1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/addnode.hpp"
  29 #include "opto/callnode.hpp"
  30 #include "opto/cfgnode.hpp"
  31 #include "opto/connode.hpp"
  32 #include "opto/loopnode.hpp"
  33 #include "opto/matcher.hpp"
  34 #include "opto/mulnode.hpp"
  35 #include "opto/opcodes.hpp"
  36 #include "opto/phaseX.hpp"
  37 #include "opto/subnode.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #if INCLUDE_ALL_GCS
  40 #include "gc_implementation/shenandoah/c2/shenandoahBarrierSetC2.hpp"
  41 #include "gc_implementation/shenandoah/c2/shenandoahSupport.hpp"
  42 #endif
  43 
  44 // Portions of code courtesy of Clifford Click
  45 
  46 // Optimization - Graph Style
  47 
  48 #include "math.h"
  49 
  50 //=============================================================================
  51 //------------------------------Identity---------------------------------------
  52 // If right input is a constant 0, return the left input.
  53 Node *SubNode::Identity( PhaseTransform *phase ) {
  54   assert(in(1) != this, "Must already have called Value");
  55   assert(in(2) != this, "Must already have called Value");
  56 
  57   // Remove double negation
  58   const Type *zero = add_id();
  59   if( phase->type( in(1) )->higher_equal( zero ) &&
  60       in(2)->Opcode() == Opcode() &&
  61       phase->type( in(2)->in(1) )->higher_equal( zero ) ) {
  62     return in(2)->in(2);
  63   }
  64 
  65   // Convert "(X+Y) - Y" into X and "(X+Y) - X" into Y
  66   if( in(1)->Opcode() == Op_AddI ) {
  67     if( phase->eqv(in(1)->in(2),in(2)) )
  68       return in(1)->in(1);
  69     if (phase->eqv(in(1)->in(1),in(2)))
  70       return in(1)->in(2);
  71 
  72     // Also catch: "(X + Opaque2(Y)) - Y".  In this case, 'Y' is a loop-varying
  73     // trip counter and X is likely to be loop-invariant (that's how O2 Nodes
  74     // are originally used, although the optimizer sometimes jiggers things).
  75     // This folding through an O2 removes a loop-exit use of a loop-varying
  76     // value and generally lowers register pressure in and around the loop.
  77     if( in(1)->in(2)->Opcode() == Op_Opaque2 &&
  78         phase->eqv(in(1)->in(2)->in(1),in(2)) )
  79       return in(1)->in(1);
  80   }
  81 
  82   return ( phase->type( in(2) )->higher_equal( zero ) ) ? in(1) : this;
  83 }
  84 
  85 //------------------------------Value------------------------------------------
  86 // A subtract node differences it's two inputs.
  87 const Type* SubNode::Value_common(PhaseTransform *phase) const {
  88   const Node* in1 = in(1);
  89   const Node* in2 = in(2);
  90   // Either input is TOP ==> the result is TOP
  91   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
  92   if( t1 == Type::TOP ) return Type::TOP;
  93   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
  94   if( t2 == Type::TOP ) return Type::TOP;
  95 
  96   // Not correct for SubFnode and AddFNode (must check for infinity)
  97   // Equal?  Subtract is zero
  98   if (in1->eqv_uncast(in2))  return add_id();
  99 
 100   // Either input is BOTTOM ==> the result is the local BOTTOM
 101   if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
 102     return bottom_type();
 103 
 104   return NULL;
 105 }
 106 
 107 const Type* SubNode::Value(PhaseTransform *phase) const {
 108   const Type* t = Value_common(phase);
 109   if (t != NULL) {
 110     return t;
 111   }
 112   const Type* t1 = phase->type(in(1));
 113   const Type* t2 = phase->type(in(2));
 114   return sub(t1,t2);            // Local flavor of type subtraction
 115 
 116 }
 117 
 118 //=============================================================================
 119 
 120 //------------------------------Helper function--------------------------------
 121 static bool ok_to_convert(Node* inc, Node* iv) {
 122     // Do not collapse (x+c0)-y if "+" is a loop increment, because the
 123     // "-" is loop invariant and collapsing extends the live-range of "x"
 124     // to overlap with the "+", forcing another register to be used in
 125     // the loop.
 126     // This test will be clearer with '&&' (apply DeMorgan's rule)
 127     // but I like the early cutouts that happen here.
 128     const PhiNode *phi;
 129     if( ( !inc->in(1)->is_Phi() ||
 130           !(phi=inc->in(1)->as_Phi()) ||
 131           phi->is_copy() ||
 132           !phi->region()->is_CountedLoop() ||
 133           inc != phi->region()->as_CountedLoop()->incr() )
 134        &&
 135         // Do not collapse (x+c0)-iv if "iv" is a loop induction variable,
 136         // because "x" maybe invariant.
 137         ( !iv->is_loop_iv() )
 138       ) {
 139       return true;
 140     } else {
 141       return false;
 142     }
 143 }
 144 //------------------------------Ideal------------------------------------------
 145 Node *SubINode::Ideal(PhaseGVN *phase, bool can_reshape){
 146   Node *in1 = in(1);
 147   Node *in2 = in(2);
 148   uint op1 = in1->Opcode();
 149   uint op2 = in2->Opcode();
 150 
 151 #ifdef ASSERT
 152   // Check for dead loop
 153   if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
 154       ( op1 == Op_AddI || op1 == Op_SubI ) &&
 155       ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
 156         phase->eqv( in1->in(1), in1  ) || phase->eqv( in1->in(2), in1 ) ) )
 157     assert(false, "dead loop in SubINode::Ideal");
 158 #endif
 159 
 160   const Type *t2 = phase->type( in2 );
 161   if( t2 == Type::TOP ) return NULL;
 162   // Convert "x-c0" into "x+ -c0".
 163   if( t2->base() == Type::Int ){        // Might be bottom or top...
 164     const TypeInt *i = t2->is_int();
 165     if( i->is_con() )
 166       return new (phase->C) AddINode(in1, phase->intcon(-i->get_con()));
 167   }
 168 
 169   // Convert "(x+c0) - y" into (x-y) + c0"
 170   // Do not collapse (x+c0)-y if "+" is a loop increment or
 171   // if "y" is a loop induction variable.
 172   if( op1 == Op_AddI && ok_to_convert(in1, in2) ) {
 173     const Type *tadd = phase->type( in1->in(2) );
 174     if( tadd->singleton() && tadd != Type::TOP ) {
 175       Node *sub2 = phase->transform( new (phase->C) SubINode( in1->in(1), in2 ));
 176       return new (phase->C) AddINode( sub2, in1->in(2) );
 177     }
 178   }
 179 
 180 
 181   // Convert "x - (y+c0)" into "(x-y) - c0"
 182   // Need the same check as in above optimization but reversed.
 183   if (op2 == Op_AddI && ok_to_convert(in2, in1)) {
 184     Node* in21 = in2->in(1);
 185     Node* in22 = in2->in(2);
 186     const TypeInt* tcon = phase->type(in22)->isa_int();
 187     if (tcon != NULL && tcon->is_con()) {
 188       Node* sub2 = phase->transform( new (phase->C) SubINode(in1, in21) );
 189       Node* neg_c0 = phase->intcon(- tcon->get_con());
 190       return new (phase->C) AddINode(sub2, neg_c0);
 191     }
 192   }
 193 
 194   const Type *t1 = phase->type( in1 );
 195   if( t1 == Type::TOP ) return NULL;
 196 
 197 #ifdef ASSERT
 198   // Check for dead loop
 199   if( ( op2 == Op_AddI || op2 == Op_SubI ) &&
 200       ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
 201         phase->eqv( in2->in(1), in2  ) || phase->eqv( in2->in(2), in2  ) ) )
 202     assert(false, "dead loop in SubINode::Ideal");
 203 #endif
 204 
 205   // Convert "x - (x+y)" into "-y"
 206   if( op2 == Op_AddI &&
 207       phase->eqv( in1, in2->in(1) ) )
 208     return new (phase->C) SubINode( phase->intcon(0),in2->in(2));
 209   // Convert "(x-y) - x" into "-y"
 210   if( op1 == Op_SubI &&
 211       phase->eqv( in1->in(1), in2 ) )
 212     return new (phase->C) SubINode( phase->intcon(0),in1->in(2));
 213   // Convert "x - (y+x)" into "-y"
 214   if( op2 == Op_AddI &&
 215       phase->eqv( in1, in2->in(2) ) )
 216     return new (phase->C) SubINode( phase->intcon(0),in2->in(1));
 217 
 218   // Convert "0 - (x-y)" into "y-x"
 219   if( t1 == TypeInt::ZERO && op2 == Op_SubI )
 220     return new (phase->C) SubINode( in2->in(2), in2->in(1) );
 221 
 222   // Convert "0 - (x+con)" into "-con-x"
 223   jint con;
 224   if( t1 == TypeInt::ZERO && op2 == Op_AddI &&
 225       (con = in2->in(2)->find_int_con(0)) != 0 )
 226     return new (phase->C) SubINode( phase->intcon(-con), in2->in(1) );
 227 
 228   // Convert "(X+A) - (X+B)" into "A - B"
 229   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(1) )
 230     return new (phase->C) SubINode( in1->in(2), in2->in(2) );
 231 
 232   // Convert "(A+X) - (B+X)" into "A - B"
 233   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(2) )
 234     return new (phase->C) SubINode( in1->in(1), in2->in(1) );
 235 
 236   // Convert "(A+X) - (X+B)" into "A - B"
 237   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(1) )
 238     return new (phase->C) SubINode( in1->in(1), in2->in(2) );
 239 
 240   // Convert "(X+A) - (B+X)" into "A - B"
 241   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(2) )
 242     return new (phase->C) SubINode( in1->in(2), in2->in(1) );
 243 
 244   // Convert "A-(B-C)" into (A+C)-B", since add is commutative and generally
 245   // nicer to optimize than subtract.
 246   if( op2 == Op_SubI && in2->outcnt() == 1) {
 247     Node *add1 = phase->transform( new (phase->C) AddINode( in1, in2->in(2) ) );
 248     return new (phase->C) SubINode( add1, in2->in(1) );
 249   }
 250 
 251   return NULL;
 252 }
 253 
 254 //------------------------------sub--------------------------------------------
 255 // A subtract node differences it's two inputs.
 256 const Type *SubINode::sub( const Type *t1, const Type *t2 ) const {
 257   const TypeInt *r0 = t1->is_int(); // Handy access
 258   const TypeInt *r1 = t2->is_int();
 259   int32 lo = java_subtract(r0->_lo, r1->_hi);
 260   int32 hi = java_subtract(r0->_hi, r1->_lo);
 261 
 262   // We next check for 32-bit overflow.
 263   // If that happens, we just assume all integers are possible.
 264   if( (((r0->_lo ^ r1->_hi) >= 0) ||    // lo ends have same signs OR
 265        ((r0->_lo ^      lo) >= 0)) &&   // lo results have same signs AND
 266       (((r0->_hi ^ r1->_lo) >= 0) ||    // hi ends have same signs OR
 267        ((r0->_hi ^      hi) >= 0)) )    // hi results have same signs
 268     return TypeInt::make(lo,hi,MAX2(r0->_widen,r1->_widen));
 269   else                          // Overflow; assume all integers
 270     return TypeInt::INT;
 271 }
 272 
 273 //=============================================================================
 274 //------------------------------Ideal------------------------------------------
 275 Node *SubLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 276   Node *in1 = in(1);
 277   Node *in2 = in(2);
 278   uint op1 = in1->Opcode();
 279   uint op2 = in2->Opcode();
 280 
 281 #ifdef ASSERT
 282   // Check for dead loop
 283   if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
 284       ( op1 == Op_AddL || op1 == Op_SubL ) &&
 285       ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
 286         phase->eqv( in1->in(1), in1  ) || phase->eqv( in1->in(2), in1  ) ) )
 287     assert(false, "dead loop in SubLNode::Ideal");
 288 #endif
 289 
 290   if( phase->type( in2 ) == Type::TOP ) return NULL;
 291   const TypeLong *i = phase->type( in2 )->isa_long();
 292   // Convert "x-c0" into "x+ -c0".
 293   if( i &&                      // Might be bottom or top...
 294       i->is_con() )
 295     return new (phase->C) AddLNode(in1, phase->longcon(-i->get_con()));
 296 
 297   // Convert "(x+c0) - y" into (x-y) + c0"
 298   // Do not collapse (x+c0)-y if "+" is a loop increment or
 299   // if "y" is a loop induction variable.
 300   if( op1 == Op_AddL && ok_to_convert(in1, in2) ) {
 301     Node *in11 = in1->in(1);
 302     const Type *tadd = phase->type( in1->in(2) );
 303     if( tadd->singleton() && tadd != Type::TOP ) {
 304       Node *sub2 = phase->transform( new (phase->C) SubLNode( in11, in2 ));
 305       return new (phase->C) AddLNode( sub2, in1->in(2) );
 306     }
 307   }
 308 
 309   // Convert "x - (y+c0)" into "(x-y) - c0"
 310   // Need the same check as in above optimization but reversed.
 311   if (op2 == Op_AddL && ok_to_convert(in2, in1)) {
 312     Node* in21 = in2->in(1);
 313     Node* in22 = in2->in(2);
 314     const TypeLong* tcon = phase->type(in22)->isa_long();
 315     if (tcon != NULL && tcon->is_con()) {
 316       Node* sub2 = phase->transform( new (phase->C) SubLNode(in1, in21) );
 317       Node* neg_c0 = phase->longcon(- tcon->get_con());
 318       return new (phase->C) AddLNode(sub2, neg_c0);
 319     }
 320   }
 321 
 322   const Type *t1 = phase->type( in1 );
 323   if( t1 == Type::TOP ) return NULL;
 324 
 325 #ifdef ASSERT
 326   // Check for dead loop
 327   if( ( op2 == Op_AddL || op2 == Op_SubL ) &&
 328       ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
 329         phase->eqv( in2->in(1), in2  ) || phase->eqv( in2->in(2), in2  ) ) )
 330     assert(false, "dead loop in SubLNode::Ideal");
 331 #endif
 332 
 333   // Convert "x - (x+y)" into "-y"
 334   if( op2 == Op_AddL &&
 335       phase->eqv( in1, in2->in(1) ) )
 336     return new (phase->C) SubLNode( phase->makecon(TypeLong::ZERO), in2->in(2));
 337   // Convert "x - (y+x)" into "-y"
 338   if( op2 == Op_AddL &&
 339       phase->eqv( in1, in2->in(2) ) )
 340     return new (phase->C) SubLNode( phase->makecon(TypeLong::ZERO),in2->in(1));
 341 
 342   // Convert "0 - (x-y)" into "y-x"
 343   if( phase->type( in1 ) == TypeLong::ZERO && op2 == Op_SubL )
 344     return new (phase->C) SubLNode( in2->in(2), in2->in(1) );
 345 
 346   // Convert "(X+A) - (X+B)" into "A - B"
 347   if( op1 == Op_AddL && op2 == Op_AddL && in1->in(1) == in2->in(1) )
 348     return new (phase->C) SubLNode( in1->in(2), in2->in(2) );
 349 
 350   // Convert "(A+X) - (B+X)" into "A - B"
 351   if( op1 == Op_AddL && op2 == Op_AddL && in1->in(2) == in2->in(2) )
 352     return new (phase->C) SubLNode( in1->in(1), in2->in(1) );
 353 
 354   // Convert "A-(B-C)" into (A+C)-B"
 355   if( op2 == Op_SubL && in2->outcnt() == 1) {
 356     Node *add1 = phase->transform( new (phase->C) AddLNode( in1, in2->in(2) ) );
 357     return new (phase->C) SubLNode( add1, in2->in(1) );
 358   }
 359 
 360   return NULL;
 361 }
 362 
 363 //------------------------------sub--------------------------------------------
 364 // A subtract node differences it's two inputs.
 365 const Type *SubLNode::sub( const Type *t1, const Type *t2 ) const {
 366   const TypeLong *r0 = t1->is_long(); // Handy access
 367   const TypeLong *r1 = t2->is_long();
 368   jlong lo = java_subtract(r0->_lo, r1->_hi);
 369   jlong hi = java_subtract(r0->_hi, r1->_lo);
 370 
 371   // We next check for 32-bit overflow.
 372   // If that happens, we just assume all integers are possible.
 373   if( (((r0->_lo ^ r1->_hi) >= 0) ||    // lo ends have same signs OR
 374        ((r0->_lo ^      lo) >= 0)) &&   // lo results have same signs AND
 375       (((r0->_hi ^ r1->_lo) >= 0) ||    // hi ends have same signs OR
 376        ((r0->_hi ^      hi) >= 0)) )    // hi results have same signs
 377     return TypeLong::make(lo,hi,MAX2(r0->_widen,r1->_widen));
 378   else                          // Overflow; assume all integers
 379     return TypeLong::LONG;
 380 }
 381 
 382 //=============================================================================
 383 //------------------------------Value------------------------------------------
 384 // A subtract node differences its two inputs.
 385 const Type *SubFPNode::Value( PhaseTransform *phase ) const {
 386   const Node* in1 = in(1);
 387   const Node* in2 = in(2);
 388   // Either input is TOP ==> the result is TOP
 389   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
 390   if( t1 == Type::TOP ) return Type::TOP;
 391   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
 392   if( t2 == Type::TOP ) return Type::TOP;
 393 
 394   // if both operands are infinity of same sign, the result is NaN; do
 395   // not replace with zero
 396   if( (t1->is_finite() && t2->is_finite()) ) {
 397     if( phase->eqv(in1, in2) ) return add_id();
 398   }
 399 
 400   // Either input is BOTTOM ==> the result is the local BOTTOM
 401   const Type *bot = bottom_type();
 402   if( (t1 == bot) || (t2 == bot) ||
 403       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 404     return bot;
 405 
 406   return sub(t1,t2);            // Local flavor of type subtraction
 407 }
 408 
 409 
 410 //=============================================================================
 411 //------------------------------Ideal------------------------------------------
 412 Node *SubFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 413   const Type *t2 = phase->type( in(2) );
 414   // Convert "x-c0" into "x+ -c0".
 415   if( t2->base() == Type::FloatCon ) {  // Might be bottom or top...
 416     // return new (phase->C, 3) AddFNode(in(1), phase->makecon( TypeF::make(-t2->getf()) ) );
 417   }
 418 
 419   // Not associative because of boundary conditions (infinity)
 420   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
 421     // Convert "x - (x+y)" into "-y"
 422     if( in(2)->is_Add() &&
 423         phase->eqv(in(1),in(2)->in(1) ) )
 424       return new (phase->C) SubFNode( phase->makecon(TypeF::ZERO),in(2)->in(2));
 425   }
 426 
 427   // Cannot replace 0.0-X with -X because a 'fsub' bytecode computes
 428   // 0.0-0.0 as +0.0, while a 'fneg' bytecode computes -0.0.
 429   //if( phase->type(in(1)) == TypeF::ZERO )
 430   //return new (phase->C, 2) NegFNode(in(2));
 431 
 432   return NULL;
 433 }
 434 
 435 //------------------------------sub--------------------------------------------
 436 // A subtract node differences its two inputs.
 437 const Type *SubFNode::sub( const Type *t1, const Type *t2 ) const {
 438   // no folding if one of operands is infinity or NaN, do not do constant folding
 439   if( g_isfinite(t1->getf()) && g_isfinite(t2->getf()) ) {
 440     return TypeF::make( t1->getf() - t2->getf() );
 441   }
 442   else if( g_isnan(t1->getf()) ) {
 443     return t1;
 444   }
 445   else if( g_isnan(t2->getf()) ) {
 446     return t2;
 447   }
 448   else {
 449     return Type::FLOAT;
 450   }
 451 }
 452 
 453 //=============================================================================
 454 //------------------------------Ideal------------------------------------------
 455 Node *SubDNode::Ideal(PhaseGVN *phase, bool can_reshape){
 456   const Type *t2 = phase->type( in(2) );
 457   // Convert "x-c0" into "x+ -c0".
 458   if( t2->base() == Type::DoubleCon ) { // Might be bottom or top...
 459     // return new (phase->C, 3) AddDNode(in(1), phase->makecon( TypeD::make(-t2->getd()) ) );
 460   }
 461 
 462   // Not associative because of boundary conditions (infinity)
 463   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
 464     // Convert "x - (x+y)" into "-y"
 465     if( in(2)->is_Add() &&
 466         phase->eqv(in(1),in(2)->in(1) ) )
 467       return new (phase->C) SubDNode( phase->makecon(TypeD::ZERO),in(2)->in(2));
 468   }
 469 
 470   // Cannot replace 0.0-X with -X because a 'dsub' bytecode computes
 471   // 0.0-0.0 as +0.0, while a 'dneg' bytecode computes -0.0.
 472   //if( phase->type(in(1)) == TypeD::ZERO )
 473   //return new (phase->C, 2) NegDNode(in(2));
 474 
 475   return NULL;
 476 }
 477 
 478 //------------------------------sub--------------------------------------------
 479 // A subtract node differences its two inputs.
 480 const Type *SubDNode::sub( const Type *t1, const Type *t2 ) const {
 481   // no folding if one of operands is infinity or NaN, do not do constant folding
 482   if( g_isfinite(t1->getd()) && g_isfinite(t2->getd()) ) {
 483     return TypeD::make( t1->getd() - t2->getd() );
 484   }
 485   else if( g_isnan(t1->getd()) ) {
 486     return t1;
 487   }
 488   else if( g_isnan(t2->getd()) ) {
 489     return t2;
 490   }
 491   else {
 492     return Type::DOUBLE;
 493   }
 494 }
 495 
 496 //=============================================================================
 497 //------------------------------Idealize---------------------------------------
 498 // Unlike SubNodes, compare must still flatten return value to the
 499 // range -1, 0, 1.
 500 // And optimizations like those for (X + Y) - X fail if overflow happens.
 501 Node *CmpNode::Identity( PhaseTransform *phase ) {
 502   return this;
 503 }
 504 
 505 //=============================================================================
 506 //------------------------------cmp--------------------------------------------
 507 // Simplify a CmpI (compare 2 integers) node, based on local information.
 508 // If both inputs are constants, compare them.
 509 const Type *CmpINode::sub( const Type *t1, const Type *t2 ) const {
 510   const TypeInt *r0 = t1->is_int(); // Handy access
 511   const TypeInt *r1 = t2->is_int();
 512 
 513   if( r0->_hi < r1->_lo )       // Range is always low?
 514     return TypeInt::CC_LT;
 515   else if( r0->_lo > r1->_hi )  // Range is always high?
 516     return TypeInt::CC_GT;
 517 
 518   else if( r0->is_con() && r1->is_con() ) { // comparing constants?
 519     assert(r0->get_con() == r1->get_con(), "must be equal");
 520     return TypeInt::CC_EQ;      // Equal results.
 521   } else if( r0->_hi == r1->_lo ) // Range is never high?
 522     return TypeInt::CC_LE;
 523   else if( r0->_lo == r1->_hi ) // Range is never low?
 524     return TypeInt::CC_GE;
 525   return TypeInt::CC;           // else use worst case results
 526 }
 527 
 528 // Simplify a CmpU (compare 2 integers) node, based on local information.
 529 // If both inputs are constants, compare them.
 530 const Type *CmpUNode::sub( const Type *t1, const Type *t2 ) const {
 531   assert(!t1->isa_ptr(), "obsolete usage of CmpU");
 532 
 533   // comparing two unsigned ints
 534   const TypeInt *r0 = t1->is_int();   // Handy access
 535   const TypeInt *r1 = t2->is_int();
 536 
 537   // Current installed version
 538   // Compare ranges for non-overlap
 539   juint lo0 = r0->_lo;
 540   juint hi0 = r0->_hi;
 541   juint lo1 = r1->_lo;
 542   juint hi1 = r1->_hi;
 543 
 544   // If either one has both negative and positive values,
 545   // it therefore contains both 0 and -1, and since [0..-1] is the
 546   // full unsigned range, the type must act as an unsigned bottom.
 547   bool bot0 = ((jint)(lo0 ^ hi0) < 0);
 548   bool bot1 = ((jint)(lo1 ^ hi1) < 0);
 549 
 550   if (bot0 || bot1) {
 551     // All unsigned values are LE -1 and GE 0.
 552     if (lo0 == 0 && hi0 == 0) {
 553       return TypeInt::CC_LE;            //   0 <= bot
 554     } else if ((jint)lo0 == -1 && (jint)hi0 == -1) {
 555       return TypeInt::CC_GE;            // -1 >= bot
 556     } else if (lo1 == 0 && hi1 == 0) {
 557       return TypeInt::CC_GE;            // bot >= 0
 558     } else if ((jint)lo1 == -1 && (jint)hi1 == -1) {
 559       return TypeInt::CC_LE;            // bot <= -1
 560     }
 561   } else {
 562     // We can use ranges of the form [lo..hi] if signs are the same.
 563     assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid");
 564     // results are reversed, '-' > '+' for unsigned compare
 565     if (hi0 < lo1) {
 566       return TypeInt::CC_LT;            // smaller
 567     } else if (lo0 > hi1) {
 568       return TypeInt::CC_GT;            // greater
 569     } else if (hi0 == lo1 && lo0 == hi1) {
 570       return TypeInt::CC_EQ;            // Equal results
 571     } else if (lo0 >= hi1) {
 572       return TypeInt::CC_GE;
 573     } else if (hi0 <= lo1) {
 574       // Check for special case in Hashtable::get.  (See below.)
 575       if ((jint)lo0 >= 0 && (jint)lo1 >= 0 && is_index_range_check())
 576         return TypeInt::CC_LT;
 577       return TypeInt::CC_LE;
 578     }
 579   }
 580   // Check for special case in Hashtable::get - the hash index is
 581   // mod'ed to the table size so the following range check is useless.
 582   // Check for: (X Mod Y) CmpU Y, where the mod result and Y both have
 583   // to be positive.
 584   // (This is a gross hack, since the sub method never
 585   // looks at the structure of the node in any other case.)
 586   if ((jint)lo0 >= 0 && (jint)lo1 >= 0 && is_index_range_check())
 587     return TypeInt::CC_LT;
 588   return TypeInt::CC;                   // else use worst case results
 589 }
 590 
 591 const Type* CmpUNode::Value(PhaseTransform *phase) const {
 592   const Type* t = SubNode::Value_common(phase);
 593   if (t != NULL) {
 594     return t;
 595   }
 596   const Node* in1 = in(1);
 597   const Node* in2 = in(2);
 598   const Type* t1 = phase->type(in1);
 599   const Type* t2 = phase->type(in2);
 600   assert(t1->isa_int(), "CmpU has only Int type inputs");
 601   if (t2 == TypeInt::INT) { // Compare to bottom?
 602     return bottom_type();
 603   }
 604   uint in1_op = in1->Opcode();
 605   if (in1_op == Op_AddI || in1_op == Op_SubI) {
 606     // The problem rise when result of AddI(SubI) may overflow
 607     // signed integer value. Let say the input type is
 608     // [256, maxint] then +128 will create 2 ranges due to
 609     // overflow: [minint, minint+127] and [384, maxint].
 610     // But C2 type system keep only 1 type range and as result
 611     // it use general [minint, maxint] for this case which we
 612     // can't optimize.
 613     //
 614     // Make 2 separate type ranges based on types of AddI(SubI) inputs
 615     // and compare results of their compare. If results are the same
 616     // CmpU node can be optimized.
 617     const Node* in11 = in1->in(1);
 618     const Node* in12 = in1->in(2);
 619     const Type* t11 = (in11 == in1) ? Type::TOP : phase->type(in11);
 620     const Type* t12 = (in12 == in1) ? Type::TOP : phase->type(in12);
 621     // Skip cases when input types are top or bottom.
 622     if ((t11 != Type::TOP) && (t11 != TypeInt::INT) &&
 623         (t12 != Type::TOP) && (t12 != TypeInt::INT)) {
 624       const TypeInt *r0 = t11->is_int();
 625       const TypeInt *r1 = t12->is_int();
 626       jlong lo_r0 = r0->_lo;
 627       jlong hi_r0 = r0->_hi;
 628       jlong lo_r1 = r1->_lo;
 629       jlong hi_r1 = r1->_hi;
 630       if (in1_op == Op_SubI) {
 631         jlong tmp = hi_r1;
 632         hi_r1 = -lo_r1;
 633         lo_r1 = -tmp;
 634         // Note, for substructing [minint,x] type range
 635         // long arithmetic provides correct overflow answer.
 636         // The confusion come from the fact that in 32-bit
 637         // -minint == minint but in 64-bit -minint == maxint+1.
 638       }
 639       jlong lo_long = lo_r0 + lo_r1;
 640       jlong hi_long = hi_r0 + hi_r1;
 641       int lo_tr1 = min_jint;
 642       int hi_tr1 = (int)hi_long;
 643       int lo_tr2 = (int)lo_long;
 644       int hi_tr2 = max_jint;
 645       bool underflow = lo_long != (jlong)lo_tr2;
 646       bool overflow  = hi_long != (jlong)hi_tr1;
 647       // Use sub(t1, t2) when there is no overflow (one type range)
 648       // or when both overflow and underflow (too complex).
 649       if ((underflow != overflow) && (hi_tr1 < lo_tr2)) {
 650         // Overflow only on one boundary, compare 2 separate type ranges.
 651         int w = MAX2(r0->_widen, r1->_widen); // _widen does not matter here
 652         const TypeInt* tr1 = TypeInt::make(lo_tr1, hi_tr1, w);
 653         const TypeInt* tr2 = TypeInt::make(lo_tr2, hi_tr2, w);
 654         const Type* cmp1 = sub(tr1, t2);
 655         const Type* cmp2 = sub(tr2, t2);
 656         if (cmp1 == cmp2) {
 657           return cmp1; // Hit!
 658         }
 659       }
 660     }
 661   }
 662 
 663   return sub(t1, t2);            // Local flavor of type subtraction
 664 }
 665 
 666 bool CmpUNode::is_index_range_check() const {
 667   // Check for the "(X ModI Y) CmpU Y" shape
 668   return (in(1)->Opcode() == Op_ModI &&
 669           in(1)->in(2)->eqv_uncast(in(2)));
 670 }
 671 
 672 //------------------------------Idealize---------------------------------------
 673 Node *CmpINode::Ideal( PhaseGVN *phase, bool can_reshape ) {
 674   if (phase->type(in(2))->higher_equal(TypeInt::ZERO)) {
 675     switch (in(1)->Opcode()) {
 676     case Op_CmpL3:              // Collapse a CmpL3/CmpI into a CmpL
 677       return new (phase->C) CmpLNode(in(1)->in(1),in(1)->in(2));
 678     case Op_CmpF3:              // Collapse a CmpF3/CmpI into a CmpF
 679       return new (phase->C) CmpFNode(in(1)->in(1),in(1)->in(2));
 680     case Op_CmpD3:              // Collapse a CmpD3/CmpI into a CmpD
 681       return new (phase->C) CmpDNode(in(1)->in(1),in(1)->in(2));
 682     //case Op_SubI:
 683       // If (x - y) cannot overflow, then ((x - y) <?> 0)
 684       // can be turned into (x <?> y).
 685       // This is handled (with more general cases) by Ideal_sub_algebra.
 686     }
 687   }
 688   return NULL;                  // No change
 689 }
 690 
 691 
 692 //=============================================================================
 693 // Simplify a CmpL (compare 2 longs ) node, based on local information.
 694 // If both inputs are constants, compare them.
 695 const Type *CmpLNode::sub( const Type *t1, const Type *t2 ) const {
 696   const TypeLong *r0 = t1->is_long(); // Handy access
 697   const TypeLong *r1 = t2->is_long();
 698 
 699   if( r0->_hi < r1->_lo )       // Range is always low?
 700     return TypeInt::CC_LT;
 701   else if( r0->_lo > r1->_hi )  // Range is always high?
 702     return TypeInt::CC_GT;
 703 
 704   else if( r0->is_con() && r1->is_con() ) { // comparing constants?
 705     assert(r0->get_con() == r1->get_con(), "must be equal");
 706     return TypeInt::CC_EQ;      // Equal results.
 707   } else if( r0->_hi == r1->_lo ) // Range is never high?
 708     return TypeInt::CC_LE;
 709   else if( r0->_lo == r1->_hi ) // Range is never low?
 710     return TypeInt::CC_GE;
 711   return TypeInt::CC;           // else use worst case results
 712 }
 713 
 714 
 715 // Simplify a CmpUL (compare 2 unsigned longs) node, based on local information.
 716 // If both inputs are constants, compare them.
 717 const Type* CmpULNode::sub(const Type* t1, const Type* t2) const {
 718   assert(!t1->isa_ptr(), "obsolete usage of CmpUL");
 719 
 720   // comparing two unsigned longs
 721   const TypeLong* r0 = t1->is_long();   // Handy access
 722   const TypeLong* r1 = t2->is_long();
 723 
 724   // Current installed version
 725   // Compare ranges for non-overlap
 726   julong lo0 = r0->_lo;
 727   julong hi0 = r0->_hi;
 728   julong lo1 = r1->_lo;
 729   julong hi1 = r1->_hi;
 730 
 731   // If either one has both negative and positive values,
 732   // it therefore contains both 0 and -1, and since [0..-1] is the
 733   // full unsigned range, the type must act as an unsigned bottom.
 734   bool bot0 = ((jlong)(lo0 ^ hi0) < 0);
 735   bool bot1 = ((jlong)(lo1 ^ hi1) < 0);
 736 
 737   if (bot0 || bot1) {
 738     // All unsigned values are LE -1 and GE 0.
 739     if (lo0 == 0 && hi0 == 0) {
 740       return TypeInt::CC_LE;            //   0 <= bot
 741     } else if ((jlong)lo0 == -1 && (jlong)hi0 == -1) {
 742       return TypeInt::CC_GE;            // -1 >= bot
 743     } else if (lo1 == 0 && hi1 == 0) {
 744       return TypeInt::CC_GE;            // bot >= 0
 745     } else if ((jlong)lo1 == -1 && (jlong)hi1 == -1) {
 746       return TypeInt::CC_LE;            // bot <= -1
 747     }
 748   } else {
 749     // We can use ranges of the form [lo..hi] if signs are the same.
 750     assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid");
 751     // results are reversed, '-' > '+' for unsigned compare
 752     if (hi0 < lo1) {
 753       return TypeInt::CC_LT;            // smaller
 754     } else if (lo0 > hi1) {
 755       return TypeInt::CC_GT;            // greater
 756     } else if (hi0 == lo1 && lo0 == hi1) {
 757       return TypeInt::CC_EQ;            // Equal results
 758     } else if (lo0 >= hi1) {
 759       return TypeInt::CC_GE;
 760     } else if (hi0 <= lo1) {
 761       return TypeInt::CC_LE;
 762     }
 763   }
 764 
 765   return TypeInt::CC;                   // else use worst case results
 766 }
 767 
 768 //=============================================================================
 769 //------------------------------sub--------------------------------------------
 770 // Simplify an CmpP (compare 2 pointers) node, based on local information.
 771 // If both inputs are constants, compare them.
 772 const Type *CmpPNode::sub( const Type *t1, const Type *t2 ) const {
 773   const TypePtr *r0 = t1->is_ptr(); // Handy access
 774   const TypePtr *r1 = t2->is_ptr();
 775 
 776   // Undefined inputs makes for an undefined result
 777   if( TypePtr::above_centerline(r0->_ptr) ||
 778       TypePtr::above_centerline(r1->_ptr) )
 779     return Type::TOP;
 780 
 781   if (r0 == r1 && r0->singleton()) {
 782     // Equal pointer constants (klasses, nulls, etc.)
 783     return TypeInt::CC_EQ;
 784   }
 785 
 786   // See if it is 2 unrelated classes.
 787   const TypeOopPtr* p0 = r0->isa_oopptr();
 788   const TypeOopPtr* p1 = r1->isa_oopptr();
 789   if (p0 && p1) {
 790     Node* in1 = in(1)->uncast();
 791     Node* in2 = in(2)->uncast();
 792     AllocateNode* alloc1 = AllocateNode::Ideal_allocation(in1, NULL);
 793     AllocateNode* alloc2 = AllocateNode::Ideal_allocation(in2, NULL);
 794     if (MemNode::detect_ptr_independence(in1, alloc1, in2, alloc2, NULL)) {
 795       return TypeInt::CC_GT;  // different pointers
 796     }
 797     ciKlass* klass0 = p0->klass();
 798     bool    xklass0 = p0->klass_is_exact();
 799     ciKlass* klass1 = p1->klass();
 800     bool    xklass1 = p1->klass_is_exact();
 801     int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0);
 802     if (klass0 && klass1 &&
 803         kps != 1 &&             // both or neither are klass pointers
 804         klass0->is_loaded() && !klass0->is_interface() && // do not trust interfaces
 805         klass1->is_loaded() && !klass1->is_interface() &&
 806         (!klass0->is_obj_array_klass() ||
 807          !klass0->as_obj_array_klass()->base_element_klass()->is_interface()) &&
 808         (!klass1->is_obj_array_klass() ||
 809          !klass1->as_obj_array_klass()->base_element_klass()->is_interface())) {
 810       bool unrelated_classes = false;
 811       // See if neither subclasses the other, or if the class on top
 812       // is precise.  In either of these cases, the compare is known
 813       // to fail if at least one of the pointers is provably not null.
 814       if (klass0->equals(klass1)) {  // if types are unequal but klasses are equal
 815         // Do nothing; we know nothing for imprecise types
 816       } else if (klass0->is_subtype_of(klass1)) {
 817         // If klass1's type is PRECISE, then classes are unrelated.
 818         unrelated_classes = xklass1;
 819       } else if (klass1->is_subtype_of(klass0)) {
 820         // If klass0's type is PRECISE, then classes are unrelated.
 821         unrelated_classes = xklass0;
 822       } else {                  // Neither subtypes the other
 823         unrelated_classes = true;
 824       }
 825       if (unrelated_classes) {
 826         // The oops classes are known to be unrelated. If the joined PTRs of
 827         // two oops is not Null and not Bottom, then we are sure that one
 828         // of the two oops is non-null, and the comparison will always fail.
 829         TypePtr::PTR jp = r0->join_ptr(r1->_ptr);
 830         if (jp != TypePtr::Null && jp != TypePtr::BotPTR) {
 831           return TypeInt::CC_GT;
 832         }
 833       }
 834     }
 835   }
 836 
 837   // Known constants can be compared exactly
 838   // Null can be distinguished from any NotNull pointers
 839   // Unknown inputs makes an unknown result
 840   if( r0->singleton() ) {
 841     intptr_t bits0 = r0->get_con();
 842     if( r1->singleton() )
 843       return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
 844     return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
 845   } else if( r1->singleton() ) {
 846     intptr_t bits1 = r1->get_con();
 847     return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
 848   } else
 849     return TypeInt::CC;
 850 }
 851 
 852 static inline Node* isa_java_mirror_load(PhaseGVN* phase, Node* n) {
 853   // Return the klass node for
 854   //   LoadP(AddP(foo:Klass, #java_mirror))
 855   //   or NULL if not matching.
 856 
 857 #if INCLUDE_ALL_GCS
 858   if (UseShenandoahGC) {
 859     n = ShenandoahBarrierSetC2::bsc2()->step_over_gc_barrier(n);
 860   }
 861 #endif
 862 
 863   if (n->Opcode() != Op_LoadP) return NULL;
 864   const TypeInstPtr* tp = phase->type(n)->isa_instptr();
 865   if (!tp || tp->klass() != phase->C->env()->Class_klass()) return NULL;
 866 
 867   Node* adr = n->in(MemNode::Address);
 868   intptr_t off = 0;
 869   Node* k = AddPNode::Ideal_base_and_offset(adr, phase, off);
 870   if (k == NULL)  return NULL;
 871   const TypeKlassPtr* tkp = phase->type(k)->isa_klassptr();
 872   if (!tkp || off != in_bytes(Klass::java_mirror_offset())) return NULL;
 873 
 874   // We've found the klass node of a Java mirror load.
 875   return k;
 876 }
 877 
 878 static inline Node* isa_const_java_mirror(PhaseGVN* phase, Node* n) {
 879   // for ConP(Foo.class) return ConP(Foo.klass)
 880   // otherwise return NULL
 881   if (!n->is_Con()) return NULL;
 882 
 883   const TypeInstPtr* tp = phase->type(n)->isa_instptr();
 884   if (!tp) return NULL;
 885 
 886   ciType* mirror_type = tp->java_mirror_type();
 887   // TypeInstPtr::java_mirror_type() returns non-NULL for compile-
 888   // time Class constants only.
 889   if (!mirror_type) return NULL;
 890 
 891   // x.getClass() == int.class can never be true (for all primitive types)
 892   // Return a ConP(NULL) node for this case.
 893   if (mirror_type->is_classless()) {
 894     return phase->makecon(TypePtr::NULL_PTR);
 895   }
 896 
 897   // return the ConP(Foo.klass)
 898   assert(mirror_type->is_klass(), "mirror_type should represent a Klass*");
 899   return phase->makecon(TypeKlassPtr::make(mirror_type->as_klass()));
 900 }
 901 
 902 //------------------------------Ideal------------------------------------------
 903 // Normalize comparisons between Java mirror loads to compare the klass instead.
 904 //
 905 // Also check for the case of comparing an unknown klass loaded from the primary
 906 // super-type array vs a known klass with no subtypes.  This amounts to
 907 // checking to see an unknown klass subtypes a known klass with no subtypes;
 908 // this only happens on an exact match.  We can shorten this test by 1 load.
 909 Node *CmpPNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
 910   // Normalize comparisons between Java mirrors into comparisons of the low-
 911   // level klass, where a dependent load could be shortened.
 912   //
 913   // The new pattern has a nice effect of matching the same pattern used in the
 914   // fast path of instanceof/checkcast/Class.isInstance(), which allows
 915   // redundant exact type check be optimized away by GVN.
 916   // For example, in
 917   //   if (x.getClass() == Foo.class) {
 918   //     Foo foo = (Foo) x;
 919   //     // ... use a ...
 920   //   }
 921   // a CmpPNode could be shared between if_acmpne and checkcast
 922   {
 923     Node* k1 = isa_java_mirror_load(phase, in(1));
 924     Node* k2 = isa_java_mirror_load(phase, in(2));
 925     Node* conk2 = isa_const_java_mirror(phase, in(2));
 926 
 927     if (k1 && (k2 || conk2)) {
 928       Node* lhs = k1;
 929       Node* rhs = (k2 != NULL) ? k2 : conk2;
 930 #if INCLUDE_ALL_GCS
 931       PhaseIterGVN* igvn = phase->is_IterGVN();
 932       if (UseShenandoahGC && igvn != NULL) {
 933         set_req_X(1, lhs, igvn);
 934         set_req_X(2, rhs, igvn);
 935       } else
 936 #endif
 937       {
 938         set_req(1, lhs);
 939         set_req(2, rhs);
 940       }
 941       return this;
 942     }
 943   }
 944 
 945   // Constant pointer on right?
 946   const TypeKlassPtr* t2 = phase->type(in(2))->isa_klassptr();
 947   if (t2 == NULL || !t2->klass_is_exact())
 948     return NULL;
 949   // Get the constant klass we are comparing to.
 950   ciKlass* superklass = t2->klass();
 951 
 952   // Now check for LoadKlass on left.
 953   Node* ldk1 = in(1);
 954   if (ldk1->is_DecodeNKlass()) {
 955     ldk1 = ldk1->in(1);
 956     if (ldk1->Opcode() != Op_LoadNKlass )
 957       return NULL;
 958   } else if (ldk1->Opcode() != Op_LoadKlass )
 959     return NULL;
 960   // Take apart the address of the LoadKlass:
 961   Node* adr1 = ldk1->in(MemNode::Address);
 962   intptr_t con2 = 0;
 963   Node* ldk2 = AddPNode::Ideal_base_and_offset(adr1, phase, con2);
 964   if (ldk2 == NULL)
 965     return NULL;
 966   if (con2 == oopDesc::klass_offset_in_bytes()) {
 967     // We are inspecting an object's concrete class.
 968     // Short-circuit the check if the query is abstract.
 969     if (superklass->is_interface() ||
 970         superklass->is_abstract()) {
 971       // Make it come out always false:
 972       this->set_req(2, phase->makecon(TypePtr::NULL_PTR));
 973       return this;
 974     }
 975   }
 976 
 977   // Check for a LoadKlass from primary supertype array.
 978   // Any nested loadklass from loadklass+con must be from the p.s. array.
 979   if (ldk2->is_DecodeNKlass()) {
 980     // Keep ldk2 as DecodeN since it could be used in CmpP below.
 981     if (ldk2->in(1)->Opcode() != Op_LoadNKlass )
 982       return NULL;
 983   } else if (ldk2->Opcode() != Op_LoadKlass)
 984     return NULL;
 985 
 986   // Verify that we understand the situation
 987   if (con2 != (intptr_t) superklass->super_check_offset())
 988     return NULL;                // Might be element-klass loading from array klass
 989 
 990   // If 'superklass' has no subklasses and is not an interface, then we are
 991   // assured that the only input which will pass the type check is
 992   // 'superklass' itself.
 993   //
 994   // We could be more liberal here, and allow the optimization on interfaces
 995   // which have a single implementor.  This would require us to increase the
 996   // expressiveness of the add_dependency() mechanism.
 997   // %%% Do this after we fix TypeOopPtr:  Deps are expressive enough now.
 998 
 999   // Object arrays must have their base element have no subtypes
1000   while (superklass->is_obj_array_klass()) {
1001     ciType* elem = superklass->as_obj_array_klass()->element_type();
1002     superklass = elem->as_klass();
1003   }
1004   if (superklass->is_instance_klass()) {
1005     ciInstanceKlass* ik = superklass->as_instance_klass();
1006     if (ik->has_subklass() || ik->is_interface())  return NULL;
1007     // Add a dependency if there is a chance that a subclass will be added later.
1008     if (!ik->is_final()) {
1009       phase->C->dependencies()->assert_leaf_type(ik);
1010     }
1011   }
1012 
1013   // Bypass the dependent load, and compare directly
1014   this->set_req(1,ldk2);
1015 
1016   return this;
1017 }
1018 
1019 //=============================================================================
1020 //------------------------------sub--------------------------------------------
1021 // Simplify an CmpN (compare 2 pointers) node, based on local information.
1022 // If both inputs are constants, compare them.
1023 const Type *CmpNNode::sub( const Type *t1, const Type *t2 ) const {
1024   const TypePtr *r0 = t1->make_ptr(); // Handy access
1025   const TypePtr *r1 = t2->make_ptr();
1026 
1027   // Undefined inputs makes for an undefined result
1028   if ((r0 == NULL) || (r1 == NULL) ||
1029       TypePtr::above_centerline(r0->_ptr) ||
1030       TypePtr::above_centerline(r1->_ptr)) {
1031     return Type::TOP;
1032   }
1033   if (r0 == r1 && r0->singleton()) {
1034     // Equal pointer constants (klasses, nulls, etc.)
1035     return TypeInt::CC_EQ;
1036   }
1037 
1038   // See if it is 2 unrelated classes.
1039   const TypeOopPtr* p0 = r0->isa_oopptr();
1040   const TypeOopPtr* p1 = r1->isa_oopptr();
1041   if (p0 && p1) {
1042     ciKlass* klass0 = p0->klass();
1043     bool    xklass0 = p0->klass_is_exact();
1044     ciKlass* klass1 = p1->klass();
1045     bool    xklass1 = p1->klass_is_exact();
1046     int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0);
1047     if (klass0 && klass1 &&
1048         kps != 1 &&             // both or neither are klass pointers
1049         !klass0->is_interface() && // do not trust interfaces
1050         !klass1->is_interface()) {
1051       bool unrelated_classes = false;
1052       // See if neither subclasses the other, or if the class on top
1053       // is precise.  In either of these cases, the compare is known
1054       // to fail if at least one of the pointers is provably not null.
1055       if (klass0->equals(klass1)) { // if types are unequal but klasses are equal
1056         // Do nothing; we know nothing for imprecise types
1057       } else if (klass0->is_subtype_of(klass1)) {
1058         // If klass1's type is PRECISE, then classes are unrelated.
1059         unrelated_classes = xklass1;
1060       } else if (klass1->is_subtype_of(klass0)) {
1061         // If klass0's type is PRECISE, then classes are unrelated.
1062         unrelated_classes = xklass0;
1063       } else {                  // Neither subtypes the other
1064         unrelated_classes = true;
1065       }
1066       if (unrelated_classes) {
1067         // The oops classes are known to be unrelated. If the joined PTRs of
1068         // two oops is not Null and not Bottom, then we are sure that one
1069         // of the two oops is non-null, and the comparison will always fail.
1070         TypePtr::PTR jp = r0->join_ptr(r1->_ptr);
1071         if (jp != TypePtr::Null && jp != TypePtr::BotPTR) {
1072           return TypeInt::CC_GT;
1073         }
1074       }
1075     }
1076   }
1077 
1078   // Known constants can be compared exactly
1079   // Null can be distinguished from any NotNull pointers
1080   // Unknown inputs makes an unknown result
1081   if( r0->singleton() ) {
1082     intptr_t bits0 = r0->get_con();
1083     if( r1->singleton() )
1084       return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
1085     return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
1086   } else if( r1->singleton() ) {
1087     intptr_t bits1 = r1->get_con();
1088     return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
1089   } else
1090     return TypeInt::CC;
1091 }
1092 
1093 //------------------------------Ideal------------------------------------------
1094 Node *CmpNNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
1095   return NULL;
1096 }
1097 
1098 //=============================================================================
1099 //------------------------------Value------------------------------------------
1100 // Simplify an CmpF (compare 2 floats ) node, based on local information.
1101 // If both inputs are constants, compare them.
1102 const Type *CmpFNode::Value( PhaseTransform *phase ) const {
1103   const Node* in1 = in(1);
1104   const Node* in2 = in(2);
1105   // Either input is TOP ==> the result is TOP
1106   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
1107   if( t1 == Type::TOP ) return Type::TOP;
1108   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
1109   if( t2 == Type::TOP ) return Type::TOP;
1110 
1111   // Not constants?  Don't know squat - even if they are the same
1112   // value!  If they are NaN's they compare to LT instead of EQ.
1113   const TypeF *tf1 = t1->isa_float_constant();
1114   const TypeF *tf2 = t2->isa_float_constant();
1115   if( !tf1 || !tf2 ) return TypeInt::CC;
1116 
1117   // This implements the Java bytecode fcmpl, so unordered returns -1.
1118   if( tf1->is_nan() || tf2->is_nan() )
1119     return TypeInt::CC_LT;
1120 
1121   if( tf1->_f < tf2->_f ) return TypeInt::CC_LT;
1122   if( tf1->_f > tf2->_f ) return TypeInt::CC_GT;
1123   assert( tf1->_f == tf2->_f, "do not understand FP behavior" );
1124   return TypeInt::CC_EQ;
1125 }
1126 
1127 
1128 //=============================================================================
1129 //------------------------------Value------------------------------------------
1130 // Simplify an CmpD (compare 2 doubles ) node, based on local information.
1131 // If both inputs are constants, compare them.
1132 const Type *CmpDNode::Value( PhaseTransform *phase ) const {
1133   const Node* in1 = in(1);
1134   const Node* in2 = in(2);
1135   // Either input is TOP ==> the result is TOP
1136   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
1137   if( t1 == Type::TOP ) return Type::TOP;
1138   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
1139   if( t2 == Type::TOP ) return Type::TOP;
1140 
1141   // Not constants?  Don't know squat - even if they are the same
1142   // value!  If they are NaN's they compare to LT instead of EQ.
1143   const TypeD *td1 = t1->isa_double_constant();
1144   const TypeD *td2 = t2->isa_double_constant();
1145   if( !td1 || !td2 ) return TypeInt::CC;
1146 
1147   // This implements the Java bytecode dcmpl, so unordered returns -1.
1148   if( td1->is_nan() || td2->is_nan() )
1149     return TypeInt::CC_LT;
1150 
1151   if( td1->_d < td2->_d ) return TypeInt::CC_LT;
1152   if( td1->_d > td2->_d ) return TypeInt::CC_GT;
1153   assert( td1->_d == td2->_d, "do not understand FP behavior" );
1154   return TypeInt::CC_EQ;
1155 }
1156 
1157 //------------------------------Ideal------------------------------------------
1158 Node *CmpDNode::Ideal(PhaseGVN *phase, bool can_reshape){
1159   // Check if we can change this to a CmpF and remove a ConvD2F operation.
1160   // Change  (CMPD (F2D (float)) (ConD value))
1161   // To      (CMPF      (float)  (ConF value))
1162   // Valid when 'value' does not lose precision as a float.
1163   // Benefits: eliminates conversion, does not require 24-bit mode
1164 
1165   // NaNs prevent commuting operands.  This transform works regardless of the
1166   // order of ConD and ConvF2D inputs by preserving the original order.
1167   int idx_f2d = 1;              // ConvF2D on left side?
1168   if( in(idx_f2d)->Opcode() != Op_ConvF2D )
1169     idx_f2d = 2;                // No, swap to check for reversed args
1170   int idx_con = 3-idx_f2d;      // Check for the constant on other input
1171 
1172   if( ConvertCmpD2CmpF &&
1173       in(idx_f2d)->Opcode() == Op_ConvF2D &&
1174       in(idx_con)->Opcode() == Op_ConD ) {
1175     const TypeD *t2 = in(idx_con)->bottom_type()->is_double_constant();
1176     double t2_value_as_double = t2->_d;
1177     float  t2_value_as_float  = (float)t2_value_as_double;
1178     if( t2_value_as_double == (double)t2_value_as_float ) {
1179       // Test value can be represented as a float
1180       // Eliminate the conversion to double and create new comparison
1181       Node *new_in1 = in(idx_f2d)->in(1);
1182       Node *new_in2 = phase->makecon( TypeF::make(t2_value_as_float) );
1183       if( idx_f2d != 1 ) {      // Must flip args to match original order
1184         Node *tmp = new_in1;
1185         new_in1 = new_in2;
1186         new_in2 = tmp;
1187       }
1188       CmpFNode *new_cmp = (Opcode() == Op_CmpD3)
1189         ? new (phase->C) CmpF3Node( new_in1, new_in2 )
1190         : new (phase->C) CmpFNode ( new_in1, new_in2 ) ;
1191       return new_cmp;           // Changed to CmpFNode
1192     }
1193     // Testing value required the precision of a double
1194   }
1195   return NULL;                  // No change
1196 }
1197 
1198 
1199 //=============================================================================
1200 //------------------------------cc2logical-------------------------------------
1201 // Convert a condition code type to a logical type
1202 const Type *BoolTest::cc2logical( const Type *CC ) const {
1203   if( CC == Type::TOP ) return Type::TOP;
1204   if( CC->base() != Type::Int ) return TypeInt::BOOL; // Bottom or worse
1205   const TypeInt *ti = CC->is_int();
1206   if( ti->is_con() ) {          // Only 1 kind of condition codes set?
1207     // Match low order 2 bits
1208     int tmp = ((ti->get_con()&3) == (_test&3)) ? 1 : 0;
1209     if( _test & 4 ) tmp = 1-tmp;     // Optionally complement result
1210     return TypeInt::make(tmp);       // Boolean result
1211   }
1212 
1213   if( CC == TypeInt::CC_GE ) {
1214     if( _test == ge ) return TypeInt::ONE;
1215     if( _test == lt ) return TypeInt::ZERO;
1216   }
1217   if( CC == TypeInt::CC_LE ) {
1218     if( _test == le ) return TypeInt::ONE;
1219     if( _test == gt ) return TypeInt::ZERO;
1220   }
1221 
1222   return TypeInt::BOOL;
1223 }
1224 
1225 //------------------------------dump_spec-------------------------------------
1226 // Print special per-node info
1227 void BoolTest::dump_on(outputStream *st) const {
1228   const char *msg[] = {"eq","gt","of","lt","ne","le","nof","ge"};
1229   st->print("%s", msg[_test]);
1230 }
1231 
1232 //=============================================================================
1233 uint BoolNode::hash() const { return (Node::hash() << 3)|(_test._test+1); }
1234 uint BoolNode::size_of() const { return sizeof(BoolNode); }
1235 
1236 //------------------------------operator==-------------------------------------
1237 uint BoolNode::cmp( const Node &n ) const {
1238   const BoolNode *b = (const BoolNode *)&n; // Cast up
1239   return (_test._test == b->_test._test);
1240 }
1241 
1242 //-------------------------------make_predicate--------------------------------
1243 Node* BoolNode::make_predicate(Node* test_value, PhaseGVN* phase) {
1244   if (test_value->is_Con())   return test_value;
1245   if (test_value->is_Bool())  return test_value;
1246   Compile* C = phase->C;
1247   if (test_value->is_CMove() &&
1248       test_value->in(CMoveNode::Condition)->is_Bool()) {
1249     BoolNode*   bol   = test_value->in(CMoveNode::Condition)->as_Bool();
1250     const Type* ftype = phase->type(test_value->in(CMoveNode::IfFalse));
1251     const Type* ttype = phase->type(test_value->in(CMoveNode::IfTrue));
1252     if (ftype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ttype)) {
1253       return bol;
1254     } else if (ttype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ftype)) {
1255       return phase->transform( bol->negate(phase) );
1256     }
1257     // Else fall through.  The CMove gets in the way of the test.
1258     // It should be the case that make_predicate(bol->as_int_value()) == bol.
1259   }
1260   Node* cmp = new (C) CmpINode(test_value, phase->intcon(0));
1261   cmp = phase->transform(cmp);
1262   Node* bol = new (C) BoolNode(cmp, BoolTest::ne);
1263   return phase->transform(bol);
1264 }
1265 
1266 //--------------------------------as_int_value---------------------------------
1267 Node* BoolNode::as_int_value(PhaseGVN* phase) {
1268   // Inverse to make_predicate.  The CMove probably boils down to a Conv2B.
1269   Node* cmov = CMoveNode::make(phase->C, NULL, this,
1270                                phase->intcon(0), phase->intcon(1),
1271                                TypeInt::BOOL);
1272   return phase->transform(cmov);
1273 }
1274 
1275 //----------------------------------negate-------------------------------------
1276 BoolNode* BoolNode::negate(PhaseGVN* phase) {
1277   Compile* C = phase->C;
1278   return new (C) BoolNode(in(1), _test.negate());
1279 }
1280 
1281 
1282 //------------------------------Ideal------------------------------------------
1283 Node *BoolNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1284   // Change "bool tst (cmp con x)" into "bool ~tst (cmp x con)".
1285   // This moves the constant to the right.  Helps value-numbering.
1286   Node *cmp = in(1);
1287   if( !cmp->is_Sub() ) return NULL;
1288   int cop = cmp->Opcode();
1289   if( cop == Op_FastLock || cop == Op_FastUnlock) return NULL;
1290   Node *cmp1 = cmp->in(1);
1291   Node *cmp2 = cmp->in(2);
1292   if( !cmp1 ) return NULL;
1293 
1294   if (_test._test == BoolTest::overflow || _test._test == BoolTest::no_overflow) {
1295     return NULL;
1296   }
1297 
1298   // Constant on left?
1299   Node *con = cmp1;
1300   uint op2 = cmp2->Opcode();
1301   // Move constants to the right of compare's to canonicalize.
1302   // Do not muck with Opaque1 nodes, as this indicates a loop
1303   // guard that cannot change shape.
1304   if( con->is_Con() && !cmp2->is_Con() && op2 != Op_Opaque1 &&
1305       // Because of NaN's, CmpD and CmpF are not commutative
1306       cop != Op_CmpD && cop != Op_CmpF &&
1307       // Protect against swapping inputs to a compare when it is used by a
1308       // counted loop exit, which requires maintaining the loop-limit as in(2)
1309       !is_counted_loop_exit_test() ) {
1310     // Ok, commute the constant to the right of the cmp node.
1311     // Clone the Node, getting a new Node of the same class
1312     cmp = cmp->clone();
1313     // Swap inputs to the clone
1314     cmp->swap_edges(1, 2);
1315     cmp = phase->transform( cmp );
1316     return new (phase->C) BoolNode( cmp, _test.commute() );
1317   }
1318 
1319   // Change "bool eq/ne (cmp (xor X 1) 0)" into "bool ne/eq (cmp X 0)".
1320   // The XOR-1 is an idiom used to flip the sense of a bool.  We flip the
1321   // test instead.
1322   int cmp1_op = cmp1->Opcode();
1323   const TypeInt* cmp2_type = phase->type(cmp2)->isa_int();
1324   if (cmp2_type == NULL)  return NULL;
1325   Node* j_xor = cmp1;
1326   if( cmp2_type == TypeInt::ZERO &&
1327       cmp1_op == Op_XorI &&
1328       j_xor->in(1) != j_xor &&          // An xor of itself is dead
1329       phase->type( j_xor->in(1) ) == TypeInt::BOOL &&
1330       phase->type( j_xor->in(2) ) == TypeInt::ONE &&
1331       (_test._test == BoolTest::eq ||
1332        _test._test == BoolTest::ne) ) {
1333     Node *ncmp = phase->transform(new (phase->C) CmpINode(j_xor->in(1),cmp2));
1334     return new (phase->C) BoolNode( ncmp, _test.negate() );
1335   }
1336 
1337   // Change "bool eq/ne (cmp (Conv2B X) 0)" into "bool eq/ne (cmp X 0)".
1338   // This is a standard idiom for branching on a boolean value.
1339   Node *c2b = cmp1;
1340   if( cmp2_type == TypeInt::ZERO &&
1341       cmp1_op == Op_Conv2B &&
1342       (_test._test == BoolTest::eq ||
1343        _test._test == BoolTest::ne) ) {
1344     Node *ncmp = phase->transform(phase->type(c2b->in(1))->isa_int()
1345        ? (Node*)new (phase->C) CmpINode(c2b->in(1),cmp2)
1346        : (Node*)new (phase->C) CmpPNode(c2b->in(1),phase->makecon(TypePtr::NULL_PTR))
1347     );
1348     return new (phase->C) BoolNode( ncmp, _test._test );
1349   }
1350 
1351   // Comparing a SubI against a zero is equal to comparing the SubI
1352   // arguments directly.  This only works for eq and ne comparisons
1353   // due to possible integer overflow.
1354   if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1355         (cop == Op_CmpI) &&
1356         (cmp1->Opcode() == Op_SubI) &&
1357         ( cmp2_type == TypeInt::ZERO ) ) {
1358     Node *ncmp = phase->transform( new (phase->C) CmpINode(cmp1->in(1),cmp1->in(2)));
1359     return new (phase->C) BoolNode( ncmp, _test._test );
1360   }
1361 
1362   // Change (-A vs 0) into (A vs 0) by commuting the test.  Disallow in the
1363   // most general case because negating 0x80000000 does nothing.  Needed for
1364   // the CmpF3/SubI/CmpI idiom.
1365   if( cop == Op_CmpI &&
1366       cmp1->Opcode() == Op_SubI &&
1367       cmp2_type == TypeInt::ZERO &&
1368       phase->type( cmp1->in(1) ) == TypeInt::ZERO &&
1369       phase->type( cmp1->in(2) )->higher_equal(TypeInt::SYMINT) ) {
1370     Node *ncmp = phase->transform( new (phase->C) CmpINode(cmp1->in(2),cmp2));
1371     return new (phase->C) BoolNode( ncmp, _test.commute() );
1372   }
1373 
1374   //  The transformation below is not valid for either signed or unsigned
1375   //  comparisons due to wraparound concerns at MAX_VALUE and MIN_VALUE.
1376   //  This transformation can be resurrected when we are able to
1377   //  make inferences about the range of values being subtracted from
1378   //  (or added to) relative to the wraparound point.
1379   //
1380   //    // Remove +/-1's if possible.
1381   //    // "X <= Y-1" becomes "X <  Y"
1382   //    // "X+1 <= Y" becomes "X <  Y"
1383   //    // "X <  Y+1" becomes "X <= Y"
1384   //    // "X-1 <  Y" becomes "X <= Y"
1385   //    // Do not this to compares off of the counted-loop-end.  These guys are
1386   //    // checking the trip counter and they want to use the post-incremented
1387   //    // counter.  If they use the PRE-incremented counter, then the counter has
1388   //    // to be incremented in a private block on a loop backedge.
1389   //    if( du && du->cnt(this) && du->out(this)[0]->Opcode() == Op_CountedLoopEnd )
1390   //      return NULL;
1391   //  #ifndef PRODUCT
1392   //    // Do not do this in a wash GVN pass during verification.
1393   //    // Gets triggered by too many simple optimizations to be bothered with
1394   //    // re-trying it again and again.
1395   //    if( !phase->allow_progress() ) return NULL;
1396   //  #endif
1397   //    // Not valid for unsigned compare because of corner cases in involving zero.
1398   //    // For example, replacing "X-1 <u Y" with "X <=u Y" fails to throw an
1399   //    // exception in case X is 0 (because 0-1 turns into 4billion unsigned but
1400   //    // "0 <=u Y" is always true).
1401   //    if( cmp->Opcode() == Op_CmpU ) return NULL;
1402   //    int cmp2_op = cmp2->Opcode();
1403   //    if( _test._test == BoolTest::le ) {
1404   //      if( cmp1_op == Op_AddI &&
1405   //          phase->type( cmp1->in(2) ) == TypeInt::ONE )
1406   //        return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::lt );
1407   //      else if( cmp2_op == Op_AddI &&
1408   //         phase->type( cmp2->in(2) ) == TypeInt::MINUS_1 )
1409   //        return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::lt );
1410   //    } else if( _test._test == BoolTest::lt ) {
1411   //      if( cmp1_op == Op_AddI &&
1412   //          phase->type( cmp1->in(2) ) == TypeInt::MINUS_1 )
1413   //        return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::le );
1414   //      else if( cmp2_op == Op_AddI &&
1415   //         phase->type( cmp2->in(2) ) == TypeInt::ONE )
1416   //        return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::le );
1417   //    }
1418 
1419   return NULL;
1420 }
1421 
1422 //------------------------------Value------------------------------------------
1423 // Simplify a Bool (convert condition codes to boolean (1 or 0)) node,
1424 // based on local information.   If the input is constant, do it.
1425 const Type *BoolNode::Value( PhaseTransform *phase ) const {
1426   return _test.cc2logical( phase->type( in(1) ) );
1427 }
1428 
1429 //------------------------------dump_spec--------------------------------------
1430 // Dump special per-node info
1431 #ifndef PRODUCT
1432 void BoolNode::dump_spec(outputStream *st) const {
1433   st->print("[");
1434   _test.dump_on(st);
1435   st->print("]");
1436 }
1437 #endif
1438 
1439 //------------------------------is_counted_loop_exit_test--------------------------------------
1440 // Returns true if node is used by a counted loop node.
1441 bool BoolNode::is_counted_loop_exit_test() {
1442   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
1443     Node* use = fast_out(i);
1444     if (use->is_CountedLoopEnd()) {
1445       return true;
1446     }
1447   }
1448   return false;
1449 }
1450 
1451 //=============================================================================
1452 //------------------------------Value------------------------------------------
1453 // Compute sqrt
1454 const Type *SqrtDNode::Value( PhaseTransform *phase ) const {
1455   const Type *t1 = phase->type( in(1) );
1456   if( t1 == Type::TOP ) return Type::TOP;
1457   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1458   double d = t1->getd();
1459   if( d < 0.0 ) return Type::DOUBLE;
1460   return TypeD::make( sqrt( d ) );
1461 }
1462 
1463 //=============================================================================
1464 //------------------------------Value------------------------------------------
1465 // Compute cos
1466 const Type *CosDNode::Value( PhaseTransform *phase ) const {
1467   const Type *t1 = phase->type( in(1) );
1468   if( t1 == Type::TOP ) return Type::TOP;
1469   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1470   double d = t1->getd();
1471   return TypeD::make( StubRoutines::intrinsic_cos( d ) );
1472 }
1473 
1474 //=============================================================================
1475 //------------------------------Value------------------------------------------
1476 // Compute sin
1477 const Type *SinDNode::Value( PhaseTransform *phase ) const {
1478   const Type *t1 = phase->type( in(1) );
1479   if( t1 == Type::TOP ) return Type::TOP;
1480   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1481   double d = t1->getd();
1482   return TypeD::make( StubRoutines::intrinsic_sin( d ) );
1483 }
1484 
1485 //=============================================================================
1486 //------------------------------Value------------------------------------------
1487 // Compute tan
1488 const Type *TanDNode::Value( PhaseTransform *phase ) const {
1489   const Type *t1 = phase->type( in(1) );
1490   if( t1 == Type::TOP ) return Type::TOP;
1491   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1492   double d = t1->getd();
1493   return TypeD::make( StubRoutines::intrinsic_tan( d ) );
1494 }
1495 
1496 //=============================================================================
1497 //------------------------------Value------------------------------------------
1498 // Compute log
1499 const Type *LogDNode::Value( PhaseTransform *phase ) const {
1500   const Type *t1 = phase->type( in(1) );
1501   if( t1 == Type::TOP ) return Type::TOP;
1502   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1503   double d = t1->getd();
1504   return TypeD::make( StubRoutines::intrinsic_log( d ) );
1505 }
1506 
1507 //=============================================================================
1508 //------------------------------Value------------------------------------------
1509 // Compute log10
1510 const Type *Log10DNode::Value( PhaseTransform *phase ) const {
1511   const Type *t1 = phase->type( in(1) );
1512   if( t1 == Type::TOP ) return Type::TOP;
1513   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1514   double d = t1->getd();
1515   return TypeD::make( StubRoutines::intrinsic_log10( d ) );
1516 }
1517 
1518 //=============================================================================
1519 //------------------------------Value------------------------------------------
1520 // Compute exp
1521 const Type *ExpDNode::Value( PhaseTransform *phase ) const {
1522   const Type *t1 = phase->type( in(1) );
1523   if( t1 == Type::TOP ) return Type::TOP;
1524   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1525   double d = t1->getd();
1526   return TypeD::make( StubRoutines::intrinsic_exp( d ) );
1527 }
1528 
1529 
1530 //=============================================================================
1531 //------------------------------Value------------------------------------------
1532 // Compute pow
1533 const Type *PowDNode::Value( PhaseTransform *phase ) const {
1534   const Type *t1 = phase->type( in(1) );
1535   if( t1 == Type::TOP ) return Type::TOP;
1536   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1537   const Type *t2 = phase->type( in(2) );
1538   if( t2 == Type::TOP ) return Type::TOP;
1539   if( t2->base() != Type::DoubleCon ) return Type::DOUBLE;
1540   double d1 = t1->getd();
1541   double d2 = t2->getd();
1542   return TypeD::make( StubRoutines::intrinsic_pow( d1, d2 ) );
1543 }