1 /*
   2  * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "interpreter/linkResolver.hpp"
  28 #include "memory/universe.inline.hpp"
  29 #include "oops/objArrayKlass.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/memnode.hpp"
  32 #include "opto/parse.hpp"
  33 #include "opto/rootnode.hpp"
  34 #include "opto/runtime.hpp"
  35 #include "opto/subnode.hpp"
  36 #include "runtime/deoptimization.hpp"
  37 #include "runtime/handles.inline.hpp"
  38 
  39 #if INCLUDE_ALL_GCS
  40 #include "gc_implementation/shenandoah/c2/shenandoahBarrierSetC2.hpp"
  41 #endif
  42 
  43 //=============================================================================
  44 // Helper methods for _get* and _put* bytecodes
  45 //=============================================================================
  46 bool Parse::static_field_ok_in_clinit(ciField *field, ciMethod *method) {
  47   // Could be the field_holder's <clinit> method, or <clinit> for a subklass.
  48   // Better to check now than to Deoptimize as soon as we execute
  49   assert( field->is_static(), "Only check if field is static");
  50   // is_being_initialized() is too generous.  It allows access to statics
  51   // by threads that are not running the <clinit> before the <clinit> finishes.
  52   // return field->holder()->is_being_initialized();
  53 
  54   // The following restriction is correct but conservative.
  55   // It is also desirable to allow compilation of methods called from <clinit>
  56   // but this generated code will need to be made safe for execution by
  57   // other threads, or the transition from interpreted to compiled code would
  58   // need to be guarded.
  59   ciInstanceKlass *field_holder = field->holder();
  60 
  61   bool access_OK = false;
  62   if (method->holder()->is_subclass_of(field_holder)) {
  63     if (method->is_static()) {
  64       if (method->name() == ciSymbol::class_initializer_name()) {
  65         // OK to access static fields inside initializer
  66         access_OK = true;
  67       }
  68     } else {
  69       if (method->name() == ciSymbol::object_initializer_name()) {
  70         // It's also OK to access static fields inside a constructor,
  71         // because any thread calling the constructor must first have
  72         // synchronized on the class by executing a '_new' bytecode.
  73         access_OK = true;
  74       }
  75     }
  76   }
  77 
  78   return access_OK;
  79 
  80 }
  81 
  82 
  83 void Parse::do_field_access(bool is_get, bool is_field) {
  84   bool will_link;
  85   ciField* field = iter().get_field(will_link);
  86   assert(will_link, "getfield: typeflow responsibility");
  87 
  88   ciInstanceKlass* field_holder = field->holder();
  89 
  90   if (is_field == field->is_static()) {
  91     // Interpreter will throw java_lang_IncompatibleClassChangeError
  92     // Check this before allowing <clinit> methods to access static fields
  93     uncommon_trap(Deoptimization::Reason_unhandled,
  94                   Deoptimization::Action_none);
  95     return;
  96   }
  97 
  98   if (!is_field && !field_holder->is_initialized()) {
  99     if (!static_field_ok_in_clinit(field, method())) {
 100       uncommon_trap(Deoptimization::Reason_uninitialized,
 101                     Deoptimization::Action_reinterpret,
 102                     NULL, "!static_field_ok_in_clinit");
 103       return;
 104     }
 105   }
 106 
 107   // Deoptimize on putfield writes to call site target field.
 108   if (!is_get && field->is_call_site_target()) {
 109     uncommon_trap(Deoptimization::Reason_unhandled,
 110                   Deoptimization::Action_reinterpret,
 111                   NULL, "put to call site target field");
 112     return;
 113   }
 114 
 115   assert(field->will_link(method()->holder(), bc()), "getfield: typeflow responsibility");
 116 
 117   // Note:  We do not check for an unloaded field type here any more.
 118 
 119   // Generate code for the object pointer.
 120   Node* obj;
 121   if (is_field) {
 122     int obj_depth = is_get ? 0 : field->type()->size();
 123     obj = null_check(peek(obj_depth));
 124     // Compile-time detect of null-exception?
 125     if (stopped())  return;
 126 
 127 #ifdef ASSERT
 128     const TypeInstPtr *tjp = TypeInstPtr::make(TypePtr::NotNull, iter().get_declared_field_holder());
 129     assert(_gvn.type(obj)->higher_equal(tjp), "cast_up is no longer needed");
 130 #endif
 131 
 132     if (is_get) {
 133       (void) pop();  // pop receiver before getting
 134       do_get_xxx(obj, field, is_field);
 135     } else {
 136       do_put_xxx(obj, field, is_field);
 137       (void) pop();  // pop receiver after putting
 138     }
 139   } else {
 140     const TypeInstPtr* tip = TypeInstPtr::make(field_holder->java_mirror());
 141     obj = _gvn.makecon(tip);
 142     if (is_get) {
 143       do_get_xxx(obj, field, is_field);
 144     } else {
 145       do_put_xxx(obj, field, is_field);
 146     }
 147   }
 148 }
 149 
 150 
 151 void Parse::do_get_xxx(Node* obj, ciField* field, bool is_field) {
 152   // Does this field have a constant value?  If so, just push the value.
 153   if (field->is_constant()) {
 154     // final or stable field
 155     const Type* stable_type = NULL;
 156     if (FoldStableValues && field->is_stable()) {
 157       stable_type = Type::get_const_type(field->type());
 158       if (field->type()->is_array_klass()) {
 159         int stable_dimension = field->type()->as_array_klass()->dimension();
 160         stable_type = stable_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 161       }
 162     }
 163     if (field->is_static()) {
 164       // final static field
 165       if (C->eliminate_boxing()) {
 166         // The pointers in the autobox arrays are always non-null.
 167         ciSymbol* klass_name = field->holder()->name();
 168         if (field->name() == ciSymbol::cache_field_name() &&
 169             field->holder()->uses_default_loader() &&
 170             (klass_name == ciSymbol::java_lang_Character_CharacterCache() ||
 171              klass_name == ciSymbol::java_lang_Byte_ByteCache() ||
 172              klass_name == ciSymbol::java_lang_Short_ShortCache() ||
 173              klass_name == ciSymbol::java_lang_Integer_IntegerCache() ||
 174              klass_name == ciSymbol::java_lang_Long_LongCache())) {
 175           bool require_const = true;
 176           bool autobox_cache = true;
 177           if (push_constant(field->constant_value(), require_const, autobox_cache)) {
 178             return;
 179           }
 180         }
 181       }
 182       if (push_constant(field->constant_value(), false, false, stable_type))
 183         return;
 184     } else {
 185       // final or stable non-static field
 186       // Treat final non-static fields of trusted classes (classes in
 187       // java.lang.invoke and sun.invoke packages and subpackages) as
 188       // compile time constants.
 189       if (obj->is_Con()) {
 190         const TypeOopPtr* oop_ptr = obj->bottom_type()->isa_oopptr();
 191         ciObject* constant_oop = oop_ptr->const_oop();
 192         ciConstant constant = field->constant_value_of(constant_oop);
 193         if (FoldStableValues && field->is_stable() && constant.is_null_or_zero()) {
 194           // fall through to field load; the field is not yet initialized
 195         } else {
 196           if (push_constant(constant, true, false, stable_type))
 197             return;
 198         }
 199       }
 200     }
 201   }
 202 
 203   Node* leading_membar = NULL;
 204   ciType* field_klass = field->type();
 205   bool is_vol = field->is_volatile();
 206 
 207   // Compute address and memory type.
 208   int offset = field->offset_in_bytes();
 209   const TypePtr* adr_type = C->alias_type(field)->adr_type();
 210   Node *adr = basic_plus_adr(obj, obj, offset);
 211   BasicType bt = field->layout_type();
 212 
 213   // Build the resultant type of the load
 214   const Type *type;
 215 
 216   bool must_assert_null = false;
 217 
 218   if( bt == T_OBJECT ) {
 219     if (!field->type()->is_loaded()) {
 220       type = TypeInstPtr::BOTTOM;
 221       must_assert_null = true;
 222     } else if (field->is_constant() && field->is_static()) {
 223       // This can happen if the constant oop is non-perm.
 224       ciObject* con = field->constant_value().as_object();
 225       // Do not "join" in the previous type; it doesn't add value,
 226       // and may yield a vacuous result if the field is of interface type.
 227       type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
 228       assert(type != NULL, "field singleton type must be consistent");
 229     } else {
 230       type = TypeOopPtr::make_from_klass(field_klass->as_klass());
 231     }
 232   } else {
 233     type = Type::get_const_basic_type(bt);
 234   }
 235   if (support_IRIW_for_not_multiple_copy_atomic_cpu && field->is_volatile()) {
 236     leading_membar = insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
 237   }
 238   // Build the load.
 239   //
 240   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
 241   Node* ld = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, is_vol);
 242 
 243   Node* load = ld;
 244 #if INCLUDE_ALL_GCS
 245   if (UseShenandoahGC && (bt == T_OBJECT || bt == T_ARRAY)) {
 246     ld = ShenandoahBarrierSetC2::bsc2()->load_reference_barrier(this, ld);
 247   }
 248 #endif
 249 
 250   // Adjust Java stack
 251   if (type2size[bt] == 1)
 252     push(ld);
 253   else
 254     push_pair(ld);
 255 
 256   if (must_assert_null) {
 257     // Do not take a trap here.  It's possible that the program
 258     // will never load the field's class, and will happily see
 259     // null values in this field forever.  Don't stumble into a
 260     // trap for such a program, or we might get a long series
 261     // of useless recompilations.  (Or, we might load a class
 262     // which should not be loaded.)  If we ever see a non-null
 263     // value, we will then trap and recompile.  (The trap will
 264     // not need to mention the class index, since the class will
 265     // already have been loaded if we ever see a non-null value.)
 266     // uncommon_trap(iter().get_field_signature_index());
 267 #ifndef PRODUCT
 268     if (PrintOpto && (Verbose || WizardMode)) {
 269       method()->print_name(); tty->print_cr(" asserting nullness of field at bci: %d", bci());
 270     }
 271 #endif
 272     if (C->log() != NULL) {
 273       C->log()->elem("assert_null reason='field' klass='%d'",
 274                      C->log()->identify(field->type()));
 275     }
 276     // If there is going to be a trap, put it at the next bytecode:
 277     set_bci(iter().next_bci());
 278     null_assert(peek());
 279     set_bci(iter().cur_bci()); // put it back
 280   }
 281 
 282   // If reference is volatile, prevent following memory ops from
 283   // floating up past the volatile read.  Also prevents commoning
 284   // another volatile read.
 285   if (field->is_volatile()) {
 286     // Memory barrier includes bogus read of value to force load BEFORE membar
 287     assert(leading_membar == NULL || support_IRIW_for_not_multiple_copy_atomic_cpu, "no leading membar expected");
 288     Node* mb = insert_mem_bar(Op_MemBarAcquire, load);
 289     mb->as_MemBar()->set_trailing_load();
 290   }
 291 }
 292 
 293 void Parse::do_put_xxx(Node* obj, ciField* field, bool is_field) {
 294   Node* leading_membar = NULL;
 295   bool is_vol = field->is_volatile();
 296   // If reference is volatile, prevent following memory ops from
 297   // floating down past the volatile write.  Also prevents commoning
 298   // another volatile read.
 299   if (is_vol) {
 300     leading_membar = insert_mem_bar(Op_MemBarRelease);
 301   }
 302 
 303   // Compute address and memory type.
 304   int offset = field->offset_in_bytes();
 305   const TypePtr* adr_type = C->alias_type(field)->adr_type();
 306   Node* adr = basic_plus_adr(obj, obj, offset);
 307   BasicType bt = field->layout_type();
 308   // Value to be stored
 309   Node* val = type2size[bt] == 1 ? pop() : pop_pair();
 310   // Round doubles before storing
 311   if (bt == T_DOUBLE)  val = dstore_rounding(val);
 312 
 313   // Conservatively release stores of object references.
 314   const MemNode::MemOrd mo =
 315     is_vol ?
 316     // Volatile fields need releasing stores.
 317     MemNode::release :
 318     // Non-volatile fields also need releasing stores if they hold an
 319     // object reference, because the object reference might point to
 320     // a freshly created object.
 321     StoreNode::release_if_reference(bt);
 322 
 323   // Store the value.
 324   Node* store;
 325   if (bt == T_OBJECT) {
 326     const TypeOopPtr* field_type;
 327     if (!field->type()->is_loaded()) {
 328       field_type = TypeInstPtr::BOTTOM;
 329     } else {
 330       field_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
 331     }
 332     store = store_oop_to_object(control(), obj, adr, adr_type, val, field_type, bt, mo);
 333   } else {
 334     store = store_to_memory(control(), adr, val, bt, adr_type, mo, is_vol);
 335   }
 336 
 337   // If reference is volatile, prevent following volatiles ops from
 338   // floating up before the volatile write.
 339   if (is_vol) {
 340     // If not multiple copy atomic, we do the MemBarVolatile before the load.
 341     if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
 342       Node* mb = insert_mem_bar(Op_MemBarVolatile, store); // Use fat membar
 343       MemBarNode::set_store_pair(leading_membar->as_MemBar(), mb->as_MemBar());
 344     }
 345     // Remember we wrote a volatile field.
 346     // For not multiple copy atomic cpu (ppc64) a barrier should be issued
 347     // in constructors which have such stores. See do_exits() in parse1.cpp.
 348     if (is_field) {
 349       set_wrote_volatile(true);
 350     }
 351   }
 352 
 353   // If the field is final, the rules of Java say we are in <init> or <clinit>.
 354   // Note the presence of writes to final non-static fields, so that we
 355   // can insert a memory barrier later on to keep the writes from floating
 356   // out of the constructor.
 357   // Any method can write a @Stable field; insert memory barriers after those also.
 358   if (is_field && (field->is_final() || field->is_stable())) {
 359     set_wrote_final(true);
 360     // Preserve allocation ptr to create precedent edge to it in membar
 361     // generated on exit from constructor.
 362     if (C->eliminate_boxing() &&
 363         adr_type->isa_oopptr() && adr_type->is_oopptr()->is_ptr_to_boxed_value() &&
 364         AllocateNode::Ideal_allocation(obj, &_gvn) != NULL) {
 365       set_alloc_with_final(obj);
 366     }
 367   }
 368 }
 369 
 370 
 371 
 372 bool Parse::push_constant(ciConstant constant, bool require_constant, bool is_autobox_cache, const Type* stable_type) {
 373   const Type* con_type = Type::make_from_constant(constant, require_constant, is_autobox_cache);
 374   switch (constant.basic_type()) {
 375   case T_ARRAY:
 376   case T_OBJECT:
 377     // cases:
 378     //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 379     //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 380     // An oop is not scavengable if it is in the perm gen.
 381     if (stable_type != NULL && con_type != NULL && con_type->isa_oopptr())
 382       con_type = con_type->join_speculative(stable_type);
 383     break;
 384 
 385   case T_ILLEGAL:
 386     // Invalid ciConstant returned due to OutOfMemoryError in the CI
 387     assert(C->env()->failing(), "otherwise should not see this");
 388     // These always occur because of object types; we are going to
 389     // bail out anyway, so make the stack depths match up
 390     push( zerocon(T_OBJECT) );
 391     return false;
 392   }
 393 
 394   if (con_type == NULL)
 395     // we cannot inline the oop, but we can use it later to narrow a type
 396     return false;
 397 
 398   push_node(constant.basic_type(), makecon(con_type));
 399   return true;
 400 }
 401 
 402 
 403 //=============================================================================
 404 void Parse::do_anewarray() {
 405   bool will_link;
 406   ciKlass* klass = iter().get_klass(will_link);
 407 
 408   // Uncommon Trap when class that array contains is not loaded
 409   // we need the loaded class for the rest of graph; do not
 410   // initialize the container class (see Java spec)!!!
 411   assert(will_link, "anewarray: typeflow responsibility");
 412 
 413   ciObjArrayKlass* array_klass = ciObjArrayKlass::make(klass);
 414   // Check that array_klass object is loaded
 415   if (!array_klass->is_loaded()) {
 416     // Generate uncommon_trap for unloaded array_class
 417     uncommon_trap(Deoptimization::Reason_unloaded,
 418                   Deoptimization::Action_reinterpret,
 419                   array_klass);
 420     return;
 421   }
 422 
 423   kill_dead_locals();
 424 
 425   const TypeKlassPtr* array_klass_type = TypeKlassPtr::make(array_klass);
 426   Node* count_val = pop();
 427   Node* obj = new_array(makecon(array_klass_type), count_val, 1);
 428   push(obj);
 429 }
 430 
 431 
 432 void Parse::do_newarray(BasicType elem_type) {
 433   kill_dead_locals();
 434 
 435   Node*   count_val = pop();
 436   const TypeKlassPtr* array_klass = TypeKlassPtr::make(ciTypeArrayKlass::make(elem_type));
 437   Node*   obj = new_array(makecon(array_klass), count_val, 1);
 438   // Push resultant oop onto stack
 439   push(obj);
 440 }
 441 
 442 // Expand simple expressions like new int[3][5] and new Object[2][nonConLen].
 443 // Also handle the degenerate 1-dimensional case of anewarray.
 444 Node* Parse::expand_multianewarray(ciArrayKlass* array_klass, Node* *lengths, int ndimensions, int nargs) {
 445   Node* length = lengths[0];
 446   assert(length != NULL, "");
 447   Node* array = new_array(makecon(TypeKlassPtr::make(array_klass)), length, nargs);
 448   if (ndimensions > 1) {
 449     jint length_con = find_int_con(length, -1);
 450     guarantee(length_con >= 0, "non-constant multianewarray");
 451     ciArrayKlass* array_klass_1 = array_klass->as_obj_array_klass()->element_klass()->as_array_klass();
 452     const TypePtr* adr_type = TypeAryPtr::OOPS;
 453     const TypeOopPtr*    elemtype = _gvn.type(array)->is_aryptr()->elem()->make_oopptr();
 454     const intptr_t header   = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
 455     for (jint i = 0; i < length_con; i++) {
 456       Node*    elem   = expand_multianewarray(array_klass_1, &lengths[1], ndimensions-1, nargs);
 457       intptr_t offset = header + ((intptr_t)i << LogBytesPerHeapOop);
 458       Node*    eaddr  = basic_plus_adr(array, offset);
 459       store_oop_to_array(control(), array, eaddr, adr_type, elem, elemtype, T_OBJECT, MemNode::unordered);
 460     }
 461   }
 462   return array;
 463 }
 464 
 465 void Parse::do_multianewarray() {
 466   int ndimensions = iter().get_dimensions();
 467 
 468   // the m-dimensional array
 469   bool will_link;
 470   ciArrayKlass* array_klass = iter().get_klass(will_link)->as_array_klass();
 471   assert(will_link, "multianewarray: typeflow responsibility");
 472 
 473   // Note:  Array classes are always initialized; no is_initialized check.
 474 
 475   kill_dead_locals();
 476 
 477   // get the lengths from the stack (first dimension is on top)
 478   Node** length = NEW_RESOURCE_ARRAY(Node*, ndimensions + 1);
 479   length[ndimensions] = NULL;  // terminating null for make_runtime_call
 480   int j;
 481   for (j = ndimensions-1; j >= 0 ; j--) length[j] = pop();
 482 
 483   // The original expression was of this form: new T[length0][length1]...
 484   // It is often the case that the lengths are small (except the last).
 485   // If that happens, use the fast 1-d creator a constant number of times.
 486   const jint expand_limit = MIN2((juint)MultiArrayExpandLimit, (juint)100);
 487   jint expand_count = 1;        // count of allocations in the expansion
 488   jint expand_fanout = 1;       // running total fanout
 489   for (j = 0; j < ndimensions-1; j++) {
 490     jint dim_con = find_int_con(length[j], -1);
 491     expand_fanout *= dim_con;
 492     expand_count  += expand_fanout; // count the level-J sub-arrays
 493     if (dim_con <= 0
 494         || dim_con > expand_limit
 495         || expand_count > expand_limit) {
 496       expand_count = 0;
 497       break;
 498     }
 499   }
 500 
 501   // Can use multianewarray instead of [a]newarray if only one dimension,
 502   // or if all non-final dimensions are small constants.
 503   if (ndimensions == 1 || (1 <= expand_count && expand_count <= expand_limit)) {
 504     Node* obj = NULL;
 505     // Set the original stack and the reexecute bit for the interpreter
 506     // to reexecute the multianewarray bytecode if deoptimization happens.
 507     // Do it unconditionally even for one dimension multianewarray.
 508     // Note: the reexecute bit will be set in GraphKit::add_safepoint_edges()
 509     // when AllocateArray node for newarray is created.
 510     { PreserveReexecuteState preexecs(this);
 511       inc_sp(ndimensions);
 512       // Pass 0 as nargs since uncommon trap code does not need to restore stack.
 513       obj = expand_multianewarray(array_klass, &length[0], ndimensions, 0);
 514     } //original reexecute and sp are set back here
 515     push(obj);
 516     return;
 517   }
 518 
 519   address fun = NULL;
 520   switch (ndimensions) {
 521   case 1: ShouldNotReachHere(); break;
 522   case 2: fun = OptoRuntime::multianewarray2_Java(); break;
 523   case 3: fun = OptoRuntime::multianewarray3_Java(); break;
 524   case 4: fun = OptoRuntime::multianewarray4_Java(); break;
 525   case 5: fun = OptoRuntime::multianewarray5_Java(); break;
 526   };
 527   Node* c = NULL;
 528 
 529   if (fun != NULL) {
 530     c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
 531                           OptoRuntime::multianewarray_Type(ndimensions),
 532                           fun, NULL, TypeRawPtr::BOTTOM,
 533                           makecon(TypeKlassPtr::make(array_klass)),
 534                           length[0], length[1], length[2],
 535                           (ndimensions > 2) ? length[3] : NULL,
 536                           (ndimensions > 3) ? length[4] : NULL);
 537   } else {
 538     // Create a java array for dimension sizes
 539     Node* dims = NULL;
 540     { PreserveReexecuteState preexecs(this);
 541       inc_sp(ndimensions);
 542       Node* dims_array_klass = makecon(TypeKlassPtr::make(ciArrayKlass::make(ciType::make(T_INT))));
 543       dims = new_array(dims_array_klass, intcon(ndimensions), 0);
 544 
 545       // Fill-in it with values
 546       for (j = 0; j < ndimensions; j++) {
 547         Node *dims_elem = array_element_address(dims, intcon(j), T_INT);
 548         store_to_memory(control(), dims_elem, length[j], T_INT, TypeAryPtr::INTS, MemNode::unordered);
 549       }
 550     }
 551 
 552     c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
 553                           OptoRuntime::multianewarrayN_Type(),
 554                           OptoRuntime::multianewarrayN_Java(), NULL, TypeRawPtr::BOTTOM,
 555                           makecon(TypeKlassPtr::make(array_klass)),
 556                           dims);
 557   }
 558   make_slow_call_ex(c, env()->Throwable_klass(), false);
 559 
 560   Node* res = _gvn.transform(new (C) ProjNode(c, TypeFunc::Parms));
 561 
 562   const Type* type = TypeOopPtr::make_from_klass_raw(array_klass);
 563 
 564   // Improve the type:  We know it's not null, exact, and of a given length.
 565   type = type->is_ptr()->cast_to_ptr_type(TypePtr::NotNull);
 566   type = type->is_aryptr()->cast_to_exactness(true);
 567 
 568   const TypeInt* ltype = _gvn.find_int_type(length[0]);
 569   if (ltype != NULL)
 570     type = type->is_aryptr()->cast_to_size(ltype);
 571 
 572     // We cannot sharpen the nested sub-arrays, since the top level is mutable.
 573 
 574   Node* cast = _gvn.transform( new (C) CheckCastPPNode(control(), res, type) );
 575   push(cast);
 576 
 577   // Possible improvements:
 578   // - Make a fast path for small multi-arrays.  (W/ implicit init. loops.)
 579   // - Issue CastII against length[*] values, to TypeInt::POS.
 580 }