1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_MEMNODE_HPP
  26 #define SHARE_VM_OPTO_MEMNODE_HPP
  27 
  28 #include "opto/multnode.hpp"
  29 #include "opto/node.hpp"
  30 #include "opto/opcodes.hpp"
  31 #include "opto/type.hpp"
  32 
  33 // Portions of code courtesy of Clifford Click
  34 
  35 class MultiNode;
  36 class PhaseCCP;
  37 class PhaseTransform;
  38 
  39 //------------------------------MemNode----------------------------------------
  40 // Load or Store, possibly throwing a NULL pointer exception
  41 class MemNode : public Node {
  42 private:
  43   bool _unaligned_access; // Unaligned access from unsafe
  44   bool _mismatched_access; // Mismatched access from unsafe: byte read in integer array for instance
  45 protected:
  46 #ifdef ASSERT
  47   const TypePtr* _adr_type;     // What kind of memory is being addressed?
  48 #endif
  49   virtual uint size_of() const;
  50 public:
  51   enum { Control,               // When is it safe to do this load?
  52          Memory,                // Chunk of memory is being loaded from
  53          Address,               // Actually address, derived from base
  54          ValueIn,               // Value to store
  55          OopStore               // Preceeding oop store, only in StoreCM
  56   };
  57   typedef enum { unordered = 0,
  58                  acquire,       // Load has to acquire or be succeeded by MemBarAcquire.
  59                  release        // Store has to release or be preceded by MemBarRelease.
  60   } MemOrd;
  61 protected:
  62   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
  63     : Node(c0,c1,c2   ), _unaligned_access(false), _mismatched_access(false) {
  64     init_class_id(Class_Mem);
  65     debug_only(_adr_type=at; adr_type();)
  66   }
  67   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
  68     : Node(c0,c1,c2,c3), _unaligned_access(false), _mismatched_access(false) {
  69     init_class_id(Class_Mem);
  70     debug_only(_adr_type=at; adr_type();)
  71   }
  72   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
  73     : Node(c0,c1,c2,c3,c4), _unaligned_access(false), _mismatched_access(false) {
  74     init_class_id(Class_Mem);
  75     debug_only(_adr_type=at; adr_type();)
  76   }
  77 
  78   static bool check_if_adr_maybe_raw(Node* adr);
  79 
  80 public:
  81   // Helpers for the optimizer.  Documented in memnode.cpp.
  82   static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
  83                                       Node* p2, AllocateNode* a2,
  84                                       PhaseTransform* phase);
  85   static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
  86 
  87   static Node *optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase);
  88   static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase);
  89   // This one should probably be a phase-specific function:
  90   static bool all_controls_dominate(Node* dom, Node* sub);
  91 
  92   virtual const class TypePtr *adr_type() const;  // returns bottom_type of address
  93 
  94   // Shared code for Ideal methods:
  95   Node *Ideal_common(PhaseGVN *phase, bool can_reshape);  // Return -1 for short-circuit NULL.
  96 
  97   // Helper function for adr_type() implementations.
  98   static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
  99 
 100   // Raw access function, to allow copying of adr_type efficiently in
 101   // product builds and retain the debug info for debug builds.
 102   const TypePtr *raw_adr_type() const {
 103 #ifdef ASSERT
 104     return _adr_type;
 105 #else
 106     return 0;
 107 #endif
 108   }
 109 
 110 #ifdef ASSERT
 111   void set_raw_adr_type(const TypePtr *t) {
 112     _adr_type = t;
 113   }
 114 #endif
 115 
 116   // Map a load or store opcode to its corresponding store opcode.
 117   // (Return -1 if unknown.)
 118   virtual int store_Opcode() const { return -1; }
 119 
 120   // What is the type of the value in memory?  (T_VOID mean "unspecified".)
 121   virtual BasicType memory_type() const = 0;
 122   virtual int memory_size() const {
 123 #ifdef ASSERT
 124     return type2aelembytes(memory_type(), true);
 125 #else
 126     return type2aelembytes(memory_type());
 127 #endif
 128   }
 129 
 130   // Search through memory states which precede this node (load or store).
 131   // Look for an exact match for the address, with no intervening
 132   // aliased stores.
 133   Node* find_previous_store(PhaseTransform* phase);
 134 
 135   // Can this node (load or store) accurately see a stored value in
 136   // the given memory state?  (The state may or may not be in(Memory).)
 137   Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
 138 
 139   void set_unaligned_access() { _unaligned_access = true; }
 140   bool is_unaligned_access() const { return _unaligned_access; }
 141   void set_mismatched_access() { _mismatched_access = true; }
 142   bool is_mismatched_access() const { return _mismatched_access; }
 143 
 144 #ifndef PRODUCT
 145   static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
 146   virtual void dump_spec(outputStream *st) const;
 147 #endif
 148 };
 149 
 150 //------------------------------LoadNode---------------------------------------
 151 // Load value; requires Memory and Address
 152 class LoadNode : public MemNode {
 153 public:
 154   // Some loads (from unsafe) should be pinned: they don't depend only
 155   // on the dominating test.  The boolean field _depends_only_on_test
 156   // below records whether that node depends only on the dominating
 157   // test.
 158   // Methods used to build LoadNodes pass an argument of type enum
 159   // ControlDependency instead of a boolean because those methods
 160   // typically have multiple boolean parameters with default values:
 161   // passing the wrong boolean to one of these parameters by mistake
 162   // goes easily unnoticed. Using an enum, the compiler can check that
 163   // the type of a value and the type of the parameter match.
 164   enum ControlDependency {
 165     Pinned,
 166     DependsOnlyOnTest
 167   };
 168 private:
 169   // LoadNode::hash() doesn't take the _depends_only_on_test field
 170   // into account: If the graph already has a non-pinned LoadNode and
 171   // we add a pinned LoadNode with the same inputs, it's safe for GVN
 172   // to replace the pinned LoadNode with the non-pinned LoadNode,
 173   // otherwise it wouldn't be safe to have a non pinned LoadNode with
 174   // those inputs in the first place. If the graph already has a
 175   // pinned LoadNode and we add a non pinned LoadNode with the same
 176   // inputs, it's safe (but suboptimal) for GVN to replace the
 177   // non-pinned LoadNode by the pinned LoadNode.
 178   bool _depends_only_on_test;
 179 
 180   // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
 181   // loads that can be reordered, and such requiring acquire semantics to
 182   // adhere to the Java specification.  The required behaviour is stored in
 183   // this field.
 184   const MemOrd _mo;
 185 
 186 protected:
 187   virtual uint cmp(const Node &n) const;
 188   virtual uint size_of() const; // Size is bigger
 189   // Should LoadNode::Ideal() attempt to remove control edges?
 190   virtual bool can_remove_control() const;
 191   const Type* const _type;      // What kind of value is loaded?
 192 public:
 193 
 194   LoadNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt, MemOrd mo, ControlDependency control_dependency)
 195     : MemNode(c,mem,adr,at), _type(rt), _mo(mo), _depends_only_on_test(control_dependency == DependsOnlyOnTest) {
 196     init_class_id(Class_Load);
 197   }
 198   inline bool is_unordered() const { return !is_acquire(); }
 199   inline bool is_acquire() const {
 200     assert(_mo == unordered || _mo == acquire, "unexpected");
 201     return _mo == acquire;
 202   }
 203 
 204   // Polymorphic factory method:
 205    static Node* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
 206                      const TypePtr* at, const Type *rt, BasicType bt,
 207                      MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
 208 
 209   virtual uint hash()   const;  // Check the type
 210 
 211   // Handle algebraic identities here.  If we have an identity, return the Node
 212   // we are equivalent to.  We look for Load of a Store.
 213   virtual Node *Identity( PhaseTransform *phase );
 214 
 215   // If the load is from Field memory and the pointer is non-null, it might be possible to
 216   // zero out the control input.
 217   // If the offset is constant and the base is an object allocation,
 218   // try to hook me up to the exact initializing store.
 219   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 220 
 221   // Split instance field load through Phi.
 222   Node* split_through_phi(PhaseGVN *phase);
 223 
 224   // Recover original value from boxed values
 225   Node *eliminate_autobox(PhaseGVN *phase);
 226 
 227   // Compute a new Type for this node.  Basically we just do the pre-check,
 228   // then call the virtual add() to set the type.
 229   virtual const Type *Value( PhaseTransform *phase ) const;
 230 
 231   // Common methods for LoadKlass and LoadNKlass nodes.
 232   const Type *klass_value_common( PhaseTransform *phase ) const;
 233   Node *klass_identity_common( PhaseTransform *phase );
 234 
 235   virtual uint ideal_reg() const;
 236   virtual const Type *bottom_type() const;
 237   // Following method is copied from TypeNode:
 238   void set_type(const Type* t) {
 239     assert(t != NULL, "sanity");
 240     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 241     *(const Type**)&_type = t;   // cast away const-ness
 242     // If this node is in the hash table, make sure it doesn't need a rehash.
 243     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
 244   }
 245   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
 246 
 247   // Do not match memory edge
 248   virtual uint match_edge(uint idx) const;
 249 
 250   // Map a load opcode to its corresponding store opcode.
 251   virtual int store_Opcode() const = 0;
 252 
 253   // Check if the load's memory input is a Phi node with the same control.
 254   bool is_instance_field_load_with_local_phi(Node* ctrl);
 255 
 256 #ifndef PRODUCT
 257   virtual void dump_spec(outputStream *st) const;
 258 #endif
 259 #ifdef ASSERT
 260   // Helper function to allow a raw load without control edge for some cases
 261   static bool is_immutable_value(Node* adr);
 262 #endif
 263 
 264   virtual bool is_g1_marking_load() const {
 265     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
 266     return in(2)->is_AddP() && in(2)->in(2)->Opcode() == Op_ThreadLocal
 267       && in(2)->in(3)->is_Con()
 268       && in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset;
 269   }
 270 
 271   virtual bool is_shenandoah_state_load() const {
 272     if (!UseShenandoahGC) return false;
 273     const int state_offset = in_bytes(JavaThread::gc_state_offset());
 274     return in(2)->is_AddP() && in(2)->in(2)->Opcode() == Op_ThreadLocal
 275       && in(2)->in(3)->is_Con()
 276       && in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == state_offset;
 277   }
 278 
 279 protected:
 280   const Type* load_array_final_field(const TypeKlassPtr *tkls,
 281                                      ciKlass* klass) const;
 282   // depends_only_on_test is almost always true, and needs to be almost always
 283   // true to enable key hoisting & commoning optimizations.  However, for the
 284   // special case of RawPtr loads from TLS top & end, and other loads performed by
 285   // GC barriers, the control edge carries the dependence preventing hoisting past
 286   // a Safepoint instead of the memory edge.  (An unfortunate consequence of having
 287   // Safepoints not set Raw Memory; itself an unfortunate consequence of having Nodes
 288   // which produce results (new raw memory state) inside of loops preventing all
 289   // manner of other optimizations).  Basically, it's ugly but so is the alternative.
 290   // See comment in macro.cpp, around line 125 expand_allocate_common().
 291   virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM && _depends_only_on_test; }
 292 };
 293 
 294 //------------------------------LoadBNode--------------------------------------
 295 // Load a byte (8bits signed) from memory
 296 class LoadBNode : public LoadNode {
 297 public:
 298   LoadBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 299     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 300   virtual int Opcode() const;
 301   virtual uint ideal_reg() const { return Op_RegI; }
 302   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 303   virtual const Type *Value(PhaseTransform *phase) const;
 304   virtual int store_Opcode() const { return Op_StoreB; }
 305   virtual BasicType memory_type() const { return T_BYTE; }
 306 };
 307 
 308 //------------------------------LoadUBNode-------------------------------------
 309 // Load a unsigned byte (8bits unsigned) from memory
 310 class LoadUBNode : public LoadNode {
 311 public:
 312   LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 313     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 314   virtual int Opcode() const;
 315   virtual uint ideal_reg() const { return Op_RegI; }
 316   virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
 317   virtual const Type *Value(PhaseTransform *phase) const;
 318   virtual int store_Opcode() const { return Op_StoreB; }
 319   virtual BasicType memory_type() const { return T_BYTE; }
 320 };
 321 
 322 //------------------------------LoadUSNode-------------------------------------
 323 // Load an unsigned short/char (16bits unsigned) from memory
 324 class LoadUSNode : public LoadNode {
 325 public:
 326   LoadUSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 327     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 328   virtual int Opcode() const;
 329   virtual uint ideal_reg() const { return Op_RegI; }
 330   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 331   virtual const Type *Value(PhaseTransform *phase) const;
 332   virtual int store_Opcode() const { return Op_StoreC; }
 333   virtual BasicType memory_type() const { return T_CHAR; }
 334 };
 335 
 336 //------------------------------LoadSNode--------------------------------------
 337 // Load a short (16bits signed) from memory
 338 class LoadSNode : public LoadNode {
 339 public:
 340   LoadSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 341     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 342   virtual int Opcode() const;
 343   virtual uint ideal_reg() const { return Op_RegI; }
 344   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 345   virtual const Type *Value(PhaseTransform *phase) const;
 346   virtual int store_Opcode() const { return Op_StoreC; }
 347   virtual BasicType memory_type() const { return T_SHORT; }
 348 };
 349 
 350 //------------------------------LoadINode--------------------------------------
 351 // Load an integer from memory
 352 class LoadINode : public LoadNode {
 353 public:
 354   LoadINode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 355     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 356   virtual int Opcode() const;
 357   virtual uint ideal_reg() const { return Op_RegI; }
 358   virtual int store_Opcode() const { return Op_StoreI; }
 359   virtual BasicType memory_type() const { return T_INT; }
 360 };
 361 
 362 //------------------------------LoadRangeNode----------------------------------
 363 // Load an array length from the array
 364 class LoadRangeNode : public LoadINode {
 365 public:
 366   LoadRangeNode(Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS)
 367     : LoadINode(c, mem, adr, TypeAryPtr::RANGE, ti, MemNode::unordered) {}
 368   virtual int Opcode() const;
 369   virtual const Type *Value( PhaseTransform *phase ) const;
 370   virtual Node *Identity( PhaseTransform *phase );
 371   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 372 };
 373 
 374 //------------------------------LoadLNode--------------------------------------
 375 // Load a long from memory
 376 class LoadLNode : public LoadNode {
 377   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
 378   virtual uint cmp( const Node &n ) const {
 379     return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
 380       && LoadNode::cmp(n);
 381   }
 382   virtual uint size_of() const { return sizeof(*this); }
 383   const bool _require_atomic_access;  // is piecewise load forbidden?
 384 
 385 public:
 386   LoadLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeLong *tl,
 387             MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
 388     : LoadNode(c, mem, adr, at, tl, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
 389   virtual int Opcode() const;
 390   virtual uint ideal_reg() const { return Op_RegL; }
 391   virtual int store_Opcode() const { return Op_StoreL; }
 392   virtual BasicType memory_type() const { return T_LONG; }
 393   bool require_atomic_access() const { return _require_atomic_access; }
 394   static LoadLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
 395                                 const Type* rt, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
 396 #ifndef PRODUCT
 397   virtual void dump_spec(outputStream *st) const {
 398     LoadNode::dump_spec(st);
 399     if (_require_atomic_access)  st->print(" Atomic!");
 400   }
 401 #endif
 402 };
 403 
 404 //------------------------------LoadL_unalignedNode----------------------------
 405 // Load a long from unaligned memory
 406 class LoadL_unalignedNode : public LoadLNode {
 407 public:
 408   LoadL_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 409     : LoadLNode(c, mem, adr, at, TypeLong::LONG, mo, control_dependency) {}
 410   virtual int Opcode() const;
 411 };
 412 
 413 //------------------------------LoadFNode--------------------------------------
 414 // Load a float (64 bits) from memory
 415 class LoadFNode : public LoadNode {
 416 public:
 417   LoadFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 418     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
 419   virtual int Opcode() const;
 420   virtual uint ideal_reg() const { return Op_RegF; }
 421   virtual int store_Opcode() const { return Op_StoreF; }
 422   virtual BasicType memory_type() const { return T_FLOAT; }
 423 };
 424 
 425 //------------------------------LoadDNode--------------------------------------
 426 // Load a double (64 bits) from memory
 427 class LoadDNode : public LoadNode {
 428   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
 429   virtual uint cmp( const Node &n ) const {
 430     return _require_atomic_access == ((LoadDNode&)n)._require_atomic_access
 431       && LoadNode::cmp(n);
 432   }
 433   virtual uint size_of() const { return sizeof(*this); }
 434   const bool _require_atomic_access;  // is piecewise load forbidden?
 435 
 436 public:
 437   LoadDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t,
 438             MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
 439     : LoadNode(c, mem, adr, at, t, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
 440   virtual int Opcode() const;
 441   virtual uint ideal_reg() const { return Op_RegD; }
 442   virtual int store_Opcode() const { return Op_StoreD; }
 443   virtual BasicType memory_type() const { return T_DOUBLE; }
 444   bool require_atomic_access() const { return _require_atomic_access; }
 445   static LoadDNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
 446                                 const Type* rt, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
 447 #ifndef PRODUCT
 448   virtual void dump_spec(outputStream *st) const {
 449     LoadNode::dump_spec(st);
 450     if (_require_atomic_access)  st->print(" Atomic!");
 451   }
 452 #endif
 453 };
 454 
 455 //------------------------------LoadD_unalignedNode----------------------------
 456 // Load a double from unaligned memory
 457 class LoadD_unalignedNode : public LoadDNode {
 458 public:
 459   LoadD_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 460     : LoadDNode(c, mem, adr, at, Type::DOUBLE, mo, control_dependency) {}
 461   virtual int Opcode() const;
 462 };
 463 
 464 //------------------------------LoadPNode--------------------------------------
 465 // Load a pointer from memory (either object or array)
 466 class LoadPNode : public LoadNode {
 467 public:
 468   LoadPNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 469     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
 470   virtual int Opcode() const;
 471   virtual uint ideal_reg() const { return Op_RegP; }
 472   virtual int store_Opcode() const { return Op_StoreP; }
 473   virtual BasicType memory_type() const { return T_ADDRESS; }
 474 };
 475 
 476 
 477 //------------------------------LoadNNode--------------------------------------
 478 // Load a narrow oop from memory (either object or array)
 479 class LoadNNode : public LoadNode {
 480 public:
 481   LoadNNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 482     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
 483   virtual int Opcode() const;
 484   virtual uint ideal_reg() const { return Op_RegN; }
 485   virtual int store_Opcode() const { return Op_StoreN; }
 486   virtual BasicType memory_type() const { return T_NARROWOOP; }
 487 };
 488 
 489 //------------------------------LoadKlassNode----------------------------------
 490 // Load a Klass from an object
 491 class LoadKlassNode : public LoadPNode {
 492 protected:
 493   // In most cases, LoadKlassNode does not have the control input set. If the control
 494   // input is set, it must not be removed (by LoadNode::Ideal()).
 495   virtual bool can_remove_control() const;
 496 public:
 497   LoadKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk, MemOrd mo)
 498     : LoadPNode(c, mem, adr, at, tk, mo) {}
 499   virtual int Opcode() const;
 500   virtual const Type *Value( PhaseTransform *phase ) const;
 501   virtual Node *Identity( PhaseTransform *phase );
 502   virtual bool depends_only_on_test() const { return true; }
 503 
 504   // Polymorphic factory method:
 505   static Node* make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at,
 506                     const TypeKlassPtr* tk = TypeKlassPtr::OBJECT);
 507 };
 508 
 509 //------------------------------LoadNKlassNode---------------------------------
 510 // Load a narrow Klass from an object.
 511 class LoadNKlassNode : public LoadNNode {
 512 public:
 513   LoadNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowKlass *tk, MemOrd mo)
 514     : LoadNNode(c, mem, adr, at, tk, mo) {}
 515   virtual int Opcode() const;
 516   virtual uint ideal_reg() const { return Op_RegN; }
 517   virtual int store_Opcode() const { return Op_StoreNKlass; }
 518   virtual BasicType memory_type() const { return T_NARROWKLASS; }
 519 
 520   virtual const Type *Value( PhaseTransform *phase ) const;
 521   virtual Node *Identity( PhaseTransform *phase );
 522   virtual bool depends_only_on_test() const { return true; }
 523 };
 524 
 525 
 526 //------------------------------StoreNode--------------------------------------
 527 // Store value; requires Store, Address and Value
 528 class StoreNode : public MemNode {
 529 private:
 530   // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
 531   // stores that can be reordered, and such requiring release semantics to
 532   // adhere to the Java specification.  The required behaviour is stored in
 533   // this field.
 534   const MemOrd _mo;
 535   // Needed for proper cloning.
 536   virtual uint size_of() const { return sizeof(*this); }
 537 protected:
 538   virtual uint cmp( const Node &n ) const;
 539   virtual bool depends_only_on_test() const { return false; }
 540 
 541   Node *Ideal_masked_input       (PhaseGVN *phase, uint mask);
 542   Node *Ideal_sign_extended_input(PhaseGVN *phase, int  num_bits);
 543 
 544 public:
 545   // We must ensure that stores of object references will be visible
 546   // only after the object's initialization. So the callers of this
 547   // procedure must indicate that the store requires `release'
 548   // semantics, if the stored value is an object reference that might
 549   // point to a new object and may become externally visible.
 550   StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 551     : MemNode(c, mem, adr, at, val), _mo(mo) {
 552     init_class_id(Class_Store);
 553   }
 554   StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, MemOrd mo)
 555     : MemNode(c, mem, adr, at, val, oop_store), _mo(mo) {
 556     init_class_id(Class_Store);
 557   }
 558 
 559   inline bool is_unordered() const { return !is_release(); }
 560   inline bool is_release() const {
 561     assert((_mo == unordered || _mo == release), "unexpected");
 562     return _mo == release;
 563   }
 564 
 565   // Conservatively release stores of object references in order to
 566   // ensure visibility of object initialization.
 567   static inline MemOrd release_if_reference(const BasicType t) {
 568     const MemOrd mo = (t == T_ARRAY ||
 569                        t == T_ADDRESS || // Might be the address of an object reference (`boxing').
 570                        t == T_OBJECT) ? release : unordered;
 571     return mo;
 572   }
 573 
 574   // Polymorphic factory method
 575   //
 576   // We must ensure that stores of object references will be visible
 577   // only after the object's initialization. So the callers of this
 578   // procedure must indicate that the store requires `release'
 579   // semantics, if the stored value is an object reference that might
 580   // point to a new object and may become externally visible.
 581   static StoreNode* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
 582                          const TypePtr* at, Node *val, BasicType bt, MemOrd mo);
 583 
 584   virtual uint hash() const;    // Check the type
 585 
 586   // If the store is to Field memory and the pointer is non-null, we can
 587   // zero out the control input.
 588   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 589 
 590   // Compute a new Type for this node.  Basically we just do the pre-check,
 591   // then call the virtual add() to set the type.
 592   virtual const Type *Value( PhaseTransform *phase ) const;
 593 
 594   // Check for identity function on memory (Load then Store at same address)
 595   virtual Node *Identity( PhaseTransform *phase );
 596 
 597   // Do not match memory edge
 598   virtual uint match_edge(uint idx) const;
 599 
 600   virtual const Type *bottom_type() const;  // returns Type::MEMORY
 601 
 602   // Map a store opcode to its corresponding own opcode, trivially.
 603   virtual int store_Opcode() const { return Opcode(); }
 604 
 605   // have all possible loads of the value stored been optimized away?
 606   bool value_never_loaded(PhaseTransform *phase) const;
 607 
 608   MemBarNode* trailing_membar() const;
 609 };
 610 
 611 //------------------------------StoreBNode-------------------------------------
 612 // Store byte to memory
 613 class StoreBNode : public StoreNode {
 614 public:
 615   StoreBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 616     : StoreNode(c, mem, adr, at, val, mo) {}
 617   virtual int Opcode() const;
 618   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 619   virtual BasicType memory_type() const { return T_BYTE; }
 620 };
 621 
 622 //------------------------------StoreCNode-------------------------------------
 623 // Store char/short to memory
 624 class StoreCNode : public StoreNode {
 625 public:
 626   StoreCNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 627     : StoreNode(c, mem, adr, at, val, mo) {}
 628   virtual int Opcode() const;
 629   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 630   virtual BasicType memory_type() const { return T_CHAR; }
 631 };
 632 
 633 //------------------------------StoreINode-------------------------------------
 634 // Store int to memory
 635 class StoreINode : public StoreNode {
 636 public:
 637   StoreINode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 638     : StoreNode(c, mem, adr, at, val, mo) {}
 639   virtual int Opcode() const;
 640   virtual BasicType memory_type() const { return T_INT; }
 641 };
 642 
 643 //------------------------------StoreLNode-------------------------------------
 644 // Store long to memory
 645 class StoreLNode : public StoreNode {
 646   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
 647   virtual uint cmp( const Node &n ) const {
 648     return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
 649       && StoreNode::cmp(n);
 650   }
 651   virtual uint size_of() const { return sizeof(*this); }
 652   const bool _require_atomic_access;  // is piecewise store forbidden?
 653 
 654 public:
 655   StoreLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo, bool require_atomic_access = false)
 656     : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
 657   virtual int Opcode() const;
 658   virtual BasicType memory_type() const { return T_LONG; }
 659   bool require_atomic_access() const { return _require_atomic_access; }
 660   static StoreLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
 661 #ifndef PRODUCT
 662   virtual void dump_spec(outputStream *st) const {
 663     StoreNode::dump_spec(st);
 664     if (_require_atomic_access)  st->print(" Atomic!");
 665   }
 666 #endif
 667 };
 668 
 669 //------------------------------StoreFNode-------------------------------------
 670 // Store float to memory
 671 class StoreFNode : public StoreNode {
 672 public:
 673   StoreFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 674     : StoreNode(c, mem, adr, at, val, mo) {}
 675   virtual int Opcode() const;
 676   virtual BasicType memory_type() const { return T_FLOAT; }
 677 };
 678 
 679 //------------------------------StoreDNode-------------------------------------
 680 // Store double to memory
 681 class StoreDNode : public StoreNode {
 682   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
 683   virtual uint cmp( const Node &n ) const {
 684     return _require_atomic_access == ((StoreDNode&)n)._require_atomic_access
 685       && StoreNode::cmp(n);
 686   }
 687   virtual uint size_of() const { return sizeof(*this); }
 688   const bool _require_atomic_access;  // is piecewise store forbidden?
 689 public:
 690   StoreDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
 691              MemOrd mo, bool require_atomic_access = false)
 692     : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
 693   virtual int Opcode() const;
 694   virtual BasicType memory_type() const { return T_DOUBLE; }
 695   bool require_atomic_access() const { return _require_atomic_access; }
 696   static StoreDNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
 697 #ifndef PRODUCT
 698   virtual void dump_spec(outputStream *st) const {
 699     StoreNode::dump_spec(st);
 700     if (_require_atomic_access)  st->print(" Atomic!");
 701   }
 702 #endif
 703 
 704 };
 705 
 706 //------------------------------StorePNode-------------------------------------
 707 // Store pointer to memory
 708 class StorePNode : public StoreNode {
 709 public:
 710   StorePNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 711     : StoreNode(c, mem, adr, at, val, mo) {}
 712   virtual int Opcode() const;
 713   virtual BasicType memory_type() const { return T_ADDRESS; }
 714 };
 715 
 716 //------------------------------StoreNNode-------------------------------------
 717 // Store narrow oop to memory
 718 class StoreNNode : public StoreNode {
 719 public:
 720   StoreNNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 721     : StoreNode(c, mem, adr, at, val, mo) {}
 722   virtual int Opcode() const;
 723   virtual BasicType memory_type() const { return T_NARROWOOP; }
 724 };
 725 
 726 //------------------------------StoreNKlassNode--------------------------------------
 727 // Store narrow klass to memory
 728 class StoreNKlassNode : public StoreNNode {
 729 public:
 730   StoreNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 731     : StoreNNode(c, mem, adr, at, val, mo) {}
 732   virtual int Opcode() const;
 733   virtual BasicType memory_type() const { return T_NARROWKLASS; }
 734 };
 735 
 736 //------------------------------StoreCMNode-----------------------------------
 737 // Store card-mark byte to memory for CM
 738 // The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
 739 // Preceeding equivalent StoreCMs may be eliminated.
 740 class StoreCMNode : public StoreNode {
 741  private:
 742   virtual uint hash() const { return StoreNode::hash() + _oop_alias_idx; }
 743   virtual uint cmp( const Node &n ) const {
 744     return _oop_alias_idx == ((StoreCMNode&)n)._oop_alias_idx
 745       && StoreNode::cmp(n);
 746   }
 747   virtual uint size_of() const { return sizeof(*this); }
 748   int _oop_alias_idx;   // The alias_idx of OopStore
 749 
 750 public:
 751   StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, int oop_alias_idx ) :
 752     StoreNode(c, mem, adr, at, val, oop_store, MemNode::release),
 753     _oop_alias_idx(oop_alias_idx) {
 754     assert(_oop_alias_idx >= Compile::AliasIdxRaw ||
 755            _oop_alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
 756            "bad oop alias idx");
 757   }
 758   virtual int Opcode() const;
 759   virtual Node *Identity( PhaseTransform *phase );
 760   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 761   virtual const Type *Value( PhaseTransform *phase ) const;
 762   virtual BasicType memory_type() const { return T_VOID; } // unspecific
 763   int oop_alias_idx() const { return _oop_alias_idx; }
 764 };
 765 
 766 //------------------------------LoadPLockedNode---------------------------------
 767 // Load-locked a pointer from memory (either object or array).
 768 // On Sparc & Intel this is implemented as a normal pointer load.
 769 // On PowerPC and friends it's a real load-locked.
 770 class LoadPLockedNode : public LoadPNode {
 771 public:
 772   LoadPLockedNode(Node *c, Node *mem, Node *adr, MemOrd mo)
 773     : LoadPNode(c, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, mo) {}
 774   virtual int Opcode() const;
 775   virtual int store_Opcode() const { return Op_StorePConditional; }
 776   virtual bool depends_only_on_test() const { return true; }
 777 };
 778 
 779 //------------------------------SCMemProjNode---------------------------------------
 780 // This class defines a projection of the memory  state of a store conditional node.
 781 // These nodes return a value, but also update memory.
 782 class SCMemProjNode : public ProjNode {
 783 public:
 784   enum {SCMEMPROJCON = (uint)-2};
 785   SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
 786   virtual int Opcode() const;
 787   virtual bool      is_CFG() const  { return false; }
 788   virtual const Type *bottom_type() const {return Type::MEMORY;}
 789   virtual const TypePtr *adr_type() const { return in(0)->in(MemNode::Memory)->adr_type();}
 790   virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
 791   virtual const Type *Value( PhaseTransform *phase ) const;
 792 #ifndef PRODUCT
 793   virtual void dump_spec(outputStream *st) const {};
 794 #endif
 795 };
 796 
 797 //------------------------------LoadStoreNode---------------------------
 798 // Note: is_Mem() method returns 'true' for this class.
 799 class LoadStoreNode : public Node {
 800 private:
 801   const Type* const _type;      // What kind of value is loaded?
 802   const TypePtr* _adr_type;     // What kind of memory is being addressed?
 803   virtual uint size_of() const; // Size is bigger
 804 public:
 805   LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required );
 806   virtual bool depends_only_on_test() const { return false; }
 807   virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
 808 
 809   virtual const Type *bottom_type() const { return _type; }
 810   virtual uint ideal_reg() const;
 811   virtual const class TypePtr *adr_type() const { return _adr_type; }  // returns bottom_type of address
 812   void set_adr_type(const TypePtr *t) {
 813     _adr_type = t;
 814   }
 815 
 816   bool result_not_used() const;
 817   MemBarNode* trailing_membar() const;
 818 };
 819 
 820 class LoadStoreConditionalNode : public LoadStoreNode {
 821 public:
 822   enum {
 823     ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
 824   };
 825   LoadStoreConditionalNode(Node *c, Node *mem, Node *adr, Node *val, Node *ex);
 826 };
 827 
 828 //------------------------------StorePConditionalNode---------------------------
 829 // Conditionally store pointer to memory, if no change since prior
 830 // load-locked.  Sets flags for success or failure of the store.
 831 class StorePConditionalNode : public LoadStoreConditionalNode {
 832 public:
 833   StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
 834   virtual int Opcode() const;
 835   // Produces flags
 836   virtual uint ideal_reg() const { return Op_RegFlags; }
 837 };
 838 
 839 //------------------------------StoreIConditionalNode---------------------------
 840 // Conditionally store int to memory, if no change since prior
 841 // load-locked.  Sets flags for success or failure of the store.
 842 class StoreIConditionalNode : public LoadStoreConditionalNode {
 843 public:
 844   StoreIConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ii ) : LoadStoreConditionalNode(c, mem, adr, val, ii) { }
 845   virtual int Opcode() const;
 846   // Produces flags
 847   virtual uint ideal_reg() const { return Op_RegFlags; }
 848 };
 849 
 850 //------------------------------StoreLConditionalNode---------------------------
 851 // Conditionally store long to memory, if no change since prior
 852 // load-locked.  Sets flags for success or failure of the store.
 853 class StoreLConditionalNode : public LoadStoreConditionalNode {
 854 public:
 855   StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
 856   virtual int Opcode() const;
 857   // Produces flags
 858   virtual uint ideal_reg() const { return Op_RegFlags; }
 859 };
 860 
 861 
 862 //------------------------------CompareAndSwapLNode---------------------------
 863 class CompareAndSwapLNode : public LoadStoreConditionalNode {
 864 public:
 865   CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 866   virtual int Opcode() const;
 867 };
 868 
 869 
 870 //------------------------------CompareAndSwapINode---------------------------
 871 class CompareAndSwapINode : public LoadStoreConditionalNode {
 872 public:
 873   CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 874   virtual int Opcode() const;
 875 };
 876 
 877 
 878 //------------------------------CompareAndSwapPNode---------------------------
 879 class CompareAndSwapPNode : public LoadStoreConditionalNode {
 880 public:
 881   CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 882   virtual int Opcode() const;
 883 };
 884 
 885 //------------------------------CompareAndSwapNNode---------------------------
 886 class CompareAndSwapNNode : public LoadStoreConditionalNode {
 887 public:
 888   CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 889   virtual int Opcode() const;
 890 };
 891 
 892 //------------------------------GetAndAddINode---------------------------
 893 class GetAndAddINode : public LoadStoreNode {
 894 public:
 895   GetAndAddINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
 896   virtual int Opcode() const;
 897 };
 898 
 899 //------------------------------GetAndAddLNode---------------------------
 900 class GetAndAddLNode : public LoadStoreNode {
 901 public:
 902   GetAndAddLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
 903   virtual int Opcode() const;
 904 };
 905 
 906 
 907 //------------------------------GetAndSetINode---------------------------
 908 class GetAndSetINode : public LoadStoreNode {
 909 public:
 910   GetAndSetINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
 911   virtual int Opcode() const;
 912 };
 913 
 914 //------------------------------GetAndSetINode---------------------------
 915 class GetAndSetLNode : public LoadStoreNode {
 916 public:
 917   GetAndSetLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
 918   virtual int Opcode() const;
 919 };
 920 
 921 //------------------------------GetAndSetPNode---------------------------
 922 class GetAndSetPNode : public LoadStoreNode {
 923 public:
 924   GetAndSetPNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
 925   virtual int Opcode() const;
 926 };
 927 
 928 //------------------------------GetAndSetNNode---------------------------
 929 class GetAndSetNNode : public LoadStoreNode {
 930 public:
 931   GetAndSetNNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
 932   virtual int Opcode() const;
 933 };
 934 
 935 //------------------------------ClearArray-------------------------------------
 936 class ClearArrayNode: public Node {
 937 public:
 938   ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base )
 939     : Node(ctrl,arymem,word_cnt,base) {
 940     init_class_id(Class_ClearArray);
 941   }
 942   virtual int         Opcode() const;
 943   virtual const Type *bottom_type() const { return Type::MEMORY; }
 944   // ClearArray modifies array elements, and so affects only the
 945   // array memory addressed by the bottom_type of its base address.
 946   virtual const class TypePtr *adr_type() const;
 947   virtual Node *Identity( PhaseTransform *phase );
 948   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 949   virtual uint match_edge(uint idx) const;
 950 
 951   // Clear the given area of an object or array.
 952   // The start offset must always be aligned mod BytesPerInt.
 953   // The end offset must always be aligned mod BytesPerLong.
 954   // Return the new memory.
 955   static Node* clear_memory(Node* control, Node* mem, Node* dest,
 956                             intptr_t start_offset,
 957                             intptr_t end_offset,
 958                             PhaseGVN* phase);
 959   static Node* clear_memory(Node* control, Node* mem, Node* dest,
 960                             intptr_t start_offset,
 961                             Node* end_offset,
 962                             PhaseGVN* phase);
 963   static Node* clear_memory(Node* control, Node* mem, Node* dest,
 964                             Node* start_offset,
 965                             Node* end_offset,
 966                             PhaseGVN* phase);
 967   // Return allocation input memory edge if it is different instance
 968   // or itself if it is the one we are looking for.
 969   static bool step_through(Node** np, uint instance_id, PhaseTransform* phase);
 970 };
 971 
 972 //------------------------------StrIntrinsic-------------------------------
 973 // Base class for Ideal nodes used in String instrinsic code.
 974 class StrIntrinsicNode: public Node {
 975 public:
 976   StrIntrinsicNode(Node* control, Node* char_array_mem,
 977                    Node* s1, Node* c1, Node* s2, Node* c2):
 978     Node(control, char_array_mem, s1, c1, s2, c2) {
 979   }
 980 
 981   StrIntrinsicNode(Node* control, Node* char_array_mem,
 982                    Node* s1, Node* s2, Node* c):
 983     Node(control, char_array_mem, s1, s2, c) {
 984   }
 985 
 986   StrIntrinsicNode(Node* control, Node* char_array_mem,
 987                    Node* s1, Node* s2):
 988     Node(control, char_array_mem, s1, s2) {
 989   }
 990 
 991   virtual bool depends_only_on_test() const { return false; }
 992   virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
 993   virtual uint match_edge(uint idx) const;
 994   virtual uint ideal_reg() const { return Op_RegI; }
 995   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 996   virtual const Type *Value(PhaseTransform *phase) const;
 997 };
 998 
 999 //------------------------------StrComp-------------------------------------
1000 class StrCompNode: public StrIntrinsicNode {
1001 public:
1002   StrCompNode(Node* control, Node* char_array_mem,
1003               Node* s1, Node* c1, Node* s2, Node* c2):
1004     StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
1005   virtual int Opcode() const;
1006   virtual const Type* bottom_type() const { return TypeInt::INT; }
1007 };
1008 
1009 //------------------------------StrEquals-------------------------------------
1010 class StrEqualsNode: public StrIntrinsicNode {
1011 public:
1012   StrEqualsNode(Node* control, Node* char_array_mem,
1013                 Node* s1, Node* s2, Node* c):
1014     StrIntrinsicNode(control, char_array_mem, s1, s2, c) {};
1015   virtual int Opcode() const;
1016   virtual const Type* bottom_type() const { return TypeInt::BOOL; }
1017 };
1018 
1019 //------------------------------StrIndexOf-------------------------------------
1020 class StrIndexOfNode: public StrIntrinsicNode {
1021 public:
1022   StrIndexOfNode(Node* control, Node* char_array_mem,
1023               Node* s1, Node* c1, Node* s2, Node* c2):
1024     StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
1025   virtual int Opcode() const;
1026   virtual const Type* bottom_type() const { return TypeInt::INT; }
1027 };
1028 
1029 //------------------------------AryEq---------------------------------------
1030 class AryEqNode: public StrIntrinsicNode {
1031 public:
1032   AryEqNode(Node* control, Node* char_array_mem, Node* s1, Node* s2):
1033     StrIntrinsicNode(control, char_array_mem, s1, s2) {};
1034   virtual int Opcode() const;
1035   virtual const Type* bottom_type() const { return TypeInt::BOOL; }
1036 };
1037 
1038 
1039 //------------------------------EncodeISOArray--------------------------------
1040 // encode char[] to byte[] in ISO_8859_1
1041 class EncodeISOArrayNode: public Node {
1042 public:
1043   EncodeISOArrayNode(Node *control, Node* arymem, Node* s1, Node* s2, Node* c): Node(control, arymem, s1, s2, c) {};
1044   virtual int Opcode() const;
1045   virtual bool depends_only_on_test() const { return false; }
1046   virtual const Type* bottom_type() const { return TypeInt::INT; }
1047   virtual const TypePtr* adr_type() const { return TypePtr::BOTTOM; }
1048   virtual uint match_edge(uint idx) const;
1049   virtual uint ideal_reg() const { return Op_RegI; }
1050   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1051   virtual const Type *Value(PhaseTransform *phase) const;
1052 };
1053 
1054 //------------------------------MemBar-----------------------------------------
1055 // There are different flavors of Memory Barriers to match the Java Memory
1056 // Model.  Monitor-enter and volatile-load act as Aquires: no following ref
1057 // can be moved to before them.  We insert a MemBar-Acquire after a FastLock or
1058 // volatile-load.  Monitor-exit and volatile-store act as Release: no
1059 // preceding ref can be moved to after them.  We insert a MemBar-Release
1060 // before a FastUnlock or volatile-store.  All volatiles need to be
1061 // serialized, so we follow all volatile-stores with a MemBar-Volatile to
1062 // separate it from any following volatile-load.
1063 class MemBarNode: public MultiNode {
1064   virtual uint hash() const ;                  // { return NO_HASH; }
1065   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
1066 
1067   virtual uint size_of() const { return sizeof(*this); }
1068   // Memory type this node is serializing.  Usually either rawptr or bottom.
1069   const TypePtr* _adr_type;
1070 
1071   // How is this membar related to a nearby memory access?
1072   enum {
1073     Standalone,
1074     TrailingLoad,
1075     TrailingStore,
1076     LeadingStore,
1077     TrailingLoadStore,
1078     LeadingLoadStore
1079   } _kind;
1080 
1081 #ifdef ASSERT
1082   uint _pair_idx;
1083 #endif
1084 
1085 public:
1086   enum {
1087     Precedent = TypeFunc::Parms  // optional edge to force precedence
1088   };
1089   MemBarNode(Compile* C, int alias_idx, Node* precedent);
1090   virtual int Opcode() const = 0;
1091   virtual const class TypePtr *adr_type() const { return _adr_type; }
1092   virtual const Type *Value( PhaseTransform *phase ) const;
1093   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1094   virtual uint match_edge(uint idx) const { return 0; }
1095   virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
1096   virtual Node *match( const ProjNode *proj, const Matcher *m );
1097   // Factory method.  Builds a wide or narrow membar.
1098   // Optional 'precedent' becomes an extra edge if not null.
1099   static MemBarNode* make(Compile* C, int opcode,
1100                           int alias_idx = Compile::AliasIdxBot,
1101                           Node* precedent = NULL);
1102 
1103   MemBarNode* trailing_membar() const;
1104   MemBarNode* leading_membar() const;
1105 
1106   void set_trailing_load() { _kind = TrailingLoad; }
1107   bool trailing_load() const { return _kind == TrailingLoad; }
1108   bool trailing_store() const { return _kind == TrailingStore; }
1109   bool leading_store() const { return _kind == LeadingStore; }
1110   bool trailing_load_store() const { return _kind == TrailingLoadStore; }
1111   bool leading_load_store() const { return _kind == LeadingLoadStore; }
1112   bool trailing() const { return _kind == TrailingLoad || _kind == TrailingStore || _kind == TrailingLoadStore; }
1113   bool leading() const { return _kind == LeadingStore || _kind == LeadingLoadStore; }
1114   bool standalone() const { return _kind == Standalone; }
1115 
1116   static void set_store_pair(MemBarNode* leading, MemBarNode* trailing);
1117   static void set_load_store_pair(MemBarNode* leading, MemBarNode* trailing);
1118 
1119   void remove(PhaseIterGVN *igvn);
1120 };
1121 
1122 // "Acquire" - no following ref can move before (but earlier refs can
1123 // follow, like an early Load stalled in cache).  Requires multi-cpu
1124 // visibility.  Inserted after a volatile load.
1125 class MemBarAcquireNode: public MemBarNode {
1126 public:
1127   MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
1128     : MemBarNode(C, alias_idx, precedent) {}
1129   virtual int Opcode() const;
1130 };
1131 
1132 // "Acquire" - no following ref can move before (but earlier refs can
1133 // follow, like an early Load stalled in cache).  Requires multi-cpu
1134 // visibility.  Inserted independ of any load, as required
1135 // for intrinsic sun.misc.Unsafe.loadFence().
1136 class LoadFenceNode: public MemBarNode {
1137 public:
1138   LoadFenceNode(Compile* C, int alias_idx, Node* precedent)
1139     : MemBarNode(C, alias_idx, precedent) {}
1140   virtual int Opcode() const;
1141 };
1142 
1143 // "Release" - no earlier ref can move after (but later refs can move
1144 // up, like a speculative pipelined cache-hitting Load).  Requires
1145 // multi-cpu visibility.  Inserted before a volatile store.
1146 class MemBarReleaseNode: public MemBarNode {
1147 public:
1148   MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
1149     : MemBarNode(C, alias_idx, precedent) {}
1150   virtual int Opcode() const;
1151 };
1152 
1153 // "Release" - no earlier ref can move after (but later refs can move
1154 // up, like a speculative pipelined cache-hitting Load).  Requires
1155 // multi-cpu visibility.  Inserted independent of any store, as required
1156 // for intrinsic sun.misc.Unsafe.storeFence().
1157 class StoreFenceNode: public MemBarNode {
1158 public:
1159   StoreFenceNode(Compile* C, int alias_idx, Node* precedent)
1160     : MemBarNode(C, alias_idx, precedent) {}
1161   virtual int Opcode() const;
1162 };
1163 
1164 // "Acquire" - no following ref can move before (but earlier refs can
1165 // follow, like an early Load stalled in cache).  Requires multi-cpu
1166 // visibility.  Inserted after a FastLock.
1167 class MemBarAcquireLockNode: public MemBarNode {
1168 public:
1169   MemBarAcquireLockNode(Compile* C, int alias_idx, Node* precedent)
1170     : MemBarNode(C, alias_idx, precedent) {}
1171   virtual int Opcode() const;
1172 };
1173 
1174 // "Release" - no earlier ref can move after (but later refs can move
1175 // up, like a speculative pipelined cache-hitting Load).  Requires
1176 // multi-cpu visibility.  Inserted before a FastUnLock.
1177 class MemBarReleaseLockNode: public MemBarNode {
1178 public:
1179   MemBarReleaseLockNode(Compile* C, int alias_idx, Node* precedent)
1180     : MemBarNode(C, alias_idx, precedent) {}
1181   virtual int Opcode() const;
1182 };
1183 
1184 class MemBarStoreStoreNode: public MemBarNode {
1185 public:
1186   MemBarStoreStoreNode(Compile* C, int alias_idx, Node* precedent)
1187     : MemBarNode(C, alias_idx, precedent) {
1188     init_class_id(Class_MemBarStoreStore);
1189   }
1190   virtual int Opcode() const;
1191 };
1192 
1193 // Ordering between a volatile store and a following volatile load.
1194 // Requires multi-CPU visibility?
1195 class MemBarVolatileNode: public MemBarNode {
1196 public:
1197   MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
1198     : MemBarNode(C, alias_idx, precedent) {}
1199   virtual int Opcode() const;
1200 };
1201 
1202 // Ordering within the same CPU.  Used to order unsafe memory references
1203 // inside the compiler when we lack alias info.  Not needed "outside" the
1204 // compiler because the CPU does all the ordering for us.
1205 class MemBarCPUOrderNode: public MemBarNode {
1206 public:
1207   MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
1208     : MemBarNode(C, alias_idx, precedent) {}
1209   virtual int Opcode() const;
1210   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
1211 };
1212 
1213 // Isolation of object setup after an AllocateNode and before next safepoint.
1214 // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
1215 class InitializeNode: public MemBarNode {
1216   friend class AllocateNode;
1217 
1218   enum {
1219     Incomplete    = 0,
1220     Complete      = 1,
1221     WithArraycopy = 2
1222   };
1223   int _is_complete;
1224 
1225   bool _does_not_escape;
1226 
1227 public:
1228   enum {
1229     Control    = TypeFunc::Control,
1230     Memory     = TypeFunc::Memory,     // MergeMem for states affected by this op
1231     RawAddress = TypeFunc::Parms+0,    // the newly-allocated raw address
1232     RawStores  = TypeFunc::Parms+1     // zero or more stores (or TOP)
1233   };
1234 
1235   InitializeNode(Compile* C, int adr_type, Node* rawoop);
1236   virtual int Opcode() const;
1237   virtual uint size_of() const { return sizeof(*this); }
1238   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
1239   virtual const RegMask &in_RegMask(uint) const;  // mask for RawAddress
1240 
1241   // Manage incoming memory edges via a MergeMem on in(Memory):
1242   Node* memory(uint alias_idx);
1243 
1244   // The raw memory edge coming directly from the Allocation.
1245   // The contents of this memory are *always* all-zero-bits.
1246   Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
1247 
1248   // Return the corresponding allocation for this initialization (or null if none).
1249   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
1250   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
1251   AllocateNode* allocation();
1252 
1253   // Anything other than zeroing in this init?
1254   bool is_non_zero();
1255 
1256   // An InitializeNode must completed before macro expansion is done.
1257   // Completion requires that the AllocateNode must be followed by
1258   // initialization of the new memory to zero, then to any initializers.
1259   bool is_complete() { return _is_complete != Incomplete; }
1260   bool is_complete_with_arraycopy() { return (_is_complete & WithArraycopy) != 0; }
1261 
1262   // Mark complete.  (Must not yet be complete.)
1263   void set_complete(PhaseGVN* phase);
1264   void set_complete_with_arraycopy() { _is_complete = Complete | WithArraycopy; }
1265 
1266   bool does_not_escape() { return _does_not_escape; }
1267   void set_does_not_escape() { _does_not_escape = true; }
1268 
1269 #ifdef ASSERT
1270   // ensure all non-degenerate stores are ordered and non-overlapping
1271   bool stores_are_sane(PhaseTransform* phase);
1272 #endif //ASSERT
1273 
1274   // See if this store can be captured; return offset where it initializes.
1275   // Return 0 if the store cannot be moved (any sort of problem).
1276   intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape);
1277 
1278   // Capture another store; reformat it to write my internal raw memory.
1279   // Return the captured copy, else NULL if there is some sort of problem.
1280   Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase, bool can_reshape);
1281 
1282   // Find captured store which corresponds to the range [start..start+size).
1283   // Return my own memory projection (meaning the initial zero bits)
1284   // if there is no such store.  Return NULL if there is a problem.
1285   Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
1286 
1287   // Called when the associated AllocateNode is expanded into CFG.
1288   Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
1289                         intptr_t header_size, Node* size_in_bytes,
1290                         PhaseGVN* phase);
1291 
1292  private:
1293   void remove_extra_zeroes();
1294 
1295   // Find out where a captured store should be placed (or already is placed).
1296   int captured_store_insertion_point(intptr_t start, int size_in_bytes,
1297                                      PhaseTransform* phase);
1298 
1299   static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
1300 
1301   Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
1302 
1303   bool detect_init_independence(Node* n, int& count);
1304 
1305   void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
1306                                PhaseGVN* phase);
1307 
1308   intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
1309 };
1310 
1311 //------------------------------MergeMem---------------------------------------
1312 // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
1313 class MergeMemNode: public Node {
1314   virtual uint hash() const ;                  // { return NO_HASH; }
1315   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
1316   friend class MergeMemStream;
1317   MergeMemNode(Node* def);  // clients use MergeMemNode::make
1318 
1319 public:
1320   // If the input is a whole memory state, clone it with all its slices intact.
1321   // Otherwise, make a new memory state with just that base memory input.
1322   // In either case, the result is a newly created MergeMem.
1323   static MergeMemNode* make(Compile* C, Node* base_memory);
1324 
1325   virtual int Opcode() const;
1326   virtual Node *Identity( PhaseTransform *phase );
1327   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1328   virtual uint ideal_reg() const { return NotAMachineReg; }
1329   virtual uint match_edge(uint idx) const { return 0; }
1330   virtual const RegMask &out_RegMask() const;
1331   virtual const Type *bottom_type() const { return Type::MEMORY; }
1332   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
1333   // sparse accessors
1334   // Fetch the previously stored "set_memory_at", or else the base memory.
1335   // (Caller should clone it if it is a phi-nest.)
1336   Node* memory_at(uint alias_idx) const;
1337   // set the memory, regardless of its previous value
1338   void set_memory_at(uint alias_idx, Node* n);
1339   // the "base" is the memory that provides the non-finite support
1340   Node* base_memory() const       { return in(Compile::AliasIdxBot); }
1341   // warning: setting the base can implicitly set any of the other slices too
1342   void set_base_memory(Node* def);
1343   // sentinel value which denotes a copy of the base memory:
1344   Node*   empty_memory() const    { return in(Compile::AliasIdxTop); }
1345   static Node* make_empty_memory(); // where the sentinel comes from
1346   bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
1347   // hook for the iterator, to perform any necessary setup
1348   void iteration_setup(const MergeMemNode* other = NULL);
1349   // push sentinels until I am at least as long as the other (semantic no-op)
1350   void grow_to_match(const MergeMemNode* other);
1351   bool verify_sparse() const PRODUCT_RETURN0;
1352 #ifndef PRODUCT
1353   virtual void dump_spec(outputStream *st) const;
1354 #endif
1355 };
1356 
1357 class MergeMemStream : public StackObj {
1358  private:
1359   MergeMemNode*       _mm;
1360   const MergeMemNode* _mm2;  // optional second guy, contributes non-empty iterations
1361   Node*               _mm_base;  // loop-invariant base memory of _mm
1362   int                 _idx;
1363   int                 _cnt;
1364   Node*               _mem;
1365   Node*               _mem2;
1366   int                 _cnt2;
1367 
1368   void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
1369     // subsume_node will break sparseness at times, whenever a memory slice
1370     // folds down to a copy of the base ("fat") memory.  In such a case,
1371     // the raw edge will update to base, although it should be top.
1372     // This iterator will recognize either top or base_memory as an
1373     // "empty" slice.  See is_empty, is_empty2, and next below.
1374     //
1375     // The sparseness property is repaired in MergeMemNode::Ideal.
1376     // As long as access to a MergeMem goes through this iterator
1377     // or the memory_at accessor, flaws in the sparseness will
1378     // never be observed.
1379     //
1380     // Also, iteration_setup repairs sparseness.
1381     assert(mm->verify_sparse(), "please, no dups of base");
1382     assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
1383 
1384     _mm  = mm;
1385     _mm_base = mm->base_memory();
1386     _mm2 = mm2;
1387     _cnt = mm->req();
1388     _idx = Compile::AliasIdxBot-1; // start at the base memory
1389     _mem = NULL;
1390     _mem2 = NULL;
1391   }
1392 
1393 #ifdef ASSERT
1394   Node* check_memory() const {
1395     if (at_base_memory())
1396       return _mm->base_memory();
1397     else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
1398       return _mm->memory_at(_idx);
1399     else
1400       return _mm_base;
1401   }
1402   Node* check_memory2() const {
1403     return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
1404   }
1405 #endif
1406 
1407   static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
1408   void assert_synch() const {
1409     assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
1410            "no side-effects except through the stream");
1411   }
1412 
1413  public:
1414 
1415   // expected usages:
1416   // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
1417   // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
1418 
1419   // iterate over one merge
1420   MergeMemStream(MergeMemNode* mm) {
1421     mm->iteration_setup();
1422     init(mm);
1423     debug_only(_cnt2 = 999);
1424   }
1425   // iterate in parallel over two merges
1426   // only iterates through non-empty elements of mm2
1427   MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
1428     assert(mm2, "second argument must be a MergeMem also");
1429     ((MergeMemNode*)mm2)->iteration_setup();  // update hidden state
1430     mm->iteration_setup(mm2);
1431     init(mm, mm2);
1432     _cnt2 = mm2->req();
1433   }
1434 #ifdef ASSERT
1435   ~MergeMemStream() {
1436     assert_synch();
1437   }
1438 #endif
1439 
1440   MergeMemNode* all_memory() const {
1441     return _mm;
1442   }
1443   Node* base_memory() const {
1444     assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
1445     return _mm_base;
1446   }
1447   const MergeMemNode* all_memory2() const {
1448     assert(_mm2 != NULL, "");
1449     return _mm2;
1450   }
1451   bool at_base_memory() const {
1452     return _idx == Compile::AliasIdxBot;
1453   }
1454   int alias_idx() const {
1455     assert(_mem, "must call next 1st");
1456     return _idx;
1457   }
1458 
1459   const TypePtr* adr_type() const {
1460     return Compile::current()->get_adr_type(alias_idx());
1461   }
1462 
1463   const TypePtr* adr_type(Compile* C) const {
1464     return C->get_adr_type(alias_idx());
1465   }
1466   bool is_empty() const {
1467     assert(_mem, "must call next 1st");
1468     assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
1469     return _mem->is_top();
1470   }
1471   bool is_empty2() const {
1472     assert(_mem2, "must call next 1st");
1473     assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
1474     return _mem2->is_top();
1475   }
1476   Node* memory() const {
1477     assert(!is_empty(), "must not be empty");
1478     assert_synch();
1479     return _mem;
1480   }
1481   // get the current memory, regardless of empty or non-empty status
1482   Node* force_memory() const {
1483     assert(!is_empty() || !at_base_memory(), "");
1484     // Use _mm_base to defend against updates to _mem->base_memory().
1485     Node *mem = _mem->is_top() ? _mm_base : _mem;
1486     assert(mem == check_memory(), "");
1487     return mem;
1488   }
1489   Node* memory2() const {
1490     assert(_mem2 == check_memory2(), "");
1491     return _mem2;
1492   }
1493   void set_memory(Node* mem) {
1494     if (at_base_memory()) {
1495       // Note that this does not change the invariant _mm_base.
1496       _mm->set_base_memory(mem);
1497     } else {
1498       _mm->set_memory_at(_idx, mem);
1499     }
1500     _mem = mem;
1501     assert_synch();
1502   }
1503 
1504   // Recover from a side effect to the MergeMemNode.
1505   void set_memory() {
1506     _mem = _mm->in(_idx);
1507   }
1508 
1509   bool next()  { return next(false); }
1510   bool next2() { return next(true); }
1511 
1512   bool next_non_empty()  { return next_non_empty(false); }
1513   bool next_non_empty2() { return next_non_empty(true); }
1514   // next_non_empty2 can yield states where is_empty() is true
1515 
1516  private:
1517   // find the next item, which might be empty
1518   bool next(bool have_mm2) {
1519     assert((_mm2 != NULL) == have_mm2, "use other next");
1520     assert_synch();
1521     if (++_idx < _cnt) {
1522       // Note:  This iterator allows _mm to be non-sparse.
1523       // It behaves the same whether _mem is top or base_memory.
1524       _mem = _mm->in(_idx);
1525       if (have_mm2)
1526         _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
1527       return true;
1528     }
1529     return false;
1530   }
1531 
1532   // find the next non-empty item
1533   bool next_non_empty(bool have_mm2) {
1534     while (next(have_mm2)) {
1535       if (!is_empty()) {
1536         // make sure _mem2 is filled in sensibly
1537         if (have_mm2 && _mem2->is_top())  _mem2 = _mm2->base_memory();
1538         return true;
1539       } else if (have_mm2 && !is_empty2()) {
1540         return true;   // is_empty() == true
1541       }
1542     }
1543     return false;
1544   }
1545 };
1546 
1547 //------------------------------Prefetch---------------------------------------
1548 
1549 // Non-faulting prefetch load.  Prefetch for many reads.
1550 class PrefetchReadNode : public Node {
1551 public:
1552   PrefetchReadNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
1553   virtual int Opcode() const;
1554   virtual uint ideal_reg() const { return NotAMachineReg; }
1555   virtual uint match_edge(uint idx) const { return idx==2; }
1556   virtual const Type *bottom_type() const { return Type::ABIO; }
1557 };
1558 
1559 // Non-faulting prefetch load.  Prefetch for many reads & many writes.
1560 class PrefetchWriteNode : public Node {
1561 public:
1562   PrefetchWriteNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
1563   virtual int Opcode() const;
1564   virtual uint ideal_reg() const { return NotAMachineReg; }
1565   virtual uint match_edge(uint idx) const { return idx==2; }
1566   virtual const Type *bottom_type() const { return Type::ABIO; }
1567 };
1568 
1569 // Allocation prefetch which may fault, TLAB size have to be adjusted.
1570 class PrefetchAllocationNode : public Node {
1571 public:
1572   PrefetchAllocationNode(Node *mem, Node *adr) : Node(0,mem,adr) {}
1573   virtual int Opcode() const;
1574   virtual uint ideal_reg() const { return NotAMachineReg; }
1575   virtual uint match_edge(uint idx) const { return idx==2; }
1576   virtual const Type *bottom_type() const { return ( AllocatePrefetchStyle == 3 ) ? Type::MEMORY : Type::ABIO; }
1577 };
1578 
1579 #endif // SHARE_VM_OPTO_MEMNODE_HPP