1 /* 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "memory/allocation.inline.hpp" 27 #include "opto/addnode.hpp" 28 #include "opto/connode.hpp" 29 #include "opto/memnode.hpp" 30 #include "opto/mulnode.hpp" 31 #include "opto/phaseX.hpp" 32 #include "opto/subnode.hpp" 33 34 // Portions of code courtesy of Clifford Click 35 36 37 //============================================================================= 38 //------------------------------hash------------------------------------------- 39 // Hash function over MulNodes. Needs to be commutative; i.e., I swap 40 // (commute) inputs to MulNodes willy-nilly so the hash function must return 41 // the same value in the presence of edge swapping. 42 uint MulNode::hash() const { 43 return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode(); 44 } 45 46 //------------------------------Identity--------------------------------------- 47 // Multiplying a one preserves the other argument 48 Node *MulNode::Identity( PhaseTransform *phase ) { 49 register const Type *one = mul_id(); // The multiplicative identity 50 if( phase->type( in(1) )->higher_equal( one ) ) return in(2); 51 if( phase->type( in(2) )->higher_equal( one ) ) return in(1); 52 53 return this; 54 } 55 56 //------------------------------Ideal------------------------------------------ 57 // We also canonicalize the Node, moving constants to the right input, 58 // and flatten expressions (so that 1+x+2 becomes x+3). 59 Node *MulNode::Ideal(PhaseGVN *phase, bool can_reshape) { 60 const Type *t1 = phase->type( in(1) ); 61 const Type *t2 = phase->type( in(2) ); 62 Node *progress = NULL; // Progress flag 63 // We are OK if right is a constant, or right is a load and 64 // left is a non-constant. 65 if( !(t2->singleton() || 66 (in(2)->is_Load() && !(t1->singleton() || in(1)->is_Load())) ) ) { 67 if( t1->singleton() || // Left input is a constant? 68 // Otherwise, sort inputs (commutativity) to help value numbering. 69 (in(1)->_idx > in(2)->_idx) ) { 70 swap_edges(1, 2); 71 const Type *t = t1; 72 t1 = t2; 73 t2 = t; 74 progress = this; // Made progress 75 } 76 } 77 78 // If the right input is a constant, and the left input is a product of a 79 // constant, flatten the expression tree. 80 uint op = Opcode(); 81 if( t2->singleton() && // Right input is a constant? 82 op != Op_MulF && // Float & double cannot reassociate 83 op != Op_MulD ) { 84 if( t2 == Type::TOP ) return NULL; 85 Node *mul1 = in(1); 86 #ifdef ASSERT 87 // Check for dead loop 88 int op1 = mul1->Opcode(); 89 if( phase->eqv( mul1, this ) || phase->eqv( in(2), this ) || 90 ( op1 == mul_opcode() || op1 == add_opcode() ) && 91 ( phase->eqv( mul1->in(1), this ) || phase->eqv( mul1->in(2), this ) || 92 phase->eqv( mul1->in(1), mul1 ) || phase->eqv( mul1->in(2), mul1 ) ) ) 93 assert(false, "dead loop in MulNode::Ideal"); 94 #endif 95 96 if( mul1->Opcode() == mul_opcode() ) { // Left input is a multiply? 97 // Mul of a constant? 98 const Type *t12 = phase->type( mul1->in(2) ); 99 if( t12->singleton() && t12 != Type::TOP) { // Left input is an add of a constant? 100 // Compute new constant; check for overflow 101 const Type *tcon01 = ((MulNode*)mul1)->mul_ring(t2,t12); 102 if( tcon01->singleton() ) { 103 // The Mul of the flattened expression 104 set_req(1, mul1->in(1)); 105 set_req(2, phase->makecon( tcon01 )); 106 t2 = tcon01; 107 progress = this; // Made progress 108 } 109 } 110 } 111 // If the right input is a constant, and the left input is an add of a 112 // constant, flatten the tree: (X+con1)*con0 ==> X*con0 + con1*con0 113 const Node *add1 = in(1); 114 if( add1->Opcode() == add_opcode() ) { // Left input is an add? 115 // Add of a constant? 116 const Type *t12 = phase->type( add1->in(2) ); 117 if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant? 118 assert( add1->in(1) != add1, "dead loop in MulNode::Ideal" ); 119 // Compute new constant; check for overflow 120 const Type *tcon01 = mul_ring(t2,t12); 121 if( tcon01->singleton() ) { 122 123 // Convert (X+con1)*con0 into X*con0 124 Node *mul = clone(); // mul = ()*con0 125 mul->set_req(1,add1->in(1)); // mul = X*con0 126 mul = phase->transform(mul); 127 128 Node *add2 = add1->clone(); 129 add2->set_req(1, mul); // X*con0 + con0*con1 130 add2->set_req(2, phase->makecon(tcon01) ); 131 progress = add2; 132 } 133 } 134 } // End of is left input an add 135 } // End of is right input a Mul 136 137 return progress; 138 } 139 140 //------------------------------Value----------------------------------------- 141 const Type *MulNode::Value( PhaseTransform *phase ) const { 142 const Type *t1 = phase->type( in(1) ); 143 const Type *t2 = phase->type( in(2) ); 144 // Either input is TOP ==> the result is TOP 145 if( t1 == Type::TOP ) return Type::TOP; 146 if( t2 == Type::TOP ) return Type::TOP; 147 148 // Either input is ZERO ==> the result is ZERO. 149 // Not valid for floats or doubles since +0.0 * -0.0 --> +0.0 150 int op = Opcode(); 151 if( op == Op_MulI || op == Op_AndI || op == Op_MulL || op == Op_AndL ) { 152 const Type *zero = add_id(); // The multiplicative zero 153 if( t1->higher_equal( zero ) ) return zero; 154 if( t2->higher_equal( zero ) ) return zero; 155 } 156 157 // Either input is BOTTOM ==> the result is the local BOTTOM 158 if( t1 == Type::BOTTOM || t2 == Type::BOTTOM ) 159 return bottom_type(); 160 161 #if defined(IA32) 162 // Can't trust native compilers to properly fold strict double 163 // multiplication with round-to-zero on this platform. 164 if (op == Op_MulD && phase->C->method()->is_strict()) { 165 return TypeD::DOUBLE; 166 } 167 #endif 168 169 return mul_ring(t1,t2); // Local flavor of type multiplication 170 } 171 172 //============================================================================= 173 //------------------------------Ideal------------------------------------------ 174 // Check for power-of-2 multiply, then try the regular MulNode::Ideal 175 Node *MulINode::Ideal(PhaseGVN *phase, bool can_reshape) { 176 // Swap constant to right 177 jint con; 178 if ((con = in(1)->find_int_con(0)) != 0) { 179 swap_edges(1, 2); 180 // Finish rest of method to use info in 'con' 181 } else if ((con = in(2)->find_int_con(0)) == 0) { 182 return MulNode::Ideal(phase, can_reshape); 183 } 184 185 // Now we have a constant Node on the right and the constant in con 186 if (con == 0) return NULL; // By zero is handled by Value call 187 if (con == 1) return NULL; // By one is handled by Identity call 188 189 // Check for negative constant; if so negate the final result 190 bool sign_flip = false; 191 192 unsigned int abs_con = uabs(con); 193 if (abs_con != (unsigned int)con) { 194 sign_flip = true; 195 } 196 197 // Get low bit; check for being the only bit 198 Node *res = NULL; 199 unsigned int bit1 = abs_con & (0-abs_con); // Extract low bit 200 if (bit1 == abs_con) { // Found a power of 2? 201 res = new (phase->C) LShiftINode(in(1), phase->intcon(log2_uint(bit1))); 202 } else { 203 204 // Check for constant with 2 bits set 205 unsigned int bit2 = abs_con-bit1; 206 bit2 = bit2 & (0-bit2); // Extract 2nd bit 207 if (bit2 + bit1 == abs_con) { // Found all bits in con? 208 Node *n1 = phase->transform( new (phase->C) LShiftINode(in(1), phase->intcon(log2_uint(bit1)))); 209 Node *n2 = phase->transform( new (phase->C) LShiftINode(in(1), phase->intcon(log2_uint(bit2)))); 210 res = new (phase->C) AddINode(n2, n1); 211 212 } else if (is_power_of_2(abs_con+1)) { 213 // Sleezy: power-of-2 -1. Next time be generic. 214 unsigned int temp = abs_con + 1; 215 Node *n1 = phase->transform(new (phase->C) LShiftINode(in(1), phase->intcon(log2_uint(temp)))); 216 res = new (phase->C) SubINode(n1, in(1)); 217 } else { 218 return MulNode::Ideal(phase, can_reshape); 219 } 220 } 221 222 if (sign_flip) { // Need to negate result? 223 res = phase->transform(res);// Transform, before making the zero con 224 res = new (phase->C) SubINode(phase->intcon(0),res); 225 } 226 227 return res; // Return final result 228 } 229 230 //------------------------------mul_ring--------------------------------------- 231 // Compute the product type of two integer ranges into this node. 232 const Type *MulINode::mul_ring(const Type *t0, const Type *t1) const { 233 const TypeInt *r0 = t0->is_int(); // Handy access 234 const TypeInt *r1 = t1->is_int(); 235 236 // Fetch endpoints of all ranges 237 int32 lo0 = r0->_lo; 238 double a = (double)lo0; 239 int32 hi0 = r0->_hi; 240 double b = (double)hi0; 241 int32 lo1 = r1->_lo; 242 double c = (double)lo1; 243 int32 hi1 = r1->_hi; 244 double d = (double)hi1; 245 246 // Compute all endpoints & check for overflow 247 int32 A = java_multiply(lo0, lo1); 248 if( (double)A != a*c ) return TypeInt::INT; // Overflow? 249 int32 B = java_multiply(lo0, hi1); 250 if( (double)B != a*d ) return TypeInt::INT; // Overflow? 251 int32 C = java_multiply(hi0, lo1); 252 if( (double)C != b*c ) return TypeInt::INT; // Overflow? 253 int32 D = java_multiply(hi0, hi1); 254 if( (double)D != b*d ) return TypeInt::INT; // Overflow? 255 256 if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints 257 else { lo0 = B; hi0 = A; } 258 if( C < D ) { 259 if( C < lo0 ) lo0 = C; 260 if( D > hi0 ) hi0 = D; 261 } else { 262 if( D < lo0 ) lo0 = D; 263 if( C > hi0 ) hi0 = C; 264 } 265 return TypeInt::make(lo0, hi0, MAX2(r0->_widen,r1->_widen)); 266 } 267 268 269 //============================================================================= 270 //------------------------------Ideal------------------------------------------ 271 // Check for power-of-2 multiply, then try the regular MulNode::Ideal 272 Node *MulLNode::Ideal(PhaseGVN *phase, bool can_reshape) { 273 // Swap constant to right 274 jlong con; 275 if ((con = in(1)->find_long_con(0)) != 0) { 276 swap_edges(1, 2); 277 // Finish rest of method to use info in 'con' 278 } else if ((con = in(2)->find_long_con(0)) == 0) { 279 return MulNode::Ideal(phase, can_reshape); 280 } 281 282 // Now we have a constant Node on the right and the constant in con 283 if (con == CONST64(0)) return NULL; // By zero is handled by Value call 284 if (con == CONST64(1)) return NULL; // By one is handled by Identity call 285 286 // Check for negative constant; if so negate the final result 287 bool sign_flip = false; 288 julong abs_con = uabs(con); 289 if (abs_con != (julong)con) { 290 sign_flip = true; 291 } 292 293 // Get low bit; check for being the only bit 294 Node *res = NULL; 295 julong bit1 = abs_con & (0-abs_con); // Extract low bit 296 if (bit1 == abs_con) { // Found a power of 2? 297 res = new (phase->C) LShiftLNode(in(1), phase->intcon(log2_long(bit1))); 298 } else { 299 300 // Check for constant with 2 bits set 301 julong bit2 = abs_con-bit1; 302 bit2 = bit2 & (0-bit2); // Extract 2nd bit 303 if (bit2 + bit1 == abs_con) { // Found all bits in con? 304 Node *n1 = phase->transform(new (phase->C) LShiftLNode(in(1), phase->intcon(log2_long(bit1)))); 305 Node *n2 = phase->transform(new (phase->C) LShiftLNode(in(1), phase->intcon(log2_long(bit2)))); 306 res = new (phase->C) AddLNode(n2, n1); 307 308 } else if (is_power_of_2_long(abs_con+1)) { 309 // Sleezy: power-of-2 -1. Next time be generic. 310 julong temp = abs_con + 1; 311 Node *n1 = phase->transform( new (phase->C) LShiftLNode(in(1), phase->intcon(log2_long(temp)))); 312 res = new (phase->C) SubLNode(n1, in(1)); 313 } else { 314 return MulNode::Ideal(phase, can_reshape); 315 } 316 } 317 318 if (sign_flip) { // Need to negate result? 319 res = phase->transform(res);// Transform, before making the zero con 320 res = new (phase->C) SubLNode(phase->longcon(0),res); 321 } 322 323 return res; // Return final result 324 } 325 326 //------------------------------mul_ring--------------------------------------- 327 // Compute the product type of two integer ranges into this node. 328 const Type *MulLNode::mul_ring(const Type *t0, const Type *t1) const { 329 const TypeLong *r0 = t0->is_long(); // Handy access 330 const TypeLong *r1 = t1->is_long(); 331 332 // Fetch endpoints of all ranges 333 jlong lo0 = r0->_lo; 334 double a = (double)lo0; 335 jlong hi0 = r0->_hi; 336 double b = (double)hi0; 337 jlong lo1 = r1->_lo; 338 double c = (double)lo1; 339 jlong hi1 = r1->_hi; 340 double d = (double)hi1; 341 342 // Compute all endpoints & check for overflow 343 jlong A = java_multiply(lo0, lo1); 344 if( (double)A != a*c ) return TypeLong::LONG; // Overflow? 345 jlong B = java_multiply(lo0, hi1); 346 if( (double)B != a*d ) return TypeLong::LONG; // Overflow? 347 jlong C = java_multiply(hi0, lo1); 348 if( (double)C != b*c ) return TypeLong::LONG; // Overflow? 349 jlong D = java_multiply(hi0, hi1); 350 if( (double)D != b*d ) return TypeLong::LONG; // Overflow? 351 352 if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints 353 else { lo0 = B; hi0 = A; } 354 if( C < D ) { 355 if( C < lo0 ) lo0 = C; 356 if( D > hi0 ) hi0 = D; 357 } else { 358 if( D < lo0 ) lo0 = D; 359 if( C > hi0 ) hi0 = C; 360 } 361 return TypeLong::make(lo0, hi0, MAX2(r0->_widen,r1->_widen)); 362 } 363 364 //============================================================================= 365 //------------------------------mul_ring--------------------------------------- 366 // Compute the product type of two double ranges into this node. 367 const Type *MulFNode::mul_ring(const Type *t0, const Type *t1) const { 368 if( t0 == Type::FLOAT || t1 == Type::FLOAT ) return Type::FLOAT; 369 return TypeF::make( t0->getf() * t1->getf() ); 370 } 371 372 //============================================================================= 373 //------------------------------mul_ring--------------------------------------- 374 // Compute the product type of two double ranges into this node. 375 const Type *MulDNode::mul_ring(const Type *t0, const Type *t1) const { 376 if( t0 == Type::DOUBLE || t1 == Type::DOUBLE ) return Type::DOUBLE; 377 // We must be multiplying 2 double constants. 378 return TypeD::make( t0->getd() * t1->getd() ); 379 } 380 381 //============================================================================= 382 //------------------------------Value------------------------------------------ 383 const Type *MulHiLNode::Value( PhaseTransform *phase ) const { 384 // Either input is TOP ==> the result is TOP 385 const Type *t1 = phase->type( in(1) ); 386 const Type *t2 = phase->type( in(2) ); 387 if( t1 == Type::TOP ) return Type::TOP; 388 if( t2 == Type::TOP ) return Type::TOP; 389 390 // Either input is BOTTOM ==> the result is the local BOTTOM 391 const Type *bot = bottom_type(); 392 if( (t1 == bot) || (t2 == bot) || 393 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) 394 return bot; 395 396 // It is not worth trying to constant fold this stuff! 397 return TypeLong::LONG; 398 } 399 400 //============================================================================= 401 //------------------------------mul_ring--------------------------------------- 402 // Supplied function returns the product of the inputs IN THE CURRENT RING. 403 // For the logical operations the ring's MUL is really a logical AND function. 404 // This also type-checks the inputs for sanity. Guaranteed never to 405 // be passed a TOP or BOTTOM type, these are filtered out by pre-check. 406 const Type *AndINode::mul_ring( const Type *t0, const Type *t1 ) const { 407 const TypeInt *r0 = t0->is_int(); // Handy access 408 const TypeInt *r1 = t1->is_int(); 409 int widen = MAX2(r0->_widen,r1->_widen); 410 411 // If either input is a constant, might be able to trim cases 412 if( !r0->is_con() && !r1->is_con() ) 413 return TypeInt::INT; // No constants to be had 414 415 // Both constants? Return bits 416 if( r0->is_con() && r1->is_con() ) 417 return TypeInt::make( r0->get_con() & r1->get_con() ); 418 419 if( r0->is_con() && r0->get_con() > 0 ) 420 return TypeInt::make(0, r0->get_con(), widen); 421 422 if( r1->is_con() && r1->get_con() > 0 ) 423 return TypeInt::make(0, r1->get_con(), widen); 424 425 if( r0 == TypeInt::BOOL || r1 == TypeInt::BOOL ) { 426 return TypeInt::BOOL; 427 } 428 429 return TypeInt::INT; // No constants to be had 430 } 431 432 //------------------------------Identity--------------------------------------- 433 // Masking off the high bits of an unsigned load is not required 434 Node *AndINode::Identity( PhaseTransform *phase ) { 435 436 // x & x => x 437 if (phase->eqv(in(1), in(2))) return in(1); 438 439 Node* in1 = in(1); 440 uint op = in1->Opcode(); 441 const TypeInt* t2 = phase->type(in(2))->isa_int(); 442 if (t2 && t2->is_con()) { 443 int con = t2->get_con(); 444 // Masking off high bits which are always zero is useless. 445 const TypeInt* t1 = phase->type( in(1) )->isa_int(); 446 if (t1 != NULL && t1->_lo >= 0) { 447 jint t1_support = right_n_bits(1 + log2_jint(t1->_hi)); 448 if ((t1_support & con) == t1_support) 449 return in1; 450 } 451 // Masking off the high bits of a unsigned-shift-right is not 452 // needed either. 453 if (op == Op_URShiftI) { 454 const TypeInt* t12 = phase->type(in1->in(2))->isa_int(); 455 if (t12 && t12->is_con()) { // Shift is by a constant 456 int shift = t12->get_con(); 457 shift &= BitsPerJavaInteger - 1; // semantics of Java shifts 458 int mask = max_juint >> shift; 459 if ((mask & con) == mask) // If AND is useless, skip it 460 return in1; 461 } 462 } 463 } 464 return MulNode::Identity(phase); 465 } 466 467 //------------------------------Ideal------------------------------------------ 468 Node *AndINode::Ideal(PhaseGVN *phase, bool can_reshape) { 469 // Special case constant AND mask 470 const TypeInt *t2 = phase->type( in(2) )->isa_int(); 471 if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape); 472 const int mask = t2->get_con(); 473 Node *load = in(1); 474 uint lop = load->Opcode(); 475 476 // Masking bits off of a Character? Hi bits are already zero. 477 if( lop == Op_LoadUS && 478 (mask & 0xFFFF0000) ) // Can we make a smaller mask? 479 return new (phase->C) AndINode(load,phase->intcon(mask&0xFFFF)); 480 481 // Masking bits off of a Short? Loading a Character does some masking 482 if (can_reshape && 483 load->outcnt() == 1 && load->unique_out() == this) { 484 if (lop == Op_LoadS && (mask & 0xFFFF0000) == 0 ) { 485 Node *ldus = new (phase->C) LoadUSNode(load->in(MemNode::Control), 486 load->in(MemNode::Memory), 487 load->in(MemNode::Address), 488 load->adr_type(), 489 TypeInt::CHAR, MemNode::unordered); 490 ldus = phase->transform(ldus); 491 return new (phase->C) AndINode(ldus, phase->intcon(mask & 0xFFFF)); 492 } 493 494 // Masking sign bits off of a Byte? Do an unsigned byte load plus 495 // an and. 496 if (lop == Op_LoadB && (mask & 0xFFFFFF00) == 0) { 497 Node* ldub = new (phase->C) LoadUBNode(load->in(MemNode::Control), 498 load->in(MemNode::Memory), 499 load->in(MemNode::Address), 500 load->adr_type(), 501 TypeInt::UBYTE, MemNode::unordered); 502 ldub = phase->transform(ldub); 503 return new (phase->C) AndINode(ldub, phase->intcon(mask)); 504 } 505 } 506 507 // Masking off sign bits? Dont make them! 508 if( lop == Op_RShiftI ) { 509 const TypeInt *t12 = phase->type(load->in(2))->isa_int(); 510 if( t12 && t12->is_con() ) { // Shift is by a constant 511 int shift = t12->get_con(); 512 shift &= BitsPerJavaInteger-1; // semantics of Java shifts 513 const int sign_bits_mask = ~right_n_bits(BitsPerJavaInteger - shift); 514 // If the AND'ing of the 2 masks has no bits, then only original shifted 515 // bits survive. NO sign-extension bits survive the maskings. 516 if( (sign_bits_mask & mask) == 0 ) { 517 // Use zero-fill shift instead 518 Node *zshift = phase->transform(new (phase->C) URShiftINode(load->in(1),load->in(2))); 519 return new (phase->C) AndINode( zshift, in(2) ); 520 } 521 } 522 } 523 524 // Check for 'negate/and-1', a pattern emitted when someone asks for 525 // 'mod 2'. Negate leaves the low order bit unchanged (think: complement 526 // plus 1) and the mask is of the low order bit. Skip the negate. 527 if( lop == Op_SubI && mask == 1 && load->in(1) && 528 phase->type(load->in(1)) == TypeInt::ZERO ) 529 return new (phase->C) AndINode( load->in(2), in(2) ); 530 531 return MulNode::Ideal(phase, can_reshape); 532 } 533 534 //============================================================================= 535 //------------------------------mul_ring--------------------------------------- 536 // Supplied function returns the product of the inputs IN THE CURRENT RING. 537 // For the logical operations the ring's MUL is really a logical AND function. 538 // This also type-checks the inputs for sanity. Guaranteed never to 539 // be passed a TOP or BOTTOM type, these are filtered out by pre-check. 540 const Type *AndLNode::mul_ring( const Type *t0, const Type *t1 ) const { 541 const TypeLong *r0 = t0->is_long(); // Handy access 542 const TypeLong *r1 = t1->is_long(); 543 int widen = MAX2(r0->_widen,r1->_widen); 544 545 // If either input is a constant, might be able to trim cases 546 if( !r0->is_con() && !r1->is_con() ) 547 return TypeLong::LONG; // No constants to be had 548 549 // Both constants? Return bits 550 if( r0->is_con() && r1->is_con() ) 551 return TypeLong::make( r0->get_con() & r1->get_con() ); 552 553 if( r0->is_con() && r0->get_con() > 0 ) 554 return TypeLong::make(CONST64(0), r0->get_con(), widen); 555 556 if( r1->is_con() && r1->get_con() > 0 ) 557 return TypeLong::make(CONST64(0), r1->get_con(), widen); 558 559 return TypeLong::LONG; // No constants to be had 560 } 561 562 //------------------------------Identity--------------------------------------- 563 // Masking off the high bits of an unsigned load is not required 564 Node *AndLNode::Identity( PhaseTransform *phase ) { 565 566 // x & x => x 567 if (phase->eqv(in(1), in(2))) return in(1); 568 569 Node *usr = in(1); 570 const TypeLong *t2 = phase->type( in(2) )->isa_long(); 571 if( t2 && t2->is_con() ) { 572 jlong con = t2->get_con(); 573 // Masking off high bits which are always zero is useless. 574 const TypeLong* t1 = phase->type( in(1) )->isa_long(); 575 if (t1 != NULL && t1->_lo >= 0) { 576 int bit_count = log2_long(t1->_hi) + 1; 577 jlong t1_support = jlong(max_julong >> (BitsPerJavaLong - bit_count)); 578 if ((t1_support & con) == t1_support) 579 return usr; 580 } 581 uint lop = usr->Opcode(); 582 // Masking off the high bits of a unsigned-shift-right is not 583 // needed either. 584 if( lop == Op_URShiftL ) { 585 const TypeInt *t12 = phase->type( usr->in(2) )->isa_int(); 586 if( t12 && t12->is_con() ) { // Shift is by a constant 587 int shift = t12->get_con(); 588 shift &= BitsPerJavaLong - 1; // semantics of Java shifts 589 jlong mask = max_julong >> shift; 590 if( (mask&con) == mask ) // If AND is useless, skip it 591 return usr; 592 } 593 } 594 } 595 return MulNode::Identity(phase); 596 } 597 598 //------------------------------Ideal------------------------------------------ 599 Node *AndLNode::Ideal(PhaseGVN *phase, bool can_reshape) { 600 // Special case constant AND mask 601 const TypeLong *t2 = phase->type( in(2) )->isa_long(); 602 if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape); 603 const jlong mask = t2->get_con(); 604 605 Node* in1 = in(1); 606 uint op = in1->Opcode(); 607 608 // Are we masking a long that was converted from an int with a mask 609 // that fits in 32-bits? Commute them and use an AndINode. Don't 610 // convert masks which would cause a sign extension of the integer 611 // value. This check includes UI2L masks (0x00000000FFFFFFFF) which 612 // would be optimized away later in Identity. 613 if (op == Op_ConvI2L && (mask & CONST64(0xFFFFFFFF80000000)) == 0) { 614 Node* andi = new (phase->C) AndINode(in1->in(1), phase->intcon(mask)); 615 andi = phase->transform(andi); 616 return new (phase->C) ConvI2LNode(andi); 617 } 618 619 // Masking off sign bits? Dont make them! 620 if (op == Op_RShiftL) { 621 const TypeInt* t12 = phase->type(in1->in(2))->isa_int(); 622 if( t12 && t12->is_con() ) { // Shift is by a constant 623 int shift = t12->get_con(); 624 shift &= BitsPerJavaLong - 1; // semantics of Java shifts 625 const jlong sign_bits_mask = ~(((jlong)CONST64(1) << (jlong)(BitsPerJavaLong - shift)) -1); 626 // If the AND'ing of the 2 masks has no bits, then only original shifted 627 // bits survive. NO sign-extension bits survive the maskings. 628 if( (sign_bits_mask & mask) == 0 ) { 629 // Use zero-fill shift instead 630 Node *zshift = phase->transform(new (phase->C) URShiftLNode(in1->in(1), in1->in(2))); 631 return new (phase->C) AndLNode(zshift, in(2)); 632 } 633 } 634 } 635 636 return MulNode::Ideal(phase, can_reshape); 637 } 638 639 //============================================================================= 640 //------------------------------Identity--------------------------------------- 641 Node *LShiftINode::Identity( PhaseTransform *phase ) { 642 const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int 643 return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerInt - 1 ) ) == 0 ) ? in(1) : this; 644 } 645 646 //------------------------------Ideal------------------------------------------ 647 // If the right input is a constant, and the left input is an add of a 648 // constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0 649 Node *LShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) { 650 const Type *t = phase->type( in(2) ); 651 if( t == Type::TOP ) return NULL; // Right input is dead 652 const TypeInt *t2 = t->isa_int(); 653 if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant 654 const int con = t2->get_con() & ( BitsPerInt - 1 ); // masked shift count 655 656 if ( con == 0 ) return NULL; // let Identity() handle 0 shift count 657 658 // Left input is an add of a constant? 659 Node *add1 = in(1); 660 int add1_op = add1->Opcode(); 661 if( add1_op == Op_AddI ) { // Left input is an add? 662 assert( add1 != add1->in(1), "dead loop in LShiftINode::Ideal" ); 663 const TypeInt *t12 = phase->type(add1->in(2))->isa_int(); 664 if( t12 && t12->is_con() ){ // Left input is an add of a con? 665 // Transform is legal, but check for profit. Avoid breaking 'i2s' 666 // and 'i2b' patterns which typically fold into 'StoreC/StoreB'. 667 if( con < 16 ) { 668 // Compute X << con0 669 Node *lsh = phase->transform( new (phase->C) LShiftINode( add1->in(1), in(2) ) ); 670 // Compute X<<con0 + (con1<<con0) 671 return new (phase->C) AddINode( lsh, phase->intcon(t12->get_con() << con)); 672 } 673 } 674 } 675 676 // Check for "(x>>c0)<<c0" which just masks off low bits 677 if( (add1_op == Op_RShiftI || add1_op == Op_URShiftI ) && 678 add1->in(2) == in(2) ) 679 // Convert to "(x & -(1<<c0))" 680 return new (phase->C) AndINode(add1->in(1),phase->intcon( -(1<<con))); 681 682 // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits 683 if( add1_op == Op_AndI ) { 684 Node *add2 = add1->in(1); 685 int add2_op = add2->Opcode(); 686 if( (add2_op == Op_RShiftI || add2_op == Op_URShiftI ) && 687 add2->in(2) == in(2) ) { 688 // Convert to "(x & (Y<<c0))" 689 Node *y_sh = phase->transform( new (phase->C) LShiftINode( add1->in(2), in(2) ) ); 690 return new (phase->C) AndINode( add2->in(1), y_sh ); 691 } 692 } 693 694 // Check for ((x & ((1<<(32-c0))-1)) << c0) which ANDs off high bits 695 // before shifting them away. 696 const jint bits_mask = right_n_bits(BitsPerJavaInteger-con); 697 if( add1_op == Op_AndI && 698 phase->type(add1->in(2)) == TypeInt::make( bits_mask ) ) 699 return new (phase->C) LShiftINode( add1->in(1), in(2) ); 700 701 return NULL; 702 } 703 704 //------------------------------Value------------------------------------------ 705 // A LShiftINode shifts its input2 left by input1 amount. 706 const Type *LShiftINode::Value( PhaseTransform *phase ) const { 707 const Type *t1 = phase->type( in(1) ); 708 const Type *t2 = phase->type( in(2) ); 709 // Either input is TOP ==> the result is TOP 710 if( t1 == Type::TOP ) return Type::TOP; 711 if( t2 == Type::TOP ) return Type::TOP; 712 713 // Left input is ZERO ==> the result is ZERO. 714 if( t1 == TypeInt::ZERO ) return TypeInt::ZERO; 715 // Shift by zero does nothing 716 if( t2 == TypeInt::ZERO ) return t1; 717 718 // Either input is BOTTOM ==> the result is BOTTOM 719 if( (t1 == TypeInt::INT) || (t2 == TypeInt::INT) || 720 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) 721 return TypeInt::INT; 722 723 const TypeInt *r1 = t1->is_int(); // Handy access 724 const TypeInt *r2 = t2->is_int(); // Handy access 725 726 if (!r2->is_con()) 727 return TypeInt::INT; 728 729 uint shift = r2->get_con(); 730 shift &= BitsPerJavaInteger-1; // semantics of Java shifts 731 // Shift by a multiple of 32 does nothing: 732 if (shift == 0) return t1; 733 734 // If the shift is a constant, shift the bounds of the type, 735 // unless this could lead to an overflow. 736 if (!r1->is_con()) { 737 jint lo = r1->_lo, hi = r1->_hi; 738 if (((lo << shift) >> shift) == lo && 739 ((hi << shift) >> shift) == hi) { 740 // No overflow. The range shifts up cleanly. 741 return TypeInt::make((jint)lo << (jint)shift, 742 (jint)hi << (jint)shift, 743 MAX2(r1->_widen,r2->_widen)); 744 } 745 return TypeInt::INT; 746 } 747 748 return TypeInt::make( (jint)r1->get_con() << (jint)shift ); 749 } 750 751 //============================================================================= 752 //------------------------------Identity--------------------------------------- 753 Node *LShiftLNode::Identity( PhaseTransform *phase ) { 754 const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int 755 return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this; 756 } 757 758 //------------------------------Ideal------------------------------------------ 759 // If the right input is a constant, and the left input is an add of a 760 // constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0 761 Node *LShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) { 762 const Type *t = phase->type( in(2) ); 763 if( t == Type::TOP ) return NULL; // Right input is dead 764 const TypeInt *t2 = t->isa_int(); 765 if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant 766 const int con = t2->get_con() & ( BitsPerLong - 1 ); // masked shift count 767 768 if ( con == 0 ) return NULL; // let Identity() handle 0 shift count 769 770 // Left input is an add of a constant? 771 Node *add1 = in(1); 772 int add1_op = add1->Opcode(); 773 if( add1_op == Op_AddL ) { // Left input is an add? 774 // Avoid dead data cycles from dead loops 775 assert( add1 != add1->in(1), "dead loop in LShiftLNode::Ideal" ); 776 const TypeLong *t12 = phase->type(add1->in(2))->isa_long(); 777 if( t12 && t12->is_con() ){ // Left input is an add of a con? 778 // Compute X << con0 779 Node *lsh = phase->transform( new (phase->C) LShiftLNode( add1->in(1), in(2) ) ); 780 // Compute X<<con0 + (con1<<con0) 781 return new (phase->C) AddLNode( lsh, phase->longcon(t12->get_con() << con)); 782 } 783 } 784 785 // Check for "(x>>c0)<<c0" which just masks off low bits 786 if( (add1_op == Op_RShiftL || add1_op == Op_URShiftL ) && 787 add1->in(2) == in(2) ) 788 // Convert to "(x & -(1<<c0))" 789 return new (phase->C) AndLNode(add1->in(1),phase->longcon( -(CONST64(1)<<con))); 790 791 // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits 792 if( add1_op == Op_AndL ) { 793 Node *add2 = add1->in(1); 794 int add2_op = add2->Opcode(); 795 if( (add2_op == Op_RShiftL || add2_op == Op_URShiftL ) && 796 add2->in(2) == in(2) ) { 797 // Convert to "(x & (Y<<c0))" 798 Node *y_sh = phase->transform( new (phase->C) LShiftLNode( add1->in(2), in(2) ) ); 799 return new (phase->C) AndLNode( add2->in(1), y_sh ); 800 } 801 } 802 803 // Check for ((x & ((CONST64(1)<<(64-c0))-1)) << c0) which ANDs off high bits 804 // before shifting them away. 805 const jlong bits_mask = jlong(max_julong >> con); 806 if( add1_op == Op_AndL && 807 phase->type(add1->in(2)) == TypeLong::make( bits_mask ) ) 808 return new (phase->C) LShiftLNode( add1->in(1), in(2) ); 809 810 return NULL; 811 } 812 813 //------------------------------Value------------------------------------------ 814 // A LShiftLNode shifts its input2 left by input1 amount. 815 const Type *LShiftLNode::Value( PhaseTransform *phase ) const { 816 const Type *t1 = phase->type( in(1) ); 817 const Type *t2 = phase->type( in(2) ); 818 // Either input is TOP ==> the result is TOP 819 if( t1 == Type::TOP ) return Type::TOP; 820 if( t2 == Type::TOP ) return Type::TOP; 821 822 // Left input is ZERO ==> the result is ZERO. 823 if( t1 == TypeLong::ZERO ) return TypeLong::ZERO; 824 // Shift by zero does nothing 825 if( t2 == TypeInt::ZERO ) return t1; 826 827 // Either input is BOTTOM ==> the result is BOTTOM 828 if( (t1 == TypeLong::LONG) || (t2 == TypeInt::INT) || 829 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) 830 return TypeLong::LONG; 831 832 const TypeLong *r1 = t1->is_long(); // Handy access 833 const TypeInt *r2 = t2->is_int(); // Handy access 834 835 if (!r2->is_con()) 836 return TypeLong::LONG; 837 838 uint shift = r2->get_con(); 839 shift &= BitsPerJavaLong - 1; // semantics of Java shifts 840 // Shift by a multiple of 64 does nothing: 841 if (shift == 0) return t1; 842 843 // If the shift is a constant, shift the bounds of the type, 844 // unless this could lead to an overflow. 845 if (!r1->is_con()) { 846 jlong lo = r1->_lo, hi = r1->_hi; 847 if (((lo << shift) >> shift) == lo && 848 ((hi << shift) >> shift) == hi) { 849 // No overflow. The range shifts up cleanly. 850 return TypeLong::make((jlong)lo << (jint)shift, 851 (jlong)hi << (jint)shift, 852 MAX2(r1->_widen,r2->_widen)); 853 } 854 return TypeLong::LONG; 855 } 856 857 return TypeLong::make( (jlong)r1->get_con() << (jint)shift ); 858 } 859 860 //============================================================================= 861 //------------------------------Identity--------------------------------------- 862 Node *RShiftINode::Identity( PhaseTransform *phase ) { 863 const TypeInt *t2 = phase->type(in(2))->isa_int(); 864 if( !t2 ) return this; 865 if ( t2->is_con() && ( t2->get_con() & ( BitsPerInt - 1 ) ) == 0 ) 866 return in(1); 867 868 // Check for useless sign-masking 869 if( in(1)->Opcode() == Op_LShiftI && 870 in(1)->req() == 3 && 871 in(1)->in(2) == in(2) && 872 t2->is_con() ) { 873 uint shift = t2->get_con(); 874 shift &= BitsPerJavaInteger-1; // semantics of Java shifts 875 // Compute masks for which this shifting doesn't change 876 int lo = (-1 << (BitsPerJavaInteger - shift-1)); // FFFF8000 877 int hi = ~lo; // 00007FFF 878 const TypeInt *t11 = phase->type(in(1)->in(1))->isa_int(); 879 if( !t11 ) return this; 880 // Does actual value fit inside of mask? 881 if( lo <= t11->_lo && t11->_hi <= hi ) 882 return in(1)->in(1); // Then shifting is a nop 883 } 884 885 return this; 886 } 887 888 //------------------------------Ideal------------------------------------------ 889 Node *RShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) { 890 // Inputs may be TOP if they are dead. 891 const TypeInt *t1 = phase->type( in(1) )->isa_int(); 892 if( !t1 ) return NULL; // Left input is an integer 893 const TypeInt *t2 = phase->type( in(2) )->isa_int(); 894 if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant 895 const TypeInt *t3; // type of in(1).in(2) 896 int shift = t2->get_con(); 897 shift &= BitsPerJavaInteger-1; // semantics of Java shifts 898 899 if ( shift == 0 ) return NULL; // let Identity() handle 0 shift count 900 901 // Check for (x & 0xFF000000) >> 24, whose mask can be made smaller. 902 // Such expressions arise normally from shift chains like (byte)(x >> 24). 903 const Node *mask = in(1); 904 if( mask->Opcode() == Op_AndI && 905 (t3 = phase->type(mask->in(2))->isa_int()) && 906 t3->is_con() ) { 907 Node *x = mask->in(1); 908 jint maskbits = t3->get_con(); 909 // Convert to "(x >> shift) & (mask >> shift)" 910 Node *shr_nomask = phase->transform( new (phase->C) RShiftINode(mask->in(1), in(2)) ); 911 return new (phase->C) AndINode(shr_nomask, phase->intcon( maskbits >> shift)); 912 } 913 914 // Check for "(short[i] <<16)>>16" which simply sign-extends 915 const Node *shl = in(1); 916 if( shl->Opcode() != Op_LShiftI ) return NULL; 917 918 if( shift == 16 && 919 (t3 = phase->type(shl->in(2))->isa_int()) && 920 t3->is_con(16) ) { 921 Node *ld = shl->in(1); 922 if( ld->Opcode() == Op_LoadS ) { 923 // Sign extension is just useless here. Return a RShiftI of zero instead 924 // returning 'ld' directly. We cannot return an old Node directly as 925 // that is the job of 'Identity' calls and Identity calls only work on 926 // direct inputs ('ld' is an extra Node removed from 'this'). The 927 // combined optimization requires Identity only return direct inputs. 928 set_req(1, ld); 929 set_req(2, phase->intcon(0)); 930 return this; 931 } 932 else if( can_reshape && 933 ld->Opcode() == Op_LoadUS && 934 ld->outcnt() == 1 && ld->unique_out() == shl) 935 // Replace zero-extension-load with sign-extension-load 936 return new (phase->C) LoadSNode( ld->in(MemNode::Control), 937 ld->in(MemNode::Memory), 938 ld->in(MemNode::Address), 939 ld->adr_type(), TypeInt::SHORT, 940 MemNode::unordered); 941 } 942 943 // Check for "(byte[i] <<24)>>24" which simply sign-extends 944 if( shift == 24 && 945 (t3 = phase->type(shl->in(2))->isa_int()) && 946 t3->is_con(24) ) { 947 Node *ld = shl->in(1); 948 if( ld->Opcode() == Op_LoadB ) { 949 // Sign extension is just useless here 950 set_req(1, ld); 951 set_req(2, phase->intcon(0)); 952 return this; 953 } 954 } 955 956 return NULL; 957 } 958 959 //------------------------------Value------------------------------------------ 960 // A RShiftINode shifts its input2 right by input1 amount. 961 const Type *RShiftINode::Value( PhaseTransform *phase ) const { 962 const Type *t1 = phase->type( in(1) ); 963 const Type *t2 = phase->type( in(2) ); 964 // Either input is TOP ==> the result is TOP 965 if( t1 == Type::TOP ) return Type::TOP; 966 if( t2 == Type::TOP ) return Type::TOP; 967 968 // Left input is ZERO ==> the result is ZERO. 969 if( t1 == TypeInt::ZERO ) return TypeInt::ZERO; 970 // Shift by zero does nothing 971 if( t2 == TypeInt::ZERO ) return t1; 972 973 // Either input is BOTTOM ==> the result is BOTTOM 974 if (t1 == Type::BOTTOM || t2 == Type::BOTTOM) 975 return TypeInt::INT; 976 977 if (t2 == TypeInt::INT) 978 return TypeInt::INT; 979 980 const TypeInt *r1 = t1->is_int(); // Handy access 981 const TypeInt *r2 = t2->is_int(); // Handy access 982 983 // If the shift is a constant, just shift the bounds of the type. 984 // For example, if the shift is 31, we just propagate sign bits. 985 if (r2->is_con()) { 986 uint shift = r2->get_con(); 987 shift &= BitsPerJavaInteger-1; // semantics of Java shifts 988 // Shift by a multiple of 32 does nothing: 989 if (shift == 0) return t1; 990 // Calculate reasonably aggressive bounds for the result. 991 // This is necessary if we are to correctly type things 992 // like (x<<24>>24) == ((byte)x). 993 jint lo = (jint)r1->_lo >> (jint)shift; 994 jint hi = (jint)r1->_hi >> (jint)shift; 995 assert(lo <= hi, "must have valid bounds"); 996 const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen)); 997 #ifdef ASSERT 998 // Make sure we get the sign-capture idiom correct. 999 if (shift == BitsPerJavaInteger-1) { 1000 if (r1->_lo >= 0) assert(ti == TypeInt::ZERO, ">>31 of + is 0"); 1001 if (r1->_hi < 0) assert(ti == TypeInt::MINUS_1, ">>31 of - is -1"); 1002 } 1003 #endif 1004 return ti; 1005 } 1006 1007 if( !r1->is_con() || !r2->is_con() ) 1008 return TypeInt::INT; 1009 1010 // Signed shift right 1011 return TypeInt::make( r1->get_con() >> (r2->get_con()&31) ); 1012 } 1013 1014 //============================================================================= 1015 //------------------------------Identity--------------------------------------- 1016 Node *RShiftLNode::Identity( PhaseTransform *phase ) { 1017 const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int 1018 return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this; 1019 } 1020 1021 //------------------------------Value------------------------------------------ 1022 // A RShiftLNode shifts its input2 right by input1 amount. 1023 const Type *RShiftLNode::Value( PhaseTransform *phase ) const { 1024 const Type *t1 = phase->type( in(1) ); 1025 const Type *t2 = phase->type( in(2) ); 1026 // Either input is TOP ==> the result is TOP 1027 if( t1 == Type::TOP ) return Type::TOP; 1028 if( t2 == Type::TOP ) return Type::TOP; 1029 1030 // Left input is ZERO ==> the result is ZERO. 1031 if( t1 == TypeLong::ZERO ) return TypeLong::ZERO; 1032 // Shift by zero does nothing 1033 if( t2 == TypeInt::ZERO ) return t1; 1034 1035 // Either input is BOTTOM ==> the result is BOTTOM 1036 if (t1 == Type::BOTTOM || t2 == Type::BOTTOM) 1037 return TypeLong::LONG; 1038 1039 if (t2 == TypeInt::INT) 1040 return TypeLong::LONG; 1041 1042 const TypeLong *r1 = t1->is_long(); // Handy access 1043 const TypeInt *r2 = t2->is_int (); // Handy access 1044 1045 // If the shift is a constant, just shift the bounds of the type. 1046 // For example, if the shift is 63, we just propagate sign bits. 1047 if (r2->is_con()) { 1048 uint shift = r2->get_con(); 1049 shift &= (2*BitsPerJavaInteger)-1; // semantics of Java shifts 1050 // Shift by a multiple of 64 does nothing: 1051 if (shift == 0) return t1; 1052 // Calculate reasonably aggressive bounds for the result. 1053 // This is necessary if we are to correctly type things 1054 // like (x<<24>>24) == ((byte)x). 1055 jlong lo = (jlong)r1->_lo >> (jlong)shift; 1056 jlong hi = (jlong)r1->_hi >> (jlong)shift; 1057 assert(lo <= hi, "must have valid bounds"); 1058 const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen)); 1059 #ifdef ASSERT 1060 // Make sure we get the sign-capture idiom correct. 1061 if (shift == (2*BitsPerJavaInteger)-1) { 1062 if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>63 of + is 0"); 1063 if (r1->_hi < 0) assert(tl == TypeLong::MINUS_1, ">>63 of - is -1"); 1064 } 1065 #endif 1066 return tl; 1067 } 1068 1069 return TypeLong::LONG; // Give up 1070 } 1071 1072 //============================================================================= 1073 //------------------------------Identity--------------------------------------- 1074 Node *URShiftINode::Identity( PhaseTransform *phase ) { 1075 const TypeInt *ti = phase->type( in(2) )->isa_int(); 1076 if ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerInt - 1 ) ) == 0 ) return in(1); 1077 1078 // Check for "((x << LogBytesPerWord) + (wordSize-1)) >> LogBytesPerWord" which is just "x". 1079 // Happens during new-array length computation. 1080 // Safe if 'x' is in the range [0..(max_int>>LogBytesPerWord)] 1081 Node *add = in(1); 1082 if( add->Opcode() == Op_AddI ) { 1083 const TypeInt *t2 = phase->type(add->in(2))->isa_int(); 1084 if( t2 && t2->is_con(wordSize - 1) && 1085 add->in(1)->Opcode() == Op_LShiftI ) { 1086 // Check that shift_counts are LogBytesPerWord 1087 Node *lshift_count = add->in(1)->in(2); 1088 const TypeInt *t_lshift_count = phase->type(lshift_count)->isa_int(); 1089 if( t_lshift_count && t_lshift_count->is_con(LogBytesPerWord) && 1090 t_lshift_count == phase->type(in(2)) ) { 1091 Node *x = add->in(1)->in(1); 1092 const TypeInt *t_x = phase->type(x)->isa_int(); 1093 if( t_x != NULL && 0 <= t_x->_lo && t_x->_hi <= (max_jint>>LogBytesPerWord) ) { 1094 return x; 1095 } 1096 } 1097 } 1098 } 1099 1100 return (phase->type(in(2))->higher_equal(TypeInt::ZERO)) ? in(1) : this; 1101 } 1102 1103 //------------------------------Ideal------------------------------------------ 1104 Node *URShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) { 1105 const TypeInt *t2 = phase->type( in(2) )->isa_int(); 1106 if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant 1107 const int con = t2->get_con() & 31; // Shift count is always masked 1108 if ( con == 0 ) return NULL; // let Identity() handle a 0 shift count 1109 // We'll be wanting the right-shift amount as a mask of that many bits 1110 const int mask = right_n_bits(BitsPerJavaInteger - con); 1111 1112 int in1_op = in(1)->Opcode(); 1113 1114 // Check for ((x>>>a)>>>b) and replace with (x>>>(a+b)) when a+b < 32 1115 if( in1_op == Op_URShiftI ) { 1116 const TypeInt *t12 = phase->type( in(1)->in(2) )->isa_int(); 1117 if( t12 && t12->is_con() ) { // Right input is a constant 1118 assert( in(1) != in(1)->in(1), "dead loop in URShiftINode::Ideal" ); 1119 const int con2 = t12->get_con() & 31; // Shift count is always masked 1120 const int con3 = con+con2; 1121 if( con3 < 32 ) // Only merge shifts if total is < 32 1122 return new (phase->C) URShiftINode( in(1)->in(1), phase->intcon(con3) ); 1123 } 1124 } 1125 1126 // Check for ((x << z) + Y) >>> z. Replace with x + con>>>z 1127 // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z". 1128 // If Q is "X << z" the rounding is useless. Look for patterns like 1129 // ((X<<Z) + Y) >>> Z and replace with (X + Y>>>Z) & Z-mask. 1130 Node *add = in(1); 1131 if( in1_op == Op_AddI ) { 1132 Node *lshl = add->in(1); 1133 if( lshl->Opcode() == Op_LShiftI && 1134 phase->type(lshl->in(2)) == t2 ) { 1135 Node *y_z = phase->transform( new (phase->C) URShiftINode(add->in(2),in(2)) ); 1136 Node *sum = phase->transform( new (phase->C) AddINode( lshl->in(1), y_z ) ); 1137 return new (phase->C) AndINode( sum, phase->intcon(mask) ); 1138 } 1139 } 1140 1141 // Check for (x & mask) >>> z. Replace with (x >>> z) & (mask >>> z) 1142 // This shortens the mask. Also, if we are extracting a high byte and 1143 // storing it to a buffer, the mask will be removed completely. 1144 Node *andi = in(1); 1145 if( in1_op == Op_AndI ) { 1146 const TypeInt *t3 = phase->type( andi->in(2) )->isa_int(); 1147 if( t3 && t3->is_con() ) { // Right input is a constant 1148 jint mask2 = t3->get_con(); 1149 mask2 >>= con; // *signed* shift downward (high-order zeroes do not help) 1150 Node *newshr = phase->transform( new (phase->C) URShiftINode(andi->in(1), in(2)) ); 1151 return new (phase->C) AndINode(newshr, phase->intcon(mask2)); 1152 // The negative values are easier to materialize than positive ones. 1153 // A typical case from address arithmetic is ((x & ~15) >> 4). 1154 // It's better to change that to ((x >> 4) & ~0) versus 1155 // ((x >> 4) & 0x0FFFFFFF). The difference is greatest in LP64. 1156 } 1157 } 1158 1159 // Check for "(X << z ) >>> z" which simply zero-extends 1160 Node *shl = in(1); 1161 if( in1_op == Op_LShiftI && 1162 phase->type(shl->in(2)) == t2 ) 1163 return new (phase->C) AndINode( shl->in(1), phase->intcon(mask) ); 1164 1165 return NULL; 1166 } 1167 1168 //------------------------------Value------------------------------------------ 1169 // A URShiftINode shifts its input2 right by input1 amount. 1170 const Type *URShiftINode::Value( PhaseTransform *phase ) const { 1171 // (This is a near clone of RShiftINode::Value.) 1172 const Type *t1 = phase->type( in(1) ); 1173 const Type *t2 = phase->type( in(2) ); 1174 // Either input is TOP ==> the result is TOP 1175 if( t1 == Type::TOP ) return Type::TOP; 1176 if( t2 == Type::TOP ) return Type::TOP; 1177 1178 // Left input is ZERO ==> the result is ZERO. 1179 if( t1 == TypeInt::ZERO ) return TypeInt::ZERO; 1180 // Shift by zero does nothing 1181 if( t2 == TypeInt::ZERO ) return t1; 1182 1183 // Either input is BOTTOM ==> the result is BOTTOM 1184 if (t1 == Type::BOTTOM || t2 == Type::BOTTOM) 1185 return TypeInt::INT; 1186 1187 if (t2 == TypeInt::INT) 1188 return TypeInt::INT; 1189 1190 const TypeInt *r1 = t1->is_int(); // Handy access 1191 const TypeInt *r2 = t2->is_int(); // Handy access 1192 1193 if (r2->is_con()) { 1194 uint shift = r2->get_con(); 1195 shift &= BitsPerJavaInteger-1; // semantics of Java shifts 1196 // Shift by a multiple of 32 does nothing: 1197 if (shift == 0) return t1; 1198 // Calculate reasonably aggressive bounds for the result. 1199 jint lo = (juint)r1->_lo >> (juint)shift; 1200 jint hi = (juint)r1->_hi >> (juint)shift; 1201 if (r1->_hi >= 0 && r1->_lo < 0) { 1202 // If the type has both negative and positive values, 1203 // there are two separate sub-domains to worry about: 1204 // The positive half and the negative half. 1205 jint neg_lo = lo; 1206 jint neg_hi = (juint)-1 >> (juint)shift; 1207 jint pos_lo = (juint) 0 >> (juint)shift; 1208 jint pos_hi = hi; 1209 lo = MIN2(neg_lo, pos_lo); // == 0 1210 hi = MAX2(neg_hi, pos_hi); // == -1 >>> shift; 1211 } 1212 assert(lo <= hi, "must have valid bounds"); 1213 const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen)); 1214 #ifdef ASSERT 1215 // Make sure we get the sign-capture idiom correct. 1216 if (shift == BitsPerJavaInteger-1) { 1217 if (r1->_lo >= 0) assert(ti == TypeInt::ZERO, ">>>31 of + is 0"); 1218 if (r1->_hi < 0) assert(ti == TypeInt::ONE, ">>>31 of - is +1"); 1219 } 1220 #endif 1221 return ti; 1222 } 1223 1224 // 1225 // Do not support shifted oops in info for GC 1226 // 1227 // else if( t1->base() == Type::InstPtr ) { 1228 // 1229 // const TypeInstPtr *o = t1->is_instptr(); 1230 // if( t1->singleton() ) 1231 // return TypeInt::make( ((uint32)o->const_oop() + o->_offset) >> shift ); 1232 // } 1233 // else if( t1->base() == Type::KlassPtr ) { 1234 // const TypeKlassPtr *o = t1->is_klassptr(); 1235 // if( t1->singleton() ) 1236 // return TypeInt::make( ((uint32)o->const_oop() + o->_offset) >> shift ); 1237 // } 1238 1239 return TypeInt::INT; 1240 } 1241 1242 //============================================================================= 1243 //------------------------------Identity--------------------------------------- 1244 Node *URShiftLNode::Identity( PhaseTransform *phase ) { 1245 const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int 1246 return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this; 1247 } 1248 1249 //------------------------------Ideal------------------------------------------ 1250 Node *URShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) { 1251 const TypeInt *t2 = phase->type( in(2) )->isa_int(); 1252 if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant 1253 const int con = t2->get_con() & ( BitsPerLong - 1 ); // Shift count is always masked 1254 if ( con == 0 ) return NULL; // let Identity() handle a 0 shift count 1255 // note: mask computation below does not work for 0 shift count 1256 // We'll be wanting the right-shift amount as a mask of that many bits 1257 const jlong mask = jlong(max_julong >> con); 1258 1259 // Check for ((x << z) + Y) >>> z. Replace with x + con>>>z 1260 // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z". 1261 // If Q is "X << z" the rounding is useless. Look for patterns like 1262 // ((X<<Z) + Y) >>> Z and replace with (X + Y>>>Z) & Z-mask. 1263 Node *add = in(1); 1264 if( add->Opcode() == Op_AddL ) { 1265 Node *lshl = add->in(1); 1266 if( lshl->Opcode() == Op_LShiftL && 1267 phase->type(lshl->in(2)) == t2 ) { 1268 Node *y_z = phase->transform( new (phase->C) URShiftLNode(add->in(2),in(2)) ); 1269 Node *sum = phase->transform( new (phase->C) AddLNode( lshl->in(1), y_z ) ); 1270 return new (phase->C) AndLNode( sum, phase->longcon(mask) ); 1271 } 1272 } 1273 1274 // Check for (x & mask) >>> z. Replace with (x >>> z) & (mask >>> z) 1275 // This shortens the mask. Also, if we are extracting a high byte and 1276 // storing it to a buffer, the mask will be removed completely. 1277 Node *andi = in(1); 1278 if( andi->Opcode() == Op_AndL ) { 1279 const TypeLong *t3 = phase->type( andi->in(2) )->isa_long(); 1280 if( t3 && t3->is_con() ) { // Right input is a constant 1281 jlong mask2 = t3->get_con(); 1282 mask2 >>= con; // *signed* shift downward (high-order zeroes do not help) 1283 Node *newshr = phase->transform( new (phase->C) URShiftLNode(andi->in(1), in(2)) ); 1284 return new (phase->C) AndLNode(newshr, phase->longcon(mask2)); 1285 } 1286 } 1287 1288 // Check for "(X << z ) >>> z" which simply zero-extends 1289 Node *shl = in(1); 1290 if( shl->Opcode() == Op_LShiftL && 1291 phase->type(shl->in(2)) == t2 ) 1292 return new (phase->C) AndLNode( shl->in(1), phase->longcon(mask) ); 1293 1294 return NULL; 1295 } 1296 1297 //------------------------------Value------------------------------------------ 1298 // A URShiftINode shifts its input2 right by input1 amount. 1299 const Type *URShiftLNode::Value( PhaseTransform *phase ) const { 1300 // (This is a near clone of RShiftLNode::Value.) 1301 const Type *t1 = phase->type( in(1) ); 1302 const Type *t2 = phase->type( in(2) ); 1303 // Either input is TOP ==> the result is TOP 1304 if( t1 == Type::TOP ) return Type::TOP; 1305 if( t2 == Type::TOP ) return Type::TOP; 1306 1307 // Left input is ZERO ==> the result is ZERO. 1308 if( t1 == TypeLong::ZERO ) return TypeLong::ZERO; 1309 // Shift by zero does nothing 1310 if( t2 == TypeInt::ZERO ) return t1; 1311 1312 // Either input is BOTTOM ==> the result is BOTTOM 1313 if (t1 == Type::BOTTOM || t2 == Type::BOTTOM) 1314 return TypeLong::LONG; 1315 1316 if (t2 == TypeInt::INT) 1317 return TypeLong::LONG; 1318 1319 const TypeLong *r1 = t1->is_long(); // Handy access 1320 const TypeInt *r2 = t2->is_int (); // Handy access 1321 1322 if (r2->is_con()) { 1323 uint shift = r2->get_con(); 1324 shift &= BitsPerJavaLong - 1; // semantics of Java shifts 1325 // Shift by a multiple of 64 does nothing: 1326 if (shift == 0) return t1; 1327 // Calculate reasonably aggressive bounds for the result. 1328 jlong lo = (julong)r1->_lo >> (juint)shift; 1329 jlong hi = (julong)r1->_hi >> (juint)shift; 1330 if (r1->_hi >= 0 && r1->_lo < 0) { 1331 // If the type has both negative and positive values, 1332 // there are two separate sub-domains to worry about: 1333 // The positive half and the negative half. 1334 jlong neg_lo = lo; 1335 jlong neg_hi = (julong)-1 >> (juint)shift; 1336 jlong pos_lo = (julong) 0 >> (juint)shift; 1337 jlong pos_hi = hi; 1338 //lo = MIN2(neg_lo, pos_lo); // == 0 1339 lo = neg_lo < pos_lo ? neg_lo : pos_lo; 1340 //hi = MAX2(neg_hi, pos_hi); // == -1 >>> shift; 1341 hi = neg_hi > pos_hi ? neg_hi : pos_hi; 1342 } 1343 assert(lo <= hi, "must have valid bounds"); 1344 const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen)); 1345 #ifdef ASSERT 1346 // Make sure we get the sign-capture idiom correct. 1347 if (shift == BitsPerJavaLong - 1) { 1348 if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>>63 of + is 0"); 1349 if (r1->_hi < 0) assert(tl == TypeLong::ONE, ">>>63 of - is +1"); 1350 } 1351 #endif 1352 return tl; 1353 } 1354 1355 return TypeLong::LONG; // Give up 1356 }