1 /* 2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "libadt/vectset.hpp" 27 #include "memory/allocation.inline.hpp" 28 #include "opto/cfgnode.hpp" 29 #include "opto/connode.hpp" 30 #include "opto/loopnode.hpp" 31 #include "opto/machnode.hpp" 32 #include "opto/matcher.hpp" 33 #include "opto/node.hpp" 34 #include "opto/opcodes.hpp" 35 #include "opto/regmask.hpp" 36 #include "opto/type.hpp" 37 #include "utilities/copy.hpp" 38 39 class RegMask; 40 // #include "phase.hpp" 41 class PhaseTransform; 42 class PhaseGVN; 43 44 // Arena we are currently building Nodes in 45 const uint Node::NotAMachineReg = 0xffff0000; 46 47 #ifndef PRODUCT 48 extern int nodes_created; 49 #endif 50 51 #ifdef ASSERT 52 53 //-------------------------- construct_node------------------------------------ 54 // Set a breakpoint here to identify where a particular node index is built. 55 void Node::verify_construction() { 56 _debug_orig = NULL; 57 int old_debug_idx = Compile::debug_idx(); 58 int new_debug_idx = old_debug_idx+1; 59 if (new_debug_idx > 0) { 60 // Arrange that the lowest five decimal digits of _debug_idx 61 // will repeat those of _idx. In case this is somehow pathological, 62 // we continue to assign negative numbers (!) consecutively. 63 const int mod = 100000; 64 int bump = (int)(_idx - new_debug_idx) % mod; 65 if (bump < 0) bump += mod; 66 assert(bump >= 0 && bump < mod, ""); 67 new_debug_idx += bump; 68 } 69 Compile::set_debug_idx(new_debug_idx); 70 set_debug_idx( new_debug_idx ); 71 assert(Compile::current()->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX"); 72 assert(Compile::current()->live_nodes() < Compile::current()->max_node_limit(), "Live Node limit exceeded limit"); 73 if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) { 74 tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx); 75 BREAKPOINT; 76 } 77 #if OPTO_DU_ITERATOR_ASSERT 78 _last_del = NULL; 79 _del_tick = 0; 80 #endif 81 _hash_lock = 0; 82 } 83 84 85 // #ifdef ASSERT ... 86 87 #if OPTO_DU_ITERATOR_ASSERT 88 void DUIterator_Common::sample(const Node* node) { 89 _vdui = VerifyDUIterators; 90 _node = node; 91 _outcnt = node->_outcnt; 92 _del_tick = node->_del_tick; 93 _last = NULL; 94 } 95 96 void DUIterator_Common::verify(const Node* node, bool at_end_ok) { 97 assert(_node == node, "consistent iterator source"); 98 assert(_del_tick == node->_del_tick, "no unexpected deletions allowed"); 99 } 100 101 void DUIterator_Common::verify_resync() { 102 // Ensure that the loop body has just deleted the last guy produced. 103 const Node* node = _node; 104 // Ensure that at least one copy of the last-seen edge was deleted. 105 // Note: It is OK to delete multiple copies of the last-seen edge. 106 // Unfortunately, we have no way to verify that all the deletions delete 107 // that same edge. On this point we must use the Honor System. 108 assert(node->_del_tick >= _del_tick+1, "must have deleted an edge"); 109 assert(node->_last_del == _last, "must have deleted the edge just produced"); 110 // We liked this deletion, so accept the resulting outcnt and tick. 111 _outcnt = node->_outcnt; 112 _del_tick = node->_del_tick; 113 } 114 115 void DUIterator_Common::reset(const DUIterator_Common& that) { 116 if (this == &that) return; // ignore assignment to self 117 if (!_vdui) { 118 // We need to initialize everything, overwriting garbage values. 119 _last = that._last; 120 _vdui = that._vdui; 121 } 122 // Note: It is legal (though odd) for an iterator over some node x 123 // to be reassigned to iterate over another node y. Some doubly-nested 124 // progress loops depend on being able to do this. 125 const Node* node = that._node; 126 // Re-initialize everything, except _last. 127 _node = node; 128 _outcnt = node->_outcnt; 129 _del_tick = node->_del_tick; 130 } 131 132 void DUIterator::sample(const Node* node) { 133 DUIterator_Common::sample(node); // Initialize the assertion data. 134 _refresh_tick = 0; // No refreshes have happened, as yet. 135 } 136 137 void DUIterator::verify(const Node* node, bool at_end_ok) { 138 DUIterator_Common::verify(node, at_end_ok); 139 assert(_idx < node->_outcnt + (uint)at_end_ok, "idx in range"); 140 } 141 142 void DUIterator::verify_increment() { 143 if (_refresh_tick & 1) { 144 // We have refreshed the index during this loop. 145 // Fix up _idx to meet asserts. 146 if (_idx > _outcnt) _idx = _outcnt; 147 } 148 verify(_node, true); 149 } 150 151 void DUIterator::verify_resync() { 152 // Note: We do not assert on _outcnt, because insertions are OK here. 153 DUIterator_Common::verify_resync(); 154 // Make sure we are still in sync, possibly with no more out-edges: 155 verify(_node, true); 156 } 157 158 void DUIterator::reset(const DUIterator& that) { 159 if (this == &that) return; // self assignment is always a no-op 160 assert(that._refresh_tick == 0, "assign only the result of Node::outs()"); 161 assert(that._idx == 0, "assign only the result of Node::outs()"); 162 assert(_idx == that._idx, "already assigned _idx"); 163 if (!_vdui) { 164 // We need to initialize everything, overwriting garbage values. 165 sample(that._node); 166 } else { 167 DUIterator_Common::reset(that); 168 if (_refresh_tick & 1) { 169 _refresh_tick++; // Clear the "was refreshed" flag. 170 } 171 assert(_refresh_tick < 2*100000, "DU iteration must converge quickly"); 172 } 173 } 174 175 void DUIterator::refresh() { 176 DUIterator_Common::sample(_node); // Re-fetch assertion data. 177 _refresh_tick |= 1; // Set the "was refreshed" flag. 178 } 179 180 void DUIterator::verify_finish() { 181 // If the loop has killed the node, do not require it to re-run. 182 if (_node->_outcnt == 0) _refresh_tick &= ~1; 183 // If this assert triggers, it means that a loop used refresh_out_pos 184 // to re-synch an iteration index, but the loop did not correctly 185 // re-run itself, using a "while (progress)" construct. 186 // This iterator enforces the rule that you must keep trying the loop 187 // until it "runs clean" without any need for refreshing. 188 assert(!(_refresh_tick & 1), "the loop must run once with no refreshing"); 189 } 190 191 192 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) { 193 DUIterator_Common::verify(node, at_end_ok); 194 Node** out = node->_out; 195 uint cnt = node->_outcnt; 196 assert(cnt == _outcnt, "no insertions allowed"); 197 assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range"); 198 // This last check is carefully designed to work for NO_OUT_ARRAY. 199 } 200 201 void DUIterator_Fast::verify_limit() { 202 const Node* node = _node; 203 verify(node, true); 204 assert(_outp == node->_out + node->_outcnt, "limit still correct"); 205 } 206 207 void DUIterator_Fast::verify_resync() { 208 const Node* node = _node; 209 if (_outp == node->_out + _outcnt) { 210 // Note that the limit imax, not the pointer i, gets updated with the 211 // exact count of deletions. (For the pointer it's always "--i".) 212 assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)"); 213 // This is a limit pointer, with a name like "imax". 214 // Fudge the _last field so that the common assert will be happy. 215 _last = (Node*) node->_last_del; 216 DUIterator_Common::verify_resync(); 217 } else { 218 assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)"); 219 // A normal internal pointer. 220 DUIterator_Common::verify_resync(); 221 // Make sure we are still in sync, possibly with no more out-edges: 222 verify(node, true); 223 } 224 } 225 226 void DUIterator_Fast::verify_relimit(uint n) { 227 const Node* node = _node; 228 assert((int)n > 0, "use imax -= n only with a positive count"); 229 // This must be a limit pointer, with a name like "imax". 230 assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)"); 231 // The reported number of deletions must match what the node saw. 232 assert(node->_del_tick == _del_tick + n, "must have deleted n edges"); 233 // Fudge the _last field so that the common assert will be happy. 234 _last = (Node*) node->_last_del; 235 DUIterator_Common::verify_resync(); 236 } 237 238 void DUIterator_Fast::reset(const DUIterator_Fast& that) { 239 assert(_outp == that._outp, "already assigned _outp"); 240 DUIterator_Common::reset(that); 241 } 242 243 void DUIterator_Last::verify(const Node* node, bool at_end_ok) { 244 // at_end_ok means the _outp is allowed to underflow by 1 245 _outp += at_end_ok; 246 DUIterator_Fast::verify(node, at_end_ok); // check _del_tick, etc. 247 _outp -= at_end_ok; 248 assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes"); 249 } 250 251 void DUIterator_Last::verify_limit() { 252 // Do not require the limit address to be resynched. 253 //verify(node, true); 254 assert(_outp == _node->_out, "limit still correct"); 255 } 256 257 void DUIterator_Last::verify_step(uint num_edges) { 258 assert((int)num_edges > 0, "need non-zero edge count for loop progress"); 259 _outcnt -= num_edges; 260 _del_tick += num_edges; 261 // Make sure we are still in sync, possibly with no more out-edges: 262 const Node* node = _node; 263 verify(node, true); 264 assert(node->_last_del == _last, "must have deleted the edge just produced"); 265 } 266 267 #endif //OPTO_DU_ITERATOR_ASSERT 268 269 270 #endif //ASSERT 271 272 273 // This constant used to initialize _out may be any non-null value. 274 // The value NULL is reserved for the top node only. 275 #define NO_OUT_ARRAY ((Node**)-1) 276 277 // This funny expression handshakes with Node::operator new 278 // to pull Compile::current out of the new node's _out field, 279 // and then calls a subroutine which manages most field 280 // initializations. The only one which is tricky is the 281 // _idx field, which is const, and so must be initialized 282 // by a return value, not an assignment. 283 // 284 // (Aren't you thankful that Java finals don't require so many tricks?) 285 #define IDX_INIT(req) this->Init((req), (Compile*) this->_out) 286 #ifdef _MSC_VER // the IDX_INIT hack falls foul of warning C4355 287 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list 288 #endif 289 #ifdef __clang__ 290 #pragma clang diagnostic push 291 #pragma GCC diagnostic ignored "-Wuninitialized" 292 #endif 293 294 // Out-of-line code from node constructors. 295 // Executed only when extra debug info. is being passed around. 296 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) { 297 C->set_node_notes_at(idx, nn); 298 } 299 300 // Shared initialization code. 301 inline int Node::Init(int req, Compile* C) { 302 assert(Compile::current() == C, "must use operator new(Compile*)"); 303 int idx = C->next_unique(); 304 305 // Allocate memory for the necessary number of edges. 306 if (req > 0) { 307 // Allocate space for _in array to have double alignment. 308 _in = (Node **) ((char *) (C->node_arena()->Amalloc_D(req * sizeof(void*)))); 309 #ifdef ASSERT 310 _in[req-1] = this; // magic cookie for assertion check 311 #endif 312 } 313 // If there are default notes floating around, capture them: 314 Node_Notes* nn = C->default_node_notes(); 315 if (nn != NULL) init_node_notes(C, idx, nn); 316 317 // Note: At this point, C is dead, 318 // and we begin to initialize the new Node. 319 320 _cnt = _max = req; 321 _outcnt = _outmax = 0; 322 _class_id = Class_Node; 323 _flags = 0; 324 _out = NO_OUT_ARRAY; 325 return idx; 326 } 327 328 //------------------------------Node------------------------------------------- 329 // Create a Node, with a given number of required edges. 330 Node::Node(uint req) 331 : _idx(IDX_INIT(req)) 332 #ifdef ASSERT 333 , _parse_idx(_idx) 334 #endif 335 { 336 assert( req < Compile::current()->max_node_limit() - NodeLimitFudgeFactor, "Input limit exceeded" ); 337 debug_only( verify_construction() ); 338 NOT_PRODUCT(nodes_created++); 339 if (req == 0) { 340 assert( _in == (Node**)this, "Must not pass arg count to 'new'" ); 341 _in = NULL; 342 } else { 343 assert( _in[req-1] == this, "Must pass arg count to 'new'" ); 344 Node** to = _in; 345 for(uint i = 0; i < req; i++) { 346 to[i] = NULL; 347 } 348 } 349 } 350 351 //------------------------------Node------------------------------------------- 352 Node::Node(Node *n0) 353 : _idx(IDX_INIT(1)) 354 #ifdef ASSERT 355 , _parse_idx(_idx) 356 #endif 357 { 358 debug_only( verify_construction() ); 359 NOT_PRODUCT(nodes_created++); 360 // Assert we allocated space for input array already 361 assert( _in[0] == this, "Must pass arg count to 'new'" ); 362 assert( is_not_dead(n0), "can not use dead node"); 363 _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this); 364 } 365 366 //------------------------------Node------------------------------------------- 367 Node::Node(Node *n0, Node *n1) 368 : _idx(IDX_INIT(2)) 369 #ifdef ASSERT 370 , _parse_idx(_idx) 371 #endif 372 { 373 debug_only( verify_construction() ); 374 NOT_PRODUCT(nodes_created++); 375 // Assert we allocated space for input array already 376 assert( _in[1] == this, "Must pass arg count to 'new'" ); 377 assert( is_not_dead(n0), "can not use dead node"); 378 assert( is_not_dead(n1), "can not use dead node"); 379 _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this); 380 _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this); 381 } 382 383 //------------------------------Node------------------------------------------- 384 Node::Node(Node *n0, Node *n1, Node *n2) 385 : _idx(IDX_INIT(3)) 386 #ifdef ASSERT 387 , _parse_idx(_idx) 388 #endif 389 { 390 debug_only( verify_construction() ); 391 NOT_PRODUCT(nodes_created++); 392 // Assert we allocated space for input array already 393 assert( _in[2] == this, "Must pass arg count to 'new'" ); 394 assert( is_not_dead(n0), "can not use dead node"); 395 assert( is_not_dead(n1), "can not use dead node"); 396 assert( is_not_dead(n2), "can not use dead node"); 397 _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this); 398 _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this); 399 _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this); 400 } 401 402 //------------------------------Node------------------------------------------- 403 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3) 404 : _idx(IDX_INIT(4)) 405 #ifdef ASSERT 406 , _parse_idx(_idx) 407 #endif 408 { 409 debug_only( verify_construction() ); 410 NOT_PRODUCT(nodes_created++); 411 // Assert we allocated space for input array already 412 assert( _in[3] == this, "Must pass arg count to 'new'" ); 413 assert( is_not_dead(n0), "can not use dead node"); 414 assert( is_not_dead(n1), "can not use dead node"); 415 assert( is_not_dead(n2), "can not use dead node"); 416 assert( is_not_dead(n3), "can not use dead node"); 417 _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this); 418 _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this); 419 _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this); 420 _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this); 421 } 422 423 //------------------------------Node------------------------------------------- 424 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4) 425 : _idx(IDX_INIT(5)) 426 #ifdef ASSERT 427 , _parse_idx(_idx) 428 #endif 429 { 430 debug_only( verify_construction() ); 431 NOT_PRODUCT(nodes_created++); 432 // Assert we allocated space for input array already 433 assert( _in[4] == this, "Must pass arg count to 'new'" ); 434 assert( is_not_dead(n0), "can not use dead node"); 435 assert( is_not_dead(n1), "can not use dead node"); 436 assert( is_not_dead(n2), "can not use dead node"); 437 assert( is_not_dead(n3), "can not use dead node"); 438 assert( is_not_dead(n4), "can not use dead node"); 439 _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this); 440 _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this); 441 _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this); 442 _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this); 443 _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this); 444 } 445 446 //------------------------------Node------------------------------------------- 447 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, 448 Node *n4, Node *n5) 449 : _idx(IDX_INIT(6)) 450 #ifdef ASSERT 451 , _parse_idx(_idx) 452 #endif 453 { 454 debug_only( verify_construction() ); 455 NOT_PRODUCT(nodes_created++); 456 // Assert we allocated space for input array already 457 assert( _in[5] == this, "Must pass arg count to 'new'" ); 458 assert( is_not_dead(n0), "can not use dead node"); 459 assert( is_not_dead(n1), "can not use dead node"); 460 assert( is_not_dead(n2), "can not use dead node"); 461 assert( is_not_dead(n3), "can not use dead node"); 462 assert( is_not_dead(n4), "can not use dead node"); 463 assert( is_not_dead(n5), "can not use dead node"); 464 _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this); 465 _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this); 466 _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this); 467 _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this); 468 _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this); 469 _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this); 470 } 471 472 //------------------------------Node------------------------------------------- 473 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, 474 Node *n4, Node *n5, Node *n6) 475 : _idx(IDX_INIT(7)) 476 #ifdef ASSERT 477 , _parse_idx(_idx) 478 #endif 479 { 480 debug_only( verify_construction() ); 481 NOT_PRODUCT(nodes_created++); 482 // Assert we allocated space for input array already 483 assert( _in[6] == this, "Must pass arg count to 'new'" ); 484 assert( is_not_dead(n0), "can not use dead node"); 485 assert( is_not_dead(n1), "can not use dead node"); 486 assert( is_not_dead(n2), "can not use dead node"); 487 assert( is_not_dead(n3), "can not use dead node"); 488 assert( is_not_dead(n4), "can not use dead node"); 489 assert( is_not_dead(n5), "can not use dead node"); 490 assert( is_not_dead(n6), "can not use dead node"); 491 _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this); 492 _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this); 493 _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this); 494 _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this); 495 _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this); 496 _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this); 497 _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this); 498 } 499 500 #ifdef __clang__ 501 #pragma clang diagnostic pop 502 #endif 503 504 505 //------------------------------clone------------------------------------------ 506 // Clone a Node. 507 Node *Node::clone() const { 508 Compile* C = Compile::current(); 509 uint s = size_of(); // Size of inherited Node 510 Node *n = (Node*)C->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*)); 511 Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s); 512 // Set the new input pointer array 513 n->_in = (Node**)(((char*)n)+s); 514 // Cannot share the old output pointer array, so kill it 515 n->_out = NO_OUT_ARRAY; 516 // And reset the counters to 0 517 n->_outcnt = 0; 518 n->_outmax = 0; 519 // Unlock this guy, since he is not in any hash table. 520 debug_only(n->_hash_lock = 0); 521 // Walk the old node's input list to duplicate its edges 522 uint i; 523 for( i = 0; i < len(); i++ ) { 524 Node *x = in(i); 525 n->_in[i] = x; 526 if (x != NULL) x->add_out(n); 527 } 528 if (is_macro()) 529 C->add_macro_node(n); 530 if (is_expensive()) 531 C->add_expensive_node(n); 532 // If the cloned node is a range check dependent CastII, add it to the list. 533 CastIINode* cast = n->isa_CastII(); 534 if (cast != NULL && cast->has_range_check()) { 535 C->add_range_check_cast(cast); 536 } 537 538 n->set_idx(C->next_unique()); // Get new unique index as well 539 debug_only( n->verify_construction() ); 540 NOT_PRODUCT(nodes_created++); 541 // Do not patch over the debug_idx of a clone, because it makes it 542 // impossible to break on the clone's moment of creation. 543 //debug_only( n->set_debug_idx( debug_idx() ) ); 544 545 C->copy_node_notes_to(n, (Node*) this); 546 547 // MachNode clone 548 uint nopnds; 549 if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) { 550 MachNode *mach = n->as_Mach(); 551 MachNode *mthis = this->as_Mach(); 552 // Get address of _opnd_array. 553 // It should be the same offset since it is the clone of this node. 554 MachOper **from = mthis->_opnds; 555 MachOper **to = (MachOper **)((size_t)(&mach->_opnds) + 556 pointer_delta((const void*)from, 557 (const void*)(&mthis->_opnds), 1)); 558 mach->_opnds = to; 559 for ( uint i = 0; i < nopnds; ++i ) { 560 to[i] = from[i]->clone(C); 561 } 562 } 563 // cloning CallNode may need to clone JVMState 564 if (n->is_Call()) { 565 n->as_Call()->clone_jvms(C); 566 } 567 if (n->is_SafePoint()) { 568 n->as_SafePoint()->clone_replaced_nodes(); 569 } 570 return n; // Return the clone 571 } 572 573 //---------------------------setup_is_top-------------------------------------- 574 // Call this when changing the top node, to reassert the invariants 575 // required by Node::is_top. See Compile::set_cached_top_node. 576 void Node::setup_is_top() { 577 if (this == (Node*)Compile::current()->top()) { 578 // This node has just become top. Kill its out array. 579 _outcnt = _outmax = 0; 580 _out = NULL; // marker value for top 581 assert(is_top(), "must be top"); 582 } else { 583 if (_out == NULL) _out = NO_OUT_ARRAY; 584 assert(!is_top(), "must not be top"); 585 } 586 } 587 588 589 //------------------------------~Node------------------------------------------ 590 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage 591 extern int reclaim_idx ; 592 extern int reclaim_in ; 593 extern int reclaim_node; 594 void Node::destruct() { 595 // Eagerly reclaim unique Node numberings 596 Compile* compile = Compile::current(); 597 if ((uint)_idx+1 == compile->unique()) { 598 compile->set_unique(compile->unique()-1); 599 #ifdef ASSERT 600 reclaim_idx++; 601 #endif 602 } 603 // Clear debug info: 604 Node_Notes* nn = compile->node_notes_at(_idx); 605 if (nn != NULL) nn->clear(); 606 // Walk the input array, freeing the corresponding output edges 607 _cnt = _max; // forget req/prec distinction 608 uint i; 609 for( i = 0; i < _max; i++ ) { 610 set_req(i, NULL); 611 //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim"); 612 } 613 assert(outcnt() == 0, "deleting a node must not leave a dangling use"); 614 // See if the input array was allocated just prior to the object 615 int edge_size = _max*sizeof(void*); 616 int out_edge_size = _outmax*sizeof(void*); 617 char *edge_end = ((char*)_in) + edge_size; 618 char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out); 619 char *out_edge_end = out_array + out_edge_size; 620 int node_size = size_of(); 621 622 // Free the output edge array 623 if (out_edge_size > 0) { 624 #ifdef ASSERT 625 if( out_edge_end == compile->node_arena()->hwm() ) 626 reclaim_in += out_edge_size; // count reclaimed out edges with in edges 627 #endif 628 compile->node_arena()->Afree(out_array, out_edge_size); 629 } 630 631 // Free the input edge array and the node itself 632 if( edge_end == (char*)this ) { 633 #ifdef ASSERT 634 if( edge_end+node_size == compile->node_arena()->hwm() ) { 635 reclaim_in += edge_size; 636 reclaim_node+= node_size; 637 } 638 #else 639 // It was; free the input array and object all in one hit 640 compile->node_arena()->Afree(_in,edge_size+node_size); 641 #endif 642 } else { 643 644 // Free just the input array 645 #ifdef ASSERT 646 if( edge_end == compile->node_arena()->hwm() ) 647 reclaim_in += edge_size; 648 #endif 649 compile->node_arena()->Afree(_in,edge_size); 650 651 // Free just the object 652 #ifdef ASSERT 653 if( ((char*)this) + node_size == compile->node_arena()->hwm() ) 654 reclaim_node+= node_size; 655 #else 656 compile->node_arena()->Afree(this,node_size); 657 #endif 658 } 659 if (is_macro()) { 660 compile->remove_macro_node(this); 661 } 662 if (is_expensive()) { 663 compile->remove_expensive_node(this); 664 } 665 CastIINode* cast = isa_CastII(); 666 if (cast != NULL && cast->has_range_check()) { 667 compile->remove_range_check_cast(cast); 668 } 669 670 if (is_SafePoint()) { 671 as_SafePoint()->delete_replaced_nodes(); 672 } 673 #ifdef ASSERT 674 // We will not actually delete the storage, but we'll make the node unusable. 675 *(address*)this = badAddress; // smash the C++ vtbl, probably 676 _in = _out = (Node**) badAddress; 677 _max = _cnt = _outmax = _outcnt = 0; 678 #endif 679 } 680 681 //------------------------------grow------------------------------------------- 682 // Grow the input array, making space for more edges 683 void Node::grow( uint len ) { 684 Arena* arena = Compile::current()->node_arena(); 685 uint new_max = _max; 686 if( new_max == 0 ) { 687 _max = 4; 688 _in = (Node**)arena->Amalloc(4*sizeof(Node*)); 689 Node** to = _in; 690 to[0] = NULL; 691 to[1] = NULL; 692 to[2] = NULL; 693 to[3] = NULL; 694 return; 695 } 696 while( new_max <= len ) new_max <<= 1; // Find next power-of-2 697 // Trimming to limit allows a uint8 to handle up to 255 edges. 698 // Previously I was using only powers-of-2 which peaked at 128 edges. 699 //if( new_max >= limit ) new_max = limit-1; 700 _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*)); 701 Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space 702 _max = new_max; // Record new max length 703 // This assertion makes sure that Node::_max is wide enough to 704 // represent the numerical value of new_max. 705 assert(_max == new_max && _max > len, "int width of _max is too small"); 706 } 707 708 //-----------------------------out_grow---------------------------------------- 709 // Grow the input array, making space for more edges 710 void Node::out_grow( uint len ) { 711 assert(!is_top(), "cannot grow a top node's out array"); 712 Arena* arena = Compile::current()->node_arena(); 713 uint new_max = _outmax; 714 if( new_max == 0 ) { 715 _outmax = 4; 716 _out = (Node **)arena->Amalloc(4*sizeof(Node*)); 717 return; 718 } 719 while( new_max <= len ) new_max <<= 1; // Find next power-of-2 720 // Trimming to limit allows a uint8 to handle up to 255 edges. 721 // Previously I was using only powers-of-2 which peaked at 128 edges. 722 //if( new_max >= limit ) new_max = limit-1; 723 assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value"); 724 _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*)); 725 //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space 726 _outmax = new_max; // Record new max length 727 // This assertion makes sure that Node::_max is wide enough to 728 // represent the numerical value of new_max. 729 assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small"); 730 } 731 732 #ifdef ASSERT 733 //------------------------------is_dead---------------------------------------- 734 bool Node::is_dead() const { 735 // Mach and pinch point nodes may look like dead. 736 if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) ) 737 return false; 738 for( uint i = 0; i < _max; i++ ) 739 if( _in[i] != NULL ) 740 return false; 741 dump(); 742 return true; 743 } 744 #endif 745 746 747 //------------------------------is_unreachable--------------------------------- 748 bool Node::is_unreachable(PhaseIterGVN &igvn) const { 749 assert(!is_Mach(), "doesn't work with MachNodes"); 750 return outcnt() == 0 || igvn.type(this) == Type::TOP || in(0)->is_top(); 751 } 752 753 //------------------------------add_req---------------------------------------- 754 // Add a new required input at the end 755 void Node::add_req( Node *n ) { 756 assert( is_not_dead(n), "can not use dead node"); 757 758 // Look to see if I can move precedence down one without reallocating 759 if( (_cnt >= _max) || (in(_max-1) != NULL) ) 760 grow( _max+1 ); 761 762 // Find a precedence edge to move 763 if( in(_cnt) != NULL ) { // Next precedence edge is busy? 764 uint i; 765 for( i=_cnt; i<_max; i++ ) 766 if( in(i) == NULL ) // Find the NULL at end of prec edge list 767 break; // There must be one, since we grew the array 768 _in[i] = in(_cnt); // Move prec over, making space for req edge 769 } 770 _in[_cnt++] = n; // Stuff over old prec edge 771 if (n != NULL) n->add_out((Node *)this); 772 } 773 774 //---------------------------add_req_batch------------------------------------- 775 // Add a new required input at the end 776 void Node::add_req_batch( Node *n, uint m ) { 777 assert( is_not_dead(n), "can not use dead node"); 778 // check various edge cases 779 if ((int)m <= 1) { 780 assert((int)m >= 0, "oob"); 781 if (m != 0) add_req(n); 782 return; 783 } 784 785 // Look to see if I can move precedence down one without reallocating 786 if( (_cnt+m) > _max || _in[_max-m] ) 787 grow( _max+m ); 788 789 // Find a precedence edge to move 790 if( _in[_cnt] != NULL ) { // Next precedence edge is busy? 791 uint i; 792 for( i=_cnt; i<_max; i++ ) 793 if( _in[i] == NULL ) // Find the NULL at end of prec edge list 794 break; // There must be one, since we grew the array 795 // Slide all the precs over by m positions (assume #prec << m). 796 Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*))); 797 } 798 799 // Stuff over the old prec edges 800 for(uint i=0; i<m; i++ ) { 801 _in[_cnt++] = n; 802 } 803 804 // Insert multiple out edges on the node. 805 if (n != NULL && !n->is_top()) { 806 for(uint i=0; i<m; i++ ) { 807 n->add_out((Node *)this); 808 } 809 } 810 } 811 812 //------------------------------del_req---------------------------------------- 813 // Delete the required edge and compact the edge array 814 void Node::del_req( uint idx ) { 815 assert( idx < _cnt, "oob"); 816 assert( !VerifyHashTableKeys || _hash_lock == 0, 817 "remove node from hash table before modifying it"); 818 // First remove corresponding def-use edge 819 Node *n = in(idx); 820 if (n != NULL) n->del_out((Node *)this); 821 _in[idx] = in(--_cnt); // Compact the array 822 // Avoid spec violation: Gap in prec edges. 823 close_prec_gap_at(_cnt); 824 } 825 826 //------------------------------del_req_ordered-------------------------------- 827 // Delete the required edge and compact the edge array with preserved order 828 void Node::del_req_ordered( uint idx ) { 829 assert( idx < _cnt, "oob"); 830 assert( !VerifyHashTableKeys || _hash_lock == 0, 831 "remove node from hash table before modifying it"); 832 // First remove corresponding def-use edge 833 Node *n = in(idx); 834 if (n != NULL) n->del_out((Node *)this); 835 if (idx < --_cnt) { // Not last edge ? 836 Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx)*sizeof(Node*))); 837 } 838 // Avoid spec violation: Gap in prec edges. 839 close_prec_gap_at(_cnt); 840 } 841 842 //------------------------------ins_req---------------------------------------- 843 // Insert a new required input at the end 844 void Node::ins_req( uint idx, Node *n ) { 845 assert( is_not_dead(n), "can not use dead node"); 846 add_req(NULL); // Make space 847 assert( idx < _max, "Must have allocated enough space"); 848 // Slide over 849 if(_cnt-idx-1 > 0) { 850 Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*))); 851 } 852 _in[idx] = n; // Stuff over old required edge 853 if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge 854 } 855 856 //-----------------------------find_edge--------------------------------------- 857 int Node::find_edge(Node* n) { 858 for (uint i = 0; i < len(); i++) { 859 if (_in[i] == n) return i; 860 } 861 return -1; 862 } 863 864 //----------------------------replace_edge------------------------------------- 865 int Node::replace_edge(Node* old, Node* neww) { 866 if (old == neww) return 0; // nothing to do 867 uint nrep = 0; 868 for (uint i = 0; i < len(); i++) { 869 if (in(i) == old) { 870 if (i < req()) { 871 set_req(i, neww); 872 } else { 873 assert(find_prec_edge(neww) == -1, err_msg("spec violation: duplicated prec edge (node %d -> %d)", _idx, neww->_idx)); 874 set_prec(i, neww); 875 } 876 nrep++; 877 } 878 } 879 return nrep; 880 } 881 882 /** 883 * Replace input edges in the range pointing to 'old' node. 884 */ 885 int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end) { 886 if (old == neww) return 0; // nothing to do 887 uint nrep = 0; 888 for (int i = start; i < end; i++) { 889 if (in(i) == old) { 890 set_req(i, neww); 891 nrep++; 892 } 893 } 894 return nrep; 895 } 896 897 //-------------------------disconnect_inputs----------------------------------- 898 // NULL out all inputs to eliminate incoming Def-Use edges. 899 // Return the number of edges between 'n' and 'this' 900 int Node::disconnect_inputs(Node *n, Compile* C) { 901 int edges_to_n = 0; 902 903 uint cnt = req(); 904 for( uint i = 0; i < cnt; ++i ) { 905 if( in(i) == 0 ) continue; 906 if( in(i) == n ) ++edges_to_n; 907 set_req(i, NULL); 908 } 909 // Remove precedence edges if any exist 910 // Note: Safepoints may have precedence edges, even during parsing 911 if( (req() != len()) && (in(req()) != NULL) ) { 912 uint max = len(); 913 for( uint i = 0; i < max; ++i ) { 914 if( in(i) == 0 ) continue; 915 if( in(i) == n ) ++edges_to_n; 916 set_prec(i, NULL); 917 } 918 } 919 920 // Node::destruct requires all out edges be deleted first 921 // debug_only(destruct();) // no reuse benefit expected 922 if (edges_to_n == 0) { 923 C->record_dead_node(_idx); 924 } 925 return edges_to_n; 926 } 927 928 //-----------------------------uncast--------------------------------------- 929 // %%% Temporary, until we sort out CheckCastPP vs. CastPP. 930 // Strip away casting. (It is depth-limited.) 931 Node* Node::uncast() const { 932 // Should be inline: 933 //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this; 934 if (is_ConstraintCast() || is_CheckCastPP()) 935 return uncast_helper(this); 936 else 937 return (Node*) this; 938 } 939 940 // Find out of current node that matches opcode. 941 Node* Node::find_out_with(int opcode) { 942 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 943 Node* use = fast_out(i); 944 if (use->Opcode() == opcode) { 945 return use; 946 } 947 } 948 return NULL; 949 } 950 951 //---------------------------uncast_helper------------------------------------- 952 Node* Node::uncast_helper(const Node* p) { 953 #ifdef ASSERT 954 uint depth_count = 0; 955 const Node* orig_p = p; 956 #endif 957 958 while (true) { 959 #ifdef ASSERT 960 if (depth_count >= K) { 961 orig_p->dump(4); 962 if (p != orig_p) 963 p->dump(1); 964 } 965 assert(depth_count++ < K, "infinite loop in Node::uncast_helper"); 966 #endif 967 if (p == NULL || p->req() != 2) { 968 break; 969 } else if (p->is_ConstraintCast()) { 970 p = p->in(1); 971 } else if (p->is_CheckCastPP()) { 972 p = p->in(1); 973 } else { 974 break; 975 } 976 } 977 return (Node*) p; 978 } 979 980 //------------------------------add_prec--------------------------------------- 981 // Add a new precedence input. Precedence inputs are unordered, with 982 // duplicates removed and NULLs packed down at the end. 983 void Node::add_prec( Node *n ) { 984 assert( is_not_dead(n), "can not use dead node"); 985 986 // Check for NULL at end 987 if( _cnt >= _max || in(_max-1) ) 988 grow( _max+1 ); 989 990 // Find a precedence edge to move 991 uint i = _cnt; 992 while( in(i) != NULL ) { 993 if (in(i) == n) return; // Avoid spec violation: duplicated prec edge. 994 i++; 995 } 996 _in[i] = n; // Stuff prec edge over NULL 997 if ( n != NULL) n->add_out((Node *)this); // Add mirror edge 998 999 #ifdef ASSERT 1000 while ((++i)<_max) { assert(_in[i] == NULL, err_msg("spec violation: Gap in prec edges (node %d)", _idx)); } 1001 #endif 1002 } 1003 1004 //------------------------------rm_prec---------------------------------------- 1005 // Remove a precedence input. Precedence inputs are unordered, with 1006 // duplicates removed and NULLs packed down at the end. 1007 void Node::rm_prec( uint j ) { 1008 assert(j < _max, err_msg("oob: i=%d, _max=%d", j, _max)); 1009 assert(j >= _cnt, "not a precedence edge"); 1010 if (_in[j] == NULL) return; // Avoid spec violation: Gap in prec edges. 1011 _in[j]->del_out((Node *)this); 1012 close_prec_gap_at(j); 1013 } 1014 1015 //------------------------------size_of---------------------------------------- 1016 uint Node::size_of() const { return sizeof(*this); } 1017 1018 //------------------------------ideal_reg-------------------------------------- 1019 uint Node::ideal_reg() const { return 0; } 1020 1021 //------------------------------jvms------------------------------------------- 1022 JVMState* Node::jvms() const { return NULL; } 1023 1024 #ifdef ASSERT 1025 //------------------------------jvms------------------------------------------- 1026 bool Node::verify_jvms(const JVMState* using_jvms) const { 1027 for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) { 1028 if (jvms == using_jvms) return true; 1029 } 1030 return false; 1031 } 1032 1033 //------------------------------init_NodeProperty------------------------------ 1034 void Node::init_NodeProperty() { 1035 assert(_max_classes <= max_jushort, "too many NodeProperty classes"); 1036 assert(_max_flags <= max_jushort, "too many NodeProperty flags"); 1037 } 1038 #endif 1039 1040 //------------------------------format----------------------------------------- 1041 // Print as assembly 1042 void Node::format( PhaseRegAlloc *, outputStream *st ) const {} 1043 //------------------------------emit------------------------------------------- 1044 // Emit bytes starting at parameter 'ptr'. 1045 void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {} 1046 //------------------------------size------------------------------------------- 1047 // Size of instruction in bytes 1048 uint Node::size(PhaseRegAlloc *ra_) const { return 0; } 1049 1050 //------------------------------CFG Construction------------------------------- 1051 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root, 1052 // Goto and Return. 1053 const Node *Node::is_block_proj() const { return 0; } 1054 1055 // Minimum guaranteed type 1056 const Type *Node::bottom_type() const { return Type::BOTTOM; } 1057 1058 1059 //------------------------------raise_bottom_type------------------------------ 1060 // Get the worst-case Type output for this Node. 1061 void Node::raise_bottom_type(const Type* new_type) { 1062 if (is_Type()) { 1063 TypeNode *n = this->as_Type(); 1064 if (VerifyAliases) { 1065 assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type"); 1066 } 1067 n->set_type(new_type); 1068 } else if (is_Load()) { 1069 LoadNode *n = this->as_Load(); 1070 if (VerifyAliases) { 1071 assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type"); 1072 } 1073 n->set_type(new_type); 1074 } 1075 } 1076 1077 //------------------------------Identity--------------------------------------- 1078 // Return a node that the given node is equivalent to. 1079 Node *Node::Identity( PhaseTransform * ) { 1080 return this; // Default to no identities 1081 } 1082 1083 //------------------------------Value------------------------------------------ 1084 // Compute a new Type for a node using the Type of the inputs. 1085 const Type *Node::Value( PhaseTransform * ) const { 1086 return bottom_type(); // Default to worst-case Type 1087 } 1088 1089 //------------------------------Ideal------------------------------------------ 1090 // 1091 // 'Idealize' the graph rooted at this Node. 1092 // 1093 // In order to be efficient and flexible there are some subtle invariants 1094 // these Ideal calls need to hold. Running with '+VerifyIterativeGVN' checks 1095 // these invariants, although its too slow to have on by default. If you are 1096 // hacking an Ideal call, be sure to test with +VerifyIterativeGVN! 1097 // 1098 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this' 1099 // pointer. If ANY change is made, it must return the root of the reshaped 1100 // graph - even if the root is the same Node. Example: swapping the inputs 1101 // to an AddINode gives the same answer and same root, but you still have to 1102 // return the 'this' pointer instead of NULL. 1103 // 1104 // You cannot return an OLD Node, except for the 'this' pointer. Use the 1105 // Identity call to return an old Node; basically if Identity can find 1106 // another Node have the Ideal call make no change and return NULL. 1107 // Example: AddINode::Ideal must check for add of zero; in this case it 1108 // returns NULL instead of doing any graph reshaping. 1109 // 1110 // You cannot modify any old Nodes except for the 'this' pointer. Due to 1111 // sharing there may be other users of the old Nodes relying on their current 1112 // semantics. Modifying them will break the other users. 1113 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for 1114 // "X+3" unchanged in case it is shared. 1115 // 1116 // If you modify the 'this' pointer's inputs, you should use 1117 // 'set_req'. If you are making a new Node (either as the new root or 1118 // some new internal piece) you may use 'init_req' to set the initial 1119 // value. You can make a new Node with either 'new' or 'clone'. In 1120 // either case, def-use info is correctly maintained. 1121 // 1122 // Example: reshape "(X+3)+4" into "X+7": 1123 // set_req(1, in(1)->in(1)); 1124 // set_req(2, phase->intcon(7)); 1125 // return this; 1126 // Example: reshape "X*4" into "X<<2" 1127 // return new (C) LShiftINode(in(1), phase->intcon(2)); 1128 // 1129 // You must call 'phase->transform(X)' on any new Nodes X you make, except 1130 // for the returned root node. Example: reshape "X*31" with "(X<<5)-X". 1131 // Node *shift=phase->transform(new(C)LShiftINode(in(1),phase->intcon(5))); 1132 // return new (C) AddINode(shift, in(1)); 1133 // 1134 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'. 1135 // These forms are faster than 'phase->transform(new (C) ConNode())' and Do 1136 // The Right Thing with def-use info. 1137 // 1138 // You cannot bury the 'this' Node inside of a graph reshape. If the reshaped 1139 // graph uses the 'this' Node it must be the root. If you want a Node with 1140 // the same Opcode as the 'this' pointer use 'clone'. 1141 // 1142 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) { 1143 return NULL; // Default to being Ideal already 1144 } 1145 1146 // Some nodes have specific Ideal subgraph transformations only if they are 1147 // unique users of specific nodes. Such nodes should be put on IGVN worklist 1148 // for the transformations to happen. 1149 bool Node::has_special_unique_user() const { 1150 assert(outcnt() == 1, "match only for unique out"); 1151 Node* n = unique_out(); 1152 int op = Opcode(); 1153 if( this->is_Store() ) { 1154 // Condition for back-to-back stores folding. 1155 return n->Opcode() == op && n->in(MemNode::Memory) == this; 1156 } else if (this->is_Load() || this->is_DecodeN()) { 1157 // Condition for removing an unused LoadNode or DecodeNNode from the MemBarAcquire precedence input 1158 return n->Opcode() == Op_MemBarAcquire; 1159 } else if( op == Op_AddL ) { 1160 // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y)) 1161 return n->Opcode() == Op_ConvL2I && n->in(1) == this; 1162 } else if( op == Op_SubI || op == Op_SubL ) { 1163 // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y) 1164 return n->Opcode() == op && n->in(2) == this; 1165 } 1166 return false; 1167 }; 1168 1169 //--------------------------find_exact_control--------------------------------- 1170 // Skip Proj and CatchProj nodes chains. Check for Null and Top. 1171 Node* Node::find_exact_control(Node* ctrl) { 1172 if (ctrl == NULL && this->is_Region()) 1173 ctrl = this->as_Region()->is_copy(); 1174 1175 if (ctrl != NULL && ctrl->is_CatchProj()) { 1176 if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index) 1177 ctrl = ctrl->in(0); 1178 if (ctrl != NULL && !ctrl->is_top()) 1179 ctrl = ctrl->in(0); 1180 } 1181 1182 if (ctrl != NULL && ctrl->is_Proj()) 1183 ctrl = ctrl->in(0); 1184 1185 return ctrl; 1186 } 1187 1188 //--------------------------dominates------------------------------------------ 1189 // Helper function for MemNode::all_controls_dominate(). 1190 // Check if 'this' control node dominates or equal to 'sub' control node. 1191 // We already know that if any path back to Root or Start reaches 'this', 1192 // then all paths so, so this is a simple search for one example, 1193 // not an exhaustive search for a counterexample. 1194 bool Node::dominates(Node* sub, Node_List &nlist) { 1195 assert(this->is_CFG(), "expecting control"); 1196 assert(sub != NULL && sub->is_CFG(), "expecting control"); 1197 1198 // detect dead cycle without regions 1199 int iterations_without_region_limit = DominatorSearchLimit; 1200 1201 Node* orig_sub = sub; 1202 Node* dom = this; 1203 bool met_dom = false; 1204 nlist.clear(); 1205 1206 // Walk 'sub' backward up the chain to 'dom', watching for regions. 1207 // After seeing 'dom', continue up to Root or Start. 1208 // If we hit a region (backward split point), it may be a loop head. 1209 // Keep going through one of the region's inputs. If we reach the 1210 // same region again, go through a different input. Eventually we 1211 // will either exit through the loop head, or give up. 1212 // (If we get confused, break out and return a conservative 'false'.) 1213 while (sub != NULL) { 1214 if (sub->is_top()) break; // Conservative answer for dead code. 1215 if (sub == dom) { 1216 if (nlist.size() == 0) { 1217 // No Region nodes except loops were visited before and the EntryControl 1218 // path was taken for loops: it did not walk in a cycle. 1219 return true; 1220 } else if (met_dom) { 1221 break; // already met before: walk in a cycle 1222 } else { 1223 // Region nodes were visited. Continue walk up to Start or Root 1224 // to make sure that it did not walk in a cycle. 1225 met_dom = true; // first time meet 1226 iterations_without_region_limit = DominatorSearchLimit; // Reset 1227 } 1228 } 1229 if (sub->is_Start() || sub->is_Root()) { 1230 // Success if we met 'dom' along a path to Start or Root. 1231 // We assume there are no alternative paths that avoid 'dom'. 1232 // (This assumption is up to the caller to ensure!) 1233 return met_dom; 1234 } 1235 Node* up = sub->in(0); 1236 // Normalize simple pass-through regions and projections: 1237 up = sub->find_exact_control(up); 1238 // If sub == up, we found a self-loop. Try to push past it. 1239 if (sub == up && sub->is_Loop()) { 1240 // Take loop entry path on the way up to 'dom'. 1241 up = sub->in(1); // in(LoopNode::EntryControl); 1242 } else if (sub == up && sub->is_Region() && sub->req() != 3) { 1243 // Always take in(1) path on the way up to 'dom' for clone regions 1244 // (with only one input) or regions which merge > 2 paths 1245 // (usually used to merge fast/slow paths). 1246 up = sub->in(1); 1247 } else if (sub == up && sub->is_Region()) { 1248 // Try both paths for Regions with 2 input paths (it may be a loop head). 1249 // It could give conservative 'false' answer without information 1250 // which region's input is the entry path. 1251 iterations_without_region_limit = DominatorSearchLimit; // Reset 1252 1253 bool region_was_visited_before = false; 1254 // Was this Region node visited before? 1255 // If so, we have reached it because we accidentally took a 1256 // loop-back edge from 'sub' back into the body of the loop, 1257 // and worked our way up again to the loop header 'sub'. 1258 // So, take the first unexplored path on the way up to 'dom'. 1259 for (int j = nlist.size() - 1; j >= 0; j--) { 1260 intptr_t ni = (intptr_t)nlist.at(j); 1261 Node* visited = (Node*)(ni & ~1); 1262 bool visited_twice_already = ((ni & 1) != 0); 1263 if (visited == sub) { 1264 if (visited_twice_already) { 1265 // Visited 2 paths, but still stuck in loop body. Give up. 1266 return false; 1267 } 1268 // The Region node was visited before only once. 1269 // (We will repush with the low bit set, below.) 1270 nlist.remove(j); 1271 // We will find a new edge and re-insert. 1272 region_was_visited_before = true; 1273 break; 1274 } 1275 } 1276 1277 // Find an incoming edge which has not been seen yet; walk through it. 1278 assert(up == sub, ""); 1279 uint skip = region_was_visited_before ? 1 : 0; 1280 for (uint i = 1; i < sub->req(); i++) { 1281 Node* in = sub->in(i); 1282 if (in != NULL && !in->is_top() && in != sub) { 1283 if (skip == 0) { 1284 up = in; 1285 break; 1286 } 1287 --skip; // skip this nontrivial input 1288 } 1289 } 1290 1291 // Set 0 bit to indicate that both paths were taken. 1292 nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0))); 1293 } 1294 1295 if (up == sub) { 1296 break; // some kind of tight cycle 1297 } 1298 if (up == orig_sub && met_dom) { 1299 // returned back after visiting 'dom' 1300 break; // some kind of cycle 1301 } 1302 if (--iterations_without_region_limit < 0) { 1303 break; // dead cycle 1304 } 1305 sub = up; 1306 } 1307 1308 // Did not meet Root or Start node in pred. chain. 1309 // Conservative answer for dead code. 1310 return false; 1311 } 1312 1313 //------------------------------remove_dead_region----------------------------- 1314 // This control node is dead. Follow the subgraph below it making everything 1315 // using it dead as well. This will happen normally via the usual IterGVN 1316 // worklist but this call is more efficient. Do not update use-def info 1317 // inside the dead region, just at the borders. 1318 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) { 1319 // Con's are a popular node to re-hit in the hash table again. 1320 if( dead->is_Con() ) return; 1321 1322 // Can't put ResourceMark here since igvn->_worklist uses the same arena 1323 // for verify pass with +VerifyOpto and we add/remove elements in it here. 1324 Node_List nstack(Thread::current()->resource_area()); 1325 1326 Node *top = igvn->C->top(); 1327 nstack.push(dead); 1328 bool has_irreducible_loop = igvn->C->has_irreducible_loop(); 1329 1330 while (nstack.size() > 0) { 1331 dead = nstack.pop(); 1332 if (dead->Opcode() == Op_SafePoint) { 1333 dead->as_SafePoint()->disconnect_from_root(igvn); 1334 } 1335 if (dead->outcnt() > 0) { 1336 // Keep dead node on stack until all uses are processed. 1337 nstack.push(dead); 1338 // For all Users of the Dead... ;-) 1339 for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) { 1340 Node* use = dead->last_out(k); 1341 igvn->hash_delete(use); // Yank from hash table prior to mod 1342 if (use->in(0) == dead) { // Found another dead node 1343 assert (!use->is_Con(), "Control for Con node should be Root node."); 1344 use->set_req(0, top); // Cut dead edge to prevent processing 1345 nstack.push(use); // the dead node again. 1346 } else if (!has_irreducible_loop && // Backedge could be alive in irreducible loop 1347 use->is_Loop() && !use->is_Root() && // Don't kill Root (RootNode extends LoopNode) 1348 use->in(LoopNode::EntryControl) == dead) { // Dead loop if its entry is dead 1349 use->set_req(LoopNode::EntryControl, top); // Cut dead edge to prevent processing 1350 use->set_req(0, top); // Cut self edge 1351 nstack.push(use); 1352 } else { // Else found a not-dead user 1353 // Dead if all inputs are top or null 1354 bool dead_use = !use->is_Root(); // Keep empty graph alive 1355 for (uint j = 1; j < use->req(); j++) { 1356 Node* in = use->in(j); 1357 if (in == dead) { // Turn all dead inputs into TOP 1358 use->set_req(j, top); 1359 } else if (in != NULL && !in->is_top()) { 1360 dead_use = false; 1361 } 1362 } 1363 if (dead_use) { 1364 if (use->is_Region()) { 1365 use->set_req(0, top); // Cut self edge 1366 } 1367 nstack.push(use); 1368 } else { 1369 igvn->_worklist.push(use); 1370 } 1371 } 1372 // Refresh the iterator, since any number of kills might have happened. 1373 k = dead->last_outs(kmin); 1374 } 1375 } else { // (dead->outcnt() == 0) 1376 // Done with outputs. 1377 igvn->hash_delete(dead); 1378 igvn->_worklist.remove(dead); 1379 igvn->set_type(dead, Type::TOP); 1380 if (dead->is_macro()) { 1381 igvn->C->remove_macro_node(dead); 1382 } 1383 if (dead->is_expensive()) { 1384 igvn->C->remove_expensive_node(dead); 1385 } 1386 CastIINode* cast = dead->isa_CastII(); 1387 if (cast != NULL && cast->has_range_check()) { 1388 igvn->C->remove_range_check_cast(cast); 1389 } 1390 igvn->C->record_dead_node(dead->_idx); 1391 // Kill all inputs to the dead guy 1392 for (uint i=0; i < dead->req(); i++) { 1393 Node *n = dead->in(i); // Get input to dead guy 1394 if (n != NULL && !n->is_top()) { // Input is valid? 1395 dead->set_req(i, top); // Smash input away 1396 if (n->outcnt() == 0) { // Input also goes dead? 1397 if (!n->is_Con()) 1398 nstack.push(n); // Clear it out as well 1399 } else if (n->outcnt() == 1 && 1400 n->has_special_unique_user()) { 1401 igvn->add_users_to_worklist( n ); 1402 } else if (n->outcnt() <= 2 && n->is_Store()) { 1403 // Push store's uses on worklist to enable folding optimization for 1404 // store/store and store/load to the same address. 1405 // The restriction (outcnt() <= 2) is the same as in set_req_X() 1406 // and remove_globally_dead_node(). 1407 igvn->add_users_to_worklist( n ); 1408 } 1409 } 1410 } 1411 } // (dead->outcnt() == 0) 1412 } // while (nstack.size() > 0) for outputs 1413 return; 1414 } 1415 1416 //------------------------------remove_dead_region----------------------------- 1417 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) { 1418 Node *n = in(0); 1419 if( !n ) return false; 1420 // Lost control into this guy? I.e., it became unreachable? 1421 // Aggressively kill all unreachable code. 1422 if (can_reshape && n->is_top()) { 1423 kill_dead_code(this, phase->is_IterGVN()); 1424 return false; // Node is dead. 1425 } 1426 1427 if( n->is_Region() && n->as_Region()->is_copy() ) { 1428 Node *m = n->nonnull_req(); 1429 set_req(0, m); 1430 return true; 1431 } 1432 return false; 1433 } 1434 1435 //------------------------------Ideal_DU_postCCP------------------------------- 1436 // Idealize graph, using DU info. Must clone result into new-space 1437 Node *Node::Ideal_DU_postCCP( PhaseCCP * ) { 1438 return NULL; // Default to no change 1439 } 1440 1441 //------------------------------hash------------------------------------------- 1442 // Hash function over Nodes. 1443 uint Node::hash() const { 1444 uint sum = 0; 1445 for( uint i=0; i<_cnt; i++ ) // Add in all inputs 1446 sum = (sum<<1)-(uintptr_t)in(i); // Ignore embedded NULLs 1447 return (sum>>2) + _cnt + Opcode(); 1448 } 1449 1450 //------------------------------cmp-------------------------------------------- 1451 // Compare special parts of simple Nodes 1452 uint Node::cmp( const Node &n ) const { 1453 return 1; // Must be same 1454 } 1455 1456 //------------------------------rematerialize----------------------------------- 1457 // Should we clone rather than spill this instruction? 1458 bool Node::rematerialize() const { 1459 if ( is_Mach() ) 1460 return this->as_Mach()->rematerialize(); 1461 else 1462 return (_flags & Flag_rematerialize) != 0; 1463 } 1464 1465 //------------------------------needs_anti_dependence_check--------------------- 1466 // Nodes which use memory without consuming it, hence need antidependences. 1467 bool Node::needs_anti_dependence_check() const { 1468 if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 ) 1469 return false; 1470 else 1471 return in(1)->bottom_type()->has_memory(); 1472 } 1473 1474 1475 // Get an integer constant from a ConNode (or CastIINode). 1476 // Return a default value if there is no apparent constant here. 1477 const TypeInt* Node::find_int_type() const { 1478 if (this->is_Type()) { 1479 return this->as_Type()->type()->isa_int(); 1480 } else if (this->is_Con()) { 1481 assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode"); 1482 return this->bottom_type()->isa_int(); 1483 } 1484 return NULL; 1485 } 1486 1487 // Get a pointer constant from a ConstNode. 1488 // Returns the constant if it is a pointer ConstNode 1489 intptr_t Node::get_ptr() const { 1490 assert( Opcode() == Op_ConP, "" ); 1491 return ((ConPNode*)this)->type()->is_ptr()->get_con(); 1492 } 1493 1494 // Get a narrow oop constant from a ConNNode. 1495 intptr_t Node::get_narrowcon() const { 1496 assert( Opcode() == Op_ConN, "" ); 1497 return ((ConNNode*)this)->type()->is_narrowoop()->get_con(); 1498 } 1499 1500 // Get a long constant from a ConNode. 1501 // Return a default value if there is no apparent constant here. 1502 const TypeLong* Node::find_long_type() const { 1503 if (this->is_Type()) { 1504 return this->as_Type()->type()->isa_long(); 1505 } else if (this->is_Con()) { 1506 assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode"); 1507 return this->bottom_type()->isa_long(); 1508 } 1509 return NULL; 1510 } 1511 1512 1513 /** 1514 * Return a ptr type for nodes which should have it. 1515 */ 1516 const TypePtr* Node::get_ptr_type() const { 1517 const TypePtr* tp = this->bottom_type()->make_ptr(); 1518 #ifdef ASSERT 1519 if (tp == NULL) { 1520 this->dump(1); 1521 assert((tp != NULL), "unexpected node type"); 1522 } 1523 #endif 1524 return tp; 1525 } 1526 1527 // Get a double constant from a ConstNode. 1528 // Returns the constant if it is a double ConstNode 1529 jdouble Node::getd() const { 1530 assert( Opcode() == Op_ConD, "" ); 1531 return ((ConDNode*)this)->type()->is_double_constant()->getd(); 1532 } 1533 1534 // Get a float constant from a ConstNode. 1535 // Returns the constant if it is a float ConstNode 1536 jfloat Node::getf() const { 1537 assert( Opcode() == Op_ConF, "" ); 1538 return ((ConFNode*)this)->type()->is_float_constant()->getf(); 1539 } 1540 1541 #ifndef PRODUCT 1542 1543 //----------------------------NotANode---------------------------------------- 1544 // Used in debugging code to avoid walking across dead or uninitialized edges. 1545 static inline bool NotANode(const Node* n) { 1546 if (n == NULL) return true; 1547 if (((intptr_t)n & 1) != 0) return true; // uninitialized, etc. 1548 if (*(address*)n == badAddress) return true; // kill by Node::destruct 1549 return false; 1550 } 1551 1552 1553 //------------------------------find------------------------------------------ 1554 // Find a neighbor of this Node with the given _idx 1555 // If idx is negative, find its absolute value, following both _in and _out. 1556 static void find_recur(Compile* C, Node* &result, Node *n, int idx, bool only_ctrl, 1557 VectorSet* old_space, VectorSet* new_space ) { 1558 int node_idx = (idx >= 0) ? idx : -idx; 1559 if (NotANode(n)) return; // Gracefully handle NULL, -1, 0xabababab, etc. 1560 // Contained in new_space or old_space? Check old_arena first since it's mostly empty. 1561 VectorSet *v = C->old_arena()->contains(n) ? old_space : new_space; 1562 if( v->test(n->_idx) ) return; 1563 if( (int)n->_idx == node_idx 1564 debug_only(|| n->debug_idx() == node_idx) ) { 1565 if (result != NULL) 1566 tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n", 1567 (uintptr_t)result, (uintptr_t)n, node_idx); 1568 result = n; 1569 } 1570 v->set(n->_idx); 1571 for( uint i=0; i<n->len(); i++ ) { 1572 if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue; 1573 find_recur(C, result, n->in(i), idx, only_ctrl, old_space, new_space ); 1574 } 1575 // Search along forward edges also: 1576 if (idx < 0 && !only_ctrl) { 1577 for( uint j=0; j<n->outcnt(); j++ ) { 1578 find_recur(C, result, n->raw_out(j), idx, only_ctrl, old_space, new_space ); 1579 } 1580 } 1581 #ifdef ASSERT 1582 // Search along debug_orig edges last, checking for cycles 1583 Node* orig = n->debug_orig(); 1584 if (orig != NULL) { 1585 do { 1586 if (NotANode(orig)) break; 1587 find_recur(C, result, orig, idx, only_ctrl, old_space, new_space ); 1588 orig = orig->debug_orig(); 1589 } while (orig != NULL && orig != n->debug_orig()); 1590 } 1591 #endif //ASSERT 1592 } 1593 1594 // call this from debugger: 1595 Node* find_node(Node* n, int idx) { 1596 return n->find(idx); 1597 } 1598 1599 //------------------------------find------------------------------------------- 1600 Node* Node::find(int idx) const { 1601 ResourceArea *area = Thread::current()->resource_area(); 1602 VectorSet old_space(area), new_space(area); 1603 Node* result = NULL; 1604 find_recur(Compile::current(), result, (Node*) this, idx, false, &old_space, &new_space ); 1605 return result; 1606 } 1607 1608 //------------------------------find_ctrl-------------------------------------- 1609 // Find an ancestor to this node in the control history with given _idx 1610 Node* Node::find_ctrl(int idx) const { 1611 ResourceArea *area = Thread::current()->resource_area(); 1612 VectorSet old_space(area), new_space(area); 1613 Node* result = NULL; 1614 find_recur(Compile::current(), result, (Node*) this, idx, true, &old_space, &new_space ); 1615 return result; 1616 } 1617 #endif 1618 1619 1620 1621 #ifndef PRODUCT 1622 1623 // -----------------------------Name------------------------------------------- 1624 extern const char *NodeClassNames[]; 1625 const char *Node::Name() const { return NodeClassNames[Opcode()]; } 1626 1627 static bool is_disconnected(const Node* n) { 1628 for (uint i = 0; i < n->req(); i++) { 1629 if (n->in(i) != NULL) return false; 1630 } 1631 return true; 1632 } 1633 1634 #ifdef ASSERT 1635 static void dump_orig(Node* orig, outputStream *st) { 1636 Compile* C = Compile::current(); 1637 if (NotANode(orig)) orig = NULL; 1638 if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL; 1639 if (orig == NULL) return; 1640 st->print(" !orig="); 1641 Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops 1642 if (NotANode(fast)) fast = NULL; 1643 while (orig != NULL) { 1644 bool discon = is_disconnected(orig); // if discon, print [123] else 123 1645 if (discon) st->print("["); 1646 if (!Compile::current()->node_arena()->contains(orig)) 1647 st->print("o"); 1648 st->print("%d", orig->_idx); 1649 if (discon) st->print("]"); 1650 orig = orig->debug_orig(); 1651 if (NotANode(orig)) orig = NULL; 1652 if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL; 1653 if (orig != NULL) st->print(","); 1654 if (fast != NULL) { 1655 // Step fast twice for each single step of orig: 1656 fast = fast->debug_orig(); 1657 if (NotANode(fast)) fast = NULL; 1658 if (fast != NULL && fast != orig) { 1659 fast = fast->debug_orig(); 1660 if (NotANode(fast)) fast = NULL; 1661 } 1662 if (fast == orig) { 1663 st->print("..."); 1664 break; 1665 } 1666 } 1667 } 1668 } 1669 1670 void Node::set_debug_orig(Node* orig) { 1671 _debug_orig = orig; 1672 if (BreakAtNode == 0) return; 1673 if (NotANode(orig)) orig = NULL; 1674 int trip = 10; 1675 while (orig != NULL) { 1676 if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) { 1677 tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d", 1678 this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx()); 1679 BREAKPOINT; 1680 } 1681 orig = orig->debug_orig(); 1682 if (NotANode(orig)) orig = NULL; 1683 if (trip-- <= 0) break; 1684 } 1685 } 1686 #endif //ASSERT 1687 1688 //------------------------------dump------------------------------------------ 1689 // Dump a Node 1690 void Node::dump(const char* suffix, outputStream *st) const { 1691 Compile* C = Compile::current(); 1692 bool is_new = C->node_arena()->contains(this); 1693 C->_in_dump_cnt++; 1694 st->print("%c%d\t%s\t=== ", is_new ? ' ' : 'o', _idx, Name()); 1695 1696 // Dump the required and precedence inputs 1697 dump_req(st); 1698 dump_prec(st); 1699 // Dump the outputs 1700 dump_out(st); 1701 1702 if (is_disconnected(this)) { 1703 #ifdef ASSERT 1704 st->print(" [%d]",debug_idx()); 1705 dump_orig(debug_orig(), st); 1706 #endif 1707 st->cr(); 1708 C->_in_dump_cnt--; 1709 return; // don't process dead nodes 1710 } 1711 1712 // Dump node-specific info 1713 dump_spec(st); 1714 #ifdef ASSERT 1715 // Dump the non-reset _debug_idx 1716 if (Verbose && WizardMode) { 1717 st->print(" [%d]",debug_idx()); 1718 } 1719 #endif 1720 1721 const Type *t = bottom_type(); 1722 1723 if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) { 1724 const TypeInstPtr *toop = t->isa_instptr(); 1725 const TypeKlassPtr *tkls = t->isa_klassptr(); 1726 ciKlass* klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL ); 1727 if (klass && klass->is_loaded() && klass->is_interface()) { 1728 st->print(" Interface:"); 1729 } else if (toop) { 1730 st->print(" Oop:"); 1731 } else if (tkls) { 1732 st->print(" Klass:"); 1733 } 1734 t->dump_on(st); 1735 } else if (t == Type::MEMORY) { 1736 st->print(" Memory:"); 1737 MemNode::dump_adr_type(this, adr_type(), st); 1738 } else if (Verbose || WizardMode) { 1739 st->print(" Type:"); 1740 if (t) { 1741 t->dump_on(st); 1742 } else { 1743 st->print("no type"); 1744 } 1745 } else if (t->isa_vect() && this->is_MachSpillCopy()) { 1746 // Dump MachSpillcopy vector type. 1747 t->dump_on(st); 1748 } 1749 if (is_new) { 1750 debug_only(dump_orig(debug_orig(), st)); 1751 Node_Notes* nn = C->node_notes_at(_idx); 1752 if (nn != NULL && !nn->is_clear()) { 1753 if (nn->jvms() != NULL) { 1754 st->print(" !jvms:"); 1755 nn->jvms()->dump_spec(st); 1756 } 1757 } 1758 } 1759 if (suffix) st->print("%s", suffix); 1760 C->_in_dump_cnt--; 1761 } 1762 1763 //------------------------------dump_req-------------------------------------- 1764 void Node::dump_req(outputStream *st) const { 1765 // Dump the required input edges 1766 for (uint i = 0; i < req(); i++) { // For all required inputs 1767 Node* d = in(i); 1768 if (d == NULL) { 1769 st->print("_ "); 1770 } else if (NotANode(d)) { 1771 st->print("NotANode "); // uninitialized, sentinel, garbage, etc. 1772 } else { 1773 st->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx); 1774 } 1775 } 1776 } 1777 1778 1779 //------------------------------dump_prec------------------------------------- 1780 void Node::dump_prec(outputStream *st) const { 1781 // Dump the precedence edges 1782 int any_prec = 0; 1783 for (uint i = req(); i < len(); i++) { // For all precedence inputs 1784 Node* p = in(i); 1785 if (p != NULL) { 1786 if (!any_prec++) st->print(" |"); 1787 if (NotANode(p)) { st->print("NotANode "); continue; } 1788 st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx); 1789 } 1790 } 1791 } 1792 1793 //------------------------------dump_out-------------------------------------- 1794 void Node::dump_out(outputStream *st) const { 1795 // Delimit the output edges 1796 st->print(" [["); 1797 // Dump the output edges 1798 for (uint i = 0; i < _outcnt; i++) { // For all outputs 1799 Node* u = _out[i]; 1800 if (u == NULL) { 1801 st->print("_ "); 1802 } else if (NotANode(u)) { 1803 st->print("NotANode "); 1804 } else { 1805 st->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx); 1806 } 1807 } 1808 st->print("]] "); 1809 } 1810 1811 //------------------------------dump_nodes------------------------------------- 1812 static void dump_nodes(const Node* start, int d, bool only_ctrl) { 1813 Node* s = (Node*)start; // remove const 1814 if (NotANode(s)) return; 1815 1816 uint depth = (uint)ABS(d); 1817 int direction = d; 1818 Compile* C = Compile::current(); 1819 GrowableArray <Node *> nstack(C->live_nodes()); 1820 1821 nstack.append(s); 1822 int begin = 0; 1823 int end = 0; 1824 for(uint i = 0; i < depth; i++) { 1825 end = nstack.length(); 1826 for(int j = begin; j < end; j++) { 1827 Node* tp = nstack.at(j); 1828 uint limit = direction > 0 ? tp->len() : tp->outcnt(); 1829 for(uint k = 0; k < limit; k++) { 1830 Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k); 1831 1832 if (NotANode(n)) continue; 1833 // do not recurse through top or the root (would reach unrelated stuff) 1834 if (n->is_Root() || n->is_top()) continue; 1835 if (only_ctrl && !n->is_CFG()) continue; 1836 1837 bool on_stack = nstack.contains(n); 1838 if (!on_stack) { 1839 nstack.append(n); 1840 } 1841 } 1842 } 1843 begin = end; 1844 } 1845 end = nstack.length(); 1846 if (direction > 0) { 1847 for(int j = end-1; j >= 0; j--) { 1848 nstack.at(j)->dump(); 1849 } 1850 } else { 1851 for(int j = 0; j < end; j++) { 1852 nstack.at(j)->dump(); 1853 } 1854 } 1855 } 1856 1857 //------------------------------dump------------------------------------------- 1858 void Node::dump(int d) const { 1859 dump_nodes(this, d, false); 1860 } 1861 1862 //------------------------------dump_ctrl-------------------------------------- 1863 // Dump a Node's control history to depth 1864 void Node::dump_ctrl(int d) const { 1865 dump_nodes(this, d, true); 1866 } 1867 1868 // VERIFICATION CODE 1869 // For each input edge to a node (ie - for each Use-Def edge), verify that 1870 // there is a corresponding Def-Use edge. 1871 //------------------------------verify_edges----------------------------------- 1872 void Node::verify_edges(Unique_Node_List &visited) { 1873 uint i, j, idx; 1874 int cnt; 1875 Node *n; 1876 1877 // Recursive termination test 1878 if (visited.member(this)) return; 1879 visited.push(this); 1880 1881 // Walk over all input edges, checking for correspondence 1882 for( i = 0; i < len(); i++ ) { 1883 n = in(i); 1884 if (n != NULL && !n->is_top()) { 1885 // Count instances of (Node *)this 1886 cnt = 0; 1887 for (idx = 0; idx < n->_outcnt; idx++ ) { 1888 if (n->_out[idx] == (Node *)this) cnt++; 1889 } 1890 assert( cnt > 0,"Failed to find Def-Use edge." ); 1891 // Check for duplicate edges 1892 // walk the input array downcounting the input edges to n 1893 for( j = 0; j < len(); j++ ) { 1894 if( in(j) == n ) cnt--; 1895 } 1896 assert( cnt == 0,"Mismatched edge count."); 1897 } else if (n == NULL) { 1898 assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges"); 1899 } else { 1900 assert(n->is_top(), "sanity"); 1901 // Nothing to check. 1902 } 1903 } 1904 // Recursive walk over all input edges 1905 for( i = 0; i < len(); i++ ) { 1906 n = in(i); 1907 if( n != NULL ) 1908 in(i)->verify_edges(visited); 1909 } 1910 } 1911 1912 //------------------------------verify_recur----------------------------------- 1913 static const Node *unique_top = NULL; 1914 1915 void Node::verify_recur(const Node *n, int verify_depth, 1916 VectorSet &old_space, VectorSet &new_space) { 1917 if ( verify_depth == 0 ) return; 1918 if (verify_depth > 0) --verify_depth; 1919 1920 Compile* C = Compile::current(); 1921 1922 // Contained in new_space or old_space? 1923 VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space; 1924 // Check for visited in the proper space. Numberings are not unique 1925 // across spaces so we need a separate VectorSet for each space. 1926 if( v->test_set(n->_idx) ) return; 1927 1928 if (n->is_Con() && n->bottom_type() == Type::TOP) { 1929 if (C->cached_top_node() == NULL) 1930 C->set_cached_top_node((Node*)n); 1931 assert(C->cached_top_node() == n, "TOP node must be unique"); 1932 } 1933 1934 for( uint i = 0; i < n->len(); i++ ) { 1935 Node *x = n->in(i); 1936 if (!x || x->is_top()) continue; 1937 1938 // Verify my input has a def-use edge to me 1939 if (true /*VerifyDefUse*/) { 1940 // Count use-def edges from n to x 1941 int cnt = 0; 1942 for( uint j = 0; j < n->len(); j++ ) 1943 if( n->in(j) == x ) 1944 cnt++; 1945 // Count def-use edges from x to n 1946 uint max = x->_outcnt; 1947 for( uint k = 0; k < max; k++ ) 1948 if (x->_out[k] == n) 1949 cnt--; 1950 assert( cnt == 0, "mismatched def-use edge counts" ); 1951 } 1952 1953 verify_recur(x, verify_depth, old_space, new_space); 1954 } 1955 1956 } 1957 1958 //------------------------------verify----------------------------------------- 1959 // Check Def-Use info for my subgraph 1960 void Node::verify() const { 1961 Compile* C = Compile::current(); 1962 Node* old_top = C->cached_top_node(); 1963 ResourceMark rm; 1964 ResourceArea *area = Thread::current()->resource_area(); 1965 VectorSet old_space(area), new_space(area); 1966 verify_recur(this, -1, old_space, new_space); 1967 C->set_cached_top_node(old_top); 1968 } 1969 #endif 1970 1971 1972 //------------------------------walk------------------------------------------- 1973 // Graph walk, with both pre-order and post-order functions 1974 void Node::walk(NFunc pre, NFunc post, void *env) { 1975 VectorSet visited(Thread::current()->resource_area()); // Setup for local walk 1976 walk_(pre, post, env, visited); 1977 } 1978 1979 void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) { 1980 if( visited.test_set(_idx) ) return; 1981 pre(*this,env); // Call the pre-order walk function 1982 for( uint i=0; i<_max; i++ ) 1983 if( in(i) ) // Input exists and is not walked? 1984 in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions 1985 post(*this,env); // Call the post-order walk function 1986 } 1987 1988 void Node::nop(Node &, void*) {} 1989 1990 //------------------------------Registers-------------------------------------- 1991 // Do we Match on this edge index or not? Generally false for Control 1992 // and true for everything else. Weird for calls & returns. 1993 uint Node::match_edge(uint idx) const { 1994 return idx; // True for other than index 0 (control) 1995 } 1996 1997 static RegMask _not_used_at_all; 1998 // Register classes are defined for specific machines 1999 const RegMask &Node::out_RegMask() const { 2000 ShouldNotCallThis(); 2001 return _not_used_at_all; 2002 } 2003 2004 const RegMask &Node::in_RegMask(uint) const { 2005 ShouldNotCallThis(); 2006 return _not_used_at_all; 2007 } 2008 2009 //============================================================================= 2010 //----------------------------------------------------------------------------- 2011 void Node_Array::reset( Arena *new_arena ) { 2012 _a->Afree(_nodes,_max*sizeof(Node*)); 2013 _max = 0; 2014 _nodes = NULL; 2015 _a = new_arena; 2016 } 2017 2018 //------------------------------clear------------------------------------------ 2019 // Clear all entries in _nodes to NULL but keep storage 2020 void Node_Array::clear() { 2021 Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) ); 2022 } 2023 2024 //----------------------------------------------------------------------------- 2025 void Node_Array::grow( uint i ) { 2026 if( !_max ) { 2027 _max = 1; 2028 _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) ); 2029 _nodes[0] = NULL; 2030 } 2031 uint old = _max; 2032 while( i >= _max ) _max <<= 1; // Double to fit 2033 _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*)); 2034 Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) ); 2035 } 2036 2037 //----------------------------------------------------------------------------- 2038 void Node_Array::insert( uint i, Node *n ) { 2039 if( _nodes[_max-1] ) grow(_max); // Get more space if full 2040 Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*))); 2041 _nodes[i] = n; 2042 } 2043 2044 //----------------------------------------------------------------------------- 2045 void Node_Array::remove( uint i ) { 2046 Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*))); 2047 _nodes[_max-1] = NULL; 2048 } 2049 2050 //----------------------------------------------------------------------------- 2051 void Node_Array::sort( C_sort_func_t func) { 2052 qsort( _nodes, _max, sizeof( Node* ), func ); 2053 } 2054 2055 //----------------------------------------------------------------------------- 2056 void Node_Array::dump() const { 2057 #ifndef PRODUCT 2058 for( uint i = 0; i < _max; i++ ) { 2059 Node *nn = _nodes[i]; 2060 if( nn != NULL ) { 2061 tty->print("%5d--> ",i); nn->dump(); 2062 } 2063 } 2064 #endif 2065 } 2066 2067 //--------------------------is_iteratively_computed------------------------------ 2068 // Operation appears to be iteratively computed (such as an induction variable) 2069 // It is possible for this operation to return false for a loop-varying 2070 // value, if it appears (by local graph inspection) to be computed by a simple conditional. 2071 bool Node::is_iteratively_computed() { 2072 if (ideal_reg()) { // does operation have a result register? 2073 for (uint i = 1; i < req(); i++) { 2074 Node* n = in(i); 2075 if (n != NULL && n->is_Phi()) { 2076 for (uint j = 1; j < n->req(); j++) { 2077 if (n->in(j) == this) { 2078 return true; 2079 } 2080 } 2081 } 2082 } 2083 } 2084 return false; 2085 } 2086 2087 //--------------------------find_similar------------------------------ 2088 // Return a node with opcode "opc" and same inputs as "this" if one can 2089 // be found; Otherwise return NULL; 2090 Node* Node::find_similar(int opc) { 2091 if (req() >= 2) { 2092 Node* def = in(1); 2093 if (def && def->outcnt() >= 2) { 2094 for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) { 2095 Node* use = def->fast_out(i); 2096 if (use->Opcode() == opc && 2097 use->req() == req()) { 2098 uint j; 2099 for (j = 0; j < use->req(); j++) { 2100 if (use->in(j) != in(j)) { 2101 break; 2102 } 2103 } 2104 if (j == use->req()) { 2105 return use; 2106 } 2107 } 2108 } 2109 } 2110 } 2111 return NULL; 2112 } 2113 2114 2115 //--------------------------unique_ctrl_out------------------------------ 2116 // Return the unique control out if only one. Null if none or more than one. 2117 Node* Node::unique_ctrl_out() { 2118 Node* found = NULL; 2119 for (uint i = 0; i < outcnt(); i++) { 2120 Node* use = raw_out(i); 2121 if (use->is_CFG() && use != this) { 2122 if (found != NULL) return NULL; 2123 found = use; 2124 } 2125 } 2126 return found; 2127 } 2128 2129 //============================================================================= 2130 //------------------------------yank------------------------------------------- 2131 // Find and remove 2132 void Node_List::yank( Node *n ) { 2133 uint i; 2134 for( i = 0; i < _cnt; i++ ) 2135 if( _nodes[i] == n ) 2136 break; 2137 2138 if( i < _cnt ) 2139 _nodes[i] = _nodes[--_cnt]; 2140 } 2141 2142 //------------------------------dump------------------------------------------- 2143 void Node_List::dump() const { 2144 #ifndef PRODUCT 2145 for( uint i = 0; i < _cnt; i++ ) 2146 if( _nodes[i] ) { 2147 tty->print("%5d--> ",i); 2148 _nodes[i]->dump(); 2149 } 2150 #endif 2151 } 2152 2153 void Node_List::dump_simple() const { 2154 #ifndef PRODUCT 2155 for( uint i = 0; i < _cnt; i++ ) 2156 if( _nodes[i] ) { 2157 tty->print(" %d", _nodes[i]->_idx); 2158 } else { 2159 tty->print(" NULL"); 2160 } 2161 #endif 2162 } 2163 2164 //============================================================================= 2165 //------------------------------remove----------------------------------------- 2166 void Unique_Node_List::remove( Node *n ) { 2167 if( _in_worklist[n->_idx] ) { 2168 for( uint i = 0; i < size(); i++ ) 2169 if( _nodes[i] == n ) { 2170 map(i,Node_List::pop()); 2171 _in_worklist >>= n->_idx; 2172 return; 2173 } 2174 ShouldNotReachHere(); 2175 } 2176 } 2177 2178 //-----------------------remove_useless_nodes---------------------------------- 2179 // Remove useless nodes from worklist 2180 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) { 2181 2182 for( uint i = 0; i < size(); ++i ) { 2183 Node *n = at(i); 2184 assert( n != NULL, "Did not expect null entries in worklist"); 2185 if( ! useful.test(n->_idx) ) { 2186 _in_worklist >>= n->_idx; 2187 map(i,Node_List::pop()); 2188 // Node *replacement = Node_List::pop(); 2189 // if( i != size() ) { // Check if removing last entry 2190 // _nodes[i] = replacement; 2191 // } 2192 --i; // Visit popped node 2193 // If it was last entry, loop terminates since size() was also reduced 2194 } 2195 } 2196 } 2197 2198 //============================================================================= 2199 void Node_Stack::grow() { 2200 size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top 2201 size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode)); 2202 size_t max = old_max << 1; // max * 2 2203 _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max); 2204 _inode_max = _inodes + max; 2205 _inode_top = _inodes + old_top; // restore _top 2206 } 2207 2208 // Node_Stack is used to map nodes. 2209 Node* Node_Stack::find(uint idx) const { 2210 uint sz = size(); 2211 for (uint i=0; i < sz; i++) { 2212 if (idx == index_at(i) ) 2213 return node_at(i); 2214 } 2215 return NULL; 2216 } 2217 2218 //============================================================================= 2219 uint TypeNode::size_of() const { return sizeof(*this); } 2220 #ifndef PRODUCT 2221 void TypeNode::dump_spec(outputStream *st) const { 2222 if( !Verbose && !WizardMode ) { 2223 // standard dump does this in Verbose and WizardMode 2224 st->print(" #"); _type->dump_on(st); 2225 } 2226 } 2227 #endif 2228 uint TypeNode::hash() const { 2229 return Node::hash() + _type->hash(); 2230 } 2231 uint TypeNode::cmp( const Node &n ) const 2232 { return !Type::cmp( _type, ((TypeNode&)n)._type ); } 2233 const Type *TypeNode::bottom_type() const { return _type; } 2234 const Type *TypeNode::Value( PhaseTransform * ) const { return _type; } 2235 2236 //------------------------------ideal_reg-------------------------------------- 2237 uint TypeNode::ideal_reg() const { 2238 return _type->ideal_reg(); 2239 }