1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/block.hpp"
  28 #include "opto/callnode.hpp"
  29 #include "opto/cfgnode.hpp"
  30 #include "opto/connode.hpp"
  31 #include "opto/idealGraphPrinter.hpp"
  32 #include "opto/loopnode.hpp"
  33 #include "opto/machnode.hpp"
  34 #include "opto/opcodes.hpp"
  35 #include "opto/phaseX.hpp"
  36 #include "opto/regalloc.hpp"
  37 #include "opto/rootnode.hpp"
  38 #if INCLUDE_ALL_GCS
  39 #include "gc_implementation/shenandoah/c2/shenandoahSupport.hpp"
  40 #endif
  41 
  42 //=============================================================================
  43 #define NODE_HASH_MINIMUM_SIZE    255
  44 //------------------------------NodeHash---------------------------------------
  45 NodeHash::NodeHash(uint est_max_size) :
  46   _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
  47   _a(Thread::current()->resource_area()),
  48   _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ), // (Node**)_a->Amalloc(_max * sizeof(Node*)) ),
  49   _inserts(0), _insert_limit( insert_limit() ),
  50   _look_probes(0), _lookup_hits(0), _lookup_misses(0),
  51   _total_insert_probes(0), _total_inserts(0),
  52   _insert_probes(0), _grows(0) {
  53   // _sentinel must be in the current node space
  54   _sentinel = new (Compile::current()) ProjNode(NULL, TypeFunc::Control);
  55   memset(_table,0,sizeof(Node*)*_max);
  56 }
  57 
  58 //------------------------------NodeHash---------------------------------------
  59 NodeHash::NodeHash(Arena *arena, uint est_max_size) :
  60   _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
  61   _a(arena),
  62   _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ),
  63   _inserts(0), _insert_limit( insert_limit() ),
  64   _look_probes(0), _lookup_hits(0), _lookup_misses(0),
  65   _delete_probes(0), _delete_hits(0), _delete_misses(0),
  66   _total_insert_probes(0), _total_inserts(0),
  67   _insert_probes(0), _grows(0) {
  68   // _sentinel must be in the current node space
  69   _sentinel = new (Compile::current()) ProjNode(NULL, TypeFunc::Control);
  70   memset(_table,0,sizeof(Node*)*_max);
  71 }
  72 
  73 //------------------------------NodeHash---------------------------------------
  74 NodeHash::NodeHash(NodeHash *nh) {
  75   debug_only(_table = (Node**)badAddress);   // interact correctly w/ operator=
  76   // just copy in all the fields
  77   *this = *nh;
  78   // nh->_sentinel must be in the current node space
  79 }
  80 
  81 void NodeHash::replace_with(NodeHash *nh) {
  82   debug_only(_table = (Node**)badAddress);   // interact correctly w/ operator=
  83   // just copy in all the fields
  84   *this = *nh;
  85   // nh->_sentinel must be in the current node space
  86 }
  87 
  88 //------------------------------hash_find--------------------------------------
  89 // Find in hash table
  90 Node *NodeHash::hash_find( const Node *n ) {
  91   // ((Node*)n)->set_hash( n->hash() );
  92   uint hash = n->hash();
  93   if (hash == Node::NO_HASH) {
  94     debug_only( _lookup_misses++ );
  95     return NULL;
  96   }
  97   uint key = hash & (_max-1);
  98   uint stride = key | 0x01;
  99   debug_only( _look_probes++ );
 100   Node *k = _table[key];        // Get hashed value
 101   if( !k ) {                    // ?Miss?
 102     debug_only( _lookup_misses++ );
 103     return NULL;                // Miss!
 104   }
 105 
 106   int op = n->Opcode();
 107   uint req = n->req();
 108   while( 1 ) {                  // While probing hash table
 109     if( k->req() == req &&      // Same count of inputs
 110         k->Opcode() == op ) {   // Same Opcode
 111       for( uint i=0; i<req; i++ )
 112         if( n->in(i)!=k->in(i)) // Different inputs?
 113           goto collision;       // "goto" is a speed hack...
 114       if( n->cmp(*k) ) {        // Check for any special bits
 115         debug_only( _lookup_hits++ );
 116         return k;               // Hit!
 117       }
 118     }
 119   collision:
 120     debug_only( _look_probes++ );
 121     key = (key + stride/*7*/) & (_max-1); // Stride through table with relative prime
 122     k = _table[key];            // Get hashed value
 123     if( !k ) {                  // ?Miss?
 124       debug_only( _lookup_misses++ );
 125       return NULL;              // Miss!
 126     }
 127   }
 128   ShouldNotReachHere();
 129   return NULL;
 130 }
 131 
 132 //------------------------------hash_find_insert-------------------------------
 133 // Find in hash table, insert if not already present
 134 // Used to preserve unique entries in hash table
 135 Node *NodeHash::hash_find_insert( Node *n ) {
 136   // n->set_hash( );
 137   uint hash = n->hash();
 138   if (hash == Node::NO_HASH) {
 139     debug_only( _lookup_misses++ );
 140     return NULL;
 141   }
 142   uint key = hash & (_max-1);
 143   uint stride = key | 0x01;     // stride must be relatively prime to table siz
 144   uint first_sentinel = 0;      // replace a sentinel if seen.
 145   debug_only( _look_probes++ );
 146   Node *k = _table[key];        // Get hashed value
 147   if( !k ) {                    // ?Miss?
 148     debug_only( _lookup_misses++ );
 149     _table[key] = n;            // Insert into table!
 150     debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
 151     check_grow();               // Grow table if insert hit limit
 152     return NULL;                // Miss!
 153   }
 154   else if( k == _sentinel ) {
 155     first_sentinel = key;      // Can insert here
 156   }
 157 
 158   int op = n->Opcode();
 159   uint req = n->req();
 160   while( 1 ) {                  // While probing hash table
 161     if( k->req() == req &&      // Same count of inputs
 162         k->Opcode() == op ) {   // Same Opcode
 163       for( uint i=0; i<req; i++ )
 164         if( n->in(i)!=k->in(i)) // Different inputs?
 165           goto collision;       // "goto" is a speed hack...
 166       if( n->cmp(*k) ) {        // Check for any special bits
 167         debug_only( _lookup_hits++ );
 168         return k;               // Hit!
 169       }
 170     }
 171   collision:
 172     debug_only( _look_probes++ );
 173     key = (key + stride) & (_max-1); // Stride through table w/ relative prime
 174     k = _table[key];            // Get hashed value
 175     if( !k ) {                  // ?Miss?
 176       debug_only( _lookup_misses++ );
 177       key = (first_sentinel == 0) ? key : first_sentinel; // ?saw sentinel?
 178       _table[key] = n;          // Insert into table!
 179       debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
 180       check_grow();             // Grow table if insert hit limit
 181       return NULL;              // Miss!
 182     }
 183     else if( first_sentinel == 0 && k == _sentinel ) {
 184       first_sentinel = key;    // Can insert here
 185     }
 186 
 187   }
 188   ShouldNotReachHere();
 189   return NULL;
 190 }
 191 
 192 //------------------------------hash_insert------------------------------------
 193 // Insert into hash table
 194 void NodeHash::hash_insert( Node *n ) {
 195   // // "conflict" comments -- print nodes that conflict
 196   // bool conflict = false;
 197   // n->set_hash();
 198   uint hash = n->hash();
 199   if (hash == Node::NO_HASH) {
 200     return;
 201   }
 202   check_grow();
 203   uint key = hash & (_max-1);
 204   uint stride = key | 0x01;
 205 
 206   while( 1 ) {                  // While probing hash table
 207     debug_only( _insert_probes++ );
 208     Node *k = _table[key];      // Get hashed value
 209     if( !k || (k == _sentinel) ) break;       // Found a slot
 210     assert( k != n, "already inserted" );
 211     // if( PrintCompilation && PrintOptoStatistics && Verbose ) { tty->print("  conflict: "); k->dump(); conflict = true; }
 212     key = (key + stride) & (_max-1); // Stride through table w/ relative prime
 213   }
 214   _table[key] = n;              // Insert into table!
 215   debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
 216   // if( conflict ) { n->dump(); }
 217 }
 218 
 219 //------------------------------hash_delete------------------------------------
 220 // Replace in hash table with sentinel
 221 bool NodeHash::hash_delete( const Node *n ) {
 222   Node *k;
 223   uint hash = n->hash();
 224   if (hash == Node::NO_HASH) {
 225     debug_only( _delete_misses++ );
 226     return false;
 227   }
 228   uint key = hash & (_max-1);
 229   uint stride = key | 0x01;
 230   debug_only( uint counter = 0; );
 231   for( ; /* (k != NULL) && (k != _sentinel) */; ) {
 232     debug_only( counter++ );
 233     debug_only( _delete_probes++ );
 234     k = _table[key];            // Get hashed value
 235     if( !k ) {                  // Miss?
 236       debug_only( _delete_misses++ );
 237 #ifdef ASSERT
 238       if( VerifyOpto ) {
 239         for( uint i=0; i < _max; i++ )
 240           assert( _table[i] != n, "changed edges with rehashing" );
 241       }
 242 #endif
 243       return false;             // Miss! Not in chain
 244     }
 245     else if( n == k ) {
 246       debug_only( _delete_hits++ );
 247       _table[key] = _sentinel;  // Hit! Label as deleted entry
 248       debug_only(((Node*)n)->exit_hash_lock()); // Unlock the node upon removal from table.
 249       return true;
 250     }
 251     else {
 252       // collision: move through table with prime offset
 253       key = (key + stride/*7*/) & (_max-1);
 254       assert( counter <= _insert_limit, "Cycle in hash-table");
 255     }
 256   }
 257   ShouldNotReachHere();
 258   return false;
 259 }
 260 
 261 //------------------------------round_up---------------------------------------
 262 // Round up to nearest power of 2
 263 uint NodeHash::round_up( uint x ) {
 264   x += (x>>2);                  // Add 25% slop
 265   if( x <16 ) return 16;        // Small stuff
 266   uint i=16;
 267   while( i < x ) i <<= 1;       // Double to fit
 268   return i;                     // Return hash table size
 269 }
 270 
 271 //------------------------------grow-------------------------------------------
 272 // Grow _table to next power of 2 and insert old entries
 273 void  NodeHash::grow() {
 274   // Record old state
 275   uint   old_max   = _max;
 276   Node **old_table = _table;
 277   // Construct new table with twice the space
 278   _grows++;
 279   _total_inserts       += _inserts;
 280   _total_insert_probes += _insert_probes;
 281   _inserts         = 0;
 282   _insert_probes   = 0;
 283   _max     = _max << 1;
 284   _table   = NEW_ARENA_ARRAY( _a , Node* , _max ); // (Node**)_a->Amalloc( _max * sizeof(Node*) );
 285   memset(_table,0,sizeof(Node*)*_max);
 286   _insert_limit = insert_limit();
 287   // Insert old entries into the new table
 288   for( uint i = 0; i < old_max; i++ ) {
 289     Node *m = *old_table++;
 290     if( !m || m == _sentinel ) continue;
 291     debug_only(m->exit_hash_lock()); // Unlock the node upon removal from old table.
 292     hash_insert(m);
 293   }
 294 }
 295 
 296 //------------------------------clear------------------------------------------
 297 // Clear all entries in _table to NULL but keep storage
 298 void  NodeHash::clear() {
 299 #ifdef ASSERT
 300   // Unlock all nodes upon removal from table.
 301   for (uint i = 0; i < _max; i++) {
 302     Node* n = _table[i];
 303     if (!n || n == _sentinel)  continue;
 304     n->exit_hash_lock();
 305   }
 306 #endif
 307 
 308   memset( _table, 0, _max * sizeof(Node*) );
 309 }
 310 
 311 //-----------------------remove_useless_nodes----------------------------------
 312 // Remove useless nodes from value table,
 313 // implementation does not depend on hash function
 314 void NodeHash::remove_useless_nodes(VectorSet &useful) {
 315 
 316   // Dead nodes in the hash table inherited from GVN should not replace
 317   // existing nodes, remove dead nodes.
 318   uint max = size();
 319   Node *sentinel_node = sentinel();
 320   for( uint i = 0; i < max; ++i ) {
 321     Node *n = at(i);
 322     if(n != NULL && n != sentinel_node && !useful.test(n->_idx)) {
 323       debug_only(n->exit_hash_lock()); // Unlock the node when removed
 324       _table[i] = sentinel_node;       // Replace with placeholder
 325     }
 326   }
 327 }
 328 
 329 
 330 void NodeHash::check_no_speculative_types() {
 331 #ifdef ASSERT
 332   uint max = size();
 333   Node *sentinel_node = sentinel();
 334   for (uint i = 0; i < max; ++i) {
 335     Node *n = at(i);
 336     if(n != NULL && n != sentinel_node && n->is_Type()) {
 337       TypeNode* tn = n->as_Type();
 338       const Type* t = tn->type();
 339       const Type* t_no_spec = t->remove_speculative();
 340       assert(t == t_no_spec, "dead node in hash table or missed node during speculative cleanup");
 341     }
 342   }
 343 #endif
 344 }
 345 
 346 #ifndef PRODUCT
 347 //------------------------------dump-------------------------------------------
 348 // Dump statistics for the hash table
 349 void NodeHash::dump() {
 350   _total_inserts       += _inserts;
 351   _total_insert_probes += _insert_probes;
 352   if (PrintCompilation && PrintOptoStatistics && Verbose && (_inserts > 0)) {
 353     if (WizardMode) {
 354       for (uint i=0; i<_max; i++) {
 355         if (_table[i])
 356           tty->print("%d/%d/%d ",i,_table[i]->hash()&(_max-1),_table[i]->_idx);
 357       }
 358     }
 359     tty->print("\nGVN Hash stats:  %d grows to %d max_size\n", _grows, _max);
 360     tty->print("  %d/%d (%8.1f%% full)\n", _inserts, _max, (double)_inserts/_max*100.0);
 361     tty->print("  %dp/(%dh+%dm) (%8.2f probes/lookup)\n", _look_probes, _lookup_hits, _lookup_misses, (double)_look_probes/(_lookup_hits+_lookup_misses));
 362     tty->print("  %dp/%di (%8.2f probes/insert)\n", _total_insert_probes, _total_inserts, (double)_total_insert_probes/_total_inserts);
 363     // sentinels increase lookup cost, but not insert cost
 364     assert((_lookup_misses+_lookup_hits)*4+100 >= _look_probes, "bad hash function");
 365     assert( _inserts+(_inserts>>3) < _max, "table too full" );
 366     assert( _inserts*3+100 >= _insert_probes, "bad hash function" );
 367   }
 368 }
 369 
 370 Node *NodeHash::find_index(uint idx) { // For debugging
 371   // Find an entry by its index value
 372   for( uint i = 0; i < _max; i++ ) {
 373     Node *m = _table[i];
 374     if( !m || m == _sentinel ) continue;
 375     if( m->_idx == (uint)idx ) return m;
 376   }
 377   return NULL;
 378 }
 379 #endif
 380 
 381 #ifdef ASSERT
 382 NodeHash::~NodeHash() {
 383   // Unlock all nodes upon destruction of table.
 384   if (_table != (Node**)badAddress)  clear();
 385 }
 386 
 387 void NodeHash::operator=(const NodeHash& nh) {
 388   // Unlock all nodes upon replacement of table.
 389   if (&nh == this)  return;
 390   if (_table != (Node**)badAddress)  clear();
 391   memcpy(this, &nh, sizeof(*this));
 392   // Do not increment hash_lock counts again.
 393   // Instead, be sure we never again use the source table.
 394   ((NodeHash*)&nh)->_table = (Node**)badAddress;
 395 }
 396 
 397 
 398 #endif
 399 
 400 
 401 //=============================================================================
 402 //------------------------------PhaseRemoveUseless-----------------------------
 403 // 1) Use a breadthfirst walk to collect useful nodes reachable from root.
 404 PhaseRemoveUseless::PhaseRemoveUseless(PhaseGVN *gvn, Unique_Node_List *worklist, PhaseNumber phase_num) : Phase(phase_num),
 405   _useful(Thread::current()->resource_area()) {
 406 
 407   // Implementation requires 'UseLoopSafepoints == true' and an edge from root
 408   // to each SafePointNode at a backward branch.  Inserted in add_safepoint().
 409   if( !UseLoopSafepoints || !OptoRemoveUseless ) return;
 410 
 411   // Identify nodes that are reachable from below, useful.
 412   C->identify_useful_nodes(_useful);
 413   // Update dead node list
 414   C->update_dead_node_list(_useful);
 415 
 416   // Remove all useless nodes from PhaseValues' recorded types
 417   // Must be done before disconnecting nodes to preserve hash-table-invariant
 418   gvn->remove_useless_nodes(_useful.member_set());
 419 
 420   // Remove all useless nodes from future worklist
 421   worklist->remove_useless_nodes(_useful.member_set());
 422 
 423   // Disconnect 'useless' nodes that are adjacent to useful nodes
 424   C->remove_useless_nodes(_useful);
 425 }
 426 
 427 //=============================================================================
 428 //------------------------------PhaseRenumberLive------------------------------
 429 // First, remove useless nodes (equivalent to identifying live nodes).
 430 // Then, renumber live nodes.
 431 //
 432 // The set of live nodes is returned by PhaseRemoveUseless in the _useful structure.
 433 // If the number of live nodes is 'x' (where 'x' == _useful.size()), then the
 434 // PhaseRenumberLive updates the node ID of each node (the _idx field) with a unique
 435 // value in the range [0, x).
 436 //
 437 // At the end of the PhaseRenumberLive phase, the compiler's count of unique nodes is
 438 // updated to 'x' and the list of dead nodes is reset (as there are no dead nodes).
 439 //
 440 // The PhaseRenumberLive phase updates two data structures with the new node IDs.
 441 // (1) The worklist is used by the PhaseIterGVN phase to identify nodes that must be
 442 // processed. A new worklist (with the updated node IDs) is returned in 'new_worklist'.
 443 // (2) Type information (the field PhaseGVN::_types) maps type information to each
 444 // node ID. The mapping is updated to use the new node IDs as well. Updated type
 445 // information is returned in PhaseGVN::_types.
 446 //
 447 // The PhaseRenumberLive phase does not preserve the order of elements in the worklist.
 448 //
 449 // Other data structures used by the compiler are not updated. The hash table for value
 450 // numbering (the field PhaseGVN::_table) is not updated because computing the hash
 451 // values is not based on node IDs. The field PhaseGVN::_nodes is not updated either
 452 // because it is empty wherever PhaseRenumberLive is used.
 453 PhaseRenumberLive::PhaseRenumberLive(PhaseGVN* gvn,
 454                                      Unique_Node_List* worklist, Unique_Node_List* new_worklist,
 455                                      PhaseNumber phase_num) :
 456   PhaseRemoveUseless(gvn, worklist, Remove_Useless_And_Renumber_Live) {
 457 
 458   assert(RenumberLiveNodes, "RenumberLiveNodes must be set to true for node renumbering to take place");
 459   assert(C->live_nodes() == _useful.size(), "the number of live nodes must match the number of useful nodes");
 460   assert(gvn->nodes_size() == 0, "GVN must not contain any nodes at this point");
 461 
 462   uint old_unique_count = C->unique();
 463   uint live_node_count = C->live_nodes();
 464   uint worklist_size = worklist->size();
 465 
 466   // Storage for the updated type information.
 467   Type_Array new_type_array(C->comp_arena());
 468 
 469   // Iterate over the set of live nodes.
 470   uint current_idx = 0; // The current new node ID. Incremented after every assignment.
 471   for (uint i = 0; i < _useful.size(); i++) {
 472     Node* n = _useful.at(i);
 473     // Sanity check that fails if we ever decide to execute this phase after EA
 474     assert(!n->is_Phi() || n->as_Phi()->inst_mem_id() == -1, "should not be linked to data Phi");
 475     const Type* type = gvn->type_or_null(n);
 476     new_type_array.map(current_idx, type);
 477 
 478     bool in_worklist = false;
 479     if (worklist->member(n)) {
 480       in_worklist = true;
 481     }
 482 
 483     n->set_idx(current_idx); // Update node ID.
 484 
 485     if (in_worklist) {
 486       new_worklist->push(n);
 487     }
 488 
 489     current_idx++;
 490   }
 491 
 492   assert(worklist_size == new_worklist->size(), "the new worklist must have the same size as the original worklist");
 493   assert(live_node_count == current_idx, "all live nodes must be processed");
 494 
 495   // Replace the compiler's type information with the updated type information.
 496   gvn->replace_types(new_type_array);
 497 
 498   // Update the unique node count of the compilation to the number of currently live nodes.
 499   C->set_unique(live_node_count);
 500 
 501   // Set the dead node count to 0 and reset dead node list.
 502   C->reset_dead_node_list();
 503 }
 504 
 505 
 506 //=============================================================================
 507 //------------------------------PhaseTransform---------------------------------
 508 PhaseTransform::PhaseTransform( PhaseNumber pnum ) : Phase(pnum),
 509   _arena(Thread::current()->resource_area()),
 510   _nodes(_arena),
 511   _types(_arena)
 512 {
 513   init_con_caches();
 514 #ifndef PRODUCT
 515   clear_progress();
 516   clear_transforms();
 517   set_allow_progress(true);
 518 #endif
 519   // Force allocation for currently existing nodes
 520   _types.map(C->unique(), NULL);
 521 }
 522 
 523 //------------------------------PhaseTransform---------------------------------
 524 PhaseTransform::PhaseTransform( Arena *arena, PhaseNumber pnum ) : Phase(pnum),
 525   _arena(arena),
 526   _nodes(arena),
 527   _types(arena)
 528 {
 529   init_con_caches();
 530 #ifndef PRODUCT
 531   clear_progress();
 532   clear_transforms();
 533   set_allow_progress(true);
 534 #endif
 535   // Force allocation for currently existing nodes
 536   _types.map(C->unique(), NULL);
 537 }
 538 
 539 //------------------------------PhaseTransform---------------------------------
 540 // Initialize with previously generated type information
 541 PhaseTransform::PhaseTransform( PhaseTransform *pt, PhaseNumber pnum ) : Phase(pnum),
 542   _arena(pt->_arena),
 543   _nodes(pt->_nodes),
 544   _types(pt->_types)
 545 {
 546   init_con_caches();
 547 #ifndef PRODUCT
 548   clear_progress();
 549   clear_transforms();
 550   set_allow_progress(true);
 551 #endif
 552 }
 553 
 554 void PhaseTransform::init_con_caches() {
 555   memset(_icons,0,sizeof(_icons));
 556   memset(_lcons,0,sizeof(_lcons));
 557   memset(_zcons,0,sizeof(_zcons));
 558 }
 559 
 560 
 561 //--------------------------------find_int_type--------------------------------
 562 const TypeInt* PhaseTransform::find_int_type(Node* n) {
 563   if (n == NULL)  return NULL;
 564   // Call type_or_null(n) to determine node's type since we might be in
 565   // parse phase and call n->Value() may return wrong type.
 566   // (For example, a phi node at the beginning of loop parsing is not ready.)
 567   const Type* t = type_or_null(n);
 568   if (t == NULL)  return NULL;
 569   return t->isa_int();
 570 }
 571 
 572 
 573 //-------------------------------find_long_type--------------------------------
 574 const TypeLong* PhaseTransform::find_long_type(Node* n) {
 575   if (n == NULL)  return NULL;
 576   // (See comment above on type_or_null.)
 577   const Type* t = type_or_null(n);
 578   if (t == NULL)  return NULL;
 579   return t->isa_long();
 580 }
 581 
 582 
 583 #ifndef PRODUCT
 584 void PhaseTransform::dump_old2new_map() const {
 585   _nodes.dump();
 586 }
 587 
 588 void PhaseTransform::dump_new( uint nidx ) const {
 589   for( uint i=0; i<_nodes.Size(); i++ )
 590     if( _nodes[i] && _nodes[i]->_idx == nidx ) {
 591       _nodes[i]->dump();
 592       tty->cr();
 593       tty->print_cr("Old index= %d",i);
 594       return;
 595     }
 596   tty->print_cr("Node %d not found in the new indices", nidx);
 597 }
 598 
 599 //------------------------------dump_types-------------------------------------
 600 void PhaseTransform::dump_types( ) const {
 601   _types.dump();
 602 }
 603 
 604 //------------------------------dump_nodes_and_types---------------------------
 605 void PhaseTransform::dump_nodes_and_types(const Node *root, uint depth, bool only_ctrl) {
 606   VectorSet visited(Thread::current()->resource_area());
 607   dump_nodes_and_types_recur( root, depth, only_ctrl, visited );
 608 }
 609 
 610 //------------------------------dump_nodes_and_types_recur---------------------
 611 void PhaseTransform::dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited) {
 612   if( !n ) return;
 613   if( depth == 0 ) return;
 614   if( visited.test_set(n->_idx) ) return;
 615   for( uint i=0; i<n->len(); i++ ) {
 616     if( only_ctrl && !(n->is_Region()) && i != TypeFunc::Control ) continue;
 617     dump_nodes_and_types_recur( n->in(i), depth-1, only_ctrl, visited );
 618   }
 619   n->dump();
 620   if (type_or_null(n) != NULL) {
 621     tty->print("      "); type(n)->dump(); tty->cr();
 622   }
 623 }
 624 
 625 #endif
 626 
 627 
 628 //=============================================================================
 629 //------------------------------PhaseValues------------------------------------
 630 // Set minimum table size to "255"
 631 PhaseValues::PhaseValues( Arena *arena, uint est_max_size ) : PhaseTransform(arena, GVN), _table(arena, est_max_size) {
 632   NOT_PRODUCT( clear_new_values(); )
 633 }
 634 
 635 //------------------------------PhaseValues------------------------------------
 636 // Set minimum table size to "255"
 637 PhaseValues::PhaseValues( PhaseValues *ptv ) : PhaseTransform( ptv, GVN ),
 638   _table(&ptv->_table) {
 639   NOT_PRODUCT( clear_new_values(); )
 640 }
 641 
 642 //------------------------------PhaseValues------------------------------------
 643 // Used by +VerifyOpto.  Clear out hash table but copy _types array.
 644 PhaseValues::PhaseValues( PhaseValues *ptv, const char *dummy ) : PhaseTransform( ptv, GVN ),
 645   _table(ptv->arena(),ptv->_table.size()) {
 646   NOT_PRODUCT( clear_new_values(); )
 647 }
 648 
 649 //------------------------------~PhaseValues-----------------------------------
 650 #ifndef PRODUCT
 651 PhaseValues::~PhaseValues() {
 652   _table.dump();
 653 
 654   // Statistics for value progress and efficiency
 655   if( PrintCompilation && Verbose && WizardMode ) {
 656     tty->print("\n%sValues: %d nodes ---> %d/%d (%d)",
 657       is_IterGVN() ? "Iter" : "    ", C->unique(), made_progress(), made_transforms(), made_new_values());
 658     if( made_transforms() != 0 ) {
 659       tty->print_cr("  ratio %f", made_progress()/(float)made_transforms() );
 660     } else {
 661       tty->cr();
 662     }
 663   }
 664 }
 665 #endif
 666 
 667 //------------------------------makecon----------------------------------------
 668 ConNode* PhaseTransform::makecon(const Type *t) {
 669   assert(t->singleton(), "must be a constant");
 670   assert(!t->empty() || t == Type::TOP, "must not be vacuous range");
 671   switch (t->base()) {  // fast paths
 672   case Type::Half:
 673   case Type::Top:  return (ConNode*) C->top();
 674   case Type::Int:  return intcon( t->is_int()->get_con() );
 675   case Type::Long: return longcon( t->is_long()->get_con() );
 676   }
 677   if (t->is_zero_type())
 678     return zerocon(t->basic_type());
 679   return uncached_makecon(t);
 680 }
 681 
 682 //--------------------------uncached_makecon-----------------------------------
 683 // Make an idealized constant - one of ConINode, ConPNode, etc.
 684 ConNode* PhaseValues::uncached_makecon(const Type *t) {
 685   assert(t->singleton(), "must be a constant");
 686   ConNode* x = ConNode::make(C, t);
 687   ConNode* k = (ConNode*)hash_find_insert(x); // Value numbering
 688   if (k == NULL) {
 689     set_type(x, t);             // Missed, provide type mapping
 690     GrowableArray<Node_Notes*>* nna = C->node_note_array();
 691     if (nna != NULL) {
 692       Node_Notes* loc = C->locate_node_notes(nna, x->_idx, true);
 693       loc->clear(); // do not put debug info on constants
 694     }
 695   } else {
 696     x->destruct();              // Hit, destroy duplicate constant
 697     x = k;                      // use existing constant
 698   }
 699   return x;
 700 }
 701 
 702 //------------------------------intcon-----------------------------------------
 703 // Fast integer constant.  Same as "transform(new ConINode(TypeInt::make(i)))"
 704 ConINode* PhaseTransform::intcon(int i) {
 705   // Small integer?  Check cache! Check that cached node is not dead
 706   if (i >= _icon_min && i <= _icon_max) {
 707     ConINode* icon = _icons[i-_icon_min];
 708     if (icon != NULL && icon->in(TypeFunc::Control) != NULL)
 709       return icon;
 710   }
 711   ConINode* icon = (ConINode*) uncached_makecon(TypeInt::make(i));
 712   assert(icon->is_Con(), "");
 713   if (i >= _icon_min && i <= _icon_max)
 714     _icons[i-_icon_min] = icon;   // Cache small integers
 715   return icon;
 716 }
 717 
 718 //------------------------------longcon----------------------------------------
 719 // Fast long constant.
 720 ConLNode* PhaseTransform::longcon(jlong l) {
 721   // Small integer?  Check cache! Check that cached node is not dead
 722   if (l >= _lcon_min && l <= _lcon_max) {
 723     ConLNode* lcon = _lcons[l-_lcon_min];
 724     if (lcon != NULL && lcon->in(TypeFunc::Control) != NULL)
 725       return lcon;
 726   }
 727   ConLNode* lcon = (ConLNode*) uncached_makecon(TypeLong::make(l));
 728   assert(lcon->is_Con(), "");
 729   if (l >= _lcon_min && l <= _lcon_max)
 730     _lcons[l-_lcon_min] = lcon;      // Cache small integers
 731   return lcon;
 732 }
 733 
 734 //------------------------------zerocon-----------------------------------------
 735 // Fast zero or null constant. Same as "transform(ConNode::make(Type::get_zero_type(bt)))"
 736 ConNode* PhaseTransform::zerocon(BasicType bt) {
 737   assert((uint)bt <= _zcon_max, "domain check");
 738   ConNode* zcon = _zcons[bt];
 739   if (zcon != NULL && zcon->in(TypeFunc::Control) != NULL)
 740     return zcon;
 741   zcon = (ConNode*) uncached_makecon(Type::get_zero_type(bt));
 742   _zcons[bt] = zcon;
 743   return zcon;
 744 }
 745 
 746 
 747 
 748 //=============================================================================
 749 //------------------------------transform--------------------------------------
 750 // Return a node which computes the same function as this node, but in a
 751 // faster or cheaper fashion.
 752 Node *PhaseGVN::transform( Node *n ) {
 753   return transform_no_reclaim(n);
 754 }
 755 
 756 //------------------------------transform--------------------------------------
 757 // Return a node which computes the same function as this node, but
 758 // in a faster or cheaper fashion.
 759 Node *PhaseGVN::transform_no_reclaim( Node *n ) {
 760   NOT_PRODUCT( set_transforms(); )
 761 
 762   // Apply the Ideal call in a loop until it no longer applies
 763   Node *k = n;
 764   NOT_PRODUCT( uint loop_count = 0; )
 765   while( 1 ) {
 766     Node *i = k->Ideal(this, /*can_reshape=*/false);
 767     if( !i ) break;
 768     assert( i->_idx >= k->_idx, "Idealize should return new nodes, use Identity to return old nodes" );
 769     k = i;
 770     assert(loop_count++ < K, "infinite loop in PhaseGVN::transform");
 771   }
 772   NOT_PRODUCT( if( loop_count != 0 ) { set_progress(); } )
 773 
 774 
 775   // If brand new node, make space in type array.
 776   ensure_type_or_null(k);
 777 
 778   // Since I just called 'Value' to compute the set of run-time values
 779   // for this Node, and 'Value' is non-local (and therefore expensive) I'll
 780   // cache Value.  Later requests for the local phase->type of this Node can
 781   // use the cached Value instead of suffering with 'bottom_type'.
 782   const Type *t = k->Value(this); // Get runtime Value set
 783   assert(t != NULL, "value sanity");
 784   if (type_or_null(k) != t) {
 785 #ifndef PRODUCT
 786     // Do not count initial visit to node as a transformation
 787     if (type_or_null(k) == NULL) {
 788       inc_new_values();
 789       set_progress();
 790     }
 791 #endif
 792     set_type(k, t);
 793     // If k is a TypeNode, capture any more-precise type permanently into Node
 794     k->raise_bottom_type(t);
 795   }
 796 
 797   if( t->singleton() && !k->is_Con() ) {
 798     NOT_PRODUCT( set_progress(); )
 799     return makecon(t);          // Turn into a constant
 800   }
 801 
 802   // Now check for Identities
 803   Node *i = k->Identity(this);  // Look for a nearby replacement
 804   if( i != k ) {                // Found? Return replacement!
 805     NOT_PRODUCT( set_progress(); )
 806     return i;
 807   }
 808 
 809   // Global Value Numbering
 810   i = hash_find_insert(k);      // Insert if new
 811   if( i && (i != k) ) {
 812     // Return the pre-existing node
 813     NOT_PRODUCT( set_progress(); )
 814     return i;
 815   }
 816 
 817   // Return Idealized original
 818   return k;
 819 }
 820 
 821 #ifdef ASSERT
 822 //------------------------------dead_loop_check--------------------------------
 823 // Check for a simple dead loop when a data node references itself directly
 824 // or through an other data node excluding cons and phis.
 825 void PhaseGVN::dead_loop_check( Node *n ) {
 826   // Phi may reference itself in a loop
 827   if (n != NULL && !n->is_dead_loop_safe() && !n->is_CFG()) {
 828     // Do 2 levels check and only data inputs.
 829     bool no_dead_loop = true;
 830     uint cnt = n->req();
 831     for (uint i = 1; i < cnt && no_dead_loop; i++) {
 832       Node *in = n->in(i);
 833       if (in == n) {
 834         no_dead_loop = false;
 835       } else if (in != NULL && !in->is_dead_loop_safe()) {
 836         uint icnt = in->req();
 837         for (uint j = 1; j < icnt && no_dead_loop; j++) {
 838           if (in->in(j) == n || in->in(j) == in)
 839             no_dead_loop = false;
 840         }
 841       }
 842     }
 843     if (!no_dead_loop) n->dump(3);
 844     assert(no_dead_loop, "dead loop detected");
 845   }
 846 }
 847 #endif
 848 
 849 //=============================================================================
 850 //------------------------------PhaseIterGVN-----------------------------------
 851 // Initialize hash table to fresh and clean for +VerifyOpto
 852 PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn, const char *dummy ) : PhaseGVN(igvn,dummy), _worklist( ),
 853                                                                       _stack(C->live_nodes() >> 1),
 854                                                                       _delay_transform(false) {
 855 }
 856 
 857 //------------------------------PhaseIterGVN-----------------------------------
 858 // Initialize with previous PhaseIterGVN info; used by PhaseCCP
 859 PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn ) : PhaseGVN(igvn),
 860                                                    _worklist( igvn->_worklist ),
 861                                                    _stack( igvn->_stack ),
 862                                                    _delay_transform(igvn->_delay_transform)
 863 {
 864 }
 865 
 866 //------------------------------PhaseIterGVN-----------------------------------
 867 // Initialize with previous PhaseGVN info from Parser
 868 PhaseIterGVN::PhaseIterGVN( PhaseGVN *gvn ) : PhaseGVN(gvn),
 869                                               _worklist(*C->for_igvn()),
 870 // TODO: Before incremental inlining it was allocated only once and it was fine. Now that
 871 //       the constructor is used in incremental inlining, this consumes too much memory:
 872 //                                            _stack(C->live_nodes() >> 1),
 873 //       So, as a band-aid, we replace this by:
 874                                               _stack(C->comp_arena(), 32),
 875                                               _delay_transform(false)
 876 {
 877   uint max;
 878 
 879   // Dead nodes in the hash table inherited from GVN were not treated as
 880   // roots during def-use info creation; hence they represent an invisible
 881   // use.  Clear them out.
 882   max = _table.size();
 883   for( uint i = 0; i < max; ++i ) {
 884     Node *n = _table.at(i);
 885     if(n != NULL && n != _table.sentinel() && n->outcnt() == 0) {
 886       if( n->is_top() ) continue;
 887       assert( false, "Parse::remove_useless_nodes missed this node");
 888       hash_delete(n);
 889     }
 890   }
 891 
 892   // Any Phis or Regions on the worklist probably had uses that could not
 893   // make more progress because the uses were made while the Phis and Regions
 894   // were in half-built states.  Put all uses of Phis and Regions on worklist.
 895   max = _worklist.size();
 896   for( uint j = 0; j < max; j++ ) {
 897     Node *n = _worklist.at(j);
 898     uint uop = n->Opcode();
 899     if( uop == Op_Phi || uop == Op_Region ||
 900         n->is_Type() ||
 901         n->is_Mem() )
 902       add_users_to_worklist(n);
 903   }
 904 }
 905 
 906 
 907 #ifndef PRODUCT
 908 void PhaseIterGVN::verify_step(Node* n) {
 909   _verify_window[_verify_counter % _verify_window_size] = n;
 910   ++_verify_counter;
 911   ResourceMark rm;
 912   ResourceArea *area = Thread::current()->resource_area();
 913   VectorSet old_space(area), new_space(area);
 914   if (C->unique() < 1000 ||
 915       0 == _verify_counter % (C->unique() < 10000 ? 10 : 100)) {
 916     ++_verify_full_passes;
 917     Node::verify_recur(C->root(), -1, old_space, new_space);
 918   }
 919   const int verify_depth = 4;
 920   for ( int i = 0; i < _verify_window_size; i++ ) {
 921     Node* n = _verify_window[i];
 922     if ( n == NULL )  continue;
 923     if( n->in(0) == NodeSentinel ) {  // xform_idom
 924       _verify_window[i] = n->in(1);
 925       --i; continue;
 926     }
 927     // Typical fanout is 1-2, so this call visits about 6 nodes.
 928     Node::verify_recur(n, verify_depth, old_space, new_space);
 929   }
 930 }
 931 #endif
 932 
 933 
 934 //------------------------------init_worklist----------------------------------
 935 // Initialize worklist for each node.
 936 void PhaseIterGVN::init_worklist( Node *n ) {
 937   if( _worklist.member(n) ) return;
 938   _worklist.push(n);
 939   uint cnt = n->req();
 940   for( uint i =0 ; i < cnt; i++ ) {
 941     Node *m = n->in(i);
 942     if( m ) init_worklist(m);
 943   }
 944 }
 945 
 946 //------------------------------optimize---------------------------------------
 947 void PhaseIterGVN::optimize() {
 948   debug_only(uint num_processed  = 0;);
 949 #ifndef PRODUCT
 950   {
 951     _verify_counter = 0;
 952     _verify_full_passes = 0;
 953     for ( int i = 0; i < _verify_window_size; i++ ) {
 954       _verify_window[i] = NULL;
 955     }
 956   }
 957 #endif
 958 
 959 #ifdef ASSERT
 960   Node* prev = NULL;
 961   uint rep_cnt = 0;
 962 #endif
 963   uint loop_count = 0;
 964 
 965   // Pull from worklist; transform node;
 966   // If node has changed: update edge info and put uses on worklist.
 967   while( _worklist.size() ) {
 968     if (C->check_node_count(NodeLimitFudgeFactor * 2,
 969                             "out of nodes optimizing method")) {
 970       return;
 971     }
 972     Node *n  = _worklist.pop();
 973     if (++loop_count >= K * C->live_nodes()) {
 974       debug_only(n->dump(4);)
 975       assert(false, "infinite loop in PhaseIterGVN::optimize");
 976       C->record_method_not_compilable("infinite loop in PhaseIterGVN::optimize");
 977       return;
 978     }
 979 #ifdef ASSERT
 980     if (n == prev) {
 981       if (++rep_cnt > 3) {
 982         n->dump(4);
 983         assert(false, "loop in Ideal transformation");
 984       }
 985     } else {
 986       rep_cnt = 0;
 987     }
 988     prev = n;
 989 #endif
 990     if (TraceIterativeGVN && Verbose) {
 991       tty->print("  Pop ");
 992       NOT_PRODUCT( n->dump(); )
 993       debug_only(if( (num_processed++ % 100) == 0 ) _worklist.print_set();)
 994     }
 995 
 996     if (n->outcnt() != 0) {
 997 
 998 #ifndef PRODUCT
 999       uint wlsize = _worklist.size();
1000       const Type* oldtype = type_or_null(n);
1001 #endif //PRODUCT
1002 
1003       Node *nn = transform_old(n);
1004 
1005 #ifndef PRODUCT
1006       if (TraceIterativeGVN) {
1007         const Type* newtype = type_or_null(n);
1008         if (nn != n) {
1009           // print old node
1010           tty->print("< ");
1011           if (oldtype != newtype && oldtype != NULL) {
1012             oldtype->dump();
1013           }
1014           do { tty->print("\t"); } while (tty->position() < 16);
1015           tty->print("<");
1016           n->dump();
1017         }
1018         if (oldtype != newtype || nn != n) {
1019           // print new node and/or new type
1020           if (oldtype == NULL) {
1021             tty->print("* ");
1022           } else if (nn != n) {
1023             tty->print("> ");
1024           } else {
1025             tty->print("= ");
1026           }
1027           if (newtype == NULL) {
1028             tty->print("null");
1029           } else {
1030             newtype->dump();
1031           }
1032           do { tty->print("\t"); } while (tty->position() < 16);
1033           nn->dump();
1034         }
1035         if (Verbose && wlsize < _worklist.size()) {
1036           tty->print("  Push {");
1037           while (wlsize != _worklist.size()) {
1038             Node* pushed = _worklist.at(wlsize++);
1039             tty->print(" %d", pushed->_idx);
1040           }
1041           tty->print_cr(" }");
1042         }
1043       }
1044       if( VerifyIterativeGVN && nn != n ) {
1045         verify_step((Node*) NULL);  // ignore n, it might be subsumed
1046       }
1047 #endif
1048     } else if (!n->is_top()) {
1049       remove_dead_node(n);
1050     }
1051   }
1052 
1053 #ifndef PRODUCT
1054   C->verify_graph_edges();
1055   if( VerifyOpto && allow_progress() ) {
1056     // Must turn off allow_progress to enable assert and break recursion
1057     C->root()->verify();
1058     { // Check if any progress was missed using IterGVN
1059       // Def-Use info enables transformations not attempted in wash-pass
1060       // e.g. Region/Phi cleanup, ...
1061       // Null-check elision -- may not have reached fixpoint
1062       //                       do not propagate to dominated nodes
1063       ResourceMark rm;
1064       PhaseIterGVN igvn2(this,"Verify"); // Fresh and clean!
1065       // Fill worklist completely
1066       igvn2.init_worklist(C->root());
1067 
1068       igvn2.set_allow_progress(false);
1069       igvn2.optimize();
1070       igvn2.set_allow_progress(true);
1071     }
1072   }
1073   if ( VerifyIterativeGVN && PrintOpto ) {
1074     if ( _verify_counter == _verify_full_passes )
1075       tty->print_cr("VerifyIterativeGVN: %d transforms and verify passes",
1076                     (int) _verify_full_passes);
1077     else
1078       tty->print_cr("VerifyIterativeGVN: %d transforms, %d full verify passes",
1079                   (int) _verify_counter, (int) _verify_full_passes);
1080   }
1081 #endif
1082 }
1083 
1084 
1085 //------------------register_new_node_with_optimizer---------------------------
1086 // Register a new node with the optimizer.  Update the types array, the def-use
1087 // info.  Put on worklist.
1088 Node* PhaseIterGVN::register_new_node_with_optimizer(Node* n, Node* orig) {
1089   set_type_bottom(n);
1090   _worklist.push(n);
1091   if (orig != NULL)  C->copy_node_notes_to(n, orig);
1092   return n;
1093 }
1094 
1095 //------------------------------transform--------------------------------------
1096 // Non-recursive: idealize Node 'n' with respect to its inputs and its value
1097 Node *PhaseIterGVN::transform( Node *n ) {
1098   if (_delay_transform) {
1099     // Register the node but don't optimize for now
1100     register_new_node_with_optimizer(n);
1101     return n;
1102   }
1103 
1104   // If brand new node, make space in type array, and give it a type.
1105   ensure_type_or_null(n);
1106   if (type_or_null(n) == NULL) {
1107     set_type_bottom(n);
1108   }
1109 
1110   return transform_old(n);
1111 }
1112 
1113 //------------------------------transform_old----------------------------------
1114 Node *PhaseIterGVN::transform_old( Node *n ) {
1115 #ifndef PRODUCT
1116   debug_only(uint loop_count = 0;);
1117   set_transforms();
1118 #endif
1119   // Remove 'n' from hash table in case it gets modified
1120   _table.hash_delete(n);
1121   if( VerifyIterativeGVN ) {
1122    assert( !_table.find_index(n->_idx), "found duplicate entry in table");
1123   }
1124 
1125   // Apply the Ideal call in a loop until it no longer applies
1126   Node *k = n;
1127   DEBUG_ONLY(dead_loop_check(k);)
1128   DEBUG_ONLY(bool is_new = (k->outcnt() == 0);)
1129   Node *i = k->Ideal(this, /*can_reshape=*/true);
1130   assert(i != k || is_new || i->outcnt() > 0, "don't return dead nodes");
1131 #ifndef PRODUCT
1132   if( VerifyIterativeGVN )
1133     verify_step(k);
1134   if( i && VerifyOpto ) {
1135     if( !allow_progress() ) {
1136       if (i->is_Add() && i->outcnt() == 1) {
1137         // Switched input to left side because this is the only use
1138       } else if( i->is_If() && (i->in(0) == NULL) ) {
1139         // This IF is dead because it is dominated by an equivalent IF When
1140         // dominating if changed, info is not propagated sparsely to 'this'
1141         // Propagating this info further will spuriously identify other
1142         // progress.
1143         return i;
1144       } else
1145         set_progress();
1146     } else
1147       set_progress();
1148   }
1149 #endif
1150 
1151   while( i ) {
1152 #ifndef PRODUCT
1153     debug_only( if( loop_count >= K ) i->dump(4); )
1154     assert(loop_count < K, "infinite loop in PhaseIterGVN::transform");
1155     debug_only( loop_count++; )
1156 #endif
1157     assert((i->_idx >= k->_idx) || i->is_top(), "Idealize should return new nodes, use Identity to return old nodes");
1158     // Made a change; put users of original Node on worklist
1159     add_users_to_worklist( k );
1160     // Replacing root of transform tree?
1161     if( k != i ) {
1162       // Make users of old Node now use new.
1163       subsume_node( k, i );
1164       k = i;
1165     }
1166     DEBUG_ONLY(dead_loop_check(k);)
1167     // Try idealizing again
1168     DEBUG_ONLY(is_new = (k->outcnt() == 0);)
1169     i = k->Ideal(this, /*can_reshape=*/true);
1170     assert(i != k || is_new || i->outcnt() > 0, "don't return dead nodes");
1171 #ifndef PRODUCT
1172     if( VerifyIterativeGVN )
1173       verify_step(k);
1174     if( i && VerifyOpto ) set_progress();
1175 #endif
1176   }
1177 
1178   // If brand new node, make space in type array.
1179   ensure_type_or_null(k);
1180 
1181   // See what kind of values 'k' takes on at runtime
1182   const Type *t = k->Value(this);
1183   assert(t != NULL, "value sanity");
1184 
1185   // Since I just called 'Value' to compute the set of run-time values
1186   // for this Node, and 'Value' is non-local (and therefore expensive) I'll
1187   // cache Value.  Later requests for the local phase->type of this Node can
1188   // use the cached Value instead of suffering with 'bottom_type'.
1189   if (t != type_or_null(k)) {
1190     NOT_PRODUCT( set_progress(); )
1191     NOT_PRODUCT( inc_new_values();)
1192     set_type(k, t);
1193     // If k is a TypeNode, capture any more-precise type permanently into Node
1194     k->raise_bottom_type(t);
1195     // Move users of node to worklist
1196     add_users_to_worklist( k );
1197   }
1198 
1199   // If 'k' computes a constant, replace it with a constant
1200   if( t->singleton() && !k->is_Con() ) {
1201     NOT_PRODUCT( set_progress(); )
1202     Node *con = makecon(t);     // Make a constant
1203     add_users_to_worklist( k );
1204     subsume_node( k, con );     // Everybody using k now uses con
1205     return con;
1206   }
1207 
1208   // Now check for Identities
1209   i = k->Identity(this);        // Look for a nearby replacement
1210   if( i != k ) {                // Found? Return replacement!
1211     NOT_PRODUCT( set_progress(); )
1212     add_users_to_worklist( k );
1213     subsume_node( k, i );       // Everybody using k now uses i
1214     return i;
1215   }
1216 
1217   // Global Value Numbering
1218   i = hash_find_insert(k);      // Check for pre-existing node
1219   if( i && (i != k) ) {
1220     // Return the pre-existing node if it isn't dead
1221     NOT_PRODUCT( set_progress(); )
1222     add_users_to_worklist( k );
1223     subsume_node( k, i );       // Everybody using k now uses i
1224     return i;
1225   }
1226 
1227   // Return Idealized original
1228   return k;
1229 }
1230 
1231 //---------------------------------saturate------------------------------------
1232 const Type* PhaseIterGVN::saturate(const Type* new_type, const Type* old_type,
1233                                    const Type* limit_type) const {
1234   return new_type->narrow(old_type);
1235 }
1236 
1237 //------------------------------remove_globally_dead_node----------------------
1238 // Kill a globally dead Node.  All uses are also globally dead and are
1239 // aggressively trimmed.
1240 void PhaseIterGVN::remove_globally_dead_node( Node *dead ) {
1241   enum DeleteProgress {
1242     PROCESS_INPUTS,
1243     PROCESS_OUTPUTS
1244   };
1245   assert(_stack.is_empty(), "not empty");
1246   _stack.push(dead, PROCESS_INPUTS);
1247 
1248   while (_stack.is_nonempty()) {
1249     dead = _stack.node();
1250     if (dead->Opcode() == Op_SafePoint) {
1251       dead->as_SafePoint()->disconnect_from_root(this);
1252     }
1253     uint progress_state = _stack.index();
1254     assert(dead != C->root(), "killing root, eh?");
1255     assert(!dead->is_top(), "add check for top when pushing");
1256     NOT_PRODUCT( set_progress(); )
1257     if (progress_state == PROCESS_INPUTS) {
1258       // After following inputs, continue to outputs
1259       _stack.set_index(PROCESS_OUTPUTS);
1260       if (!dead->is_Con()) { // Don't kill cons but uses
1261         bool recurse = false;
1262         // Remove from hash table
1263         _table.hash_delete( dead );
1264         // Smash all inputs to 'dead', isolating him completely
1265         for (uint i = 0; i < dead->req(); i++) {
1266           Node *in = dead->in(i);
1267           if (in != NULL && in != C->top()) {  // Points to something?
1268             int nrep = dead->replace_edge(in, NULL);  // Kill edges
1269             assert((nrep > 0), "sanity");
1270             if (in->outcnt() == 0) { // Made input go dead?
1271               _stack.push(in, PROCESS_INPUTS); // Recursively remove
1272               recurse = true;
1273             } else if (in->outcnt() == 1 &&
1274                        in->has_special_unique_user()) {
1275               _worklist.push(in->unique_out());
1276             } else if (in->outcnt() <= 2 && dead->is_Phi()) {
1277               if (in->Opcode() == Op_Region) {
1278                 _worklist.push(in);
1279               } else if (in->is_Store()) {
1280                 DUIterator_Fast imax, i = in->fast_outs(imax);
1281                 _worklist.push(in->fast_out(i));
1282                 i++;
1283                 if (in->outcnt() == 2) {
1284                   _worklist.push(in->fast_out(i));
1285                   i++;
1286                 }
1287                 assert(!(i < imax), "sanity");
1288               }              
1289             } else if (in->Opcode() == Op_AddP && CallLeafNode::has_only_g1_wb_pre_uses(in)) {
1290               add_users_to_worklist(in);
1291             }
1292             if (ReduceFieldZeroing && dead->is_Load() && i == MemNode::Memory &&
1293                 in->is_Proj() && in->in(0) != NULL && in->in(0)->is_Initialize()) {
1294               // A Load that directly follows an InitializeNode is
1295               // going away. The Stores that follow are candidates
1296               // again to be captured by the InitializeNode.
1297               for (DUIterator_Fast jmax, j = in->fast_outs(jmax); j < jmax; j++) {
1298                 Node *n = in->fast_out(j);
1299                 if (n->is_Store()) {
1300                   _worklist.push(n);
1301                 }
1302               }
1303             }
1304           } // if (in != NULL && in != C->top())
1305         } // for (uint i = 0; i < dead->req(); i++)
1306         if (recurse) {
1307           continue;
1308         }
1309       } // if (!dead->is_Con())
1310     } // if (progress_state == PROCESS_INPUTS)
1311 
1312     // Aggressively kill globally dead uses
1313     // (Rather than pushing all the outs at once, we push one at a time,
1314     // plus the parent to resume later, because of the indefinite number
1315     // of edge deletions per loop trip.)
1316     if (dead->outcnt() > 0) {
1317       // Recursively remove output edges
1318       _stack.push(dead->raw_out(0), PROCESS_INPUTS);
1319     } else {
1320       // Finished disconnecting all input and output edges.
1321       _stack.pop();
1322       // Remove dead node from iterative worklist
1323       _worklist.remove(dead);
1324       // Constant node that has no out-edges and has only one in-edge from
1325       // root is usually dead. However, sometimes reshaping walk makes
1326       // it reachable by adding use edges. So, we will NOT count Con nodes
1327       // as dead to be conservative about the dead node count at any
1328       // given time.
1329       if (!dead->is_Con()) {
1330         C->record_dead_node(dead->_idx);
1331       }
1332       if (dead->is_macro()) {
1333         C->remove_macro_node(dead);
1334       }
1335       if (dead->is_expensive()) {
1336         C->remove_expensive_node(dead);
1337       }
1338       if (dead->Opcode() == Op_ShenandoahLoadReferenceBarrier) {
1339         C->remove_shenandoah_barrier(reinterpret_cast<ShenandoahLoadReferenceBarrierNode*>(dead));
1340       }
1341       CastIINode* cast = dead->isa_CastII();
1342       if (cast != NULL && cast->has_range_check()) {
1343         C->remove_range_check_cast(cast);
1344       }
1345     }
1346   } // while (_stack.is_nonempty())
1347 }
1348 
1349 //------------------------------subsume_node-----------------------------------
1350 // Remove users from node 'old' and add them to node 'nn'.
1351 void PhaseIterGVN::subsume_node( Node *old, Node *nn ) {
1352   if (old->Opcode() == Op_SafePoint) {
1353     old->as_SafePoint()->disconnect_from_root(this);
1354   }
1355   assert( old != hash_find(old), "should already been removed" );
1356   assert( old != C->top(), "cannot subsume top node");
1357   // Copy debug or profile information to the new version:
1358   C->copy_node_notes_to(nn, old);
1359   // Move users of node 'old' to node 'nn'
1360   for (DUIterator_Last imin, i = old->last_outs(imin); i >= imin; ) {
1361     Node* use = old->last_out(i);  // for each use...
1362     // use might need re-hashing (but it won't if it's a new node)
1363     bool is_in_table = _table.hash_delete( use );
1364     // Update use-def info as well
1365     // We remove all occurrences of old within use->in,
1366     // so as to avoid rehashing any node more than once.
1367     // The hash table probe swamps any outer loop overhead.
1368     uint num_edges = 0;
1369     for (uint jmax = use->len(), j = 0; j < jmax; j++) {
1370       if (use->in(j) == old) {
1371         use->set_req(j, nn);
1372         ++num_edges;
1373       }
1374     }
1375     // Insert into GVN hash table if unique
1376     // If a duplicate, 'use' will be cleaned up when pulled off worklist
1377     if( is_in_table ) {
1378       hash_find_insert(use);
1379     }
1380     i -= num_edges;    // we deleted 1 or more copies of this edge
1381   }
1382 
1383   // Search for instance field data PhiNodes in the same region pointing to the old
1384   // memory PhiNode and update their instance memory ids to point to the new node.
1385   if (old->is_Phi() && old->as_Phi()->type()->has_memory() && old->in(0) != NULL) {
1386     Node* region = old->in(0);
1387     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1388       PhiNode* phi = region->fast_out(i)->isa_Phi();
1389       if (phi != NULL && phi->inst_mem_id() == (int)old->_idx) {
1390         phi->set_inst_mem_id((int)nn->_idx);
1391       }
1392     }
1393   }
1394 
1395   // Smash all inputs to 'old', isolating him completely
1396   Node *temp = new (C) Node(1);
1397   temp->init_req(0,nn);     // Add a use to nn to prevent him from dying
1398   remove_dead_node( old );
1399   temp->del_req(0);         // Yank bogus edge
1400 #ifndef PRODUCT
1401   if( VerifyIterativeGVN ) {
1402     for ( int i = 0; i < _verify_window_size; i++ ) {
1403       if ( _verify_window[i] == old )
1404         _verify_window[i] = nn;
1405     }
1406   }
1407 #endif
1408   _worklist.remove(temp);   // this can be necessary
1409   temp->destruct();         // reuse the _idx of this little guy
1410 }
1411 
1412 //------------------------------add_users_to_worklist--------------------------
1413 void PhaseIterGVN::add_users_to_worklist0( Node *n ) {
1414   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1415     _worklist.push(n->fast_out(i));  // Push on worklist
1416   }
1417 }
1418 
1419 // Return counted loop Phi if as a counted loop exit condition, cmp
1420 // compares the the induction variable with n
1421 static PhiNode* countedloop_phi_from_cmp(CmpINode* cmp, Node* n) {
1422   for (DUIterator_Fast imax, i = cmp->fast_outs(imax); i < imax; i++) {
1423     Node* bol = cmp->fast_out(i);
1424     for (DUIterator_Fast i2max, i2 = bol->fast_outs(i2max); i2 < i2max; i2++) {
1425       Node* iff = bol->fast_out(i2);
1426       if (iff->is_CountedLoopEnd()) {
1427         CountedLoopEndNode* cle = iff->as_CountedLoopEnd();
1428         if (cle->limit() == n) {
1429           PhiNode* phi = cle->phi();
1430           if (phi != NULL) {
1431             return phi;
1432           }
1433         }
1434       }
1435     }
1436   }
1437   return NULL;
1438 }
1439 
1440 void PhaseIterGVN::add_users_to_worklist( Node *n ) {
1441   add_users_to_worklist0(n);
1442 
1443   // Move users of node to worklist
1444   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1445     Node* use = n->fast_out(i); // Get use
1446 
1447     if( use->is_Multi() ||      // Multi-definer?  Push projs on worklist
1448         use->is_Store() )       // Enable store/load same address
1449       add_users_to_worklist0(use);
1450 
1451     // If we changed the receiver type to a call, we need to revisit
1452     // the Catch following the call.  It's looking for a non-NULL
1453     // receiver to know when to enable the regular fall-through path
1454     // in addition to the NullPtrException path.
1455     if (use->is_CallDynamicJava() && n == use->in(TypeFunc::Parms)) {
1456       Node* p = use->as_CallDynamicJava()->proj_out(TypeFunc::Control);
1457       if (p != NULL) {
1458         add_users_to_worklist0(p);
1459       }
1460     }
1461 
1462     uint use_op = use->Opcode();
1463     if(use->is_Cmp()) {       // Enable CMP/BOOL optimization
1464       add_users_to_worklist(use); // Put Bool on worklist
1465       if (use->outcnt() > 0) {
1466         Node* bol = use->raw_out(0);
1467         if (bol->outcnt() > 0) {
1468           Node* iff = bol->raw_out(0);
1469           if (iff->outcnt() == 2) {
1470             // Look for the 'is_x2logic' pattern: "x ? : 0 : 1" and put the
1471             // phi merging either 0 or 1 onto the worklist
1472             Node* ifproj0 = iff->raw_out(0);
1473             Node* ifproj1 = iff->raw_out(1);
1474             if (ifproj0->outcnt() > 0 && ifproj1->outcnt() > 0) {
1475               Node* region0 = ifproj0->raw_out(0);
1476               Node* region1 = ifproj1->raw_out(0);
1477               if( region0 == region1 )
1478                 add_users_to_worklist0(region0);
1479             }
1480           }
1481         }
1482       }
1483       if (use_op == Op_CmpI) {
1484         Node* phi = countedloop_phi_from_cmp((CmpINode*)use, n);
1485         if (phi != NULL) {
1486           // If an opaque node feeds into the limit condition of a
1487           // CountedLoop, we need to process the Phi node for the
1488           // induction variable when the opaque node is removed:
1489           // the range of values taken by the Phi is now known and
1490           // so its type is also known.
1491           _worklist.push(phi);
1492         }
1493         Node* in1 = use->in(1);
1494         for (uint i = 0; i < in1->outcnt(); i++) {
1495           if (in1->raw_out(i)->Opcode() == Op_CastII) {
1496             Node* castii = in1->raw_out(i);
1497             if (castii->in(0) != NULL && castii->in(0)->in(0) != NULL && castii->in(0)->in(0)->is_If()) {
1498               Node* ifnode = castii->in(0)->in(0);
1499               if (ifnode->in(1) != NULL && ifnode->in(1)->is_Bool() && ifnode->in(1)->in(1) == use) {
1500                 // Reprocess a CastII node that may depend on an
1501                 // opaque node value when the opaque node is
1502                 // removed. In case it carries a dependency we can do
1503                 // a better job of computing its type.
1504                 _worklist.push(castii);
1505               }
1506             }
1507           }
1508         }
1509       }
1510     }
1511 
1512     // If changed Cast input, check Phi users for simple cycles
1513     if( use->is_ConstraintCast() || use->is_CheckCastPP() ) {
1514       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1515         Node* u = use->fast_out(i2);
1516         if (u->is_Phi())
1517           _worklist.push(u);
1518       }
1519     }
1520     // If changed LShift inputs, check RShift users for useless sign-ext
1521     if( use_op == Op_LShiftI ) {
1522       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1523         Node* u = use->fast_out(i2);
1524         if (u->Opcode() == Op_RShiftI)
1525           _worklist.push(u);
1526       }
1527     }
1528     // If changed AddI/SubI inputs, check CmpU for range check optimization.
1529     if (use_op == Op_AddI || use_op == Op_SubI) {
1530       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1531         Node* u = use->fast_out(i2);
1532         if (u->is_Cmp() && (u->Opcode() == Op_CmpU)) {
1533           _worklist.push(u);
1534         }
1535       }
1536     }
1537     // If changed AddP inputs, check Stores for loop invariant
1538     if( use_op == Op_AddP ) {
1539       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1540         Node* u = use->fast_out(i2);
1541         if (u->is_Mem())
1542           _worklist.push(u);
1543       }
1544     }
1545     // If changed initialization activity, check dependent Stores
1546     if (use_op == Op_Allocate || use_op == Op_AllocateArray) {
1547       InitializeNode* init = use->as_Allocate()->initialization();
1548       if (init != NULL) {
1549         Node* imem = init->proj_out(TypeFunc::Memory);
1550         if (imem != NULL)  add_users_to_worklist0(imem);
1551       }
1552     }
1553     if (use_op == Op_Initialize) {
1554       Node* imem = use->as_Initialize()->proj_out(TypeFunc::Memory);
1555       if (imem != NULL)  add_users_to_worklist0(imem);
1556     }
1557 
1558     if (use->Opcode() == Op_ShenandoahLoadReferenceBarrier) {
1559       Node* cmp = use->find_out_with(Op_CmpP);
1560       if (cmp != NULL) {
1561         _worklist.push(cmp);
1562       }
1563     }
1564   }
1565 }
1566 
1567 /**
1568  * Remove the speculative part of all types that we know of
1569  */
1570 void PhaseIterGVN::remove_speculative_types()  {
1571   assert(UseTypeSpeculation, "speculation is off");
1572   for (uint i = 0; i < _types.Size(); i++)  {
1573     const Type* t = _types.fast_lookup(i);
1574     if (t != NULL) {
1575       _types.map(i, t->remove_speculative());
1576     }
1577   }
1578   _table.check_no_speculative_types();
1579 }
1580 
1581 //=============================================================================
1582 #ifndef PRODUCT
1583 uint PhaseCCP::_total_invokes   = 0;
1584 uint PhaseCCP::_total_constants = 0;
1585 #endif
1586 //------------------------------PhaseCCP---------------------------------------
1587 // Conditional Constant Propagation, ala Wegman & Zadeck
1588 PhaseCCP::PhaseCCP( PhaseIterGVN *igvn ) : PhaseIterGVN(igvn) {
1589   NOT_PRODUCT( clear_constants(); )
1590   assert( _worklist.size() == 0, "" );
1591   // Clear out _nodes from IterGVN.  Must be clear to transform call.
1592   _nodes.clear();               // Clear out from IterGVN
1593   analyze();
1594 }
1595 
1596 #ifndef PRODUCT
1597 //------------------------------~PhaseCCP--------------------------------------
1598 PhaseCCP::~PhaseCCP() {
1599   inc_invokes();
1600   _total_constants += count_constants();
1601 }
1602 #endif
1603 
1604 
1605 #ifdef ASSERT
1606 static bool ccp_type_widens(const Type* t, const Type* t0) {
1607   assert(t->meet(t0) == t, "Not monotonic");
1608   switch (t->base() == t0->base() ? t->base() : Type::Top) {
1609   case Type::Int:
1610     assert(t0->isa_int()->_widen <= t->isa_int()->_widen, "widen increases");
1611     break;
1612   case Type::Long:
1613     assert(t0->isa_long()->_widen <= t->isa_long()->_widen, "widen increases");
1614     break;
1615   }
1616   return true;
1617 }
1618 #endif //ASSERT
1619 
1620 //------------------------------analyze----------------------------------------
1621 void PhaseCCP::analyze() {
1622   // Initialize all types to TOP, optimistic analysis
1623   for (int i = C->unique() - 1; i >= 0; i--)  {
1624     _types.map(i,Type::TOP);
1625   }
1626 
1627   // Push root onto worklist
1628   Unique_Node_List worklist;
1629   worklist.push(C->root());
1630 
1631   // Pull from worklist; compute new value; push changes out.
1632   // This loop is the meat of CCP.
1633   while( worklist.size() ) {
1634     Node *n = worklist.pop();
1635     const Type *t = n->Value(this);
1636     if (t != type(n)) {
1637       assert(ccp_type_widens(t, type(n)), "ccp type must widen");
1638 #ifndef PRODUCT
1639       if( TracePhaseCCP ) {
1640         t->dump();
1641         do { tty->print("\t"); } while (tty->position() < 16);
1642         n->dump();
1643       }
1644 #endif
1645       set_type(n, t);
1646       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1647         Node* m = n->fast_out(i);   // Get user
1648         if (m->is_Region()) {  // New path to Region?  Must recheck Phis too
1649           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1650             Node* p = m->fast_out(i2); // Propagate changes to uses
1651             if (p->bottom_type() != type(p)) { // If not already bottomed out
1652               worklist.push(p); // Propagate change to user
1653             }
1654           }
1655         }
1656         // If we changed the receiver type to a call, we need to revisit
1657         // the Catch following the call.  It's looking for a non-NULL
1658         // receiver to know when to enable the regular fall-through path
1659         // in addition to the NullPtrException path
1660         if (m->is_Call()) {
1661           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1662             Node* p = m->fast_out(i2);  // Propagate changes to uses
1663             if (p->is_Proj() && p->as_Proj()->_con == TypeFunc::Control) {
1664               Node* catch_node = p->find_out_with(Op_Catch);
1665               if (catch_node != NULL) {
1666                 worklist.push(catch_node);
1667               }
1668             }
1669           }
1670         }
1671         if (m->bottom_type() != type(m)) { // If not already bottomed out
1672           worklist.push(m);     // Propagate change to user
1673         }
1674 
1675         // CmpU nodes can get their type information from two nodes up in the
1676         // graph (instead of from the nodes immediately above). Make sure they
1677         // are added to the worklist if nodes they depend on are updated, since
1678         // they could be missed and get wrong types otherwise.
1679         uint m_op = m->Opcode();
1680         if (m_op == Op_AddI || m_op == Op_SubI) {
1681           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1682             Node* p = m->fast_out(i2); // Propagate changes to uses
1683             if (p->Opcode() == Op_CmpU) {
1684               // Got a CmpU which might need the new type information from node n.
1685               if(p->bottom_type() != type(p)) { // If not already bottomed out
1686                 worklist.push(p); // Propagate change to user
1687               }
1688             }
1689           }
1690         }
1691         if (m->Opcode() == Op_ShenandoahLoadReferenceBarrier) {
1692           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1693             Node* p = m->fast_out(i2);
1694             if (p->Opcode() == Op_CmpP) {
1695               if(p->bottom_type() != type(p)) {
1696                 worklist.push(p);
1697               }
1698             } else if (p->Opcode() == Op_AddP) {
1699               for (DUIterator_Fast i3max, i3 = p->fast_outs(i3max); i3 < i3max; i3++) {
1700                 Node* q = p->fast_out(i3);
1701                 if (q->is_Load()) {
1702                   if(q->bottom_type() != type(q)) {
1703                     worklist.push(q);
1704                   }
1705                 }
1706               }
1707             }
1708           }
1709         }
1710         // If n is used in a counted loop exit condition then the type
1711         // of the counted loop's Phi depends on the type of n. See
1712         // PhiNode::Value().
1713         if (m_op == Op_CmpI) {
1714           PhiNode* phi = countedloop_phi_from_cmp((CmpINode*)m, n);
1715           if (phi != NULL) {
1716             worklist.push(phi);
1717           }
1718         }
1719       }
1720     }
1721   }
1722 }
1723 
1724 //------------------------------do_transform-----------------------------------
1725 // Top level driver for the recursive transformer
1726 void PhaseCCP::do_transform() {
1727   // Correct leaves of new-space Nodes; they point to old-space.
1728   C->set_root( transform(C->root())->as_Root() );
1729   assert( C->top(),  "missing TOP node" );
1730   assert( C->root(), "missing root" );
1731 }
1732 
1733 //------------------------------transform--------------------------------------
1734 // Given a Node in old-space, clone him into new-space.
1735 // Convert any of his old-space children into new-space children.
1736 Node *PhaseCCP::transform( Node *n ) {
1737   Node *new_node = _nodes[n->_idx]; // Check for transformed node
1738   if( new_node != NULL )
1739     return new_node;                // Been there, done that, return old answer
1740   new_node = transform_once(n);     // Check for constant
1741   _nodes.map( n->_idx, new_node );  // Flag as having been cloned
1742 
1743   // Allocate stack of size _nodes.Size()/2 to avoid frequent realloc
1744   GrowableArray <Node *> trstack(C->live_nodes() >> 1);
1745 
1746   trstack.push(new_node);           // Process children of cloned node
1747   while ( trstack.is_nonempty() ) {
1748     Node *clone = trstack.pop();
1749     uint cnt = clone->req();
1750     for( uint i = 0; i < cnt; i++ ) {          // For all inputs do
1751       Node *input = clone->in(i);
1752       if( input != NULL ) {                    // Ignore NULLs
1753         Node *new_input = _nodes[input->_idx]; // Check for cloned input node
1754         if( new_input == NULL ) {
1755           new_input = transform_once(input);   // Check for constant
1756           _nodes.map( input->_idx, new_input );// Flag as having been cloned
1757           trstack.push(new_input);
1758         }
1759         assert( new_input == clone->in(i), "insanity check");
1760       }
1761     }
1762   }
1763   return new_node;
1764 }
1765 
1766 
1767 //------------------------------transform_once---------------------------------
1768 // For PhaseCCP, transformation is IDENTITY unless Node computed a constant.
1769 Node *PhaseCCP::transform_once( Node *n ) {
1770   const Type *t = type(n);
1771   // Constant?  Use constant Node instead
1772   if( t->singleton() ) {
1773     Node *nn = n;               // Default is to return the original constant
1774     if( t == Type::TOP ) {
1775       // cache my top node on the Compile instance
1776       if( C->cached_top_node() == NULL || C->cached_top_node()->in(0) == NULL ) {
1777         C->set_cached_top_node( ConNode::make(C, Type::TOP) );
1778         set_type(C->top(), Type::TOP);
1779       }
1780       nn = C->top();
1781     }
1782     if( !n->is_Con() ) {
1783       if( t != Type::TOP ) {
1784         nn = makecon(t);        // ConNode::make(t);
1785         NOT_PRODUCT( inc_constants(); )
1786       } else if( n->is_Region() ) { // Unreachable region
1787         // Note: nn == C->top()
1788         n->set_req(0, NULL);        // Cut selfreference
1789         // Eagerly remove dead phis to avoid phis copies creation.
1790         for (DUIterator i = n->outs(); n->has_out(i); i++) {
1791           Node* m = n->out(i);
1792           if( m->is_Phi() ) {
1793             assert(type(m) == Type::TOP, "Unreachable region should not have live phis.");
1794             replace_node(m, nn);
1795             --i; // deleted this phi; rescan starting with next position
1796           }
1797         }
1798       }
1799       replace_node(n,nn);       // Update DefUse edges for new constant
1800     }
1801     return nn;
1802   }
1803 
1804   // If x is a TypeNode, capture any more-precise type permanently into Node
1805   if (t != n->bottom_type()) {
1806     hash_delete(n);             // changing bottom type may force a rehash
1807     n->raise_bottom_type(t);
1808     _worklist.push(n);          // n re-enters the hash table via the worklist
1809   }
1810 
1811   // TEMPORARY fix to ensure that 2nd GVN pass eliminates NULL checks
1812   switch( n->Opcode() ) {
1813   case Op_FastLock:      // Revisit FastLocks for lock coarsening
1814   case Op_If:
1815   case Op_CountedLoopEnd:
1816   case Op_Region:
1817   case Op_Loop:
1818   case Op_CountedLoop:
1819   case Op_Conv2B:
1820   case Op_Opaque1:
1821   case Op_Opaque2:
1822     _worklist.push(n);
1823     break;
1824   default:
1825     break;
1826   }
1827 
1828   return  n;
1829 }
1830 
1831 //---------------------------------saturate------------------------------------
1832 const Type* PhaseCCP::saturate(const Type* new_type, const Type* old_type,
1833                                const Type* limit_type) const {
1834   const Type* wide_type = new_type->widen(old_type, limit_type);
1835   if (wide_type != new_type) {          // did we widen?
1836     // If so, we may have widened beyond the limit type.  Clip it back down.
1837     new_type = wide_type->filter(limit_type);
1838   }
1839   return new_type;
1840 }
1841 
1842 //------------------------------print_statistics-------------------------------
1843 #ifndef PRODUCT
1844 void PhaseCCP::print_statistics() {
1845   tty->print_cr("CCP: %d  constants found: %d", _total_invokes, _total_constants);
1846 }
1847 #endif
1848 
1849 
1850 //=============================================================================
1851 #ifndef PRODUCT
1852 uint PhasePeephole::_total_peepholes = 0;
1853 #endif
1854 //------------------------------PhasePeephole----------------------------------
1855 // Conditional Constant Propagation, ala Wegman & Zadeck
1856 PhasePeephole::PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg )
1857   : PhaseTransform(Peephole), _regalloc(regalloc), _cfg(cfg) {
1858   NOT_PRODUCT( clear_peepholes(); )
1859 }
1860 
1861 #ifndef PRODUCT
1862 //------------------------------~PhasePeephole---------------------------------
1863 PhasePeephole::~PhasePeephole() {
1864   _total_peepholes += count_peepholes();
1865 }
1866 #endif
1867 
1868 //------------------------------transform--------------------------------------
1869 Node *PhasePeephole::transform( Node *n ) {
1870   ShouldNotCallThis();
1871   return NULL;
1872 }
1873 
1874 //------------------------------do_transform-----------------------------------
1875 void PhasePeephole::do_transform() {
1876   bool method_name_not_printed = true;
1877 
1878   // Examine each basic block
1879   for (uint block_number = 1; block_number < _cfg.number_of_blocks(); ++block_number) {
1880     Block* block = _cfg.get_block(block_number);
1881     bool block_not_printed = true;
1882 
1883     // and each instruction within a block
1884     uint end_index = block->number_of_nodes();
1885     // block->end_idx() not valid after PhaseRegAlloc
1886     for( uint instruction_index = 1; instruction_index < end_index; ++instruction_index ) {
1887       Node     *n = block->get_node(instruction_index);
1888       if( n->is_Mach() ) {
1889         MachNode *m = n->as_Mach();
1890         int deleted_count = 0;
1891         // check for peephole opportunities
1892         MachNode *m2 = m->peephole( block, instruction_index, _regalloc, deleted_count, C );
1893         if( m2 != NULL ) {
1894 #ifndef PRODUCT
1895           if( PrintOptoPeephole ) {
1896             // Print method, first time only
1897             if( C->method() && method_name_not_printed ) {
1898               C->method()->print_short_name(); tty->cr();
1899               method_name_not_printed = false;
1900             }
1901             // Print this block
1902             if( Verbose && block_not_printed) {
1903               tty->print_cr("in block");
1904               block->dump();
1905               block_not_printed = false;
1906             }
1907             // Print instructions being deleted
1908             for( int i = (deleted_count - 1); i >= 0; --i ) {
1909               block->get_node(instruction_index-i)->as_Mach()->format(_regalloc); tty->cr();
1910             }
1911             tty->print_cr("replaced with");
1912             // Print new instruction
1913             m2->format(_regalloc);
1914             tty->print("\n\n");
1915           }
1916 #endif
1917           // Remove old nodes from basic block and update instruction_index
1918           // (old nodes still exist and may have edges pointing to them
1919           //  as register allocation info is stored in the allocator using
1920           //  the node index to live range mappings.)
1921           uint safe_instruction_index = (instruction_index - deleted_count);
1922           for( ; (instruction_index > safe_instruction_index); --instruction_index ) {
1923             block->remove_node( instruction_index );
1924           }
1925           // install new node after safe_instruction_index
1926           block->insert_node(m2, safe_instruction_index + 1);
1927           end_index = block->number_of_nodes() - 1; // Recompute new block size
1928           NOT_PRODUCT( inc_peepholes(); )
1929         }
1930       }
1931     }
1932   }
1933 }
1934 
1935 //------------------------------print_statistics-------------------------------
1936 #ifndef PRODUCT
1937 void PhasePeephole::print_statistics() {
1938   tty->print_cr("Peephole: peephole rules applied: %d",  _total_peepholes);
1939 }
1940 #endif
1941 
1942 
1943 //=============================================================================
1944 //------------------------------set_req_X--------------------------------------
1945 void Node::set_req_X( uint i, Node *n, PhaseIterGVN *igvn ) {
1946   assert( is_not_dead(n), "can not use dead node");
1947   assert( igvn->hash_find(this) != this, "Need to remove from hash before changing edges" );
1948   Node *old = in(i);
1949   set_req(i, n);
1950 
1951   // old goes dead?
1952   if( old ) {
1953     switch (old->outcnt()) {
1954     case 0:
1955       // Put into the worklist to kill later. We do not kill it now because the
1956       // recursive kill will delete the current node (this) if dead-loop exists
1957       if (!old->is_top())
1958         igvn->_worklist.push( old );
1959       break;
1960     case 1:
1961       if( old->is_Store() || old->has_special_unique_user() )
1962         igvn->add_users_to_worklist( old );
1963       break;
1964     case 2:
1965       if( old->is_Store() )
1966         igvn->add_users_to_worklist( old );
1967       if( old->Opcode() == Op_Region )
1968         igvn->_worklist.push(old);
1969       break;
1970     case 3:
1971       if( old->Opcode() == Op_Region ) {
1972         igvn->_worklist.push(old);
1973         igvn->add_users_to_worklist( old );
1974       }
1975       break;
1976     default:
1977       break;
1978     }
1979     if (old->Opcode() == Op_AddP && CallLeafNode::has_only_g1_wb_pre_uses(old)) {
1980       igvn->add_users_to_worklist(old);
1981     }
1982   }
1983 
1984 }
1985 
1986 //-------------------------------replace_by-----------------------------------
1987 // Using def-use info, replace one node for another.  Follow the def-use info
1988 // to all users of the OLD node.  Then make all uses point to the NEW node.
1989 void Node::replace_by(Node *new_node) {
1990   assert(!is_top(), "top node has no DU info");
1991   for (DUIterator_Last imin, i = last_outs(imin); i >= imin; ) {
1992     Node* use = last_out(i);
1993     uint uses_found = 0;
1994     for (uint j = 0; j < use->len(); j++) {
1995       if (use->in(j) == this) {
1996         if (j < use->req())
1997               use->set_req(j, new_node);
1998         else  use->set_prec(j, new_node);
1999         uses_found++;
2000       }
2001     }
2002     i -= uses_found;    // we deleted 1 or more copies of this edge
2003   }
2004 }
2005 
2006 //=============================================================================
2007 //-----------------------------------------------------------------------------
2008 void Type_Array::grow( uint i ) {
2009   if( !_max ) {
2010     _max = 1;
2011     _types = (const Type**)_a->Amalloc( _max * sizeof(Type*) );
2012     _types[0] = NULL;
2013   }
2014   uint old = _max;
2015   while( i >= _max ) _max <<= 1;        // Double to fit
2016   _types = (const Type**)_a->Arealloc( _types, old*sizeof(Type*),_max*sizeof(Type*));
2017   memset( &_types[old], 0, (_max-old)*sizeof(Type*) );
2018 }
2019 
2020 //------------------------------dump-------------------------------------------
2021 #ifndef PRODUCT
2022 void Type_Array::dump() const {
2023   uint max = Size();
2024   for( uint i = 0; i < max; i++ ) {
2025     if( _types[i] != NULL ) {
2026       tty->print("  %d\t== ", i); _types[i]->dump(); tty->cr();
2027     }
2028   }
2029 }
2030 #endif