   getAndSet(Object o, long offset, long   newValue)
2899 //   Object getAndSet(Object o, long offset, Object newValue)
2900 //
2901 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2902   // This basic scheme here is the same as inline_unsafe_access, but
2903   // differs in enough details that combining them would make the code
2904   // overly confusing.  (This is a true fact! I originally combined
2905   // them, but even I was confused by it!) As much code/comments as
2906   // possible are retained from inline_unsafe_access though to make
2907   // the correspondences clearer. - dl
2908 
2909   if (callee()->is_static())  return false;  // caller must have the capability!
2910 
2911 #ifndef PRODUCT
2912   BasicType rtype;
2913   {
2914     ResourceMark rm;
2915     // Check the signatures.
2916     ciSignature* sig = callee()->signature();
2917     rtype = sig->return_type()->basic_type();
2918     if (kind == LS_xadd || kind == LS_xchg) {
2919       // Check the signatures.
2920 #ifdef ASSERT
2921       assert(rtype == type, "get and set must return the expected type");
2922       assert(sig->count() == 3, "get and set has 3 arguments");
2923       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2924       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2925       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2926 #endif // ASSERT
2927     } else if (kind == LS_cmpxchg) {
2928       // Check the signatures.
2929 #ifdef ASSERT
2930       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2931       assert(sig->count() == 4, "CAS has 4 arguments");
2932       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2933       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2934 #endif // ASSERT
2935     } else {
2936       ShouldNotReachHere();
2937     }
2938   }
2939 #endif //PRODUCT
2940 
2941   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2942 
2943   // Get arguments:
2944   Node* receiver = NULL;
2945   Node* base     = NULL;
2946   Node* offset   = NULL;
2947   Node* oldval   = NULL;
2948   Node* newval   = NULL;
2949   if (kind == LS_cmpxchg) {
2950     const bool two_slot_type = type2size[type] == 2;
2951     receiver = argument(0);  // type: oop
2952     base     = argument(1);  // type: oop
2953     offset   = argument(2);  // type: long
2954     oldval   = argument(4);  // type: oop, int, or long
2955     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2956   } else if (kind == LS_xadd || kind == LS_xchg){
2957     receiver = argument(0);  // type: oop
2958     base     = argument(1);  // type: oop
2959     offset   = argument(2);  // type: long
2960     oldval   = NULL;
2961     newval   = argument(4);  // type: oop, int, or long
2962   }
2963 
2964   // Build field offset expression.
2965   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2966   // to be plain byte offsets, which are also the same as those accepted
2967   // by oopDesc::field_base.
2968   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2969   // 32-bit machines ignore the high half of long offsets
2970   offset = ConvL2X(offset);
2971   Node* adr = make_unsafe_address(base, offset);
2972   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2973 
2974   Compile::AliasType* alias_type = C->alias_type(adr_type);
2975   BasicType bt = alias_type->basic_type();
2976   if (bt != T_ILLEGAL &&
2977       ((bt == T_OBJECT || bt == T_ARRAY) != (type == T_OBJECT))) {
2978     // Don't intrinsify mismatched object accesses.
2979     return false;
2980   }
2981 
2982   // For CAS, unlike inline_unsafe_access, there seems no point in
2983   // trying to refine types. Just use the coarse types here.
2984   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2985   const Type *value_type = Type::get_const_basic_type(type);
2986 
2987   if (kind == LS_xchg && type == T_OBJECT) {
2988     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2989     if (tjp != NULL) {
2990       value_type = tjp;
2991     }
2992   }
2993 
2994   // Null check receiver.
2995   receiver = null_check(receiver);
2996   if (stopped()) {
2997     return true;
2998   }
2999 
3000   int alias_idx = C->get_alias_index(adr_type);
3001 
3002   // Memory-model-wise, a LoadStore acts like a little synchronized
3003   // block, so needs barriers on each side.  These don't translate
3004   // into actual barriers on most machines, but we still need rest of
3005   // compiler to respect ordering.
3006 
3007   Node* leading_membar = insert_mem_bar(Op_MemBarRelease);
3008   insert_mem_bar(Op_MemBarCPUOrder);
3009 
3010   // 4984716: MemBars must be inserted before this
3011   //          memory node in order to avoid a false
3012   //          dependency which will confuse the scheduler.
3013   Node *mem = memory(alias_idx);
3014 
3015   // For now, we handle only those cases that actually exist: ints,
3016   // longs, and Object. Adding others should be straightforward.
3017   Node* load_store = NULL;
3018   switch(type) {
3019   case T_INT:
3020     if (kind == LS_xadd) {
3021       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
3022     } else if (kind == LS_xchg) {
3023       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
3024     } else if (kind == LS_cmpxchg) {
3025       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
3026     } else {
3027       ShouldNotReachHere();
3028     }
3029     break;
3030   case T_LONG:
3031     if (kind == LS_xadd) {
3032       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
3033     } else if (kind == LS_xchg) {
3034       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
3035     } else if (kind == LS_cmpxchg) {
3036       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
3037     } else {
3038       ShouldNotReachHere();
3039     }
3040     break;
3041   case T_OBJECT:
3042     // Transformation of a value which could be NULL pointer (CastPP #NULL)
3043     // could be delayed during Parse (for example, in adjust_map_after_if()).
3044     // Execute transformation here to avoid barrier generation in such case.
3045     if (_gvn.type(newval) == TypePtr::NULL_PTR)
3046       newval = _gvn.makecon(TypePtr::NULL_PTR);
3047 
3048     // Reference stores need a store barrier.
3049     if (kind == LS_xchg) {
3050       // If pre-barrier must execute before the oop store, old value will require do_load here.
3051       if (!can_move_pre_barrier()) {
3052         pre_barrier(true /* do_load*/,
3053                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
3054                     NULL /* pre_val*/,
3055                     T_OBJECT);
3056       } // Else move pre_barrier to use load_store value, see below.
3057     } else if (kind == LS_cmpxchg) {
3058       // Same as for newval above:
3059       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
3060         oldval = _gvn.makecon(TypePtr::NULL_PTR);
3061       }
3062       // The only known value which might get overwritten is oldval.
3063       pre_barrier(false /* do_load */,
3064                   control(), NULL, NULL, max_juint, NULL, NULL,
3065                   oldval /* pre_val */,
3066                   T_OBJECT);
3067     } else {
3068       ShouldNotReachHere();
3069     }
3070 
3071 #ifdef _LP64
3072     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3073       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
3074       if (kind == LS_xchg) {
3075         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
3076                                                            newval_enc, adr_type, value_type->make_narrowoop()));
3077       } else {
3078         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
3079         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
3080         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
3081                                                                 newval_enc, oldval_enc));
3082       }
3083     } else
3084 #endif
3085     {
3086       if (kind == LS_xchg) {
3087         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
3088       } else {
3089         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
3090         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
3091       }
3092     }
3093     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
3094     break;
3095   default:
3096     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
3097     break;
3098   }
3099 
3100   // SCMemProjNodes represent the memory state of a LoadStore. Their
3101   // main role is to prevent LoadStore nodes from being optimized away
3102   // when their results aren't used.
3103   Node* proj = _gvn.transform(new (C) SCMemProjNode(load_store));
3104   set_memory(proj, alias_idx);
3105 
3106   Node* access = load_store;
3107 
3108   if (type == T_OBJECT && kind == LS_xchg) {
3109 #ifdef _LP64
3110     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3111       load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
3112     }
3113 #endif
3114     if (can_move_pre_barrier()) {
3115       // Don't need to load pre_val. The old value is returned by load_store.
3116       // The pre_barrier can execute after the xchg as long as no safepoint
3117       // gets inserted between them.
3118       pre_barrier(false /* do_load */,
3119                   control(), NULL, NULL, max_juint, NULL, NULL,
3120                   load_store /* pre_val */,
3121                   T_OBJECT);
3122     }
3123   }
3124 
3125   // Add the trailing membar surrounding the access
3126   insert_mem_bar(Op_MemBarCPUOrder);
3127   Node* mb = insert_mem_bar(Op_MemBarAcquire, access);
3128   MemBarNode::set_load_store_pair(leading_membar->as_MemBar(), mb->as_MemBar());
3129 
3130   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3131   set_result(load_store);
3132   return true;
3133 }
3134 
3135 //----------------------------inline_unsafe_ordered_store----------------------
3136 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
3137 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
3138 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
3139 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
3140   // This is another variant of inline_unsafe_access, differing in
3141   // that it always issues store-store ("release") barrier and ensures
3142   // store-atomicity (which only matters for "long").
3143 
3144   if (callee()->is_static())  return false;  // caller must have the capability!
3145 
3146 #ifndef PRODUCT
3147   {
3148     ResourceMark rm;
3149     // Check the signatures.
3150     ciSignature* sig = callee()->signature();
3151 #ifdef ASSERT
3152     BasicType rtype = sig->return_type()->basic_type();
3153     assert(rtype == T_VOID, "must return void");
3154     assert(sig->count() == 3, "has 3 arguments");
3155     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
3156     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
3157 #endif // ASSERT
3158   }
3159 #endif //PRODUCT
3160 
3161   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3162 
3163   // Get arguments:
3164   Node* receiver = argument(0);  // type: oop
3165   Node* base     = argument(1);  // type: oop
3166   Node* offset   = argument(2);  // type: long
3167   Node* val      = argument(4);  // type: oop, int, or long
3168 
3169   // Null check receiver.
3170   receiver = null_check(receiver);
3171   if (stopped()) {
3172     return true;
3173   }
3174 
3175   // Build field offset expression.
3176   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
3177   // 32-bit machines ignore the high half of long offsets
3178   offset = ConvL2X(offset);
3179   Node* adr = make_unsafe_address(base, offset);
3180   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
3181   const Type *value_type = Type::get_const_basic_type(type);
3182   Compile::AliasType* alias_type = C->alias_type(adr_type);
3183 
3184   insert_mem_bar(Op_MemBarRelease);
3185   insert_mem_bar(Op_MemBarCPUOrder);
3186   // Ensure that the store is atomic for longs:
3187   const bool require_atomic_access = true;
3188   Node* store;
3189   if (type == T_OBJECT) // reference stores need a store barrier.
3190     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
3191   else {
3192     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
3193   }
3194   insert_mem_bar(Op_MemBarCPUOrder);
3195   return true;
3196 }
3197 
3198 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3199   // Regardless of form, don't allow previous ld/st to move down,
3200   // then issue acquire, release, or volatile mem_bar.
3201   insert_mem_bar(Op_MemBarCPUOrder);
3202   switch(id) {
3203     case vmIntrinsics::_loadFence:
3204       insert_mem_bar(Op_LoadFence);
3205       return true;
3206     case vmIntrinsics::_storeFence:
3207       insert_mem_bar(Op_StoreFence);
3208       return true;
3209     case vmIntrinsics::_fullFence:
3210       insert_mem_bar(Op_MemBarVolatile);
3211       return true;
3212     default:
3213       fatal_unexpected_iid(id);
3214       return false;
3215   }
3216 }
3217 
3218 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3219   if (!kls->is_Con()) {
3220     return true;
3221   }
3222   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3223   if (klsptr == NULL) {
3224     return true;
3225   }
3226   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3227   // don't need a guard for a klass that is already initialized
3228   return !ik->is_initialized();
3229 }
3230 
3231 //----------------------------inline_unsafe_allocate---------------------------
3232 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
3233 bool LibraryCallKit::inline_unsafe_allocate() {
3234   if (callee()->is_static())  return false;  // caller must have the capability!
3235 
3236   null_check_receiver();  // null-check, then ignore
3237   Node* cls = null_check(argument(1));
3238   if (stopped())  return true;
3239 
3240   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3241   kls = null_check(kls);
3242   if (stopped())  return true;  // argument was like int.class
3243 
3244   Node* test = NULL;
3245   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3246     // Note:  The argument might still be an illegal value like
3247     // Serializable.class or Object[].class.   The runtime will handle it.
3248     // But we must make an explicit check for initialization.
3249     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3250     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3251     // can generate code to load it as unsigned byte.
3252     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3253     Node* bits = intcon(InstanceKlass::fully_initialized);
3254     test = _gvn.transform(new (C) SubINode(inst, bits));
3255     // The 'test' is non-zero if we need to take a slow path.
3256   }
3257 
3258   Node* obj = new_instance(kls, test);
3259   set_result(obj);
3260   return true;
3261 }
3262 
3263 #ifdef JFR_HAVE_INTRINSICS
3264 /*
3265  * oop -> myklass
3266  * myklass->trace_id |= USED
3267  * return myklass->trace_id & ~0x3
3268  */
3269 bool LibraryCallKit::inline_native_classID() {
3270   Node* cls = null_check(argument(0), T_OBJECT);
3271   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3272   kls = null_check(kls, T_OBJECT);
3273 
3274   ByteSize offset = KLASS_TRACE_ID_OFFSET;
3275   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3276   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3277 
3278   Node* clsused = longcon(0x01l); // set the class bit
3279   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
3280   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3281   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3282 
3283 #ifdef TRACE_ID_META_BITS
3284   Node* mbits = longcon(~TRACE_ID_META_BITS);
3285   tvalue = _gvn.transform(new (C) AndLNode(tvalue, mbits));
3286 #endif
3287 #ifdef TRACE_ID_SHIFT
3288   Node* cbits = intcon(TRACE_ID_SHIFT);
3289   tvalue = _gvn.transform(new (C) URShiftLNode(tvalue, cbits));
3290 #endif
3291 
3292   set_result(tvalue);
3293   return true;
3294 }
3295 
3296 bool LibraryCallKit::inline_native_getEventWriter() {
3297   Node* tls_ptr = _gvn.transform(new (C) ThreadLocalNode());
3298 
3299   Node* jobj_ptr = basic_plus_adr(top(), tls_ptr,
3300                                   in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR)
3301                                   );
3302 
3303   Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered);
3304 
3305   Node* jobj_cmp_null = _gvn.transform( new (C) CmpPNode(jobj, null()) );
3306   Node* test_jobj_eq_null  = _gvn.transform( new (C) BoolNode(jobj_cmp_null, BoolTest::eq) );
3307 
3308   IfNode* iff_jobj_null =
3309     create_and_map_if(control(), test_jobj_eq_null, PROB_MIN, COUNT_UNKNOWN);
3310 
3311   enum { _normal_path = 1,
3312          _null_path = 2,
3313          PATH_LIMIT };
3314 
3315   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
3316   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypePtr::BOTTOM);
3317 
3318   Node* jobj_is_null = _gvn.transform(new (C) IfTrueNode(iff_jobj_null));
3319   result_rgn->init_req(_null_path, jobj_is_null);
3320   result_val->init_req(_null_path, null());
3321 
3322   Node* jobj_is_not_null = _gvn.transform(new (C) IfFalseNode(iff_jobj_null));
3323   result_rgn->init_req(_normal_path, jobj_is_not_null);
3324 
3325   Node* res = make_load(jobj_is_not_null, jobj, TypeInstPtr::NOTNULL, T_OBJECT, MemNode::unordered);
3326   result_val->init_req(_normal_path, res);
3327 
3328   set_result(result_rgn, result_val);
3329 
3330   return true;
3331 }
3332 #endif // JFR_HAVE_INTRINSICS
3333 
3334 //------------------------inline_native_time_funcs--------------
3335 // inline code for System.currentTimeMillis() and System.nanoTime()
3336 // these have the same type and signature
3337 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3338   const TypeFunc* tf = OptoRuntime::void_long_Type();
3339   const TypePtr* no_memory_effects = NULL;
3340   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3341   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
3342 #ifdef ASSERT
3343   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
3344   assert(value_top == top(), "second value must be top");
3345 #endif
3346   set_result(value);
3347   return true;
3348 }
3349 
3350 //------------------------inline_native_currentThread------------------
3351 bool LibraryCallKit::inline_native_currentThread() {
3352   Node* junk = NULL;
3353   set_result(generate_current_thread(junk));
3354   return true;
3355 }
3356 
3357 //------------------------inline_native_isInterrupted------------------
3358 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3359 bool LibraryCallKit::inline_native_isInterrupted() {
3360   // Add a fast path to t.isInterrupted(clear_int):
3361   //   (t == Thread.current() &&
3362   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3363   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3364   // So, in the common case that the interrupt bit is false,
3365   // we avoid making a call into the VM.  Even if the interrupt bit
3366   // is true, if the clear_int argument is false, we avoid the VM call.
3367   // However, if the receiver is not currentThread, we must call the VM,
3368   // because there must be some locking done around the operation.
3369 
3370   // We only go to the fast case code if we pass two guards.
3371   // Paths which do not pass are accumulated in the slow_region.
3372 
3373   enum {
3374     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3375     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3376     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3377     PATH_LIMIT
3378   };
3379 
3380   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3381   // out of the function.
3382   insert_mem_bar(Op_MemBarCPUOrder);
3383 
3384   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
3385   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
3386 
3387   RegionNode* slow_region = new (C) RegionNode(1);
3388   record_for_igvn(slow_region);
3389 
3390   // (a) Receiving thread must be the current thread.
3391   Node* rec_thr = argument(0);
3392   Node* tls_ptr = NULL;
3393   Node* cur_thr = generate_current_thread(tls_ptr);
3394   Node* cmp_thr = _gvn.transform(new (C) CmpPNode(cur_thr, rec_thr));
3395   Node* bol_thr = _gvn.transform(new (C) BoolNode(cmp_thr, BoolTest::ne));
3396 
3397   generate_slow_guard(bol_thr, slow_region);
3398 
3399   // (b) Interrupt bit on TLS must be false.
3400   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3401   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3402   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3403 
3404   // Set the control input on the field _interrupted read to prevent it floating up.
3405   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3406   Node* cmp_bit = _gvn.transform(new (C) CmpINode(int_bit, intcon(0)));
3407   Node* bol_bit = _gvn.transform(new (C) BoolNode(cmp_bit, BoolTest::ne));
3408 
3409   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3410 
3411   // First fast path:  if (!TLS._interrupted) return false;
3412   Node* false_bit = _gvn.transform(new (C) IfFalseNode(iff_bit));
3413   result_rgn->init_req(no_int_result_path, false_bit);
3414   result_val->init_req(no_int_result_path, intcon(0));
3415 
3416   // drop through to next case
3417   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)));
3418 
3419 #ifndef TARGET_OS_FAMILY_windows
3420   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3421   Node* clr_arg = argument(1);
3422   Node* cmp_arg = _gvn.transform(new (C) CmpINode(clr_arg, intcon(0)));
3423   Node* bol_arg = _gvn.transform(new (C) BoolNode(cmp_arg, BoolTest::ne));
3424   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3425 
3426   // Second fast path:  ... else if (!clear_int) return true;
3427   Node* false_arg = _gvn.transform(new (C) IfFalseNode(iff_arg));
3428   result_rgn->init_req(no_clear_result_path, false_arg);
3429   result_val->init_req(no_clear_result_path, intcon(1));
3430 
3431   // drop through to next case
3432   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)));
3433 #else
3434   // To return true on Windows you must read the _interrupted field
3435   // and check the the event state i.e. take the slow path.
3436 #endif // TARGET_OS_FAMILY_windows
3437 
3438   // (d) Otherwise, go to the slow path.
3439   slow_region->add_req(control());
3440   set_control( _gvn.transform(slow_region));
3441 
3442   if (stopped()) {
3443     // There is no slow path.
3444     result_rgn->init_req(slow_result_path, top());
3445     result_val->init_req(slow_result_path, top());
3446   } else {
3447     // non-virtual because it is a private non-static
3448     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3449 
3450     Node* slow_val = set_results_for_java_call(slow_call);
3451     // this->control() comes from set_results_for_java_call
3452 
3453     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3454     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3455 
3456     // These two phis are pre-filled with copies of of the fast IO and Memory
3457     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3458     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3459 
3460     result_rgn->init_req(slow_result_path, control());
3461     result_io ->init_req(slow_result_path, i_o());
3462     result_mem->init_req(slow_result_path, reset_memory());
3463     result_val->init_req(slow_result_path, slow_val);
3464 
3465     set_all_memory(_gvn.transform(result_mem));
3466     set_i_o(       _gvn.transform(result_io));
3467   }
3468 
3469   C->set_has_split_ifs(true); // Has chance for split-if optimization
3470   set_result(result_rgn, result_val);
3471   return true;
3472 }
3473 
3474 //---------------------------load_mirror_from_klass----------------------------
3475 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3476 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3477   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3478   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3479 }
3480 
3481 //-----------------------load_klass_from_mirror_common-------------------------
3482 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3483 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3484 // and branch to the given path on the region.
3485 // If never_see_null, take an uncommon trap on null, so we can optimistically
3486 // compile for the non-null case.
3487 // If the region is NULL, force never_see_null = true.
3488 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3489                                                     bool never_see_null,
3490                                                     RegionNode* region,
3491                                                     int null_path,
3492                                                     int offset) {
3493   if (region == NULL)  never_see_null = true;
3494   Node* p = basic_plus_adr(mirror, offset);
3495   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3496   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3497   Node* null_ctl = top();
3498   kls = null_check_oop(kls, &null_ctl, never_see_null);
3499   if (region != NULL) {
3500     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3501     region->init_req(null_path, null_ctl);
3502   } else {
3503     assert(null_ctl == top(), "no loose ends");
3504   }
3505   return kls;
3506 }
3507 
3508 //--------------------(inline_native_Class_query helpers)---------------------
3509 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3510 // Fall through if (mods & mask) == bits, take the guard otherwise.
3511 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3512   // Branch around if the given klass has the given modifier bit set.
3513   // Like generate_guard, adds a new path onto the region.
3514   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3515   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3516   Node* mask = intcon(modifier_mask);
3517   Node* bits = intcon(modifier_bits);
3518   Node* mbit = _gvn.transform(new (C) AndINode(mods, mask));
3519   Node* cmp  = _gvn.transform(new (C) CmpINode(mbit, bits));
3520   Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
3521   return generate_fair_guard(bol, region);
3522 }
3523 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3524   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3525 }
3526 
3527 //-------------------------inline_native_Class_query-------------------
3528 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3529   const Type* return_type = TypeInt::BOOL;
3530   Node* prim_return_value = top();  // what happens if it's a primitive class?
3531   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3532   bool expect_prim = false;     // most of these guys expect to work on refs
3533 
3534   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3535 
3536   Node* mirror = argument(0);
3537   Node* obj    = top();
3538 
3539   switch (id) {
3540   case vmIntrinsics::_isInstance:
3541     // nothing is an instance of a primitive type
3542     prim_return_value = intcon(0);
3543     obj = argument(1);
3544     break;
3545   case vmIntrinsics::_getModifiers:
3546     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3547     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3548     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3549     break;
3550   case vmIntrinsics::_isInterface:
3551     prim_return_value = intcon(0);
3552     break;
3553   case vmIntrinsics::_isArray:
3554     prim_return_value = intcon(0);
3555     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3556     break;
3557   case vmIntrinsics::_isPrimitive:
3558     prim_return_value = intcon(1);
3559     expect_prim = true;  // obviously
3560     break;
3561   case vmIntrinsics::_getSuperclass:
3562     prim_return_value = null();
3563     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3564     break;
3565   case vmIntrinsics::_getComponentType:
3566     prim_return_value = null();
3567     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3568     break;
3569   case vmIntrinsics::_getClassAccessFlags:
3570     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3571     return_type = TypeInt::INT;  // not bool!  6297094
3572     break;
3573   default:
3574     fatal_unexpected_iid(id);
3575     break;
3576   }
3577 
3578   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3579   if (mirror_con == NULL)  return false;  // cannot happen?
3580 
3581 #ifndef PRODUCT
3582   if (C->print_intrinsics() || C->print_inlining()) {
3583     ciType* k = mirror_con->java_mirror_type();
3584     if (k) {
3585       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3586       k->print_name();
3587       tty->cr();
3588     }
3589   }
3590 #endif
3591 
3592   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3593   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3594   record_for_igvn(region);
3595   PhiNode* phi = new (C) PhiNode(region, return_type);
3596 
3597   // The mirror will never be null of Reflection.getClassAccessFlags, however
3598   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3599   // if it is. See bug 4774291.
3600 
3601   // For Reflection.getClassAccessFlags(), the null check occurs in
3602   // the wrong place; see inline_unsafe_access(), above, for a similar
3603   // situation.
3604   mirror = null_check(mirror);
3605   // If mirror or obj is dead, only null-path is taken.
3606   if (stopped())  return true;
3607 
3608   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3609 
3610   // Now load the mirror's klass metaobject, and null-check it.
3611   // Side-effects region with the control path if the klass is null.
3612   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3613   // If kls is null, we have a primitive mirror.
3614   phi->init_req(_prim_path, prim_return_value);
3615   if (stopped()) { set_result(region, phi); return true; }
3616   bool safe_for_replace = (region->in(_prim_path) == top());
3617 
3618   Node* p;  // handy temp
3619   Node* null_ctl;
3620 
3621   // Now that we have the non-null klass, we can perform the real query.
3622   // For constant classes, the query will constant-fold in LoadNode::Value.
3623   Node* query_value = top();
3624   switch (id) {
3625   case vmIntrinsics::_isInstance:
3626     // nothing is an instance of a primitive type
3627     query_value = gen_instanceof(obj, kls, safe_for_replace);
3628     break;
3629 
3630   case vmIntrinsics::_getModifiers:
3631     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3632     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3633     break;
3634 
3635   case vmIntrinsics::_isInterface:
3636     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3637     if (generate_interface_guard(kls, region) != NULL)
3638       // A guard was added.  If the guard is taken, it was an interface.
3639       phi->add_req(intcon(1));
3640     // If we fall through, it's a plain class.
3641     query_value = intcon(0);
3642     break;
3643 
3644   case vmIntrinsics::_isArray:
3645     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3646     if (generate_array_guard(kls, region) != NULL)
3647       // A guard was added.  If the guard is taken, it was an array.
3648       phi->add_req(intcon(1));
3649     // If we fall through, it's a plain class.
3650     query_value = intcon(0);
3651     break;
3652 
3653   case vmIntrinsics::_isPrimitive:
3654     query_value = intcon(0); // "normal" path produces false
3655     break;
3656 
3657   case vmIntrinsics::_getSuperclass:
3658     // The rules here are somewhat unfortunate, but we can still do better
3659     // with random logic than with a JNI call.
3660     // Interfaces store null or Object as _super, but must report null.
3661     // Arrays store an intermediate super as _super, but must report Object.
3662     // Other types can report the actual _super.
3663     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3664     if (generate_interface_guard(kls, region) != NULL)
3665       // A guard was added.  If the guard is taken, it was an interface.
3666       phi->add_req(null());
3667     if (generate_array_guard(kls, region) != NULL)
3668       // A guard was added.  If the guard is taken, it was an array.
3669       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3670     // If we fall through, it's a plain class.  Get its _super.
3671     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3672     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3673     null_ctl = top();
3674     kls = null_check_oop(kls, &null_ctl);
3675     if (null_ctl != top()) {
3676       // If the guard is taken, Object.superClass is null (both klass and mirror).
3677       region->add_req(null_ctl);
3678       phi   ->add_req(null());
3679     }
3680     if (!stopped()) {
3681       query_value = load_mirror_from_klass(kls);
3682     }
3683     break;
3684 
3685   case vmIntrinsics::_getComponentType:
3686     if (generate_array_guard(kls, region) != NULL) {
3687       // Be sure to pin the oop load to the guard edge just created:
3688       Node* is_array_ctrl = region->in(region->req()-1);
3689       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
3690       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3691       phi->add_req(cmo);
3692     }
3693     query_value = null();  // non-array case is null
3694     break;
3695 
3696   case vmIntrinsics::_getClassAccessFlags:
3697     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3698     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3699     break;
3700 
3701   default:
3702     fatal_unexpected_iid(id);
3703     break;
3704   }
3705 
3706   // Fall-through is the normal case of a query to a real class.
3707   phi->init_req(1, query_value);
3708   region->init_req(1, control());
3709 
3710   C->set_has_split_ifs(true); // Has chance for split-if optimization
3711   set_result(region, phi);
3712   return true;
3713 }
3714 
3715 //--------------------------inline_native_subtype_check------------------------
3716 // This intrinsic takes the JNI calls out of the heart of
3717 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3718 bool LibraryCallKit::inline_native_subtype_check() {
3719   // Pull both arguments off the stack.
3720   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3721   args[0] = argument(0);
3722   args[1] = argument(1);
3723   Node* klasses[2];             // corresponding Klasses: superk, subk
3724   klasses[0] = klasses[1] = top();
3725 
3726   enum {
3727     // A full decision tree on {superc is prim, subc is prim}:
3728     _prim_0_path = 1,           // {P,N} => false
3729                                 // {P,P} & superc!=subc => false
3730     _prim_same_path,            // {P,P} & superc==subc => true
3731     _prim_1_path,               // {N,P} => false
3732     _ref_subtype_path,          // {N,N} & subtype check wins => true
3733     _both_ref_path,             // {N,N} & subtype check loses => false
3734     PATH_LIMIT
3735   };
3736 
3737   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3738   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
3739   record_for_igvn(region);
3740 
3741   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3742   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3743   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3744 
3745   // First null-check both mirrors and load each mirror's klass metaobject.
3746   int which_arg;
3747   for (which_arg = 0; which_arg <= 1; which_arg++) {
3748     Node* arg = args[which_arg];
3749     arg = null_check(arg);
3750     if (stopped())  break;
3751     args[which_arg] = arg;
3752 
3753     Node* p = basic_plus_adr(arg, class_klass_offset);
3754     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3755     klasses[which_arg] = _gvn.transform(kls);
3756   }
3757 
3758   // Having loaded both klasses, test each for null.
3759   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3760   for (which_arg = 0; which_arg <= 1; which_arg++) {
3761     Node* kls = klasses[which_arg];
3762     Node* null_ctl = top();
3763     kls = null_check_oop(kls, &null_ctl, never_see_null);
3764     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3765     region->init_req(prim_path, null_ctl);
3766     if (stopped())  break;
3767     klasses[which_arg] = kls;
3768   }
3769 
3770   if (!stopped()) {
3771     // now we have two reference types, in klasses[0..1]
3772     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3773     Node* superk = klasses[0];  // the receiver
3774     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3775     // now we have a successful reference subtype check
3776     region->set_req(_ref_subtype_path, control());
3777   }
3778 
3779   // If both operands are primitive (both klasses null), then
3780   // we must return true when they are identical primitives.
3781   // It is convenient to test this after the first null klass check.
3782   set_control(region->in(_prim_0_path)); // go back to first null check
3783   if (!stopped()) {
3784     // Since superc is primitive, make a guard for the superc==subc case.
3785     Node* cmp_eq = _gvn.transform(new (C) CmpPNode(args[0], args[1]));
3786     Node* bol_eq = _gvn.transform(new (C) BoolNode(cmp_eq, BoolTest::eq));
3787     generate_guard(bol_eq, region, PROB_FAIR);
3788     if (region->req() == PATH_LIMIT+1) {
3789       // A guard was added.  If the added guard is taken, superc==subc.
3790       region->swap_edges(PATH_LIMIT, _prim_same_path);
3791       region->del_req(PATH_LIMIT);
3792     }
3793     region->set_req(_prim_0_path, control()); // Not equal after all.
3794   }
3795 
3796   // these are the only paths that produce 'true':
3797   phi->set_req(_prim_same_path,   intcon(1));
3798   phi->set_req(_ref_subtype_path, intcon(1));
3799 
3800   // pull together the cases:
3801   assert(region->req() == PATH_LIMIT, "sane region");
3802   for (uint i = 1; i < region->req(); i++) {
3803     Node* ctl = region->in(i);
3804     if (ctl == NULL || ctl == top()) {
3805       region->set_req(i, top());
3806       phi   ->set_req(i, top());
3807     } else if (phi->in(i) == NULL) {
3808       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3809     }
3810   }
3811 
3812   set_control(_gvn.transform(region));
3813   set_result(_gvn.transform(phi));
3814   return true;
3815 }
3816 
3817 //---------------------generate_array_guard_common------------------------
3818 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3819                                                   bool obj_array, bool not_array) {
3820   // If obj_array/non_array==false/false:
3821   // Branch around if the given klass is in fact an array (either obj or prim).
3822   // If obj_array/non_array==false/true:
3823   // Branch around if the given klass is not an array klass of any kind.
3824   // If obj_array/non_array==true/true:
3825   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3826   // If obj_array/non_array==true/false:
3827   // Branch around if the kls is an oop array (Object[] or subtype)
3828   //
3829   // Like generate_guard, adds a new path onto the region.
3830   jint  layout_con = 0;
3831   Node* layout_val = get_layout_helper(kls, layout_con);
3832   if (layout_val == NULL) {
3833     bool query = (obj_array
3834                   ? Klass::layout_helper_is_objArray(layout_con)
3835                   : Klass::layout_helper_is_array(layout_con));
3836     if (query == not_array) {
3837       return NULL;                       // never a branch
3838     } else {                             // always a branch
3839       Node* always_branch = control();
3840       if (region != NULL)
3841         region->add_req(always_branch);
3842       set_control(top());
3843       return always_branch;
3844     }
3845   }
3846   // Now test the correct condition.
3847   jint  nval = (obj_array
3848                 ? (jint)(Klass::_lh_array_tag_type_value
3849                    <<    Klass::_lh_array_tag_shift)
3850                 : Klass::_lh_neutral_value);
3851   Node* cmp = _gvn.transform(new(C) CmpINode(layout_val, intcon(nval)));
3852   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3853   // invert the test if we are looking for a non-array
3854   if (not_array)  btest = BoolTest(btest).negate();
3855   Node* bol = _gvn.transform(new(C) BoolNode(cmp, btest));
3856   return generate_fair_guard(bol, region);
3857 }
3858 
3859 
3860 //-----------------------inline_native_newArray--------------------------
3861 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3862 bool LibraryCallKit::inline_native_newArray() {
3863   Node* mirror    = argument(0);
3864   Node* count_val = argument(1);
3865 
3866   mirror = null_check(mirror);
3867   // If mirror or obj is dead, only null-path is taken.
3868   if (stopped())  return true;
3869 
3870   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3871   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3872   PhiNode*    result_val = new(C) PhiNode(result_reg,
3873                                           TypeInstPtr::NOTNULL);
3874   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3875   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3876                                           TypePtr::BOTTOM);
3877 
3878   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3879   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3880                                                   result_reg, _slow_path);
3881   Node* normal_ctl   = control();
3882   Node* no_array_ctl = result_reg->in(_slow_path);
3883 
3884   // Generate code for the slow case.  We make a call to newArray().
3885   set_control(no_array_ctl);
3886   if (!stopped()) {
3887     // Either the input type is void.class, or else the
3888     // array klass has not yet been cached.  Either the
3889     // ensuing call will throw an exception, or else it
3890     // will cache the array klass for next time.
3891     PreserveJVMState pjvms(this);
3892     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3893     Node* slow_result = set_results_for_java_call(slow_call);
3894     // this->control() comes from set_results_for_java_call
3895     result_reg->set_req(_slow_path, control());
3896     result_val->set_req(_slow_path, slow_result);
3897     result_io ->set_req(_slow_path, i_o());
3898     result_mem->set_req(_slow_path, reset_memory());
3899   }
3900 
3901   set_control(normal_ctl);
3902   if (!stopped()) {
3903     // Normal case:  The array type has been cached in the java.lang.Class.
3904     // The following call works fine even if the array type is polymorphic.
3905     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3906     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3907     result_reg->init_req(_normal_path, control());
3908     result_val->init_req(_normal_path, obj);
3909     result_io ->init_req(_normal_path, i_o());
3910     result_mem->init_req(_normal_path, reset_memory());
3911   }
3912 
3913   // Return the combined state.
3914   set_i_o(        _gvn.transform(result_io)  );
3915   set_all_memory( _gvn.transform(result_mem));
3916 
3917   C->set_has_split_ifs(true); // Has chance for split-if optimization
3918   set_result(result_reg, result_val);
3919   return true;
3920 }
3921 
3922 //----------------------inline_native_getLength--------------------------
3923 // public static native int java.lang.reflect.Array.getLength(Object array);
3924 bool LibraryCallKit::inline_native_getLength() {
3925   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3926 
3927   Node* array = null_check(argument(0));
3928   // If array is dead, only null-path is taken.
3929   if (stopped())  return true;
3930 
3931   // Deoptimize if it is a non-array.
3932   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3933 
3934   if (non_array != NULL) {
3935     PreserveJVMState pjvms(this);
3936     set_control(non_array);
3937     uncommon_trap(Deoptimization::Reason_intrinsic,
3938                   Deoptimization::Action_maybe_recompile);
3939   }
3940 
3941   // If control is dead, only non-array-path is taken.
3942   if (stopped())  return true;
3943 
3944   // The works fine even if the array type is polymorphic.
3945   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3946   Node* result = load_array_length(array);
3947 
3948   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3949   set_result(result);
3950   return true;
3951 }
3952 
3953 //------------------------inline_array_copyOf----------------------------
3954 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3955 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3956 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3957   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3958 
3959   // Get the arguments.
3960   Node* original          = argument(0);
3961   Node* start             = is_copyOfRange? argument(1): intcon(0);
3962   Node* end               = is_copyOfRange? argument(2): argument(1);
3963   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3964 
3965   Node* newcopy = NULL;
3966 
3967   // Set the original stack and the reexecute bit for the interpreter to reexecute
3968   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3969   { PreserveReexecuteState preexecs(this);
3970     jvms()->set_should_reexecute(true);
3971 
3972     array_type_mirror = null_check(array_type_mirror);
3973     original          = null_check(original);
3974 
3975     // Check if a null path was taken unconditionally.
3976     if (stopped())  return true;
3977 
3978     Node* orig_length = load_array_length(original);
3979 
3980     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3981     klass_node = null_check(klass_node);
3982 
3983     RegionNode* bailout = new (C) RegionNode(1);
3984     record_for_igvn(bailout);
3985 
3986     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3987     // Bail out if that is so.
3988     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3989     if (not_objArray != NULL) {
3990       // Improve the klass node's type from the new optimistic assumption:
3991       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3992       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3993       Node* cast = new (C) CastPPNode(klass_node, akls);
3994       cast->init_req(0, control());
3995       klass_node = _gvn.transform(cast);
3996     }
3997 
3998     // Bail out if either start or end is negative.
3999     generate_negative_guard(start, bailout, &start);
4000     generate_negative_guard(end,   bailout, &end);
4001 
4002     Node* length = end;
4003     if (_gvn.type(start) != TypeInt::ZERO) {
4004       length = _gvn.transform(new (C) SubINode(end, start));
4005     }
4006 
4007     // Bail out if length is negative.
4008     // Without this the new_array would throw
4009     // NegativeArraySizeException but IllegalArgumentException is what
4010     // should be thrown
4011     generate_negative_guard(length, bailout, &length);
4012 
4013     if (bailout->req() > 1) {
4014       PreserveJVMState pjvms(this);
4015       set_control(_gvn.transform(bailout));
4016       uncommon_trap(Deoptimization::Reason_intrinsic,
4017                     Deoptimization::Action_maybe_recompile);
4018     }
4019 
4020     if (!stopped()) {
4021       // How many elements will we copy from the original?
4022       // The answer is MinI(orig_length - start, length).
4023       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
4024       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
4025 
4026       newcopy = new_array(klass_node, length, 0);  // no argments to push
4027 
4028       // Generate a direct call to the right arraycopy function(s).
4029       // We know the copy is disjoint but we might not know if the
4030       // oop stores need checking.
4031       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
4032       // This will fail a store-check if x contains any non-nulls.
4033       bool disjoint_bases = true;
4034       // if start > orig_length then the length of the copy may be
4035       // negative.
4036       bool length_never_negative = !is_copyOfRange;
4037       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4038                          original, start, newcopy, intcon(0), moved,
4039                          disjoint_bases, length_never_negative);
4040     }
4041   } // original reexecute is set back here
4042 
4043   C->set_has_split_ifs(true); // Has chance for split-if optimization
4044   if (!stopped()) {
4045     set_result(newcopy);
4046   }
4047   return true;
4048 }
4049 
4050 
4051 //----------------------generate_virtual_guard---------------------------
4052 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
4053 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
4054                                              RegionNode* slow_region) {
4055   ciMethod* method = callee();
4056   int vtable_index = method->vtable_index();
4057   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4058          err_msg_res("bad index %d", vtable_index));
4059   // Get the Method* out of the appropriate vtable entry.
4060   int entry_offset  = (InstanceKlass::vtable_start_offset() +
4061                      vtable_index*vtableEntry::size()) * wordSize +
4062                      vtableEntry::method_offset_in_bytes();
4063   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
4064   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4065 
4066   // Compare the target method with the expected method (e.g., Object.hashCode).
4067   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
4068 
4069   Node* native_call = makecon(native_call_addr);
4070   Node* chk_native  = _gvn.transform(new(C) CmpPNode(target_call, native_call));
4071   Node* test_native = _gvn.transform(new(C) BoolNode(chk_native, BoolTest::ne));
4072 
4073   return generate_slow_guard(test_native, slow_region);
4074 }
4075 
4076 //-----------------------generate_method_call----------------------------
4077 // Use generate_method_call to make a slow-call to the real
4078 // method if the fast path fails.  An alternative would be to
4079 // use a stub like OptoRuntime::slow_arraycopy_Java.
4080 // This only works for expanding the current library call,
4081 // not another intrinsic.  (E.g., don't use this for making an
4082 // arraycopy call inside of the copyOf intrinsic.)
4083 CallJavaNode*
4084 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
4085   // When compiling the intrinsic method itself, do not use this technique.
4086   guarantee(callee() != C->method(), "cannot make slow-call to self");
4087 
4088   ciMethod* method = callee();
4089   // ensure the JVMS we have will be correct for this call
4090   guarantee(method_id == method->intrinsic_id(), "must match");
4091 
4092   const TypeFunc* tf = TypeFunc::make(method);
4093   CallJavaNode* slow_call;
4094   if (is_static) {
4095     assert(!is_virtual, "");
4096     slow_call = new(C) CallStaticJavaNode(C, tf,
4097                            SharedRuntime::get_resolve_static_call_stub(),
4098                            method, bci());
4099   } else if (is_virtual) {
4100     null_check_receiver();
4101     int vtable_index = Method::invalid_vtable_index;
4102     if (UseInlineCaches) {
4103       // Suppress the vtable call
4104     } else {
4105       // hashCode and clone are not a miranda methods,
4106       // so the vtable index is fixed.
4107       // No need to use the linkResolver to get it.
4108        vtable_index = method->vtable_index();
4109        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4110               err_msg_res("bad index %d", vtable_index));
4111     }
4112     slow_call = new(C) CallDynamicJavaNode(tf,
4113                           SharedRuntime::get_resolve_virtual_call_stub(),
4114                           method, vtable_index, bci());
4115   } else {  // neither virtual nor static:  opt_virtual
4116     null_check_receiver();
4117     slow_call = new(C) CallStaticJavaNode(C, tf,
4118                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
4119                                 method, bci());
4120     slow_call->set_optimized_virtual(true);
4121   }
4122   set_arguments_for_java_call(slow_call);
4123   set_edges_for_java_call(slow_call);
4124   return slow_call;
4125 }
4126 
4127 
4128 /**
4129  * Build special case code for calls to hashCode on an object. This call may
4130  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4131  * slightly different code.
4132  */
4133 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4134   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4135   assert(!(is_virtual && is_static), "either virtual, special, or static");
4136 
4137   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4138 
4139   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4140   PhiNode*    result_val = new(C) PhiNode(result_reg, TypeInt::INT);
4141   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
4142   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4143   Node* obj = NULL;
4144   if (!is_static) {
4145     // Check for hashing null object
4146     obj = null_check_receiver();
4147     if (stopped())  return true;        // unconditionally null
4148     result_reg->init_req(_null_path, top());
4149     result_val->init_req(_null_path, top());
4150   } else {
4151     // Do a null check, and return zero if null.
4152     // System.identityHashCode(null) == 0
4153     obj = argument(0);
4154     Node* null_ctl = top();
4155     obj = null_check_oop(obj, &null_ctl);
4156     result_reg->init_req(_null_path, null_ctl);
4157     result_val->init_req(_null_path, _gvn.intcon(0));
4158   }
4159 
4160   // Unconditionally null?  Then return right away.
4161   if (stopped()) {
4162     set_control( result_reg->in(_null_path));
4163     if (!stopped())
4164       set_result(result_val->in(_null_path));
4165     return true;
4166   }
4167 
4168   // We only go to the fast case code if we pass a number of guards.  The
4169   // paths which do not pass are accumulated in the slow_region.
4170   RegionNode* slow_region = new (C) RegionNode(1);
4171   record_for_igvn(slow_region);
4172 
4173   // If this is a virtual call, we generate a funny guard.  We pull out
4174   // the vtable entry corresponding to hashCode() from the target object.
4175   // If the target method which we are calling happens to be the native
4176   // Object hashCode() method, we pass the guard.  We do not need this
4177   // guard for non-virtual calls -- the caller is known to be the native
4178   // Object hashCode().
4179   if (is_virtual) {
4180     // After null check, get the object's klass.
4181     Node* obj_klass = load_object_klass(obj);
4182     generate_virtual_guard(obj_klass, slow_region);
4183   }
4184 
4185   // Get the header out of the object, use LoadMarkNode when available
4186   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4187   // The control of the load must be NULL. Otherwise, the load can move before
4188   // the null check after castPP removal.
4189   Node* no_ctrl = NULL;
4190   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4191 
4192   // Test the header to see if it is unlocked.
4193   Node* lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4194   Node* lmasked_header = _gvn.transform(new (C) AndXNode(header, lock_mask));
4195   Node* unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4196   Node* chk_unlocked   = _gvn.transform(new (C) CmpXNode( lmasked_header, unlocked_val));
4197   Node* test_unlocked  = _gvn.transform(new (C) BoolNode( chk_unlocked, BoolTest::ne));
4198 
4199   generate_slow_guard(test_unlocked, slow_region);
4200 
4201   // Get the hash value and check to see that it has been properly assigned.
4202   // We depend on hash_mask being at most 32 bits and avoid the use of
4203   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4204   // vm: see markOop.hpp.
4205   Node* hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4206   Node* hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4207   Node* hshifted_header= _gvn.transform(new (C) URShiftXNode(header, hash_shift));
4208   // This hack lets the hash bits live anywhere in the mark object now, as long
4209   // as the shift drops the relevant bits into the low 32 bits.  Note that
4210   // Java spec says that HashCode is an int so there's no point in capturing
4211   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4212   hshifted_header      = ConvX2I(hshifted_header);
4213   Node* hash_val       = _gvn.transform(new (C) AndINode(hshifted_header, hash_mask));
4214 
4215   Node* no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4216   Node* chk_assigned   = _gvn.transform(new (C) CmpINode( hash_val, no_hash_val));
4217   Node* test_assigned  = _gvn.transform(new (C) BoolNode( chk_assigned, BoolTest::eq));
4218 
4219   generate_slow_guard(test_assigned, slow_region);
4220 
4221   Node* init_mem = reset_memory();
4222   // fill in the rest of the null path:
4223   result_io ->init_req(_null_path, i_o());
4224   result_mem->init_req(_null_path, init_mem);
4225 
4226   result_val->init_req(_fast_path, hash_val);
4227   result_reg->init_req(_fast_path, control());
4228   result_io ->init_req(_fast_path, i_o());
4229   result_mem->init_req(_fast_path, init_mem);
4230 
4231   // Generate code for the slow case.  We make a call to hashCode().
4232   set_control(_gvn.transform(slow_region));
4233   if (!stopped()) {
4234     // No need for PreserveJVMState, because we're using up the present state.
4235     set_all_memory(init_mem);
4236     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4237     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4238     Node* slow_result = set_results_for_java_call(slow_call);
4239     // this->control() comes from set_results_for_java_call
4240     result_reg->init_req(_slow_path, control());
4241     result_val->init_req(_slow_path, slow_result);
4242     result_io  ->set_req(_slow_path, i_o());
4243     result_mem ->set_req(_slow_path, reset_memory());
4244   }
4245 
4246   // Return the combined state.
4247   set_i_o(        _gvn.transform(result_io)  );
4248   set_all_memory( _gvn.transform(result_mem));
4249 
4250   set_result(result_reg, result_val);
4251   return true;
4252 }
4253 
4254 //---------------------------inline_native_getClass----------------------------
4255 // public final native Class<?> java.lang.Object.getClass();
4256 //
4257 // Build special case code for calls to getClass on an object.
4258 bool LibraryCallKit::inline_native_getClass() {
4259   Node* obj = null_check_receiver();
4260   if (stopped())  return true;
4261   set_result(load_mirror_from_klass(load_object_klass(obj)));
4262   return true;
4263 }
4264 
4265 //-----------------inline_native_Reflection_getCallerClass---------------------
4266 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4267 //
4268 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4269 //
4270 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4271 // in that it must skip particular security frames and checks for
4272 // caller sensitive methods.
4273 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4274 #ifndef PRODUCT
4275   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4276     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4277   }
4278 #endif
4279 
4280   if (!jvms()->has_method()) {
4281 #ifndef PRODUCT
4282     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4283       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4284     }
4285 #endif
4286     return false;
4287   }
4288 
4289   // Walk back up the JVM state to find the caller at the required
4290   // depth.
4291   JVMState* caller_jvms = jvms();
4292 
4293   // Cf. JVM_GetCallerClass
4294   // NOTE: Start the loop at depth 1 because the current JVM state does
4295   // not include the Reflection.getCallerClass() frame.
4296   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4297     ciMethod* m = caller_jvms->method();
4298     switch (n) {
4299     case 0:
4300       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4301       break;
4302     case 1:
4303       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4304       if (!m->caller_sensitive()) {
4305 #ifndef PRODUCT
4306         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4307           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4308         }
4309 #endif
4310         return false;  // bail-out; let JVM_GetCallerClass do the work
4311       }
4312       break;
4313     default:
4314       if (!m->is_ignored_by_security_stack_walk()) {
4315         // We have reached the desired frame; return the holder class.
4316         // Acquire method holder as java.lang.Class and push as constant.
4317         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4318         ciInstance* caller_mirror = caller_klass->java_mirror();
4319         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4320 
4321 #ifndef PRODUCT
4322         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4323           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4324           tty->print_cr("  JVM state at this point:");
4325           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4326             ciMethod* m = jvms()->of_depth(i)->method();
4327             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4328           }
4329         }
4330 #endif
4331         return true;
4332       }
4333       break;
4334     }
4335   }
4336 
4337 #ifndef PRODUCT
4338   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4339     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4340     tty->print_cr("  JVM state at this point:");
4341     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4342       ciMethod* m = jvms()->of_depth(i)->method();
4343       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4344     }
4345   }
4346 #endif
4347 
4348   return false;  // bail-out; let JVM_GetCallerClass do the work
4349 }
4350 
4351 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4352   Node* arg = argument(0);
4353   Node* result = NULL;
4354 
4355   switch (id) {
4356   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
4357   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
4358   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
4359   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
4360 
4361   case vmIntrinsics::_doubleToLongBits: {
4362     // two paths (plus control) merge in a wood
4363     RegionNode *r = new (C) RegionNode(3);
4364     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
4365 
4366     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
4367     // Build the boolean node
4368     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4369 
4370     // Branch either way.
4371     // NaN case is less traveled, which makes all the difference.
4372     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4373     Node *opt_isnan = _gvn.transform(ifisnan);
4374     assert( opt_isnan->is_If(), "Expect an IfNode");
4375     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4376     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4377 
4378     set_control(iftrue);
4379 
4380     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4381     Node *slow_result = longcon(nan_bits); // return NaN
4382     phi->init_req(1, _gvn.transform( slow_result ));
4383     r->init_req(1, iftrue);
4384 
4385     // Else fall through
4386     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4387     set_control(iffalse);
4388 
4389     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
4390     r->init_req(2, iffalse);
4391 
4392     // Post merge
4393     set_control(_gvn.transform(r));
4394     record_for_igvn(r);
4395 
4396     C->set_has_split_ifs(true); // Has chance for split-if optimization
4397     result = phi;
4398     assert(result->bottom_type()->isa_long(), "must be");
4399     break;
4400   }
4401 
4402   case vmIntrinsics::_floatToIntBits: {
4403     // two paths (plus control) merge in a wood
4404     RegionNode *r = new (C) RegionNode(3);
4405     Node *phi = new (C) PhiNode(r, TypeInt::INT);
4406 
4407     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
4408     // Build the boolean node
4409     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4410 
4411     // Branch either way.
4412     // NaN case is less traveled, which makes all the difference.
4413     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4414     Node *opt_isnan = _gvn.transform(ifisnan);
4415     assert( opt_isnan->is_If(), "Expect an IfNode");
4416     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4417     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4418 
4419     set_control(iftrue);
4420 
4421     static const jint nan_bits = 0x7fc00000;
4422     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4423     phi->init_req(1, _gvn.transform( slow_result ));
4424     r->init_req(1, iftrue);
4425 
4426     // Else fall through
4427     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4428     set_control(iffalse);
4429 
4430     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
4431     r->init_req(2, iffalse);
4432 
4433     // Post merge
4434     set_control(_gvn.transform(r));
4435     record_for_igvn(r);
4436 
4437     C->set_has_split_ifs(true); // Has chance for split-if optimization
4438     result = phi;
4439     assert(result->bottom_type()->isa_int(), "must be");
4440     break;
4441   }
4442 
4443   default:
4444     fatal_unexpected_iid(id);
4445     break;
4446   }
4447   set_result(_gvn.transform(result));
4448   return true;
4449 }
4450 
4451 #ifdef _LP64
4452 #define XTOP ,top() /*additional argument*/
4453 #else  //_LP64
4454 #define XTOP        /*no additional argument*/
4455 #endif //_LP64
4456 
4457 //----------------------inline_unsafe_copyMemory-------------------------
4458 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4459 bool LibraryCallKit::inline_unsafe_copyMemory() {
4460   if (callee()->is_static())  return false;  // caller must have the capability!
4461   null_check_receiver();  // null-check receiver
4462   if (stopped())  return true;
4463 
4464   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4465 
4466   Node* src_ptr =         argument(1);   // type: oop
4467   Node* src_off = ConvL2X(argument(2));  // type: long
4468   Node* dst_ptr =         argument(4);   // type: oop
4469   Node* dst_off = ConvL2X(argument(5));  // type: long
4470   Node* size    = ConvL2X(argument(7));  // type: long
4471 
4472   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4473          "fieldOffset must be byte-scaled");
4474 
4475   Node* src = make_unsafe_address(src_ptr, src_off);
4476   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4477 
4478   // Conservatively insert a memory barrier on all memory slices.
4479   // Do not let writes of the copy source or destination float below the copy.
4480   insert_mem_bar(Op_MemBarCPUOrder);
4481 
4482   // Call it.  Note that the length argument is not scaled.
4483   make_runtime_call(RC_LEAF|RC_NO_FP,
4484                     OptoRuntime::fast_arraycopy_Type(),
4485                     StubRoutines::unsafe_arraycopy(),
4486                     "unsafe_arraycopy",
4487                     TypeRawPtr::BOTTOM,
4488                     src, dst, size XTOP);
4489 
4490   // Do not let reads of the copy destination float above the copy.
4491   insert_mem_bar(Op_MemBarCPUOrder);
4492 
4493   return true;
4494 }
4495 
4496 //------------------------clone_coping-----------------------------------
4497 // Helper function for inline_native_clone.
4498 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4499   assert(obj_size != NULL, "");
4500   Node* raw_obj = alloc_obj->in(1);
4501   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4502 
4503   AllocateNode* alloc = NULL;
4504   if (ReduceBulkZeroing) {
4505     // We will be completely responsible for initializing this object -
4506     // mark Initialize node as complete.
4507     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4508     // The object was just allocated - there should be no any stores!
4509     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4510     // Mark as complete_with_arraycopy so that on AllocateNode
4511     // expansion, we know this AllocateNode is initialized by an array
4512     // copy and a StoreStore barrier exists after the array copy.
4513     alloc->initialization()->set_complete_with_arraycopy();
4514   }
4515 
4516   // Copy the fastest available way.
4517   // TODO: generate fields copies for small objects instead.
4518   Node* src  = obj;
4519   Node* dest = alloc_obj;
4520   Node* size = _gvn.transform(obj_size);
4521 
4522   // Exclude the header but include array length to copy by 8 bytes words.
4523   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4524   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4525                             instanceOopDesc::base_offset_in_bytes();
4526   // base_off:
4527   // 8  - 32-bit VM
4528   // 12 - 64-bit VM, compressed klass
4529   // 16 - 64-bit VM, normal klass
4530   if (base_off % BytesPerLong != 0) {
4531     assert(UseCompressedClassPointers, "");
4532     if (is_array) {
4533       // Exclude length to copy by 8 bytes words.
4534       base_off += sizeof(int);
4535     } else {
4536       // Include klass to copy by 8 bytes words.
4537       base_off = instanceOopDesc::klass_offset_in_bytes();
4538     }
4539     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4540   }
4541   src  = basic_plus_adr(src,  base_off);
4542   dest = basic_plus_adr(dest, base_off);
4543 
4544   // Compute the length also, if needed:
4545   Node* countx = size;
4546   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(base_off)));
4547   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
4548 
4549   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4550   bool disjoint_bases = true;
4551   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4552                                src, NULL, dest, NULL, countx,
4553                                /*dest_uninitialized*/true);
4554 
4555   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4556   if (card_mark) {
4557     assert(!is_array, "");
4558     // Put in store barrier for any and all oops we are sticking
4559     // into this object.  (We could avoid this if we could prove
4560     // that the object type contains no oop fields at all.)
4561     Node* no_particular_value = NULL;
4562     Node* no_particular_field = NULL;
4563     int raw_adr_idx = Compile::AliasIdxRaw;
4564     post_barrier(control(),
4565                  memory(raw_adr_type),
4566                  alloc_obj,
4567                  no_particular_field,
4568                  raw_adr_idx,
4569                  no_particular_value,
4570                  T_OBJECT,
4571                  false);
4572   }
4573 
4574   // Do not let reads from the cloned object float above the arraycopy.
4575   if (alloc != NULL) {
4576     // Do not let stores that initialize this object be reordered with
4577     // a subsequent store that would make this object accessible by
4578     // other threads.
4579     // Record what AllocateNode this StoreStore protects so that
4580     // escape analysis can go from the MemBarStoreStoreNode to the
4581     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4582     // based on the escape status of the AllocateNode.
4583     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4584   } else {
4585     insert_mem_bar(Op_MemBarCPUOrder);
4586   }
4587 }
4588 
4589 //------------------------inline_native_clone----------------------------
4590 // protected native Object java.lang.Object.clone();
4591 //
4592 // Here are the simple edge cases:
4593 //  null receiver => normal trap
4594 //  virtual and clone was overridden => slow path to out-of-line clone
4595 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4596 //
4597 // The general case has two steps, allocation and copying.
4598 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4599 //
4600 // Copying also has two cases, oop arrays and everything else.
4601 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4602 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4603 //
4604 // These steps fold up nicely if and when the cloned object's klass
4605 // can be sharply typed as an object array, a type array, or an instance.
4606 //
4607 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4608   PhiNode* result_val;
4609 
4610   // Set the reexecute bit for the interpreter to reexecute
4611   // the bytecode that invokes Object.clone if deoptimization happens.
4612   { PreserveReexecuteState preexecs(this);
4613     jvms()->set_should_reexecute(true);
4614 
4615     Node* obj = null_check_receiver();
4616     if (stopped())  return true;
4617 
4618     Node* obj_klass = load_object_klass(obj);
4619     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4620     const TypeOopPtr*   toop   = ((tklass != NULL)
4621                                 ? tklass->as_instance_type()
4622                                 : TypeInstPtr::NOTNULL);
4623 
4624     // Conservatively insert a memory barrier on all memory slices.
4625     // Do not let writes into the original float below the clone.
4626     insert_mem_bar(Op_MemBarCPUOrder);
4627 
4628     // paths into result_reg:
4629     enum {
4630       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4631       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4632       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4633       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4634       PATH_LIMIT
4635     };
4636     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4637     result_val             = new(C) PhiNode(result_reg,
4638                                             TypeInstPtr::NOTNULL);
4639     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
4640     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
4641                                             TypePtr::BOTTOM);
4642     record_for_igvn(result_reg);
4643 
4644     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4645     int raw_adr_idx = Compile::AliasIdxRaw;
4646 
4647     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4648     if (array_ctl != NULL) {
4649       // It's an array.
4650       PreserveJVMState pjvms(this);
4651       set_control(array_ctl);
4652       Node* obj_length = load_array_length(obj);
4653       Node* obj_size  = NULL;
4654       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4655 
4656       if (!use_ReduceInitialCardMarks()) {
4657         // If it is an oop array, it requires very special treatment,
4658         // because card marking is required on each card of the array.
4659         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4660         if (is_obja != NULL) {
4661           PreserveJVMState pjvms2(this);
4662           set_control(is_obja);
4663           // Generate a direct call to the right arraycopy function(s).
4664           bool disjoint_bases = true;
4665           bool length_never_negative = true;
4666           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4667                              obj, intcon(0), alloc_obj, intcon(0),
4668                              obj_length,
4669                              disjoint_bases, length_never_negative);
4670           result_reg->init_req(_objArray_path, control());
4671           result_val->init_req(_objArray_path, alloc_obj);
4672           result_i_o ->set_req(_objArray_path, i_o());
4673           result_mem ->set_req(_objArray_path, reset_memory());
4674         }
4675       }
4676       // Otherwise, there are no card marks to worry about.
4677       // (We can dispense with card marks if we know the allocation
4678       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4679       //  causes the non-eden paths to take compensating steps to
4680       //  simulate a fresh allocation, so that no further
4681       //  card marks are required in compiled code to initialize
4682       //  the object.)
4683 
4684       if (!stopped()) {
4685         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4686 
4687         // Present the results of the copy.
4688         result_reg->init_req(_array_path, control());
4689         result_val->init_req(_array_path, alloc_obj);
4690         result_i_o ->set_req(_array_path, i_o());
4691         result_mem ->set_req(_array_path, reset_memory());
4692       }
4693     }
4694 
4695     // We only go to the instance fast case code if we pass a number of guards.
4696     // The paths which do not pass are accumulated in the slow_region.
4697     RegionNode* slow_region = new (C) RegionNode(1);
4698     record_for_igvn(slow_region);
4699     if (!stopped()) {
4700       // It's an instance (we did array above).  Make the slow-path tests.
4701       // If this is a virtual call, we generate a funny guard.  We grab
4702       // the vtable entry corresponding to clone() from the target object.
4703       // If the target method which we are calling happens to be the
4704       // Object clone() method, we pass the guard.  We do not need this
4705       // guard for non-virtual calls; the caller is known to be the native
4706       // Object clone().
4707       if (is_virtual) {
4708         generate_virtual_guard(obj_klass, slow_region);
4709       }
4710 
4711       // The object must be cloneable and must not have a finalizer.
4712       // Both of these conditions may be checked in a single test.
4713       // We could optimize the cloneable test further, but we don't care.
4714       generate_access_flags_guard(obj_klass,
4715                                   // Test both conditions:
4716                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4717                                   // Must be cloneable but not finalizer:
4718                                   JVM_ACC_IS_CLONEABLE,
4719                                   slow_region);
4720     }
4721 
4722     if (!stopped()) {
4723       // It's an instance, and it passed the slow-path tests.
4724       PreserveJVMState pjvms(this);
4725       Node* obj_size  = NULL;
4726       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4727       // is reexecuted if deoptimization occurs and there could be problems when merging
4728       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4729       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4730 
4731       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4732 
4733       // Present the results of the slow call.
4734       result_reg->init_req(_instance_path, control());
4735       result_val->init_req(_instance_path, alloc_obj);
4736       result_i_o ->set_req(_instance_path, i_o());
4737       result_mem ->set_req(_instance_path, reset_memory());
4738     }
4739 
4740     // Generate code for the slow case.  We make a call to clone().
4741     set_control(_gvn.transform(slow_region));
4742     if (!stopped()) {
4743       PreserveJVMState pjvms(this);
4744       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4745       Node* slow_result = set_results_for_java_call(slow_call);
4746       // this->control() comes from set_results_for_java_call
4747       result_reg->init_req(_slow_path, control());
4748       result_val->init_req(_slow_path, slow_result);
4749       result_i_o ->set_req(_slow_path, i_o());
4750       result_mem ->set_req(_slow_path, reset_memory());
4751     }
4752 
4753     // Return the combined state.
4754     set_control(    _gvn.transform(result_reg));
4755     set_i_o(        _gvn.transform(result_i_o));
4756     set_all_memory( _gvn.transform(result_mem));
4757   } // original reexecute is set back here
4758 
4759   set_result(_gvn.transform(result_val));
4760   return true;
4761 }
4762 
4763 //------------------------------basictype2arraycopy----------------------------
4764 address LibraryCallKit::basictype2arraycopy(BasicType t,
4765                                             Node* src_offset,
4766                                             Node* dest_offset,
4767                                             bool disjoint_bases,
4768                                             const char* &name,
4769                                             bool dest_uninitialized) {
4770   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4771   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4772 
4773   bool aligned = false;
4774   bool disjoint = disjoint_bases;
4775 
4776   // if the offsets are the same, we can treat the memory regions as
4777   // disjoint, because either the memory regions are in different arrays,
4778   // or they are identical (which we can treat as disjoint.)  We can also
4779   // treat a copy with a destination index  less that the source index
4780   // as disjoint since a low->high copy will work correctly in this case.
4781   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4782       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4783     // both indices are constants
4784     int s_offs = src_offset_inttype->get_con();
4785     int d_offs = dest_offset_inttype->get_con();
4786     int element_size = type2aelembytes(t);
4787     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4788               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4789     if (s_offs >= d_offs)  disjoint = true;
4790   } else if (src_offset == dest_offset && src_offset != NULL) {
4791     // This can occur if the offsets are identical non-constants.
4792     disjoint = true;
4793   }
4794 
4795   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
4796 }
4797 
4798 
4799 //------------------------------inline_arraycopy-----------------------
4800 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4801 //                                                      Object dest, int destPos,
4802 //                                                      int length);
4803 bool LibraryCallKit::inline_arraycopy() {
4804   // Get the arguments.
4805   Node* src         = argument(0);  // type: oop
4806   Node* src_offset  = argument(1);  // type: int
4807   Node* dest        = argument(2);  // type: oop
4808   Node* dest_offset = argument(3);  // type: int
4809   Node* length      = argument(4);  // type: int
4810 
4811   // Compile time checks.  If any of these checks cannot be verified at compile time,
4812   // we do not make a fast path for this call.  Instead, we let the call remain as it
4813   // is.  The checks we choose to mandate at compile time are:
4814   //
4815   // (1) src and dest are arrays.
4816   const Type* src_type  = src->Value(&_gvn);
4817   const Type* dest_type = dest->Value(&_gvn);
4818   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4819   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4820 
4821   // Do we have the type of src?
4822   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4823   // Do we have the type of dest?
4824   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4825   // Is the type for src from speculation?
4826   bool src_spec = false;
4827   // Is the type for dest from speculation?
4828   bool dest_spec = false;
4829 
4830   if (!has_src || !has_dest) {
4831     // We don't have sufficient type information, let's see if
4832     // speculative types can help. We need to have types for both src
4833     // and dest so that it pays off.
4834 
4835     // Do we already have or could we have type information for src
4836     bool could_have_src = has_src;
4837     // Do we already have or could we have type information for dest
4838     bool could_have_dest = has_dest;
4839 
4840     ciKlass* src_k = NULL;
4841     if (!has_src) {
4842       src_k = src_type->speculative_type();
4843       if (src_k != NULL && src_k->is_array_klass()) {
4844         could_have_src = true;
4845       }
4846     }
4847 
4848     ciKlass* dest_k = NULL;
4849     if (!has_dest) {
4850       dest_k = dest_type->speculative_type();
4851       if (dest_k != NULL && dest_k->is_array_klass()) {
4852         could_have_dest = true;
4853       }
4854     }
4855 
4856     if (could_have_src && could_have_dest) {
4857       // This is going to pay off so emit the required guards
4858       if (!has_src) {
4859         src = maybe_cast_profiled_obj(src, src_k);
4860         src_type  = _gvn.type(src);
4861         top_src  = src_type->isa_aryptr();
4862         has_src = (top_src != NULL && top_src->klass() != NULL);
4863         src_spec = true;
4864       }
4865       if (!has_dest) {
4866         dest = maybe_cast_profiled_obj(dest, dest_k);
4867         dest_type  = _gvn.type(dest);
4868         top_dest  = dest_type->isa_aryptr();
4869         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4870         dest_spec = true;
4871       }
4872     }
4873   }
4874 
4875   if (!has_src || !has_dest) {
4876     // Conservatively insert a memory barrier on all memory slices.
4877     // Do not let writes into the source float below the arraycopy.
4878     insert_mem_bar(Op_MemBarCPUOrder);
4879 
4880     // Call StubRoutines::generic_arraycopy stub.
4881     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4882                        src, src_offset, dest, dest_offset, length);
4883 
4884     // Do not let reads from the destination float above the arraycopy.
4885     // Since we cannot type the arrays, we don't know which slices
4886     // might be affected.  We could restrict this barrier only to those
4887     // memory slices which pertain to array elements--but don't bother.
4888     if (!InsertMemBarAfterArraycopy)
4889       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4890       insert_mem_bar(Op_MemBarCPUOrder);
4891     return true;
4892   }
4893 
4894   // (2) src and dest arrays must have elements of the same BasicType
4895   // Figure out the size and type of the elements we will be copying.
4896   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4897   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4898   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4899   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4900 
4901   if (src_elem != dest_elem || dest_elem == T_VOID) {
4902     // The component types are not the same or are not recognized.  Punt.
4903     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4904     generate_slow_arraycopy(TypePtr::BOTTOM,
4905                             src, src_offset, dest, dest_offset, length,
4906                             /*dest_uninitialized*/false);
4907     return true;
4908   }
4909 
4910   if (src_elem == T_OBJECT) {
4911     // If both arrays are object arrays then having the exact types
4912     // for both will remove the need for a subtype check at runtime
4913     // before the call and may make it possible to pick a faster copy
4914     // routine (without a subtype check on every element)
4915     // Do we have the exact type of src?
4916     bool could_have_src = src_spec;
4917     // Do we have the exact type of dest?
4918     bool could_have_dest = dest_spec;
4919     ciKlass* src_k = top_src->klass();
4920     ciKlass* dest_k = top_dest->klass();
4921     if (!src_spec) {
4922       src_k = src_type->speculative_type();
4923       if (src_k != NULL && src_k->is_array_klass()) {
4924           could_have_src = true;
4925       }
4926     }
4927     if (!dest_spec) {
4928       dest_k = dest_type->speculative_type();
4929       if (dest_k != NULL && dest_k->is_array_klass()) {
4930         could_have_dest = true;
4931       }
4932     }
4933     if (could_have_src && could_have_dest) {
4934       // If we can have both exact types, emit the missing guards
4935       if (could_have_src && !src_spec) {
4936         src = maybe_cast_profiled_obj(src, src_k);
4937       }
4938       if (could_have_dest && !dest_spec) {
4939         dest = maybe_cast_profiled_obj(dest, dest_k);
4940       }
4941     }
4942   }
4943 
4944   //---------------------------------------------------------------------------
4945   // We will make a fast path for this call to arraycopy.
4946 
4947   // We have the following tests left to perform:
4948   //
4949   // (3) src and dest must not be null.
4950   // (4) src_offset must not be negative.
4951   // (5) dest_offset must not be negative.
4952   // (6) length must not be negative.
4953   // (7) src_offset + length must not exceed length of src.
4954   // (8) dest_offset + length must not exceed length of dest.
4955   // (9) each element of an oop array must be assignable
4956 
4957   RegionNode* slow_region = new (C) RegionNode(1);
4958   record_for_igvn(slow_region);
4959 
4960   // (3) operands must not be null
4961   // We currently perform our null checks with the null_check routine.
4962   // This means that the null exceptions will be reported in the caller
4963   // rather than (correctly) reported inside of the native arraycopy call.
4964   // This should be corrected, given time.  We do our null check with the
4965   // stack pointer restored.
4966   src  = null_check(src,  T_ARRAY);
4967   dest = null_check(dest, T_ARRAY);
4968 
4969   // (4) src_offset must not be negative.
4970   generate_negative_guard(src_offset, slow_region);
4971 
4972   // (5) dest_offset must not be negative.
4973   generate_negative_guard(dest_offset, slow_region);
4974 
4975   // (6) length must not be negative (moved to generate_arraycopy()).
4976   // generate_negative_guard(length, slow_region);
4977 
4978   // (7) src_offset + length must not exceed length of src.
4979   generate_limit_guard(src_offset, length,
4980                        load_array_length(src),
4981                        slow_region);
4982 
4983   // (8) dest_offset + length must not exceed length of dest.
4984   generate_limit_guard(dest_offset, length,
4985                        load_array_length(dest),
4986                        slow_region);
4987 
4988   // (9) each element of an oop array must be assignable
4989   // The generate_arraycopy subroutine checks this.
4990 
4991   // This is where the memory effects are placed:
4992   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4993   generate_arraycopy(adr_type, dest_elem,
4994                      src, src_offset, dest, dest_offset, length,
4995                      false, false, slow_region);
4996 
4997   return true;
4998 }
4999 
5000 //-----------------------------generate_arraycopy----------------------
5001 // Generate an optimized call to arraycopy.
5002 // Caller must guard against non-arrays.
5003 // Caller must determine a common array basic-type for both arrays.
5004 // Caller must validate offsets against array bounds.
5005 // The slow_region has already collected guard failure paths
5006 // (such as out of bounds length or non-conformable array types).
5007 // The generated code has this shape, in general:
5008 //
5009 //     if (length == 0)  return   // via zero_path
5010 //     slowval = -1
5011 //     if (types unknown) {
5012 //       slowval = call generic copy loop
5013 //       if (slowval == 0)  return  // via checked_path
5014 //     } else if (indexes in bounds) {
5015 //       if ((is object array) && !(array type check)) {
5016 //         slowval = call checked copy loop
5017 //         if (slowval == 0)  return  // via checked_path
5018 //       } else {
5019 //         call bulk copy loop
5020 //         return  // via fast_path
5021 //       }
5022 //     }
5023 //     // adjust params for remaining work:
5024 //     if (slowval != -1) {
5025 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
5026 //     }
5027 //   slow_region:
5028 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
5029 //     return  // via slow_call_path
5030 //
5031 // This routine is used from several intrinsics:  System.arraycopy,
5032 // Object.clone (the array subcase), and Arrays.copyOf[Range].
5033 //
5034 void
5035 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
5036                                    BasicType basic_elem_type,
5037                                    Node* src,  Node* src_offset,
5038                                    Node* dest, Node* dest_offset,
5039                                    Node* copy_length,
5040                                    bool disjoint_bases,
5041                                    bool length_never_negative,
5042                                    RegionNode* slow_region) {
5043 
5044   if (slow_region == NULL) {
5045     slow_region = new(C) RegionNode(1);
5046     record_for_igvn(slow_region);
5047   }
5048 
5049   Node* original_dest      = dest;
5050   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
5051   bool  dest_uninitialized = false;
5052 
5053   // See if this is the initialization of a newly-allocated array.
5054   // If so, we will take responsibility here for initializing it to zero.
5055   // (Note:  Because tightly_coupled_allocation performs checks on the
5056   // out-edges of the dest, we need to avoid making derived pointers
5057   // from it until we have checked its uses.)
5058   if (ReduceBulkZeroing
5059       && !ZeroTLAB              // pointless if already zeroed
5060       && basic_elem_type != T_CONFLICT // avoid corner case
5061       && !src->eqv_uncast(dest)
5062       && ((alloc = tightly_coupled_allocation(dest, slow_region))
5063           != NULL)
5064       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
5065       && alloc->maybe_set_complete(&_gvn)) {
5066     // "You break it, you buy it."
5067     InitializeNode* init = alloc->initialization();
5068     assert(init->is_complete(), "we just did this");
5069     init->set_complete_with_arraycopy();
5070     assert(dest->is_CheckCastPP(), "sanity");
5071     assert(dest->in(0)->in(0) == init, "dest pinned");
5072     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
5073     // From this point on, every exit path is responsible for
5074     // initializing any non-copied parts of the object to zero.
5075     // Also, if this flag is set we make sure that arraycopy interacts properly
5076     // with G1, eliding pre-barriers. See CR 6627983.
5077     dest_uninitialized = true;
5078   } else {
5079     // No zeroing elimination here.
5080     alloc             = NULL;
5081     //original_dest   = dest;
5082     //dest_uninitialized = false;
5083   }
5084 
5085   // Results are placed here:
5086   enum { fast_path        = 1,  // normal void-returning assembly stub
5087          checked_path     = 2,  // special assembly stub with cleanup
5088          slow_call_path   = 3,  // something went wrong; call the VM
5089          zero_path        = 4,  // bypass when length of copy is zero
5090          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
5091          PATH_LIMIT       = 6
5092   };
5093   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
5094   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
5095   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
5096   record_for_igvn(result_region);
5097   _gvn.set_type_bottom(result_i_o);
5098   _gvn.set_type_bottom(result_memory);
5099   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
5100 
5101   // The slow_control path:
5102   Node* slow_control;
5103   Node* slow_i_o = i_o();
5104   Node* slow_mem = memory(adr_type);
5105   debug_only(slow_control = (Node*) badAddress);
5106 
5107   // Checked control path:
5108   Node* checked_control = top();
5109   Node* checked_mem     = NULL;
5110   Node* checked_i_o     = NULL;
5111   Node* checked_value   = NULL;
5112 
5113   if (basic_elem_type == T_CONFLICT) {
5114     assert(!dest_uninitialized, "");
5115     Node* cv = generate_generic_arraycopy(adr_type,
5116                                           src, src_offset, dest, dest_offset,
5117                                           copy_length, dest_uninitialized);
5118     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
5119     checked_control = control();
5120     checked_i_o     = i_o();
5121     checked_mem     = memory(adr_type);
5122     checked_value   = cv;
5123     set_control(top());         // no fast path
5124   }
5125 
5126   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
5127   if (not_pos != NULL) {
5128     PreserveJVMState pjvms(this);
5129     set_control(not_pos);
5130 
5131     // (6) length must not be negative.
5132     if (!length_never_negative) {
5133       generate_negative_guard(copy_length, slow_region);
5134     }
5135 
5136     // copy_length is 0.
5137     if (!stopped() && dest_uninitialized) {
5138       Node* dest_length = alloc->in(AllocateNode::ALength);
5139       if (copy_length->eqv_uncast(dest_length)
5140           || _gvn.find_int_con(dest_length, 1) <= 0) {
5141         // There is no zeroing to do. No need for a secondary raw memory barrier.
5142       } else {
5143         // Clear the whole thing since there are no source elements to copy.
5144         generate_clear_array(adr_type, dest, basic_elem_type,
5145                              intcon(0), NULL,
5146                              alloc->in(AllocateNode::AllocSize));
5147         // Use a secondary InitializeNode as raw memory barrier.
5148         // Currently it is needed only on this path since other
5149         // paths have stub or runtime calls as raw memory barriers.
5150         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
5151                                                        Compile::AliasIdxRaw,
5152                                                        top())->as_Initialize();
5153         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
5154       }
5155     }
5156 
5157     // Present the results of the fast call.
5158     result_region->init_req(zero_path, control());
5159     result_i_o   ->init_req(zero_path, i_o());
5160     result_memory->init_req(zero_path, memory(adr_type));
5161   }
5162 
5163   if (!stopped() && dest_uninitialized) {
5164     // We have to initialize the *uncopied* part of the array to zero.
5165     // The copy destination is the slice dest[off..off+len].  The other slices
5166     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
5167     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
5168     Node* dest_length = alloc->in(AllocateNode::ALength);
5169     Node* dest_tail   = _gvn.transform(new(C) AddINode(dest_offset,
5170                                                           copy_length));
5171 
5172     // If there is a head section that needs zeroing, do it now.
5173     if (find_int_con(dest_offset, -1) != 0) {
5174       generate_clear_array(adr_type, dest, basic_elem_type,
5175                            intcon(0), dest_offset,
5176                            NULL);
5177     }
5178 
5179     // Next, perform a dynamic check on the tail length.
5180     // It is often zero, and we can win big if we prove this.
5181     // There are two wins:  Avoid generating the ClearArray
5182     // with its attendant messy index arithmetic, and upgrade
5183     // the copy to a more hardware-friendly word size of 64 bits.
5184     Node* tail_ctl = NULL;
5185     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
5186       Node* cmp_lt   = _gvn.transform(new(C) CmpINode(dest_tail, dest_length));
5187       Node* bol_lt   = _gvn.transform(new(C) BoolNode(cmp_lt, BoolTest::lt));
5188       tail_ctl = generate_slow_guard(bol_lt, NULL);
5189       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
5190     }
5191 
5192     // At this point, let's assume there is no tail.
5193     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
5194       // There is no tail.  Try an upgrade to a 64-bit copy.
5195       bool didit = false;
5196       { PreserveJVMState pjvms(this);
5197         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
5198                                          src, src_offset, dest, dest_offset,
5199                                          dest_size, dest_uninitialized);
5200         if (didit) {
5201           // Present the results of the block-copying fast call.
5202           result_region->init_req(bcopy_path, control());
5203           result_i_o   ->init_req(bcopy_path, i_o());
5204           result_memory->init_req(bcopy_path, memory(adr_type));
5205         }
5206       }
5207       if (didit)
5208         set_control(top());     // no regular fast path
5209     }
5210 
5211     // Clear the tail, if any.
5212     if (tail_ctl != NULL) {
5213       Node* notail_ctl = stopped() ? NULL : control();
5214       set_control(tail_ctl);
5215       if (notail_ctl == NULL) {
5216         generate_clear_array(adr_type, dest, basic_elem_type,
5217                              dest_tail, NULL,
5218                              dest_size);
5219       } else {
5220         // Make a local merge.
5221         Node* done_ctl = new(C) RegionNode(3);
5222         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
5223         done_ctl->init_req(1, notail_ctl);
5224         done_mem->init_req(1, memory(adr_type));
5225         generate_clear_array(adr_type, dest, basic_elem_type,
5226                              dest_tail, NULL,
5227                              dest_size);
5228         done_ctl->init_req(2, control());
5229         done_mem->init_req(2, memory(adr_type));
5230         set_control( _gvn.transform(done_ctl));
5231         set_memory(  _gvn.transform(done_mem), adr_type );
5232       }
5233     }
5234   }
5235 
5236   BasicType copy_type = basic_elem_type;
5237   assert(basic_elem_type != T_ARRAY, "caller must fix this");
5238   if (!stopped() && copy_type == T_OBJECT) {
5239     // If src and dest have compatible element types, we can copy bits.
5240     // Types S[] and D[] are compatible if D is a supertype of S.
5241     //
5242     // If they are not, we will use checked_oop_disjoint_arraycopy,
5243     // which performs a fast optimistic per-oop check, and backs off
5244     // further to JVM_ArrayCopy on the first per-oop check that fails.
5245     // (Actually, we don't move raw bits only; the GC requires card marks.)
5246 
5247     // Get the Klass* for both src and dest
5248     Node* src_klass  = load_object_klass(src);
5249     Node* dest_klass = load_object_klass(dest);
5250 
5251     // Generate the subtype check.
5252     // This might fold up statically, or then again it might not.
5253     //
5254     // Non-static example:  Copying List<String>.elements to a new String[].
5255     // The backing store for a List<String> is always an Object[],
5256     // but its elements are always type String, if the generic types
5257     // are correct at the source level.
5258     //
5259     // Test S[] against D[], not S against D, because (probably)
5260     // the secondary supertype cache is less busy for S[] than S.
5261     // This usually only matters when D is an interface.
5262     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5263     // Plug failing path into checked_oop_disjoint_arraycopy
5264     if (not_subtype_ctrl != top()) {
5265       PreserveJVMState pjvms(this);
5266       set_control(not_subtype_ctrl);
5267       // (At this point we can assume disjoint_bases, since types differ.)
5268       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
5269       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
5270       Node* n1 = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p1, TypeRawPtr::BOTTOM);
5271       Node* dest_elem_klass = _gvn.transform(n1);
5272       Node* cv = generate_checkcast_arraycopy(adr_type,
5273                                               dest_elem_klass,
5274                                               src, src_offset, dest, dest_offset,
5275                                               ConvI2X(copy_length), dest_uninitialized);
5276       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
5277       checked_control = control();
5278       checked_i_o     = i_o();
5279       checked_mem     = memory(adr_type);
5280       checked_value   = cv;
5281     }
5282     // At this point we know we do not need type checks on oop stores.
5283 
5284     // Let's see if we need card marks:
5285     if (alloc != NULL && use_ReduceInitialCardMarks()) {
5286       // If we do not need card marks, copy using the jint or jlong stub.
5287       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
5288       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
5289              "sizes agree");
5290     }
5291   }
5292 
5293   if (!stopped()) {
5294     // Generate the fast path, if possible.
5295     PreserveJVMState pjvms(this);
5296     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
5297                                  src, src_offset, dest, dest_offset,
5298                                  ConvI2X(copy_length), dest_uninitialized);
5299 
5300     // Present the results of the fast call.
5301     result_region->init_req(fast_path, control());
5302     result_i_o   ->init_req(fast_path, i_o());
5303     result_memory->init_req(fast_path, memory(adr_type));
5304   }
5305 
5306   // Here are all the slow paths up to this point, in one bundle:
5307   slow_control = top();
5308   if (slow_region != NULL)
5309     slow_control = _gvn.transform(slow_region);
5310   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
5311 
5312   set_control(checked_control);
5313   if (!stopped()) {
5314     // Clean up after the checked call.
5315     // The returned value is either 0 or -1^K,
5316     // where K = number of partially transferred array elements.
5317     Node* cmp = _gvn.transform(new(C) CmpINode(checked_value, intcon(0)));
5318     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
5319     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
5320 
5321     // If it is 0, we are done, so transfer to the end.
5322     Node* checks_done = _gvn.transform(new(C) IfTrueNode(iff));
5323     result_region->init_req(checked_path, checks_done);
5324     result_i_o   ->init_req(checked_path, checked_i_o);
5325     result_memory->init_req(checked_path, checked_mem);
5326 
5327     // If it is not zero, merge into the slow call.
5328     set_control( _gvn.transform(new(C) IfFalseNode(iff) ));
5329     RegionNode* slow_reg2 = new(C) RegionNode(3);
5330     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
5331     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
5332     record_for_igvn(slow_reg2);
5333     slow_reg2  ->init_req(1, slow_control);
5334     slow_i_o2  ->init_req(1, slow_i_o);
5335     slow_mem2  ->init_req(1, slow_mem);
5336     slow_reg2  ->init_req(2, control());
5337     slow_i_o2  ->init_req(2, checked_i_o);
5338     slow_mem2  ->init_req(2, checked_mem);
5339 
5340     slow_control = _gvn.transform(slow_reg2);
5341     slow_i_o     = _gvn.transform(slow_i_o2);
5342     slow_mem     = _gvn.transform(slow_mem2);
5343 
5344     if (alloc != NULL) {
5345       // We'll restart from the very beginning, after zeroing the whole thing.
5346       // This can cause double writes, but that's OK since dest is brand new.
5347       // So we ignore the low 31 bits of the value returned from the stub.
5348     } else {
5349       // We must continue the copy exactly where it failed, or else
5350       // another thread might see the wrong number of writes to dest.
5351       Node* checked_offset = _gvn.transform(new(C) XorINode(checked_value, intcon(-1)));
5352       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
5353       slow_offset->init_req(1, intcon(0));
5354       slow_offset->init_req(2, checked_offset);
5355       slow_offset  = _gvn.transform(slow_offset);
5356 
5357       // Adjust the arguments by the conditionally incoming offset.
5358       Node* src_off_plus  = _gvn.transform(new(C) AddINode(src_offset,  slow_offset));
5359       Node* dest_off_plus = _gvn.transform(new(C) AddINode(dest_offset, slow_offset));
5360       Node* length_minus  = _gvn.transform(new(C) SubINode(copy_length, slow_offset));
5361 
5362       // Tweak the node variables to adjust the code produced below:
5363       src_offset  = src_off_plus;
5364       dest_offset = dest_off_plus;
5365       copy_length = length_minus;
5366     }
5367   }
5368 
5369   set_control(slow_control);
5370   if (!stopped()) {
5371     // Generate the slow path, if needed.
5372     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
5373 
5374     set_memory(slow_mem, adr_type);
5375     set_i_o(slow_i_o);
5376 
5377     if (dest_uninitialized) {
5378       generate_clear_array(adr_type, dest, basic_elem_type,
5379                            intcon(0), NULL,
5380                            alloc->in(AllocateNode::AllocSize));
5381     }
5382 
5383     generate_slow_arraycopy(adr_type,
5384                             src, src_offset, dest, dest_offset,
5385                             copy_length, /*dest_uninitialized*/false);
5386 
5387     result_region->init_req(slow_call_path, control());
5388     result_i_o   ->init_req(slow_call_path, i_o());
5389     result_memory->init_req(slow_call_path, memory(adr_type));
5390   }
5391 
5392   // Remove unused edges.
5393   for (uint i = 1; i < result_region->req(); i++) {
5394     if (result_region->in(i) == NULL)
5395       result_region->init_req(i, top());
5396   }
5397 
5398   // Finished; return the combined state.
5399   set_control( _gvn.transform(result_region));
5400   set_i_o(     _gvn.transform(result_i_o)    );
5401   set_memory(  _gvn.transform(result_memory), adr_type );
5402 
5403   // The memory edges above are precise in order to model effects around
5404   // array copies accurately to allow value numbering of field loads around
5405   // arraycopy.  Such field loads, both before and after, are common in Java
5406   // collections and similar classes involving header/array data structures.
5407   //
5408   // But with low number of register or when some registers are used or killed
5409   // by arraycopy calls it causes registers spilling on stack. See 6544710.
5410   // The next memory barrier is added to avoid it. If the arraycopy can be
5411   // optimized away (which it can, sometimes) then we can manually remove
5412   // the membar also.
5413   //
5414   // Do not let reads from the cloned object float above the arraycopy.
5415   if (alloc != NULL) {
5416     // Do not let stores that initialize this object be reordered with
5417     // a subsequent store that would make this object accessible by
5418     // other threads.
5419     // Record what AllocateNode this StoreStore protects so that
5420     // escape analysis can go from the MemBarStoreStoreNode to the
5421     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
5422     // based on the escape status of the AllocateNode.
5423     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
5424   } else if (InsertMemBarAfterArraycopy)
5425     insert_mem_bar(Op_MemBarCPUOrder);
5426 }
5427 
5428 
5429 // Helper function which determines if an arraycopy immediately follows
5430 // an allocation, with no intervening tests or other escapes for the object.
5431 AllocateArrayNode*
5432 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5433                                            RegionNode* slow_region) {
5434   if (stopped())             return NULL;  // no fast path
5435   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5436 
5437   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5438   if (alloc == NULL)  return NULL;
5439 
5440   Node* rawmem = memory(Compile::AliasIdxRaw);
5441   // Is the allocation's memory state untouched?
5442   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5443     // Bail out if there have been raw-memory effects since the allocation.
5444     // (Example:  There might have been a call or safepoint.)
5445     return NULL;
5446   }
5447   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5448   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5449     return NULL;
5450   }
5451 
5452   // There must be no unexpected observers of this allocation.
5453   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5454     Node* obs = ptr->fast_out(i);
5455     if (obs != this->map()) {
5456       return NULL;
5457     }
5458   }
5459 
5460   // This arraycopy must unconditionally follow the allocation of the ptr.
5461   Node* alloc_ctl = ptr->in(0);
5462   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5463 
5464   Node* ctl = control();
5465   while (ctl != alloc_ctl) {
5466     // There may be guards which feed into the slow_region.
5467     // Any other control flow means that we might not get a chance
5468     // to finish initializing the allocated object.
5469     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5470       IfNode* iff = ctl->in(0)->as_If();
5471       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5472       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5473       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5474         ctl = iff->in(0);       // This test feeds the known slow_region.
5475         continue;
5476       }
5477       // One more try:  Various low-level checks bottom out in
5478       // uncommon traps.  If the debug-info of the trap omits
5479       // any reference to the allocation, as we've already
5480       // observed, then there can be no objection to the trap.
5481       bool found_trap = false;
5482       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5483         Node* obs = not_ctl->fast_out(j);
5484         if (obs->in(0) == not_ctl && obs->is_Call() &&
5485             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5486           found_trap = true; break;
5487         }
5488       }
5489       if (found_trap) {
5490         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5491         continue;
5492       }
5493     }
5494     return NULL;
5495   }
5496 
5497   // If we get this far, we have an allocation which immediately
5498   // precedes the arraycopy, and we can take over zeroing the new object.
5499   // The arraycopy will finish the initialization, and provide
5500   // a new control state to which we will anchor the destination pointer.
5501 
5502   return alloc;
5503 }
5504 
5505 // Helper for initialization of arrays, creating a ClearArray.
5506 // It writes zero bits in [start..end), within the body of an array object.
5507 // The memory effects are all chained onto the 'adr_type' alias category.
5508 //
5509 // Since the object is otherwise uninitialized, we are free
5510 // to put a little "slop" around the edges of the cleared area,
5511 // as long as it does not go back into the array's header,
5512 // or beyond the array end within the heap.
5513 //
5514 // The lower edge can be rounded down to the nearest jint and the
5515 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
5516 //
5517 // Arguments:
5518 //   adr_type           memory slice where writes are generated
5519 //   dest               oop of the destination array
5520 //   basic_elem_type    element type of the destination
5521 //   slice_idx          array index of first element to store
5522 //   slice_len          number of elements to store (or NULL)
5523 //   dest_size          total size in bytes of the array object
5524 //
5525 // Exactly one of slice_len or dest_size must be non-NULL.
5526 // If dest_size is non-NULL, zeroing extends to the end of the object.
5527 // If slice_len is non-NULL, the slice_idx value must be a constant.
5528 void
5529 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5530                                      Node* dest,
5531                                      BasicType basic_elem_type,
5532                                      Node* slice_idx,
5533                                      Node* slice_len,
5534                                      Node* dest_size) {
5535   // one or the other but not both of slice_len and dest_size:
5536   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5537   if (slice_len == NULL)  slice_len = top();
5538   if (dest_size == NULL)  dest_size = top();
5539 
5540   // operate on this memory slice:
5541   Node* mem = memory(adr_type); // memory slice to operate on
5542 
5543   // scaling and rounding of indexes:
5544   int scale = exact_log2(type2aelembytes(basic_elem_type));
5545   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5546   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5547   int bump_bit  = (-1 << scale) & BytesPerInt;
5548 
5549   // determine constant starts and ends
5550   const intptr_t BIG_NEG = -128;
5551   assert(BIG_NEG + 2*abase < 0, "neg enough");
5552   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5553   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5554   if (slice_len_con == 0) {
5555     return;                     // nothing to do here
5556   }
5557   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5558   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5559   if (slice_idx_con >= 0 && slice_len_con >= 0) {
5560     assert(end_con < 0, "not two cons");
5561     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5562                        BytesPerLong);
5563   }
5564 
5565   if (start_con >= 0 && end_con >= 0) {
5566     // Constant start and end.  Simple.
5567     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5568                                        start_con, end_con, &_gvn);
5569   } else if (start_con >= 0 && dest_size != top()) {
5570     // Constant start, pre-rounded end after the tail of the array.
5571     Node* end = dest_size;
5572     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5573                                        start_con, end, &_gvn);
5574   } else if (start_con >= 0 && slice_len != top()) {
5575     // Constant start, non-constant end.  End needs rounding up.
5576     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5577     intptr_t end_base  = abase + (slice_idx_con << scale);
5578     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5579     Node*    end       = ConvI2X(slice_len);
5580     if (scale != 0)
5581       end = _gvn.transform(new(C) LShiftXNode(end, intcon(scale) ));
5582     end_base += end_round;
5583     end = _gvn.transform(new(C) AddXNode(end, MakeConX(end_base)));
5584     end = _gvn.transform(new(C) AndXNode(end, MakeConX(~end_round)));
5585     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5586                                        start_con, end, &_gvn);
5587   } else if (start_con < 0 && dest_size != top()) {
5588     // Non-constant start, pre-rounded end after the tail of the array.
5589     // This is almost certainly a "round-to-end" operation.
5590     Node* start = slice_idx;
5591     start = ConvI2X(start);
5592     if (scale != 0)
5593       start = _gvn.transform(new(C) LShiftXNode( start, intcon(scale) ));
5594     start = _gvn.transform(new(C) AddXNode(start, MakeConX(abase)));
5595     if ((bump_bit | clear_low) != 0) {
5596       int to_clear = (bump_bit | clear_low);
5597       // Align up mod 8, then store a jint zero unconditionally
5598       // just before the mod-8 boundary.
5599       if (((abase + bump_bit) & ~to_clear) - bump_bit
5600           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5601         bump_bit = 0;
5602         assert((abase & to_clear) == 0, "array base must be long-aligned");
5603       } else {
5604         // Bump 'start' up to (or past) the next jint boundary:
5605         start = _gvn.transform(new(C) AddXNode(start, MakeConX(bump_bit)));
5606         assert((abase & clear_low) == 0, "array base must be int-aligned");
5607       }
5608       // Round bumped 'start' down to jlong boundary in body of array.
5609       start = _gvn.transform(new(C) AndXNode(start, MakeConX(~to_clear)));
5610       if (bump_bit != 0) {
5611         // Store a zero to the immediately preceding jint:
5612         Node* x1 = _gvn.transform(new(C) AddXNode(start, MakeConX(-bump_bit)));
5613         Node* p1 = basic_plus_adr(dest, x1);
5614         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered);
5615         mem = _gvn.transform(mem);
5616       }
5617     }
5618     Node* end = dest_size; // pre-rounded
5619     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5620                                        start, end, &_gvn);
5621   } else {
5622     // Non-constant start, unrounded non-constant end.
5623     // (Nobody zeroes a random midsection of an array using this routine.)
5624     ShouldNotReachHere();       // fix caller
5625   }
5626 
5627   // Done.
5628   set_memory(mem, adr_type);
5629 }
5630 
5631 
5632 bool
5633 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5634                                          BasicType basic_elem_type,
5635                                          AllocateNode* alloc,
5636                                          Node* src,  Node* src_offset,
5637                                          Node* dest, Node* dest_offset,
5638                                          Node* dest_size, bool dest_uninitialized) {
5639   // See if there is an advantage from block transfer.
5640   int scale = exact_log2(type2aelembytes(basic_elem_type));
5641   if (scale >= LogBytesPerLong)
5642     return false;               // it is already a block transfer
5643 
5644   // Look at the alignment of the starting offsets.
5645   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5646 
5647   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
5648   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
5649   if (src_off_con < 0 || dest_off_con < 0)
5650     // At present, we can only understand constants.
5651     return false;
5652 
5653   intptr_t src_off  = abase + (src_off_con  << scale);
5654   intptr_t dest_off = abase + (dest_off_con << scale);
5655 
5656   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5657     // Non-aligned; too bad.
5658     // One more chance:  Pick off an initial 32-bit word.
5659     // This is a common case, since abase can be odd mod 8.
5660     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5661         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5662       Node* sptr = basic_plus_adr(src,  src_off);
5663       Node* dptr = basic_plus_adr(dest, dest_off);
5664       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
5665       store_to_memory(control(), dptr, sval, T_INT, adr_type, MemNode::unordered);
5666       src_off += BytesPerInt;
5667       dest_off += BytesPerInt;
5668     } else {
5669       return false;
5670     }
5671   }
5672   assert(src_off % BytesPerLong == 0, "");
5673   assert(dest_off % BytesPerLong == 0, "");
5674 
5675   // Do this copy by giant steps.
5676   Node* sptr  = basic_plus_adr(src,  src_off);
5677   Node* dptr  = basic_plus_adr(dest, dest_off);
5678   Node* countx = dest_size;
5679   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(dest_off)));
5680   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong)));
5681 
5682   bool disjoint_bases = true;   // since alloc != NULL
5683   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5684                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
5685 
5686   return true;
5687 }
5688 
5689 
5690 // Helper function; generates code for the slow case.
5691 // We make a call to a runtime method which emulates the native method,
5692 // but without the native wrapper overhead.
5693 void
5694 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5695                                         Node* src,  Node* src_offset,
5696                                         Node* dest, Node* dest_offset,
5697                                         Node* copy_length, bool dest_uninitialized) {
5698   assert(!dest_uninitialized, "Invariant");
5699   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5700                                  OptoRuntime::slow_arraycopy_Type(),
5701                                  OptoRuntime::slow_arraycopy_Java(),
5702                                  "slow_arraycopy", adr_type,
5703                                  src, src_offset, dest, dest_offset,
5704                                  copy_length);
5705 
5706   // Handle exceptions thrown by this fellow:
5707   make_slow_call_ex(call, env()->Throwable_klass(), false);
5708 }
5709 
5710 // Helper function; generates code for cases requiring runtime checks.
5711 Node*
5712 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5713                                              Node* dest_elem_klass,
5714                                              Node* src,  Node* src_offset,
5715                                              Node* dest, Node* dest_offset,
5716                                              Node* copy_length, bool dest_uninitialized) {
5717   if (stopped())  return NULL;
5718 
5719   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
5720   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5721     return NULL;
5722   }
5723 
5724   // Pick out the parameters required to perform a store-check
5725   // for the target array.  This is an optimistic check.  It will
5726   // look in each non-null element's class, at the desired klass's
5727   // super_check_offset, for the desired klass.
5728   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5729   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5730   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered);
5731   Node* check_offset = ConvI2X(_gvn.transform(n3));
5732   Node* check_value  = dest_elem_klass;
5733 
5734   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5735   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5736 
5737   // (We know the arrays are never conjoint, because their types differ.)
5738   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5739                                  OptoRuntime::checkcast_arraycopy_Type(),
5740                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5741                                  // five arguments, of which two are
5742                                  // intptr_t (jlong in LP64)
5743                                  src_start, dest_start,
5744                                  copy_length XTOP,
5745                                  check_offset XTOP,
5746                                  check_value);
5747 
5748   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5749 }
5750 
5751 
5752 // Helper function; generates code for cases requiring runtime checks.
5753 Node*
5754 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5755                                            Node* src,  Node* src_offset,
5756                                            Node* dest, Node* dest_offset,
5757                                            Node* copy_length, bool dest_uninitialized) {
5758   assert(!dest_uninitialized, "Invariant");
5759   if (stopped())  return NULL;
5760   address copyfunc_addr = StubRoutines::generic_arraycopy();
5761   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5762     return NULL;
5763   }
5764 
5765   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5766                     OptoRuntime::generic_arraycopy_Type(),
5767                     copyfunc_addr, "generic_arraycopy", adr_type,
5768                     src, src_offset, dest, dest_offset, copy_length);
5769 
5770   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5771 }
5772 
5773 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5774 void
5775 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5776                                              BasicType basic_elem_type,
5777                                              bool disjoint_bases,
5778                                              Node* src,  Node* src_offset,
5779                                              Node* dest, Node* dest_offset,
5780                                              Node* copy_length, bool dest_uninitialized) {
5781   if (stopped())  return;               // nothing to do
5782 
5783   Node* src_start  = src;
5784   Node* dest_start = dest;
5785   if (src_offset != NULL || dest_offset != NULL) {
5786     assert(src_offset != NULL && dest_offset != NULL, "");
5787     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5788     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5789   }
5790 
5791   // Figure out which arraycopy runtime method to call.
5792   const char* copyfunc_name = "arraycopy";
5793   address     copyfunc_addr =
5794       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5795                           disjoint_bases, copyfunc_name, dest_uninitialized);
5796 
5797   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5798   make_runtime_call(RC_LEAF|RC_NO_FP,
5799                     OptoRuntime::fast_arraycopy_Type(),
5800                     copyfunc_addr, copyfunc_name, adr_type,
5801                     src_start, dest_start, copy_length XTOP);
5802 }
5803 
5804 //-------------inline_encodeISOArray-----------------------------------
5805 // encode char[] to byte[] in ISO_8859_1
5806 bool LibraryCallKit::inline_encodeISOArray() {
5807   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5808   // no receiver since it is static method
5809   Node *src         = argument(0);
5810   Node *src_offset  = argument(1);
5811   Node *dst         = argument(2);
5812   Node *dst_offset  = argument(3);
5813   Node *length      = argument(4);
5814 
5815   const Type* src_type = src->Value(&_gvn);
5816   const Type* dst_type = dst->Value(&_gvn);
5817   const TypeAryPtr* top_src = src_type->isa_aryptr();
5818   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5819   if (top_src  == NULL || top_src->klass()  == NULL ||
5820       top_dest == NULL || top_dest->klass() == NULL) {
5821     // failed array check
5822     return false;
5823   }
5824 
5825   // Figure out the size and type of the elements we will be copying.
5826   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5827   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5828   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
5829     return false;
5830   }
5831   Node* src_start = array_element_address(src, src_offset, src_elem);
5832   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5833   // 'src_start' points to src array + scaled offset
5834   // 'dst_start' points to dst array + scaled offset
5835 
5836   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5837   Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5838   enc = _gvn.transform(enc);
5839   Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
5840   set_memory(res_mem, mtype);
5841   set_result(enc);
5842   return true;
5843 }
5844 
5845 //-------------inline_multiplyToLen-----------------------------------
5846 bool LibraryCallKit::inline_multiplyToLen() {
5847   assert(UseMultiplyToLenIntrinsic, "not implementated on this platform");
5848 
5849   address stubAddr = StubRoutines::multiplyToLen();
5850   if (stubAddr == NULL) {
5851     return false; // Intrinsic's stub is not implemented on this platform
5852   }
5853   const char* stubName = "multiplyToLen";
5854 
5855   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5856 
5857   // no receiver because it is a static method
5858   Node* x    = argument(0);
5859   Node* xlen = argument(1);
5860   Node* y    = argument(2);
5861   Node* ylen = argument(3);
5862   Node* z    = argument(4);
5863 
5864   const Type* x_type = x->Value(&_gvn);
5865   const Type* y_type = y->Value(&_gvn);
5866   const TypeAryPtr* top_x = x_type->isa_aryptr();
5867   const TypeAryPtr* top_y = y_type->isa_aryptr();
5868   if (top_x  == NULL || top_x->klass()  == NULL ||
5869       top_y == NULL || top_y->klass() == NULL) {
5870     // failed array check
5871     return false;
5872   }
5873 
5874   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5875   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5876   if (x_elem != T_INT || y_elem != T_INT) {
5877     return false;
5878   }
5879 
5880   // Set the original stack and the reexecute bit for the interpreter to reexecute
5881   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5882   // on the return from z array allocation in runtime.
5883   { PreserveReexecuteState preexecs(this);
5884     jvms()->set_should_reexecute(true);
5885 
5886     Node* x_start = array_element_address(x, intcon(0), x_elem);
5887     Node* y_start = array_element_address(y, intcon(0), y_elem);
5888     // 'x_start' points to x array + scaled xlen
5889     // 'y_start' points to y array + scaled ylen
5890 
5891     // Allocate the result array
5892     Node* zlen = _gvn.transform(new(C) AddINode(xlen, ylen));
5893     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5894     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5895 
5896     IdealKit ideal(this);
5897 
5898 #define __ ideal.
5899      Node* one = __ ConI(1);
5900      Node* zero = __ ConI(0);
5901      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5902      __ set(need_alloc, zero);
5903      __ set(z_alloc, z);
5904      __ if_then(z, BoolTest::eq, null()); {
5905        __ increment (need_alloc, one);
5906      } __ else_(); {
5907        // Update graphKit memory and control from IdealKit.
5908        sync_kit(ideal);
5909        Node* zlen_arg = load_array_length(z);
5910        // Update IdealKit memory and control from graphKit.
5911        __ sync_kit(this);
5912        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5913          __ increment (need_alloc, one);
5914        } __ end_if();
5915      } __ end_if();
5916 
5917      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5918        // Update graphKit memory and control from IdealKit.
5919        sync_kit(ideal);
5920        Node * narr = new_array(klass_node, zlen, 1);
5921        // Update IdealKit memory and control from graphKit.
5922        __ sync_kit(this);
5923        __ set(z_alloc, narr);
5924      } __ end_if();
5925 
5926      sync_kit(ideal);
5927      z = __ value(z_alloc);
5928      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5929      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5930      // Final sync IdealKit and GraphKit.
5931      final_sync(ideal);
5932 #undef __
5933 
5934     Node* z_start = array_element_address(z, intcon(0), T_INT);
5935 
5936     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5937                                    OptoRuntime::multiplyToLen_Type(),
5938                                    stubAddr, stubName, TypePtr::BOTTOM,
5939                                    x_start, xlen, y_start, ylen, z_start, zlen);
5940   } // original reexecute is set back here
5941 
5942   C->set_has_split_ifs(true); // Has chance for split-if optimization
5943   set_result(z);
5944   return true;
5945 }
5946 
5947 //-------------inline_squareToLen------------------------------------
5948 bool LibraryCallKit::inline_squareToLen() {
5949   assert(UseSquareToLenIntrinsic, "not implementated on this platform");
5950 
5951   address stubAddr = StubRoutines::squareToLen();
5952   if (stubAddr == NULL) {
5953     return false; // Intrinsic's stub is not implemented on this platform
5954   }
5955   const char* stubName = "squareToLen";
5956 
5957   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
5958 
5959   Node* x    = argument(0);
5960   Node* len  = argument(1);
5961   Node* z    = argument(2);
5962   Node* zlen = argument(3);
5963 
5964   const Type* x_type = x->Value(&_gvn);
5965   const Type* z_type = z->Value(&_gvn);
5966   const TypeAryPtr* top_x = x_type->isa_aryptr();
5967   const TypeAryPtr* top_z = z_type->isa_aryptr();
5968   if (top_x  == NULL || top_x->klass()  == NULL ||
5969       top_z  == NULL || top_z->klass()  == NULL) {
5970     // failed array check
5971     return false;
5972   }
5973 
5974   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5975   BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5976   if (x_elem != T_INT || z_elem != T_INT) {
5977     return false;
5978   }
5979 
5980 
5981   Node* x_start = array_element_address(x, intcon(0), x_elem);
5982   Node* z_start = array_element_address(z, intcon(0), z_elem);
5983 
5984   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5985                                   OptoRuntime::squareToLen_Type(),
5986                                   stubAddr, stubName, TypePtr::BOTTOM,
5987                                   x_start, len, z_start, zlen);
5988 
5989   set_result(z);
5990   return true;
5991 }
5992 
5993 //-------------inline_mulAdd------------------------------------------
5994 bool LibraryCallKit::inline_mulAdd() {
5995   assert(UseMulAddIntrinsic, "not implementated on this platform");
5996 
5997   address stubAddr = StubRoutines::mulAdd();
5998   if (stubAddr == NULL) {
5999     return false; // Intrinsic's stub is not implemented on this platform
6000   }
6001   const char* stubName = "mulAdd";
6002 
6003   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
6004 
6005   Node* out      = argument(0);
6006   Node* in       = argument(1);
6007   Node* offset   = argument(2);
6008   Node* len      = argument(3);
6009   Node* k        = argument(4);
6010 
6011   const Type* out_type = out->Value(&_gvn);
6012   const Type* in_type = in->Value(&_gvn);
6013   const TypeAryPtr* top_out = out_type->isa_aryptr();
6014   const TypeAryPtr* top_in = in_type->isa_aryptr();
6015   if (top_out  == NULL || top_out->klass()  == NULL ||
6016       top_in == NULL || top_in->klass() == NULL) {
6017     // failed array check
6018     return false;
6019   }
6020 
6021   BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6022   BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6023   if (out_elem != T_INT || in_elem != T_INT) {
6024     return false;
6025   }
6026 
6027   Node* outlen = load_array_length(out);
6028   Node* new_offset = _gvn.transform(new (C) SubINode(outlen, offset));
6029   Node* out_start = array_element_address(out, intcon(0), out_elem);
6030   Node* in_start = array_element_address(in, intcon(0), in_elem);
6031 
6032   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
6033                                   OptoRuntime::mulAdd_Type(),
6034                                   stubAddr, stubName, TypePtr::BOTTOM,
6035                                   out_start,in_start, new_offset, len, k);
6036   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
6037   set_result(result);
6038   return true;
6039 }
6040 
6041 //-------------inline_montgomeryMultiply-----------------------------------
6042 bool LibraryCallKit::inline_montgomeryMultiply() {
6043   address stubAddr = StubRoutines::montgomeryMultiply();
6044   if (stubAddr == NULL) {
6045     return false; // Intrinsic's stub is not implemented on this platform
6046   }
6047 
6048   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
6049   const char* stubName = "montgomery_multiply";
6050 
6051   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
6052 
6053   Node* a    = argument(0);
6054   Node* b    = argument(1);
6055   Node* n    = argument(2);
6056   Node* len  = argument(3);
6057   Node* inv  = argument(4);
6058   Node* m    = argument(6);
6059 
6060   const Type* a_type = a->Value(&_gvn);
6061   const TypeAryPtr* top_a = a_type->isa_aryptr();
6062   const Type* b_type = b->Value(&_gvn);
6063   const TypeAryPtr* top_b = b_type->isa_aryptr();
6064   const Type* n_type = a->Value(&_gvn);
6065   const TypeAryPtr* top_n = n_type->isa_aryptr();
6066   const Type* m_type = a->Value(&_gvn);
6067   const TypeAryPtr* top_m = m_type->isa_aryptr();
6068   if (top_a  == NULL || top_a->klass()  == NULL ||
6069       top_b == NULL || top_b->klass()  == NULL ||
6070       top_n == NULL || top_n->klass()  == NULL ||
6071       top_m == NULL || top_m->klass()  == NULL) {
6072     // failed array check
6073     return false;
6074   }
6075 
6076   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6077   BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6078   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6079   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6080   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
6081     return false;
6082   }
6083 
6084   // Make the call
6085   {
6086     Node* a_start = array_element_address(a, intcon(0), a_elem);
6087     Node* b_start = array_element_address(b, intcon(0), b_elem);
6088     Node* n_start = array_element_address(n, intcon(0), n_elem);
6089     Node* m_start = array_element_address(m, intcon(0), m_elem);
6090 
6091     Node* call = NULL;
6092     if (CCallingConventionRequiresIntsAsLongs) {
6093       Node* len_I2L = ConvI2L(len);
6094       call = make_runtime_call(RC_LEAF,
6095                                OptoRuntime::montgomeryMultiply_Type(),
6096                                stubAddr, stubName, TypePtr::BOTTOM,
6097                                a_start, b_start, n_start, len_I2L XTOP, inv,
6098                                top(), m_start);
6099     } else {
6100       call = make_runtime_call(RC_LEAF,
6101                                OptoRuntime::montgomeryMultiply_Type(),
6102                                stubAddr, stubName, TypePtr::BOTTOM,
6103                                a_start, b_start, n_start, len, inv, top(),
6104                                m_start);
6105     }
6106     set_result(m);
6107   }
6108 
6109   return true;
6110 }
6111 
6112 bool LibraryCallKit::inline_montgomerySquare() {
6113   address stubAddr = StubRoutines::montgomerySquare();
6114   if (stubAddr == NULL) {
6115     return false; // Intrinsic's stub is not implemented on this platform
6116   }
6117 
6118   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
6119   const char* stubName = "montgomery_square";
6120 
6121   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
6122 
6123   Node* a    = argument(0);
6124   Node* n    = argument(1);
6125   Node* len  = argument(2);
6126   Node* inv  = argument(3);
6127   Node* m    = argument(5);
6128 
6129   const Type* a_type = a->Value(&_gvn);
6130   const TypeAryPtr* top_a = a_type->isa_aryptr();
6131   const Type* n_type = a->Value(&_gvn);
6132   const TypeAryPtr* top_n = n_type->isa_aryptr();
6133   const Type* m_type = a->Value(&_gvn);
6134   const TypeAryPtr* top_m = m_type->isa_aryptr();
6135   if (top_a  == NULL || top_a->klass()  == NULL ||
6136       top_n == NULL || top_n->klass()  == NULL ||
6137       top_m == NULL || top_m->klass()  == NULL) {
6138     // failed array check
6139     return false;
6140   }
6141 
6142   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6143   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6144   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6145   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
6146     return false;
6147   }
6148 
6149   // Make the call
6150   {
6151     Node* a_start = array_element_address(a, intcon(0), a_elem);
6152     Node* n_start = array_element_address(n, intcon(0), n_elem);
6153     Node* m_start = array_element_address(m, intcon(0), m_elem);
6154 
6155     Node* call = NULL;
6156     if (CCallingConventionRequiresIntsAsLongs) {
6157       Node* len_I2L = ConvI2L(len);
6158       call = make_runtime_call(RC_LEAF,
6159                                OptoRuntime::montgomerySquare_Type(),
6160                                stubAddr, stubName, TypePtr::BOTTOM,
6161                                a_start, n_start, len_I2L XTOP, inv, top(),
6162                                m_start);
6163     } else {
6164       call = make_runtime_call(RC_LEAF,
6165                                OptoRuntime::montgomerySquare_Type(),
6166                                stubAddr, stubName, TypePtr::BOTTOM,
6167                                a_start, n_start, len, inv, top(),
6168                                m_start);
6169     }
6170 
6171     set_result(m);
6172   }
6173 
6174   return true;
6175 }
6176 
6177 
6178 /**
6179  * Calculate CRC32 for byte.
6180  * int java.util.zip.CRC32.update(int crc, int b)
6181  */
6182 bool LibraryCallKit::inline_updateCRC32() {
6183   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
6184   assert(callee()->signature()->size() == 2, "update has 2 parameters");
6185   // no receiver since it is static method
6186   Node* crc  = argument(0); // type: int
6187   Node* b    = argument(1); // type: int
6188 
6189   /*
6190    *    int c = ~ crc;
6191    *    b = timesXtoThe32[(b ^ c) & 0xFF];
6192    *    b = b ^ (c >>> 8);
6193    *    crc = ~b;
6194    */
6195 
6196   Node* M1 = intcon(-1);
6197   crc = _gvn.transform(new (C) XorINode(crc, M1));
6198   Node* result = _gvn.transform(new (C) XorINode(crc, b));
6199   result = _gvn.transform(new (C) AndINode(result, intcon(0xFF)));
6200 
6201   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
6202   Node* offset = _gvn.transform(new (C) LShiftINode(result, intcon(0x2)));
6203   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
6204   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
6205 
6206   crc = _gvn.transform(new (C) URShiftINode(crc, intcon(8)));
6207   result = _gvn.transform(new (C) XorINode(crc, result));
6208   result = _gvn.transform(new (C) XorINode(result, M1));
6209   set_result(result);
6210   return true;
6211 }
6212 
6213 /**
6214  * Calculate CRC32 for byte[] array.
6215  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
6216  */
6217 bool LibraryCallKit::inline_updateBytesCRC32() {
6218   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
6219   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
6220   // no receiver since it is static method
6221   Node* crc     = argument(0); // type: int
6222   Node* src     = argument(1); // type: oop
6223   Node* offset  = argument(2); // type: int
6224   Node* length  = argument(3); // type: int
6225 
6226   const Type* src_type = src->Value(&_gvn);
6227   const TypeAryPtr* top_src = src_type->isa_aryptr();
6228   if (top_src  == NULL || top_src->klass()  == NULL) {
6229     // failed array check
6230     return false;
6231   }
6232 
6233   // Figure out the size and type of the elements we will be copying.
6234   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6235   if (src_elem != T_BYTE) {
6236     return false;
6237   }
6238 
6239   // 'src_start' points to src array + scaled offset
6240   Node* src_start = array_element_address(src, offset, src_elem);
6241 
6242   // We assume that range check is done by caller.
6243   // TODO: generate range check (offset+length < src.length) in debug VM.
6244 
6245   // Call the stub.
6246   address stubAddr = StubRoutines::updateBytesCRC32();
6247   const char *stubName = "updateBytesCRC32";
6248   Node* call;
6249   if (CCallingConventionRequiresIntsAsLongs) {
6250    call =  make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
6251                              stubAddr, stubName, TypePtr::BOTTOM,
6252                              crc XTOP, src_start, length XTOP);
6253   } else {
6254     call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
6255                              stubAddr, stubName, TypePtr::BOTTOM,
6256                              crc, src_start, length);
6257   }
6258   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
6259   set_result(result);
6260   return true;
6261 }
6262 
6263 /**
6264  * Calculate CRC32 for ByteBuffer.
6265  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
6266  */
6267 bool LibraryCallKit::inline_updateByteBufferCRC32() {
6268   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
6269   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
6270   // no receiver since it is static method
6271   Node* crc     = argument(0); // type: int
6272   Node* src     = argument(1); // type: long
6273   Node* offset  = argument(3); // type: int
6274   Node* length  = argument(4); // type: int
6275 
6276   src = ConvL2X(src);  // adjust Java long to machine word
6277   Node* base = _gvn.transform(new (C) CastX2PNode(src));
6278   offset = ConvI2X(offset);
6279 
6280   // 'src_start' points to src array + scaled offset
6281   Node* src_start = basic_plus_adr(top(), base, offset);
6282 
6283   // Call the stub.
6284   address stubAddr = StubRoutines::updateBytesCRC32();
6285   const char *stubName = "updateBytesCRC32";
6286   Node* call;
6287   if (CCallingConventionRequiresIntsAsLongs) {
6288     call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
6289                       stubAddr, stubName, TypePtr::BOTTOM,
6290                       crc XTOP, src_start, length XTOP);
6291   } else {
6292     call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
6293                              stubAddr, stubName, TypePtr::BOTTOM,
6294                              crc, src_start, length);
6295   }
6296   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
6297   set_result(result);
6298   return true;
6299 }
6300 
6301 //----------------------------inline_reference_get----------------------------
6302 // public T java.lang.ref.Reference.get();
6303 bool LibraryCallKit::inline_reference_get() {
6304   const int referent_offset = java_lang_ref_Reference::referent_offset;
6305   guarantee(referent_offset > 0, "should have already been set");
6306 
6307   // Get the argument:
6308   Node* reference_obj = null_check_receiver();
6309   if (stopped()) return true;
6310 
6311   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
6312 
6313   ciInstanceKlass* klass = env()->Object_klass();
6314   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
6315 
6316   Node* no_ctrl = NULL;
6317   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
6318 
6319   // Use the pre-barrier to record the value in the referent field
6320   pre_barrier(false /* do_load */,
6321               control(),
6322               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
6323               result /* pre_val */,
6324               T_OBJECT);
6325 
6326   // Add memory barrier to prevent commoning reads from this field
6327   // across safepoint since GC can change its value.
6328   insert_mem_bar(Op_MemBarCPUOrder);
6329 
6330   set_result(result);
6331   return true;
6332 }
6333 
6334 
6335 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
6336                                               bool is_exact=true, bool is_static=false) {
6337 
6338   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
6339   assert(tinst != NULL, "obj is null");
6340   assert(tinst->klass()->is_loaded(), "obj is not loaded");
6341   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
6342 
6343   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
6344                                                                           ciSymbol::make(fieldTypeString),
6345                                                                           is_static);
6346   if (field == NULL) return (Node *) NULL;
6347   assert (field != NULL, "undefined field");
6348 
6349   // Next code  copied from Parse::do_get_xxx():
6350 
6351   // Compute address and memory type.
6352   int offset  = field->offset_in_bytes();
6353   bool is_vol = field->is_volatile();
6354   ciType* field_klass = field->type();
6355   assert(field_klass->is_loaded(), "should be loaded");
6356   const TypePtr* adr_type = C->alias_type(field)->adr_type();
6357   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
6358   BasicType bt = field->layout_type();
6359 
6360   // Build the resultant type of the load
6361   const Type *type;
6362   if (bt == T_OBJECT) {
6363     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
6364   } else {
6365     type = Type::get_const_basic_type(bt);
6366   }
6367 
6368   Node* leading_membar = NULL;
6369   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
6370     leading_membar = insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
6371   }
6372   // Build the load.
6373   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
6374   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, is_vol);
6375   // If reference is volatile, prevent following memory ops from
6376   // floating up past the volatile read.  Also prevents commoning
6377   // another volatile read.
6378   if (is_vol) {
6379     // Memory barrier includes bogus read of value to force load BEFORE membar
6380     Node* mb = insert_mem_bar(Op_MemBarAcquire, loadedField);
6381     mb->as_MemBar()->set_trailing_load();
6382   }
6383   return loadedField;
6384 }
6385 
6386 
6387 //------------------------------inline_aescrypt_Block-----------------------
6388 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
6389   address stubAddr = NULL;
6390   const char *stubName;
6391   assert(UseAES, "need AES instruction support");
6392 
6393   switch(id) {
6394   case vmIntrinsics::_aescrypt_encryptBlock:
6395     stubAddr = StubRoutines::aescrypt_encryptBlock();
6396     stubName = "aescrypt_encryptBlock";
6397     break;
6398   case vmIntrinsics::_aescrypt_decryptBlock:
6399     stubAddr = StubRoutines::aescrypt_decryptBlock();
6400     stubName = "aescrypt_decryptBlock";
6401     break;
6402   }
6403   if (stubAddr == NULL) return false;
6404 
6405   Node* aescrypt_object = argument(0);
6406   Node* src             = argument(1);
6407   Node* src_offset      = argument(2);
6408   Node* dest            = argument(3);
6409   Node* dest_offset     = argument(4);
6410 
6411   // (1) src and dest are arrays.
6412   const Type* src_type = src->Value(&_gvn);
6413   const Type* dest_type = dest->Value(&_gvn);
6414   const TypeAryPtr* top_src = src_type->isa_aryptr();
6415   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6416   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6417 
6418   // for the quick and dirty code we will skip all the checks.
6419   // we are just trying to get the call to be generated.
6420   Node* src_start  = src;
6421   Node* dest_start = dest;
6422   if (src_offset != NULL || dest_offset != NULL) {
6423     assert(src_offset != NULL && dest_offset != NULL, "");
6424     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6425     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6426   }
6427 
6428   // now need to get the start of its expanded key array
6429   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6430   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6431   if (k_start == NULL) return false;
6432 
6433   if (Matcher::pass_original_key_for_aes()) {
6434     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6435     // compatibility issues between Java key expansion and SPARC crypto instructions
6436     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6437     if (original_k_start == NULL) return false;
6438 
6439     // Call the stub.
6440     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6441                       stubAddr, stubName, TypePtr::BOTTOM,
6442                       src_start, dest_start, k_start, original_k_start);
6443   } else {
6444     // Call the stub.
6445     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6446                       stubAddr, stubName, TypePtr::BOTTOM,
6447                       src_start, dest_start, k_start);
6448   }
6449 
6450   return true;
6451 }
6452 
6453 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
6454 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
6455   address stubAddr = NULL;
6456   const char *stubName = NULL;
6457 
6458   assert(UseAES, "need AES instruction support");
6459 
6460   switch(id) {
6461   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
6462     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
6463     stubName = "cipherBlockChaining_encryptAESCrypt";
6464     break;
6465   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
6466     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
6467     stubName = "cipherBlockChaining_decryptAESCrypt";
6468     break;
6469   }
6470   if (stubAddr == NULL) return false;
6471 
6472   Node* cipherBlockChaining_object = argument(0);
6473   Node* src                        = argument(1);
6474   Node* src_offset                 = argument(2);
6475   Node* len                        = argument(3);
6476   Node* dest                       = argument(4);
6477   Node* dest_offset                = argument(5);
6478 
6479   // (1) src and dest are arrays.
6480   const Type* src_type = src->Value(&_gvn);
6481   const Type* dest_type = dest->Value(&_gvn);
6482   const TypeAryPtr* top_src = src_type->isa_aryptr();
6483   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6484   assert (top_src  != NULL && top_src->klass()  != NULL
6485           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6486 
6487   // checks are the responsibility of the caller
6488   Node* src_start  = src;
6489   Node* dest_start = dest;
6490   if (src_offset != NULL || dest_offset != NULL) {
6491     assert(src_offset != NULL && dest_offset != NULL, "");
6492     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6493     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6494   }
6495 
6496   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6497   // (because of the predicated logic executed earlier).
6498   // so we cast it here safely.
6499   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6500 
6501   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6502   if (embeddedCipherObj == NULL) return false;
6503 
6504   // cast it to what we know it will be at runtime
6505   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
6506   assert(tinst != NULL, "CBC obj is null");
6507   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
6508   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6509   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6510 
6511   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6512   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6513   const TypeOopPtr* xtype = aklass->as_instance_type();
6514   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
6515   aescrypt_object = _gvn.transform(aescrypt_object);
6516 
6517   // we need to get the start of the aescrypt_object's expanded key array
6518   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6519   if (k_start == NULL) return false;
6520 
6521   // similarly, get the start address of the r vector
6522   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
6523   if (objRvec == NULL) return false;
6524   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6525 
6526   Node* cbcCrypt;
6527   if (Matcher::pass_original_key_for_aes()) {
6528     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6529     // compatibility issues between Java key expansion and SPARC crypto instructions
6530     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6531     if (original_k_start == NULL) return false;
6532 
6533     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
6534     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6535                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6536                                  stubAddr, stubName, TypePtr::BOTTOM,
6537                                  src_start, dest_start, k_start, r_start, len, original_k_start);
6538   } else {
6539     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6540     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6541                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6542                                  stubAddr, stubName, TypePtr::BOTTOM,
6543                                  src_start, dest_start, k_start, r_start, len);
6544   }
6545 
6546   // return cipher length (int)
6547   Node* retvalue = _gvn.transform(new (C) ProjNode(cbcCrypt, TypeFunc::Parms));
6548   set_result(retvalue);
6549   return true;
6550 }
6551 
6552 //------------------------------get_key_start_from_aescrypt_object-----------------------
6553 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6554 #ifdef PPC64
6555   // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
6556   // Intel's extention is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
6557   // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
6558   // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]).
6559   Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I", /*is_exact*/ false);
6560   assert (objSessionK != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6561   if (objSessionK == NULL) {
6562     return (Node *) NULL;
6563   }
6564   Node* objAESCryptKey = load_array_element(control(), objSessionK, intcon(0), TypeAryPtr::OOPS);
6565 #else
6566   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6567 #endif // PPC64
6568   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6569   if (objAESCryptKey == NULL) return (Node *) NULL;
6570 
6571   // now have the array, need to get the start address of the K array
6572   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6573   return k_start;
6574 }
6575 
6576 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6577 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6578   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6579   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6580   if (objAESCryptKey == NULL) return (Node *) NULL;
6581 
6582   // now have the array, need to get the start address of the lastKey array
6583   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6584   return original_k_start;
6585 }
6586 
6587 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6588 // Return node representing slow path of predicate check.
6589 // the pseudo code we want to emulate with this predicate is:
6590 // for encryption:
6591 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6592 // for decryption:
6593 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6594 //    note cipher==plain is more conservative than the original java code but that's OK
6595 //
6596 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6597   // The receiver was checked for NULL already.
6598   Node* objCBC = argument(0);
6599 
6600   // Load embeddedCipher field of CipherBlockChaining object.
6601   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6602 
6603   // get AESCrypt klass for instanceOf check
6604   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6605   // will have same classloader as CipherBlockChaining object
6606   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6607   assert(tinst != NULL, "CBCobj is null");
6608   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6609 
6610   // we want to do an instanceof comparison against the AESCrypt class
6611   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6612   if (!klass_AESCrypt->is_loaded()) {
6613     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6614     Node* ctrl = control();
6615     set_control(top()); // no regular fast path
6616     return ctrl;
6617   }
6618   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6619 
6620   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6621   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
6622   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
6623 
6624   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6625 
6626   // for encryption, we are done
6627   if (!decrypting)
6628     return instof_false;  // even if it is NULL
6629 
6630   // for decryption, we need to add a further check to avoid
6631   // taking the intrinsic path when cipher and plain are the same
6632   // see the original java code for why.
6633   RegionNode* region = new(C) RegionNode(3);
6634   region->init_req(1, instof_false);
6635   Node* src = argument(1);
6636   Node* dest = argument(4);
6637   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
6638   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
6639   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6640   region->init_req(2, src_dest_conjoint);
6641 
6642   record_for_igvn(region);
6643   return _gvn.transform(region);
6644 }
6645 
6646 //------------------------------inline_ghash_processBlocks
6647 bool LibraryCallKit::inline_ghash_processBlocks() {
6648   address stubAddr;
6649   const char *stubName;
6650   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
6651 
6652   stubAddr = StubRoutines::ghash_processBlocks();
6653   stubName = "ghash_processBlocks";
6654 
6655   Node* data           = argument(0);
6656   Node* offset         = argument(1);
6657   Node* len            = argument(2);
6658   Node* state          = argument(3);
6659   Node* subkeyH        = argument(4);
6660 
6661   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
6662   assert(state_start, "state is NULL");
6663   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
6664   assert(subkeyH_start, "subkeyH is NULL");
6665   Node* data_start  = array_element_address(data, offset, T_BYTE);
6666   assert(data_start, "data is NULL");
6667 
6668   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
6669                                   OptoRuntime::ghash_processBlocks_Type(),
6670                                   stubAddr, stubName, TypePtr::BOTTOM,
6671                                   state_start, subkeyH_start, data_start, len);
6672   return true;
6673 }
6674 
6675 //------------------------------inline_sha_implCompress-----------------------
6676 //
6677 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6678 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6679 //
6680 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6681 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6682 //
6683 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6684 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6685 //
6686 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6687   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6688 
6689   Node* sha_obj = argument(0);
6690   Node* src     = argument(1); // type oop
6691   Node* ofs     = argument(2); // type int
6692 
6693   const Type* src_type = src->Value(&_gvn);
6694   const TypeAryPtr* top_src = src_type->isa_aryptr();
6695   if (top_src  == NULL || top_src->klass()  == NULL) {
6696     // failed array check
6697     return false;
6698   }
6699   // Figure out the size and type of the elements we will be copying.
6700   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6701   if (src_elem != T_BYTE) {
6702     return false;
6703   }
6704   // 'src_start' points to src array + offset
6705   Node* src_start = array_element_address(src, ofs, src_elem);
6706   Node* state = NULL;
6707   address stubAddr;
6708   const char *stubName;
6709 
6710   switch(id) {
6711   case vmIntrinsics::_sha_implCompress:
6712     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6713     state = get_state_from_sha_object(sha_obj);
6714     stubAddr = StubRoutines::sha1_implCompress();
6715     stubName = "sha1_implCompress";
6716     break;
6717   case vmIntrinsics::_sha2_implCompress:
6718     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6719     state = get_state_from_sha_object(sha_obj);
6720     stubAddr = StubRoutines::sha256_implCompress();
6721     stubName = "sha256_implCompress";
6722     break;
6723   case vmIntrinsics::_sha5_implCompress:
6724     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6725     state = get_state_from_sha5_object(sha_obj);
6726     stubAddr = StubRoutines::sha512_implCompress();
6727     stubName = "sha512_implCompress";
6728     break;
6729   default:
6730     fatal_unexpected_iid(id);
6731     return false;
6732   }
6733   if (state == NULL) return false;
6734 
6735   // Call the stub.
6736   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6737                                  stubAddr, stubName, TypePtr::BOTTOM,
6738                                  src_start, state);
6739 
6740   return true;
6741 }
6742 
6743 //------------------------------inline_digestBase_implCompressMB-----------------------
6744 //
6745 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6746 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6747 //
6748 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6749   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6750          "need SHA1/SHA256/SHA512 instruction support");
6751   assert((uint)predicate < 3, "sanity");
6752   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6753 
6754   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6755   Node* src            = argument(1); // byte[] array
6756   Node* ofs            = argument(2); // type int
6757   Node* limit          = argument(3); // type int
6758 
6759   const Type* src_type = src->Value(&_gvn);
6760   const TypeAryPtr* top_src = src_type->isa_aryptr();
6761   if (top_src  == NULL || top_src->klass()  == NULL) {
6762     // failed array check
6763     return false;
6764   }
6765   // Figure out the size and type of the elements we will be copying.
6766   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6767   if (src_elem != T_BYTE) {
6768     return false;
6769   }
6770   // 'src_start' points to src array + offset
6771   Node* src_start = array_element_address(src, ofs, src_elem);
6772 
6773   const char* klass_SHA_name = NULL;
6774   const char* stub_name = NULL;
6775   address     stub_addr = NULL;
6776   bool        long_state = false;
6777 
6778   switch (predicate) {
6779   case 0:
6780     if (UseSHA1Intrinsics) {
6781       klass_SHA_name = "sun/security/provider/SHA";
6782       stub_name = "sha1_implCompressMB";
6783       stub_addr = StubRoutines::sha1_implCompressMB();
6784     }
6785     break;
6786   case 1:
6787     if (UseSHA256Intrinsics) {
6788       klass_SHA_name = "sun/security/provider/SHA2";
6789       stub_name = "sha256_implCompressMB";
6790       stub_addr = StubRoutines::sha256_implCompressMB();
6791     }
6792     break;
6793   case 2:
6794     if (UseSHA512Intrinsics) {
6795       klass_SHA_name = "sun/security/provider/SHA5";
6796       stub_name = "sha512_implCompressMB";
6797       stub_addr = StubRoutines::sha512_implCompressMB();
6798       long_state = true;
6799     }
6800     break;
6801   default:
6802     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
6803   }
6804   if (klass_SHA_name != NULL) {
6805     // get DigestBase klass to lookup for SHA klass
6806     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6807     assert(tinst != NULL, "digestBase_obj is not instance???");
6808     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6809 
6810     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6811     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6812     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6813     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6814   }
6815   return false;
6816 }
6817 //------------------------------inline_sha_implCompressMB-----------------------
6818 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6819                                                bool long_state, address stubAddr, const char *stubName,
6820                                                Node* src_start, Node* ofs, Node* limit) {
6821   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6822   const TypeOopPtr* xtype = aklass->as_instance_type();
6823   Node* sha_obj = new (C) CheckCastPPNode(control(), digestBase_obj, xtype);
6824   sha_obj = _gvn.transform(sha_obj);
6825 
6826   Node* state;
6827   if (long_state) {
6828     state = get_state_from_sha5_object(sha_obj);
6829   } else {
6830     state = get_state_from_sha_object(sha_obj);
6831   }
6832   if (state == NULL) return false;
6833 
6834   // Call the stub.
6835   Node *call;
6836   if (CCallingConventionRequiresIntsAsLongs) {
6837     call = make_runtime_call(RC_LEAF|RC_NO_FP,
6838                              OptoRuntime::digestBase_implCompressMB_Type(),
6839                              stubAddr, stubName, TypePtr::BOTTOM,
6840                              src_start, state, ofs XTOP, limit XTOP);
6841   } else {
6842     call = make_runtime_call(RC_LEAF|RC_NO_FP,
6843                              OptoRuntime::digestBase_implCompressMB_Type(),
6844                              stubAddr, stubName, TypePtr::BOTTOM,
6845                              src_start, state, ofs, limit);
6846   }
6847   // return ofs (int)
6848   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
6849   set_result(result);
6850 
6851   return true;
6852 }
6853 
6854 //------------------------------get_state_from_sha_object-----------------------
6855 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6856   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6857   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6858   if (sha_state == NULL) return (Node *) NULL;
6859 
6860   // now have the array, need to get the start address of the state array
6861   Node* state = array_element_address(sha_state, intcon(0), T_INT);
6862   return state;
6863 }
6864 
6865 //------------------------------get_state_from_sha5_object-----------------------
6866 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6867   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6868   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6869   if (sha_state == NULL) return (Node *) NULL;
6870 
6871   // now have the array, need to get the start address of the state array
6872   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6873   return state;
6874 }
6875 
6876 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6877 // Return node representing slow path of predicate check.
6878 // the pseudo code we want to emulate with this predicate is:
6879 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6880 //
6881 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6882   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6883          "need SHA1/SHA256/SHA512 instruction support");
6884   assert((uint)predicate < 3, "sanity");
6885 
6886   // The receiver was checked for NULL already.
6887   Node* digestBaseObj = argument(0);
6888 
6889   // get DigestBase klass for instanceOf check
6890   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6891   assert(tinst != NULL, "digestBaseObj is null");
6892   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6893 
6894   const char* klass_SHA_name = NULL;
6895   switch (predicate) {
6896   case 0:
6897     if (UseSHA1Intrinsics) {
6898       // we want to do an instanceof comparison against the SHA class
6899       klass_SHA_name = "sun/security/provider/SHA";
6900     }
6901     break;
6902   case 1:
6903     if (UseSHA256Intrinsics) {
6904       // we want to do an instanceof comparison against the SHA2 class
6905       klass_SHA_name = "sun/security/provider/SHA2";
6906     }
6907     break;
6908   case 2:
6909     if (UseSHA512Intrinsics) {
6910       // we want to do an instanceof comparison against the SHA5 class
6911       klass_SHA_name = "sun/security/provider/SHA5";
6912     }
6913     break;
6914   default:
6915     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
6916   }
6917 
6918   ciKlass* klass_SHA = NULL;
6919   if (klass_SHA_name != NULL) {
6920     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6921   }
6922   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6923     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6924     Node* ctrl = control();
6925     set_control(top()); // no intrinsic path
6926     return ctrl;
6927   }
6928   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6929 
6930   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6931   Node* cmp_instof = _gvn.transform(new (C) CmpINode(instofSHA, intcon(1)));
6932   Node* bool_instof = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
6933   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6934 
6935   return instof_false;  // even if it is NULL
6936 }
6937 
6938 bool LibraryCallKit::inline_profileBoolean() {
6939   Node* counts = argument(1);
6940   const TypeAryPtr* ary = NULL;
6941   ciArray* aobj = NULL;
6942   if (counts->is_Con()
6943       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
6944       && (aobj = ary->const_oop()->as_array()) != NULL
6945       && (aobj->length() == 2)) {
6946     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
6947     jint false_cnt = aobj->element_value(0).as_int();
6948     jint  true_cnt = aobj->element_value(1).as_int();
6949 
6950     if (C->log() != NULL) {
6951       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
6952                      false_cnt, true_cnt);
6953     }
6954 
6955     if (false_cnt + true_cnt == 0) {
6956       // According to profile, never executed.
6957       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6958                           Deoptimization::Action_reinterpret);
6959       return true;
6960     }
6961 
6962     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
6963     // is a number of each value occurrences.
6964     Node* result = argument(0);
6965     if (false_cnt == 0 || true_cnt == 0) {
6966       // According to profile, one value has been never seen.
6967       int expected_val = (false_cnt == 0) ? 1 : 0;
6968 
6969       Node* cmp  = _gvn.transform(new (C) CmpINode(result, intcon(expected_val)));
6970       Node* test = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
6971 
6972       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
6973       Node* fast_path = _gvn.transform(new (C) IfTrueNode(check));
6974       Node* slow_path = _gvn.transform(new (C) IfFalseNode(check));
6975 
6976       { // Slow path: uncommon trap for never seen value and then reexecute
6977         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
6978         // the value has been seen at least once.
6979         PreserveJVMState pjvms(this);
6980         PreserveReexecuteState preexecs(this);
6981         jvms()->set_should_reexecute(true);
6982 
6983         set_control(slow_path);
6984         set_i_o(i_o());
6985 
6986         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6987                             Deoptimization::Action_reinterpret);
6988       }
6989       // The guard for never seen value enables sharpening of the result and
6990       // returning a constant. It allows to eliminate branches on the same value
6991       // later on.
6992       set_control(fast_path);
6993       result = intcon(expected_val);
6994     }
6995     // Stop profiling.
6996     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
6997     // By replacing method body with profile data (represented as ProfileBooleanNode
6998     // on IR level) we effectively disable profiling.
6999     // It enables full speed execution once optimized code is generated.
7000     Node* profile = _gvn.transform(new (C) ProfileBooleanNode(result, false_cnt, true_cnt));
7001     C->record_for_igvn(profile);
7002     set_result(profile);
7003     return true;
7004   } else {
7005     // Continue profiling.
7006     // Profile data isn't available at the moment. So, execute method's bytecode version.
7007     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
7008     // is compiled and counters aren't available since corresponding MethodHandle
7009     // isn't a compile-time constant.
7010     return false;
7011   }
7012 }