1 /* 2 * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "memory/allocation.inline.hpp" 27 #include "opto/addnode.hpp" 28 #include "opto/callnode.hpp" 29 #include "opto/connode.hpp" 30 #include "opto/idealGraphPrinter.hpp" 31 #include "opto/matcher.hpp" 32 #include "opto/memnode.hpp" 33 #include "opto/opcodes.hpp" 34 #include "opto/regmask.hpp" 35 #include "opto/rootnode.hpp" 36 #include "opto/runtime.hpp" 37 #include "opto/type.hpp" 38 #include "opto/vectornode.hpp" 39 #include "runtime/atomic.hpp" 40 #include "runtime/os.hpp" 41 #if defined AD_MD_HPP 42 # include AD_MD_HPP 43 #elif defined TARGET_ARCH_MODEL_x86_32 44 # include "adfiles/ad_x86_32.hpp" 45 #elif defined TARGET_ARCH_MODEL_x86_64 46 # include "adfiles/ad_x86_64.hpp" 47 #elif defined TARGET_ARCH_MODEL_aarch64 48 # include "adfiles/ad_aarch64.hpp" 49 #elif defined TARGET_ARCH_MODEL_sparc 50 # include "adfiles/ad_sparc.hpp" 51 #elif defined TARGET_ARCH_MODEL_zero 52 # include "adfiles/ad_zero.hpp" 53 #elif defined TARGET_ARCH_MODEL_ppc_64 54 # include "adfiles/ad_ppc_64.hpp" 55 #endif 56 #if INCLUDE_ALL_GCS 57 #include "gc_implementation/shenandoah/c2/shenandoahSupport.hpp" 58 #endif 59 60 OptoReg::Name OptoReg::c_frame_pointer; 61 62 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf]; 63 RegMask Matcher::mreg2regmask[_last_Mach_Reg]; 64 RegMask Matcher::STACK_ONLY_mask; 65 RegMask Matcher::c_frame_ptr_mask; 66 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE; 67 const uint Matcher::_end_rematerialize = _END_REMATERIALIZE; 68 69 //---------------------------Matcher------------------------------------------- 70 Matcher::Matcher() 71 : PhaseTransform( Phase::Ins_Select ), 72 #ifdef ASSERT 73 _old2new_map(C->comp_arena()), 74 _new2old_map(C->comp_arena()), 75 #endif 76 _shared_nodes(C->comp_arena()), 77 _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp), 78 _swallowed(swallowed), 79 _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE), 80 _end_inst_chain_rule(_END_INST_CHAIN_RULE), 81 _must_clone(must_clone), 82 _register_save_policy(register_save_policy), 83 _c_reg_save_policy(c_reg_save_policy), 84 _register_save_type(register_save_type), 85 _ruleName(ruleName), 86 _allocation_started(false), 87 _states_arena(Chunk::medium_size, mtCompiler), 88 _visited(&_states_arena), 89 _shared(&_states_arena), 90 _dontcare(&_states_arena) { 91 C->set_matcher(this); 92 93 idealreg2spillmask [Op_RegI] = NULL; 94 idealreg2spillmask [Op_RegN] = NULL; 95 idealreg2spillmask [Op_RegL] = NULL; 96 idealreg2spillmask [Op_RegF] = NULL; 97 idealreg2spillmask [Op_RegD] = NULL; 98 idealreg2spillmask [Op_RegP] = NULL; 99 idealreg2spillmask [Op_VecS] = NULL; 100 idealreg2spillmask [Op_VecD] = NULL; 101 idealreg2spillmask [Op_VecX] = NULL; 102 idealreg2spillmask [Op_VecY] = NULL; 103 idealreg2spillmask [Op_RegFlags] = NULL; 104 105 idealreg2debugmask [Op_RegI] = NULL; 106 idealreg2debugmask [Op_RegN] = NULL; 107 idealreg2debugmask [Op_RegL] = NULL; 108 idealreg2debugmask [Op_RegF] = NULL; 109 idealreg2debugmask [Op_RegD] = NULL; 110 idealreg2debugmask [Op_RegP] = NULL; 111 idealreg2debugmask [Op_VecS] = NULL; 112 idealreg2debugmask [Op_VecD] = NULL; 113 idealreg2debugmask [Op_VecX] = NULL; 114 idealreg2debugmask [Op_VecY] = NULL; 115 idealreg2debugmask [Op_RegFlags] = NULL; 116 117 idealreg2mhdebugmask[Op_RegI] = NULL; 118 idealreg2mhdebugmask[Op_RegN] = NULL; 119 idealreg2mhdebugmask[Op_RegL] = NULL; 120 idealreg2mhdebugmask[Op_RegF] = NULL; 121 idealreg2mhdebugmask[Op_RegD] = NULL; 122 idealreg2mhdebugmask[Op_RegP] = NULL; 123 idealreg2mhdebugmask[Op_VecS] = NULL; 124 idealreg2mhdebugmask[Op_VecD] = NULL; 125 idealreg2mhdebugmask[Op_VecX] = NULL; 126 idealreg2mhdebugmask[Op_VecY] = NULL; 127 idealreg2mhdebugmask[Op_RegFlags] = NULL; 128 129 debug_only(_mem_node = NULL;) // Ideal memory node consumed by mach node 130 } 131 132 //------------------------------warp_incoming_stk_arg------------------------ 133 // This warps a VMReg into an OptoReg::Name 134 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) { 135 OptoReg::Name warped; 136 if( reg->is_stack() ) { // Stack slot argument? 137 warped = OptoReg::add(_old_SP, reg->reg2stack() ); 138 warped = OptoReg::add(warped, C->out_preserve_stack_slots()); 139 if( warped >= _in_arg_limit ) 140 _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen 141 if (!RegMask::can_represent_arg(warped)) { 142 // the compiler cannot represent this method's calling sequence 143 C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence"); 144 return OptoReg::Bad; 145 } 146 return warped; 147 } 148 return OptoReg::as_OptoReg(reg); 149 } 150 151 //---------------------------compute_old_SP------------------------------------ 152 OptoReg::Name Compile::compute_old_SP() { 153 int fixed = fixed_slots(); 154 int preserve = in_preserve_stack_slots(); 155 return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots())); 156 } 157 158 159 160 #ifdef ASSERT 161 void Matcher::verify_new_nodes_only(Node* xroot) { 162 // Make sure that the new graph only references new nodes 163 ResourceMark rm; 164 Unique_Node_List worklist; 165 VectorSet visited(Thread::current()->resource_area()); 166 worklist.push(xroot); 167 while (worklist.size() > 0) { 168 Node* n = worklist.pop(); 169 visited <<= n->_idx; 170 assert(C->node_arena()->contains(n), "dead node"); 171 for (uint j = 0; j < n->req(); j++) { 172 Node* in = n->in(j); 173 if (in != NULL) { 174 assert(C->node_arena()->contains(in), "dead node"); 175 if (!visited.test(in->_idx)) { 176 worklist.push(in); 177 } 178 } 179 } 180 } 181 } 182 #endif 183 184 185 //---------------------------match--------------------------------------------- 186 void Matcher::match( ) { 187 if( MaxLabelRootDepth < 100 ) { // Too small? 188 assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum"); 189 MaxLabelRootDepth = 100; 190 } 191 // One-time initialization of some register masks. 192 init_spill_mask( C->root()->in(1) ); 193 _return_addr_mask = return_addr(); 194 #ifdef _LP64 195 // Pointers take 2 slots in 64-bit land 196 _return_addr_mask.Insert(OptoReg::add(return_addr(),1)); 197 #endif 198 199 // Map a Java-signature return type into return register-value 200 // machine registers for 0, 1 and 2 returned values. 201 const TypeTuple *range = C->tf()->range(); 202 if( range->cnt() > TypeFunc::Parms ) { // If not a void function 203 // Get ideal-register return type 204 uint ireg = range->field_at(TypeFunc::Parms)->ideal_reg(); 205 // Get machine return register 206 uint sop = C->start()->Opcode(); 207 OptoRegPair regs = return_value(ireg, false); 208 209 // And mask for same 210 _return_value_mask = RegMask(regs.first()); 211 if( OptoReg::is_valid(regs.second()) ) 212 _return_value_mask.Insert(regs.second()); 213 } 214 215 // --------------- 216 // Frame Layout 217 218 // Need the method signature to determine the incoming argument types, 219 // because the types determine which registers the incoming arguments are 220 // in, and this affects the matched code. 221 const TypeTuple *domain = C->tf()->domain(); 222 uint argcnt = domain->cnt() - TypeFunc::Parms; 223 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt ); 224 VMRegPair *vm_parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt ); 225 _parm_regs = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt ); 226 _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt ); 227 uint i; 228 for( i = 0; i<argcnt; i++ ) { 229 sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type(); 230 } 231 232 // Pass array of ideal registers and length to USER code (from the AD file) 233 // that will convert this to an array of register numbers. 234 const StartNode *start = C->start(); 235 start->calling_convention( sig_bt, vm_parm_regs, argcnt ); 236 #ifdef ASSERT 237 // Sanity check users' calling convention. Real handy while trying to 238 // get the initial port correct. 239 { for (uint i = 0; i<argcnt; i++) { 240 if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) { 241 assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" ); 242 _parm_regs[i].set_bad(); 243 continue; 244 } 245 VMReg parm_reg = vm_parm_regs[i].first(); 246 assert(parm_reg->is_valid(), "invalid arg?"); 247 if (parm_reg->is_reg()) { 248 OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg); 249 assert(can_be_java_arg(opto_parm_reg) || 250 C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) || 251 opto_parm_reg == inline_cache_reg(), 252 "parameters in register must be preserved by runtime stubs"); 253 } 254 for (uint j = 0; j < i; j++) { 255 assert(parm_reg != vm_parm_regs[j].first(), 256 "calling conv. must produce distinct regs"); 257 } 258 } 259 } 260 #endif 261 262 // Do some initial frame layout. 263 264 // Compute the old incoming SP (may be called FP) as 265 // OptoReg::stack0() + locks + in_preserve_stack_slots + pad2. 266 _old_SP = C->compute_old_SP(); 267 assert( is_even(_old_SP), "must be even" ); 268 269 // Compute highest incoming stack argument as 270 // _old_SP + out_preserve_stack_slots + incoming argument size. 271 _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots()); 272 assert( is_even(_in_arg_limit), "out_preserve must be even" ); 273 for( i = 0; i < argcnt; i++ ) { 274 // Permit args to have no register 275 _calling_convention_mask[i].Clear(); 276 if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) { 277 continue; 278 } 279 // calling_convention returns stack arguments as a count of 280 // slots beyond OptoReg::stack0()/VMRegImpl::stack0. We need to convert this to 281 // the allocators point of view, taking into account all the 282 // preserve area, locks & pad2. 283 284 OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first()); 285 if( OptoReg::is_valid(reg1)) 286 _calling_convention_mask[i].Insert(reg1); 287 288 OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second()); 289 if( OptoReg::is_valid(reg2)) 290 _calling_convention_mask[i].Insert(reg2); 291 292 // Saved biased stack-slot register number 293 _parm_regs[i].set_pair(reg2, reg1); 294 } 295 296 // Finally, make sure the incoming arguments take up an even number of 297 // words, in case the arguments or locals need to contain doubleword stack 298 // slots. The rest of the system assumes that stack slot pairs (in 299 // particular, in the spill area) which look aligned will in fact be 300 // aligned relative to the stack pointer in the target machine. Double 301 // stack slots will always be allocated aligned. 302 _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong)); 303 304 // Compute highest outgoing stack argument as 305 // _new_SP + out_preserve_stack_slots + max(outgoing argument size). 306 _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots()); 307 assert( is_even(_out_arg_limit), "out_preserve must be even" ); 308 309 if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) { 310 // the compiler cannot represent this method's calling sequence 311 C->record_method_not_compilable("must be able to represent all call arguments in reg mask"); 312 } 313 314 if (C->failing()) return; // bailed out on incoming arg failure 315 316 // --------------- 317 // Collect roots of matcher trees. Every node for which 318 // _shared[_idx] is cleared is guaranteed to not be shared, and thus 319 // can be a valid interior of some tree. 320 find_shared( C->root() ); 321 find_shared( C->top() ); 322 323 C->print_method(PHASE_BEFORE_MATCHING); 324 325 // Create new ideal node ConP #NULL even if it does exist in old space 326 // to avoid false sharing if the corresponding mach node is not used. 327 // The corresponding mach node is only used in rare cases for derived 328 // pointers. 329 Node* new_ideal_null = ConNode::make(C, TypePtr::NULL_PTR); 330 331 // Swap out to old-space; emptying new-space 332 Arena *old = C->node_arena()->move_contents(C->old_arena()); 333 334 // Save debug and profile information for nodes in old space: 335 _old_node_note_array = C->node_note_array(); 336 if (_old_node_note_array != NULL) { 337 C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*> 338 (C->comp_arena(), _old_node_note_array->length(), 339 0, NULL)); 340 } 341 342 // Pre-size the new_node table to avoid the need for range checks. 343 grow_new_node_array(C->unique()); 344 345 // Reset node counter so MachNodes start with _idx at 0 346 int live_nodes = C->live_nodes(); 347 C->set_unique(0); 348 C->reset_dead_node_list(); 349 350 // Recursively match trees from old space into new space. 351 // Correct leaves of new-space Nodes; they point to old-space. 352 _visited.Clear(); // Clear visit bits for xform call 353 C->set_cached_top_node(xform( C->top(), live_nodes)); 354 if (!C->failing()) { 355 Node* xroot = xform( C->root(), 1 ); 356 if (xroot == NULL) { 357 Matcher::soft_match_failure(); // recursive matching process failed 358 C->record_method_not_compilable("instruction match failed"); 359 } else { 360 // During matching shared constants were attached to C->root() 361 // because xroot wasn't available yet, so transfer the uses to 362 // the xroot. 363 for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) { 364 Node* n = C->root()->fast_out(j); 365 if (C->node_arena()->contains(n)) { 366 assert(n->in(0) == C->root(), "should be control user"); 367 n->set_req(0, xroot); 368 --j; 369 --jmax; 370 } 371 } 372 373 // Generate new mach node for ConP #NULL 374 assert(new_ideal_null != NULL, "sanity"); 375 _mach_null = match_tree(new_ideal_null); 376 // Don't set control, it will confuse GCM since there are no uses. 377 // The control will be set when this node is used first time 378 // in find_base_for_derived(). 379 assert(_mach_null != NULL, ""); 380 381 C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL); 382 383 #ifdef ASSERT 384 verify_new_nodes_only(xroot); 385 #endif 386 } 387 } 388 if (C->top() == NULL || C->root() == NULL) { 389 C->record_method_not_compilable("graph lost"); // %%% cannot happen? 390 } 391 if (C->failing()) { 392 // delete old; 393 old->destruct_contents(); 394 return; 395 } 396 assert( C->top(), "" ); 397 assert( C->root(), "" ); 398 validate_null_checks(); 399 400 // Now smoke old-space 401 NOT_DEBUG( old->destruct_contents() ); 402 403 // ------------------------ 404 // Set up save-on-entry registers 405 Fixup_Save_On_Entry( ); 406 } 407 408 409 //------------------------------Fixup_Save_On_Entry---------------------------- 410 // The stated purpose of this routine is to take care of save-on-entry 411 // registers. However, the overall goal of the Match phase is to convert into 412 // machine-specific instructions which have RegMasks to guide allocation. 413 // So what this procedure really does is put a valid RegMask on each input 414 // to the machine-specific variations of all Return, TailCall and Halt 415 // instructions. It also adds edgs to define the save-on-entry values (and of 416 // course gives them a mask). 417 418 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) { 419 RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size ); 420 // Do all the pre-defined register masks 421 rms[TypeFunc::Control ] = RegMask::Empty; 422 rms[TypeFunc::I_O ] = RegMask::Empty; 423 rms[TypeFunc::Memory ] = RegMask::Empty; 424 rms[TypeFunc::ReturnAdr] = ret_adr; 425 rms[TypeFunc::FramePtr ] = fp; 426 return rms; 427 } 428 429 //---------------------------init_first_stack_mask----------------------------- 430 // Create the initial stack mask used by values spilling to the stack. 431 // Disallow any debug info in outgoing argument areas by setting the 432 // initial mask accordingly. 433 void Matcher::init_first_stack_mask() { 434 435 // Allocate storage for spill masks as masks for the appropriate load type. 436 RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * (3*6+4)); 437 438 idealreg2spillmask [Op_RegN] = &rms[0]; 439 idealreg2spillmask [Op_RegI] = &rms[1]; 440 idealreg2spillmask [Op_RegL] = &rms[2]; 441 idealreg2spillmask [Op_RegF] = &rms[3]; 442 idealreg2spillmask [Op_RegD] = &rms[4]; 443 idealreg2spillmask [Op_RegP] = &rms[5]; 444 445 idealreg2debugmask [Op_RegN] = &rms[6]; 446 idealreg2debugmask [Op_RegI] = &rms[7]; 447 idealreg2debugmask [Op_RegL] = &rms[8]; 448 idealreg2debugmask [Op_RegF] = &rms[9]; 449 idealreg2debugmask [Op_RegD] = &rms[10]; 450 idealreg2debugmask [Op_RegP] = &rms[11]; 451 452 idealreg2mhdebugmask[Op_RegN] = &rms[12]; 453 idealreg2mhdebugmask[Op_RegI] = &rms[13]; 454 idealreg2mhdebugmask[Op_RegL] = &rms[14]; 455 idealreg2mhdebugmask[Op_RegF] = &rms[15]; 456 idealreg2mhdebugmask[Op_RegD] = &rms[16]; 457 idealreg2mhdebugmask[Op_RegP] = &rms[17]; 458 459 idealreg2spillmask [Op_VecS] = &rms[18]; 460 idealreg2spillmask [Op_VecD] = &rms[19]; 461 idealreg2spillmask [Op_VecX] = &rms[20]; 462 idealreg2spillmask [Op_VecY] = &rms[21]; 463 464 OptoReg::Name i; 465 466 // At first, start with the empty mask 467 C->FIRST_STACK_mask().Clear(); 468 469 // Add in the incoming argument area 470 OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots()); 471 for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) { 472 C->FIRST_STACK_mask().Insert(i); 473 } 474 // Add in all bits past the outgoing argument area 475 guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)), 476 "must be able to represent all call arguments in reg mask"); 477 OptoReg::Name init = _out_arg_limit; 478 for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) { 479 C->FIRST_STACK_mask().Insert(i); 480 } 481 // Finally, set the "infinite stack" bit. 482 C->FIRST_STACK_mask().set_AllStack(); 483 484 // Make spill masks. Registers for their class, plus FIRST_STACK_mask. 485 RegMask aligned_stack_mask = C->FIRST_STACK_mask(); 486 // Keep spill masks aligned. 487 aligned_stack_mask.clear_to_pairs(); 488 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack"); 489 490 *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP]; 491 #ifdef _LP64 492 *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN]; 493 idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask()); 494 idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask); 495 #else 496 idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask()); 497 #endif 498 *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI]; 499 idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask()); 500 *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL]; 501 idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask); 502 *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF]; 503 idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask()); 504 *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD]; 505 idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask); 506 507 if (Matcher::vector_size_supported(T_BYTE,4)) { 508 *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS]; 509 idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask()); 510 } 511 if (Matcher::vector_size_supported(T_FLOAT,2)) { 512 // For VecD we need dual alignment and 8 bytes (2 slots) for spills. 513 // RA guarantees such alignment since it is needed for Double and Long values. 514 *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD]; 515 idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask); 516 } 517 if (Matcher::vector_size_supported(T_FLOAT,4)) { 518 // For VecX we need quadro alignment and 16 bytes (4 slots) for spills. 519 // 520 // RA can use input arguments stack slots for spills but until RA 521 // we don't know frame size and offset of input arg stack slots. 522 // 523 // Exclude last input arg stack slots to avoid spilling vectors there 524 // otherwise vector spills could stomp over stack slots in caller frame. 525 OptoReg::Name in = OptoReg::add(_in_arg_limit, -1); 526 for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecX); k++) { 527 aligned_stack_mask.Remove(in); 528 in = OptoReg::add(in, -1); 529 } 530 aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX); 531 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack"); 532 *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX]; 533 idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask); 534 } 535 if (Matcher::vector_size_supported(T_FLOAT,8)) { 536 // For VecY we need octo alignment and 32 bytes (8 slots) for spills. 537 OptoReg::Name in = OptoReg::add(_in_arg_limit, -1); 538 for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecY); k++) { 539 aligned_stack_mask.Remove(in); 540 in = OptoReg::add(in, -1); 541 } 542 aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY); 543 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack"); 544 *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY]; 545 idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask); 546 } 547 if (UseFPUForSpilling) { 548 // This mask logic assumes that the spill operations are 549 // symmetric and that the registers involved are the same size. 550 // On sparc for instance we may have to use 64 bit moves will 551 // kill 2 registers when used with F0-F31. 552 idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]); 553 idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]); 554 #ifdef _LP64 555 idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]); 556 idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]); 557 idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]); 558 idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]); 559 #else 560 idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]); 561 #ifdef ARM 562 // ARM has support for moving 64bit values between a pair of 563 // integer registers and a double register 564 idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]); 565 idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]); 566 #endif 567 #endif 568 } 569 570 // Make up debug masks. Any spill slot plus callee-save registers. 571 // Caller-save registers are assumed to be trashable by the various 572 // inline-cache fixup routines. 573 *idealreg2debugmask [Op_RegN]= *idealreg2spillmask[Op_RegN]; 574 *idealreg2debugmask [Op_RegI]= *idealreg2spillmask[Op_RegI]; 575 *idealreg2debugmask [Op_RegL]= *idealreg2spillmask[Op_RegL]; 576 *idealreg2debugmask [Op_RegF]= *idealreg2spillmask[Op_RegF]; 577 *idealreg2debugmask [Op_RegD]= *idealreg2spillmask[Op_RegD]; 578 *idealreg2debugmask [Op_RegP]= *idealreg2spillmask[Op_RegP]; 579 580 *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN]; 581 *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI]; 582 *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL]; 583 *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF]; 584 *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD]; 585 *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP]; 586 587 // Prevent stub compilations from attempting to reference 588 // callee-saved registers from debug info 589 bool exclude_soe = !Compile::current()->is_method_compilation(); 590 591 for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) { 592 // registers the caller has to save do not work 593 if( _register_save_policy[i] == 'C' || 594 _register_save_policy[i] == 'A' || 595 (_register_save_policy[i] == 'E' && exclude_soe) ) { 596 idealreg2debugmask [Op_RegN]->Remove(i); 597 idealreg2debugmask [Op_RegI]->Remove(i); // Exclude save-on-call 598 idealreg2debugmask [Op_RegL]->Remove(i); // registers from debug 599 idealreg2debugmask [Op_RegF]->Remove(i); // masks 600 idealreg2debugmask [Op_RegD]->Remove(i); 601 idealreg2debugmask [Op_RegP]->Remove(i); 602 603 idealreg2mhdebugmask[Op_RegN]->Remove(i); 604 idealreg2mhdebugmask[Op_RegI]->Remove(i); 605 idealreg2mhdebugmask[Op_RegL]->Remove(i); 606 idealreg2mhdebugmask[Op_RegF]->Remove(i); 607 idealreg2mhdebugmask[Op_RegD]->Remove(i); 608 idealreg2mhdebugmask[Op_RegP]->Remove(i); 609 } 610 } 611 612 // Subtract the register we use to save the SP for MethodHandle 613 // invokes to from the debug mask. 614 const RegMask save_mask = method_handle_invoke_SP_save_mask(); 615 idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask); 616 idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask); 617 idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask); 618 idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask); 619 idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask); 620 idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask); 621 } 622 623 //---------------------------is_save_on_entry---------------------------------- 624 bool Matcher::is_save_on_entry( int reg ) { 625 return 626 _register_save_policy[reg] == 'E' || 627 _register_save_policy[reg] == 'A' || // Save-on-entry register? 628 // Also save argument registers in the trampolining stubs 629 (C->save_argument_registers() && is_spillable_arg(reg)); 630 } 631 632 //---------------------------Fixup_Save_On_Entry------------------------------- 633 void Matcher::Fixup_Save_On_Entry( ) { 634 init_first_stack_mask(); 635 636 Node *root = C->root(); // Short name for root 637 // Count number of save-on-entry registers. 638 uint soe_cnt = number_of_saved_registers(); 639 uint i; 640 641 // Find the procedure Start Node 642 StartNode *start = C->start(); 643 assert( start, "Expect a start node" ); 644 645 // Save argument registers in the trampolining stubs 646 if( C->save_argument_registers() ) 647 for( i = 0; i < _last_Mach_Reg; i++ ) 648 if( is_spillable_arg(i) ) 649 soe_cnt++; 650 651 // Input RegMask array shared by all Returns. 652 // The type for doubles and longs has a count of 2, but 653 // there is only 1 returned value 654 uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1); 655 RegMask *ret_rms = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); 656 // Returns have 0 or 1 returned values depending on call signature. 657 // Return register is specified by return_value in the AD file. 658 if (ret_edge_cnt > TypeFunc::Parms) 659 ret_rms[TypeFunc::Parms+0] = _return_value_mask; 660 661 // Input RegMask array shared by all Rethrows. 662 uint reth_edge_cnt = TypeFunc::Parms+1; 663 RegMask *reth_rms = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); 664 // Rethrow takes exception oop only, but in the argument 0 slot. 665 reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)]; 666 #ifdef _LP64 667 // Need two slots for ptrs in 64-bit land 668 reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1)); 669 #endif 670 671 // Input RegMask array shared by all TailCalls 672 uint tail_call_edge_cnt = TypeFunc::Parms+2; 673 RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); 674 675 // Input RegMask array shared by all TailJumps 676 uint tail_jump_edge_cnt = TypeFunc::Parms+2; 677 RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); 678 679 // TailCalls have 2 returned values (target & moop), whose masks come 680 // from the usual MachNode/MachOper mechanism. Find a sample 681 // TailCall to extract these masks and put the correct masks into 682 // the tail_call_rms array. 683 for( i=1; i < root->req(); i++ ) { 684 MachReturnNode *m = root->in(i)->as_MachReturn(); 685 if( m->ideal_Opcode() == Op_TailCall ) { 686 tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0); 687 tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1); 688 break; 689 } 690 } 691 692 // TailJumps have 2 returned values (target & ex_oop), whose masks come 693 // from the usual MachNode/MachOper mechanism. Find a sample 694 // TailJump to extract these masks and put the correct masks into 695 // the tail_jump_rms array. 696 for( i=1; i < root->req(); i++ ) { 697 MachReturnNode *m = root->in(i)->as_MachReturn(); 698 if( m->ideal_Opcode() == Op_TailJump ) { 699 tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0); 700 tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1); 701 break; 702 } 703 } 704 705 // Input RegMask array shared by all Halts 706 uint halt_edge_cnt = TypeFunc::Parms; 707 RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask ); 708 709 // Capture the return input masks into each exit flavor 710 for( i=1; i < root->req(); i++ ) { 711 MachReturnNode *exit = root->in(i)->as_MachReturn(); 712 switch( exit->ideal_Opcode() ) { 713 case Op_Return : exit->_in_rms = ret_rms; break; 714 case Op_Rethrow : exit->_in_rms = reth_rms; break; 715 case Op_TailCall : exit->_in_rms = tail_call_rms; break; 716 case Op_TailJump : exit->_in_rms = tail_jump_rms; break; 717 case Op_Halt : exit->_in_rms = halt_rms; break; 718 default : ShouldNotReachHere(); 719 } 720 } 721 722 // Next unused projection number from Start. 723 int proj_cnt = C->tf()->domain()->cnt(); 724 725 // Do all the save-on-entry registers. Make projections from Start for 726 // them, and give them a use at the exit points. To the allocator, they 727 // look like incoming register arguments. 728 for( i = 0; i < _last_Mach_Reg; i++ ) { 729 if( is_save_on_entry(i) ) { 730 731 // Add the save-on-entry to the mask array 732 ret_rms [ ret_edge_cnt] = mreg2regmask[i]; 733 reth_rms [ reth_edge_cnt] = mreg2regmask[i]; 734 tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i]; 735 tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i]; 736 // Halts need the SOE registers, but only in the stack as debug info. 737 // A just-prior uncommon-trap or deoptimization will use the SOE regs. 738 halt_rms [ halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]]; 739 740 Node *mproj; 741 742 // Is this a RegF low half of a RegD? Double up 2 adjacent RegF's 743 // into a single RegD. 744 if( (i&1) == 0 && 745 _register_save_type[i ] == Op_RegF && 746 _register_save_type[i+1] == Op_RegF && 747 is_save_on_entry(i+1) ) { 748 // Add other bit for double 749 ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1)); 750 reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1)); 751 tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1)); 752 tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1)); 753 halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1)); 754 mproj = new (C) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD ); 755 proj_cnt += 2; // Skip 2 for doubles 756 } 757 else if( (i&1) == 1 && // Else check for high half of double 758 _register_save_type[i-1] == Op_RegF && 759 _register_save_type[i ] == Op_RegF && 760 is_save_on_entry(i-1) ) { 761 ret_rms [ ret_edge_cnt] = RegMask::Empty; 762 reth_rms [ reth_edge_cnt] = RegMask::Empty; 763 tail_call_rms[tail_call_edge_cnt] = RegMask::Empty; 764 tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty; 765 halt_rms [ halt_edge_cnt] = RegMask::Empty; 766 mproj = C->top(); 767 } 768 // Is this a RegI low half of a RegL? Double up 2 adjacent RegI's 769 // into a single RegL. 770 else if( (i&1) == 0 && 771 _register_save_type[i ] == Op_RegI && 772 _register_save_type[i+1] == Op_RegI && 773 is_save_on_entry(i+1) ) { 774 // Add other bit for long 775 ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1)); 776 reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1)); 777 tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1)); 778 tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1)); 779 halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1)); 780 mproj = new (C) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL ); 781 proj_cnt += 2; // Skip 2 for longs 782 } 783 else if( (i&1) == 1 && // Else check for high half of long 784 _register_save_type[i-1] == Op_RegI && 785 _register_save_type[i ] == Op_RegI && 786 is_save_on_entry(i-1) ) { 787 ret_rms [ ret_edge_cnt] = RegMask::Empty; 788 reth_rms [ reth_edge_cnt] = RegMask::Empty; 789 tail_call_rms[tail_call_edge_cnt] = RegMask::Empty; 790 tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty; 791 halt_rms [ halt_edge_cnt] = RegMask::Empty; 792 mproj = C->top(); 793 } else { 794 // Make a projection for it off the Start 795 mproj = new (C) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] ); 796 } 797 798 ret_edge_cnt ++; 799 reth_edge_cnt ++; 800 tail_call_edge_cnt ++; 801 tail_jump_edge_cnt ++; 802 halt_edge_cnt ++; 803 804 // Add a use of the SOE register to all exit paths 805 for( uint j=1; j < root->req(); j++ ) 806 root->in(j)->add_req(mproj); 807 } // End of if a save-on-entry register 808 } // End of for all machine registers 809 } 810 811 //------------------------------init_spill_mask-------------------------------- 812 void Matcher::init_spill_mask( Node *ret ) { 813 if( idealreg2regmask[Op_RegI] ) return; // One time only init 814 815 OptoReg::c_frame_pointer = c_frame_pointer(); 816 c_frame_ptr_mask = c_frame_pointer(); 817 #ifdef _LP64 818 // pointers are twice as big 819 c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1)); 820 #endif 821 822 // Start at OptoReg::stack0() 823 STACK_ONLY_mask.Clear(); 824 OptoReg::Name init = OptoReg::stack2reg(0); 825 // STACK_ONLY_mask is all stack bits 826 OptoReg::Name i; 827 for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) 828 STACK_ONLY_mask.Insert(i); 829 // Also set the "infinite stack" bit. 830 STACK_ONLY_mask.set_AllStack(); 831 832 // Copy the register names over into the shared world 833 for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) { 834 // SharedInfo::regName[i] = regName[i]; 835 // Handy RegMasks per machine register 836 mreg2regmask[i].Insert(i); 837 } 838 839 // Grab the Frame Pointer 840 Node *fp = ret->in(TypeFunc::FramePtr); 841 Node *mem = ret->in(TypeFunc::Memory); 842 const TypePtr* atp = TypePtr::BOTTOM; 843 // Share frame pointer while making spill ops 844 set_shared(fp); 845 846 // Compute generic short-offset Loads 847 #ifdef _LP64 848 MachNode *spillCP = match_tree(new (C) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered)); 849 #endif 850 MachNode *spillI = match_tree(new (C) LoadINode(NULL,mem,fp,atp,TypeInt::INT,MemNode::unordered)); 851 MachNode *spillL = match_tree(new (C) LoadLNode(NULL,mem,fp,atp,TypeLong::LONG,MemNode::unordered, LoadNode::DependsOnlyOnTest,false)); 852 MachNode *spillF = match_tree(new (C) LoadFNode(NULL,mem,fp,atp,Type::FLOAT,MemNode::unordered)); 853 MachNode *spillD = match_tree(new (C) LoadDNode(NULL,mem,fp,atp,Type::DOUBLE,MemNode::unordered)); 854 MachNode *spillP = match_tree(new (C) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered)); 855 assert(spillI != NULL && spillL != NULL && spillF != NULL && 856 spillD != NULL && spillP != NULL, ""); 857 // Get the ADLC notion of the right regmask, for each basic type. 858 #ifdef _LP64 859 idealreg2regmask[Op_RegN] = &spillCP->out_RegMask(); 860 #endif 861 idealreg2regmask[Op_RegI] = &spillI->out_RegMask(); 862 idealreg2regmask[Op_RegL] = &spillL->out_RegMask(); 863 idealreg2regmask[Op_RegF] = &spillF->out_RegMask(); 864 idealreg2regmask[Op_RegD] = &spillD->out_RegMask(); 865 idealreg2regmask[Op_RegP] = &spillP->out_RegMask(); 866 867 // Vector regmasks. 868 if (Matcher::vector_size_supported(T_BYTE,4)) { 869 TypeVect::VECTS = TypeVect::make(T_BYTE, 4); 870 MachNode *spillVectS = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTS)); 871 idealreg2regmask[Op_VecS] = &spillVectS->out_RegMask(); 872 } 873 if (Matcher::vector_size_supported(T_FLOAT,2)) { 874 MachNode *spillVectD = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTD)); 875 idealreg2regmask[Op_VecD] = &spillVectD->out_RegMask(); 876 } 877 if (Matcher::vector_size_supported(T_FLOAT,4)) { 878 MachNode *spillVectX = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTX)); 879 idealreg2regmask[Op_VecX] = &spillVectX->out_RegMask(); 880 } 881 if (Matcher::vector_size_supported(T_FLOAT,8)) { 882 MachNode *spillVectY = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTY)); 883 idealreg2regmask[Op_VecY] = &spillVectY->out_RegMask(); 884 } 885 } 886 887 #ifdef ASSERT 888 static void match_alias_type(Compile* C, Node* n, Node* m) { 889 if (!VerifyAliases) return; // do not go looking for trouble by default 890 const TypePtr* nat = n->adr_type(); 891 const TypePtr* mat = m->adr_type(); 892 int nidx = C->get_alias_index(nat); 893 int midx = C->get_alias_index(mat); 894 // Detune the assert for cases like (AndI 0xFF (LoadB p)). 895 if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) { 896 for (uint i = 1; i < n->req(); i++) { 897 Node* n1 = n->in(i); 898 const TypePtr* n1at = n1->adr_type(); 899 if (n1at != NULL) { 900 nat = n1at; 901 nidx = C->get_alias_index(n1at); 902 } 903 } 904 } 905 // %%% Kludgery. Instead, fix ideal adr_type methods for all these cases: 906 if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) { 907 switch (n->Opcode()) { 908 case Op_PrefetchRead: 909 case Op_PrefetchWrite: 910 case Op_PrefetchAllocation: 911 nidx = Compile::AliasIdxRaw; 912 nat = TypeRawPtr::BOTTOM; 913 break; 914 } 915 } 916 if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) { 917 switch (n->Opcode()) { 918 case Op_ClearArray: 919 midx = Compile::AliasIdxRaw; 920 mat = TypeRawPtr::BOTTOM; 921 break; 922 } 923 } 924 if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) { 925 switch (n->Opcode()) { 926 case Op_Return: 927 case Op_Rethrow: 928 case Op_Halt: 929 case Op_TailCall: 930 case Op_TailJump: 931 nidx = Compile::AliasIdxBot; 932 nat = TypePtr::BOTTOM; 933 break; 934 } 935 } 936 if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) { 937 switch (n->Opcode()) { 938 case Op_StrComp: 939 case Op_StrEquals: 940 case Op_StrIndexOf: 941 case Op_AryEq: 942 case Op_MemBarVolatile: 943 case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type? 944 case Op_EncodeISOArray: 945 nidx = Compile::AliasIdxTop; 946 nat = NULL; 947 break; 948 } 949 } 950 if (nidx != midx) { 951 if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) { 952 tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx); 953 n->dump(); 954 m->dump(); 955 } 956 assert(C->subsume_loads() && C->must_alias(nat, midx), 957 "must not lose alias info when matching"); 958 } 959 } 960 #endif 961 962 963 //------------------------------MStack----------------------------------------- 964 // State and MStack class used in xform() and find_shared() iterative methods. 965 enum Node_State { Pre_Visit, // node has to be pre-visited 966 Visit, // visit node 967 Post_Visit, // post-visit node 968 Alt_Post_Visit // alternative post-visit path 969 }; 970 971 class MStack: public Node_Stack { 972 public: 973 MStack(int size) : Node_Stack(size) { } 974 975 void push(Node *n, Node_State ns) { 976 Node_Stack::push(n, (uint)ns); 977 } 978 void push(Node *n, Node_State ns, Node *parent, int indx) { 979 ++_inode_top; 980 if ((_inode_top + 1) >= _inode_max) grow(); 981 _inode_top->node = parent; 982 _inode_top->indx = (uint)indx; 983 ++_inode_top; 984 _inode_top->node = n; 985 _inode_top->indx = (uint)ns; 986 } 987 Node *parent() { 988 pop(); 989 return node(); 990 } 991 Node_State state() const { 992 return (Node_State)index(); 993 } 994 void set_state(Node_State ns) { 995 set_index((uint)ns); 996 } 997 }; 998 999 1000 //------------------------------xform------------------------------------------ 1001 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine 1002 // Node in new-space. Given a new-space Node, recursively walk his children. 1003 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; } 1004 Node *Matcher::xform( Node *n, int max_stack ) { 1005 // Use one stack to keep both: child's node/state and parent's node/index 1006 MStack mstack(max_stack * 2 * 2); // usually: C->live_nodes() * 2 * 2 1007 mstack.push(n, Visit, NULL, -1); // set NULL as parent to indicate root 1008 1009 while (mstack.is_nonempty()) { 1010 C->check_node_count(NodeLimitFudgeFactor, "too many nodes matching instructions"); 1011 if (C->failing()) return NULL; 1012 n = mstack.node(); // Leave node on stack 1013 Node_State nstate = mstack.state(); 1014 if (nstate == Visit) { 1015 mstack.set_state(Post_Visit); 1016 Node *oldn = n; 1017 // Old-space or new-space check 1018 if (!C->node_arena()->contains(n)) { 1019 // Old space! 1020 Node* m; 1021 if (has_new_node(n)) { // Not yet Label/Reduced 1022 m = new_node(n); 1023 } else { 1024 if (!is_dontcare(n)) { // Matcher can match this guy 1025 // Calls match special. They match alone with no children. 1026 // Their children, the incoming arguments, match normally. 1027 m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n); 1028 if (C->failing()) return NULL; 1029 if (m == NULL) { Matcher::soft_match_failure(); return NULL; } 1030 if (n->is_MemBar() && UseShenandoahGC) { 1031 m->as_MachMemBar()->set_adr_type(n->adr_type()); 1032 } 1033 } else { // Nothing the matcher cares about 1034 if (n->is_Proj() && n->in(0) != NULL && n->in(0)->is_Multi()) { // Projections? 1035 // Convert to machine-dependent projection 1036 m = n->in(0)->as_Multi()->match( n->as_Proj(), this ); 1037 #ifdef ASSERT 1038 _new2old_map.map(m->_idx, n); 1039 #endif 1040 if (m->in(0) != NULL) // m might be top 1041 collect_null_checks(m, n); 1042 } else { // Else just a regular 'ol guy 1043 m = n->clone(); // So just clone into new-space 1044 #ifdef ASSERT 1045 _new2old_map.map(m->_idx, n); 1046 #endif 1047 // Def-Use edges will be added incrementally as Uses 1048 // of this node are matched. 1049 assert(m->outcnt() == 0, "no Uses of this clone yet"); 1050 } 1051 } 1052 1053 set_new_node(n, m); // Map old to new 1054 if (_old_node_note_array != NULL) { 1055 Node_Notes* nn = C->locate_node_notes(_old_node_note_array, 1056 n->_idx); 1057 C->set_node_notes_at(m->_idx, nn); 1058 } 1059 debug_only(match_alias_type(C, n, m)); 1060 } 1061 n = m; // n is now a new-space node 1062 mstack.set_node(n); 1063 } 1064 1065 // New space! 1066 if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty()) 1067 1068 int i; 1069 // Put precedence edges on stack first (match them last). 1070 for (i = oldn->req(); (uint)i < oldn->len(); i++) { 1071 Node *m = oldn->in(i); 1072 if (m == NULL) break; 1073 // set -1 to call add_prec() instead of set_req() during Step1 1074 mstack.push(m, Visit, n, -1); 1075 } 1076 1077 // Handle precedence edges for interior nodes 1078 for (i = n->len()-1; (uint)i >= n->req(); i--) { 1079 Node *m = n->in(i); 1080 if (m == NULL || C->node_arena()->contains(m)) continue; 1081 n->rm_prec(i); 1082 // set -1 to call add_prec() instead of set_req() during Step1 1083 mstack.push(m, Visit, n, -1); 1084 } 1085 1086 // For constant debug info, I'd rather have unmatched constants. 1087 int cnt = n->req(); 1088 JVMState* jvms = n->jvms(); 1089 int debug_cnt = jvms ? jvms->debug_start() : cnt; 1090 1091 // Now do only debug info. Clone constants rather than matching. 1092 // Constants are represented directly in the debug info without 1093 // the need for executable machine instructions. 1094 // Monitor boxes are also represented directly. 1095 for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do 1096 Node *m = n->in(i); // Get input 1097 int op = m->Opcode(); 1098 assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites"); 1099 if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass || 1100 op == Op_ConF || op == Op_ConD || op == Op_ConL 1101 // || op == Op_BoxLock // %%%% enable this and remove (+++) in chaitin.cpp 1102 ) { 1103 m = m->clone(); 1104 #ifdef ASSERT 1105 _new2old_map.map(m->_idx, n); 1106 #endif 1107 mstack.push(m, Post_Visit, n, i); // Don't need to visit 1108 mstack.push(m->in(0), Visit, m, 0); 1109 } else { 1110 mstack.push(m, Visit, n, i); 1111 } 1112 } 1113 1114 // And now walk his children, and convert his inputs to new-space. 1115 for( ; i >= 0; --i ) { // For all normal inputs do 1116 Node *m = n->in(i); // Get input 1117 if(m != NULL) 1118 mstack.push(m, Visit, n, i); 1119 } 1120 1121 } 1122 else if (nstate == Post_Visit) { 1123 // Set xformed input 1124 Node *p = mstack.parent(); 1125 if (p != NULL) { // root doesn't have parent 1126 int i = (int)mstack.index(); 1127 if (i >= 0) 1128 p->set_req(i, n); // required input 1129 else if (i == -1) 1130 p->add_prec(n); // precedence input 1131 else 1132 ShouldNotReachHere(); 1133 } 1134 mstack.pop(); // remove processed node from stack 1135 } 1136 else { 1137 ShouldNotReachHere(); 1138 } 1139 } // while (mstack.is_nonempty()) 1140 return n; // Return new-space Node 1141 } 1142 1143 //------------------------------warp_outgoing_stk_arg------------------------ 1144 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) { 1145 // Convert outgoing argument location to a pre-biased stack offset 1146 if (reg->is_stack()) { 1147 OptoReg::Name warped = reg->reg2stack(); 1148 // Adjust the stack slot offset to be the register number used 1149 // by the allocator. 1150 warped = OptoReg::add(begin_out_arg_area, warped); 1151 // Keep track of the largest numbered stack slot used for an arg. 1152 // Largest used slot per call-site indicates the amount of stack 1153 // that is killed by the call. 1154 if( warped >= out_arg_limit_per_call ) 1155 out_arg_limit_per_call = OptoReg::add(warped,1); 1156 if (!RegMask::can_represent_arg(warped)) { 1157 C->record_method_not_compilable_all_tiers("unsupported calling sequence"); 1158 return OptoReg::Bad; 1159 } 1160 return warped; 1161 } 1162 return OptoReg::as_OptoReg(reg); 1163 } 1164 1165 1166 //------------------------------match_sfpt------------------------------------- 1167 // Helper function to match call instructions. Calls match special. 1168 // They match alone with no children. Their children, the incoming 1169 // arguments, match normally. 1170 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) { 1171 MachSafePointNode *msfpt = NULL; 1172 MachCallNode *mcall = NULL; 1173 uint cnt; 1174 // Split out case for SafePoint vs Call 1175 CallNode *call; 1176 const TypeTuple *domain; 1177 ciMethod* method = NULL; 1178 bool is_method_handle_invoke = false; // for special kill effects 1179 if( sfpt->is_Call() ) { 1180 call = sfpt->as_Call(); 1181 domain = call->tf()->domain(); 1182 cnt = domain->cnt(); 1183 1184 // Match just the call, nothing else 1185 MachNode *m = match_tree(call); 1186 if (C->failing()) return NULL; 1187 if( m == NULL ) { Matcher::soft_match_failure(); return NULL; } 1188 1189 // Copy data from the Ideal SafePoint to the machine version 1190 mcall = m->as_MachCall(); 1191 1192 mcall->set_tf( call->tf()); 1193 mcall->set_entry_point(call->entry_point()); 1194 mcall->set_cnt( call->cnt()); 1195 1196 if( mcall->is_MachCallJava() ) { 1197 MachCallJavaNode *mcall_java = mcall->as_MachCallJava(); 1198 const CallJavaNode *call_java = call->as_CallJava(); 1199 method = call_java->method(); 1200 mcall_java->_method = method; 1201 mcall_java->_bci = call_java->_bci; 1202 mcall_java->_optimized_virtual = call_java->is_optimized_virtual(); 1203 is_method_handle_invoke = call_java->is_method_handle_invoke(); 1204 mcall_java->_method_handle_invoke = is_method_handle_invoke; 1205 if (is_method_handle_invoke) { 1206 C->set_has_method_handle_invokes(true); 1207 } 1208 if( mcall_java->is_MachCallStaticJava() ) 1209 mcall_java->as_MachCallStaticJava()->_name = 1210 call_java->as_CallStaticJava()->_name; 1211 if( mcall_java->is_MachCallDynamicJava() ) 1212 mcall_java->as_MachCallDynamicJava()->_vtable_index = 1213 call_java->as_CallDynamicJava()->_vtable_index; 1214 } 1215 else if( mcall->is_MachCallRuntime() ) { 1216 mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name; 1217 } 1218 msfpt = mcall; 1219 } 1220 // This is a non-call safepoint 1221 else { 1222 call = NULL; 1223 domain = NULL; 1224 MachNode *mn = match_tree(sfpt); 1225 if (C->failing()) return NULL; 1226 msfpt = mn->as_MachSafePoint(); 1227 cnt = TypeFunc::Parms; 1228 } 1229 1230 // Advertise the correct memory effects (for anti-dependence computation). 1231 msfpt->set_adr_type(sfpt->adr_type()); 1232 1233 // Allocate a private array of RegMasks. These RegMasks are not shared. 1234 msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt ); 1235 // Empty them all. 1236 memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt ); 1237 1238 // Do all the pre-defined non-Empty register masks 1239 msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask; 1240 msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask; 1241 1242 // Place first outgoing argument can possibly be put. 1243 OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots()); 1244 assert( is_even(begin_out_arg_area), "" ); 1245 // Compute max outgoing register number per call site. 1246 OptoReg::Name out_arg_limit_per_call = begin_out_arg_area; 1247 // Calls to C may hammer extra stack slots above and beyond any arguments. 1248 // These are usually backing store for register arguments for varargs. 1249 if( call != NULL && call->is_CallRuntime() ) 1250 out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed()); 1251 1252 1253 // Do the normal argument list (parameters) register masks 1254 int argcnt = cnt - TypeFunc::Parms; 1255 if( argcnt > 0 ) { // Skip it all if we have no args 1256 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt ); 1257 VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt ); 1258 int i; 1259 for( i = 0; i < argcnt; i++ ) { 1260 sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type(); 1261 } 1262 // V-call to pick proper calling convention 1263 call->calling_convention( sig_bt, parm_regs, argcnt ); 1264 1265 #ifdef ASSERT 1266 // Sanity check users' calling convention. Really handy during 1267 // the initial porting effort. Fairly expensive otherwise. 1268 { for (int i = 0; i<argcnt; i++) { 1269 if( !parm_regs[i].first()->is_valid() && 1270 !parm_regs[i].second()->is_valid() ) continue; 1271 VMReg reg1 = parm_regs[i].first(); 1272 VMReg reg2 = parm_regs[i].second(); 1273 for (int j = 0; j < i; j++) { 1274 if( !parm_regs[j].first()->is_valid() && 1275 !parm_regs[j].second()->is_valid() ) continue; 1276 VMReg reg3 = parm_regs[j].first(); 1277 VMReg reg4 = parm_regs[j].second(); 1278 if( !reg1->is_valid() ) { 1279 assert( !reg2->is_valid(), "valid halvsies" ); 1280 } else if( !reg3->is_valid() ) { 1281 assert( !reg4->is_valid(), "valid halvsies" ); 1282 } else { 1283 assert( reg1 != reg2, "calling conv. must produce distinct regs"); 1284 assert( reg1 != reg3, "calling conv. must produce distinct regs"); 1285 assert( reg1 != reg4, "calling conv. must produce distinct regs"); 1286 assert( reg2 != reg3, "calling conv. must produce distinct regs"); 1287 assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs"); 1288 assert( reg3 != reg4, "calling conv. must produce distinct regs"); 1289 } 1290 } 1291 } 1292 } 1293 #endif 1294 1295 // Visit each argument. Compute its outgoing register mask. 1296 // Return results now can have 2 bits returned. 1297 // Compute max over all outgoing arguments both per call-site 1298 // and over the entire method. 1299 for( i = 0; i < argcnt; i++ ) { 1300 // Address of incoming argument mask to fill in 1301 RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms]; 1302 if( !parm_regs[i].first()->is_valid() && 1303 !parm_regs[i].second()->is_valid() ) { 1304 continue; // Avoid Halves 1305 } 1306 // Grab first register, adjust stack slots and insert in mask. 1307 OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call ); 1308 if (OptoReg::is_valid(reg1)) 1309 rm->Insert( reg1 ); 1310 // Grab second register (if any), adjust stack slots and insert in mask. 1311 OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call ); 1312 if (OptoReg::is_valid(reg2)) 1313 rm->Insert( reg2 ); 1314 } // End of for all arguments 1315 1316 // Compute number of stack slots needed to restore stack in case of 1317 // Pascal-style argument popping. 1318 mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area; 1319 } 1320 1321 // Compute the max stack slot killed by any call. These will not be 1322 // available for debug info, and will be used to adjust FIRST_STACK_mask 1323 // after all call sites have been visited. 1324 if( _out_arg_limit < out_arg_limit_per_call) 1325 _out_arg_limit = out_arg_limit_per_call; 1326 1327 if (mcall) { 1328 // Kill the outgoing argument area, including any non-argument holes and 1329 // any legacy C-killed slots. Use Fat-Projections to do the killing. 1330 // Since the max-per-method covers the max-per-call-site and debug info 1331 // is excluded on the max-per-method basis, debug info cannot land in 1332 // this killed area. 1333 uint r_cnt = mcall->tf()->range()->cnt(); 1334 MachProjNode *proj = new (C) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj ); 1335 if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) { 1336 C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence"); 1337 } else { 1338 for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++) 1339 proj->_rout.Insert(OptoReg::Name(i)); 1340 } 1341 if (proj->_rout.is_NotEmpty()) { 1342 push_projection(proj); 1343 } 1344 } 1345 // Transfer the safepoint information from the call to the mcall 1346 // Move the JVMState list 1347 msfpt->set_jvms(sfpt->jvms()); 1348 for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) { 1349 jvms->set_map(sfpt); 1350 } 1351 1352 // Debug inputs begin just after the last incoming parameter 1353 assert((mcall == NULL) || (mcall->jvms() == NULL) || 1354 (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), ""); 1355 1356 // Move the OopMap 1357 msfpt->_oop_map = sfpt->_oop_map; 1358 1359 // Add additional edges. 1360 if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) { 1361 // For these calls we can not add MachConstantBase in expand(), as the 1362 // ins are not complete then. 1363 msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node()); 1364 if (msfpt->jvms() && 1365 msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) { 1366 // We added an edge before jvms, so we must adapt the position of the ins. 1367 msfpt->jvms()->adapt_position(+1); 1368 } 1369 } 1370 1371 // Registers killed by the call are set in the local scheduling pass 1372 // of Global Code Motion. 1373 return msfpt; 1374 } 1375 1376 //---------------------------match_tree---------------------------------------- 1377 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce. Used as part 1378 // of the whole-sale conversion from Ideal to Mach Nodes. Also used for 1379 // making GotoNodes while building the CFG and in init_spill_mask() to identify 1380 // a Load's result RegMask for memoization in idealreg2regmask[] 1381 MachNode *Matcher::match_tree( const Node *n ) { 1382 assert( n->Opcode() != Op_Phi, "cannot match" ); 1383 assert( !n->is_block_start(), "cannot match" ); 1384 // Set the mark for all locally allocated State objects. 1385 // When this call returns, the _states_arena arena will be reset 1386 // freeing all State objects. 1387 ResourceMark rm( &_states_arena ); 1388 1389 LabelRootDepth = 0; 1390 1391 // StoreNodes require their Memory input to match any LoadNodes 1392 Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ; 1393 #ifdef ASSERT 1394 Node* save_mem_node = _mem_node; 1395 _mem_node = n->is_Store() ? (Node*)n : NULL; 1396 #endif 1397 // State object for root node of match tree 1398 // Allocate it on _states_arena - stack allocation can cause stack overflow. 1399 State *s = new (&_states_arena) State; 1400 s->_kids[0] = NULL; 1401 s->_kids[1] = NULL; 1402 s->_leaf = (Node*)n; 1403 // Label the input tree, allocating labels from top-level arena 1404 Label_Root( n, s, n->in(0), mem ); 1405 if (C->failing()) return NULL; 1406 1407 // The minimum cost match for the whole tree is found at the root State 1408 uint mincost = max_juint; 1409 uint cost = max_juint; 1410 uint i; 1411 for( i = 0; i < NUM_OPERANDS; i++ ) { 1412 if( s->valid(i) && // valid entry and 1413 s->_cost[i] < cost && // low cost and 1414 s->_rule[i] >= NUM_OPERANDS ) // not an operand 1415 cost = s->_cost[mincost=i]; 1416 } 1417 if (mincost == max_juint) { 1418 #ifndef PRODUCT 1419 tty->print("No matching rule for:"); 1420 s->dump(); 1421 #endif 1422 Matcher::soft_match_failure(); 1423 return NULL; 1424 } 1425 // Reduce input tree based upon the state labels to machine Nodes 1426 MachNode *m = ReduceInst( s, s->_rule[mincost], mem ); 1427 #ifdef ASSERT 1428 _old2new_map.map(n->_idx, m); 1429 _new2old_map.map(m->_idx, (Node*)n); 1430 #endif 1431 1432 // Add any Matcher-ignored edges 1433 uint cnt = n->req(); 1434 uint start = 1; 1435 if( mem != (Node*)1 ) start = MemNode::Memory+1; 1436 if( n->is_AddP() ) { 1437 assert( mem == (Node*)1, "" ); 1438 start = AddPNode::Base+1; 1439 } 1440 for( i = start; i < cnt; i++ ) { 1441 if( !n->match_edge(i) ) { 1442 if( i < m->req() ) 1443 m->ins_req( i, n->in(i) ); 1444 else 1445 m->add_req( n->in(i) ); 1446 } 1447 } 1448 1449 debug_only( _mem_node = save_mem_node; ) 1450 return m; 1451 } 1452 1453 1454 //------------------------------match_into_reg--------------------------------- 1455 // Choose to either match this Node in a register or part of the current 1456 // match tree. Return true for requiring a register and false for matching 1457 // as part of the current match tree. 1458 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) { 1459 1460 const Type *t = m->bottom_type(); 1461 1462 if (t->singleton()) { 1463 // Never force constants into registers. Allow them to match as 1464 // constants or registers. Copies of the same value will share 1465 // the same register. See find_shared_node. 1466 return false; 1467 } else { // Not a constant 1468 // Stop recursion if they have different Controls. 1469 Node* m_control = m->in(0); 1470 // Control of load's memory can post-dominates load's control. 1471 // So use it since load can't float above its memory. 1472 Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL; 1473 if (control && m_control && control != m_control && control != mem_control) { 1474 1475 // Actually, we can live with the most conservative control we 1476 // find, if it post-dominates the others. This allows us to 1477 // pick up load/op/store trees where the load can float a little 1478 // above the store. 1479 Node *x = control; 1480 const uint max_scan = 6; // Arbitrary scan cutoff 1481 uint j; 1482 for (j=0; j<max_scan; j++) { 1483 if (x->is_Region()) // Bail out at merge points 1484 return true; 1485 x = x->in(0); 1486 if (x == m_control) // Does 'control' post-dominate 1487 break; // m->in(0)? If so, we can use it 1488 if (x == mem_control) // Does 'control' post-dominate 1489 break; // mem_control? If so, we can use it 1490 } 1491 if (j == max_scan) // No post-domination before scan end? 1492 return true; // Then break the match tree up 1493 } 1494 if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) || 1495 (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) { 1496 // These are commonly used in address expressions and can 1497 // efficiently fold into them on X64 in some cases. 1498 return false; 1499 } 1500 } 1501 1502 // Not forceable cloning. If shared, put it into a register. 1503 return shared; 1504 } 1505 1506 1507 //------------------------------Instruction Selection-------------------------- 1508 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match 1509 // ideal nodes to machine instructions. Trees are delimited by shared Nodes, 1510 // things the Matcher does not match (e.g., Memory), and things with different 1511 // Controls (hence forced into different blocks). We pass in the Control 1512 // selected for this entire State tree. 1513 1514 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the 1515 // Store and the Load must have identical Memories (as well as identical 1516 // pointers). Since the Matcher does not have anything for Memory (and 1517 // does not handle DAGs), I have to match the Memory input myself. If the 1518 // Tree root is a Store, I require all Loads to have the identical memory. 1519 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){ 1520 // Since Label_Root is a recursive function, its possible that we might run 1521 // out of stack space. See bugs 6272980 & 6227033 for more info. 1522 LabelRootDepth++; 1523 if (LabelRootDepth > MaxLabelRootDepth) { 1524 C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth"); 1525 return NULL; 1526 } 1527 uint care = 0; // Edges matcher cares about 1528 uint cnt = n->req(); 1529 uint i = 0; 1530 1531 // Examine children for memory state 1532 // Can only subsume a child into your match-tree if that child's memory state 1533 // is not modified along the path to another input. 1534 // It is unsafe even if the other inputs are separate roots. 1535 Node *input_mem = NULL; 1536 for( i = 1; i < cnt; i++ ) { 1537 if( !n->match_edge(i) ) continue; 1538 Node *m = n->in(i); // Get ith input 1539 assert( m, "expect non-null children" ); 1540 if( m->is_Load() ) { 1541 if( input_mem == NULL ) { 1542 input_mem = m->in(MemNode::Memory); 1543 } else if( input_mem != m->in(MemNode::Memory) ) { 1544 input_mem = NodeSentinel; 1545 } 1546 } 1547 } 1548 1549 for( i = 1; i < cnt; i++ ){// For my children 1550 if( !n->match_edge(i) ) continue; 1551 Node *m = n->in(i); // Get ith input 1552 // Allocate states out of a private arena 1553 State *s = new (&_states_arena) State; 1554 svec->_kids[care++] = s; 1555 assert( care <= 2, "binary only for now" ); 1556 1557 // Recursively label the State tree. 1558 s->_kids[0] = NULL; 1559 s->_kids[1] = NULL; 1560 s->_leaf = m; 1561 1562 // Check for leaves of the State Tree; things that cannot be a part of 1563 // the current tree. If it finds any, that value is matched as a 1564 // register operand. If not, then the normal matching is used. 1565 if( match_into_reg(n, m, control, i, is_shared(m)) || 1566 // 1567 // Stop recursion if this is LoadNode and the root of this tree is a 1568 // StoreNode and the load & store have different memories. 1569 ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) || 1570 // Can NOT include the match of a subtree when its memory state 1571 // is used by any of the other subtrees 1572 (input_mem == NodeSentinel) ) { 1573 #ifndef PRODUCT 1574 // Print when we exclude matching due to different memory states at input-loads 1575 if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel) 1576 && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) { 1577 tty->print_cr("invalid input_mem"); 1578 } 1579 #endif 1580 // Switch to a register-only opcode; this value must be in a register 1581 // and cannot be subsumed as part of a larger instruction. 1582 s->DFA( m->ideal_reg(), m ); 1583 1584 } else { 1585 // If match tree has no control and we do, adopt it for entire tree 1586 if( control == NULL && m->in(0) != NULL && m->req() > 1 ) 1587 control = m->in(0); // Pick up control 1588 // Else match as a normal part of the match tree. 1589 control = Label_Root(m,s,control,mem); 1590 if (C->failing()) return NULL; 1591 } 1592 } 1593 1594 1595 // Call DFA to match this node, and return 1596 svec->DFA( n->Opcode(), n ); 1597 1598 #ifdef ASSERT 1599 uint x; 1600 for( x = 0; x < _LAST_MACH_OPER; x++ ) 1601 if( svec->valid(x) ) 1602 break; 1603 1604 if (x >= _LAST_MACH_OPER) { 1605 n->dump(); 1606 svec->dump(); 1607 assert( false, "bad AD file" ); 1608 } 1609 #endif 1610 return control; 1611 } 1612 1613 1614 // Con nodes reduced using the same rule can share their MachNode 1615 // which reduces the number of copies of a constant in the final 1616 // program. The register allocator is free to split uses later to 1617 // split live ranges. 1618 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) { 1619 if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return NULL; 1620 1621 // See if this Con has already been reduced using this rule. 1622 if (_shared_nodes.Size() <= leaf->_idx) return NULL; 1623 MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx); 1624 if (last != NULL && rule == last->rule()) { 1625 // Don't expect control change for DecodeN 1626 if (leaf->is_DecodeNarrowPtr()) 1627 return last; 1628 // Get the new space root. 1629 Node* xroot = new_node(C->root()); 1630 if (xroot == NULL) { 1631 // This shouldn't happen give the order of matching. 1632 return NULL; 1633 } 1634 1635 // Shared constants need to have their control be root so they 1636 // can be scheduled properly. 1637 Node* control = last->in(0); 1638 if (control != xroot) { 1639 if (control == NULL || control == C->root()) { 1640 last->set_req(0, xroot); 1641 } else { 1642 assert(false, "unexpected control"); 1643 return NULL; 1644 } 1645 } 1646 return last; 1647 } 1648 return NULL; 1649 } 1650 1651 1652 //------------------------------ReduceInst------------------------------------- 1653 // Reduce a State tree (with given Control) into a tree of MachNodes. 1654 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into 1655 // complicated machine Nodes. Each MachNode covers some tree of Ideal Nodes. 1656 // Each MachNode has a number of complicated MachOper operands; each 1657 // MachOper also covers a further tree of Ideal Nodes. 1658 1659 // The root of the Ideal match tree is always an instruction, so we enter 1660 // the recursion here. After building the MachNode, we need to recurse 1661 // the tree checking for these cases: 1662 // (1) Child is an instruction - 1663 // Build the instruction (recursively), add it as an edge. 1664 // Build a simple operand (register) to hold the result of the instruction. 1665 // (2) Child is an interior part of an instruction - 1666 // Skip over it (do nothing) 1667 // (3) Child is the start of a operand - 1668 // Build the operand, place it inside the instruction 1669 // Call ReduceOper. 1670 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) { 1671 assert( rule >= NUM_OPERANDS, "called with operand rule" ); 1672 1673 MachNode* shared_node = find_shared_node(s->_leaf, rule); 1674 if (shared_node != NULL) { 1675 return shared_node; 1676 } 1677 1678 // Build the object to represent this state & prepare for recursive calls 1679 MachNode *mach = s->MachNodeGenerator( rule, C ); 1680 guarantee(mach != NULL, "Missing MachNode"); 1681 mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C ); 1682 assert( mach->_opnds[0] != NULL, "Missing result operand" ); 1683 Node *leaf = s->_leaf; 1684 // Check for instruction or instruction chain rule 1685 if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) { 1686 assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf), 1687 "duplicating node that's already been matched"); 1688 // Instruction 1689 mach->add_req( leaf->in(0) ); // Set initial control 1690 // Reduce interior of complex instruction 1691 ReduceInst_Interior( s, rule, mem, mach, 1 ); 1692 } else { 1693 // Instruction chain rules are data-dependent on their inputs 1694 mach->add_req(0); // Set initial control to none 1695 ReduceInst_Chain_Rule( s, rule, mem, mach ); 1696 } 1697 1698 // If a Memory was used, insert a Memory edge 1699 if( mem != (Node*)1 ) { 1700 mach->ins_req(MemNode::Memory,mem); 1701 #ifdef ASSERT 1702 // Verify adr type after matching memory operation 1703 const MachOper* oper = mach->memory_operand(); 1704 if (oper != NULL && oper != (MachOper*)-1) { 1705 // It has a unique memory operand. Find corresponding ideal mem node. 1706 Node* m = NULL; 1707 if (leaf->is_Mem()) { 1708 m = leaf; 1709 } else { 1710 m = _mem_node; 1711 assert(m != NULL && m->is_Mem(), "expecting memory node"); 1712 } 1713 const Type* mach_at = mach->adr_type(); 1714 // DecodeN node consumed by an address may have different type 1715 // then its input. Don't compare types for such case. 1716 if (m->adr_type() != mach_at && 1717 (m->in(MemNode::Address)->is_DecodeNarrowPtr() || 1718 m->in(MemNode::Address)->is_AddP() && 1719 m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr() || 1720 m->in(MemNode::Address)->is_AddP() && 1721 m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() && 1722 m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr())) { 1723 mach_at = m->adr_type(); 1724 } 1725 if (m->adr_type() != mach_at) { 1726 m->dump(); 1727 tty->print_cr("mach:"); 1728 mach->dump(1); 1729 } 1730 assert(m->adr_type() == mach_at, "matcher should not change adr type"); 1731 } 1732 #endif 1733 } 1734 1735 // If the _leaf is an AddP, insert the base edge 1736 if (leaf->is_AddP()) { 1737 mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base)); 1738 } 1739 1740 uint number_of_projections_prior = number_of_projections(); 1741 1742 // Perform any 1-to-many expansions required 1743 MachNode *ex = mach->Expand(s, _projection_list, mem); 1744 if (ex != mach) { 1745 assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match"); 1746 if( ex->in(1)->is_Con() ) 1747 ex->in(1)->set_req(0, C->root()); 1748 // Remove old node from the graph 1749 for( uint i=0; i<mach->req(); i++ ) { 1750 mach->set_req(i,NULL); 1751 } 1752 #ifdef ASSERT 1753 _new2old_map.map(ex->_idx, s->_leaf); 1754 #endif 1755 } 1756 1757 // PhaseChaitin::fixup_spills will sometimes generate spill code 1758 // via the matcher. By the time, nodes have been wired into the CFG, 1759 // and any further nodes generated by expand rules will be left hanging 1760 // in space, and will not get emitted as output code. Catch this. 1761 // Also, catch any new register allocation constraints ("projections") 1762 // generated belatedly during spill code generation. 1763 if (_allocation_started) { 1764 guarantee(ex == mach, "no expand rules during spill generation"); 1765 guarantee(number_of_projections_prior == number_of_projections(), "no allocation during spill generation"); 1766 } 1767 1768 if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) { 1769 // Record the con for sharing 1770 _shared_nodes.map(leaf->_idx, ex); 1771 } 1772 1773 return ex; 1774 } 1775 1776 void Matcher::handle_precedence_edges(Node* n, MachNode *mach) { 1777 for (uint i = n->req(); i < n->len(); i++) { 1778 if (n->in(i) != NULL) { 1779 mach->add_prec(n->in(i)); 1780 } 1781 } 1782 } 1783 1784 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) { 1785 // 'op' is what I am expecting to receive 1786 int op = _leftOp[rule]; 1787 // Operand type to catch childs result 1788 // This is what my child will give me. 1789 int opnd_class_instance = s->_rule[op]; 1790 // Choose between operand class or not. 1791 // This is what I will receive. 1792 int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op; 1793 // New rule for child. Chase operand classes to get the actual rule. 1794 int newrule = s->_rule[catch_op]; 1795 1796 if( newrule < NUM_OPERANDS ) { 1797 // Chain from operand or operand class, may be output of shared node 1798 assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS, 1799 "Bad AD file: Instruction chain rule must chain from operand"); 1800 // Insert operand into array of operands for this instruction 1801 mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C ); 1802 1803 ReduceOper( s, newrule, mem, mach ); 1804 } else { 1805 // Chain from the result of an instruction 1806 assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand"); 1807 mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C ); 1808 Node *mem1 = (Node*)1; 1809 debug_only(Node *save_mem_node = _mem_node;) 1810 mach->add_req( ReduceInst(s, newrule, mem1) ); 1811 debug_only(_mem_node = save_mem_node;) 1812 } 1813 return; 1814 } 1815 1816 1817 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) { 1818 handle_precedence_edges(s->_leaf, mach); 1819 1820 if( s->_leaf->is_Load() ) { 1821 Node *mem2 = s->_leaf->in(MemNode::Memory); 1822 assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" ); 1823 debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;) 1824 mem = mem2; 1825 } 1826 if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) { 1827 if( mach->in(0) == NULL ) 1828 mach->set_req(0, s->_leaf->in(0)); 1829 } 1830 1831 // Now recursively walk the state tree & add operand list. 1832 for( uint i=0; i<2; i++ ) { // binary tree 1833 State *newstate = s->_kids[i]; 1834 if( newstate == NULL ) break; // Might only have 1 child 1835 // 'op' is what I am expecting to receive 1836 int op; 1837 if( i == 0 ) { 1838 op = _leftOp[rule]; 1839 } else { 1840 op = _rightOp[rule]; 1841 } 1842 // Operand type to catch childs result 1843 // This is what my child will give me. 1844 int opnd_class_instance = newstate->_rule[op]; 1845 // Choose between operand class or not. 1846 // This is what I will receive. 1847 int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op; 1848 // New rule for child. Chase operand classes to get the actual rule. 1849 int newrule = newstate->_rule[catch_op]; 1850 1851 if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction? 1852 // Operand/operandClass 1853 // Insert operand into array of operands for this instruction 1854 mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C ); 1855 ReduceOper( newstate, newrule, mem, mach ); 1856 1857 } else { // Child is internal operand or new instruction 1858 if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction? 1859 // internal operand --> call ReduceInst_Interior 1860 // Interior of complex instruction. Do nothing but recurse. 1861 num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds ); 1862 } else { 1863 // instruction --> call build operand( ) to catch result 1864 // --> ReduceInst( newrule ) 1865 mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C ); 1866 Node *mem1 = (Node*)1; 1867 debug_only(Node *save_mem_node = _mem_node;) 1868 mach->add_req( ReduceInst( newstate, newrule, mem1 ) ); 1869 debug_only(_mem_node = save_mem_node;) 1870 } 1871 } 1872 assert( mach->_opnds[num_opnds-1], "" ); 1873 } 1874 return num_opnds; 1875 } 1876 1877 // This routine walks the interior of possible complex operands. 1878 // At each point we check our children in the match tree: 1879 // (1) No children - 1880 // We are a leaf; add _leaf field as an input to the MachNode 1881 // (2) Child is an internal operand - 1882 // Skip over it ( do nothing ) 1883 // (3) Child is an instruction - 1884 // Call ReduceInst recursively and 1885 // and instruction as an input to the MachNode 1886 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) { 1887 assert( rule < _LAST_MACH_OPER, "called with operand rule" ); 1888 State *kid = s->_kids[0]; 1889 assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" ); 1890 1891 // Leaf? And not subsumed? 1892 if( kid == NULL && !_swallowed[rule] ) { 1893 mach->add_req( s->_leaf ); // Add leaf pointer 1894 return; // Bail out 1895 } 1896 1897 if( s->_leaf->is_Load() ) { 1898 assert( mem == (Node*)1, "multiple Memories being matched at once?" ); 1899 mem = s->_leaf->in(MemNode::Memory); 1900 debug_only(_mem_node = s->_leaf;) 1901 } 1902 1903 handle_precedence_edges(s->_leaf, mach); 1904 1905 if( s->_leaf->in(0) && s->_leaf->req() > 1) { 1906 if( !mach->in(0) ) 1907 mach->set_req(0,s->_leaf->in(0)); 1908 else { 1909 assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" ); 1910 } 1911 } 1912 1913 for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) { // binary tree 1914 int newrule; 1915 if( i == 0) 1916 newrule = kid->_rule[_leftOp[rule]]; 1917 else 1918 newrule = kid->_rule[_rightOp[rule]]; 1919 1920 if( newrule < _LAST_MACH_OPER ) { // Operand or instruction? 1921 // Internal operand; recurse but do nothing else 1922 ReduceOper( kid, newrule, mem, mach ); 1923 1924 } else { // Child is a new instruction 1925 // Reduce the instruction, and add a direct pointer from this 1926 // machine instruction to the newly reduced one. 1927 Node *mem1 = (Node*)1; 1928 debug_only(Node *save_mem_node = _mem_node;) 1929 mach->add_req( ReduceInst( kid, newrule, mem1 ) ); 1930 debug_only(_mem_node = save_mem_node;) 1931 } 1932 } 1933 } 1934 1935 1936 // ------------------------------------------------------------------------- 1937 // Java-Java calling convention 1938 // (what you use when Java calls Java) 1939 1940 //------------------------------find_receiver---------------------------------- 1941 // For a given signature, return the OptoReg for parameter 0. 1942 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) { 1943 VMRegPair regs; 1944 BasicType sig_bt = T_OBJECT; 1945 calling_convention(&sig_bt, ®s, 1, is_outgoing); 1946 // Return argument 0 register. In the LP64 build pointers 1947 // take 2 registers, but the VM wants only the 'main' name. 1948 return OptoReg::as_OptoReg(regs.first()); 1949 } 1950 1951 // This function identifies sub-graphs in which a 'load' node is 1952 // input to two different nodes, and such that it can be matched 1953 // with BMI instructions like blsi, blsr, etc. 1954 // Example : for b = -a[i] & a[i] can be matched to blsi r32, m32. 1955 // The graph is (AndL (SubL Con0 LoadL*) LoadL*), where LoadL* 1956 // refers to the same node. 1957 #ifdef X86 1958 // Match the generic fused operations pattern (op1 (op2 Con{ConType} mop) mop) 1959 // This is a temporary solution until we make DAGs expressible in ADL. 1960 template<typename ConType> 1961 class FusedPatternMatcher { 1962 Node* _op1_node; 1963 Node* _mop_node; 1964 int _con_op; 1965 1966 static int match_next(Node* n, int next_op, int next_op_idx) { 1967 if (n->in(1) == NULL || n->in(2) == NULL) { 1968 return -1; 1969 } 1970 1971 if (next_op_idx == -1) { // n is commutative, try rotations 1972 if (n->in(1)->Opcode() == next_op) { 1973 return 1; 1974 } else if (n->in(2)->Opcode() == next_op) { 1975 return 2; 1976 } 1977 } else { 1978 assert(next_op_idx > 0 && next_op_idx <= 2, "Bad argument index"); 1979 if (n->in(next_op_idx)->Opcode() == next_op) { 1980 return next_op_idx; 1981 } 1982 } 1983 return -1; 1984 } 1985 public: 1986 FusedPatternMatcher(Node* op1_node, Node *mop_node, int con_op) : 1987 _op1_node(op1_node), _mop_node(mop_node), _con_op(con_op) { } 1988 1989 bool match(int op1, int op1_op2_idx, // op1 and the index of the op1->op2 edge, -1 if op1 is commutative 1990 int op2, int op2_con_idx, // op2 and the index of the op2->con edge, -1 if op2 is commutative 1991 typename ConType::NativeType con_value) { 1992 if (_op1_node->Opcode() != op1) { 1993 return false; 1994 } 1995 if (_mop_node->outcnt() > 2) { 1996 return false; 1997 } 1998 op1_op2_idx = match_next(_op1_node, op2, op1_op2_idx); 1999 if (op1_op2_idx == -1) { 2000 return false; 2001 } 2002 // Memory operation must be the other edge 2003 int op1_mop_idx = (op1_op2_idx & 1) + 1; 2004 2005 // Check that the mop node is really what we want 2006 if (_op1_node->in(op1_mop_idx) == _mop_node) { 2007 Node *op2_node = _op1_node->in(op1_op2_idx); 2008 if (op2_node->outcnt() > 1) { 2009 return false; 2010 } 2011 assert(op2_node->Opcode() == op2, "Should be"); 2012 op2_con_idx = match_next(op2_node, _con_op, op2_con_idx); 2013 if (op2_con_idx == -1) { 2014 return false; 2015 } 2016 // Memory operation must be the other edge 2017 int op2_mop_idx = (op2_con_idx & 1) + 1; 2018 // Check that the memory operation is the same node 2019 if (op2_node->in(op2_mop_idx) == _mop_node) { 2020 // Now check the constant 2021 const Type* con_type = op2_node->in(op2_con_idx)->bottom_type(); 2022 if (con_type != Type::TOP && ConType::as_self(con_type)->get_con() == con_value) { 2023 return true; 2024 } 2025 } 2026 } 2027 return false; 2028 } 2029 }; 2030 2031 2032 bool Matcher::is_bmi_pattern(Node *n, Node *m) { 2033 if (n != NULL && m != NULL) { 2034 if (m->Opcode() == Op_LoadI) { 2035 FusedPatternMatcher<TypeInt> bmii(n, m, Op_ConI); 2036 return bmii.match(Op_AndI, -1, Op_SubI, 1, 0) || 2037 bmii.match(Op_AndI, -1, Op_AddI, -1, -1) || 2038 bmii.match(Op_XorI, -1, Op_AddI, -1, -1); 2039 } else if (m->Opcode() == Op_LoadL) { 2040 FusedPatternMatcher<TypeLong> bmil(n, m, Op_ConL); 2041 return bmil.match(Op_AndL, -1, Op_SubL, 1, 0) || 2042 bmil.match(Op_AndL, -1, Op_AddL, -1, -1) || 2043 bmil.match(Op_XorL, -1, Op_AddL, -1, -1); 2044 } 2045 } 2046 return false; 2047 } 2048 #endif // X86 2049 2050 // A method-klass-holder may be passed in the inline_cache_reg 2051 // and then expanded into the inline_cache_reg and a method_oop register 2052 // defined in ad_<arch>.cpp 2053 2054 2055 //------------------------------find_shared------------------------------------ 2056 // Set bits if Node is shared or otherwise a root 2057 void Matcher::find_shared( Node *n ) { 2058 // Allocate stack of size C->live_nodes() * 2 to avoid frequent realloc 2059 MStack mstack(C->live_nodes() * 2); 2060 // Mark nodes as address_visited if they are inputs to an address expression 2061 VectorSet address_visited(Thread::current()->resource_area()); 2062 mstack.push(n, Visit); // Don't need to pre-visit root node 2063 while (mstack.is_nonempty()) { 2064 n = mstack.node(); // Leave node on stack 2065 Node_State nstate = mstack.state(); 2066 uint nop = n->Opcode(); 2067 if (nstate == Pre_Visit) { 2068 if (address_visited.test(n->_idx)) { // Visited in address already? 2069 // Flag as visited and shared now. 2070 set_visited(n); 2071 } 2072 if (is_visited(n)) { // Visited already? 2073 // Node is shared and has no reason to clone. Flag it as shared. 2074 // This causes it to match into a register for the sharing. 2075 set_shared(n); // Flag as shared and 2076 if (n->is_DecodeNarrowPtr()) { 2077 // Oop field/array element loads must be shared but since 2078 // they are shared through a DecodeN they may appear to have 2079 // a single use so force sharing here. 2080 set_shared(n->in(1)); 2081 } 2082 mstack.pop(); // remove node from stack 2083 continue; 2084 } 2085 nstate = Visit; // Not already visited; so visit now 2086 } 2087 if (nstate == Visit) { 2088 mstack.set_state(Post_Visit); 2089 set_visited(n); // Flag as visited now 2090 bool mem_op = false; 2091 2092 switch( nop ) { // Handle some opcodes special 2093 case Op_Phi: // Treat Phis as shared roots 2094 case Op_Parm: 2095 case Op_Proj: // All handled specially during matching 2096 case Op_SafePointScalarObject: 2097 set_shared(n); 2098 set_dontcare(n); 2099 break; 2100 case Op_If: 2101 case Op_CountedLoopEnd: 2102 mstack.set_state(Alt_Post_Visit); // Alternative way 2103 // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)). Helps 2104 // with matching cmp/branch in 1 instruction. The Matcher needs the 2105 // Bool and CmpX side-by-side, because it can only get at constants 2106 // that are at the leaves of Match trees, and the Bool's condition acts 2107 // as a constant here. 2108 mstack.push(n->in(1), Visit); // Clone the Bool 2109 mstack.push(n->in(0), Pre_Visit); // Visit control input 2110 continue; // while (mstack.is_nonempty()) 2111 case Op_ConvI2D: // These forms efficiently match with a prior 2112 case Op_ConvI2F: // Load but not a following Store 2113 if( n->in(1)->is_Load() && // Prior load 2114 n->outcnt() == 1 && // Not already shared 2115 n->unique_out()->is_Store() ) // Following store 2116 set_shared(n); // Force it to be a root 2117 break; 2118 case Op_ReverseBytesI: 2119 case Op_ReverseBytesL: 2120 if( n->in(1)->is_Load() && // Prior load 2121 n->outcnt() == 1 ) // Not already shared 2122 set_shared(n); // Force it to be a root 2123 break; 2124 case Op_BoxLock: // Cant match until we get stack-regs in ADLC 2125 case Op_IfFalse: 2126 case Op_IfTrue: 2127 case Op_MachProj: 2128 case Op_MergeMem: 2129 case Op_Catch: 2130 case Op_CatchProj: 2131 case Op_CProj: 2132 case Op_JumpProj: 2133 case Op_JProj: 2134 case Op_NeverBranch: 2135 set_dontcare(n); 2136 break; 2137 case Op_Jump: 2138 mstack.push(n->in(1), Pre_Visit); // Switch Value (could be shared) 2139 mstack.push(n->in(0), Pre_Visit); // Visit Control input 2140 continue; // while (mstack.is_nonempty()) 2141 case Op_StrComp: 2142 case Op_StrEquals: 2143 case Op_StrIndexOf: 2144 case Op_AryEq: 2145 case Op_EncodeISOArray: 2146 set_shared(n); // Force result into register (it will be anyways) 2147 break; 2148 case Op_ConP: { // Convert pointers above the centerline to NUL 2149 TypeNode *tn = n->as_Type(); // Constants derive from type nodes 2150 const TypePtr* tp = tn->type()->is_ptr(); 2151 if (tp->_ptr == TypePtr::AnyNull) { 2152 tn->set_type(TypePtr::NULL_PTR); 2153 } 2154 break; 2155 } 2156 case Op_ConN: { // Convert narrow pointers above the centerline to NUL 2157 TypeNode *tn = n->as_Type(); // Constants derive from type nodes 2158 const TypePtr* tp = tn->type()->make_ptr(); 2159 if (tp && tp->_ptr == TypePtr::AnyNull) { 2160 tn->set_type(TypeNarrowOop::NULL_PTR); 2161 } 2162 break; 2163 } 2164 case Op_Binary: // These are introduced in the Post_Visit state. 2165 ShouldNotReachHere(); 2166 break; 2167 case Op_ClearArray: 2168 case Op_SafePoint: 2169 mem_op = true; 2170 break; 2171 default: 2172 if( n->is_Store() ) { 2173 // Do match stores, despite no ideal reg 2174 mem_op = true; 2175 break; 2176 } 2177 if( n->is_Mem() ) { // Loads and LoadStores 2178 mem_op = true; 2179 // Loads must be root of match tree due to prior load conflict 2180 if( C->subsume_loads() == false ) 2181 set_shared(n); 2182 } 2183 // Fall into default case 2184 if( !n->ideal_reg() ) 2185 set_dontcare(n); // Unmatchable Nodes 2186 } // end_switch 2187 2188 for(int i = n->req() - 1; i >= 0; --i) { // For my children 2189 Node *m = n->in(i); // Get ith input 2190 if (m == NULL) continue; // Ignore NULLs 2191 uint mop = m->Opcode(); 2192 2193 // Must clone all producers of flags, or we will not match correctly. 2194 // Suppose a compare setting int-flags is shared (e.g., a switch-tree) 2195 // then it will match into an ideal Op_RegFlags. Alas, the fp-flags 2196 // are also there, so we may match a float-branch to int-flags and 2197 // expect the allocator to haul the flags from the int-side to the 2198 // fp-side. No can do. 2199 if( _must_clone[mop] ) { 2200 mstack.push(m, Visit); 2201 continue; // for(int i = ...) 2202 } 2203 2204 // if 'n' and 'm' are part of a graph for BMI instruction, clone this node. 2205 #ifdef X86 2206 if (UseBMI1Instructions && is_bmi_pattern(n, m)) { 2207 mstack.push(m, Visit); 2208 continue; 2209 } 2210 #endif 2211 2212 // Clone addressing expressions as they are "free" in memory access instructions 2213 if( mem_op && i == MemNode::Address && mop == Op_AddP ) { 2214 // Some inputs for address expression are not put on stack 2215 // to avoid marking them as shared and forcing them into register 2216 // if they are used only in address expressions. 2217 // But they should be marked as shared if there are other uses 2218 // besides address expressions. 2219 2220 Node *off = m->in(AddPNode::Offset); 2221 if( off->is_Con() && 2222 // When there are other uses besides address expressions 2223 // put it on stack and mark as shared. 2224 !is_visited(m) ) { 2225 address_visited.test_set(m->_idx); // Flag as address_visited 2226 Node *adr = m->in(AddPNode::Address); 2227 2228 // Intel, ARM and friends can handle 2 adds in addressing mode 2229 if( clone_shift_expressions && adr->is_AddP() && 2230 // AtomicAdd is not an addressing expression. 2231 // Cheap to find it by looking for screwy base. 2232 !adr->in(AddPNode::Base)->is_top() && 2233 // Are there other uses besides address expressions? 2234 !is_visited(adr) ) { 2235 address_visited.set(adr->_idx); // Flag as address_visited 2236 Node *shift = adr->in(AddPNode::Offset); 2237 // Check for shift by small constant as well 2238 if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() && 2239 shift->in(2)->get_int() <= 3 && 2240 // Are there other uses besides address expressions? 2241 !is_visited(shift) ) { 2242 address_visited.set(shift->_idx); // Flag as address_visited 2243 mstack.push(shift->in(2), Visit); 2244 Node *conv = shift->in(1); 2245 #ifdef _LP64 2246 // Allow Matcher to match the rule which bypass 2247 // ConvI2L operation for an array index on LP64 2248 // if the index value is positive. 2249 if( conv->Opcode() == Op_ConvI2L && 2250 conv->as_Type()->type()->is_long()->_lo >= 0 && 2251 // Are there other uses besides address expressions? 2252 !is_visited(conv) ) { 2253 address_visited.set(conv->_idx); // Flag as address_visited 2254 mstack.push(conv->in(1), Pre_Visit); 2255 } else 2256 #endif 2257 mstack.push(conv, Pre_Visit); 2258 } else { 2259 mstack.push(shift, Pre_Visit); 2260 } 2261 mstack.push(adr->in(AddPNode::Address), Pre_Visit); 2262 mstack.push(adr->in(AddPNode::Base), Pre_Visit); 2263 } else { // Sparc, Alpha, PPC and friends 2264 mstack.push(adr, Pre_Visit); 2265 } 2266 2267 // Clone X+offset as it also folds into most addressing expressions 2268 mstack.push(off, Visit); 2269 mstack.push(m->in(AddPNode::Base), Pre_Visit); 2270 continue; // for(int i = ...) 2271 } // if( off->is_Con() ) 2272 } // if( mem_op && 2273 mstack.push(m, Pre_Visit); 2274 } // for(int i = ...) 2275 } 2276 else if (nstate == Alt_Post_Visit) { 2277 mstack.pop(); // Remove node from stack 2278 // We cannot remove the Cmp input from the Bool here, as the Bool may be 2279 // shared and all users of the Bool need to move the Cmp in parallel. 2280 // This leaves both the Bool and the If pointing at the Cmp. To 2281 // prevent the Matcher from trying to Match the Cmp along both paths 2282 // BoolNode::match_edge always returns a zero. 2283 2284 // We reorder the Op_If in a pre-order manner, so we can visit without 2285 // accidentally sharing the Cmp (the Bool and the If make 2 users). 2286 n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool 2287 } 2288 else if (nstate == Post_Visit) { 2289 mstack.pop(); // Remove node from stack 2290 2291 // Now hack a few special opcodes 2292 switch( n->Opcode() ) { // Handle some opcodes special 2293 case Op_StorePConditional: 2294 case Op_StoreIConditional: 2295 case Op_StoreLConditional: 2296 case Op_CompareAndSwapI: 2297 case Op_CompareAndSwapL: 2298 case Op_CompareAndSwapP: 2299 case Op_CompareAndSwapN: { // Convert trinary to binary-tree 2300 Node *newval = n->in(MemNode::ValueIn ); 2301 Node *oldval = n->in(LoadStoreConditionalNode::ExpectedIn); 2302 Node *pair = new (C) BinaryNode( oldval, newval ); 2303 n->set_req(MemNode::ValueIn,pair); 2304 n->del_req(LoadStoreConditionalNode::ExpectedIn); 2305 break; 2306 } 2307 case Op_CMoveD: // Convert trinary to binary-tree 2308 case Op_CMoveF: 2309 case Op_CMoveI: 2310 case Op_CMoveL: 2311 case Op_CMoveN: 2312 case Op_CMoveP: { 2313 // Restructure into a binary tree for Matching. It's possible that 2314 // we could move this code up next to the graph reshaping for IfNodes 2315 // or vice-versa, but I do not want to debug this for Ladybird. 2316 // 10/2/2000 CNC. 2317 Node *pair1 = new (C) BinaryNode(n->in(1),n->in(1)->in(1)); 2318 n->set_req(1,pair1); 2319 Node *pair2 = new (C) BinaryNode(n->in(2),n->in(3)); 2320 n->set_req(2,pair2); 2321 n->del_req(3); 2322 break; 2323 } 2324 case Op_LoopLimit: { 2325 Node *pair1 = new (C) BinaryNode(n->in(1),n->in(2)); 2326 n->set_req(1,pair1); 2327 n->set_req(2,n->in(3)); 2328 n->del_req(3); 2329 break; 2330 } 2331 case Op_StrEquals: { 2332 Node *pair1 = new (C) BinaryNode(n->in(2),n->in(3)); 2333 n->set_req(2,pair1); 2334 n->set_req(3,n->in(4)); 2335 n->del_req(4); 2336 break; 2337 } 2338 case Op_StrComp: 2339 case Op_StrIndexOf: { 2340 Node *pair1 = new (C) BinaryNode(n->in(2),n->in(3)); 2341 n->set_req(2,pair1); 2342 Node *pair2 = new (C) BinaryNode(n->in(4),n->in(5)); 2343 n->set_req(3,pair2); 2344 n->del_req(5); 2345 n->del_req(4); 2346 break; 2347 } 2348 case Op_EncodeISOArray: { 2349 // Restructure into a binary tree for Matching. 2350 Node* pair = new (C) BinaryNode(n->in(3), n->in(4)); 2351 n->set_req(3, pair); 2352 n->del_req(4); 2353 break; 2354 } 2355 default: 2356 break; 2357 } 2358 } 2359 else { 2360 ShouldNotReachHere(); 2361 } 2362 } // end of while (mstack.is_nonempty()) 2363 } 2364 2365 #ifdef ASSERT 2366 // machine-independent root to machine-dependent root 2367 void Matcher::dump_old2new_map() { 2368 _old2new_map.dump(); 2369 } 2370 #endif 2371 2372 //---------------------------collect_null_checks------------------------------- 2373 // Find null checks in the ideal graph; write a machine-specific node for 2374 // it. Used by later implicit-null-check handling. Actually collects 2375 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal 2376 // value being tested. 2377 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) { 2378 Node *iff = proj->in(0); 2379 if( iff->Opcode() == Op_If ) { 2380 // During matching If's have Bool & Cmp side-by-side 2381 BoolNode *b = iff->in(1)->as_Bool(); 2382 Node *cmp = iff->in(2); 2383 int opc = cmp->Opcode(); 2384 if (opc != Op_CmpP && opc != Op_CmpN) return; 2385 2386 const Type* ct = cmp->in(2)->bottom_type(); 2387 if (ct == TypePtr::NULL_PTR || 2388 (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) { 2389 2390 bool push_it = false; 2391 if( proj->Opcode() == Op_IfTrue ) { 2392 extern int all_null_checks_found; 2393 all_null_checks_found++; 2394 if( b->_test._test == BoolTest::ne ) { 2395 push_it = true; 2396 } 2397 } else { 2398 assert( proj->Opcode() == Op_IfFalse, "" ); 2399 if( b->_test._test == BoolTest::eq ) { 2400 push_it = true; 2401 } 2402 } 2403 if( push_it ) { 2404 _null_check_tests.push(proj); 2405 Node* val = cmp->in(1); 2406 #ifdef _LP64 2407 if (val->bottom_type()->isa_narrowoop() && 2408 !Matcher::narrow_oop_use_complex_address()) { 2409 // 2410 // Look for DecodeN node which should be pinned to orig_proj. 2411 // On platforms (Sparc) which can not handle 2 adds 2412 // in addressing mode we have to keep a DecodeN node and 2413 // use it to do implicit NULL check in address. 2414 // 2415 // DecodeN node was pinned to non-null path (orig_proj) during 2416 // CastPP transformation in final_graph_reshaping_impl(). 2417 // 2418 uint cnt = orig_proj->outcnt(); 2419 for (uint i = 0; i < orig_proj->outcnt(); i++) { 2420 Node* d = orig_proj->raw_out(i); 2421 if (d->is_DecodeN() && d->in(1) == val) { 2422 val = d; 2423 val->set_req(0, NULL); // Unpin now. 2424 // Mark this as special case to distinguish from 2425 // a regular case: CmpP(DecodeN, NULL). 2426 val = (Node*)(((intptr_t)val) | 1); 2427 break; 2428 } 2429 } 2430 } 2431 #endif 2432 _null_check_tests.push(val); 2433 } 2434 } 2435 } 2436 } 2437 2438 //---------------------------validate_null_checks------------------------------ 2439 // Its possible that the value being NULL checked is not the root of a match 2440 // tree. If so, I cannot use the value in an implicit null check. 2441 void Matcher::validate_null_checks( ) { 2442 uint cnt = _null_check_tests.size(); 2443 for( uint i=0; i < cnt; i+=2 ) { 2444 Node *test = _null_check_tests[i]; 2445 Node *val = _null_check_tests[i+1]; 2446 bool is_decoden = ((intptr_t)val) & 1; 2447 val = (Node*)(((intptr_t)val) & ~1); 2448 if (has_new_node(val)) { 2449 Node* new_val = new_node(val); 2450 if (is_decoden) { 2451 assert(val->is_DecodeNarrowPtr() && val->in(0) == NULL, "sanity"); 2452 // Note: new_val may have a control edge if 2453 // the original ideal node DecodeN was matched before 2454 // it was unpinned in Matcher::collect_null_checks(). 2455 // Unpin the mach node and mark it. 2456 new_val->set_req(0, NULL); 2457 new_val = (Node*)(((intptr_t)new_val) | 1); 2458 } 2459 // Is a match-tree root, so replace with the matched value 2460 _null_check_tests.map(i+1, new_val); 2461 } else { 2462 // Yank from candidate list 2463 _null_check_tests.map(i+1,_null_check_tests[--cnt]); 2464 _null_check_tests.map(i,_null_check_tests[--cnt]); 2465 _null_check_tests.pop(); 2466 _null_check_tests.pop(); 2467 i-=2; 2468 } 2469 } 2470 } 2471 2472 // Used by the DFA in dfa_xxx.cpp. Check for a following barrier or 2473 // atomic instruction acting as a store_load barrier without any 2474 // intervening volatile load, and thus we don't need a barrier here. 2475 // We retain the Node to act as a compiler ordering barrier. 2476 bool Matcher::post_store_load_barrier(const Node* vmb) { 2477 Compile* C = Compile::current(); 2478 assert(vmb->is_MemBar(), ""); 2479 assert(vmb->Opcode() != Op_MemBarAcquire && vmb->Opcode() != Op_LoadFence, ""); 2480 const MemBarNode* membar = vmb->as_MemBar(); 2481 2482 // Get the Ideal Proj node, ctrl, that can be used to iterate forward 2483 Node* ctrl = NULL; 2484 for (DUIterator_Fast imax, i = membar->fast_outs(imax); i < imax; i++) { 2485 Node* p = membar->fast_out(i); 2486 assert(p->is_Proj(), "only projections here"); 2487 if ((p->as_Proj()->_con == TypeFunc::Control) && 2488 !C->node_arena()->contains(p)) { // Unmatched old-space only 2489 ctrl = p; 2490 break; 2491 } 2492 } 2493 assert((ctrl != NULL), "missing control projection"); 2494 2495 for (DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++) { 2496 Node *x = ctrl->fast_out(j); 2497 int xop = x->Opcode(); 2498 2499 // We don't need current barrier if we see another or a lock 2500 // before seeing volatile load. 2501 // 2502 // Op_Fastunlock previously appeared in the Op_* list below. 2503 // With the advent of 1-0 lock operations we're no longer guaranteed 2504 // that a monitor exit operation contains a serializing instruction. 2505 2506 if (xop == Op_MemBarVolatile || 2507 xop == Op_CompareAndSwapL || 2508 xop == Op_CompareAndSwapP || 2509 xop == Op_CompareAndSwapN || 2510 xop == Op_CompareAndSwapI) { 2511 return true; 2512 } 2513 2514 // Op_FastLock previously appeared in the Op_* list above. 2515 // With biased locking we're no longer guaranteed that a monitor 2516 // enter operation contains a serializing instruction. 2517 if ((xop == Op_FastLock) && !UseBiasedLocking) { 2518 return true; 2519 } 2520 2521 if (x->is_MemBar()) { 2522 // We must retain this membar if there is an upcoming volatile 2523 // load, which will be followed by acquire membar. 2524 if (xop == Op_MemBarAcquire || xop == Op_LoadFence) { 2525 return false; 2526 } else { 2527 // For other kinds of barriers, check by pretending we 2528 // are them, and seeing if we can be removed. 2529 return post_store_load_barrier(x->as_MemBar()); 2530 } 2531 } 2532 2533 // probably not necessary to check for these 2534 if (x->is_Call() || x->is_SafePoint() || x->is_block_proj()) { 2535 return false; 2536 } 2537 } 2538 return false; 2539 } 2540 2541 // Check whether node n is a branch to an uncommon trap that we could 2542 // optimize as test with very high branch costs in case of going to 2543 // the uncommon trap. The code must be able to be recompiled to use 2544 // a cheaper test. 2545 bool Matcher::branches_to_uncommon_trap(const Node *n) { 2546 // Don't do it for natives, adapters, or runtime stubs 2547 Compile *C = Compile::current(); 2548 if (!C->is_method_compilation()) return false; 2549 2550 assert(n->is_If(), "You should only call this on if nodes."); 2551 IfNode *ifn = n->as_If(); 2552 2553 Node *ifFalse = NULL; 2554 for (DUIterator_Fast imax, i = ifn->fast_outs(imax); i < imax; i++) { 2555 if (ifn->fast_out(i)->is_IfFalse()) { 2556 ifFalse = ifn->fast_out(i); 2557 break; 2558 } 2559 } 2560 assert(ifFalse, "An If should have an ifFalse. Graph is broken."); 2561 2562 Node *reg = ifFalse; 2563 int cnt = 4; // We must protect against cycles. Limit to 4 iterations. 2564 // Alternatively use visited set? Seems too expensive. 2565 while (reg != NULL && cnt > 0) { 2566 CallNode *call = NULL; 2567 RegionNode *nxt_reg = NULL; 2568 for (DUIterator_Fast imax, i = reg->fast_outs(imax); i < imax; i++) { 2569 Node *o = reg->fast_out(i); 2570 if (o->is_Call()) { 2571 call = o->as_Call(); 2572 } 2573 if (o->is_Region()) { 2574 nxt_reg = o->as_Region(); 2575 } 2576 } 2577 2578 if (call && 2579 call->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) { 2580 const Type* trtype = call->in(TypeFunc::Parms)->bottom_type(); 2581 if (trtype->isa_int() && trtype->is_int()->is_con()) { 2582 jint tr_con = trtype->is_int()->get_con(); 2583 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con); 2584 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con); 2585 assert((int)reason < (int)BitsPerInt, "recode bit map"); 2586 2587 if (is_set_nth_bit(C->allowed_deopt_reasons(), (int)reason) 2588 && action != Deoptimization::Action_none) { 2589 // This uncommon trap is sure to recompile, eventually. 2590 // When that happens, C->too_many_traps will prevent 2591 // this transformation from happening again. 2592 return true; 2593 } 2594 } 2595 } 2596 2597 reg = nxt_reg; 2598 cnt--; 2599 } 2600 2601 return false; 2602 } 2603 2604 //============================================================================= 2605 //---------------------------State--------------------------------------------- 2606 State::State(void) { 2607 #ifdef ASSERT 2608 _id = 0; 2609 _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe); 2610 _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d); 2611 //memset(_cost, -1, sizeof(_cost)); 2612 //memset(_rule, -1, sizeof(_rule)); 2613 #endif 2614 memset(_valid, 0, sizeof(_valid)); 2615 } 2616 2617 #ifdef ASSERT 2618 State::~State() { 2619 _id = 99; 2620 _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe); 2621 _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d); 2622 memset(_cost, -3, sizeof(_cost)); 2623 memset(_rule, -3, sizeof(_rule)); 2624 } 2625 #endif 2626 2627 #ifndef PRODUCT 2628 //---------------------------dump---------------------------------------------- 2629 void State::dump() { 2630 tty->print("\n"); 2631 dump(0); 2632 } 2633 2634 void State::dump(int depth) { 2635 for( int j = 0; j < depth; j++ ) 2636 tty->print(" "); 2637 tty->print("--N: "); 2638 _leaf->dump(); 2639 uint i; 2640 for( i = 0; i < _LAST_MACH_OPER; i++ ) 2641 // Check for valid entry 2642 if( valid(i) ) { 2643 for( int j = 0; j < depth; j++ ) 2644 tty->print(" "); 2645 assert(_cost[i] != max_juint, "cost must be a valid value"); 2646 assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule"); 2647 tty->print_cr("%s %d %s", 2648 ruleName[i], _cost[i], ruleName[_rule[i]] ); 2649 } 2650 tty->cr(); 2651 2652 for( i=0; i<2; i++ ) 2653 if( _kids[i] ) 2654 _kids[i]->dump(depth+1); 2655 } 2656 #endif