1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "libadt/vectset.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/cfgnode.hpp"
  29 #include "opto/connode.hpp"
  30 #include "opto/loopnode.hpp"
  31 #include "opto/machnode.hpp"
  32 #include "opto/matcher.hpp"
  33 #include "opto/node.hpp"
  34 #include "opto/opcodes.hpp"
  35 #include "opto/regmask.hpp"
  36 #include "opto/type.hpp"
  37 #include "utilities/copy.hpp"
  38 #if INCLUDE_ALL_GCS
  39 #include "gc_implementation/shenandoah/c2/shenandoahSupport.hpp"
  40 #endif
  41 
  42 class RegMask;
  43 // #include "phase.hpp"
  44 class PhaseTransform;
  45 class PhaseGVN;
  46 
  47 // Arena we are currently building Nodes in
  48 const uint Node::NotAMachineReg = 0xffff0000;
  49 
  50 #ifndef PRODUCT
  51 extern int nodes_created;
  52 #endif
  53 
  54 #ifdef ASSERT
  55 
  56 //-------------------------- construct_node------------------------------------
  57 // Set a breakpoint here to identify where a particular node index is built.
  58 void Node::verify_construction() {
  59   _debug_orig = NULL;
  60   int old_debug_idx = Compile::debug_idx();
  61   int new_debug_idx = old_debug_idx+1;
  62   if (new_debug_idx > 0) {
  63     // Arrange that the lowest five decimal digits of _debug_idx
  64     // will repeat those of _idx. In case this is somehow pathological,
  65     // we continue to assign negative numbers (!) consecutively.
  66     const int mod = 100000;
  67     int bump = (int)(_idx - new_debug_idx) % mod;
  68     if (bump < 0)  bump += mod;
  69     assert(bump >= 0 && bump < mod, "");
  70     new_debug_idx += bump;
  71   }
  72   Compile::set_debug_idx(new_debug_idx);
  73   set_debug_idx( new_debug_idx );
  74   assert(Compile::current()->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX");
  75   assert(Compile::current()->live_nodes() < Compile::current()->max_node_limit(), "Live Node limit exceeded limit");
  76   if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
  77     tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
  78     BREAKPOINT;
  79   }
  80 #if OPTO_DU_ITERATOR_ASSERT
  81   _last_del = NULL;
  82   _del_tick = 0;
  83 #endif
  84   _hash_lock = 0;
  85 }
  86 
  87 
  88 // #ifdef ASSERT ...
  89 
  90 #if OPTO_DU_ITERATOR_ASSERT
  91 void DUIterator_Common::sample(const Node* node) {
  92   _vdui     = VerifyDUIterators;
  93   _node     = node;
  94   _outcnt   = node->_outcnt;
  95   _del_tick = node->_del_tick;
  96   _last     = NULL;
  97 }
  98 
  99 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
 100   assert(_node     == node, "consistent iterator source");
 101   assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
 102 }
 103 
 104 void DUIterator_Common::verify_resync() {
 105   // Ensure that the loop body has just deleted the last guy produced.
 106   const Node* node = _node;
 107   // Ensure that at least one copy of the last-seen edge was deleted.
 108   // Note:  It is OK to delete multiple copies of the last-seen edge.
 109   // Unfortunately, we have no way to verify that all the deletions delete
 110   // that same edge.  On this point we must use the Honor System.
 111   assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
 112   assert(node->_last_del == _last, "must have deleted the edge just produced");
 113   // We liked this deletion, so accept the resulting outcnt and tick.
 114   _outcnt   = node->_outcnt;
 115   _del_tick = node->_del_tick;
 116 }
 117 
 118 void DUIterator_Common::reset(const DUIterator_Common& that) {
 119   if (this == &that)  return;  // ignore assignment to self
 120   if (!_vdui) {
 121     // We need to initialize everything, overwriting garbage values.
 122     _last = that._last;
 123     _vdui = that._vdui;
 124   }
 125   // Note:  It is legal (though odd) for an iterator over some node x
 126   // to be reassigned to iterate over another node y.  Some doubly-nested
 127   // progress loops depend on being able to do this.
 128   const Node* node = that._node;
 129   // Re-initialize everything, except _last.
 130   _node     = node;
 131   _outcnt   = node->_outcnt;
 132   _del_tick = node->_del_tick;
 133 }
 134 
 135 void DUIterator::sample(const Node* node) {
 136   DUIterator_Common::sample(node);      // Initialize the assertion data.
 137   _refresh_tick = 0;                    // No refreshes have happened, as yet.
 138 }
 139 
 140 void DUIterator::verify(const Node* node, bool at_end_ok) {
 141   DUIterator_Common::verify(node, at_end_ok);
 142   assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
 143 }
 144 
 145 void DUIterator::verify_increment() {
 146   if (_refresh_tick & 1) {
 147     // We have refreshed the index during this loop.
 148     // Fix up _idx to meet asserts.
 149     if (_idx > _outcnt)  _idx = _outcnt;
 150   }
 151   verify(_node, true);
 152 }
 153 
 154 void DUIterator::verify_resync() {
 155   // Note:  We do not assert on _outcnt, because insertions are OK here.
 156   DUIterator_Common::verify_resync();
 157   // Make sure we are still in sync, possibly with no more out-edges:
 158   verify(_node, true);
 159 }
 160 
 161 void DUIterator::reset(const DUIterator& that) {
 162   if (this == &that)  return;  // self assignment is always a no-op
 163   assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
 164   assert(that._idx          == 0, "assign only the result of Node::outs()");
 165   assert(_idx               == that._idx, "already assigned _idx");
 166   if (!_vdui) {
 167     // We need to initialize everything, overwriting garbage values.
 168     sample(that._node);
 169   } else {
 170     DUIterator_Common::reset(that);
 171     if (_refresh_tick & 1) {
 172       _refresh_tick++;                  // Clear the "was refreshed" flag.
 173     }
 174     assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
 175   }
 176 }
 177 
 178 void DUIterator::refresh() {
 179   DUIterator_Common::sample(_node);     // Re-fetch assertion data.
 180   _refresh_tick |= 1;                   // Set the "was refreshed" flag.
 181 }
 182 
 183 void DUIterator::verify_finish() {
 184   // If the loop has killed the node, do not require it to re-run.
 185   if (_node->_outcnt == 0)  _refresh_tick &= ~1;
 186   // If this assert triggers, it means that a loop used refresh_out_pos
 187   // to re-synch an iteration index, but the loop did not correctly
 188   // re-run itself, using a "while (progress)" construct.
 189   // This iterator enforces the rule that you must keep trying the loop
 190   // until it "runs clean" without any need for refreshing.
 191   assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
 192 }
 193 
 194 
 195 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
 196   DUIterator_Common::verify(node, at_end_ok);
 197   Node** out    = node->_out;
 198   uint   cnt    = node->_outcnt;
 199   assert(cnt == _outcnt, "no insertions allowed");
 200   assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
 201   // This last check is carefully designed to work for NO_OUT_ARRAY.
 202 }
 203 
 204 void DUIterator_Fast::verify_limit() {
 205   const Node* node = _node;
 206   verify(node, true);
 207   assert(_outp == node->_out + node->_outcnt, "limit still correct");
 208 }
 209 
 210 void DUIterator_Fast::verify_resync() {
 211   const Node* node = _node;
 212   if (_outp == node->_out + _outcnt) {
 213     // Note that the limit imax, not the pointer i, gets updated with the
 214     // exact count of deletions.  (For the pointer it's always "--i".)
 215     assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
 216     // This is a limit pointer, with a name like "imax".
 217     // Fudge the _last field so that the common assert will be happy.
 218     _last = (Node*) node->_last_del;
 219     DUIterator_Common::verify_resync();
 220   } else {
 221     assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
 222     // A normal internal pointer.
 223     DUIterator_Common::verify_resync();
 224     // Make sure we are still in sync, possibly with no more out-edges:
 225     verify(node, true);
 226   }
 227 }
 228 
 229 void DUIterator_Fast::verify_relimit(uint n) {
 230   const Node* node = _node;
 231   assert((int)n > 0, "use imax -= n only with a positive count");
 232   // This must be a limit pointer, with a name like "imax".
 233   assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
 234   // The reported number of deletions must match what the node saw.
 235   assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
 236   // Fudge the _last field so that the common assert will be happy.
 237   _last = (Node*) node->_last_del;
 238   DUIterator_Common::verify_resync();
 239 }
 240 
 241 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
 242   assert(_outp              == that._outp, "already assigned _outp");
 243   DUIterator_Common::reset(that);
 244 }
 245 
 246 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
 247   // at_end_ok means the _outp is allowed to underflow by 1
 248   _outp += at_end_ok;
 249   DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
 250   _outp -= at_end_ok;
 251   assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
 252 }
 253 
 254 void DUIterator_Last::verify_limit() {
 255   // Do not require the limit address to be resynched.
 256   //verify(node, true);
 257   assert(_outp == _node->_out, "limit still correct");
 258 }
 259 
 260 void DUIterator_Last::verify_step(uint num_edges) {
 261   assert((int)num_edges > 0, "need non-zero edge count for loop progress");
 262   _outcnt   -= num_edges;
 263   _del_tick += num_edges;
 264   // Make sure we are still in sync, possibly with no more out-edges:
 265   const Node* node = _node;
 266   verify(node, true);
 267   assert(node->_last_del == _last, "must have deleted the edge just produced");
 268 }
 269 
 270 #endif //OPTO_DU_ITERATOR_ASSERT
 271 
 272 
 273 #endif //ASSERT
 274 
 275 
 276 // This constant used to initialize _out may be any non-null value.
 277 // The value NULL is reserved for the top node only.
 278 #define NO_OUT_ARRAY ((Node**)-1)
 279 
 280 // This funny expression handshakes with Node::operator new
 281 // to pull Compile::current out of the new node's _out field,
 282 // and then calls a subroutine which manages most field
 283 // initializations.  The only one which is tricky is the
 284 // _idx field, which is const, and so must be initialized
 285 // by a return value, not an assignment.
 286 //
 287 // (Aren't you thankful that Java finals don't require so many tricks?)
 288 #define IDX_INIT(req) this->Init((req), (Compile*) this->_out)
 289 #ifdef _MSC_VER // the IDX_INIT hack falls foul of warning C4355
 290 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 291 #endif
 292 #ifdef __clang__
 293 #pragma clang diagnostic push
 294 #pragma GCC diagnostic ignored "-Wuninitialized"
 295 #endif
 296 
 297 // Out-of-line code from node constructors.
 298 // Executed only when extra debug info. is being passed around.
 299 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
 300   C->set_node_notes_at(idx, nn);
 301 }
 302 
 303 // Shared initialization code.
 304 inline int Node::Init(int req, Compile* C) {
 305   assert(Compile::current() == C, "must use operator new(Compile*)");
 306   int idx = C->next_unique();
 307 
 308   // Allocate memory for the necessary number of edges.
 309   if (req > 0) {
 310     // Allocate space for _in array to have double alignment.
 311     _in = (Node **) ((char *) (C->node_arena()->Amalloc_D(req * sizeof(void*))));
 312 #ifdef ASSERT
 313     _in[req-1] = this; // magic cookie for assertion check
 314 #endif
 315   }
 316   // If there are default notes floating around, capture them:
 317   Node_Notes* nn = C->default_node_notes();
 318   if (nn != NULL)  init_node_notes(C, idx, nn);
 319 
 320   // Note:  At this point, C is dead,
 321   // and we begin to initialize the new Node.
 322 
 323   _cnt = _max = req;
 324   _outcnt = _outmax = 0;
 325   _class_id = Class_Node;
 326   _flags = 0;
 327   _out = NO_OUT_ARRAY;
 328   return idx;
 329 }
 330 
 331 //------------------------------Node-------------------------------------------
 332 // Create a Node, with a given number of required edges.
 333 Node::Node(uint req)
 334   : _idx(IDX_INIT(req))
 335 #ifdef ASSERT
 336   , _parse_idx(_idx)
 337 #endif
 338 {
 339   assert( req < Compile::current()->max_node_limit() - NodeLimitFudgeFactor, "Input limit exceeded" );
 340   debug_only( verify_construction() );
 341   NOT_PRODUCT(nodes_created++);
 342   if (req == 0) {
 343     assert( _in == (Node**)this, "Must not pass arg count to 'new'" );
 344     _in = NULL;
 345   } else {
 346     assert( _in[req-1] == this, "Must pass arg count to 'new'" );
 347     Node** to = _in;
 348     for(uint i = 0; i < req; i++) {
 349       to[i] = NULL;
 350     }
 351   }
 352 }
 353 
 354 //------------------------------Node-------------------------------------------
 355 Node::Node(Node *n0)
 356   : _idx(IDX_INIT(1))
 357 #ifdef ASSERT
 358   , _parse_idx(_idx)
 359 #endif
 360 {
 361   debug_only( verify_construction() );
 362   NOT_PRODUCT(nodes_created++);
 363   // Assert we allocated space for input array already
 364   assert( _in[0] == this, "Must pass arg count to 'new'" );
 365   assert( is_not_dead(n0), "can not use dead node");
 366   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 367 }
 368 
 369 //------------------------------Node-------------------------------------------
 370 Node::Node(Node *n0, Node *n1)
 371   : _idx(IDX_INIT(2))
 372 #ifdef ASSERT
 373   , _parse_idx(_idx)
 374 #endif
 375 {
 376   debug_only( verify_construction() );
 377   NOT_PRODUCT(nodes_created++);
 378   // Assert we allocated space for input array already
 379   assert( _in[1] == this, "Must pass arg count to 'new'" );
 380   assert( is_not_dead(n0), "can not use dead node");
 381   assert( is_not_dead(n1), "can not use dead node");
 382   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 383   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 384 }
 385 
 386 //------------------------------Node-------------------------------------------
 387 Node::Node(Node *n0, Node *n1, Node *n2)
 388   : _idx(IDX_INIT(3))
 389 #ifdef ASSERT
 390   , _parse_idx(_idx)
 391 #endif
 392 {
 393   debug_only( verify_construction() );
 394   NOT_PRODUCT(nodes_created++);
 395   // Assert we allocated space for input array already
 396   assert( _in[2] == this, "Must pass arg count to 'new'" );
 397   assert( is_not_dead(n0), "can not use dead node");
 398   assert( is_not_dead(n1), "can not use dead node");
 399   assert( is_not_dead(n2), "can not use dead node");
 400   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 401   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 402   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 403 }
 404 
 405 //------------------------------Node-------------------------------------------
 406 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
 407   : _idx(IDX_INIT(4))
 408 #ifdef ASSERT
 409   , _parse_idx(_idx)
 410 #endif
 411 {
 412   debug_only( verify_construction() );
 413   NOT_PRODUCT(nodes_created++);
 414   // Assert we allocated space for input array already
 415   assert( _in[3] == this, "Must pass arg count to 'new'" );
 416   assert( is_not_dead(n0), "can not use dead node");
 417   assert( is_not_dead(n1), "can not use dead node");
 418   assert( is_not_dead(n2), "can not use dead node");
 419   assert( is_not_dead(n3), "can not use dead node");
 420   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 421   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 422   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 423   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 424 }
 425 
 426 //------------------------------Node-------------------------------------------
 427 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
 428   : _idx(IDX_INIT(5))
 429 #ifdef ASSERT
 430   , _parse_idx(_idx)
 431 #endif
 432 {
 433   debug_only( verify_construction() );
 434   NOT_PRODUCT(nodes_created++);
 435   // Assert we allocated space for input array already
 436   assert( _in[4] == this, "Must pass arg count to 'new'" );
 437   assert( is_not_dead(n0), "can not use dead node");
 438   assert( is_not_dead(n1), "can not use dead node");
 439   assert( is_not_dead(n2), "can not use dead node");
 440   assert( is_not_dead(n3), "can not use dead node");
 441   assert( is_not_dead(n4), "can not use dead node");
 442   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 443   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 444   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 445   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 446   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 447 }
 448 
 449 //------------------------------Node-------------------------------------------
 450 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 451                      Node *n4, Node *n5)
 452   : _idx(IDX_INIT(6))
 453 #ifdef ASSERT
 454   , _parse_idx(_idx)
 455 #endif
 456 {
 457   debug_only( verify_construction() );
 458   NOT_PRODUCT(nodes_created++);
 459   // Assert we allocated space for input array already
 460   assert( _in[5] == this, "Must pass arg count to 'new'" );
 461   assert( is_not_dead(n0), "can not use dead node");
 462   assert( is_not_dead(n1), "can not use dead node");
 463   assert( is_not_dead(n2), "can not use dead node");
 464   assert( is_not_dead(n3), "can not use dead node");
 465   assert( is_not_dead(n4), "can not use dead node");
 466   assert( is_not_dead(n5), "can not use dead node");
 467   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 468   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 469   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 470   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 471   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 472   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 473 }
 474 
 475 //------------------------------Node-------------------------------------------
 476 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 477                      Node *n4, Node *n5, Node *n6)
 478   : _idx(IDX_INIT(7))
 479 #ifdef ASSERT
 480   , _parse_idx(_idx)
 481 #endif
 482 {
 483   debug_only( verify_construction() );
 484   NOT_PRODUCT(nodes_created++);
 485   // Assert we allocated space for input array already
 486   assert( _in[6] == this, "Must pass arg count to 'new'" );
 487   assert( is_not_dead(n0), "can not use dead node");
 488   assert( is_not_dead(n1), "can not use dead node");
 489   assert( is_not_dead(n2), "can not use dead node");
 490   assert( is_not_dead(n3), "can not use dead node");
 491   assert( is_not_dead(n4), "can not use dead node");
 492   assert( is_not_dead(n5), "can not use dead node");
 493   assert( is_not_dead(n6), "can not use dead node");
 494   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 495   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 496   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 497   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 498   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 499   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 500   _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
 501 }
 502 
 503 #ifdef __clang__
 504 #pragma clang diagnostic pop
 505 #endif
 506 
 507 
 508 //------------------------------clone------------------------------------------
 509 // Clone a Node.
 510 Node *Node::clone() const {
 511   Compile* C = Compile::current();
 512   uint s = size_of();           // Size of inherited Node
 513   Node *n = (Node*)C->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
 514   Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
 515   // Set the new input pointer array
 516   n->_in = (Node**)(((char*)n)+s);
 517   // Cannot share the old output pointer array, so kill it
 518   n->_out = NO_OUT_ARRAY;
 519   // And reset the counters to 0
 520   n->_outcnt = 0;
 521   n->_outmax = 0;
 522   // Unlock this guy, since he is not in any hash table.
 523   debug_only(n->_hash_lock = 0);
 524   // Walk the old node's input list to duplicate its edges
 525   uint i;
 526   for( i = 0; i < len(); i++ ) {
 527     Node *x = in(i);
 528     n->_in[i] = x;
 529     if (x != NULL) x->add_out(n);
 530   }
 531   if (is_macro())
 532     C->add_macro_node(n);
 533   if (is_expensive())
 534     C->add_expensive_node(n);
 535 
 536   if (Opcode() == Op_ShenandoahLoadReferenceBarrier) {
 537     C->add_shenandoah_barrier(reinterpret_cast<ShenandoahLoadReferenceBarrierNode*>(n));
 538   }
 539   // If the cloned node is a range check dependent CastII, add it to the list.
 540   CastIINode* cast = n->isa_CastII();
 541   if (cast != NULL && cast->has_range_check()) {
 542     C->add_range_check_cast(cast);
 543   }
 544 
 545   n->set_idx(C->next_unique()); // Get new unique index as well
 546   debug_only( n->verify_construction() );
 547   NOT_PRODUCT(nodes_created++);
 548   // Do not patch over the debug_idx of a clone, because it makes it
 549   // impossible to break on the clone's moment of creation.
 550   //debug_only( n->set_debug_idx( debug_idx() ) );
 551 
 552   C->copy_node_notes_to(n, (Node*) this);
 553 
 554   // MachNode clone
 555   uint nopnds;
 556   if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
 557     MachNode *mach  = n->as_Mach();
 558     MachNode *mthis = this->as_Mach();
 559     // Get address of _opnd_array.
 560     // It should be the same offset since it is the clone of this node.
 561     MachOper **from = mthis->_opnds;
 562     MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
 563                     pointer_delta((const void*)from,
 564                                   (const void*)(&mthis->_opnds), 1));
 565     mach->_opnds = to;
 566     for ( uint i = 0; i < nopnds; ++i ) {
 567       to[i] = from[i]->clone(C);
 568     }
 569   }
 570   // cloning CallNode may need to clone JVMState
 571   if (n->is_Call()) {
 572     n->as_Call()->clone_jvms(C);
 573   }
 574   if (n->is_SafePoint()) {
 575     n->as_SafePoint()->clone_replaced_nodes();
 576   }
 577   return n;                     // Return the clone
 578 }
 579 
 580 //---------------------------setup_is_top--------------------------------------
 581 // Call this when changing the top node, to reassert the invariants
 582 // required by Node::is_top.  See Compile::set_cached_top_node.
 583 void Node::setup_is_top() {
 584   if (this == (Node*)Compile::current()->top()) {
 585     // This node has just become top.  Kill its out array.
 586     _outcnt = _outmax = 0;
 587     _out = NULL;                           // marker value for top
 588     assert(is_top(), "must be top");
 589   } else {
 590     if (_out == NULL)  _out = NO_OUT_ARRAY;
 591     assert(!is_top(), "must not be top");
 592   }
 593 }
 594 
 595 
 596 //------------------------------~Node------------------------------------------
 597 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 598 extern int reclaim_idx ;
 599 extern int reclaim_in  ;
 600 extern int reclaim_node;
 601 void Node::destruct() {
 602   // Eagerly reclaim unique Node numberings
 603   Compile* compile = Compile::current();
 604   if ((uint)_idx+1 == compile->unique()) {
 605     compile->set_unique(compile->unique()-1);
 606 #ifdef ASSERT
 607     reclaim_idx++;
 608 #endif
 609   }
 610   // Clear debug info:
 611   Node_Notes* nn = compile->node_notes_at(_idx);
 612   if (nn != NULL)  nn->clear();
 613   // Walk the input array, freeing the corresponding output edges
 614   _cnt = _max;  // forget req/prec distinction
 615   uint i;
 616   for( i = 0; i < _max; i++ ) {
 617     set_req(i, NULL);
 618     //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
 619   }
 620   assert(outcnt() == 0, "deleting a node must not leave a dangling use");
 621   // See if the input array was allocated just prior to the object
 622   int edge_size = _max*sizeof(void*);
 623   int out_edge_size = _outmax*sizeof(void*);
 624   char *edge_end = ((char*)_in) + edge_size;
 625   char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
 626   char *out_edge_end = out_array + out_edge_size;
 627   int node_size = size_of();
 628 
 629   // Free the output edge array
 630   if (out_edge_size > 0) {
 631 #ifdef ASSERT
 632     if( out_edge_end == compile->node_arena()->hwm() )
 633       reclaim_in  += out_edge_size;  // count reclaimed out edges with in edges
 634 #endif
 635     compile->node_arena()->Afree(out_array, out_edge_size);
 636   }
 637 
 638   // Free the input edge array and the node itself
 639   if( edge_end == (char*)this ) {
 640 #ifdef ASSERT
 641     if( edge_end+node_size == compile->node_arena()->hwm() ) {
 642       reclaim_in  += edge_size;
 643       reclaim_node+= node_size;
 644     }
 645 #else
 646     // It was; free the input array and object all in one hit
 647     compile->node_arena()->Afree(_in,edge_size+node_size);
 648 #endif
 649   } else {
 650 
 651     // Free just the input array
 652 #ifdef ASSERT
 653     if( edge_end == compile->node_arena()->hwm() )
 654       reclaim_in  += edge_size;
 655 #endif
 656     compile->node_arena()->Afree(_in,edge_size);
 657 
 658     // Free just the object
 659 #ifdef ASSERT
 660     if( ((char*)this) + node_size == compile->node_arena()->hwm() )
 661       reclaim_node+= node_size;
 662 #else
 663     compile->node_arena()->Afree(this,node_size);
 664 #endif
 665   }
 666   if (is_macro()) {
 667     compile->remove_macro_node(this);
 668   }
 669   if (is_expensive()) {
 670     compile->remove_expensive_node(this);
 671   }
 672   if (Opcode() == Op_ShenandoahLoadReferenceBarrier) {
 673     compile->remove_shenandoah_barrier(reinterpret_cast<ShenandoahLoadReferenceBarrierNode*>(this));
 674   }
 675   CastIINode* cast = isa_CastII();
 676   if (cast != NULL && cast->has_range_check()) {
 677     compile->remove_range_check_cast(cast);
 678   }
 679 
 680   if (is_SafePoint()) {
 681     as_SafePoint()->delete_replaced_nodes();
 682   }
 683 #ifdef ASSERT
 684   // We will not actually delete the storage, but we'll make the node unusable.
 685   *(address*)this = badAddress;  // smash the C++ vtbl, probably
 686   _in = _out = (Node**) badAddress;
 687   _max = _cnt = _outmax = _outcnt = 0;
 688 #endif
 689 }
 690 
 691 //------------------------------grow-------------------------------------------
 692 // Grow the input array, making space for more edges
 693 void Node::grow( uint len ) {
 694   Arena* arena = Compile::current()->node_arena();
 695   uint new_max = _max;
 696   if( new_max == 0 ) {
 697     _max = 4;
 698     _in = (Node**)arena->Amalloc(4*sizeof(Node*));
 699     Node** to = _in;
 700     to[0] = NULL;
 701     to[1] = NULL;
 702     to[2] = NULL;
 703     to[3] = NULL;
 704     return;
 705   }
 706   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 707   // Trimming to limit allows a uint8 to handle up to 255 edges.
 708   // Previously I was using only powers-of-2 which peaked at 128 edges.
 709   //if( new_max >= limit ) new_max = limit-1;
 710   _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
 711   Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
 712   _max = new_max;               // Record new max length
 713   // This assertion makes sure that Node::_max is wide enough to
 714   // represent the numerical value of new_max.
 715   assert(_max == new_max && _max > len, "int width of _max is too small");
 716 }
 717 
 718 //-----------------------------out_grow----------------------------------------
 719 // Grow the input array, making space for more edges
 720 void Node::out_grow( uint len ) {
 721   assert(!is_top(), "cannot grow a top node's out array");
 722   Arena* arena = Compile::current()->node_arena();
 723   uint new_max = _outmax;
 724   if( new_max == 0 ) {
 725     _outmax = 4;
 726     _out = (Node **)arena->Amalloc(4*sizeof(Node*));
 727     return;
 728   }
 729   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 730   // Trimming to limit allows a uint8 to handle up to 255 edges.
 731   // Previously I was using only powers-of-2 which peaked at 128 edges.
 732   //if( new_max >= limit ) new_max = limit-1;
 733   assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
 734   _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
 735   //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
 736   _outmax = new_max;               // Record new max length
 737   // This assertion makes sure that Node::_max is wide enough to
 738   // represent the numerical value of new_max.
 739   assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
 740 }
 741 
 742 #ifdef ASSERT
 743 //------------------------------is_dead----------------------------------------
 744 bool Node::is_dead() const {
 745   // Mach and pinch point nodes may look like dead.
 746   if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
 747     return false;
 748   for( uint i = 0; i < _max; i++ )
 749     if( _in[i] != NULL )
 750       return false;
 751   dump();
 752   return true;
 753 }
 754 #endif
 755 
 756 
 757 //------------------------------is_unreachable---------------------------------
 758 bool Node::is_unreachable(PhaseIterGVN &igvn) const {
 759   assert(!is_Mach(), "doesn't work with MachNodes");
 760   return outcnt() == 0 || igvn.type(this) == Type::TOP || in(0)->is_top();
 761 }
 762 
 763 //------------------------------add_req----------------------------------------
 764 // Add a new required input at the end
 765 void Node::add_req( Node *n ) {
 766   assert( is_not_dead(n), "can not use dead node");
 767 
 768   // Look to see if I can move precedence down one without reallocating
 769   if( (_cnt >= _max) || (in(_max-1) != NULL) )
 770     grow( _max+1 );
 771 
 772   // Find a precedence edge to move
 773   if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
 774     uint i;
 775     for( i=_cnt; i<_max; i++ )
 776       if( in(i) == NULL )       // Find the NULL at end of prec edge list
 777         break;                  // There must be one, since we grew the array
 778     _in[i] = in(_cnt);          // Move prec over, making space for req edge
 779   }
 780   _in[_cnt++] = n;            // Stuff over old prec edge
 781   if (n != NULL) n->add_out((Node *)this);
 782 }
 783 
 784 //---------------------------add_req_batch-------------------------------------
 785 // Add a new required input at the end
 786 void Node::add_req_batch( Node *n, uint m ) {
 787   assert( is_not_dead(n), "can not use dead node");
 788   // check various edge cases
 789   if ((int)m <= 1) {
 790     assert((int)m >= 0, "oob");
 791     if (m != 0)  add_req(n);
 792     return;
 793   }
 794 
 795   // Look to see if I can move precedence down one without reallocating
 796   if( (_cnt+m) > _max || _in[_max-m] )
 797     grow( _max+m );
 798 
 799   // Find a precedence edge to move
 800   if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
 801     uint i;
 802     for( i=_cnt; i<_max; i++ )
 803       if( _in[i] == NULL )      // Find the NULL at end of prec edge list
 804         break;                  // There must be one, since we grew the array
 805     // Slide all the precs over by m positions (assume #prec << m).
 806     Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
 807   }
 808 
 809   // Stuff over the old prec edges
 810   for(uint i=0; i<m; i++ ) {
 811     _in[_cnt++] = n;
 812   }
 813 
 814   // Insert multiple out edges on the node.
 815   if (n != NULL && !n->is_top()) {
 816     for(uint i=0; i<m; i++ ) {
 817       n->add_out((Node *)this);
 818     }
 819   }
 820 }
 821 
 822 //------------------------------del_req----------------------------------------
 823 // Delete the required edge and compact the edge array
 824 void Node::del_req( uint idx ) {
 825   assert( idx < _cnt, "oob");
 826   assert( !VerifyHashTableKeys || _hash_lock == 0,
 827           "remove node from hash table before modifying it");
 828   // First remove corresponding def-use edge
 829   Node *n = in(idx);
 830   if (n != NULL) n->del_out((Node *)this);
 831   _in[idx] = in(--_cnt); // Compact the array
 832   // Avoid spec violation: Gap in prec edges.
 833   close_prec_gap_at(_cnt);
 834 }
 835 
 836 //------------------------------del_req_ordered--------------------------------
 837 // Delete the required edge and compact the edge array with preserved order
 838 void Node::del_req_ordered( uint idx ) {
 839   assert( idx < _cnt, "oob");
 840   assert( !VerifyHashTableKeys || _hash_lock == 0,
 841           "remove node from hash table before modifying it");
 842   // First remove corresponding def-use edge
 843   Node *n = in(idx);
 844   if (n != NULL) n->del_out((Node *)this);
 845   if (idx < --_cnt) {    // Not last edge ?
 846     Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx)*sizeof(Node*)));
 847   }
 848   // Avoid spec violation: Gap in prec edges.
 849   close_prec_gap_at(_cnt);
 850 }
 851 
 852 //------------------------------ins_req----------------------------------------
 853 // Insert a new required input at the end
 854 void Node::ins_req( uint idx, Node *n ) {
 855   assert( is_not_dead(n), "can not use dead node");
 856   add_req(NULL);                // Make space
 857   assert( idx < _max, "Must have allocated enough space");
 858   // Slide over
 859   if(_cnt-idx-1 > 0) {
 860     Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
 861   }
 862   _in[idx] = n;                            // Stuff over old required edge
 863   if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
 864 }
 865 
 866 //-----------------------------find_edge---------------------------------------
 867 int Node::find_edge(Node* n) {
 868   for (uint i = 0; i < len(); i++) {
 869     if (_in[i] == n)  return i;
 870   }
 871   return -1;
 872 }
 873 
 874 //----------------------------replace_edge-------------------------------------
 875 int Node::replace_edge(Node* old, Node* neww) {
 876   if (old == neww)  return 0;  // nothing to do
 877   uint nrep = 0;
 878   for (uint i = 0; i < len(); i++) {
 879     if (in(i) == old) {
 880       if (i < req()) {
 881         set_req(i, neww);
 882       } else {
 883         assert(find_prec_edge(neww) == -1, err_msg("spec violation: duplicated prec edge (node %d -> %d)", _idx, neww->_idx));
 884         set_prec(i, neww);
 885       }
 886       nrep++;
 887     }
 888   }
 889   return nrep;
 890 }
 891 
 892 /**
 893  * Replace input edges in the range pointing to 'old' node.
 894  */
 895 int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end) {
 896   if (old == neww)  return 0;  // nothing to do
 897   uint nrep = 0;
 898   for (int i = start; i < end; i++) {
 899     if (in(i) == old) {
 900       set_req(i, neww);
 901       nrep++;
 902     }
 903   }
 904   return nrep;
 905 }
 906 
 907 //-------------------------disconnect_inputs-----------------------------------
 908 // NULL out all inputs to eliminate incoming Def-Use edges.
 909 // Return the number of edges between 'n' and 'this'
 910 int Node::disconnect_inputs(Node *n, Compile* C) {
 911   int edges_to_n = 0;
 912 
 913   uint cnt = req();
 914   for( uint i = 0; i < cnt; ++i ) {
 915     if( in(i) == 0 ) continue;
 916     if( in(i) == n ) ++edges_to_n;
 917     set_req(i, NULL);
 918   }
 919   // Remove precedence edges if any exist
 920   // Note: Safepoints may have precedence edges, even during parsing
 921   if( (req() != len()) && (in(req()) != NULL) ) {
 922     uint max = len();
 923     for( uint i = 0; i < max; ++i ) {
 924       if( in(i) == 0 ) continue;
 925       if( in(i) == n ) ++edges_to_n;
 926       set_prec(i, NULL);
 927     }
 928   }
 929 
 930   // Node::destruct requires all out edges be deleted first
 931   // debug_only(destruct();)   // no reuse benefit expected
 932   if (edges_to_n == 0) {
 933     C->record_dead_node(_idx);
 934   }
 935   return edges_to_n;
 936 }
 937 
 938 //-----------------------------uncast---------------------------------------
 939 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
 940 // Strip away casting.  (It is depth-limited.)
 941 Node* Node::uncast() const {
 942   // Should be inline:
 943   //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
 944   if (is_ConstraintCast() || is_CheckCastPP())
 945     return uncast_helper(this);
 946   else
 947     return (Node*) this;
 948 }
 949 
 950 // Find out of current node that matches opcode.
 951 Node* Node::find_out_with(int opcode) {
 952   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 953     Node* use = fast_out(i);
 954     if (use->Opcode() == opcode) {
 955       return use;
 956     }
 957   }
 958   return NULL;
 959 }
 960 
 961 //---------------------------uncast_helper-------------------------------------
 962 Node* Node::uncast_helper(const Node* p) {
 963 #ifdef ASSERT
 964   uint depth_count = 0;
 965   const Node* orig_p = p;
 966 #endif
 967 
 968   while (true) {
 969 #ifdef ASSERT
 970     if (depth_count >= K) {
 971       orig_p->dump(4);
 972       if (p != orig_p)
 973         p->dump(1);
 974     }
 975     assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
 976 #endif
 977     if (p == NULL || p->req() != 2) {
 978       break;
 979     } else if (p->is_ConstraintCast()) {
 980       p = p->in(1);
 981     } else if (p->is_CheckCastPP()) {
 982       p = p->in(1);
 983     } else {
 984       break;
 985     }
 986   }
 987   return (Node*) p;
 988 }
 989 
 990 // Return true if the current node has an out that matches opcode.
 991 bool Node::has_out_with(int opcode) {
 992   return (find_out_with(opcode) != NULL);
 993 }
 994 
 995 //------------------------------add_prec---------------------------------------
 996 // Add a new precedence input.  Precedence inputs are unordered, with
 997 // duplicates removed and NULLs packed down at the end.
 998 void Node::add_prec( Node *n ) {
 999   assert( is_not_dead(n), "can not use dead node");
1000 
1001   // Check for NULL at end
1002   if( _cnt >= _max || in(_max-1) )
1003     grow( _max+1 );
1004 
1005   // Find a precedence edge to move
1006   uint i = _cnt;
1007   while( in(i) != NULL ) {
1008     if (in(i) == n) return; // Avoid spec violation: duplicated prec edge.
1009     i++;
1010   }
1011   _in[i] = n;                                // Stuff prec edge over NULL
1012   if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
1013 
1014 #ifdef ASSERT
1015   while ((++i)<_max) { assert(_in[i] == NULL, err_msg("spec violation: Gap in prec edges (node %d)", _idx)); }
1016 #endif
1017 }
1018 
1019 //------------------------------rm_prec----------------------------------------
1020 // Remove a precedence input.  Precedence inputs are unordered, with
1021 // duplicates removed and NULLs packed down at the end.
1022 void Node::rm_prec( uint j ) {
1023   assert(j < _max, err_msg("oob: i=%d, _max=%d", j, _max));
1024   assert(j >= _cnt, "not a precedence edge");
1025   if (_in[j] == NULL) return;   // Avoid spec violation: Gap in prec edges.
1026   _in[j]->del_out((Node *)this);
1027   close_prec_gap_at(j);
1028 }
1029 
1030 //------------------------------size_of----------------------------------------
1031 uint Node::size_of() const { return sizeof(*this); }
1032 
1033 //------------------------------ideal_reg--------------------------------------
1034 uint Node::ideal_reg() const { return 0; }
1035 
1036 //------------------------------jvms-------------------------------------------
1037 JVMState* Node::jvms() const { return NULL; }
1038 
1039 #ifdef ASSERT
1040 //------------------------------jvms-------------------------------------------
1041 bool Node::verify_jvms(const JVMState* using_jvms) const {
1042   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
1043     if (jvms == using_jvms)  return true;
1044   }
1045   return false;
1046 }
1047 
1048 //------------------------------init_NodeProperty------------------------------
1049 void Node::init_NodeProperty() {
1050   assert(_max_classes <= max_jushort, "too many NodeProperty classes");
1051   assert(_max_flags <= max_jushort, "too many NodeProperty flags");
1052 }
1053 #endif
1054 
1055 //------------------------------format-----------------------------------------
1056 // Print as assembly
1057 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
1058 //------------------------------emit-------------------------------------------
1059 // Emit bytes starting at parameter 'ptr'.
1060 void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
1061 //------------------------------size-------------------------------------------
1062 // Size of instruction in bytes
1063 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
1064 
1065 //------------------------------CFG Construction-------------------------------
1066 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
1067 // Goto and Return.
1068 const Node *Node::is_block_proj() const { return 0; }
1069 
1070 // Minimum guaranteed type
1071 const Type *Node::bottom_type() const { return Type::BOTTOM; }
1072 
1073 
1074 //------------------------------raise_bottom_type------------------------------
1075 // Get the worst-case Type output for this Node.
1076 void Node::raise_bottom_type(const Type* new_type) {
1077   if (is_Type()) {
1078     TypeNode *n = this->as_Type();
1079     if (VerifyAliases) {
1080       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1081     }
1082     n->set_type(new_type);
1083   } else if (is_Load()) {
1084     LoadNode *n = this->as_Load();
1085     if (VerifyAliases) {
1086       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1087     }
1088     n->set_type(new_type);
1089   }
1090 }
1091 
1092 //------------------------------Identity---------------------------------------
1093 // Return a node that the given node is equivalent to.
1094 Node *Node::Identity( PhaseTransform * ) {
1095   return this;                  // Default to no identities
1096 }
1097 
1098 //------------------------------Value------------------------------------------
1099 // Compute a new Type for a node using the Type of the inputs.
1100 const Type *Node::Value( PhaseTransform * ) const {
1101   return bottom_type();         // Default to worst-case Type
1102 }
1103 
1104 //------------------------------Ideal------------------------------------------
1105 //
1106 // 'Idealize' the graph rooted at this Node.
1107 //
1108 // In order to be efficient and flexible there are some subtle invariants
1109 // these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
1110 // these invariants, although its too slow to have on by default.  If you are
1111 // hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
1112 //
1113 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
1114 // pointer.  If ANY change is made, it must return the root of the reshaped
1115 // graph - even if the root is the same Node.  Example: swapping the inputs
1116 // to an AddINode gives the same answer and same root, but you still have to
1117 // return the 'this' pointer instead of NULL.
1118 //
1119 // You cannot return an OLD Node, except for the 'this' pointer.  Use the
1120 // Identity call to return an old Node; basically if Identity can find
1121 // another Node have the Ideal call make no change and return NULL.
1122 // Example: AddINode::Ideal must check for add of zero; in this case it
1123 // returns NULL instead of doing any graph reshaping.
1124 //
1125 // You cannot modify any old Nodes except for the 'this' pointer.  Due to
1126 // sharing there may be other users of the old Nodes relying on their current
1127 // semantics.  Modifying them will break the other users.
1128 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
1129 // "X+3" unchanged in case it is shared.
1130 //
1131 // If you modify the 'this' pointer's inputs, you should use
1132 // 'set_req'.  If you are making a new Node (either as the new root or
1133 // some new internal piece) you may use 'init_req' to set the initial
1134 // value.  You can make a new Node with either 'new' or 'clone'.  In
1135 // either case, def-use info is correctly maintained.
1136 //
1137 // Example: reshape "(X+3)+4" into "X+7":
1138 //    set_req(1, in(1)->in(1));
1139 //    set_req(2, phase->intcon(7));
1140 //    return this;
1141 // Example: reshape "X*4" into "X<<2"
1142 //    return new (C) LShiftINode(in(1), phase->intcon(2));
1143 //
1144 // You must call 'phase->transform(X)' on any new Nodes X you make, except
1145 // for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
1146 //    Node *shift=phase->transform(new(C)LShiftINode(in(1),phase->intcon(5)));
1147 //    return new (C) AddINode(shift, in(1));
1148 //
1149 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
1150 // These forms are faster than 'phase->transform(new (C) ConNode())' and Do
1151 // The Right Thing with def-use info.
1152 //
1153 // You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
1154 // graph uses the 'this' Node it must be the root.  If you want a Node with
1155 // the same Opcode as the 'this' pointer use 'clone'.
1156 //
1157 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
1158   return NULL;                  // Default to being Ideal already
1159 }
1160 
1161 // Some nodes have specific Ideal subgraph transformations only if they are
1162 // unique users of specific nodes. Such nodes should be put on IGVN worklist
1163 // for the transformations to happen.
1164 bool Node::has_special_unique_user() const {
1165   assert(outcnt() == 1, "match only for unique out");
1166   Node* n = unique_out();
1167   int op  = Opcode();
1168   if( this->is_Store() ) {
1169     // Condition for back-to-back stores folding.
1170     return n->Opcode() == op && n->in(MemNode::Memory) == this;
1171   } else if (this->is_Load() || this->is_DecodeN()) {
1172     // Condition for removing an unused LoadNode or DecodeNNode from the MemBarAcquire precedence input
1173     return n->Opcode() == Op_MemBarAcquire;
1174   } else if( op == Op_AddL ) {
1175     // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
1176     return n->Opcode() == Op_ConvL2I && n->in(1) == this;
1177   } else if( op == Op_SubI || op == Op_SubL ) {
1178     // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
1179     return n->Opcode() == op && n->in(2) == this;
1180   }
1181   return false;
1182 };
1183 
1184 //--------------------------find_exact_control---------------------------------
1185 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
1186 Node* Node::find_exact_control(Node* ctrl) {
1187   if (ctrl == NULL && this->is_Region())
1188     ctrl = this->as_Region()->is_copy();
1189 
1190   if (ctrl != NULL && ctrl->is_CatchProj()) {
1191     if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
1192       ctrl = ctrl->in(0);
1193     if (ctrl != NULL && !ctrl->is_top())
1194       ctrl = ctrl->in(0);
1195   }
1196 
1197   if (ctrl != NULL && ctrl->is_Proj())
1198     ctrl = ctrl->in(0);
1199 
1200   return ctrl;
1201 }
1202 
1203 //--------------------------dominates------------------------------------------
1204 // Helper function for MemNode::all_controls_dominate().
1205 // Check if 'this' control node dominates or equal to 'sub' control node.
1206 // We already know that if any path back to Root or Start reaches 'this',
1207 // then all paths so, so this is a simple search for one example,
1208 // not an exhaustive search for a counterexample.
1209 bool Node::dominates(Node* sub, Node_List &nlist) {
1210   assert(this->is_CFG(), "expecting control");
1211   assert(sub != NULL && sub->is_CFG(), "expecting control");
1212 
1213   // detect dead cycle without regions
1214   int iterations_without_region_limit = DominatorSearchLimit;
1215 
1216   Node* orig_sub = sub;
1217   Node* dom      = this;
1218   bool  met_dom  = false;
1219   nlist.clear();
1220 
1221   // Walk 'sub' backward up the chain to 'dom', watching for regions.
1222   // After seeing 'dom', continue up to Root or Start.
1223   // If we hit a region (backward split point), it may be a loop head.
1224   // Keep going through one of the region's inputs.  If we reach the
1225   // same region again, go through a different input.  Eventually we
1226   // will either exit through the loop head, or give up.
1227   // (If we get confused, break out and return a conservative 'false'.)
1228   while (sub != NULL) {
1229     if (sub->is_top())  break; // Conservative answer for dead code.
1230     if (sub == dom) {
1231       if (nlist.size() == 0) {
1232         // No Region nodes except loops were visited before and the EntryControl
1233         // path was taken for loops: it did not walk in a cycle.
1234         return true;
1235       } else if (met_dom) {
1236         break;          // already met before: walk in a cycle
1237       } else {
1238         // Region nodes were visited. Continue walk up to Start or Root
1239         // to make sure that it did not walk in a cycle.
1240         met_dom = true; // first time meet
1241         iterations_without_region_limit = DominatorSearchLimit; // Reset
1242      }
1243     }
1244     if (sub->is_Start() || sub->is_Root()) {
1245       // Success if we met 'dom' along a path to Start or Root.
1246       // We assume there are no alternative paths that avoid 'dom'.
1247       // (This assumption is up to the caller to ensure!)
1248       return met_dom;
1249     }
1250     Node* up = sub->in(0);
1251     // Normalize simple pass-through regions and projections:
1252     up = sub->find_exact_control(up);
1253     // If sub == up, we found a self-loop.  Try to push past it.
1254     if (sub == up && sub->is_Loop()) {
1255       // Take loop entry path on the way up to 'dom'.
1256       up = sub->in(1); // in(LoopNode::EntryControl);
1257     } else if (sub == up && sub->is_Region() && sub->req() != 3) {
1258       // Always take in(1) path on the way up to 'dom' for clone regions
1259       // (with only one input) or regions which merge > 2 paths
1260       // (usually used to merge fast/slow paths).
1261       up = sub->in(1);
1262     } else if (sub == up && sub->is_Region()) {
1263       // Try both paths for Regions with 2 input paths (it may be a loop head).
1264       // It could give conservative 'false' answer without information
1265       // which region's input is the entry path.
1266       iterations_without_region_limit = DominatorSearchLimit; // Reset
1267 
1268       bool region_was_visited_before = false;
1269       // Was this Region node visited before?
1270       // If so, we have reached it because we accidentally took a
1271       // loop-back edge from 'sub' back into the body of the loop,
1272       // and worked our way up again to the loop header 'sub'.
1273       // So, take the first unexplored path on the way up to 'dom'.
1274       for (int j = nlist.size() - 1; j >= 0; j--) {
1275         intptr_t ni = (intptr_t)nlist.at(j);
1276         Node* visited = (Node*)(ni & ~1);
1277         bool  visited_twice_already = ((ni & 1) != 0);
1278         if (visited == sub) {
1279           if (visited_twice_already) {
1280             // Visited 2 paths, but still stuck in loop body.  Give up.
1281             return false;
1282           }
1283           // The Region node was visited before only once.
1284           // (We will repush with the low bit set, below.)
1285           nlist.remove(j);
1286           // We will find a new edge and re-insert.
1287           region_was_visited_before = true;
1288           break;
1289         }
1290       }
1291 
1292       // Find an incoming edge which has not been seen yet; walk through it.
1293       assert(up == sub, "");
1294       uint skip = region_was_visited_before ? 1 : 0;
1295       for (uint i = 1; i < sub->req(); i++) {
1296         Node* in = sub->in(i);
1297         if (in != NULL && !in->is_top() && in != sub) {
1298           if (skip == 0) {
1299             up = in;
1300             break;
1301           }
1302           --skip;               // skip this nontrivial input
1303         }
1304       }
1305 
1306       // Set 0 bit to indicate that both paths were taken.
1307       nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
1308     }
1309 
1310     if (up == sub) {
1311       break;    // some kind of tight cycle
1312     }
1313     if (up == orig_sub && met_dom) {
1314       // returned back after visiting 'dom'
1315       break;    // some kind of cycle
1316     }
1317     if (--iterations_without_region_limit < 0) {
1318       break;    // dead cycle
1319     }
1320     sub = up;
1321   }
1322 
1323   // Did not meet Root or Start node in pred. chain.
1324   // Conservative answer for dead code.
1325   return false;
1326 }
1327 
1328 //------------------------------remove_dead_region-----------------------------
1329 // This control node is dead.  Follow the subgraph below it making everything
1330 // using it dead as well.  This will happen normally via the usual IterGVN
1331 // worklist but this call is more efficient.  Do not update use-def info
1332 // inside the dead region, just at the borders.
1333 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
1334   // Con's are a popular node to re-hit in the hash table again.
1335   if( dead->is_Con() ) return;
1336 
1337   // Can't put ResourceMark here since igvn->_worklist uses the same arena
1338   // for verify pass with +VerifyOpto and we add/remove elements in it here.
1339   Node_List  nstack(Thread::current()->resource_area());
1340 
1341   Node *top = igvn->C->top();
1342   nstack.push(dead);
1343   bool has_irreducible_loop = igvn->C->has_irreducible_loop();
1344 
1345   while (nstack.size() > 0) {
1346     dead = nstack.pop();
1347     if (dead->Opcode() == Op_SafePoint) {
1348       dead->as_SafePoint()->disconnect_from_root(igvn);
1349     }
1350     if (dead->outcnt() > 0) {
1351       // Keep dead node on stack until all uses are processed.
1352       nstack.push(dead);
1353       // For all Users of the Dead...    ;-)
1354       for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
1355         Node* use = dead->last_out(k);
1356         igvn->hash_delete(use);       // Yank from hash table prior to mod
1357         if (use->in(0) == dead) {     // Found another dead node
1358           assert (!use->is_Con(), "Control for Con node should be Root node.");
1359           use->set_req(0, top);       // Cut dead edge to prevent processing
1360           nstack.push(use);           // the dead node again.
1361         } else if (!has_irreducible_loop && // Backedge could be alive in irreducible loop
1362                    use->is_Loop() && !use->is_Root() &&       // Don't kill Root (RootNode extends LoopNode)
1363                    use->in(LoopNode::EntryControl) == dead) { // Dead loop if its entry is dead
1364           use->set_req(LoopNode::EntryControl, top);          // Cut dead edge to prevent processing
1365           use->set_req(0, top);       // Cut self edge
1366           nstack.push(use);
1367         } else {                      // Else found a not-dead user
1368           // Dead if all inputs are top or null
1369           bool dead_use = !use->is_Root(); // Keep empty graph alive
1370           for (uint j = 1; j < use->req(); j++) {
1371             Node* in = use->in(j);
1372             if (in == dead) {         // Turn all dead inputs into TOP
1373               use->set_req(j, top);
1374             } else if (in != NULL && !in->is_top()) {
1375               dead_use = false;
1376             }
1377           }
1378           if (dead_use) {
1379             if (use->is_Region()) {
1380               use->set_req(0, top);   // Cut self edge
1381             }
1382             nstack.push(use);
1383           } else {
1384             igvn->_worklist.push(use);
1385           }
1386         }
1387         // Refresh the iterator, since any number of kills might have happened.
1388         k = dead->last_outs(kmin);
1389       }
1390     } else { // (dead->outcnt() == 0)
1391       // Done with outputs.
1392       igvn->hash_delete(dead);
1393       igvn->_worklist.remove(dead);
1394       igvn->set_type(dead, Type::TOP);
1395       if (dead->is_macro()) {
1396         igvn->C->remove_macro_node(dead);
1397       }
1398       if (dead->is_expensive()) {
1399         igvn->C->remove_expensive_node(dead);
1400       }
1401       if (dead->Opcode() == Op_ShenandoahLoadReferenceBarrier) {
1402         igvn->C->remove_shenandoah_barrier(reinterpret_cast<ShenandoahLoadReferenceBarrierNode*>(dead));
1403       }
1404       CastIINode* cast = dead->isa_CastII();
1405       if (cast != NULL && cast->has_range_check()) {
1406         igvn->C->remove_range_check_cast(cast);
1407       }
1408       igvn->C->record_dead_node(dead->_idx);
1409       // Kill all inputs to the dead guy
1410       for (uint i=0; i < dead->req(); i++) {
1411         Node *n = dead->in(i);      // Get input to dead guy
1412         if (n != NULL && !n->is_top()) { // Input is valid?
1413           dead->set_req(i, top);    // Smash input away
1414           if (n->outcnt() == 0) {   // Input also goes dead?
1415             if (!n->is_Con())
1416               nstack.push(n);       // Clear it out as well
1417           } else if (n->outcnt() == 1 &&
1418                      n->has_special_unique_user()) {
1419             igvn->add_users_to_worklist( n );
1420           } else if (n->outcnt() <= 2 && n->is_Store()) {
1421             // Push store's uses on worklist to enable folding optimization for
1422             // store/store and store/load to the same address.
1423             // The restriction (outcnt() <= 2) is the same as in set_req_X()
1424             // and remove_globally_dead_node().
1425             igvn->add_users_to_worklist( n );
1426           } else if (n->Opcode() == Op_AddP && CallLeafNode::has_only_g1_wb_pre_uses(n)) {
1427             igvn->add_users_to_worklist(n);
1428           }
1429         }
1430       }
1431     } // (dead->outcnt() == 0)
1432   }   // while (nstack.size() > 0) for outputs
1433   return;
1434 }
1435 
1436 //------------------------------remove_dead_region-----------------------------
1437 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
1438   Node *n = in(0);
1439   if( !n ) return false;
1440   // Lost control into this guy?  I.e., it became unreachable?
1441   // Aggressively kill all unreachable code.
1442   if (can_reshape && n->is_top()) {
1443     kill_dead_code(this, phase->is_IterGVN());
1444     return false; // Node is dead.
1445   }
1446 
1447   if( n->is_Region() && n->as_Region()->is_copy() ) {
1448     Node *m = n->nonnull_req();
1449     set_req(0, m);
1450     return true;
1451   }
1452   return false;
1453 }
1454 
1455 //------------------------------hash-------------------------------------------
1456 // Hash function over Nodes.
1457 uint Node::hash() const {
1458   uint sum = 0;
1459   for( uint i=0; i<_cnt; i++ )  // Add in all inputs
1460     sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
1461   return (sum>>2) + _cnt + Opcode();
1462 }
1463 
1464 //------------------------------cmp--------------------------------------------
1465 // Compare special parts of simple Nodes
1466 uint Node::cmp( const Node &n ) const {
1467   return 1;                     // Must be same
1468 }
1469 
1470 //------------------------------rematerialize-----------------------------------
1471 // Should we clone rather than spill this instruction?
1472 bool Node::rematerialize() const {
1473   if ( is_Mach() )
1474     return this->as_Mach()->rematerialize();
1475   else
1476     return (_flags & Flag_rematerialize) != 0;
1477 }
1478 
1479 //------------------------------needs_anti_dependence_check---------------------
1480 // Nodes which use memory without consuming it, hence need antidependences.
1481 bool Node::needs_anti_dependence_check() const {
1482   if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
1483     return false;
1484   else
1485     return in(1)->bottom_type()->has_memory();
1486 }
1487 
1488 
1489 // Get an integer constant from a ConNode (or CastIINode).
1490 // Return a default value if there is no apparent constant here.
1491 const TypeInt* Node::find_int_type() const {
1492   if (this->is_Type()) {
1493     return this->as_Type()->type()->isa_int();
1494   } else if (this->is_Con()) {
1495     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1496     return this->bottom_type()->isa_int();
1497   }
1498   return NULL;
1499 }
1500 
1501 // Get a pointer constant from a ConstNode.
1502 // Returns the constant if it is a pointer ConstNode
1503 intptr_t Node::get_ptr() const {
1504   assert( Opcode() == Op_ConP, "" );
1505   return ((ConPNode*)this)->type()->is_ptr()->get_con();
1506 }
1507 
1508 // Get a narrow oop constant from a ConNNode.
1509 intptr_t Node::get_narrowcon() const {
1510   assert( Opcode() == Op_ConN, "" );
1511   return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
1512 }
1513 
1514 // Get a long constant from a ConNode.
1515 // Return a default value if there is no apparent constant here.
1516 const TypeLong* Node::find_long_type() const {
1517   if (this->is_Type()) {
1518     return this->as_Type()->type()->isa_long();
1519   } else if (this->is_Con()) {
1520     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1521     return this->bottom_type()->isa_long();
1522   }
1523   return NULL;
1524 }
1525 
1526 
1527 /**
1528  * Return a ptr type for nodes which should have it.
1529  */
1530 const TypePtr* Node::get_ptr_type() const {
1531   const TypePtr* tp = this->bottom_type()->make_ptr();
1532 #ifdef ASSERT
1533   if (tp == NULL) {
1534     this->dump(1);
1535     assert((tp != NULL), "unexpected node type");
1536   }
1537 #endif
1538   return tp;
1539 }
1540 
1541 // Get a double constant from a ConstNode.
1542 // Returns the constant if it is a double ConstNode
1543 jdouble Node::getd() const {
1544   assert( Opcode() == Op_ConD, "" );
1545   return ((ConDNode*)this)->type()->is_double_constant()->getd();
1546 }
1547 
1548 // Get a float constant from a ConstNode.
1549 // Returns the constant if it is a float ConstNode
1550 jfloat Node::getf() const {
1551   assert( Opcode() == Op_ConF, "" );
1552   return ((ConFNode*)this)->type()->is_float_constant()->getf();
1553 }
1554 
1555 #ifndef PRODUCT
1556 
1557 //----------------------------NotANode----------------------------------------
1558 // Used in debugging code to avoid walking across dead or uninitialized edges.
1559 static inline bool NotANode(const Node* n) {
1560   if (n == NULL)                   return true;
1561   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
1562   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
1563   return false;
1564 }
1565 
1566 
1567 //------------------------------find------------------------------------------
1568 // Find a neighbor of this Node with the given _idx
1569 // If idx is negative, find its absolute value, following both _in and _out.
1570 static void find_recur(Compile* C,  Node* &result, Node *n, int idx, bool only_ctrl,
1571                         VectorSet* old_space, VectorSet* new_space ) {
1572   int node_idx = (idx >= 0) ? idx : -idx;
1573   if (NotANode(n))  return;  // Gracefully handle NULL, -1, 0xabababab, etc.
1574   // Contained in new_space or old_space?   Check old_arena first since it's mostly empty.
1575   VectorSet *v = C->old_arena()->contains(n) ? old_space : new_space;
1576   if( v->test(n->_idx) ) return;
1577   if( (int)n->_idx == node_idx
1578       debug_only(|| n->debug_idx() == node_idx) ) {
1579     if (result != NULL)
1580       tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
1581                  (uintptr_t)result, (uintptr_t)n, node_idx);
1582     result = n;
1583   }
1584   v->set(n->_idx);
1585   for( uint i=0; i<n->len(); i++ ) {
1586     if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
1587     find_recur(C, result, n->in(i), idx, only_ctrl, old_space, new_space );
1588   }
1589   // Search along forward edges also:
1590   if (idx < 0 && !only_ctrl) {
1591     for( uint j=0; j<n->outcnt(); j++ ) {
1592       find_recur(C, result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
1593     }
1594   }
1595 #ifdef ASSERT
1596   // Search along debug_orig edges last, checking for cycles
1597   Node* orig = n->debug_orig();
1598   if (orig != NULL) {
1599     do {
1600       if (NotANode(orig))  break;
1601       find_recur(C, result, orig, idx, only_ctrl, old_space, new_space );
1602       orig = orig->debug_orig();
1603     } while (orig != NULL && orig != n->debug_orig());
1604   }
1605 #endif //ASSERT
1606 }
1607 
1608 // call this from debugger:
1609 Node* find_node(Node* n, int idx) {
1610   return n->find(idx);
1611 }
1612 
1613 //------------------------------find-------------------------------------------
1614 Node* Node::find(int idx) const {
1615   ResourceArea *area = Thread::current()->resource_area();
1616   VectorSet old_space(area), new_space(area);
1617   Node* result = NULL;
1618   find_recur(Compile::current(), result, (Node*) this, idx, false, &old_space, &new_space );
1619   return result;
1620 }
1621 
1622 //------------------------------find_ctrl--------------------------------------
1623 // Find an ancestor to this node in the control history with given _idx
1624 Node* Node::find_ctrl(int idx) const {
1625   ResourceArea *area = Thread::current()->resource_area();
1626   VectorSet old_space(area), new_space(area);
1627   Node* result = NULL;
1628   find_recur(Compile::current(), result, (Node*) this, idx, true, &old_space, &new_space );
1629   return result;
1630 }
1631 #endif
1632 
1633 
1634 
1635 #ifndef PRODUCT
1636 
1637 // -----------------------------Name-------------------------------------------
1638 extern const char *NodeClassNames[];
1639 const char *Node::Name() const { return NodeClassNames[Opcode()]; }
1640 
1641 static bool is_disconnected(const Node* n) {
1642   for (uint i = 0; i < n->req(); i++) {
1643     if (n->in(i) != NULL)  return false;
1644   }
1645   return true;
1646 }
1647 
1648 #ifdef ASSERT
1649 static void dump_orig(Node* orig, outputStream *st) {
1650   Compile* C = Compile::current();
1651   if (NotANode(orig)) orig = NULL;
1652   if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1653   if (orig == NULL) return;
1654   st->print(" !orig=");
1655   Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
1656   if (NotANode(fast)) fast = NULL;
1657   while (orig != NULL) {
1658     bool discon = is_disconnected(orig);  // if discon, print [123] else 123
1659     if (discon) st->print("[");
1660     if (!Compile::current()->node_arena()->contains(orig))
1661       st->print("o");
1662     st->print("%d", orig->_idx);
1663     if (discon) st->print("]");
1664     orig = orig->debug_orig();
1665     if (NotANode(orig)) orig = NULL;
1666     if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1667     if (orig != NULL) st->print(",");
1668     if (fast != NULL) {
1669       // Step fast twice for each single step of orig:
1670       fast = fast->debug_orig();
1671       if (NotANode(fast)) fast = NULL;
1672       if (fast != NULL && fast != orig) {
1673         fast = fast->debug_orig();
1674         if (NotANode(fast)) fast = NULL;
1675       }
1676       if (fast == orig) {
1677         st->print("...");
1678         break;
1679       }
1680     }
1681   }
1682 }
1683 
1684 void Node::set_debug_orig(Node* orig) {
1685   _debug_orig = orig;
1686   if (BreakAtNode == 0)  return;
1687   if (NotANode(orig))  orig = NULL;
1688   int trip = 10;
1689   while (orig != NULL) {
1690     if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
1691       tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
1692                     this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
1693       BREAKPOINT;
1694     }
1695     orig = orig->debug_orig();
1696     if (NotANode(orig))  orig = NULL;
1697     if (trip-- <= 0)  break;
1698   }
1699 }
1700 #endif //ASSERT
1701 
1702 //------------------------------dump------------------------------------------
1703 // Dump a Node
1704 void Node::dump(const char* suffix, outputStream *st) const {
1705   Compile* C = Compile::current();
1706   bool is_new = C->node_arena()->contains(this);
1707   C->_in_dump_cnt++;
1708   st->print("%c%d\t%s\t=== ", is_new ? ' ' : 'o', _idx, Name());
1709 
1710   // Dump the required and precedence inputs
1711   dump_req(st);
1712   dump_prec(st);
1713   // Dump the outputs
1714   dump_out(st);
1715 
1716   if (is_disconnected(this)) {
1717 #ifdef ASSERT
1718     st->print("  [%d]",debug_idx());
1719     dump_orig(debug_orig(), st);
1720 #endif
1721     st->cr();
1722     C->_in_dump_cnt--;
1723     return;                     // don't process dead nodes
1724   }
1725 
1726   // Dump node-specific info
1727   dump_spec(st);
1728 #ifdef ASSERT
1729   // Dump the non-reset _debug_idx
1730   if (Verbose && WizardMode) {
1731     st->print("  [%d]",debug_idx());
1732   }
1733 #endif
1734 
1735   const Type *t = bottom_type();
1736 
1737   if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
1738     const TypeInstPtr  *toop = t->isa_instptr();
1739     const TypeKlassPtr *tkls = t->isa_klassptr();
1740     ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
1741     if (klass && klass->is_loaded() && klass->is_interface()) {
1742       st->print("  Interface:");
1743     } else if (toop) {
1744       st->print("  Oop:");
1745     } else if (tkls) {
1746       st->print("  Klass:");
1747     }
1748     t->dump_on(st);
1749   } else if (t == Type::MEMORY) {
1750     st->print("  Memory:");
1751     MemNode::dump_adr_type(this, adr_type(), st);
1752   } else if (Verbose || WizardMode) {
1753     st->print("  Type:");
1754     if (t) {
1755       t->dump_on(st);
1756     } else {
1757       st->print("no type");
1758     }
1759   } else if (t->isa_vect() && this->is_MachSpillCopy()) {
1760     // Dump MachSpillcopy vector type.
1761     t->dump_on(st);
1762   }
1763   if (is_new) {
1764     debug_only(dump_orig(debug_orig(), st));
1765     Node_Notes* nn = C->node_notes_at(_idx);
1766     if (nn != NULL && !nn->is_clear()) {
1767       if (nn->jvms() != NULL) {
1768         st->print(" !jvms:");
1769         nn->jvms()->dump_spec(st);
1770       }
1771     }
1772   }
1773   if (suffix) st->print("%s", suffix);
1774   C->_in_dump_cnt--;
1775 }
1776 
1777 //------------------------------dump_req--------------------------------------
1778 void Node::dump_req(outputStream *st) const {
1779   // Dump the required input edges
1780   for (uint i = 0; i < req(); i++) {    // For all required inputs
1781     Node* d = in(i);
1782     if (d == NULL) {
1783       st->print("_ ");
1784     } else if (NotANode(d)) {
1785       st->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
1786     } else {
1787       st->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
1788     }
1789   }
1790 }
1791 
1792 
1793 //------------------------------dump_prec-------------------------------------
1794 void Node::dump_prec(outputStream *st) const {
1795   // Dump the precedence edges
1796   int any_prec = 0;
1797   for (uint i = req(); i < len(); i++) {       // For all precedence inputs
1798     Node* p = in(i);
1799     if (p != NULL) {
1800       if (!any_prec++) st->print(" |");
1801       if (NotANode(p)) { st->print("NotANode "); continue; }
1802       st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
1803     }
1804   }
1805 }
1806 
1807 //------------------------------dump_out--------------------------------------
1808 void Node::dump_out(outputStream *st) const {
1809   // Delimit the output edges
1810   st->print(" [[");
1811   // Dump the output edges
1812   for (uint i = 0; i < _outcnt; i++) {    // For all outputs
1813     Node* u = _out[i];
1814     if (u == NULL) {
1815       st->print("_ ");
1816     } else if (NotANode(u)) {
1817       st->print("NotANode ");
1818     } else {
1819       st->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
1820     }
1821   }
1822   st->print("]] ");
1823 }
1824 
1825 //------------------------------dump_nodes-------------------------------------
1826 static void dump_nodes(const Node* start, int d, bool only_ctrl) {
1827   Node* s = (Node*)start; // remove const
1828   if (NotANode(s)) return;
1829 
1830   uint depth = (uint)ABS(d);
1831   int direction = d;
1832   Compile* C = Compile::current();
1833   GrowableArray <Node *> nstack(C->live_nodes());
1834 
1835   nstack.append(s);
1836   int begin = 0;
1837   int end = 0;
1838   for(uint i = 0; i < depth; i++) {
1839     end = nstack.length();
1840     for(int j = begin; j < end; j++) {
1841       Node* tp  = nstack.at(j);
1842       uint limit = direction > 0 ? tp->len() : tp->outcnt();
1843       for(uint k = 0; k < limit; k++) {
1844         Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
1845 
1846         if (NotANode(n))  continue;
1847         // do not recurse through top or the root (would reach unrelated stuff)
1848         if (n->is_Root() || n->is_top())  continue;
1849         if (only_ctrl && !n->is_CFG()) continue;
1850 
1851         bool on_stack = nstack.contains(n);
1852         if (!on_stack) {
1853           nstack.append(n);
1854         }
1855       }
1856     }
1857     begin = end;
1858   }
1859   end = nstack.length();
1860   if (direction > 0) {
1861     for(int j = end-1; j >= 0; j--) {
1862       nstack.at(j)->dump();
1863     }
1864   } else {
1865     for(int j = 0; j < end; j++) {
1866       nstack.at(j)->dump();
1867     }
1868   }
1869 }
1870 
1871 //------------------------------dump-------------------------------------------
1872 void Node::dump(int d) const {
1873   dump_nodes(this, d, false);
1874 }
1875 
1876 //------------------------------dump_ctrl--------------------------------------
1877 // Dump a Node's control history to depth
1878 void Node::dump_ctrl(int d) const {
1879   dump_nodes(this, d, true);
1880 }
1881 
1882 // VERIFICATION CODE
1883 // For each input edge to a node (ie - for each Use-Def edge), verify that
1884 // there is a corresponding Def-Use edge.
1885 //------------------------------verify_edges-----------------------------------
1886 void Node::verify_edges(Unique_Node_List &visited) {
1887   uint i, j, idx;
1888   int  cnt;
1889   Node *n;
1890 
1891   // Recursive termination test
1892   if (visited.member(this))  return;
1893   visited.push(this);
1894 
1895   // Walk over all input edges, checking for correspondence
1896   for( i = 0; i < len(); i++ ) {
1897     n = in(i);
1898     if (n != NULL && !n->is_top()) {
1899       // Count instances of (Node *)this
1900       cnt = 0;
1901       for (idx = 0; idx < n->_outcnt; idx++ ) {
1902         if (n->_out[idx] == (Node *)this)  cnt++;
1903       }
1904       assert( cnt > 0,"Failed to find Def-Use edge." );
1905       // Check for duplicate edges
1906       // walk the input array downcounting the input edges to n
1907       for( j = 0; j < len(); j++ ) {
1908         if( in(j) == n ) cnt--;
1909       }
1910       assert( cnt == 0,"Mismatched edge count.");
1911     } else if (n == NULL) {
1912       assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
1913     } else {
1914       assert(n->is_top(), "sanity");
1915       // Nothing to check.
1916     }
1917   }
1918   // Recursive walk over all input edges
1919   for( i = 0; i < len(); i++ ) {
1920     n = in(i);
1921     if( n != NULL )
1922       in(i)->verify_edges(visited);
1923   }
1924 }
1925 
1926 //------------------------------verify_recur-----------------------------------
1927 static const Node *unique_top = NULL;
1928 
1929 void Node::verify_recur(const Node *n, int verify_depth,
1930                         VectorSet &old_space, VectorSet &new_space) {
1931   if ( verify_depth == 0 )  return;
1932   if (verify_depth > 0)  --verify_depth;
1933 
1934   Compile* C = Compile::current();
1935 
1936   // Contained in new_space or old_space?
1937   VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
1938   // Check for visited in the proper space.  Numberings are not unique
1939   // across spaces so we need a separate VectorSet for each space.
1940   if( v->test_set(n->_idx) ) return;
1941 
1942   if (n->is_Con() && n->bottom_type() == Type::TOP) {
1943     if (C->cached_top_node() == NULL)
1944       C->set_cached_top_node((Node*)n);
1945     assert(C->cached_top_node() == n, "TOP node must be unique");
1946   }
1947 
1948   for( uint i = 0; i < n->len(); i++ ) {
1949     Node *x = n->in(i);
1950     if (!x || x->is_top()) continue;
1951 
1952     // Verify my input has a def-use edge to me
1953     if (true /*VerifyDefUse*/) {
1954       // Count use-def edges from n to x
1955       int cnt = 0;
1956       for( uint j = 0; j < n->len(); j++ )
1957         if( n->in(j) == x )
1958           cnt++;
1959       // Count def-use edges from x to n
1960       uint max = x->_outcnt;
1961       for( uint k = 0; k < max; k++ )
1962         if (x->_out[k] == n)
1963           cnt--;
1964       assert( cnt == 0, "mismatched def-use edge counts" );
1965     }
1966 
1967     verify_recur(x, verify_depth, old_space, new_space);
1968   }
1969 
1970 }
1971 
1972 //------------------------------verify-----------------------------------------
1973 // Check Def-Use info for my subgraph
1974 void Node::verify() const {
1975   Compile* C = Compile::current();
1976   Node* old_top = C->cached_top_node();
1977   ResourceMark rm;
1978   ResourceArea *area = Thread::current()->resource_area();
1979   VectorSet old_space(area), new_space(area);
1980   verify_recur(this, -1, old_space, new_space);
1981   C->set_cached_top_node(old_top);
1982 }
1983 #endif
1984 
1985 
1986 //------------------------------walk-------------------------------------------
1987 // Graph walk, with both pre-order and post-order functions
1988 void Node::walk(NFunc pre, NFunc post, void *env) {
1989   VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
1990   walk_(pre, post, env, visited);
1991 }
1992 
1993 void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
1994   if( visited.test_set(_idx) ) return;
1995   pre(*this,env);               // Call the pre-order walk function
1996   for( uint i=0; i<_max; i++ )
1997     if( in(i) )                 // Input exists and is not walked?
1998       in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
1999   post(*this,env);              // Call the post-order walk function
2000 }
2001 
2002 void Node::nop(Node &, void*) {}
2003 
2004 //------------------------------Registers--------------------------------------
2005 // Do we Match on this edge index or not?  Generally false for Control
2006 // and true for everything else.  Weird for calls & returns.
2007 uint Node::match_edge(uint idx) const {
2008   return idx;                   // True for other than index 0 (control)
2009 }
2010 
2011 static RegMask _not_used_at_all;
2012 // Register classes are defined for specific machines
2013 const RegMask &Node::out_RegMask() const {
2014   ShouldNotCallThis();
2015   return _not_used_at_all;
2016 }
2017 
2018 const RegMask &Node::in_RegMask(uint) const {
2019   ShouldNotCallThis();
2020   return _not_used_at_all;
2021 }
2022 
2023 //=============================================================================
2024 //-----------------------------------------------------------------------------
2025 void Node_Array::reset( Arena *new_arena ) {
2026   _a->Afree(_nodes,_max*sizeof(Node*));
2027   _max   = 0;
2028   _nodes = NULL;
2029   _a     = new_arena;
2030 }
2031 
2032 //------------------------------clear------------------------------------------
2033 // Clear all entries in _nodes to NULL but keep storage
2034 void Node_Array::clear() {
2035   Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
2036 }
2037 
2038 //-----------------------------------------------------------------------------
2039 void Node_Array::grow( uint i ) {
2040   if( !_max ) {
2041     _max = 1;
2042     _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
2043     _nodes[0] = NULL;
2044   }
2045   uint old = _max;
2046   while( i >= _max ) _max <<= 1;        // Double to fit
2047   _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
2048   Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
2049 }
2050 
2051 //-----------------------------------------------------------------------------
2052 void Node_Array::insert( uint i, Node *n ) {
2053   if( _nodes[_max-1] ) grow(_max);      // Get more space if full
2054   Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
2055   _nodes[i] = n;
2056 }
2057 
2058 //-----------------------------------------------------------------------------
2059 void Node_Array::remove( uint i ) {
2060   Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
2061   _nodes[_max-1] = NULL;
2062 }
2063 
2064 //-----------------------------------------------------------------------------
2065 void Node_Array::sort( C_sort_func_t func) {
2066   qsort( _nodes, _max, sizeof( Node* ), func );
2067 }
2068 
2069 //-----------------------------------------------------------------------------
2070 void Node_Array::dump() const {
2071 #ifndef PRODUCT
2072   for( uint i = 0; i < _max; i++ ) {
2073     Node *nn = _nodes[i];
2074     if( nn != NULL ) {
2075       tty->print("%5d--> ",i); nn->dump();
2076     }
2077   }
2078 #endif
2079 }
2080 
2081 //--------------------------is_iteratively_computed------------------------------
2082 // Operation appears to be iteratively computed (such as an induction variable)
2083 // It is possible for this operation to return false for a loop-varying
2084 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
2085 bool Node::is_iteratively_computed() {
2086   if (ideal_reg()) { // does operation have a result register?
2087     for (uint i = 1; i < req(); i++) {
2088       Node* n = in(i);
2089       if (n != NULL && n->is_Phi()) {
2090         for (uint j = 1; j < n->req(); j++) {
2091           if (n->in(j) == this) {
2092             return true;
2093           }
2094         }
2095       }
2096     }
2097   }
2098   return false;
2099 }
2100 
2101 //--------------------------find_similar------------------------------
2102 // Return a node with opcode "opc" and same inputs as "this" if one can
2103 // be found; Otherwise return NULL;
2104 Node* Node::find_similar(int opc) {
2105   if (req() >= 2) {
2106     Node* def = in(1);
2107     if (def && def->outcnt() >= 2) {
2108       for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
2109         Node* use = def->fast_out(i);
2110         if (use->Opcode() == opc &&
2111             use->req() == req()) {
2112           uint j;
2113           for (j = 0; j < use->req(); j++) {
2114             if (use->in(j) != in(j)) {
2115               break;
2116             }
2117           }
2118           if (j == use->req()) {
2119             return use;
2120           }
2121         }
2122       }
2123     }
2124   }
2125   return NULL;
2126 }
2127 
2128 
2129 //--------------------------unique_ctrl_out------------------------------
2130 // Return the unique control out if only one. Null if none or more than one.
2131 Node* Node::unique_ctrl_out() {
2132   Node* found = NULL;
2133   for (uint i = 0; i < outcnt(); i++) {
2134     Node* use = raw_out(i);
2135     if (use->is_CFG() && use != this) {
2136       if (found != NULL) return NULL;
2137       found = use;
2138     }
2139   }
2140   return found;
2141 }
2142 
2143 void Node::ensure_control_or_add_prec(Node* c) {
2144   if (in(0) == NULL) {
2145     set_req(0, c);
2146   } else if (in(0) != c) {
2147     add_prec(c);
2148   }
2149 }
2150 
2151 //=============================================================================
2152 //------------------------------yank-------------------------------------------
2153 // Find and remove
2154 void Node_List::yank( Node *n ) {
2155   uint i;
2156   for( i = 0; i < _cnt; i++ )
2157     if( _nodes[i] == n )
2158       break;
2159 
2160   if( i < _cnt )
2161     _nodes[i] = _nodes[--_cnt];
2162 }
2163 
2164 //------------------------------dump-------------------------------------------
2165 void Node_List::dump() const {
2166 #ifndef PRODUCT
2167   for( uint i = 0; i < _cnt; i++ )
2168     if( _nodes[i] ) {
2169       tty->print("%5d--> ",i);
2170       _nodes[i]->dump();
2171     }
2172 #endif
2173 }
2174 
2175 void Node_List::dump_simple() const {
2176 #ifndef PRODUCT
2177   for( uint i = 0; i < _cnt; i++ )
2178     if( _nodes[i] ) {
2179       tty->print(" %d", _nodes[i]->_idx);
2180     } else {
2181       tty->print(" NULL");
2182     }
2183 #endif
2184 }
2185 
2186 //=============================================================================
2187 //------------------------------remove-----------------------------------------
2188 void Unique_Node_List::remove( Node *n ) {
2189   if( _in_worklist[n->_idx] ) {
2190     for( uint i = 0; i < size(); i++ )
2191       if( _nodes[i] == n ) {
2192         map(i,Node_List::pop());
2193         _in_worklist >>= n->_idx;
2194         return;
2195       }
2196     ShouldNotReachHere();
2197   }
2198 }
2199 
2200 //-----------------------remove_useless_nodes----------------------------------
2201 // Remove useless nodes from worklist
2202 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
2203 
2204   for( uint i = 0; i < size(); ++i ) {
2205     Node *n = at(i);
2206     assert( n != NULL, "Did not expect null entries in worklist");
2207     if( ! useful.test(n->_idx) ) {
2208       _in_worklist >>= n->_idx;
2209       map(i,Node_List::pop());
2210       // Node *replacement = Node_List::pop();
2211       // if( i != size() ) { // Check if removing last entry
2212       //   _nodes[i] = replacement;
2213       // }
2214       --i;  // Visit popped node
2215       // If it was last entry, loop terminates since size() was also reduced
2216     }
2217   }
2218 }
2219 
2220 //=============================================================================
2221 void Node_Stack::grow() {
2222   size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
2223   size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
2224   size_t max = old_max << 1;             // max * 2
2225   _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
2226   _inode_max = _inodes + max;
2227   _inode_top = _inodes + old_top;        // restore _top
2228 }
2229 
2230 // Node_Stack is used to map nodes.
2231 Node* Node_Stack::find(uint idx) const {
2232   uint sz = size();
2233   for (uint i=0; i < sz; i++) {
2234     if (idx == index_at(i) )
2235       return node_at(i);
2236   }
2237   return NULL;
2238 }
2239 
2240 //=============================================================================
2241 uint TypeNode::size_of() const { return sizeof(*this); }
2242 #ifndef PRODUCT
2243 void TypeNode::dump_spec(outputStream *st) const {
2244   if( !Verbose && !WizardMode ) {
2245     // standard dump does this in Verbose and WizardMode
2246     st->print(" #"); _type->dump_on(st);
2247   }
2248 }
2249 #endif
2250 uint TypeNode::hash() const {
2251   return Node::hash() + _type->hash();
2252 }
2253 uint TypeNode::cmp( const Node &n ) const
2254 { return !Type::cmp( _type, ((TypeNode&)n)._type ); }
2255 const Type *TypeNode::bottom_type() const { return _type; }
2256 const Type *TypeNode::Value( PhaseTransform * ) const { return _type; }
2257 
2258 //------------------------------ideal_reg--------------------------------------
2259 uint TypeNode::ideal_reg() const {
2260   return _type->ideal_reg();
2261 }