1 /* 2 * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_VM_OPTO_MATCHER_HPP 26 #define SHARE_VM_OPTO_MATCHER_HPP 27 28 #include "libadt/vectset.hpp" 29 #include "memory/resourceArea.hpp" 30 #include "opto/node.hpp" 31 #include "opto/phaseX.hpp" 32 #include "opto/regmask.hpp" 33 34 class Compile; 35 class Node; 36 class MachNode; 37 class MachTypeNode; 38 class MachOper; 39 40 //---------------------------Matcher------------------------------------------- 41 class Matcher : public PhaseTransform { 42 friend class VMStructs; 43 // Private arena of State objects 44 ResourceArea _states_arena; 45 46 VectorSet _visited; // Visit bits 47 48 // Used to control the Label pass 49 VectorSet _shared; // Shared Ideal Node 50 VectorSet _dontcare; // Nothing the matcher cares about 51 52 // Private methods which perform the actual matching and reduction 53 // Walks the label tree, generating machine nodes 54 MachNode *ReduceInst( State *s, int rule, Node *&mem); 55 void ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach); 56 uint ReduceInst_Interior(State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds); 57 void ReduceOper( State *s, int newrule, Node *&mem, MachNode *mach ); 58 59 // If this node already matched using "rule", return the MachNode for it. 60 MachNode* find_shared_node(Node* n, uint rule); 61 62 // Convert a dense opcode number to an expanded rule number 63 const int *_reduceOp; 64 const int *_leftOp; 65 const int *_rightOp; 66 67 // Map dense opcode number to info on when rule is swallowed constant. 68 const bool *_swallowed; 69 70 // Map dense rule number to determine if this is an instruction chain rule 71 const uint _begin_inst_chain_rule; 72 const uint _end_inst_chain_rule; 73 74 // We want to clone constants and possible CmpI-variants. 75 // If we do not clone CmpI, then we can have many instances of 76 // condition codes alive at once. This is OK on some chips and 77 // bad on others. Hence the machine-dependent table lookup. 78 const char *_must_clone; 79 80 // Find shared Nodes, or Nodes that otherwise are Matcher roots 81 void find_shared( Node *n ); 82 #ifdef X86 83 bool is_bmi_pattern(Node *n, Node *m); 84 #endif 85 86 // Debug and profile information for nodes in old space: 87 GrowableArray<Node_Notes*>* _old_node_note_array; 88 89 // Node labeling iterator for instruction selection 90 Node *Label_Root( const Node *n, State *svec, Node *control, const Node *mem ); 91 92 Node *transform( Node *dummy ); 93 94 Node_List _projection_list; // For Machine nodes killing many values 95 96 Node_Array _shared_nodes; 97 98 debug_only(Node_Array _old2new_map;) // Map roots of ideal-trees to machine-roots 99 debug_only(Node_Array _new2old_map;) // Maps machine nodes back to ideal 100 101 // Accessors for the inherited field PhaseTransform::_nodes: 102 void grow_new_node_array(uint idx_limit) { 103 _nodes.map(idx_limit-1, NULL); 104 } 105 bool has_new_node(const Node* n) const { 106 return _nodes.at(n->_idx) != NULL; 107 } 108 Node* new_node(const Node* n) const { 109 assert(has_new_node(n), "set before get"); 110 return _nodes.at(n->_idx); 111 } 112 void set_new_node(const Node* n, Node *nn) { 113 assert(!has_new_node(n), "set only once"); 114 _nodes.map(n->_idx, nn); 115 } 116 117 #ifdef ASSERT 118 // Make sure only new nodes are reachable from this node 119 void verify_new_nodes_only(Node* root); 120 121 Node* _mem_node; // Ideal memory node consumed by mach node 122 #endif 123 124 // Mach node for ConP #NULL 125 MachNode* _mach_null; 126 127 void handle_precedence_edges(Node* n, MachNode *mach); 128 129 public: 130 int LabelRootDepth; 131 // Convert ideal machine register to a register mask for spill-loads 132 static const RegMask *idealreg2regmask[]; 133 RegMask *idealreg2spillmask [_last_machine_leaf]; 134 RegMask *idealreg2debugmask [_last_machine_leaf]; 135 RegMask *idealreg2mhdebugmask[_last_machine_leaf]; 136 void init_spill_mask( Node *ret ); 137 // Convert machine register number to register mask 138 static uint mreg2regmask_max; 139 static RegMask mreg2regmask[]; 140 static RegMask STACK_ONLY_mask; 141 142 MachNode* mach_null() const { return _mach_null; } 143 144 bool is_shared( Node *n ) { return _shared.test(n->_idx) != 0; } 145 void set_shared( Node *n ) { _shared.set(n->_idx); } 146 bool is_visited( Node *n ) { return _visited.test(n->_idx) != 0; } 147 void set_visited( Node *n ) { _visited.set(n->_idx); } 148 bool is_dontcare( Node *n ) { return _dontcare.test(n->_idx) != 0; } 149 void set_dontcare( Node *n ) { _dontcare.set(n->_idx); } 150 151 // Mode bit to tell DFA and expand rules whether we are running after 152 // (or during) register selection. Usually, the matcher runs before, 153 // but it will also get called to generate post-allocation spill code. 154 // In this situation, it is a deadly error to attempt to allocate more 155 // temporary registers. 156 bool _allocation_started; 157 158 // Machine register names 159 static const char *regName[]; 160 // Machine register encodings 161 static const unsigned char _regEncode[]; 162 // Machine Node names 163 const char **_ruleName; 164 // Rules that are cheaper to rematerialize than to spill 165 static const uint _begin_rematerialize; 166 static const uint _end_rematerialize; 167 168 // An array of chars, from 0 to _last_Mach_Reg. 169 // No Save = 'N' (for register windows) 170 // Save on Entry = 'E' 171 // Save on Call = 'C' 172 // Always Save = 'A' (same as SOE + SOC) 173 const char *_register_save_policy; 174 const char *_c_reg_save_policy; 175 // Convert a machine register to a machine register type, so-as to 176 // properly match spill code. 177 const int *_register_save_type; 178 // Maps from machine register to boolean; true if machine register can 179 // be holding a call argument in some signature. 180 static bool can_be_java_arg( int reg ); 181 // Maps from machine register to boolean; true if machine register holds 182 // a spillable argument. 183 static bool is_spillable_arg( int reg ); 184 185 // List of IfFalse or IfTrue Nodes that indicate a taken null test. 186 // List is valid in the post-matching space. 187 Node_List _null_check_tests; 188 void collect_null_checks( Node *proj, Node *orig_proj ); 189 void validate_null_checks( ); 190 191 Matcher(); 192 193 // Get a projection node at position pos 194 Node* get_projection(uint pos) { 195 return _projection_list[pos]; 196 } 197 198 // Push a projection node onto the projection list 199 void push_projection(Node* node) { 200 _projection_list.push(node); 201 } 202 203 Node* pop_projection() { 204 return _projection_list.pop(); 205 } 206 207 // Number of nodes in the projection list 208 uint number_of_projections() const { 209 return _projection_list.size(); 210 } 211 212 // Select instructions for entire method 213 void match(); 214 215 // Helper for match 216 OptoReg::Name warp_incoming_stk_arg( VMReg reg ); 217 218 // Transform, then walk. Does implicit DCE while walking. 219 // Name changed from "transform" to avoid it being virtual. 220 Node *xform( Node *old_space_node, int Nodes ); 221 222 // Match a single Ideal Node - turn it into a 1-Node tree; Label & Reduce. 223 MachNode *match_tree( const Node *n ); 224 MachNode *match_sfpt( SafePointNode *sfpt ); 225 // Helper for match_sfpt 226 OptoReg::Name warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ); 227 228 // Initialize first stack mask and related masks. 229 void init_first_stack_mask(); 230 231 // If we should save-on-entry this register 232 bool is_save_on_entry( int reg ); 233 234 // Fixup the save-on-entry registers 235 void Fixup_Save_On_Entry( ); 236 237 // --- Frame handling --- 238 239 // Register number of the stack slot corresponding to the incoming SP. 240 // Per the Big Picture in the AD file, it is: 241 // SharedInfo::stack0 + locks + in_preserve_stack_slots + pad2. 242 OptoReg::Name _old_SP; 243 244 // Register number of the stack slot corresponding to the highest incoming 245 // argument on the stack. Per the Big Picture in the AD file, it is: 246 // _old_SP + out_preserve_stack_slots + incoming argument size. 247 OptoReg::Name _in_arg_limit; 248 249 // Register number of the stack slot corresponding to the new SP. 250 // Per the Big Picture in the AD file, it is: 251 // _in_arg_limit + pad0 252 OptoReg::Name _new_SP; 253 254 // Register number of the stack slot corresponding to the highest outgoing 255 // argument on the stack. Per the Big Picture in the AD file, it is: 256 // _new_SP + max outgoing arguments of all calls 257 OptoReg::Name _out_arg_limit; 258 259 OptoRegPair *_parm_regs; // Array of machine registers per argument 260 RegMask *_calling_convention_mask; // Array of RegMasks per argument 261 262 // Does matcher have a match rule for this ideal node? 263 static const bool has_match_rule(int opcode); 264 static const bool _hasMatchRule[_last_opcode]; 265 266 // Does matcher have a match rule for this ideal node and is the 267 // predicate (if there is one) true? 268 // NOTE: If this function is used more commonly in the future, ADLC 269 // should generate this one. 270 static const bool match_rule_supported(int opcode); 271 272 // Used to determine if we have fast l2f conversion 273 // USII has it, USIII doesn't 274 static const bool convL2FSupported(void); 275 276 // Vector width in bytes 277 static const int vector_width_in_bytes(BasicType bt); 278 279 // Limits on vector size (number of elements). 280 static const int max_vector_size(const BasicType bt); 281 static const int min_vector_size(const BasicType bt); 282 static const bool vector_size_supported(const BasicType bt, int size) { 283 return (Matcher::max_vector_size(bt) >= size && 284 Matcher::min_vector_size(bt) <= size); 285 } 286 287 // Vector ideal reg 288 static const uint vector_ideal_reg(int len); 289 static const uint vector_shift_count_ideal_reg(int len); 290 291 // CPU supports misaligned vectors store/load. 292 static const bool misaligned_vectors_ok(); 293 294 // Should original key array reference be passed to AES stubs 295 static const bool pass_original_key_for_aes(); 296 297 // Used to determine a "low complexity" 64-bit constant. (Zero is simple.) 298 // The standard of comparison is one (StoreL ConL) vs. two (StoreI ConI). 299 // Depends on the details of 64-bit constant generation on the CPU. 300 static const bool isSimpleConstant64(jlong con); 301 302 // These calls are all generated by the ADLC 303 304 // TRUE - grows up, FALSE - grows down (Intel) 305 virtual bool stack_direction() const; 306 307 // Java-Java calling convention 308 // (what you use when Java calls Java) 309 310 // Alignment of stack in bytes, standard Intel word alignment is 4. 311 // Sparc probably wants at least double-word (8). 312 static uint stack_alignment_in_bytes(); 313 // Alignment of stack, measured in stack slots. 314 // The size of stack slots is defined by VMRegImpl::stack_slot_size. 315 static uint stack_alignment_in_slots() { 316 return stack_alignment_in_bytes() / (VMRegImpl::stack_slot_size); 317 } 318 319 // Array mapping arguments to registers. Argument 0 is usually the 'this' 320 // pointer. Registers can include stack-slots and regular registers. 321 static void calling_convention( BasicType *, VMRegPair *, uint len, bool is_outgoing ); 322 323 // Convert a sig into a calling convention register layout 324 // and find interesting things about it. 325 static OptoReg::Name find_receiver( bool is_outgoing ); 326 // Return address register. On Intel it is a stack-slot. On PowerPC 327 // it is the Link register. On Sparc it is r31? 328 virtual OptoReg::Name return_addr() const; 329 RegMask _return_addr_mask; 330 // Return value register. On Intel it is EAX. On Sparc i0/o0. 331 static OptoRegPair return_value(uint ideal_reg, bool is_outgoing); 332 static OptoRegPair c_return_value(uint ideal_reg, bool is_outgoing); 333 RegMask _return_value_mask; 334 // Inline Cache Register 335 static OptoReg::Name inline_cache_reg(); 336 static int inline_cache_reg_encode(); 337 338 // Register for DIVI projection of divmodI 339 static RegMask divI_proj_mask(); 340 // Register for MODI projection of divmodI 341 static RegMask modI_proj_mask(); 342 343 // Register for DIVL projection of divmodL 344 static RegMask divL_proj_mask(); 345 // Register for MODL projection of divmodL 346 static RegMask modL_proj_mask(); 347 348 // Use hardware DIV instruction when it is faster than 349 // a code which use multiply for division by constant. 350 static bool use_asm_for_ldiv_by_con( jlong divisor ); 351 352 static const RegMask method_handle_invoke_SP_save_mask(); 353 354 // Java-Interpreter calling convention 355 // (what you use when calling between compiled-Java and Interpreted-Java 356 357 // Number of callee-save + always-save registers 358 // Ignores frame pointer and "special" registers 359 static int number_of_saved_registers(); 360 361 // The Method-klass-holder may be passed in the inline_cache_reg 362 // and then expanded into the inline_cache_reg and a method_oop register 363 364 static OptoReg::Name interpreter_method_oop_reg(); 365 static int interpreter_method_oop_reg_encode(); 366 367 static OptoReg::Name compiler_method_oop_reg(); 368 static const RegMask &compiler_method_oop_reg_mask(); 369 static int compiler_method_oop_reg_encode(); 370 371 // Interpreter's Frame Pointer Register 372 static OptoReg::Name interpreter_frame_pointer_reg(); 373 374 // Java-Native calling convention 375 // (what you use when intercalling between Java and C++ code) 376 377 // Array mapping arguments to registers. Argument 0 is usually the 'this' 378 // pointer. Registers can include stack-slots and regular registers. 379 static void c_calling_convention( BasicType*, VMRegPair *, uint ); 380 // Frame pointer. The frame pointer is kept at the base of the stack 381 // and so is probably the stack pointer for most machines. On Intel 382 // it is ESP. On the PowerPC it is R1. On Sparc it is SP. 383 OptoReg::Name c_frame_pointer() const; 384 static RegMask c_frame_ptr_mask; 385 386 // !!!!! Special stuff for building ScopeDescs 387 virtual int regnum_to_fpu_offset(int regnum); 388 389 // Is this branch offset small enough to be addressed by a short branch? 390 bool is_short_branch_offset(int rule, int br_size, int offset); 391 392 // Optional scaling for the parameter to the ClearArray/CopyArray node. 393 static const bool init_array_count_is_in_bytes; 394 395 // Threshold small size (in bytes) for a ClearArray/CopyArray node. 396 // Anything this size or smaller may get converted to discrete scalar stores. 397 static const int init_array_short_size; 398 399 // Some hardware needs 2 CMOV's for longs. 400 static const int long_cmove_cost(); 401 402 // Some hardware have expensive CMOV for float and double. 403 static const int float_cmove_cost(); 404 405 // Should the Matcher clone shifts on addressing modes, expecting them to 406 // be subsumed into complex addressing expressions or compute them into 407 // registers? True for Intel but false for most RISCs 408 static const bool clone_shift_expressions; 409 410 static bool narrow_oop_use_complex_address(); 411 static bool narrow_klass_use_complex_address(); 412 413 // Generate implicit null check for narrow oops if it can fold 414 // into address expression (x64). 415 // 416 // [R12 + narrow_oop_reg<<3 + offset] // fold into address expression 417 // NullCheck narrow_oop_reg 418 // 419 // When narrow oops can't fold into address expression (Sparc) and 420 // base is not null use decode_not_null and normal implicit null check. 421 // Note, decode_not_null node can be used here since it is referenced 422 // only on non null path but it requires special handling, see 423 // collect_null_checks(): 424 // 425 // decode_not_null narrow_oop_reg, oop_reg // 'shift' and 'add base' 426 // [oop_reg + offset] 427 // NullCheck oop_reg 428 // 429 // With Zero base and when narrow oops can not fold into address 430 // expression use normal implicit null check since only shift 431 // is needed to decode narrow oop. 432 // 433 // decode narrow_oop_reg, oop_reg // only 'shift' 434 // [oop_reg + offset] 435 // NullCheck oop_reg 436 // 437 inline static bool gen_narrow_oop_implicit_null_checks() { 438 return Universe::narrow_oop_use_implicit_null_checks() && 439 (narrow_oop_use_complex_address() || 440 Universe::narrow_oop_base() != NULL); 441 } 442 443 // Is it better to copy float constants, or load them directly from memory? 444 // Intel can load a float constant from a direct address, requiring no 445 // extra registers. Most RISCs will have to materialize an address into a 446 // register first, so they may as well materialize the constant immediately. 447 static const bool rematerialize_float_constants; 448 449 // If CPU can load and store mis-aligned doubles directly then no fixup is 450 // needed. Else we split the double into 2 integer pieces and move it 451 // piece-by-piece. Only happens when passing doubles into C code or when 452 // calling i2c adapters as the Java calling convention forces doubles to be 453 // aligned. 454 static const bool misaligned_doubles_ok; 455 456 // Does the CPU require postalloc expand (see block.cpp for description of 457 // postalloc expand)? 458 static const bool require_postalloc_expand; 459 460 // Perform a platform dependent implicit null fixup. This is needed 461 // on windows95 to take care of some unusual register constraints. 462 void pd_implicit_null_fixup(MachNode *load, uint idx); 463 464 // Advertise here if the CPU requires explicit rounding operations 465 // to implement the UseStrictFP mode. 466 static const bool strict_fp_requires_explicit_rounding; 467 468 // Are floats conerted to double when stored to stack during deoptimization? 469 static bool float_in_double(); 470 // Do ints take an entire long register or just half? 471 static const bool int_in_long; 472 473 // Do the processor's shift instructions only use the low 5/6 bits 474 // of the count for 32/64 bit ints? If not we need to do the masking 475 // ourselves. 476 static const bool need_masked_shift_count; 477 478 // This routine is run whenever a graph fails to match. 479 // If it returns, the compiler should bailout to interpreter without error. 480 // In non-product mode, SoftMatchFailure is false to detect non-canonical 481 // graphs. Print a message and exit. 482 static void soft_match_failure() { 483 if( SoftMatchFailure ) return; 484 else { fatal("SoftMatchFailure is not allowed except in product"); } 485 } 486 487 // Check for a following volatile memory barrier without an 488 // intervening load and thus we don't need a barrier here. We 489 // retain the Node to act as a compiler ordering barrier. 490 static bool post_store_load_barrier(const Node* mb); 491 492 // Does n lead to an uncommon trap that can cause deoptimization? 493 static bool branches_to_uncommon_trap(const Node *n); 494 495 #ifdef ASSERT 496 void dump_old2new_map(); // machine-independent to machine-dependent 497 498 Node* find_old_node(Node* new_node) { 499 return _new2old_map[new_node->_idx]; 500 } 501 #endif 502 }; 503 504 #endif // SHARE_VM_OPTO_MATCHER_HPP