1 /* 2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_VM_OPTO_NODE_HPP 26 #define SHARE_VM_OPTO_NODE_HPP 27 28 #include "libadt/port.hpp" 29 #include "libadt/vectset.hpp" 30 #include "opto/compile.hpp" 31 #include "opto/type.hpp" 32 33 // Portions of code courtesy of Clifford Click 34 35 // Optimization - Graph Style 36 37 38 class AbstractLockNode; 39 class AddNode; 40 class AddPNode; 41 class AliasInfo; 42 class AllocateArrayNode; 43 class AllocateNode; 44 class Block; 45 class BoolNode; 46 class BoxLockNode; 47 class CMoveNode; 48 class CallDynamicJavaNode; 49 class CallJavaNode; 50 class CallLeafNode; 51 class CallNode; 52 class CallRuntimeNode; 53 class CallStaticJavaNode; 54 class CatchNode; 55 class CatchProjNode; 56 class CheckCastPPNode; 57 class CastIINode; 58 class ClearArrayNode; 59 class CmpNode; 60 class CodeBuffer; 61 class ConstraintCastNode; 62 class ConNode; 63 class CountedLoopNode; 64 class CountedLoopEndNode; 65 class DecodeNarrowPtrNode; 66 class DecodeNNode; 67 class DecodeNKlassNode; 68 class EncodeNarrowPtrNode; 69 class EncodePNode; 70 class EncodePKlassNode; 71 class FastLockNode; 72 class FastUnlockNode; 73 class IfNode; 74 class IfProjNode; 75 class IfFalseNode; 76 class IfTrueNode; 77 class InitializeNode; 78 class JVMState; 79 class JumpNode; 80 class JumpProjNode; 81 class LoadNode; 82 class LoadStoreNode; 83 class LockNode; 84 class LoopNode; 85 class MachBranchNode; 86 class MachCallDynamicJavaNode; 87 class MachCallJavaNode; 88 class MachCallLeafNode; 89 class MachCallNode; 90 class MachCallRuntimeNode; 91 class MachCallStaticJavaNode; 92 class MachConstantBaseNode; 93 class MachConstantNode; 94 class MachGotoNode; 95 class MachIfNode; 96 class MachNode; 97 class MachNullCheckNode; 98 class MachProjNode; 99 class MachReturnNode; 100 class MachSafePointNode; 101 class MachSpillCopyNode; 102 class MachTempNode; 103 class MachMergeNode; 104 class MachMemBarNode; 105 class Matcher; 106 class MemBarNode; 107 class MemBarStoreStoreNode; 108 class MemNode; 109 class MergeMemNode; 110 class MulNode; 111 class MultiNode; 112 class MultiBranchNode; 113 class NeverBranchNode; 114 class Node; 115 class Node_Array; 116 class Node_List; 117 class Node_Stack; 118 class NullCheckNode; 119 class OopMap; 120 class ParmNode; 121 class PCTableNode; 122 class PhaseCCP; 123 class PhaseGVN; 124 class PhaseIterGVN; 125 class PhaseRegAlloc; 126 class PhaseTransform; 127 class PhaseValues; 128 class PhiNode; 129 class Pipeline; 130 class ProjNode; 131 class RegMask; 132 class RegionNode; 133 class RootNode; 134 class SafePointNode; 135 class SafePointScalarObjectNode; 136 class ShenandoahBarrierNode; 137 class StartNode; 138 class State; 139 class StoreNode; 140 class SubNode; 141 class Type; 142 class TypeNode; 143 class UnlockNode; 144 class VectorNode; 145 class LoadVectorNode; 146 class StoreVectorNode; 147 class VectorSet; 148 typedef void (*NFunc)(Node&,void*); 149 extern "C" { 150 typedef int (*C_sort_func_t)(const void *, const void *); 151 } 152 153 // The type of all node counts and indexes. 154 // It must hold at least 16 bits, but must also be fast to load and store. 155 // This type, if less than 32 bits, could limit the number of possible nodes. 156 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.) 157 typedef unsigned int node_idx_t; 158 159 160 #ifndef OPTO_DU_ITERATOR_ASSERT 161 #ifdef ASSERT 162 #define OPTO_DU_ITERATOR_ASSERT 1 163 #else 164 #define OPTO_DU_ITERATOR_ASSERT 0 165 #endif 166 #endif //OPTO_DU_ITERATOR_ASSERT 167 168 #if OPTO_DU_ITERATOR_ASSERT 169 class DUIterator; 170 class DUIterator_Fast; 171 class DUIterator_Last; 172 #else 173 typedef uint DUIterator; 174 typedef Node** DUIterator_Fast; 175 typedef Node** DUIterator_Last; 176 #endif 177 178 // Node Sentinel 179 #define NodeSentinel (Node*)-1 180 181 // Unknown count frequency 182 #define COUNT_UNKNOWN (-1.0f) 183 184 //------------------------------Node------------------------------------------- 185 // Nodes define actions in the program. They create values, which have types. 186 // They are both vertices in a directed graph and program primitives. Nodes 187 // are labeled; the label is the "opcode", the primitive function in the lambda 188 // calculus sense that gives meaning to the Node. Node inputs are ordered (so 189 // that "a-b" is different from "b-a"). The inputs to a Node are the inputs to 190 // the Node's function. These inputs also define a Type equation for the Node. 191 // Solving these Type equations amounts to doing dataflow analysis. 192 // Control and data are uniformly represented in the graph. Finally, Nodes 193 // have a unique dense integer index which is used to index into side arrays 194 // whenever I have phase-specific information. 195 196 class Node { 197 friend class VMStructs; 198 199 // Lots of restrictions on cloning Nodes 200 Node(const Node&); // not defined; linker error to use these 201 Node &operator=(const Node &rhs); 202 203 public: 204 friend class Compile; 205 #if OPTO_DU_ITERATOR_ASSERT 206 friend class DUIterator_Common; 207 friend class DUIterator; 208 friend class DUIterator_Fast; 209 friend class DUIterator_Last; 210 #endif 211 212 // Because Nodes come and go, I define an Arena of Node structures to pull 213 // from. This should allow fast access to node creation & deletion. This 214 // field is a local cache of a value defined in some "program fragment" for 215 // which these Nodes are just a part of. 216 217 // New Operator that takes a Compile pointer, this will eventually 218 // be the "new" New operator. 219 inline void* operator new( size_t x, Compile* C) throw() { 220 Node* n = (Node*)C->node_arena()->Amalloc_D(x); 221 #ifdef ASSERT 222 n->_in = (Node**)n; // magic cookie for assertion check 223 #endif 224 n->_out = (Node**)C; 225 return (void*)n; 226 } 227 228 // Delete is a NOP 229 void operator delete( void *ptr ) {} 230 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage 231 void destruct(); 232 233 // Create a new Node. Required is the number is of inputs required for 234 // semantic correctness. 235 Node( uint required ); 236 237 // Create a new Node with given input edges. 238 // This version requires use of the "edge-count" new. 239 // E.g. new (C,3) FooNode( C, NULL, left, right ); 240 Node( Node *n0 ); 241 Node( Node *n0, Node *n1 ); 242 Node( Node *n0, Node *n1, Node *n2 ); 243 Node( Node *n0, Node *n1, Node *n2, Node *n3 ); 244 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 ); 245 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 ); 246 Node( Node *n0, Node *n1, Node *n2, Node *n3, 247 Node *n4, Node *n5, Node *n6 ); 248 249 // Clone an inherited Node given only the base Node type. 250 Node* clone() const; 251 252 // Clone a Node, immediately supplying one or two new edges. 253 // The first and second arguments, if non-null, replace in(1) and in(2), 254 // respectively. 255 Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const { 256 Node* nn = clone(); 257 if (in1 != NULL) nn->set_req(1, in1); 258 if (in2 != NULL) nn->set_req(2, in2); 259 return nn; 260 } 261 262 private: 263 // Shared setup for the above constructors. 264 // Handles all interactions with Compile::current. 265 // Puts initial values in all Node fields except _idx. 266 // Returns the initial value for _idx, which cannot 267 // be initialized by assignment. 268 inline int Init(int req, Compile* C); 269 270 //----------------- input edge handling 271 protected: 272 friend class PhaseCFG; // Access to address of _in array elements 273 Node **_in; // Array of use-def references to Nodes 274 Node **_out; // Array of def-use references to Nodes 275 276 // Input edges are split into two categories. Required edges are required 277 // for semantic correctness; order is important and NULLs are allowed. 278 // Precedence edges are used to help determine execution order and are 279 // added, e.g., for scheduling purposes. They are unordered and not 280 // duplicated; they have no embedded NULLs. Edges from 0 to _cnt-1 281 // are required, from _cnt to _max-1 are precedence edges. 282 node_idx_t _cnt; // Total number of required Node inputs. 283 284 node_idx_t _max; // Actual length of input array. 285 286 // Output edges are an unordered list of def-use edges which exactly 287 // correspond to required input edges which point from other nodes 288 // to this one. Thus the count of the output edges is the number of 289 // users of this node. 290 node_idx_t _outcnt; // Total number of Node outputs. 291 292 node_idx_t _outmax; // Actual length of output array. 293 294 // Grow the actual input array to the next larger power-of-2 bigger than len. 295 void grow( uint len ); 296 // Grow the output array to the next larger power-of-2 bigger than len. 297 void out_grow( uint len ); 298 299 public: 300 // Each Node is assigned a unique small/dense number. This number is used 301 // to index into auxiliary arrays of data and bit vectors. 302 // The field _idx is declared constant to defend against inadvertent assignments, 303 // since it is used by clients as a naked field. However, the field's value can be 304 // changed using the set_idx() method. 305 // 306 // The PhaseRenumberLive phase renumbers nodes based on liveness information. 307 // Therefore, it updates the value of the _idx field. The parse-time _idx is 308 // preserved in _parse_idx. 309 const node_idx_t _idx; 310 DEBUG_ONLY(const node_idx_t _parse_idx;) 311 312 // Get the (read-only) number of input edges 313 uint req() const { return _cnt; } 314 uint len() const { return _max; } 315 // Get the (read-only) number of output edges 316 uint outcnt() const { return _outcnt; } 317 318 #if OPTO_DU_ITERATOR_ASSERT 319 // Iterate over the out-edges of this node. Deletions are illegal. 320 inline DUIterator outs() const; 321 // Use this when the out array might have changed to suppress asserts. 322 inline DUIterator& refresh_out_pos(DUIterator& i) const; 323 // Does the node have an out at this position? (Used for iteration.) 324 inline bool has_out(DUIterator& i) const; 325 inline Node* out(DUIterator& i) const; 326 // Iterate over the out-edges of this node. All changes are illegal. 327 inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const; 328 inline Node* fast_out(DUIterator_Fast& i) const; 329 // Iterate over the out-edges of this node, deleting one at a time. 330 inline DUIterator_Last last_outs(DUIterator_Last& min) const; 331 inline Node* last_out(DUIterator_Last& i) const; 332 // The inline bodies of all these methods are after the iterator definitions. 333 #else 334 // Iterate over the out-edges of this node. Deletions are illegal. 335 // This iteration uses integral indexes, to decouple from array reallocations. 336 DUIterator outs() const { return 0; } 337 // Use this when the out array might have changed to suppress asserts. 338 DUIterator refresh_out_pos(DUIterator i) const { return i; } 339 340 // Reference to the i'th output Node. Error if out of bounds. 341 Node* out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; } 342 // Does the node have an out at this position? (Used for iteration.) 343 bool has_out(DUIterator i) const { return i < _outcnt; } 344 345 // Iterate over the out-edges of this node. All changes are illegal. 346 // This iteration uses a pointer internal to the out array. 347 DUIterator_Fast fast_outs(DUIterator_Fast& max) const { 348 Node** out = _out; 349 // Assign a limit pointer to the reference argument: 350 max = out + (ptrdiff_t)_outcnt; 351 // Return the base pointer: 352 return out; 353 } 354 Node* fast_out(DUIterator_Fast i) const { return *i; } 355 // Iterate over the out-edges of this node, deleting one at a time. 356 // This iteration uses a pointer internal to the out array. 357 DUIterator_Last last_outs(DUIterator_Last& min) const { 358 Node** out = _out; 359 // Assign a limit pointer to the reference argument: 360 min = out; 361 // Return the pointer to the start of the iteration: 362 return out + (ptrdiff_t)_outcnt - 1; 363 } 364 Node* last_out(DUIterator_Last i) const { return *i; } 365 #endif 366 367 // Reference to the i'th input Node. Error if out of bounds. 368 Node* in(uint i) const { assert(i < _max, err_msg_res("oob: i=%d, _max=%d", i, _max)); return _in[i]; } 369 // Reference to the i'th input Node. NULL if out of bounds. 370 Node* lookup(uint i) const { return ((i < _max) ? _in[i] : NULL); } 371 // Reference to the i'th output Node. Error if out of bounds. 372 // Use this accessor sparingly. We are going trying to use iterators instead. 373 Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; } 374 // Return the unique out edge. 375 Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; } 376 // Delete out edge at position 'i' by moving last out edge to position 'i' 377 void raw_del_out(uint i) { 378 assert(i < _outcnt,"oob"); 379 assert(_outcnt > 0,"oob"); 380 #if OPTO_DU_ITERATOR_ASSERT 381 // Record that a change happened here. 382 debug_only(_last_del = _out[i]; ++_del_tick); 383 #endif 384 _out[i] = _out[--_outcnt]; 385 // Smash the old edge so it can't be used accidentally. 386 debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef); 387 } 388 389 #ifdef ASSERT 390 bool is_dead() const; 391 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead())) 392 #endif 393 // Check whether node has become unreachable 394 bool is_unreachable(PhaseIterGVN &igvn) const; 395 396 // Set a required input edge, also updates corresponding output edge 397 void add_req( Node *n ); // Append a NEW required input 398 void add_req( Node *n0, Node *n1 ) { 399 add_req(n0); add_req(n1); } 400 void add_req( Node *n0, Node *n1, Node *n2 ) { 401 add_req(n0); add_req(n1); add_req(n2); } 402 void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n). 403 void del_req( uint idx ); // Delete required edge & compact 404 void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order 405 void ins_req( uint i, Node *n ); // Insert a NEW required input 406 void set_req( uint i, Node *n ) { 407 assert( is_not_dead(n), "can not use dead node"); 408 assert( i < _cnt, err_msg_res("oob: i=%d, _cnt=%d", i, _cnt)); 409 assert( !VerifyHashTableKeys || _hash_lock == 0, 410 "remove node from hash table before modifying it"); 411 Node** p = &_in[i]; // cache this._in, across the del_out call 412 if (*p != NULL) (*p)->del_out((Node *)this); 413 (*p) = n; 414 if (n != NULL) n->add_out((Node *)this); 415 } 416 // Light version of set_req() to init inputs after node creation. 417 void init_req( uint i, Node *n ) { 418 assert( i == 0 && this == n || 419 is_not_dead(n), "can not use dead node"); 420 assert( i < _cnt, "oob"); 421 assert( !VerifyHashTableKeys || _hash_lock == 0, 422 "remove node from hash table before modifying it"); 423 assert( _in[i] == NULL, "sanity"); 424 _in[i] = n; 425 if (n != NULL) n->add_out((Node *)this); 426 } 427 // Find first occurrence of n among my edges: 428 int find_edge(Node* n); 429 int find_prec_edge(Node* n) { 430 for (uint i = req(); i < len(); i++) { 431 if (_in[i] == n) return i; 432 if (_in[i] == NULL) { 433 DEBUG_ONLY( while ((++i) < len()) assert(_in[i] == NULL, "Gap in prec edges!"); ) 434 break; 435 } 436 } 437 return -1; 438 } 439 int replace_edge(Node* old, Node* neww); 440 int replace_edges_in_range(Node* old, Node* neww, int start, int end); 441 // NULL out all inputs to eliminate incoming Def-Use edges. 442 // Return the number of edges between 'n' and 'this' 443 int disconnect_inputs(Node *n, Compile *c); 444 445 // Quickly, return true if and only if I am Compile::current()->top(). 446 bool is_top() const { 447 assert((this == (Node*) Compile::current()->top()) == (_out == NULL), ""); 448 return (_out == NULL); 449 } 450 // Reaffirm invariants for is_top. (Only from Compile::set_cached_top_node.) 451 void setup_is_top(); 452 453 // Strip away casting. (It is depth-limited.) 454 Node* uncast() const; 455 // Return whether two Nodes are equivalent, after stripping casting. 456 bool eqv_uncast(const Node* n) const { 457 return (this->uncast() == n->uncast()); 458 } 459 // Return true if the current node has an out that matches opcode. 460 bool has_out_with(int opcode); 461 462 // Find out of current node that matches opcode. 463 Node* find_out_with(int opcode); 464 465 private: 466 static Node* uncast_helper(const Node* n); 467 468 // Add an output edge to the end of the list 469 void add_out( Node *n ) { 470 if (is_top()) return; 471 if( _outcnt == _outmax ) out_grow(_outcnt); 472 _out[_outcnt++] = n; 473 } 474 // Delete an output edge 475 void del_out( Node *n ) { 476 if (is_top()) return; 477 Node** outp = &_out[_outcnt]; 478 // Find and remove n 479 do { 480 assert(outp > _out, "Missing Def-Use edge"); 481 } while (*--outp != n); 482 *outp = _out[--_outcnt]; 483 // Smash the old edge so it can't be used accidentally. 484 debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef); 485 // Record that a change happened here. 486 #if OPTO_DU_ITERATOR_ASSERT 487 debug_only(_last_del = n; ++_del_tick); 488 #endif 489 } 490 // Close gap after removing edge. 491 void close_prec_gap_at(uint gap) { 492 assert(_cnt <= gap && gap < _max, "no valid prec edge"); 493 uint i = gap; 494 Node *last = NULL; 495 for (; i < _max-1; ++i) { 496 Node *next = _in[i+1]; 497 if (next == NULL) break; 498 last = next; 499 } 500 _in[gap] = last; // Move last slot to empty one. 501 _in[i] = NULL; // NULL out last slot. 502 } 503 504 public: 505 // Globally replace this node by a given new node, updating all uses. 506 void replace_by(Node* new_node); 507 // Globally replace this node by a given new node, updating all uses 508 // and cutting input edges of old node. 509 void subsume_by(Node* new_node, Compile* c) { 510 replace_by(new_node); 511 disconnect_inputs(NULL, c); 512 } 513 void set_req_X( uint i, Node *n, PhaseIterGVN *igvn ); 514 // Find the one non-null required input. RegionNode only 515 Node *nonnull_req() const; 516 // Add or remove precedence edges 517 void add_prec( Node *n ); 518 void rm_prec( uint i ); 519 520 // Note: prec(i) will not necessarily point to n if edge already exists. 521 void set_prec( uint i, Node *n ) { 522 assert(i < _max, err_msg("oob: i=%d, _max=%d", i, _max)); 523 assert(is_not_dead(n), "can not use dead node"); 524 assert(i >= _cnt, "not a precedence edge"); 525 // Avoid spec violation: duplicated prec edge. 526 if (_in[i] == n) return; 527 if (n == NULL || find_prec_edge(n) != -1) { 528 rm_prec(i); 529 return; 530 } 531 if (_in[i] != NULL) _in[i]->del_out((Node *)this); 532 _in[i] = n; 533 if (n != NULL) n->add_out((Node *)this); 534 } 535 536 // Set this node's index, used by cisc_version to replace current node 537 void set_idx(uint new_idx) { 538 const node_idx_t* ref = &_idx; 539 *(node_idx_t*)ref = new_idx; 540 } 541 // Swap input edge order. (Edge indexes i1 and i2 are usually 1 and 2.) 542 void swap_edges(uint i1, uint i2) { 543 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH); 544 // Def-Use info is unchanged 545 Node* n1 = in(i1); 546 Node* n2 = in(i2); 547 _in[i1] = n2; 548 _in[i2] = n1; 549 // If this node is in the hash table, make sure it doesn't need a rehash. 550 assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code"); 551 } 552 553 // Iterators over input Nodes for a Node X are written as: 554 // for( i = 0; i < X.req(); i++ ) ... X[i] ... 555 // NOTE: Required edges can contain embedded NULL pointers. 556 557 //----------------- Other Node Properties 558 559 // Generate class id for some ideal nodes to avoid virtual query 560 // methods is_<Node>(). 561 // Class id is the set of bits corresponded to the node class and all its 562 // super classes so that queries for super classes are also valid. 563 // Subclasses of the same super class have different assigned bit 564 // (the third parameter in the macro DEFINE_CLASS_ID). 565 // Classes with deeper hierarchy are declared first. 566 // Classes with the same hierarchy depth are sorted by usage frequency. 567 // 568 // The query method masks the bits to cut off bits of subclasses 569 // and then compare the result with the class id 570 // (see the macro DEFINE_CLASS_QUERY below). 571 // 572 // Class_MachCall=30, ClassMask_MachCall=31 573 // 12 8 4 0 574 // 0 0 0 0 0 0 0 0 1 1 1 1 0 575 // | | | | 576 // | | | Bit_Mach=2 577 // | | Bit_MachReturn=4 578 // | Bit_MachSafePoint=8 579 // Bit_MachCall=16 580 // 581 // Class_CountedLoop=56, ClassMask_CountedLoop=63 582 // 12 8 4 0 583 // 0 0 0 0 0 0 0 1 1 1 0 0 0 584 // | | | 585 // | | Bit_Region=8 586 // | Bit_Loop=16 587 // Bit_CountedLoop=32 588 589 #define DEFINE_CLASS_ID(cl, supcl, subn) \ 590 Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \ 591 Class_##cl = Class_##supcl + Bit_##cl , \ 592 ClassMask_##cl = ((Bit_##cl << 1) - 1) , 593 594 // This enum is used only for C2 ideal and mach nodes with is_<node>() methods 595 // so that it's values fits into 16 bits. 596 enum NodeClasses { 597 Bit_Node = 0x0000, 598 Class_Node = 0x0000, 599 ClassMask_Node = 0xFFFF, 600 601 DEFINE_CLASS_ID(Multi, Node, 0) 602 DEFINE_CLASS_ID(SafePoint, Multi, 0) 603 DEFINE_CLASS_ID(Call, SafePoint, 0) 604 DEFINE_CLASS_ID(CallJava, Call, 0) 605 DEFINE_CLASS_ID(CallStaticJava, CallJava, 0) 606 DEFINE_CLASS_ID(CallDynamicJava, CallJava, 1) 607 DEFINE_CLASS_ID(CallRuntime, Call, 1) 608 DEFINE_CLASS_ID(CallLeaf, CallRuntime, 0) 609 DEFINE_CLASS_ID(Allocate, Call, 2) 610 DEFINE_CLASS_ID(AllocateArray, Allocate, 0) 611 DEFINE_CLASS_ID(AbstractLock, Call, 3) 612 DEFINE_CLASS_ID(Lock, AbstractLock, 0) 613 DEFINE_CLASS_ID(Unlock, AbstractLock, 1) 614 DEFINE_CLASS_ID(MultiBranch, Multi, 1) 615 DEFINE_CLASS_ID(PCTable, MultiBranch, 0) 616 DEFINE_CLASS_ID(Catch, PCTable, 0) 617 DEFINE_CLASS_ID(Jump, PCTable, 1) 618 DEFINE_CLASS_ID(If, MultiBranch, 1) 619 DEFINE_CLASS_ID(CountedLoopEnd, If, 0) 620 DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2) 621 DEFINE_CLASS_ID(Start, Multi, 2) 622 DEFINE_CLASS_ID(MemBar, Multi, 3) 623 DEFINE_CLASS_ID(Initialize, MemBar, 0) 624 DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1) 625 626 DEFINE_CLASS_ID(Mach, Node, 1) 627 DEFINE_CLASS_ID(MachReturn, Mach, 0) 628 DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0) 629 DEFINE_CLASS_ID(MachCall, MachSafePoint, 0) 630 DEFINE_CLASS_ID(MachCallJava, MachCall, 0) 631 DEFINE_CLASS_ID(MachCallStaticJava, MachCallJava, 0) 632 DEFINE_CLASS_ID(MachCallDynamicJava, MachCallJava, 1) 633 DEFINE_CLASS_ID(MachCallRuntime, MachCall, 1) 634 DEFINE_CLASS_ID(MachCallLeaf, MachCallRuntime, 0) 635 DEFINE_CLASS_ID(MachBranch, Mach, 1) 636 DEFINE_CLASS_ID(MachIf, MachBranch, 0) 637 DEFINE_CLASS_ID(MachGoto, MachBranch, 1) 638 DEFINE_CLASS_ID(MachNullCheck, MachBranch, 2) 639 DEFINE_CLASS_ID(MachSpillCopy, Mach, 2) 640 DEFINE_CLASS_ID(MachTemp, Mach, 3) 641 DEFINE_CLASS_ID(MachConstantBase, Mach, 4) 642 DEFINE_CLASS_ID(MachConstant, Mach, 5) 643 DEFINE_CLASS_ID(MachMerge, Mach, 6) 644 DEFINE_CLASS_ID(MachMemBar, Mach, 7) 645 646 DEFINE_CLASS_ID(Type, Node, 2) 647 DEFINE_CLASS_ID(Phi, Type, 0) 648 DEFINE_CLASS_ID(ConstraintCast, Type, 1) 649 DEFINE_CLASS_ID(CastII, ConstraintCast, 0) 650 DEFINE_CLASS_ID(CheckCastPP, Type, 2) 651 DEFINE_CLASS_ID(CMove, Type, 3) 652 DEFINE_CLASS_ID(SafePointScalarObject, Type, 4) 653 DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5) 654 DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0) 655 DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1) 656 DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6) 657 DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0) 658 DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1) 659 DEFINE_CLASS_ID(ShenandoahBarrier, Type, 7) 660 661 DEFINE_CLASS_ID(Proj, Node, 3) 662 DEFINE_CLASS_ID(CatchProj, Proj, 0) 663 DEFINE_CLASS_ID(JumpProj, Proj, 1) 664 DEFINE_CLASS_ID(IfProj, Proj, 2) 665 DEFINE_CLASS_ID(IfTrue, IfProj, 0) 666 DEFINE_CLASS_ID(IfFalse, IfProj, 1) 667 DEFINE_CLASS_ID(Parm, Proj, 4) 668 DEFINE_CLASS_ID(MachProj, Proj, 5) 669 670 DEFINE_CLASS_ID(Mem, Node, 4) 671 DEFINE_CLASS_ID(Load, Mem, 0) 672 DEFINE_CLASS_ID(LoadVector, Load, 0) 673 DEFINE_CLASS_ID(Store, Mem, 1) 674 DEFINE_CLASS_ID(StoreVector, Store, 0) 675 DEFINE_CLASS_ID(LoadStore, Mem, 2) 676 677 DEFINE_CLASS_ID(Region, Node, 5) 678 DEFINE_CLASS_ID(Loop, Region, 0) 679 DEFINE_CLASS_ID(Root, Loop, 0) 680 DEFINE_CLASS_ID(CountedLoop, Loop, 1) 681 682 DEFINE_CLASS_ID(Sub, Node, 6) 683 DEFINE_CLASS_ID(Cmp, Sub, 0) 684 DEFINE_CLASS_ID(FastLock, Cmp, 0) 685 DEFINE_CLASS_ID(FastUnlock, Cmp, 1) 686 687 DEFINE_CLASS_ID(MergeMem, Node, 7) 688 DEFINE_CLASS_ID(Bool, Node, 8) 689 DEFINE_CLASS_ID(AddP, Node, 9) 690 DEFINE_CLASS_ID(BoxLock, Node, 10) 691 DEFINE_CLASS_ID(Add, Node, 11) 692 DEFINE_CLASS_ID(Mul, Node, 12) 693 DEFINE_CLASS_ID(Vector, Node, 13) 694 DEFINE_CLASS_ID(ClearArray, Node, 14) 695 696 _max_classes = ClassMask_ClearArray 697 }; 698 #undef DEFINE_CLASS_ID 699 700 // Flags are sorted by usage frequency. 701 enum NodeFlags { 702 Flag_is_Copy = 0x01, // should be first bit to avoid shift 703 Flag_rematerialize = Flag_is_Copy << 1, 704 Flag_needs_anti_dependence_check = Flag_rematerialize << 1, 705 Flag_is_macro = Flag_needs_anti_dependence_check << 1, 706 Flag_is_Con = Flag_is_macro << 1, 707 Flag_is_cisc_alternate = Flag_is_Con << 1, 708 Flag_is_dead_loop_safe = Flag_is_cisc_alternate << 1, 709 Flag_may_be_short_branch = Flag_is_dead_loop_safe << 1, 710 Flag_avoid_back_to_back_before = Flag_may_be_short_branch << 1, 711 Flag_avoid_back_to_back_after = Flag_avoid_back_to_back_before << 1, 712 Flag_has_call = Flag_avoid_back_to_back_after << 1, 713 Flag_is_expensive = Flag_has_call << 1, 714 _max_flags = (Flag_is_expensive << 1) - 1 // allow flags combination 715 }; 716 717 private: 718 jushort _class_id; 719 jushort _flags; 720 721 protected: 722 // These methods should be called from constructors only. 723 void init_class_id(jushort c) { 724 assert(c <= _max_classes, "invalid node class"); 725 _class_id = c; // cast out const 726 } 727 void init_flags(jushort fl) { 728 assert(fl <= _max_flags, "invalid node flag"); 729 _flags |= fl; 730 } 731 void clear_flag(jushort fl) { 732 assert(fl <= _max_flags, "invalid node flag"); 733 _flags &= ~fl; 734 } 735 736 public: 737 const jushort class_id() const { return _class_id; } 738 739 const jushort flags() const { return _flags; } 740 741 // Return a dense integer opcode number 742 virtual int Opcode() const; 743 744 // Virtual inherited Node size 745 virtual uint size_of() const; 746 747 // Other interesting Node properties 748 #define DEFINE_CLASS_QUERY(type) \ 749 bool is_##type() const { \ 750 return ((_class_id & ClassMask_##type) == Class_##type); \ 751 } \ 752 type##Node *as_##type() const { \ 753 assert(is_##type(), "invalid node class"); \ 754 return (type##Node*)this; \ 755 } \ 756 type##Node* isa_##type() const { \ 757 return (is_##type()) ? as_##type() : NULL; \ 758 } 759 760 DEFINE_CLASS_QUERY(AbstractLock) 761 DEFINE_CLASS_QUERY(Add) 762 DEFINE_CLASS_QUERY(AddP) 763 DEFINE_CLASS_QUERY(Allocate) 764 DEFINE_CLASS_QUERY(AllocateArray) 765 DEFINE_CLASS_QUERY(Bool) 766 DEFINE_CLASS_QUERY(BoxLock) 767 DEFINE_CLASS_QUERY(Call) 768 DEFINE_CLASS_QUERY(CallDynamicJava) 769 DEFINE_CLASS_QUERY(CallJava) 770 DEFINE_CLASS_QUERY(CallLeaf) 771 DEFINE_CLASS_QUERY(CallRuntime) 772 DEFINE_CLASS_QUERY(CallStaticJava) 773 DEFINE_CLASS_QUERY(Catch) 774 DEFINE_CLASS_QUERY(CatchProj) 775 DEFINE_CLASS_QUERY(CheckCastPP) 776 DEFINE_CLASS_QUERY(CastII) 777 DEFINE_CLASS_QUERY(ConstraintCast) 778 DEFINE_CLASS_QUERY(ClearArray) 779 DEFINE_CLASS_QUERY(CMove) 780 DEFINE_CLASS_QUERY(Cmp) 781 DEFINE_CLASS_QUERY(CountedLoop) 782 DEFINE_CLASS_QUERY(CountedLoopEnd) 783 DEFINE_CLASS_QUERY(DecodeNarrowPtr) 784 DEFINE_CLASS_QUERY(DecodeN) 785 DEFINE_CLASS_QUERY(DecodeNKlass) 786 DEFINE_CLASS_QUERY(EncodeNarrowPtr) 787 DEFINE_CLASS_QUERY(EncodeP) 788 DEFINE_CLASS_QUERY(EncodePKlass) 789 DEFINE_CLASS_QUERY(FastLock) 790 DEFINE_CLASS_QUERY(FastUnlock) 791 DEFINE_CLASS_QUERY(If) 792 DEFINE_CLASS_QUERY(IfProj) 793 DEFINE_CLASS_QUERY(IfFalse) 794 DEFINE_CLASS_QUERY(IfTrue) 795 DEFINE_CLASS_QUERY(Initialize) 796 DEFINE_CLASS_QUERY(Jump) 797 DEFINE_CLASS_QUERY(JumpProj) 798 DEFINE_CLASS_QUERY(Load) 799 DEFINE_CLASS_QUERY(LoadStore) 800 DEFINE_CLASS_QUERY(Lock) 801 DEFINE_CLASS_QUERY(Loop) 802 DEFINE_CLASS_QUERY(Mach) 803 DEFINE_CLASS_QUERY(MachBranch) 804 DEFINE_CLASS_QUERY(MachCall) 805 DEFINE_CLASS_QUERY(MachCallDynamicJava) 806 DEFINE_CLASS_QUERY(MachCallJava) 807 DEFINE_CLASS_QUERY(MachCallLeaf) 808 DEFINE_CLASS_QUERY(MachCallRuntime) 809 DEFINE_CLASS_QUERY(MachCallStaticJava) 810 DEFINE_CLASS_QUERY(MachConstantBase) 811 DEFINE_CLASS_QUERY(MachConstant) 812 DEFINE_CLASS_QUERY(MachGoto) 813 DEFINE_CLASS_QUERY(MachIf) 814 DEFINE_CLASS_QUERY(MachNullCheck) 815 DEFINE_CLASS_QUERY(MachProj) 816 DEFINE_CLASS_QUERY(MachReturn) 817 DEFINE_CLASS_QUERY(MachSafePoint) 818 DEFINE_CLASS_QUERY(MachSpillCopy) 819 DEFINE_CLASS_QUERY(MachTemp) 820 DEFINE_CLASS_QUERY(MachMemBar) 821 DEFINE_CLASS_QUERY(MachMerge) 822 DEFINE_CLASS_QUERY(Mem) 823 DEFINE_CLASS_QUERY(MemBar) 824 DEFINE_CLASS_QUERY(MemBarStoreStore) 825 DEFINE_CLASS_QUERY(MergeMem) 826 DEFINE_CLASS_QUERY(Mul) 827 DEFINE_CLASS_QUERY(Multi) 828 DEFINE_CLASS_QUERY(MultiBranch) 829 DEFINE_CLASS_QUERY(Parm) 830 DEFINE_CLASS_QUERY(PCTable) 831 DEFINE_CLASS_QUERY(Phi) 832 DEFINE_CLASS_QUERY(Proj) 833 DEFINE_CLASS_QUERY(Region) 834 DEFINE_CLASS_QUERY(Root) 835 DEFINE_CLASS_QUERY(SafePoint) 836 DEFINE_CLASS_QUERY(SafePointScalarObject) 837 DEFINE_CLASS_QUERY(ShenandoahBarrier) 838 DEFINE_CLASS_QUERY(Start) 839 DEFINE_CLASS_QUERY(Store) 840 DEFINE_CLASS_QUERY(Sub) 841 DEFINE_CLASS_QUERY(Type) 842 DEFINE_CLASS_QUERY(Vector) 843 DEFINE_CLASS_QUERY(LoadVector) 844 DEFINE_CLASS_QUERY(StoreVector) 845 DEFINE_CLASS_QUERY(Unlock) 846 847 #undef DEFINE_CLASS_QUERY 848 849 // duplicate of is_MachSpillCopy() 850 bool is_SpillCopy () const { 851 return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy); 852 } 853 854 bool is_Con () const { return (_flags & Flag_is_Con) != 0; } 855 // The data node which is safe to leave in dead loop during IGVN optimization. 856 bool is_dead_loop_safe() const { 857 return is_Phi() || (is_Proj() && in(0) == NULL) || 858 ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 && 859 (!is_Proj() || !in(0)->is_Allocate())); 860 } 861 862 // is_Copy() returns copied edge index (0 or 1) 863 uint is_Copy() const { return (_flags & Flag_is_Copy); } 864 865 virtual bool is_CFG() const { return false; } 866 867 // If this node is control-dependent on a test, can it be 868 // rerouted to a dominating equivalent test? This is usually 869 // true of non-CFG nodes, but can be false for operations which 870 // depend for their correct sequencing on more than one test. 871 // (In that case, hoisting to a dominating test may silently 872 // skip some other important test.) 873 virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; }; 874 875 // When building basic blocks, I need to have a notion of block beginning 876 // Nodes, next block selector Nodes (block enders), and next block 877 // projections. These calls need to work on their machine equivalents. The 878 // Ideal beginning Nodes are RootNode, RegionNode and StartNode. 879 bool is_block_start() const { 880 if ( is_Region() ) 881 return this == (const Node*)in(0); 882 else 883 return is_Start(); 884 } 885 886 // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root, 887 // Goto and Return. This call also returns the block ending Node. 888 virtual const Node *is_block_proj() const; 889 890 // The node is a "macro" node which needs to be expanded before matching 891 bool is_macro() const { return (_flags & Flag_is_macro) != 0; } 892 // The node is expensive: the best control is set during loop opts 893 bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != NULL; } 894 895 //----------------- Optimization 896 897 // Get the worst-case Type output for this Node. 898 virtual const class Type *bottom_type() const; 899 900 // If we find a better type for a node, try to record it permanently. 901 // Return true if this node actually changed. 902 // Be sure to do the hash_delete game in the "rehash" variant. 903 void raise_bottom_type(const Type* new_type); 904 905 // Get the address type with which this node uses and/or defs memory, 906 // or NULL if none. The address type is conservatively wide. 907 // Returns non-null for calls, membars, loads, stores, etc. 908 // Returns TypePtr::BOTTOM if the node touches memory "broadly". 909 virtual const class TypePtr *adr_type() const { return NULL; } 910 911 // Return an existing node which computes the same function as this node. 912 // The optimistic combined algorithm requires this to return a Node which 913 // is a small number of steps away (e.g., one of my inputs). 914 virtual Node *Identity( PhaseTransform *phase ); 915 916 // Return the set of values this Node can take on at runtime. 917 virtual const Type *Value( PhaseTransform *phase ) const; 918 919 // Return a node which is more "ideal" than the current node. 920 // The invariants on this call are subtle. If in doubt, read the 921 // treatise in node.cpp above the default implemention AND TEST WITH 922 // +VerifyIterativeGVN! 923 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 924 925 // Some nodes have specific Ideal subgraph transformations only if they are 926 // unique users of specific nodes. Such nodes should be put on IGVN worklist 927 // for the transformations to happen. 928 bool has_special_unique_user() const; 929 930 // Skip Proj and CatchProj nodes chains. Check for Null and Top. 931 Node* find_exact_control(Node* ctrl); 932 933 // Check if 'this' node dominates or equal to 'sub'. 934 bool dominates(Node* sub, Node_List &nlist); 935 936 virtual bool is_g1_wb_pre_call() const { return false; } 937 virtual bool is_shenandoah_state_load() const { return false; } 938 virtual bool is_shenandoah_marking_if(PhaseTransform *phase) const { return false; } 939 940 protected: 941 bool remove_dead_region(PhaseGVN *phase, bool can_reshape); 942 public: 943 944 // See if there is valid pipeline info 945 static const Pipeline *pipeline_class(); 946 virtual const Pipeline *pipeline() const; 947 948 // Compute the latency from the def to this instruction of the ith input node 949 uint latency(uint i); 950 951 // Hash & compare functions, for pessimistic value numbering 952 953 // If the hash function returns the special sentinel value NO_HASH, 954 // the node is guaranteed never to compare equal to any other node. 955 // If we accidentally generate a hash with value NO_HASH the node 956 // won't go into the table and we'll lose a little optimization. 957 enum { NO_HASH = 0 }; 958 virtual uint hash() const; 959 virtual uint cmp( const Node &n ) const; 960 961 // Operation appears to be iteratively computed (such as an induction variable) 962 // It is possible for this operation to return false for a loop-varying 963 // value, if it appears (by local graph inspection) to be computed by a simple conditional. 964 bool is_iteratively_computed(); 965 966 // Determine if a node is Counted loop induction variable. 967 // The method is defined in loopnode.cpp. 968 const Node* is_loop_iv() const; 969 970 // Return a node with opcode "opc" and same inputs as "this" if one can 971 // be found; Otherwise return NULL; 972 Node* find_similar(int opc); 973 974 // Return the unique control out if only one. Null if none or more than one. 975 Node* unique_ctrl_out(); 976 977 // Set control or add control as precedence edge 978 void ensure_control_or_add_prec(Node* c); 979 980 //----------------- Code Generation 981 982 // Ideal register class for Matching. Zero means unmatched instruction 983 // (these are cloned instead of converted to machine nodes). 984 virtual uint ideal_reg() const; 985 986 static const uint NotAMachineReg; // must be > max. machine register 987 988 // Do we Match on this edge index or not? Generally false for Control 989 // and true for everything else. Weird for calls & returns. 990 virtual uint match_edge(uint idx) const; 991 992 // Register class output is returned in 993 virtual const RegMask &out_RegMask() const; 994 // Register class input is expected in 995 virtual const RegMask &in_RegMask(uint) const; 996 // Should we clone rather than spill this instruction? 997 bool rematerialize() const; 998 999 // Return JVM State Object if this Node carries debug info, or NULL otherwise 1000 virtual JVMState* jvms() const; 1001 1002 // Print as assembly 1003 virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const; 1004 // Emit bytes starting at parameter 'ptr' 1005 // Bump 'ptr' by the number of output bytes 1006 virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const; 1007 // Size of instruction in bytes 1008 virtual uint size(PhaseRegAlloc *ra_) const; 1009 1010 // Convenience function to extract an integer constant from a node. 1011 // If it is not an integer constant (either Con, CastII, or Mach), 1012 // return value_if_unknown. 1013 jint find_int_con(jint value_if_unknown) const { 1014 const TypeInt* t = find_int_type(); 1015 return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown; 1016 } 1017 // Return the constant, knowing it is an integer constant already 1018 jint get_int() const { 1019 const TypeInt* t = find_int_type(); 1020 guarantee(t != NULL, "must be con"); 1021 return t->get_con(); 1022 } 1023 // Here's where the work is done. Can produce non-constant int types too. 1024 const TypeInt* find_int_type() const; 1025 1026 // Same thing for long (and intptr_t, via type.hpp): 1027 jlong get_long() const { 1028 const TypeLong* t = find_long_type(); 1029 guarantee(t != NULL, "must be con"); 1030 return t->get_con(); 1031 } 1032 jlong find_long_con(jint value_if_unknown) const { 1033 const TypeLong* t = find_long_type(); 1034 return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown; 1035 } 1036 const TypeLong* find_long_type() const; 1037 1038 const TypePtr* get_ptr_type() const; 1039 1040 // These guys are called by code generated by ADLC: 1041 intptr_t get_ptr() const; 1042 intptr_t get_narrowcon() const; 1043 jdouble getd() const; 1044 jfloat getf() const; 1045 1046 // Nodes which are pinned into basic blocks 1047 virtual bool pinned() const { return false; } 1048 1049 // Nodes which use memory without consuming it, hence need antidependences 1050 // More specifically, needs_anti_dependence_check returns true iff the node 1051 // (a) does a load, and (b) does not perform a store (except perhaps to a 1052 // stack slot or some other unaliased location). 1053 bool needs_anti_dependence_check() const; 1054 1055 // Return which operand this instruction may cisc-spill. In other words, 1056 // return operand position that can convert from reg to memory access 1057 virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; } 1058 bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; } 1059 1060 //----------------- Graph walking 1061 public: 1062 // Walk and apply member functions recursively. 1063 // Supplied (this) pointer is root. 1064 void walk(NFunc pre, NFunc post, void *env); 1065 static void nop(Node &, void*); // Dummy empty function 1066 static void packregion( Node &n, void* ); 1067 private: 1068 void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited); 1069 1070 //----------------- Printing, etc 1071 public: 1072 #ifndef PRODUCT 1073 Node* find(int idx) const; // Search the graph for the given idx. 1074 Node* find_ctrl(int idx) const; // Search control ancestors for the given idx. 1075 void dump() const { dump("\n"); } // Print this node. 1076 void dump(const char* suffix, outputStream *st = tty) const;// Print this node. 1077 void dump(int depth) const; // Print this node, recursively to depth d 1078 void dump_ctrl(int depth) const; // Print control nodes, to depth d 1079 virtual void dump_req(outputStream *st = tty) const; // Print required-edge info 1080 virtual void dump_prec(outputStream *st = tty) const; // Print precedence-edge info 1081 virtual void dump_out(outputStream *st = tty) const; // Print the output edge info 1082 virtual void dump_spec(outputStream *st) const {}; // Print per-node info 1083 void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges 1084 void verify() const; // Check Def-Use info for my subgraph 1085 static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space); 1086 1087 // This call defines a class-unique string used to identify class instances 1088 virtual const char *Name() const; 1089 1090 void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...) 1091 // RegMask Print Functions 1092 void dump_in_regmask(int idx) { in_RegMask(idx).dump(); } 1093 void dump_out_regmask() { out_RegMask().dump(); } 1094 static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; } 1095 void fast_dump() const { 1096 tty->print("%4d: %-17s", _idx, Name()); 1097 for (uint i = 0; i < len(); i++) 1098 if (in(i)) 1099 tty->print(" %4d", in(i)->_idx); 1100 else 1101 tty->print(" NULL"); 1102 tty->print("\n"); 1103 } 1104 #endif 1105 #ifdef ASSERT 1106 void verify_construction(); 1107 bool verify_jvms(const JVMState* jvms) const; 1108 int _debug_idx; // Unique value assigned to every node. 1109 int debug_idx() const { return _debug_idx; } 1110 void set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; } 1111 1112 Node* _debug_orig; // Original version of this, if any. 1113 Node* debug_orig() const { return _debug_orig; } 1114 void set_debug_orig(Node* orig); // _debug_orig = orig 1115 1116 int _hash_lock; // Barrier to modifications of nodes in the hash table 1117 void enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); } 1118 void exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); } 1119 1120 static void init_NodeProperty(); 1121 1122 #if OPTO_DU_ITERATOR_ASSERT 1123 const Node* _last_del; // The last deleted node. 1124 uint _del_tick; // Bumped when a deletion happens.. 1125 #endif 1126 #endif 1127 }; 1128 1129 //----------------------------------------------------------------------------- 1130 // Iterators over DU info, and associated Node functions. 1131 1132 #if OPTO_DU_ITERATOR_ASSERT 1133 1134 // Common code for assertion checking on DU iterators. 1135 class DUIterator_Common VALUE_OBJ_CLASS_SPEC { 1136 #ifdef ASSERT 1137 protected: 1138 bool _vdui; // cached value of VerifyDUIterators 1139 const Node* _node; // the node containing the _out array 1140 uint _outcnt; // cached node->_outcnt 1141 uint _del_tick; // cached node->_del_tick 1142 Node* _last; // last value produced by the iterator 1143 1144 void sample(const Node* node); // used by c'tor to set up for verifies 1145 void verify(const Node* node, bool at_end_ok = false); 1146 void verify_resync(); 1147 void reset(const DUIterator_Common& that); 1148 1149 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators 1150 #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } } 1151 #else 1152 #define I_VDUI_ONLY(i,x) { } 1153 #endif //ASSERT 1154 }; 1155 1156 #define VDUI_ONLY(x) I_VDUI_ONLY(*this, x) 1157 1158 // Default DU iterator. Allows appends onto the out array. 1159 // Allows deletion from the out array only at the current point. 1160 // Usage: 1161 // for (DUIterator i = x->outs(); x->has_out(i); i++) { 1162 // Node* y = x->out(i); 1163 // ... 1164 // } 1165 // Compiles in product mode to a unsigned integer index, which indexes 1166 // onto a repeatedly reloaded base pointer of x->_out. The loop predicate 1167 // also reloads x->_outcnt. If you delete, you must perform "--i" just 1168 // before continuing the loop. You must delete only the last-produced 1169 // edge. You must delete only a single copy of the last-produced edge, 1170 // or else you must delete all copies at once (the first time the edge 1171 // is produced by the iterator). 1172 class DUIterator : public DUIterator_Common { 1173 friend class Node; 1174 1175 // This is the index which provides the product-mode behavior. 1176 // Whatever the product-mode version of the system does to the 1177 // DUI index is done to this index. All other fields in 1178 // this class are used only for assertion checking. 1179 uint _idx; 1180 1181 #ifdef ASSERT 1182 uint _refresh_tick; // Records the refresh activity. 1183 1184 void sample(const Node* node); // Initialize _refresh_tick etc. 1185 void verify(const Node* node, bool at_end_ok = false); 1186 void verify_increment(); // Verify an increment operation. 1187 void verify_resync(); // Verify that we can back up over a deletion. 1188 void verify_finish(); // Verify that the loop terminated properly. 1189 void refresh(); // Resample verification info. 1190 void reset(const DUIterator& that); // Resample after assignment. 1191 #endif 1192 1193 DUIterator(const Node* node, int dummy_to_avoid_conversion) 1194 { _idx = 0; debug_only(sample(node)); } 1195 1196 public: 1197 // initialize to garbage; clear _vdui to disable asserts 1198 DUIterator() 1199 { /*initialize to garbage*/ debug_only(_vdui = false); } 1200 1201 void operator++(int dummy_to_specify_postfix_op) 1202 { _idx++; VDUI_ONLY(verify_increment()); } 1203 1204 void operator--() 1205 { VDUI_ONLY(verify_resync()); --_idx; } 1206 1207 ~DUIterator() 1208 { VDUI_ONLY(verify_finish()); } 1209 1210 void operator=(const DUIterator& that) 1211 { _idx = that._idx; debug_only(reset(that)); } 1212 }; 1213 1214 DUIterator Node::outs() const 1215 { return DUIterator(this, 0); } 1216 DUIterator& Node::refresh_out_pos(DUIterator& i) const 1217 { I_VDUI_ONLY(i, i.refresh()); return i; } 1218 bool Node::has_out(DUIterator& i) const 1219 { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; } 1220 Node* Node::out(DUIterator& i) const 1221 { I_VDUI_ONLY(i, i.verify(this)); return debug_only(i._last=) _out[i._idx]; } 1222 1223 1224 // Faster DU iterator. Disallows insertions into the out array. 1225 // Allows deletion from the out array only at the current point. 1226 // Usage: 1227 // for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) { 1228 // Node* y = x->fast_out(i); 1229 // ... 1230 // } 1231 // Compiles in product mode to raw Node** pointer arithmetic, with 1232 // no reloading of pointers from the original node x. If you delete, 1233 // you must perform "--i; --imax" just before continuing the loop. 1234 // If you delete multiple copies of the same edge, you must decrement 1235 // imax, but not i, multiple times: "--i, imax -= num_edges". 1236 class DUIterator_Fast : public DUIterator_Common { 1237 friend class Node; 1238 friend class DUIterator_Last; 1239 1240 // This is the pointer which provides the product-mode behavior. 1241 // Whatever the product-mode version of the system does to the 1242 // DUI pointer is done to this pointer. All other fields in 1243 // this class are used only for assertion checking. 1244 Node** _outp; 1245 1246 #ifdef ASSERT 1247 void verify(const Node* node, bool at_end_ok = false); 1248 void verify_limit(); 1249 void verify_resync(); 1250 void verify_relimit(uint n); 1251 void reset(const DUIterator_Fast& that); 1252 #endif 1253 1254 // Note: offset must be signed, since -1 is sometimes passed 1255 DUIterator_Fast(const Node* node, ptrdiff_t offset) 1256 { _outp = node->_out + offset; debug_only(sample(node)); } 1257 1258 public: 1259 // initialize to garbage; clear _vdui to disable asserts 1260 DUIterator_Fast() 1261 { /*initialize to garbage*/ debug_only(_vdui = false); } 1262 1263 void operator++(int dummy_to_specify_postfix_op) 1264 { _outp++; VDUI_ONLY(verify(_node, true)); } 1265 1266 void operator--() 1267 { VDUI_ONLY(verify_resync()); --_outp; } 1268 1269 void operator-=(uint n) // applied to the limit only 1270 { _outp -= n; VDUI_ONLY(verify_relimit(n)); } 1271 1272 bool operator<(DUIterator_Fast& limit) { 1273 I_VDUI_ONLY(*this, this->verify(_node, true)); 1274 I_VDUI_ONLY(limit, limit.verify_limit()); 1275 return _outp < limit._outp; 1276 } 1277 1278 void operator=(const DUIterator_Fast& that) 1279 { _outp = that._outp; debug_only(reset(that)); } 1280 }; 1281 1282 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const { 1283 // Assign a limit pointer to the reference argument: 1284 imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt); 1285 // Return the base pointer: 1286 return DUIterator_Fast(this, 0); 1287 } 1288 Node* Node::fast_out(DUIterator_Fast& i) const { 1289 I_VDUI_ONLY(i, i.verify(this)); 1290 return debug_only(i._last=) *i._outp; 1291 } 1292 1293 1294 // Faster DU iterator. Requires each successive edge to be removed. 1295 // Does not allow insertion of any edges. 1296 // Usage: 1297 // for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) { 1298 // Node* y = x->last_out(i); 1299 // ... 1300 // } 1301 // Compiles in product mode to raw Node** pointer arithmetic, with 1302 // no reloading of pointers from the original node x. 1303 class DUIterator_Last : private DUIterator_Fast { 1304 friend class Node; 1305 1306 #ifdef ASSERT 1307 void verify(const Node* node, bool at_end_ok = false); 1308 void verify_limit(); 1309 void verify_step(uint num_edges); 1310 #endif 1311 1312 // Note: offset must be signed, since -1 is sometimes passed 1313 DUIterator_Last(const Node* node, ptrdiff_t offset) 1314 : DUIterator_Fast(node, offset) { } 1315 1316 void operator++(int dummy_to_specify_postfix_op) {} // do not use 1317 void operator<(int) {} // do not use 1318 1319 public: 1320 DUIterator_Last() { } 1321 // initialize to garbage 1322 1323 void operator--() 1324 { _outp--; VDUI_ONLY(verify_step(1)); } 1325 1326 void operator-=(uint n) 1327 { _outp -= n; VDUI_ONLY(verify_step(n)); } 1328 1329 bool operator>=(DUIterator_Last& limit) { 1330 I_VDUI_ONLY(*this, this->verify(_node, true)); 1331 I_VDUI_ONLY(limit, limit.verify_limit()); 1332 return _outp >= limit._outp; 1333 } 1334 1335 void operator=(const DUIterator_Last& that) 1336 { DUIterator_Fast::operator=(that); } 1337 }; 1338 1339 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const { 1340 // Assign a limit pointer to the reference argument: 1341 imin = DUIterator_Last(this, 0); 1342 // Return the initial pointer: 1343 return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1); 1344 } 1345 Node* Node::last_out(DUIterator_Last& i) const { 1346 I_VDUI_ONLY(i, i.verify(this)); 1347 return debug_only(i._last=) *i._outp; 1348 } 1349 1350 #endif //OPTO_DU_ITERATOR_ASSERT 1351 1352 #undef I_VDUI_ONLY 1353 #undef VDUI_ONLY 1354 1355 // An Iterator that truly follows the iterator pattern. Doesn't 1356 // support deletion but could be made to. 1357 // 1358 // for (SimpleDUIterator i(n); i.has_next(); i.next()) { 1359 // Node* m = i.get(); 1360 // 1361 class SimpleDUIterator : public StackObj { 1362 private: 1363 Node* node; 1364 DUIterator_Fast i; 1365 DUIterator_Fast imax; 1366 public: 1367 SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {} 1368 bool has_next() { return i < imax; } 1369 void next() { i++; } 1370 Node* get() { return node->fast_out(i); } 1371 }; 1372 1373 1374 //----------------------------------------------------------------------------- 1375 // Map dense integer indices to Nodes. Uses classic doubling-array trick. 1376 // Abstractly provides an infinite array of Node*'s, initialized to NULL. 1377 // Note that the constructor just zeros things, and since I use Arena 1378 // allocation I do not need a destructor to reclaim storage. 1379 class Node_Array : public ResourceObj { 1380 friend class VMStructs; 1381 protected: 1382 Arena *_a; // Arena to allocate in 1383 uint _max; 1384 Node **_nodes; 1385 void grow( uint i ); // Grow array node to fit 1386 public: 1387 Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) { 1388 _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize ); 1389 for( int i = 0; i < OptoNodeListSize; i++ ) { 1390 _nodes[i] = NULL; 1391 } 1392 } 1393 1394 Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {} 1395 Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped 1396 { return (i<_max) ? _nodes[i] : (Node*)NULL; } 1397 Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; } 1398 Node **adr() { return _nodes; } 1399 // Extend the mapping: index i maps to Node *n. 1400 void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; } 1401 void insert( uint i, Node *n ); 1402 void remove( uint i ); // Remove, preserving order 1403 void sort( C_sort_func_t func); 1404 void reset( Arena *new_a ); // Zap mapping to empty; reclaim storage 1405 void clear(); // Set all entries to NULL, keep storage 1406 uint Size() const { return _max; } 1407 void dump() const; 1408 }; 1409 1410 class Node_List : public Node_Array { 1411 friend class VMStructs; 1412 uint _cnt; 1413 public: 1414 Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {} 1415 Node_List(Arena *a) : Node_Array(a), _cnt(0) {} 1416 bool contains(const Node* n) const { 1417 for (uint e = 0; e < size(); e++) { 1418 if (at(e) == n) return true; 1419 } 1420 return false; 1421 } 1422 void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; } 1423 void remove( uint i ) { Node_Array::remove(i); _cnt--; } 1424 void push( Node *b ) { map(_cnt++,b); } 1425 void yank( Node *n ); // Find and remove 1426 Node *pop() { return _nodes[--_cnt]; } 1427 Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;} 1428 void clear() { _cnt = 0; Node_Array::clear(); } // retain storage 1429 uint size() const { return _cnt; } 1430 void dump() const; 1431 void dump_simple() const; 1432 }; 1433 1434 //------------------------------Unique_Node_List------------------------------- 1435 class Unique_Node_List : public Node_List { 1436 friend class VMStructs; 1437 VectorSet _in_worklist; 1438 uint _clock_index; // Index in list where to pop from next 1439 public: 1440 Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {} 1441 Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {} 1442 1443 void remove( Node *n ); 1444 bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; } 1445 VectorSet &member_set(){ return _in_worklist; } 1446 1447 void push( Node *b ) { 1448 if( !_in_worklist.test_set(b->_idx) ) 1449 Node_List::push(b); 1450 } 1451 Node *pop() { 1452 if( _clock_index >= size() ) _clock_index = 0; 1453 Node *b = at(_clock_index); 1454 map( _clock_index, Node_List::pop()); 1455 if (size() != 0) _clock_index++; // Always start from 0 1456 _in_worklist >>= b->_idx; 1457 return b; 1458 } 1459 Node *remove( uint i ) { 1460 Node *b = Node_List::at(i); 1461 _in_worklist >>= b->_idx; 1462 map(i,Node_List::pop()); 1463 return b; 1464 } 1465 void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); } 1466 void clear() { 1467 _in_worklist.Clear(); // Discards storage but grows automatically 1468 Node_List::clear(); 1469 _clock_index = 0; 1470 } 1471 1472 // Used after parsing to remove useless nodes before Iterative GVN 1473 void remove_useless_nodes(VectorSet &useful); 1474 1475 #ifndef PRODUCT 1476 void print_set() const { _in_worklist.print(); } 1477 #endif 1478 }; 1479 1480 // Inline definition of Compile::record_for_igvn must be deferred to this point. 1481 inline void Compile::record_for_igvn(Node* n) { 1482 _for_igvn->push(n); 1483 } 1484 1485 //------------------------------Node_Stack------------------------------------- 1486 class Node_Stack { 1487 friend class VMStructs; 1488 protected: 1489 struct INode { 1490 Node *node; // Processed node 1491 uint indx; // Index of next node's child 1492 }; 1493 INode *_inode_top; // tos, stack grows up 1494 INode *_inode_max; // End of _inodes == _inodes + _max 1495 INode *_inodes; // Array storage for the stack 1496 Arena *_a; // Arena to allocate in 1497 void grow(); 1498 public: 1499 Node_Stack(int size) { 1500 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize; 1501 _a = Thread::current()->resource_area(); 1502 _inodes = NEW_ARENA_ARRAY( _a, INode, max ); 1503 _inode_max = _inodes + max; 1504 _inode_top = _inodes - 1; // stack is empty 1505 } 1506 1507 Node_Stack(Arena *a, int size) : _a(a) { 1508 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize; 1509 _inodes = NEW_ARENA_ARRAY( _a, INode, max ); 1510 _inode_max = _inodes + max; 1511 _inode_top = _inodes - 1; // stack is empty 1512 } 1513 1514 void pop() { 1515 assert(_inode_top >= _inodes, "node stack underflow"); 1516 --_inode_top; 1517 } 1518 void push(Node *n, uint i) { 1519 ++_inode_top; 1520 if (_inode_top >= _inode_max) grow(); 1521 INode *top = _inode_top; // optimization 1522 top->node = n; 1523 top->indx = i; 1524 } 1525 Node *node() const { 1526 return _inode_top->node; 1527 } 1528 Node* node_at(uint i) const { 1529 assert(_inodes + i <= _inode_top, "in range"); 1530 return _inodes[i].node; 1531 } 1532 uint index() const { 1533 return _inode_top->indx; 1534 } 1535 uint index_at(uint i) const { 1536 assert(_inodes + i <= _inode_top, "in range"); 1537 return _inodes[i].indx; 1538 } 1539 void set_node(Node *n) { 1540 _inode_top->node = n; 1541 } 1542 void set_index(uint i) { 1543 _inode_top->indx = i; 1544 } 1545 uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes, sizeof(INode)); } // Max size 1546 uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes, sizeof(INode)); } // Current size 1547 bool is_nonempty() const { return (_inode_top >= _inodes); } 1548 bool is_empty() const { return (_inode_top < _inodes); } 1549 void clear() { _inode_top = _inodes - 1; } // retain storage 1550 1551 // Node_Stack is used to map nodes. 1552 Node* find(uint idx) const; 1553 }; 1554 1555 1556 //-----------------------------Node_Notes-------------------------------------- 1557 // Debugging or profiling annotations loosely and sparsely associated 1558 // with some nodes. See Compile::node_notes_at for the accessor. 1559 class Node_Notes VALUE_OBJ_CLASS_SPEC { 1560 friend class VMStructs; 1561 JVMState* _jvms; 1562 1563 public: 1564 Node_Notes(JVMState* jvms = NULL) { 1565 _jvms = jvms; 1566 } 1567 1568 JVMState* jvms() { return _jvms; } 1569 void set_jvms(JVMState* x) { _jvms = x; } 1570 1571 // True if there is nothing here. 1572 bool is_clear() { 1573 return (_jvms == NULL); 1574 } 1575 1576 // Make there be nothing here. 1577 void clear() { 1578 _jvms = NULL; 1579 } 1580 1581 // Make a new, clean node notes. 1582 static Node_Notes* make(Compile* C) { 1583 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1); 1584 nn->clear(); 1585 return nn; 1586 } 1587 1588 Node_Notes* clone(Compile* C) { 1589 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1); 1590 (*nn) = (*this); 1591 return nn; 1592 } 1593 1594 // Absorb any information from source. 1595 bool update_from(Node_Notes* source) { 1596 bool changed = false; 1597 if (source != NULL) { 1598 if (source->jvms() != NULL) { 1599 set_jvms(source->jvms()); 1600 changed = true; 1601 } 1602 } 1603 return changed; 1604 } 1605 }; 1606 1607 // Inlined accessors for Compile::node_nodes that require the preceding class: 1608 inline Node_Notes* 1609 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr, 1610 int idx, bool can_grow) { 1611 assert(idx >= 0, "oob"); 1612 int block_idx = (idx >> _log2_node_notes_block_size); 1613 int grow_by = (block_idx - (arr == NULL? 0: arr->length())); 1614 if (grow_by >= 0) { 1615 if (!can_grow) return NULL; 1616 grow_node_notes(arr, grow_by + 1); 1617 } 1618 // (Every element of arr is a sub-array of length _node_notes_block_size.) 1619 return arr->at(block_idx) + (idx & (_node_notes_block_size-1)); 1620 } 1621 1622 inline bool 1623 Compile::set_node_notes_at(int idx, Node_Notes* value) { 1624 if (value == NULL || value->is_clear()) 1625 return false; // nothing to write => write nothing 1626 Node_Notes* loc = locate_node_notes(_node_note_array, idx, true); 1627 assert(loc != NULL, ""); 1628 return loc->update_from(value); 1629 } 1630 1631 1632 //------------------------------TypeNode--------------------------------------- 1633 // Node with a Type constant. 1634 class TypeNode : public Node { 1635 protected: 1636 virtual uint hash() const; // Check the type 1637 virtual uint cmp( const Node &n ) const; 1638 virtual uint size_of() const; // Size is bigger 1639 const Type* const _type; 1640 public: 1641 void set_type(const Type* t) { 1642 assert(t != NULL, "sanity"); 1643 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH); 1644 *(const Type**)&_type = t; // cast away const-ness 1645 // If this node is in the hash table, make sure it doesn't need a rehash. 1646 assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code"); 1647 } 1648 const Type* type() const { assert(_type != NULL, "sanity"); return _type; }; 1649 TypeNode( const Type *t, uint required ) : Node(required), _type(t) { 1650 init_class_id(Class_Type); 1651 } 1652 virtual const Type *Value( PhaseTransform *phase ) const; 1653 virtual const Type *bottom_type() const; 1654 virtual uint ideal_reg() const; 1655 #ifndef PRODUCT 1656 virtual void dump_spec(outputStream *st) const; 1657 #endif 1658 }; 1659 1660 #endif // SHARE_VM_OPTO_NODE_HPP