1 /* 2 * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/systemDictionary.hpp" 27 #include "classfile/vmSymbols.hpp" 28 #include "code/compiledIC.hpp" 29 #include "code/icBuffer.hpp" 30 #include "code/nmethod.hpp" 31 #include "code/pcDesc.hpp" 32 #include "code/scopeDesc.hpp" 33 #include "code/vtableStubs.hpp" 34 #include "compiler/compileBroker.hpp" 35 #include "compiler/compilerOracle.hpp" 36 #include "compiler/oopMap.hpp" 37 #include "gc_implementation/shenandoah/shenandoahBarrierSet.hpp" 38 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp" 39 #include "gc_implementation/g1/heapRegion.hpp" 40 #include "gc_interface/collectedHeap.hpp" 41 #include "interpreter/bytecode.hpp" 42 #include "interpreter/interpreter.hpp" 43 #include "interpreter/linkResolver.hpp" 44 #include "memory/barrierSet.hpp" 45 #include "memory/gcLocker.inline.hpp" 46 #include "memory/oopFactory.hpp" 47 #include "oops/objArrayKlass.hpp" 48 #include "oops/oop.inline.hpp" 49 #include "opto/addnode.hpp" 50 #include "opto/callnode.hpp" 51 #include "opto/cfgnode.hpp" 52 #include "opto/connode.hpp" 53 #include "opto/graphKit.hpp" 54 #include "opto/machnode.hpp" 55 #include "opto/matcher.hpp" 56 #include "opto/memnode.hpp" 57 #include "opto/mulnode.hpp" 58 #include "opto/runtime.hpp" 59 #include "opto/subnode.hpp" 60 #include "runtime/fprofiler.hpp" 61 #include "runtime/handles.inline.hpp" 62 #include "runtime/interfaceSupport.hpp" 63 #include "runtime/javaCalls.hpp" 64 #include "runtime/sharedRuntime.hpp" 65 #include "runtime/signature.hpp" 66 #include "runtime/threadCritical.hpp" 67 #include "runtime/vframe.hpp" 68 #include "runtime/vframeArray.hpp" 69 #include "runtime/vframe_hp.hpp" 70 #include "utilities/copy.hpp" 71 #include "utilities/preserveException.hpp" 72 #if defined AD_MD_HPP 73 # include AD_MD_HPP 74 #elif defined TARGET_ARCH_MODEL_x86_32 75 # include "adfiles/ad_x86_32.hpp" 76 #elif defined TARGET_ARCH_MODEL_x86_64 77 # include "adfiles/ad_x86_64.hpp" 78 #elif defined TARGET_ARCH_MODEL_aarch64 79 # include "adfiles/ad_aarch64.hpp" 80 #elif defined TARGET_ARCH_MODEL_sparc 81 # include "adfiles/ad_sparc.hpp" 82 #elif defined TARGET_ARCH_MODEL_zero 83 # include "adfiles/ad_zero.hpp" 84 #elif defined TARGET_ARCH_MODEL_ppc_64 85 # include "adfiles/ad_ppc_64.hpp" 86 #endif 87 88 89 // For debugging purposes: 90 // To force FullGCALot inside a runtime function, add the following two lines 91 // 92 // Universe::release_fullgc_alot_dummy(); 93 // MarkSweep::invoke(0, "Debugging"); 94 // 95 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000 96 97 98 // GHASH block processing 99 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() { 100 int argcnt = 4; 101 102 const Type** fields = TypeTuple::fields(argcnt); 103 int argp = TypeFunc::Parms; 104 fields[argp++] = TypePtr::NOTNULL; // state 105 fields[argp++] = TypePtr::NOTNULL; // subkeyH 106 fields[argp++] = TypePtr::NOTNULL; // data 107 fields[argp++] = TypeInt::INT; // blocks 108 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 109 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 110 111 // result type needed 112 fields = TypeTuple::fields(1); 113 fields[TypeFunc::Parms+0] = NULL; // void 114 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 115 return TypeFunc::make(domain, range); 116 } 117 118 // Compiled code entry points 119 address OptoRuntime::_new_instance_Java = NULL; 120 address OptoRuntime::_new_array_Java = NULL; 121 address OptoRuntime::_new_array_nozero_Java = NULL; 122 address OptoRuntime::_multianewarray2_Java = NULL; 123 address OptoRuntime::_multianewarray3_Java = NULL; 124 address OptoRuntime::_multianewarray4_Java = NULL; 125 address OptoRuntime::_multianewarray5_Java = NULL; 126 address OptoRuntime::_multianewarrayN_Java = NULL; 127 address OptoRuntime::_g1_wb_pre_Java = NULL; 128 address OptoRuntime::_g1_wb_post_Java = NULL; 129 address OptoRuntime::_vtable_must_compile_Java = NULL; 130 address OptoRuntime::_complete_monitor_locking_Java = NULL; 131 address OptoRuntime::_rethrow_Java = NULL; 132 133 address OptoRuntime::_slow_arraycopy_Java = NULL; 134 address OptoRuntime::_register_finalizer_Java = NULL; 135 136 # ifdef ENABLE_ZAP_DEAD_LOCALS 137 address OptoRuntime::_zap_dead_Java_locals_Java = NULL; 138 address OptoRuntime::_zap_dead_native_locals_Java = NULL; 139 # endif 140 141 ExceptionBlob* OptoRuntime::_exception_blob; 142 143 // This should be called in an assertion at the start of OptoRuntime routines 144 // which are entered from compiled code (all of them) 145 #ifdef ASSERT 146 static bool check_compiled_frame(JavaThread* thread) { 147 assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code"); 148 RegisterMap map(thread, false); 149 frame caller = thread->last_frame().sender(&map); 150 assert(caller.is_compiled_frame(), "not being called from compiled like code"); 151 return true; 152 } 153 #endif // ASSERT 154 155 156 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \ 157 var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \ 158 if (var == NULL) { return false; } 159 160 bool OptoRuntime::generate(ciEnv* env) { 161 162 generate_exception_blob(); 163 164 // Note: tls: Means fetching the return oop out of the thread-local storage 165 // 166 // variable/name type-function-gen , runtime method ,fncy_jp, tls,save_args,retpc 167 // ------------------------------------------------------------------------------------------------------------------------------- 168 gen(env, _new_instance_Java , new_instance_Type , new_instance_C , 0 , true , false, false); 169 gen(env, _new_array_Java , new_array_Type , new_array_C , 0 , true , false, false); 170 gen(env, _new_array_nozero_Java , new_array_Type , new_array_nozero_C , 0 , true , false, false); 171 gen(env, _multianewarray2_Java , multianewarray2_Type , multianewarray2_C , 0 , true , false, false); 172 gen(env, _multianewarray3_Java , multianewarray3_Type , multianewarray3_C , 0 , true , false, false); 173 gen(env, _multianewarray4_Java , multianewarray4_Type , multianewarray4_C , 0 , true , false, false); 174 gen(env, _multianewarray5_Java , multianewarray5_Type , multianewarray5_C , 0 , true , false, false); 175 gen(env, _multianewarrayN_Java , multianewarrayN_Type , multianewarrayN_C , 0 , true , false, false); 176 gen(env, _g1_wb_pre_Java , g1_wb_pre_Type , SharedRuntime::g1_wb_pre , 0 , false, false, false); 177 gen(env, _g1_wb_post_Java , g1_wb_post_Type , SharedRuntime::g1_wb_post , 0 , false, false, false); 178 gen(env, _complete_monitor_locking_Java , complete_monitor_enter_Type , SharedRuntime::complete_monitor_locking_C, 0, false, false, false); 179 gen(env, _rethrow_Java , rethrow_Type , rethrow_C , 2 , true , false, true ); 180 181 gen(env, _slow_arraycopy_Java , slow_arraycopy_Type , SharedRuntime::slow_arraycopy_C , 0 , false, false, false); 182 gen(env, _register_finalizer_Java , register_finalizer_Type , register_finalizer , 0 , false, false, false); 183 184 # ifdef ENABLE_ZAP_DEAD_LOCALS 185 gen(env, _zap_dead_Java_locals_Java , zap_dead_locals_Type , zap_dead_Java_locals_C , 0 , false, true , false ); 186 gen(env, _zap_dead_native_locals_Java , zap_dead_locals_Type , zap_dead_native_locals_C , 0 , false, true , false ); 187 # endif 188 return true; 189 } 190 191 #undef gen 192 193 194 // Helper method to do generation of RunTimeStub's 195 address OptoRuntime::generate_stub( ciEnv* env, 196 TypeFunc_generator gen, address C_function, 197 const char *name, int is_fancy_jump, 198 bool pass_tls, 199 bool save_argument_registers, 200 bool return_pc ) { 201 ResourceMark rm; 202 Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc ); 203 return C.stub_entry_point(); 204 } 205 206 const char* OptoRuntime::stub_name(address entry) { 207 #ifndef PRODUCT 208 CodeBlob* cb = CodeCache::find_blob(entry); 209 RuntimeStub* rs =(RuntimeStub *)cb; 210 assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub"); 211 return rs->name(); 212 #else 213 // Fast implementation for product mode (maybe it should be inlined too) 214 return "runtime stub"; 215 #endif 216 } 217 218 219 //============================================================================= 220 // Opto compiler runtime routines 221 //============================================================================= 222 223 224 //=============================allocation====================================== 225 // We failed the fast-path allocation. Now we need to do a scavenge or GC 226 // and try allocation again. 227 228 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) { 229 // After any safepoint, just before going back to compiled code, 230 // we inform the GC that we will be doing initializing writes to 231 // this object in the future without emitting card-marks, so 232 // GC may take any compensating steps. 233 // NOTE: Keep this code consistent with GraphKit::store_barrier. 234 235 oop new_obj = thread->vm_result(); 236 if (new_obj == NULL) return; 237 238 assert(Universe::heap()->can_elide_tlab_store_barriers(), 239 "compiler must check this first"); 240 // GC may decide to give back a safer copy of new_obj. 241 new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj); 242 thread->set_vm_result(new_obj); 243 } 244 245 // object allocation 246 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread)) 247 JRT_BLOCK; 248 #ifndef PRODUCT 249 SharedRuntime::_new_instance_ctr++; // new instance requires GC 250 #endif 251 assert(check_compiled_frame(thread), "incorrect caller"); 252 253 // These checks are cheap to make and support reflective allocation. 254 int lh = klass->layout_helper(); 255 if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) { 256 Handle holder(THREAD, klass->klass_holder()); // keep the klass alive 257 klass->check_valid_for_instantiation(false, THREAD); 258 if (!HAS_PENDING_EXCEPTION) { 259 InstanceKlass::cast(klass)->initialize(THREAD); 260 } 261 } 262 263 if (!HAS_PENDING_EXCEPTION) { 264 // Scavenge and allocate an instance. 265 Handle holder(THREAD, klass->klass_holder()); // keep the klass alive 266 oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD); 267 thread->set_vm_result(result); 268 269 // Pass oops back through thread local storage. Our apparent type to Java 270 // is that we return an oop, but we can block on exit from this routine and 271 // a GC can trash the oop in C's return register. The generated stub will 272 // fetch the oop from TLS after any possible GC. 273 } 274 275 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); 276 JRT_BLOCK_END; 277 278 if (GraphKit::use_ReduceInitialCardMarks()) { 279 // inform GC that we won't do card marks for initializing writes. 280 new_store_pre_barrier(thread); 281 } 282 JRT_END 283 284 285 // array allocation 286 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread)) 287 JRT_BLOCK; 288 #ifndef PRODUCT 289 SharedRuntime::_new_array_ctr++; // new array requires GC 290 #endif 291 assert(check_compiled_frame(thread), "incorrect caller"); 292 293 // Scavenge and allocate an instance. 294 oop result; 295 296 if (array_type->oop_is_typeArray()) { 297 // The oopFactory likes to work with the element type. 298 // (We could bypass the oopFactory, since it doesn't add much value.) 299 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 300 result = oopFactory::new_typeArray(elem_type, len, THREAD); 301 } else { 302 // Although the oopFactory likes to work with the elem_type, 303 // the compiler prefers the array_type, since it must already have 304 // that latter value in hand for the fast path. 305 Handle holder(THREAD, array_type->klass_holder()); // keep the array klass alive 306 Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass(); 307 result = oopFactory::new_objArray(elem_type, len, THREAD); 308 } 309 310 // Pass oops back through thread local storage. Our apparent type to Java 311 // is that we return an oop, but we can block on exit from this routine and 312 // a GC can trash the oop in C's return register. The generated stub will 313 // fetch the oop from TLS after any possible GC. 314 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); 315 thread->set_vm_result(result); 316 JRT_BLOCK_END; 317 318 if (GraphKit::use_ReduceInitialCardMarks()) { 319 // inform GC that we won't do card marks for initializing writes. 320 new_store_pre_barrier(thread); 321 } 322 JRT_END 323 324 // array allocation without zeroing 325 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread)) 326 JRT_BLOCK; 327 #ifndef PRODUCT 328 SharedRuntime::_new_array_ctr++; // new array requires GC 329 #endif 330 assert(check_compiled_frame(thread), "incorrect caller"); 331 332 // Scavenge and allocate an instance. 333 oop result; 334 335 assert(array_type->oop_is_typeArray(), "should be called only for type array"); 336 // The oopFactory likes to work with the element type. 337 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 338 result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD); 339 340 // Pass oops back through thread local storage. Our apparent type to Java 341 // is that we return an oop, but we can block on exit from this routine and 342 // a GC can trash the oop in C's return register. The generated stub will 343 // fetch the oop from TLS after any possible GC. 344 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); 345 thread->set_vm_result(result); 346 JRT_BLOCK_END; 347 348 if (GraphKit::use_ReduceInitialCardMarks()) { 349 // inform GC that we won't do card marks for initializing writes. 350 new_store_pre_barrier(thread); 351 } 352 353 oop result = thread->vm_result(); 354 if ((len > 0) && (result != NULL) && 355 is_deoptimized_caller_frame(thread)) { 356 // Zero array here if the caller is deoptimized. 357 int size = ((typeArrayOop)result)->object_size(); 358 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 359 const size_t hs = arrayOopDesc::header_size(elem_type); 360 // Align to next 8 bytes to avoid trashing arrays's length. 361 const size_t aligned_hs = align_object_offset(hs); 362 HeapWord* obj = (HeapWord*)result; 363 if (aligned_hs > hs) { 364 Copy::zero_to_words(obj+hs, aligned_hs-hs); 365 } 366 // Optimized zeroing. 367 Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs); 368 } 369 370 JRT_END 371 372 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array. 373 374 // multianewarray for 2 dimensions 375 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread)) 376 #ifndef PRODUCT 377 SharedRuntime::_multi2_ctr++; // multianewarray for 1 dimension 378 #endif 379 assert(check_compiled_frame(thread), "incorrect caller"); 380 assert(elem_type->is_klass(), "not a class"); 381 jint dims[2]; 382 dims[0] = len1; 383 dims[1] = len2; 384 Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive 385 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD); 386 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); 387 thread->set_vm_result(obj); 388 JRT_END 389 390 // multianewarray for 3 dimensions 391 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread)) 392 #ifndef PRODUCT 393 SharedRuntime::_multi3_ctr++; // multianewarray for 1 dimension 394 #endif 395 assert(check_compiled_frame(thread), "incorrect caller"); 396 assert(elem_type->is_klass(), "not a class"); 397 jint dims[3]; 398 dims[0] = len1; 399 dims[1] = len2; 400 dims[2] = len3; 401 Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive 402 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD); 403 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); 404 thread->set_vm_result(obj); 405 JRT_END 406 407 // multianewarray for 4 dimensions 408 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread)) 409 #ifndef PRODUCT 410 SharedRuntime::_multi4_ctr++; // multianewarray for 1 dimension 411 #endif 412 assert(check_compiled_frame(thread), "incorrect caller"); 413 assert(elem_type->is_klass(), "not a class"); 414 jint dims[4]; 415 dims[0] = len1; 416 dims[1] = len2; 417 dims[2] = len3; 418 dims[3] = len4; 419 Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive 420 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD); 421 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); 422 thread->set_vm_result(obj); 423 JRT_END 424 425 // multianewarray for 5 dimensions 426 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread)) 427 #ifndef PRODUCT 428 SharedRuntime::_multi5_ctr++; // multianewarray for 1 dimension 429 #endif 430 assert(check_compiled_frame(thread), "incorrect caller"); 431 assert(elem_type->is_klass(), "not a class"); 432 jint dims[5]; 433 dims[0] = len1; 434 dims[1] = len2; 435 dims[2] = len3; 436 dims[3] = len4; 437 dims[4] = len5; 438 Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive 439 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD); 440 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); 441 thread->set_vm_result(obj); 442 JRT_END 443 444 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread)) 445 assert(check_compiled_frame(thread), "incorrect caller"); 446 assert(elem_type->is_klass(), "not a class"); 447 assert(oop(dims)->is_typeArray(), "not an array"); 448 449 ResourceMark rm; 450 jint len = dims->length(); 451 assert(len > 0, "Dimensions array should contain data"); 452 jint *j_dims = typeArrayOop(dims)->int_at_addr(0); 453 jint *c_dims = NEW_RESOURCE_ARRAY(jint, len); 454 Copy::conjoint_jints_atomic(j_dims, c_dims, len); 455 456 Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive 457 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD); 458 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); 459 thread->set_vm_result(obj); 460 JRT_END 461 462 463 const TypeFunc *OptoRuntime::new_instance_Type() { 464 // create input type (domain) 465 const Type **fields = TypeTuple::fields(1); 466 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 467 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 468 469 // create result type (range) 470 fields = TypeTuple::fields(1); 471 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 472 473 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 474 475 return TypeFunc::make(domain, range); 476 } 477 478 479 const TypeFunc *OptoRuntime::athrow_Type() { 480 // create input type (domain) 481 const Type **fields = TypeTuple::fields(1); 482 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 483 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 484 485 // create result type (range) 486 fields = TypeTuple::fields(0); 487 488 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 489 490 return TypeFunc::make(domain, range); 491 } 492 493 494 const TypeFunc *OptoRuntime::new_array_Type() { 495 // create input type (domain) 496 const Type **fields = TypeTuple::fields(2); 497 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 498 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size 499 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 500 501 // create result type (range) 502 fields = TypeTuple::fields(1); 503 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 504 505 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 506 507 return TypeFunc::make(domain, range); 508 } 509 510 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) { 511 // create input type (domain) 512 const int nargs = ndim + 1; 513 const Type **fields = TypeTuple::fields(nargs); 514 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 515 for( int i = 1; i < nargs; i++ ) 516 fields[TypeFunc::Parms + i] = TypeInt::INT; // array size 517 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields); 518 519 // create result type (range) 520 fields = TypeTuple::fields(1); 521 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 522 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 523 524 return TypeFunc::make(domain, range); 525 } 526 527 const TypeFunc *OptoRuntime::multianewarray2_Type() { 528 return multianewarray_Type(2); 529 } 530 531 const TypeFunc *OptoRuntime::multianewarray3_Type() { 532 return multianewarray_Type(3); 533 } 534 535 const TypeFunc *OptoRuntime::multianewarray4_Type() { 536 return multianewarray_Type(4); 537 } 538 539 const TypeFunc *OptoRuntime::multianewarray5_Type() { 540 return multianewarray_Type(5); 541 } 542 543 const TypeFunc *OptoRuntime::multianewarrayN_Type() { 544 // create input type (domain) 545 const Type **fields = TypeTuple::fields(2); 546 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 547 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // array of dim sizes 548 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 549 550 // create result type (range) 551 fields = TypeTuple::fields(1); 552 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 553 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 554 555 return TypeFunc::make(domain, range); 556 } 557 558 const TypeFunc *OptoRuntime::g1_wb_pre_Type() { 559 const Type **fields = TypeTuple::fields(2); 560 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value 561 fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread 562 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 563 564 // create result type (range) 565 fields = TypeTuple::fields(0); 566 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 567 568 return TypeFunc::make(domain, range); 569 } 570 571 const TypeFunc *OptoRuntime::g1_wb_post_Type() { 572 573 const Type **fields = TypeTuple::fields(2); 574 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Card addr 575 fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread 576 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 577 578 // create result type (range) 579 fields = TypeTuple::fields(0); 580 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 581 582 return TypeFunc::make(domain, range); 583 } 584 585 const TypeFunc *OptoRuntime::shenandoah_clone_barrier_Type() { 586 const Type **fields = TypeTuple::fields(1); 587 fields[TypeFunc::Parms+0] = TypeOopPtr::NOTNULL; // src oop 588 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 589 590 // create result type (range) 591 fields = TypeTuple::fields(0); 592 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 593 594 return TypeFunc::make(domain, range); 595 } 596 597 const TypeFunc *OptoRuntime::shenandoah_write_barrier_Type() { 598 const Type **fields = TypeTuple::fields(1); 599 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value 600 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 601 602 // create result type (range) 603 fields = TypeTuple::fields(1); 604 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; 605 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 606 607 return TypeFunc::make(domain, range); 608 } 609 610 const TypeFunc *OptoRuntime::uncommon_trap_Type() { 611 // create input type (domain) 612 const Type **fields = TypeTuple::fields(1); 613 // Symbol* name of class to be loaded 614 fields[TypeFunc::Parms+0] = TypeInt::INT; 615 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 616 617 // create result type (range) 618 fields = TypeTuple::fields(0); 619 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 620 621 return TypeFunc::make(domain, range); 622 } 623 624 # ifdef ENABLE_ZAP_DEAD_LOCALS 625 // Type used for stub generation for zap_dead_locals. 626 // No inputs or outputs 627 const TypeFunc *OptoRuntime::zap_dead_locals_Type() { 628 // create input type (domain) 629 const Type **fields = TypeTuple::fields(0); 630 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields); 631 632 // create result type (range) 633 fields = TypeTuple::fields(0); 634 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields); 635 636 return TypeFunc::make(domain,range); 637 } 638 # endif 639 640 641 //----------------------------------------------------------------------------- 642 // Monitor Handling 643 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() { 644 // create input type (domain) 645 const Type **fields = TypeTuple::fields(2); 646 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 647 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock 648 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 649 650 // create result type (range) 651 fields = TypeTuple::fields(0); 652 653 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 654 655 return TypeFunc::make(domain,range); 656 } 657 658 659 //----------------------------------------------------------------------------- 660 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() { 661 // create input type (domain) 662 const Type **fields = TypeTuple::fields(2); 663 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 664 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock 665 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 666 667 // create result type (range) 668 fields = TypeTuple::fields(0); 669 670 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 671 672 return TypeFunc::make(domain,range); 673 } 674 675 const TypeFunc* OptoRuntime::flush_windows_Type() { 676 // create input type (domain) 677 const Type** fields = TypeTuple::fields(1); 678 fields[TypeFunc::Parms+0] = NULL; // void 679 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields); 680 681 // create result type 682 fields = TypeTuple::fields(1); 683 fields[TypeFunc::Parms+0] = NULL; // void 684 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 685 686 return TypeFunc::make(domain, range); 687 } 688 689 const TypeFunc* OptoRuntime::l2f_Type() { 690 // create input type (domain) 691 const Type **fields = TypeTuple::fields(2); 692 fields[TypeFunc::Parms+0] = TypeLong::LONG; 693 fields[TypeFunc::Parms+1] = Type::HALF; 694 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 695 696 // create result type (range) 697 fields = TypeTuple::fields(1); 698 fields[TypeFunc::Parms+0] = Type::FLOAT; 699 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 700 701 return TypeFunc::make(domain, range); 702 } 703 704 const TypeFunc* OptoRuntime::modf_Type() { 705 const Type **fields = TypeTuple::fields(2); 706 fields[TypeFunc::Parms+0] = Type::FLOAT; 707 fields[TypeFunc::Parms+1] = Type::FLOAT; 708 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 709 710 // create result type (range) 711 fields = TypeTuple::fields(1); 712 fields[TypeFunc::Parms+0] = Type::FLOAT; 713 714 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 715 716 return TypeFunc::make(domain, range); 717 } 718 719 const TypeFunc *OptoRuntime::Math_D_D_Type() { 720 // create input type (domain) 721 const Type **fields = TypeTuple::fields(2); 722 // Symbol* name of class to be loaded 723 fields[TypeFunc::Parms+0] = Type::DOUBLE; 724 fields[TypeFunc::Parms+1] = Type::HALF; 725 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 726 727 // create result type (range) 728 fields = TypeTuple::fields(2); 729 fields[TypeFunc::Parms+0] = Type::DOUBLE; 730 fields[TypeFunc::Parms+1] = Type::HALF; 731 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 732 733 return TypeFunc::make(domain, range); 734 } 735 736 const TypeFunc* OptoRuntime::Math_DD_D_Type() { 737 const Type **fields = TypeTuple::fields(4); 738 fields[TypeFunc::Parms+0] = Type::DOUBLE; 739 fields[TypeFunc::Parms+1] = Type::HALF; 740 fields[TypeFunc::Parms+2] = Type::DOUBLE; 741 fields[TypeFunc::Parms+3] = Type::HALF; 742 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields); 743 744 // create result type (range) 745 fields = TypeTuple::fields(2); 746 fields[TypeFunc::Parms+0] = Type::DOUBLE; 747 fields[TypeFunc::Parms+1] = Type::HALF; 748 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 749 750 return TypeFunc::make(domain, range); 751 } 752 753 //-------------- currentTimeMillis, currentTimeNanos, etc 754 755 const TypeFunc* OptoRuntime::void_long_Type() { 756 // create input type (domain) 757 const Type **fields = TypeTuple::fields(0); 758 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields); 759 760 // create result type (range) 761 fields = TypeTuple::fields(2); 762 fields[TypeFunc::Parms+0] = TypeLong::LONG; 763 fields[TypeFunc::Parms+1] = Type::HALF; 764 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 765 766 return TypeFunc::make(domain, range); 767 } 768 769 // arraycopy stub variations: 770 enum ArrayCopyType { 771 ac_fast, // void(ptr, ptr, size_t) 772 ac_checkcast, // int(ptr, ptr, size_t, size_t, ptr) 773 ac_slow, // void(ptr, int, ptr, int, int) 774 ac_generic // int(ptr, int, ptr, int, int) 775 }; 776 777 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) { 778 // create input type (domain) 779 int num_args = (act == ac_fast ? 3 : 5); 780 int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0); 781 int argcnt = num_args; 782 LP64_ONLY(argcnt += num_size_args); // halfwords for lengths 783 const Type** fields = TypeTuple::fields(argcnt); 784 int argp = TypeFunc::Parms; 785 fields[argp++] = TypePtr::NOTNULL; // src 786 if (num_size_args == 0) { 787 fields[argp++] = TypeInt::INT; // src_pos 788 } 789 fields[argp++] = TypePtr::NOTNULL; // dest 790 if (num_size_args == 0) { 791 fields[argp++] = TypeInt::INT; // dest_pos 792 fields[argp++] = TypeInt::INT; // length 793 } 794 while (num_size_args-- > 0) { 795 fields[argp++] = TypeX_X; // size in whatevers (size_t) 796 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 797 } 798 if (act == ac_checkcast) { 799 fields[argp++] = TypePtr::NOTNULL; // super_klass 800 } 801 assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act"); 802 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 803 804 // create result type if needed 805 int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0); 806 fields = TypeTuple::fields(1); 807 if (retcnt == 0) 808 fields[TypeFunc::Parms+0] = NULL; // void 809 else 810 fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed 811 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields); 812 return TypeFunc::make(domain, range); 813 } 814 815 const TypeFunc* OptoRuntime::fast_arraycopy_Type() { 816 // This signature is simple: Two base pointers and a size_t. 817 return make_arraycopy_Type(ac_fast); 818 } 819 820 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() { 821 // An extension of fast_arraycopy_Type which adds type checking. 822 return make_arraycopy_Type(ac_checkcast); 823 } 824 825 const TypeFunc* OptoRuntime::slow_arraycopy_Type() { 826 // This signature is exactly the same as System.arraycopy. 827 // There are no intptr_t (int/long) arguments. 828 return make_arraycopy_Type(ac_slow); 829 } 830 831 const TypeFunc* OptoRuntime::generic_arraycopy_Type() { 832 // This signature is like System.arraycopy, except that it returns status. 833 return make_arraycopy_Type(ac_generic); 834 } 835 836 837 const TypeFunc* OptoRuntime::array_fill_Type() { 838 const Type** fields; 839 int argp = TypeFunc::Parms; 840 if (CCallingConventionRequiresIntsAsLongs) { 841 // create input type (domain): pointer, int, size_t 842 fields = TypeTuple::fields(3 LP64_ONLY( + 2)); 843 fields[argp++] = TypePtr::NOTNULL; 844 fields[argp++] = TypeLong::LONG; 845 fields[argp++] = Type::HALF; 846 } else { 847 // create input type (domain): pointer, int, size_t 848 fields = TypeTuple::fields(3 LP64_ONLY( + 1)); 849 fields[argp++] = TypePtr::NOTNULL; 850 fields[argp++] = TypeInt::INT; 851 } 852 fields[argp++] = TypeX_X; // size in whatevers (size_t) 853 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 854 const TypeTuple *domain = TypeTuple::make(argp, fields); 855 856 // create result type 857 fields = TypeTuple::fields(1); 858 fields[TypeFunc::Parms+0] = NULL; // void 859 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 860 861 return TypeFunc::make(domain, range); 862 } 863 864 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant) 865 const TypeFunc* OptoRuntime::aescrypt_block_Type() { 866 // create input type (domain) 867 int num_args = 3; 868 if (Matcher::pass_original_key_for_aes()) { 869 num_args = 4; 870 } 871 int argcnt = num_args; 872 const Type** fields = TypeTuple::fields(argcnt); 873 int argp = TypeFunc::Parms; 874 fields[argp++] = TypePtr::NOTNULL; // src 875 fields[argp++] = TypePtr::NOTNULL; // dest 876 fields[argp++] = TypePtr::NOTNULL; // k array 877 if (Matcher::pass_original_key_for_aes()) { 878 fields[argp++] = TypePtr::NOTNULL; // original k array 879 } 880 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 881 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 882 883 // no result type needed 884 fields = TypeTuple::fields(1); 885 fields[TypeFunc::Parms+0] = NULL; // void 886 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 887 return TypeFunc::make(domain, range); 888 } 889 890 /** 891 * int updateBytesCRC32(int crc, byte* b, int len) 892 */ 893 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() { 894 // create input type (domain) 895 int num_args = 3; 896 int argcnt = num_args; 897 if (CCallingConventionRequiresIntsAsLongs) { 898 argcnt += 2; 899 } 900 const Type** fields = TypeTuple::fields(argcnt); 901 int argp = TypeFunc::Parms; 902 if (CCallingConventionRequiresIntsAsLongs) { 903 fields[argp++] = TypeLong::LONG; // crc 904 fields[argp++] = Type::HALF; 905 fields[argp++] = TypePtr::NOTNULL; // src 906 fields[argp++] = TypeLong::LONG; // len 907 fields[argp++] = Type::HALF; 908 } else { 909 fields[argp++] = TypeInt::INT; // crc 910 fields[argp++] = TypePtr::NOTNULL; // src 911 fields[argp++] = TypeInt::INT; // len 912 } 913 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 914 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 915 916 // result type needed 917 fields = TypeTuple::fields(1); 918 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 919 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 920 return TypeFunc::make(domain, range); 921 } 922 923 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int 924 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() { 925 // create input type (domain) 926 int num_args = 5; 927 if (Matcher::pass_original_key_for_aes()) { 928 num_args = 6; 929 } 930 int argcnt = num_args; 931 const Type** fields = TypeTuple::fields(argcnt); 932 int argp = TypeFunc::Parms; 933 fields[argp++] = TypePtr::NOTNULL; // src 934 fields[argp++] = TypePtr::NOTNULL; // dest 935 fields[argp++] = TypePtr::NOTNULL; // k array 936 fields[argp++] = TypePtr::NOTNULL; // r array 937 fields[argp++] = TypeInt::INT; // src len 938 if (Matcher::pass_original_key_for_aes()) { 939 fields[argp++] = TypePtr::NOTNULL; // original k array 940 } 941 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 942 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 943 944 // returning cipher len (int) 945 fields = TypeTuple::fields(1); 946 fields[TypeFunc::Parms+0] = TypeInt::INT; 947 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 948 return TypeFunc::make(domain, range); 949 } 950 951 /* 952 * void implCompress(byte[] buf, int ofs) 953 */ 954 const TypeFunc* OptoRuntime::sha_implCompress_Type() { 955 // create input type (domain) 956 int num_args = 2; 957 int argcnt = num_args; 958 const Type** fields = TypeTuple::fields(argcnt); 959 int argp = TypeFunc::Parms; 960 fields[argp++] = TypePtr::NOTNULL; // buf 961 fields[argp++] = TypePtr::NOTNULL; // state 962 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 963 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 964 965 // no result type needed 966 fields = TypeTuple::fields(1); 967 fields[TypeFunc::Parms+0] = NULL; // void 968 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 969 return TypeFunc::make(domain, range); 970 } 971 972 /* 973 * int implCompressMultiBlock(byte[] b, int ofs, int limit) 974 */ 975 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() { 976 // create input type (domain) 977 int num_args = 4; 978 int argcnt = num_args; 979 if(CCallingConventionRequiresIntsAsLongs) { 980 argcnt += 2; 981 } 982 const Type** fields = TypeTuple::fields(argcnt); 983 int argp = TypeFunc::Parms; 984 if(CCallingConventionRequiresIntsAsLongs) { 985 fields[argp++] = TypePtr::NOTNULL; // buf 986 fields[argp++] = TypePtr::NOTNULL; // state 987 fields[argp++] = TypeLong::LONG; // ofs 988 fields[argp++] = Type::HALF; 989 fields[argp++] = TypeLong::LONG; // limit 990 fields[argp++] = Type::HALF; 991 } else { 992 fields[argp++] = TypePtr::NOTNULL; // buf 993 fields[argp++] = TypePtr::NOTNULL; // state 994 fields[argp++] = TypeInt::INT; // ofs 995 fields[argp++] = TypeInt::INT; // limit 996 } 997 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 998 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 999 1000 // returning ofs (int) 1001 fields = TypeTuple::fields(1); 1002 fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs 1003 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1004 return TypeFunc::make(domain, range); 1005 } 1006 1007 const TypeFunc* OptoRuntime::multiplyToLen_Type() { 1008 // create input type (domain) 1009 int num_args = 6; 1010 int argcnt = num_args; 1011 const Type** fields = TypeTuple::fields(argcnt); 1012 int argp = TypeFunc::Parms; 1013 fields[argp++] = TypePtr::NOTNULL; // x 1014 fields[argp++] = TypeInt::INT; // xlen 1015 fields[argp++] = TypePtr::NOTNULL; // y 1016 fields[argp++] = TypeInt::INT; // ylen 1017 fields[argp++] = TypePtr::NOTNULL; // z 1018 fields[argp++] = TypeInt::INT; // zlen 1019 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1020 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1021 1022 // no result type needed 1023 fields = TypeTuple::fields(1); 1024 fields[TypeFunc::Parms+0] = NULL; 1025 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1026 return TypeFunc::make(domain, range); 1027 } 1028 1029 const TypeFunc* OptoRuntime::squareToLen_Type() { 1030 // create input type (domain) 1031 int num_args = 4; 1032 int argcnt = num_args; 1033 const Type** fields = TypeTuple::fields(argcnt); 1034 int argp = TypeFunc::Parms; 1035 fields[argp++] = TypePtr::NOTNULL; // x 1036 fields[argp++] = TypeInt::INT; // len 1037 fields[argp++] = TypePtr::NOTNULL; // z 1038 fields[argp++] = TypeInt::INT; // zlen 1039 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1040 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1041 1042 // no result type needed 1043 fields = TypeTuple::fields(1); 1044 fields[TypeFunc::Parms+0] = NULL; 1045 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1046 return TypeFunc::make(domain, range); 1047 } 1048 1049 // for mulAdd calls, 2 pointers and 3 ints, returning int 1050 const TypeFunc* OptoRuntime::mulAdd_Type() { 1051 // create input type (domain) 1052 int num_args = 5; 1053 int argcnt = num_args; 1054 const Type** fields = TypeTuple::fields(argcnt); 1055 int argp = TypeFunc::Parms; 1056 fields[argp++] = TypePtr::NOTNULL; // out 1057 fields[argp++] = TypePtr::NOTNULL; // in 1058 fields[argp++] = TypeInt::INT; // offset 1059 fields[argp++] = TypeInt::INT; // len 1060 fields[argp++] = TypeInt::INT; // k 1061 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1062 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1063 1064 // returning carry (int) 1065 fields = TypeTuple::fields(1); 1066 fields[TypeFunc::Parms+0] = TypeInt::INT; 1067 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1068 return TypeFunc::make(domain, range); 1069 } 1070 1071 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() { 1072 // create input type (domain) 1073 int num_args = 7; 1074 int argcnt = num_args; 1075 if (CCallingConventionRequiresIntsAsLongs) { 1076 argcnt++; // additional placeholder 1077 } 1078 const Type** fields = TypeTuple::fields(argcnt); 1079 int argp = TypeFunc::Parms; 1080 fields[argp++] = TypePtr::NOTNULL; // a 1081 fields[argp++] = TypePtr::NOTNULL; // b 1082 fields[argp++] = TypePtr::NOTNULL; // n 1083 if (CCallingConventionRequiresIntsAsLongs) { 1084 fields[argp++] = TypeLong::LONG; // len 1085 fields[argp++] = TypeLong::HALF; // placeholder 1086 } else { 1087 fields[argp++] = TypeInt::INT; // len 1088 } 1089 fields[argp++] = TypeLong::LONG; // inv 1090 fields[argp++] = Type::HALF; 1091 fields[argp++] = TypePtr::NOTNULL; // result 1092 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1093 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1094 1095 // result type needed 1096 fields = TypeTuple::fields(1); 1097 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL; 1098 1099 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1100 return TypeFunc::make(domain, range); 1101 } 1102 1103 const TypeFunc* OptoRuntime::montgomerySquare_Type() { 1104 // create input type (domain) 1105 int num_args = 6; 1106 int argcnt = num_args; 1107 if (CCallingConventionRequiresIntsAsLongs) { 1108 argcnt++; // additional placeholder 1109 } 1110 const Type** fields = TypeTuple::fields(argcnt); 1111 int argp = TypeFunc::Parms; 1112 fields[argp++] = TypePtr::NOTNULL; // a 1113 fields[argp++] = TypePtr::NOTNULL; // n 1114 if (CCallingConventionRequiresIntsAsLongs) { 1115 fields[argp++] = TypeLong::LONG; // len 1116 fields[argp++] = TypeLong::HALF; // placeholder 1117 } else { 1118 fields[argp++] = TypeInt::INT; // len 1119 } 1120 fields[argp++] = TypeLong::LONG; // inv 1121 fields[argp++] = Type::HALF; 1122 fields[argp++] = TypePtr::NOTNULL; // result 1123 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1124 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1125 1126 // result type needed 1127 fields = TypeTuple::fields(1); 1128 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL; 1129 1130 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1131 return TypeFunc::make(domain, range); 1132 } 1133 1134 1135 //------------- Interpreter state access for on stack replacement 1136 const TypeFunc* OptoRuntime::osr_end_Type() { 1137 // create input type (domain) 1138 const Type **fields = TypeTuple::fields(1); 1139 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf 1140 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 1141 1142 // create result type 1143 fields = TypeTuple::fields(1); 1144 // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop 1145 fields[TypeFunc::Parms+0] = NULL; // void 1146 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 1147 return TypeFunc::make(domain, range); 1148 } 1149 1150 //-------------- methodData update helpers 1151 1152 const TypeFunc* OptoRuntime::profile_receiver_type_Type() { 1153 // create input type (domain) 1154 const Type **fields = TypeTuple::fields(2); 1155 fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL; // methodData pointer 1156 fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM; // receiver oop 1157 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 1158 1159 // create result type 1160 fields = TypeTuple::fields(1); 1161 fields[TypeFunc::Parms+0] = NULL; // void 1162 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 1163 return TypeFunc::make(domain,range); 1164 } 1165 1166 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver)) 1167 if (receiver == NULL) return; 1168 Klass* receiver_klass = receiver->klass(); 1169 1170 intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells(); 1171 int empty_row = -1; // free row, if any is encountered 1172 1173 // ReceiverTypeData* vc = new ReceiverTypeData(mdp); 1174 for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) { 1175 // if (vc->receiver(row) == receiver_klass) 1176 int receiver_off = ReceiverTypeData::receiver_cell_index(row); 1177 intptr_t row_recv = *(mdp + receiver_off); 1178 if (row_recv == (intptr_t) receiver_klass) { 1179 // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment); 1180 int count_off = ReceiverTypeData::receiver_count_cell_index(row); 1181 *(mdp + count_off) += DataLayout::counter_increment; 1182 return; 1183 } else if (row_recv == 0) { 1184 // else if (vc->receiver(row) == NULL) 1185 empty_row = (int) row; 1186 } 1187 } 1188 1189 if (empty_row != -1) { 1190 int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row); 1191 // vc->set_receiver(empty_row, receiver_klass); 1192 *(mdp + receiver_off) = (intptr_t) receiver_klass; 1193 // vc->set_receiver_count(empty_row, DataLayout::counter_increment); 1194 int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row); 1195 *(mdp + count_off) = DataLayout::counter_increment; 1196 } else { 1197 // Receiver did not match any saved receiver and there is no empty row for it. 1198 // Increment total counter to indicate polymorphic case. 1199 intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset())); 1200 *count_p += DataLayout::counter_increment; 1201 } 1202 JRT_END 1203 1204 //------------------------------------------------------------------------------------- 1205 // register policy 1206 1207 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) { 1208 assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register"); 1209 switch (register_save_policy[reg]) { 1210 case 'C': return false; //SOC 1211 case 'E': return true ; //SOE 1212 case 'N': return false; //NS 1213 case 'A': return false; //AS 1214 } 1215 ShouldNotReachHere(); 1216 return false; 1217 } 1218 1219 //----------------------------------------------------------------------- 1220 // Exceptions 1221 // 1222 1223 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN; 1224 1225 // The method is an entry that is always called by a C++ method not 1226 // directly from compiled code. Compiled code will call the C++ method following. 1227 // We can't allow async exception to be installed during exception processing. 1228 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm)) 1229 1230 // Do not confuse exception_oop with pending_exception. The exception_oop 1231 // is only used to pass arguments into the method. Not for general 1232 // exception handling. DO NOT CHANGE IT to use pending_exception, since 1233 // the runtime stubs checks this on exit. 1234 assert(thread->exception_oop() != NULL, "exception oop is found"); 1235 address handler_address = NULL; 1236 1237 Handle exception(thread, thread->exception_oop()); 1238 address pc = thread->exception_pc(); 1239 1240 // Clear out the exception oop and pc since looking up an 1241 // exception handler can cause class loading, which might throw an 1242 // exception and those fields are expected to be clear during 1243 // normal bytecode execution. 1244 thread->clear_exception_oop_and_pc(); 1245 1246 if (TraceExceptions) { 1247 trace_exception(exception(), pc, ""); 1248 } 1249 1250 // for AbortVMOnException flag 1251 NOT_PRODUCT(Exceptions::debug_check_abort(exception)); 1252 1253 #ifdef ASSERT 1254 if (!(exception->is_a(SystemDictionary::Throwable_klass()))) { 1255 // should throw an exception here 1256 ShouldNotReachHere(); 1257 } 1258 #endif 1259 1260 // new exception handling: this method is entered only from adapters 1261 // exceptions from compiled java methods are handled in compiled code 1262 // using rethrow node 1263 1264 nm = CodeCache::find_nmethod(pc); 1265 assert(nm != NULL, "No NMethod found"); 1266 if (nm->is_native_method()) { 1267 fatal("Native method should not have path to exception handling"); 1268 } else { 1269 // we are switching to old paradigm: search for exception handler in caller_frame 1270 // instead in exception handler of caller_frame.sender() 1271 1272 if (JvmtiExport::can_post_on_exceptions()) { 1273 // "Full-speed catching" is not necessary here, 1274 // since we're notifying the VM on every catch. 1275 // Force deoptimization and the rest of the lookup 1276 // will be fine. 1277 deoptimize_caller_frame(thread); 1278 } 1279 1280 // Check the stack guard pages. If enabled, look for handler in this frame; 1281 // otherwise, forcibly unwind the frame. 1282 // 1283 // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate. 1284 bool force_unwind = !thread->reguard_stack(); 1285 bool deopting = false; 1286 if (nm->is_deopt_pc(pc)) { 1287 deopting = true; 1288 RegisterMap map(thread, false); 1289 frame deoptee = thread->last_frame().sender(&map); 1290 assert(deoptee.is_deoptimized_frame(), "must be deopted"); 1291 // Adjust the pc back to the original throwing pc 1292 pc = deoptee.pc(); 1293 } 1294 1295 // If we are forcing an unwind because of stack overflow then deopt is 1296 // irrelevant since we are throwing the frame away anyway. 1297 1298 if (deopting && !force_unwind) { 1299 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 1300 } else { 1301 1302 handler_address = 1303 force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc); 1304 1305 if (handler_address == NULL) { 1306 bool recursive_exception = false; 1307 handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception); 1308 assert (handler_address != NULL, "must have compiled handler"); 1309 // Update the exception cache only when the unwind was not forced 1310 // and there didn't happen another exception during the computation of the 1311 // compiled exception handler. Checking for exception oop equality is not 1312 // sufficient because some exceptions are pre-allocated and reused. 1313 if (!force_unwind && !recursive_exception) { 1314 nm->add_handler_for_exception_and_pc(exception,pc,handler_address); 1315 } 1316 } else { 1317 #ifdef ASSERT 1318 bool recursive_exception = false; 1319 address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception); 1320 assert(recursive_exception || (handler_address == computed_address), err_msg("Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT, 1321 p2i(handler_address), p2i(computed_address))); 1322 #endif 1323 } 1324 } 1325 1326 thread->set_exception_pc(pc); 1327 thread->set_exception_handler_pc(handler_address); 1328 1329 // Check if the exception PC is a MethodHandle call site. 1330 thread->set_is_method_handle_return(nm->is_method_handle_return(pc)); 1331 } 1332 1333 // Restore correct return pc. Was saved above. 1334 thread->set_exception_oop(exception()); 1335 return handler_address; 1336 1337 JRT_END 1338 1339 // We are entering here from exception_blob 1340 // If there is a compiled exception handler in this method, we will continue there; 1341 // otherwise we will unwind the stack and continue at the caller of top frame method 1342 // Note we enter without the usual JRT wrapper. We will call a helper routine that 1343 // will do the normal VM entry. We do it this way so that we can see if the nmethod 1344 // we looked up the handler for has been deoptimized in the meantime. If it has been 1345 // we must not use the handler and instead return the deopt blob. 1346 address OptoRuntime::handle_exception_C(JavaThread* thread) { 1347 // 1348 // We are in Java not VM and in debug mode we have a NoHandleMark 1349 // 1350 #ifndef PRODUCT 1351 SharedRuntime::_find_handler_ctr++; // find exception handler 1352 #endif 1353 debug_only(NoHandleMark __hm;) 1354 nmethod* nm = NULL; 1355 address handler_address = NULL; 1356 { 1357 // Enter the VM 1358 1359 ResetNoHandleMark rnhm; 1360 handler_address = handle_exception_C_helper(thread, nm); 1361 } 1362 1363 // Back in java: Use no oops, DON'T safepoint 1364 1365 // Now check to see if the handler we are returning is in a now 1366 // deoptimized frame 1367 1368 if (nm != NULL) { 1369 RegisterMap map(thread, false); 1370 frame caller = thread->last_frame().sender(&map); 1371 #ifdef ASSERT 1372 assert(caller.is_compiled_frame(), "must be"); 1373 #endif // ASSERT 1374 if (caller.is_deoptimized_frame()) { 1375 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 1376 } 1377 } 1378 return handler_address; 1379 } 1380 1381 //------------------------------rethrow---------------------------------------- 1382 // We get here after compiled code has executed a 'RethrowNode'. The callee 1383 // is either throwing or rethrowing an exception. The callee-save registers 1384 // have been restored, synchronized objects have been unlocked and the callee 1385 // stack frame has been removed. The return address was passed in. 1386 // Exception oop is passed as the 1st argument. This routine is then called 1387 // from the stub. On exit, we know where to jump in the caller's code. 1388 // After this C code exits, the stub will pop his frame and end in a jump 1389 // (instead of a return). We enter the caller's default handler. 1390 // 1391 // This must be JRT_LEAF: 1392 // - caller will not change its state as we cannot block on exit, 1393 // therefore raw_exception_handler_for_return_address is all it takes 1394 // to handle deoptimized blobs 1395 // 1396 // However, there needs to be a safepoint check in the middle! So compiled 1397 // safepoints are completely watertight. 1398 // 1399 // Thus, it cannot be a leaf since it contains the No_GC_Verifier. 1400 // 1401 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE* 1402 // 1403 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) { 1404 #ifndef PRODUCT 1405 SharedRuntime::_rethrow_ctr++; // count rethrows 1406 #endif 1407 assert (exception != NULL, "should have thrown a NULLPointerException"); 1408 #ifdef ASSERT 1409 if (!(exception->is_a(SystemDictionary::Throwable_klass()))) { 1410 // should throw an exception here 1411 ShouldNotReachHere(); 1412 } 1413 #endif 1414 1415 thread->set_vm_result(exception); 1416 // Frame not compiled (handles deoptimization blob) 1417 return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc); 1418 } 1419 1420 1421 const TypeFunc *OptoRuntime::rethrow_Type() { 1422 // create input type (domain) 1423 const Type **fields = TypeTuple::fields(1); 1424 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 1425 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 1426 1427 // create result type (range) 1428 fields = TypeTuple::fields(1); 1429 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 1430 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 1431 1432 return TypeFunc::make(domain, range); 1433 } 1434 1435 1436 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) { 1437 // Deoptimize the caller before continuing, as the compiled 1438 // exception handler table may not be valid. 1439 if (!StressCompiledExceptionHandlers && doit) { 1440 deoptimize_caller_frame(thread); 1441 } 1442 } 1443 1444 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) { 1445 // Called from within the owner thread, so no need for safepoint 1446 RegisterMap reg_map(thread); 1447 frame stub_frame = thread->last_frame(); 1448 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 1449 frame caller_frame = stub_frame.sender(®_map); 1450 1451 // Deoptimize the caller frame. 1452 Deoptimization::deoptimize_frame(thread, caller_frame.id()); 1453 } 1454 1455 1456 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) { 1457 // Called from within the owner thread, so no need for safepoint 1458 RegisterMap reg_map(thread); 1459 frame stub_frame = thread->last_frame(); 1460 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 1461 frame caller_frame = stub_frame.sender(®_map); 1462 return caller_frame.is_deoptimized_frame(); 1463 } 1464 1465 1466 const TypeFunc *OptoRuntime::register_finalizer_Type() { 1467 // create input type (domain) 1468 const Type **fields = TypeTuple::fields(1); 1469 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver 1470 // // The JavaThread* is passed to each routine as the last argument 1471 // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread 1472 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 1473 1474 // create result type (range) 1475 fields = TypeTuple::fields(0); 1476 1477 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1478 1479 return TypeFunc::make(domain,range); 1480 } 1481 1482 1483 //----------------------------------------------------------------------------- 1484 // Dtrace support. entry and exit probes have the same signature 1485 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() { 1486 // create input type (domain) 1487 const Type **fields = TypeTuple::fields(2); 1488 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 1489 fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM; // Method*; Method we are entering 1490 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 1491 1492 // create result type (range) 1493 fields = TypeTuple::fields(0); 1494 1495 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1496 1497 return TypeFunc::make(domain,range); 1498 } 1499 1500 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() { 1501 // create input type (domain) 1502 const Type **fields = TypeTuple::fields(2); 1503 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 1504 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object 1505 1506 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 1507 1508 // create result type (range) 1509 fields = TypeTuple::fields(0); 1510 1511 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1512 1513 return TypeFunc::make(domain,range); 1514 } 1515 1516 1517 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread)) 1518 assert(obj->is_oop(), "must be a valid oop"); 1519 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 1520 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 1521 JRT_END 1522 1523 //----------------------------------------------------------------------------- 1524 1525 NamedCounter * volatile OptoRuntime::_named_counters = NULL; 1526 1527 // 1528 // dump the collected NamedCounters. 1529 // 1530 void OptoRuntime::print_named_counters() { 1531 int total_lock_count = 0; 1532 int eliminated_lock_count = 0; 1533 1534 NamedCounter* c = _named_counters; 1535 while (c) { 1536 if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) { 1537 int count = c->count(); 1538 if (count > 0) { 1539 bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter; 1540 if (Verbose) { 1541 tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : ""); 1542 } 1543 total_lock_count += count; 1544 if (eliminated) { 1545 eliminated_lock_count += count; 1546 } 1547 } 1548 } else if (c->tag() == NamedCounter::BiasedLockingCounter) { 1549 BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters(); 1550 if (blc->nonzero()) { 1551 tty->print_cr("%s", c->name()); 1552 blc->print_on(tty); 1553 } 1554 #if INCLUDE_RTM_OPT 1555 } else if (c->tag() == NamedCounter::RTMLockingCounter) { 1556 RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters(); 1557 if (rlc->nonzero()) { 1558 tty->print_cr("%s", c->name()); 1559 rlc->print_on(tty); 1560 } 1561 #endif 1562 } 1563 c = c->next(); 1564 } 1565 if (total_lock_count > 0) { 1566 tty->print_cr("dynamic locks: %d", total_lock_count); 1567 if (eliminated_lock_count) { 1568 tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count, 1569 (int)(eliminated_lock_count * 100.0 / total_lock_count)); 1570 } 1571 } 1572 } 1573 1574 // 1575 // Allocate a new NamedCounter. The JVMState is used to generate the 1576 // name which consists of method@line for the inlining tree. 1577 // 1578 1579 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) { 1580 int max_depth = youngest_jvms->depth(); 1581 1582 // Visit scopes from youngest to oldest. 1583 bool first = true; 1584 stringStream st; 1585 for (int depth = max_depth; depth >= 1; depth--) { 1586 JVMState* jvms = youngest_jvms->of_depth(depth); 1587 ciMethod* m = jvms->has_method() ? jvms->method() : NULL; 1588 if (!first) { 1589 st.print(" "); 1590 } else { 1591 first = false; 1592 } 1593 int bci = jvms->bci(); 1594 if (bci < 0) bci = 0; 1595 st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci); 1596 // To print linenumbers instead of bci use: m->line_number_from_bci(bci) 1597 } 1598 NamedCounter* c; 1599 if (tag == NamedCounter::BiasedLockingCounter) { 1600 c = new BiasedLockingNamedCounter(strdup(st.as_string())); 1601 } else if (tag == NamedCounter::RTMLockingCounter) { 1602 c = new RTMLockingNamedCounter(strdup(st.as_string())); 1603 } else { 1604 c = new NamedCounter(strdup(st.as_string()), tag); 1605 } 1606 1607 // atomically add the new counter to the head of the list. We only 1608 // add counters so this is safe. 1609 NamedCounter* head; 1610 do { 1611 c->set_next(NULL); 1612 head = _named_counters; 1613 c->set_next(head); 1614 } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head); 1615 return c; 1616 } 1617 1618 //----------------------------------------------------------------------------- 1619 // Non-product code 1620 #ifndef PRODUCT 1621 1622 int trace_exception_counter = 0; 1623 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) { 1624 ttyLocker ttyl; 1625 trace_exception_counter++; 1626 tty->print("%d [Exception (%s): ", trace_exception_counter, msg); 1627 exception_oop->print_value(); 1628 tty->print(" in "); 1629 CodeBlob* blob = CodeCache::find_blob(exception_pc); 1630 if (blob->is_nmethod()) { 1631 nmethod* nm = blob->as_nmethod_or_null(); 1632 nm->method()->print_value(); 1633 } else if (blob->is_runtime_stub()) { 1634 tty->print("<runtime-stub>"); 1635 } else { 1636 tty->print("<unknown>"); 1637 } 1638 tty->print(" at " INTPTR_FORMAT, p2i(exception_pc)); 1639 tty->print_cr("]"); 1640 } 1641 1642 #endif // PRODUCT 1643 1644 1645 # ifdef ENABLE_ZAP_DEAD_LOCALS 1646 // Called from call sites in compiled code with oop maps (actually safepoints) 1647 // Zaps dead locals in first java frame. 1648 // Is entry because may need to lock to generate oop maps 1649 // Currently, only used for compiler frames, but someday may be used 1650 // for interpreter frames, too. 1651 1652 int OptoRuntime::ZapDeadCompiledLocals_count = 0; 1653 1654 // avoid pointers to member funcs with these helpers 1655 static bool is_java_frame( frame* f) { return f->is_java_frame(); } 1656 static bool is_native_frame(frame* f) { return f->is_native_frame(); } 1657 1658 1659 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread, 1660 bool (*is_this_the_right_frame_to_zap)(frame*)) { 1661 assert(JavaThread::current() == thread, "is this needed?"); 1662 1663 if ( !ZapDeadCompiledLocals ) return; 1664 1665 bool skip = false; 1666 1667 if ( ZapDeadCompiledLocalsFirst == 0 ) ; // nothing special 1668 else if ( ZapDeadCompiledLocalsFirst > ZapDeadCompiledLocals_count ) skip = true; 1669 else if ( ZapDeadCompiledLocalsFirst == ZapDeadCompiledLocals_count ) 1670 warning("starting zapping after skipping"); 1671 1672 if ( ZapDeadCompiledLocalsLast == -1 ) ; // nothing special 1673 else if ( ZapDeadCompiledLocalsLast < ZapDeadCompiledLocals_count ) skip = true; 1674 else if ( ZapDeadCompiledLocalsLast == ZapDeadCompiledLocals_count ) 1675 warning("about to zap last zap"); 1676 1677 ++ZapDeadCompiledLocals_count; // counts skipped zaps, too 1678 1679 if ( skip ) return; 1680 1681 // find java frame and zap it 1682 1683 for (StackFrameStream sfs(thread); !sfs.is_done(); sfs.next()) { 1684 if (is_this_the_right_frame_to_zap(sfs.current()) ) { 1685 sfs.current()->zap_dead_locals(thread, sfs.register_map()); 1686 return; 1687 } 1688 } 1689 warning("no frame found to zap in zap_dead_Java_locals_C"); 1690 } 1691 1692 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread)) 1693 zap_dead_java_or_native_locals(thread, is_java_frame); 1694 JRT_END 1695 1696 // The following does not work because for one thing, the 1697 // thread state is wrong; it expects java, but it is native. 1698 // Also, the invariants in a native stub are different and 1699 // I'm not sure it is safe to have a MachCalRuntimeDirectNode 1700 // in there. 1701 // So for now, we do not zap in native stubs. 1702 1703 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread)) 1704 zap_dead_java_or_native_locals(thread, is_native_frame); 1705 JRT_END 1706 1707 # endif