1 /* 2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/symbolTable.hpp" 27 #include "classfile/systemDictionary.hpp" 28 #include "code/codeCache.hpp" 29 #include "code/icBuffer.hpp" 30 #include "code/nmethod.hpp" 31 #include "code/pcDesc.hpp" 32 #include "code/scopeDesc.hpp" 33 #include "gc_interface/collectedHeap.hpp" 34 #include "interpreter/interpreter.hpp" 35 #include "jfr/jfrEvents.hpp" 36 #include "memory/resourceArea.hpp" 37 #include "memory/universe.inline.hpp" 38 #include "oops/oop.inline.hpp" 39 #include "oops/symbol.hpp" 40 #include "runtime/compilationPolicy.hpp" 41 #include "runtime/deoptimization.hpp" 42 #include "runtime/frame.inline.hpp" 43 #include "runtime/interfaceSupport.hpp" 44 #include "runtime/mutexLocker.hpp" 45 #include "runtime/orderAccess.inline.hpp" 46 #include "runtime/osThread.hpp" 47 #include "runtime/safepoint.hpp" 48 #include "runtime/signature.hpp" 49 #include "runtime/stubCodeGenerator.hpp" 50 #include "runtime/stubRoutines.hpp" 51 #include "runtime/sweeper.hpp" 52 #include "runtime/synchronizer.hpp" 53 #include "runtime/thread.inline.hpp" 54 #include "services/runtimeService.hpp" 55 #include "utilities/events.hpp" 56 #include "utilities/macros.hpp" 57 #ifdef TARGET_ARCH_x86 58 # include "nativeInst_x86.hpp" 59 # include "vmreg_x86.inline.hpp" 60 #endif 61 #ifdef TARGET_ARCH_aarch64 62 # include "nativeInst_aarch64.hpp" 63 # include "vmreg_aarch64.inline.hpp" 64 #endif 65 #ifdef TARGET_ARCH_sparc 66 # include "nativeInst_sparc.hpp" 67 # include "vmreg_sparc.inline.hpp" 68 #endif 69 #ifdef TARGET_ARCH_zero 70 # include "nativeInst_zero.hpp" 71 # include "vmreg_zero.inline.hpp" 72 #endif 73 #ifdef TARGET_ARCH_arm 74 # include "nativeInst_arm.hpp" 75 # include "vmreg_arm.inline.hpp" 76 #endif 77 #ifdef TARGET_ARCH_ppc 78 # include "nativeInst_ppc.hpp" 79 # include "vmreg_ppc.inline.hpp" 80 #endif 81 #if INCLUDE_ALL_GCS 82 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp" 83 #include "gc_implementation/shared/suspendibleThreadSet.hpp" 84 #endif // INCLUDE_ALL_GCS 85 #ifdef COMPILER1 86 #include "c1/c1_globals.hpp" 87 #endif 88 89 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC 90 91 template <typename E> 92 static void set_current_safepoint_id(E* event, int adjustment = 0) { 93 assert(event != NULL, "invariant"); 94 event->set_safepointId(SafepointSynchronize::safepoint_counter() + adjustment); 95 } 96 97 static void post_safepoint_begin_event(EventSafepointBegin* event, 98 int thread_count, 99 int critical_thread_count) { 100 assert(event != NULL, "invariant"); 101 assert(event->should_commit(), "invariant"); 102 set_current_safepoint_id(event); 103 event->set_totalThreadCount(thread_count); 104 event->set_jniCriticalThreadCount(critical_thread_count); 105 event->commit(); 106 } 107 108 static void post_safepoint_cleanup_event(EventSafepointCleanup* event) { 109 assert(event != NULL, "invariant"); 110 assert(event->should_commit(), "invariant"); 111 set_current_safepoint_id(event); 112 event->commit(); 113 } 114 115 static void post_safepoint_synchronize_event(EventSafepointStateSynchronization* event, 116 int initial_number_of_threads, 117 int threads_waiting_to_block, 118 unsigned int iterations) { 119 assert(event != NULL, "invariant"); 120 if (event->should_commit()) { 121 // Group this event together with the ones committed after the counter is increased 122 set_current_safepoint_id(event, 1); 123 event->set_initialThreadCount(initial_number_of_threads); 124 event->set_runningThreadCount(threads_waiting_to_block); 125 event->set_iterations(iterations); 126 event->commit(); 127 } 128 } 129 130 static void post_safepoint_wait_blocked_event(EventSafepointWaitBlocked* event, 131 int initial_threads_waiting_to_block) { 132 assert(event != NULL, "invariant"); 133 assert(event->should_commit(), "invariant"); 134 set_current_safepoint_id(event); 135 event->set_runningThreadCount(initial_threads_waiting_to_block); 136 event->commit(); 137 } 138 139 static void post_safepoint_cleanup_task_event(EventSafepointCleanupTask* event, 140 const char* name) { 141 assert(event != NULL, "invariant"); 142 if (event->should_commit()) { 143 set_current_safepoint_id(event); 144 event->set_name(name); 145 event->commit(); 146 } 147 } 148 149 static void post_safepoint_end_event(EventSafepointEnd* event) { 150 assert(event != NULL, "invariant"); 151 if (event->should_commit()) { 152 // Group this event together with the ones committed before the counter increased 153 set_current_safepoint_id(event, -1); 154 event->commit(); 155 } 156 } 157 158 // -------------------------------------------------------------------------------------------------- 159 // Implementation of Safepoint begin/end 160 161 SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized; 162 volatile int SafepointSynchronize::_waiting_to_block = 0; 163 volatile int SafepointSynchronize::_safepoint_counter = 0; 164 int SafepointSynchronize::_current_jni_active_count = 0; 165 long SafepointSynchronize::_end_of_last_safepoint = 0; 166 static volatile int PageArmed = 0 ; // safepoint polling page is RO|RW vs PROT_NONE 167 static volatile int TryingToBlock = 0 ; // proximate value -- for advisory use only 168 static bool timeout_error_printed = false; 169 170 // Roll all threads forward to a safepoint and suspend them all 171 void SafepointSynchronize::begin() { 172 EventSafepointBegin begin_event; 173 Thread* myThread = Thread::current(); 174 assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint"); 175 176 if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) { 177 _safepoint_begin_time = os::javaTimeNanos(); 178 _ts_of_current_safepoint = tty->time_stamp().seconds(); 179 } 180 181 #if INCLUDE_ALL_GCS 182 if (UseConcMarkSweepGC) { 183 // In the future we should investigate whether CMS can use the 184 // more-general mechanism below. DLD (01/05). 185 ConcurrentMarkSweepThread::synchronize(false); 186 } else if (UseG1GC || (UseShenandoahGC && UseStringDeduplication)) { 187 SuspendibleThreadSet::synchronize(); 188 } 189 #endif // INCLUDE_ALL_GCS 190 191 // By getting the Threads_lock, we assure that no threads are about to start or 192 // exit. It is released again in SafepointSynchronize::end(). 193 Threads_lock->lock(); 194 195 assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state"); 196 197 int nof_threads = Threads::number_of_threads(); 198 199 if (TraceSafepoint) { 200 tty->print_cr("Safepoint synchronization initiated. (%d)", nof_threads); 201 } 202 203 RuntimeService::record_safepoint_begin(); 204 205 MutexLocker mu(Safepoint_lock); 206 207 // Reset the count of active JNI critical threads 208 _current_jni_active_count = 0; 209 210 // Set number of threads to wait for, before we initiate the callbacks 211 _waiting_to_block = nof_threads; 212 TryingToBlock = 0 ; 213 int still_running = nof_threads; 214 215 // Save the starting time, so that it can be compared to see if this has taken 216 // too long to complete. 217 jlong safepoint_limit_time = 0; 218 timeout_error_printed = false; 219 220 // PrintSafepointStatisticsTimeout can be specified separately. When 221 // specified, PrintSafepointStatistics will be set to true in 222 // deferred_initialize_stat method. The initialization has to be done 223 // early enough to avoid any races. See bug 6880029 for details. 224 if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) { 225 deferred_initialize_stat(); 226 } 227 228 // Begin the process of bringing the system to a safepoint. 229 // Java threads can be in several different states and are 230 // stopped by different mechanisms: 231 // 232 // 1. Running interpreted 233 // The interpeter dispatch table is changed to force it to 234 // check for a safepoint condition between bytecodes. 235 // 2. Running in native code 236 // When returning from the native code, a Java thread must check 237 // the safepoint _state to see if we must block. If the 238 // VM thread sees a Java thread in native, it does 239 // not wait for this thread to block. The order of the memory 240 // writes and reads of both the safepoint state and the Java 241 // threads state is critical. In order to guarantee that the 242 // memory writes are serialized with respect to each other, 243 // the VM thread issues a memory barrier instruction 244 // (on MP systems). In order to avoid the overhead of issuing 245 // a memory barrier for each Java thread making native calls, each Java 246 // thread performs a write to a single memory page after changing 247 // the thread state. The VM thread performs a sequence of 248 // mprotect OS calls which forces all previous writes from all 249 // Java threads to be serialized. This is done in the 250 // os::serialize_thread_states() call. This has proven to be 251 // much more efficient than executing a membar instruction 252 // on every call to native code. 253 // 3. Running compiled Code 254 // Compiled code reads a global (Safepoint Polling) page that 255 // is set to fault if we are trying to get to a safepoint. 256 // 4. Blocked 257 // A thread which is blocked will not be allowed to return from the 258 // block condition until the safepoint operation is complete. 259 // 5. In VM or Transitioning between states 260 // If a Java thread is currently running in the VM or transitioning 261 // between states, the safepointing code will wait for the thread to 262 // block itself when it attempts transitions to a new state. 263 // 264 EventSafepointStateSynchronization sync_event; 265 int initial_running = 0; 266 267 _state = _synchronizing; 268 OrderAccess::fence(); 269 270 // Flush all thread states to memory 271 if (!UseMembar) { 272 os::serialize_thread_states(); 273 } 274 275 // Make interpreter safepoint aware 276 Interpreter::notice_safepoints(); 277 278 if (UseCompilerSafepoints && DeferPollingPageLoopCount < 0) { 279 // Make polling safepoint aware 280 guarantee (PageArmed == 0, "invariant") ; 281 PageArmed = 1 ; 282 os::make_polling_page_unreadable(); 283 } 284 285 // Consider using active_processor_count() ... but that call is expensive. 286 int ncpus = os::processor_count() ; 287 288 #ifdef ASSERT 289 for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) { 290 assert(cur->safepoint_state()->is_running(), "Illegal initial state"); 291 // Clear the visited flag to ensure that the critical counts are collected properly. 292 cur->set_visited_for_critical_count(false); 293 } 294 #endif // ASSERT 295 296 if (SafepointTimeout) 297 safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS; 298 299 // Iterate through all threads until it have been determined how to stop them all at a safepoint 300 unsigned int iterations = 0; 301 int steps = 0 ; 302 while(still_running > 0) { 303 for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) { 304 assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended"); 305 ThreadSafepointState *cur_state = cur->safepoint_state(); 306 if (cur_state->is_running()) { 307 cur_state->examine_state_of_thread(); 308 if (!cur_state->is_running()) { 309 still_running--; 310 // consider adjusting steps downward: 311 // steps = 0 312 // steps -= NNN 313 // steps >>= 1 314 // steps = MIN(steps, 2000-100) 315 // if (iterations != 0) steps -= NNN 316 } 317 if (TraceSafepoint && Verbose) cur_state->print(); 318 } 319 } 320 321 if (iterations == 0) { 322 initial_running = still_running; 323 if (PrintSafepointStatistics) { 324 begin_statistics(nof_threads, still_running); 325 } 326 } 327 328 if (still_running > 0) { 329 // Check for if it takes to long 330 if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) { 331 print_safepoint_timeout(_spinning_timeout); 332 } 333 334 // Spin to avoid context switching. 335 // There's a tension between allowing the mutators to run (and rendezvous) 336 // vs spinning. As the VM thread spins, wasting cycles, it consumes CPU that 337 // a mutator might otherwise use profitably to reach a safepoint. Excessive 338 // spinning by the VM thread on a saturated system can increase rendezvous latency. 339 // Blocking or yielding incur their own penalties in the form of context switching 340 // and the resultant loss of $ residency. 341 // 342 // Further complicating matters is that yield() does not work as naively expected 343 // on many platforms -- yield() does not guarantee that any other ready threads 344 // will run. As such we revert yield_all() after some number of iterations. 345 // Yield_all() is implemented as a short unconditional sleep on some platforms. 346 // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping 347 // can actually increase the time it takes the VM thread to detect that a system-wide 348 // stop-the-world safepoint has been reached. In a pathological scenario such as that 349 // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe. 350 // In that case the mutators will be stalled waiting for the safepoint to complete and the 351 // the VMthread will be sleeping, waiting for the mutators to rendezvous. The VMthread 352 // will eventually wake up and detect that all mutators are safe, at which point 353 // we'll again make progress. 354 // 355 // Beware too that that the VMThread typically runs at elevated priority. 356 // Its default priority is higher than the default mutator priority. 357 // Obviously, this complicates spinning. 358 // 359 // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0). 360 // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will. 361 // 362 // See the comments in synchronizer.cpp for additional remarks on spinning. 363 // 364 // In the future we might: 365 // 1. Modify the safepoint scheme to avoid potentally unbounded spinning. 366 // This is tricky as the path used by a thread exiting the JVM (say on 367 // on JNI call-out) simply stores into its state field. The burden 368 // is placed on the VM thread, which must poll (spin). 369 // 2. Find something useful to do while spinning. If the safepoint is GC-related 370 // we might aggressively scan the stacks of threads that are already safe. 371 // 3. Use Solaris schedctl to examine the state of the still-running mutators. 372 // If all the mutators are ONPROC there's no reason to sleep or yield. 373 // 4. YieldTo() any still-running mutators that are ready but OFFPROC. 374 // 5. Check system saturation. If the system is not fully saturated then 375 // simply spin and avoid sleep/yield. 376 // 6. As still-running mutators rendezvous they could unpark the sleeping 377 // VMthread. This works well for still-running mutators that become 378 // safe. The VMthread must still poll for mutators that call-out. 379 // 7. Drive the policy on time-since-begin instead of iterations. 380 // 8. Consider making the spin duration a function of the # of CPUs: 381 // Spin = (((ncpus-1) * M) + K) + F(still_running) 382 // Alternately, instead of counting iterations of the outer loop 383 // we could count the # of threads visited in the inner loop, above. 384 // 9. On windows consider using the return value from SwitchThreadTo() 385 // to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions. 386 387 if (UseCompilerSafepoints && int(iterations) == DeferPollingPageLoopCount) { 388 guarantee (PageArmed == 0, "invariant") ; 389 PageArmed = 1 ; 390 os::make_polling_page_unreadable(); 391 } 392 393 // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or 394 // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus) 395 ++steps ; 396 if (ncpus > 1 && steps < SafepointSpinBeforeYield) { 397 SpinPause() ; // MP-Polite spin 398 } else 399 if (steps < DeferThrSuspendLoopCount) { 400 os::NakedYield() ; 401 } else { 402 os::yield_all(steps) ; 403 // Alternately, the VM thread could transiently depress its scheduling priority or 404 // transiently increase the priority of the tardy mutator(s). 405 } 406 407 iterations ++ ; 408 } 409 assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long"); 410 } 411 assert(still_running == 0, "sanity check"); 412 413 if (PrintSafepointStatistics) { 414 update_statistics_on_spin_end(); 415 } 416 417 if (sync_event.should_commit()) { 418 post_safepoint_synchronize_event(&sync_event, initial_running, _waiting_to_block, iterations); 419 } 420 421 // wait until all threads are stopped 422 { 423 EventSafepointWaitBlocked wait_blocked_event; 424 int initial_waiting_to_block = _waiting_to_block; 425 426 while (_waiting_to_block > 0) { 427 if (TraceSafepoint) tty->print_cr("Waiting for %d thread(s) to block", _waiting_to_block); 428 if (!SafepointTimeout || timeout_error_printed) { 429 Safepoint_lock->wait(true); // true, means with no safepoint checks 430 } else { 431 // Compute remaining time 432 jlong remaining_time = safepoint_limit_time - os::javaTimeNanos(); 433 434 // If there is no remaining time, then there is an error 435 if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) { 436 print_safepoint_timeout(_blocking_timeout); 437 } 438 } 439 } 440 assert(_waiting_to_block == 0, "sanity check"); 441 442 #ifndef PRODUCT 443 if (SafepointTimeout) { 444 jlong current_time = os::javaTimeNanos(); 445 if (safepoint_limit_time < current_time) { 446 tty->print_cr("# SafepointSynchronize: Finished after " 447 INT64_FORMAT_W(6) " ms", 448 ((current_time - safepoint_limit_time) / MICROUNITS + 449 SafepointTimeoutDelay)); 450 } 451 } 452 #endif 453 454 assert((_safepoint_counter & 0x1) == 0, "must be even"); 455 assert(Threads_lock->owned_by_self(), "must hold Threads_lock"); 456 _safepoint_counter ++; 457 458 // Record state 459 _state = _synchronized; 460 461 OrderAccess::fence(); 462 463 if (wait_blocked_event.should_commit()) { 464 post_safepoint_wait_blocked_event(&wait_blocked_event, initial_waiting_to_block); 465 } 466 } 467 468 #ifdef ASSERT 469 for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) { 470 // make sure all the threads were visited 471 assert(cur->was_visited_for_critical_count(), "missed a thread"); 472 } 473 #endif // ASSERT 474 475 // Update the count of active JNI critical regions 476 GC_locker::set_jni_lock_count(_current_jni_active_count); 477 478 if (TraceSafepoint) { 479 VM_Operation *op = VMThread::vm_operation(); 480 tty->print_cr("Entering safepoint region: %s", (op != NULL) ? op->name() : "no vm operation"); 481 } 482 483 RuntimeService::record_safepoint_synchronized(); 484 if (PrintSafepointStatistics) { 485 update_statistics_on_sync_end(os::javaTimeNanos()); 486 } 487 488 // Call stuff that needs to be run when a safepoint is just about to be completed 489 { 490 EventSafepointCleanup cleanup_event; 491 do_cleanup_tasks(); 492 if (cleanup_event.should_commit()) { 493 post_safepoint_cleanup_event(&cleanup_event); 494 } 495 } 496 497 if (PrintSafepointStatistics) { 498 // Record how much time spend on the above cleanup tasks 499 update_statistics_on_cleanup_end(os::javaTimeNanos()); 500 } 501 502 if (begin_event.should_commit()) { 503 post_safepoint_begin_event(&begin_event, nof_threads, _current_jni_active_count); 504 } 505 } 506 507 // Wake up all threads, so they are ready to resume execution after the safepoint 508 // operation has been carried out 509 void SafepointSynchronize::end() { 510 511 assert(Threads_lock->owned_by_self(), "must hold Threads_lock"); 512 assert((_safepoint_counter & 0x1) == 1, "must be odd"); 513 EventSafepointEnd event; 514 _safepoint_counter ++; 515 // memory fence isn't required here since an odd _safepoint_counter 516 // value can do no harm and a fence is issued below anyway. 517 518 DEBUG_ONLY(Thread* myThread = Thread::current();) 519 assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint"); 520 521 if (PrintSafepointStatistics) { 522 end_statistics(os::javaTimeNanos()); 523 } 524 525 #ifdef ASSERT 526 // A pending_exception cannot be installed during a safepoint. The threads 527 // may install an async exception after they come back from a safepoint into 528 // pending_exception after they unblock. But that should happen later. 529 for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) { 530 assert (!(cur->has_pending_exception() && 531 cur->safepoint_state()->is_at_poll_safepoint()), 532 "safepoint installed a pending exception"); 533 } 534 #endif // ASSERT 535 536 if (PageArmed) { 537 // Make polling safepoint aware 538 os::make_polling_page_readable(); 539 PageArmed = 0 ; 540 } 541 542 // Remove safepoint check from interpreter 543 Interpreter::ignore_safepoints(); 544 545 { 546 MutexLocker mu(Safepoint_lock); 547 548 assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization"); 549 550 // Set to not synchronized, so the threads will not go into the signal_thread_blocked method 551 // when they get restarted. 552 _state = _not_synchronized; 553 OrderAccess::fence(); 554 555 if (TraceSafepoint) { 556 tty->print_cr("Leaving safepoint region"); 557 } 558 559 // Start suspended threads 560 for(JavaThread *current = Threads::first(); current; current = current->next()) { 561 // A problem occurring on Solaris is when attempting to restart threads 562 // the first #cpus - 1 go well, but then the VMThread is preempted when we get 563 // to the next one (since it has been running the longest). We then have 564 // to wait for a cpu to become available before we can continue restarting 565 // threads. 566 // FIXME: This causes the performance of the VM to degrade when active and with 567 // large numbers of threads. Apparently this is due to the synchronous nature 568 // of suspending threads. 569 // 570 // TODO-FIXME: the comments above are vestigial and no longer apply. 571 // Furthermore, using solaris' schedctl in this particular context confers no benefit 572 if (VMThreadHintNoPreempt) { 573 os::hint_no_preempt(); 574 } 575 ThreadSafepointState* cur_state = current->safepoint_state(); 576 assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint"); 577 cur_state->restart(); 578 assert(cur_state->is_running(), "safepoint state has not been reset"); 579 } 580 581 RuntimeService::record_safepoint_end(); 582 583 // Release threads lock, so threads can be created/destroyed again. It will also starts all threads 584 // blocked in signal_thread_blocked 585 Threads_lock->unlock(); 586 587 } 588 #if INCLUDE_ALL_GCS 589 // If there are any concurrent GC threads resume them. 590 if (UseConcMarkSweepGC) { 591 ConcurrentMarkSweepThread::desynchronize(false); 592 } else if (UseG1GC || (UseShenandoahGC && UseStringDeduplication)) { 593 SuspendibleThreadSet::desynchronize(); 594 } 595 #endif // INCLUDE_ALL_GCS 596 // record this time so VMThread can keep track how much time has elasped 597 // since last safepoint. 598 _end_of_last_safepoint = os::javaTimeMillis(); 599 if (event.should_commit()) { 600 post_safepoint_end_event(&event); 601 } 602 } 603 604 bool SafepointSynchronize::is_cleanup_needed() { 605 // Need a safepoint if some inline cache buffers is non-empty 606 if (!InlineCacheBuffer::is_empty()) return true; 607 return false; 608 } 609 610 611 612 // Various cleaning tasks that should be done periodically at safepoints 613 void SafepointSynchronize::do_cleanup_tasks() { 614 { 615 const char* name = "deflating idle monitors"; 616 EventSafepointCleanupTask event; 617 TraceTime t1(name, TraceSafepointCleanupTime); 618 ObjectSynchronizer::deflate_idle_monitors(); 619 if (event.should_commit()) { 620 post_safepoint_cleanup_task_event(&event, name); 621 } 622 } 623 624 { 625 const char* name = "updating inline caches"; 626 EventSafepointCleanupTask event; 627 TraceTime t2(name, TraceSafepointCleanupTime); 628 InlineCacheBuffer::update_inline_caches(); 629 if (event.should_commit()) { 630 post_safepoint_cleanup_task_event(&event, name); 631 } 632 } 633 { 634 const char* name = "compilation policy safepoint handler"; 635 EventSafepointCleanupTask event; 636 TraceTime t3(name, TraceSafepointCleanupTime); 637 CompilationPolicy::policy()->do_safepoint_work(); 638 if (event.should_commit()) { 639 post_safepoint_cleanup_task_event(&event, name); 640 } 641 } 642 643 { 644 const char* name = "mark nmethods"; 645 EventSafepointCleanupTask event; 646 TraceTime t4(name, TraceSafepointCleanupTime); 647 NMethodSweeper::mark_active_nmethods(); 648 if (event.should_commit()) { 649 post_safepoint_cleanup_task_event(&event, name); 650 } 651 } 652 653 if (SymbolTable::needs_rehashing()) { 654 const char* name = "rehashing symbol table"; 655 EventSafepointCleanupTask event; 656 TraceTime t5(name, TraceSafepointCleanupTime); 657 SymbolTable::rehash_table(); 658 if (event.should_commit()) { 659 post_safepoint_cleanup_task_event(&event, name); 660 } 661 } 662 663 if (StringTable::needs_rehashing()) { 664 const char* name = "rehashing string table"; 665 EventSafepointCleanupTask event; 666 TraceTime t6(name, TraceSafepointCleanupTime); 667 StringTable::rehash_table(); 668 if (event.should_commit()) { 669 post_safepoint_cleanup_task_event(&event, name); 670 } 671 } 672 673 // rotate log files? 674 if (UseGCLogFileRotation) { 675 TraceTime t8("rotating gc logs", TraceSafepointCleanupTime); 676 gclog_or_tty->rotate_log(false); 677 } 678 679 { 680 // CMS delays purging the CLDG until the beginning of the next safepoint and to 681 // make sure concurrent sweep is done 682 TraceTime t7("purging class loader data graph", TraceSafepointCleanupTime); 683 ClassLoaderDataGraph::purge_if_needed(); 684 } 685 } 686 687 688 bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) { 689 switch(state) { 690 case _thread_in_native: 691 // native threads are safe if they have no java stack or have walkable stack 692 return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable(); 693 694 // blocked threads should have already have walkable stack 695 case _thread_blocked: 696 assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable"); 697 return true; 698 699 default: 700 return false; 701 } 702 } 703 704 705 // See if the thread is running inside a lazy critical native and 706 // update the thread critical count if so. Also set a suspend flag to 707 // cause the native wrapper to return into the JVM to do the unlock 708 // once the native finishes. 709 void SafepointSynchronize::check_for_lazy_critical_native(JavaThread *thread, JavaThreadState state) { 710 if (state == _thread_in_native && 711 thread->has_last_Java_frame() && 712 thread->frame_anchor()->walkable()) { 713 // This thread might be in a critical native nmethod so look at 714 // the top of the stack and increment the critical count if it 715 // is. 716 frame wrapper_frame = thread->last_frame(); 717 CodeBlob* stub_cb = wrapper_frame.cb(); 718 if (stub_cb != NULL && 719 stub_cb->is_nmethod() && 720 stub_cb->as_nmethod_or_null()->is_lazy_critical_native()) { 721 // A thread could potentially be in a critical native across 722 // more than one safepoint, so only update the critical state on 723 // the first one. When it returns it will perform the unlock. 724 if (!thread->do_critical_native_unlock()) { 725 #ifdef ASSERT 726 if (!thread->in_critical()) { 727 GC_locker::increment_debug_jni_lock_count(); 728 } 729 #endif 730 thread->enter_critical(); 731 // Make sure the native wrapper calls back on return to 732 // perform the needed critical unlock. 733 thread->set_critical_native_unlock(); 734 } 735 } 736 } 737 } 738 739 740 741 // ------------------------------------------------------------------------------------------------------- 742 // Implementation of Safepoint callback point 743 744 void SafepointSynchronize::block(JavaThread *thread) { 745 assert(thread != NULL, "thread must be set"); 746 assert(thread->is_Java_thread(), "not a Java thread"); 747 748 // Threads shouldn't block if they are in the middle of printing, but... 749 ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id()); 750 751 // Only bail from the block() call if the thread is gone from the 752 // thread list; starting to exit should still block. 753 if (thread->is_terminated()) { 754 // block current thread if we come here from native code when VM is gone 755 thread->block_if_vm_exited(); 756 757 // otherwise do nothing 758 return; 759 } 760 761 JavaThreadState state = thread->thread_state(); 762 thread->frame_anchor()->make_walkable(thread); 763 764 // Check that we have a valid thread_state at this point 765 switch(state) { 766 case _thread_in_vm_trans: 767 case _thread_in_Java: // From compiled code 768 769 // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case, 770 // we pretend we are still in the VM. 771 thread->set_thread_state(_thread_in_vm); 772 773 if (is_synchronizing()) { 774 Atomic::inc (&TryingToBlock) ; 775 } 776 777 // We will always be holding the Safepoint_lock when we are examine the state 778 // of a thread. Hence, the instructions between the Safepoint_lock->lock() and 779 // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code 780 Safepoint_lock->lock_without_safepoint_check(); 781 if (is_synchronizing()) { 782 // Decrement the number of threads to wait for and signal vm thread 783 assert(_waiting_to_block > 0, "sanity check"); 784 _waiting_to_block--; 785 thread->safepoint_state()->set_has_called_back(true); 786 787 DEBUG_ONLY(thread->set_visited_for_critical_count(true)); 788 if (thread->in_critical()) { 789 // Notice that this thread is in a critical section 790 increment_jni_active_count(); 791 } 792 793 // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread 794 if (_waiting_to_block == 0) { 795 Safepoint_lock->notify_all(); 796 } 797 } 798 799 // We transition the thread to state _thread_blocked here, but 800 // we can't do our usual check for external suspension and then 801 // self-suspend after the lock_without_safepoint_check() call 802 // below because we are often called during transitions while 803 // we hold different locks. That would leave us suspended while 804 // holding a resource which results in deadlocks. 805 thread->set_thread_state(_thread_blocked); 806 Safepoint_lock->unlock(); 807 808 // We now try to acquire the threads lock. Since this lock is hold by the VM thread during 809 // the entire safepoint, the threads will all line up here during the safepoint. 810 Threads_lock->lock_without_safepoint_check(); 811 // restore original state. This is important if the thread comes from compiled code, so it 812 // will continue to execute with the _thread_in_Java state. 813 thread->set_thread_state(state); 814 Threads_lock->unlock(); 815 break; 816 817 case _thread_in_native_trans: 818 case _thread_blocked_trans: 819 case _thread_new_trans: 820 if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) { 821 thread->print_thread_state(); 822 fatal("Deadlock in safepoint code. " 823 "Should have called back to the VM before blocking."); 824 } 825 826 // We transition the thread to state _thread_blocked here, but 827 // we can't do our usual check for external suspension and then 828 // self-suspend after the lock_without_safepoint_check() call 829 // below because we are often called during transitions while 830 // we hold different locks. That would leave us suspended while 831 // holding a resource which results in deadlocks. 832 thread->set_thread_state(_thread_blocked); 833 834 // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence, 835 // the safepoint code might still be waiting for it to block. We need to change the state here, 836 // so it can see that it is at a safepoint. 837 838 // Block until the safepoint operation is completed. 839 Threads_lock->lock_without_safepoint_check(); 840 841 // Restore state 842 thread->set_thread_state(state); 843 844 Threads_lock->unlock(); 845 break; 846 847 default: 848 fatal(err_msg("Illegal threadstate encountered: %d", state)); 849 } 850 851 // Check for pending. async. exceptions or suspends - except if the 852 // thread was blocked inside the VM. has_special_runtime_exit_condition() 853 // is called last since it grabs a lock and we only want to do that when 854 // we must. 855 // 856 // Note: we never deliver an async exception at a polling point as the 857 // compiler may not have an exception handler for it. The polling 858 // code will notice the async and deoptimize and the exception will 859 // be delivered. (Polling at a return point is ok though). Sure is 860 // a lot of bother for a deprecated feature... 861 // 862 // We don't deliver an async exception if the thread state is 863 // _thread_in_native_trans so JNI functions won't be called with 864 // a surprising pending exception. If the thread state is going back to java, 865 // async exception is checked in check_special_condition_for_native_trans(). 866 867 if (state != _thread_blocked_trans && 868 state != _thread_in_vm_trans && 869 thread->has_special_runtime_exit_condition()) { 870 thread->handle_special_runtime_exit_condition( 871 !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans)); 872 } 873 } 874 875 // ------------------------------------------------------------------------------------------------------ 876 // Exception handlers 877 878 879 void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) { 880 assert(thread->is_Java_thread(), "polling reference encountered by VM thread"); 881 assert(thread->thread_state() == _thread_in_Java, "should come from Java code"); 882 assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization"); 883 884 if (ShowSafepointMsgs) { 885 tty->print("handle_polling_page_exception: "); 886 } 887 888 if (PrintSafepointStatistics) { 889 inc_page_trap_count(); 890 } 891 892 ThreadSafepointState* state = thread->safepoint_state(); 893 894 state->handle_polling_page_exception(); 895 } 896 897 898 void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) { 899 if (!timeout_error_printed) { 900 timeout_error_printed = true; 901 // Print out the thread infor which didn't reach the safepoint for debugging 902 // purposes (useful when there are lots of threads in the debugger). 903 tty->cr(); 904 tty->print_cr("# SafepointSynchronize::begin: Timeout detected:"); 905 if (reason == _spinning_timeout) { 906 tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint."); 907 } else if (reason == _blocking_timeout) { 908 tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop."); 909 } 910 911 tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:"); 912 ThreadSafepointState *cur_state; 913 ResourceMark rm; 914 for(JavaThread *cur_thread = Threads::first(); cur_thread; 915 cur_thread = cur_thread->next()) { 916 cur_state = cur_thread->safepoint_state(); 917 918 if (cur_thread->thread_state() != _thread_blocked && 919 ((reason == _spinning_timeout && cur_state->is_running()) || 920 (reason == _blocking_timeout && !cur_state->has_called_back()))) { 921 tty->print("# "); 922 cur_thread->print(); 923 tty->cr(); 924 } 925 } 926 tty->print_cr("# SafepointSynchronize::begin: (End of list)"); 927 } 928 929 // To debug the long safepoint, specify both AbortVMOnSafepointTimeout & 930 // ShowMessageBoxOnError. 931 if (AbortVMOnSafepointTimeout) { 932 char msg[1024]; 933 VM_Operation *op = VMThread::vm_operation(); 934 sprintf(msg, "Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.", 935 SafepointTimeoutDelay, 936 op != NULL ? op->name() : "no vm operation"); 937 fatal(msg); 938 } 939 } 940 941 942 // ------------------------------------------------------------------------------------------------------- 943 // Implementation of ThreadSafepointState 944 945 ThreadSafepointState::ThreadSafepointState(JavaThread *thread) { 946 _thread = thread; 947 _type = _running; 948 _has_called_back = false; 949 _at_poll_safepoint = false; 950 } 951 952 void ThreadSafepointState::create(JavaThread *thread) { 953 ThreadSafepointState *state = new ThreadSafepointState(thread); 954 thread->set_safepoint_state(state); 955 } 956 957 void ThreadSafepointState::destroy(JavaThread *thread) { 958 if (thread->safepoint_state()) { 959 delete(thread->safepoint_state()); 960 thread->set_safepoint_state(NULL); 961 } 962 } 963 964 void ThreadSafepointState::examine_state_of_thread() { 965 assert(is_running(), "better be running or just have hit safepoint poll"); 966 967 JavaThreadState state = _thread->thread_state(); 968 969 // Save the state at the start of safepoint processing. 970 _orig_thread_state = state; 971 972 // Check for a thread that is suspended. Note that thread resume tries 973 // to grab the Threads_lock which we own here, so a thread cannot be 974 // resumed during safepoint synchronization. 975 976 // We check to see if this thread is suspended without locking to 977 // avoid deadlocking with a third thread that is waiting for this 978 // thread to be suspended. The third thread can notice the safepoint 979 // that we're trying to start at the beginning of its SR_lock->wait() 980 // call. If that happens, then the third thread will block on the 981 // safepoint while still holding the underlying SR_lock. We won't be 982 // able to get the SR_lock and we'll deadlock. 983 // 984 // We don't need to grab the SR_lock here for two reasons: 985 // 1) The suspend flags are both volatile and are set with an 986 // Atomic::cmpxchg() call so we should see the suspended 987 // state right away. 988 // 2) We're being called from the safepoint polling loop; if 989 // we don't see the suspended state on this iteration, then 990 // we'll come around again. 991 // 992 bool is_suspended = _thread->is_ext_suspended(); 993 if (is_suspended) { 994 roll_forward(_at_safepoint); 995 return; 996 } 997 998 // Some JavaThread states have an initial safepoint state of 999 // running, but are actually at a safepoint. We will happily 1000 // agree and update the safepoint state here. 1001 if (SafepointSynchronize::safepoint_safe(_thread, state)) { 1002 SafepointSynchronize::check_for_lazy_critical_native(_thread, state); 1003 roll_forward(_at_safepoint); 1004 return; 1005 } 1006 1007 if (state == _thread_in_vm) { 1008 roll_forward(_call_back); 1009 return; 1010 } 1011 1012 // All other thread states will continue to run until they 1013 // transition and self-block in state _blocked 1014 // Safepoint polling in compiled code causes the Java threads to do the same. 1015 // Note: new threads may require a malloc so they must be allowed to finish 1016 1017 assert(is_running(), "examine_state_of_thread on non-running thread"); 1018 return; 1019 } 1020 1021 // Returns true is thread could not be rolled forward at present position. 1022 void ThreadSafepointState::roll_forward(suspend_type type) { 1023 _type = type; 1024 1025 switch(_type) { 1026 case _at_safepoint: 1027 SafepointSynchronize::signal_thread_at_safepoint(); 1028 DEBUG_ONLY(_thread->set_visited_for_critical_count(true)); 1029 if (_thread->in_critical()) { 1030 // Notice that this thread is in a critical section 1031 SafepointSynchronize::increment_jni_active_count(); 1032 } 1033 break; 1034 1035 case _call_back: 1036 set_has_called_back(false); 1037 break; 1038 1039 case _running: 1040 default: 1041 ShouldNotReachHere(); 1042 } 1043 } 1044 1045 void ThreadSafepointState::restart() { 1046 switch(type()) { 1047 case _at_safepoint: 1048 case _call_back: 1049 break; 1050 1051 case _running: 1052 default: 1053 tty->print_cr("restart thread " INTPTR_FORMAT " with state %d", 1054 _thread, _type); 1055 _thread->print(); 1056 ShouldNotReachHere(); 1057 } 1058 _type = _running; 1059 set_has_called_back(false); 1060 } 1061 1062 1063 void ThreadSafepointState::print_on(outputStream *st) const { 1064 const char *s = NULL; 1065 1066 switch(_type) { 1067 case _running : s = "_running"; break; 1068 case _at_safepoint : s = "_at_safepoint"; break; 1069 case _call_back : s = "_call_back"; break; 1070 default: 1071 ShouldNotReachHere(); 1072 } 1073 1074 st->print_cr("Thread: " INTPTR_FORMAT 1075 " [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d", 1076 _thread, _thread->osthread()->thread_id(), s, _has_called_back, 1077 _at_poll_safepoint); 1078 1079 _thread->print_thread_state_on(st); 1080 } 1081 1082 1083 // --------------------------------------------------------------------------------------------------------------------- 1084 1085 // Block the thread at the safepoint poll or poll return. 1086 void ThreadSafepointState::handle_polling_page_exception() { 1087 1088 // Check state. block() will set thread state to thread_in_vm which will 1089 // cause the safepoint state _type to become _call_back. 1090 assert(type() == ThreadSafepointState::_running, 1091 "polling page exception on thread not running state"); 1092 1093 // Step 1: Find the nmethod from the return address 1094 if (ShowSafepointMsgs && Verbose) { 1095 tty->print_cr("Polling page exception at " INTPTR_FORMAT, thread()->saved_exception_pc()); 1096 } 1097 address real_return_addr = thread()->saved_exception_pc(); 1098 1099 CodeBlob *cb = CodeCache::find_blob(real_return_addr); 1100 assert(cb != NULL && cb->is_nmethod(), "return address should be in nmethod"); 1101 nmethod* nm = (nmethod*)cb; 1102 1103 // Find frame of caller 1104 frame stub_fr = thread()->last_frame(); 1105 CodeBlob* stub_cb = stub_fr.cb(); 1106 assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub"); 1107 RegisterMap map(thread(), true); 1108 frame caller_fr = stub_fr.sender(&map); 1109 1110 // Should only be poll_return or poll 1111 assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" ); 1112 1113 // This is a poll immediately before a return. The exception handling code 1114 // has already had the effect of causing the return to occur, so the execution 1115 // will continue immediately after the call. In addition, the oopmap at the 1116 // return point does not mark the return value as an oop (if it is), so 1117 // it needs a handle here to be updated. 1118 if( nm->is_at_poll_return(real_return_addr) ) { 1119 // See if return type is an oop. 1120 bool return_oop = nm->method()->is_returning_oop(); 1121 HandleMark hm(thread()); 1122 Handle return_value; 1123 if (return_oop) { 1124 // The oop result has been saved on the stack together with all 1125 // the other registers. In order to preserve it over GCs we need 1126 // to keep it in a handle. 1127 oop result = caller_fr.saved_oop_result(&map); 1128 assert(result == NULL || result->is_oop(), "must be oop"); 1129 return_value = Handle(thread(), result); 1130 assert(Universe::heap()->is_in_or_null(result), "must be heap pointer"); 1131 } 1132 1133 // Block the thread 1134 SafepointSynchronize::block(thread()); 1135 1136 // restore oop result, if any 1137 if (return_oop) { 1138 caller_fr.set_saved_oop_result(&map, return_value()); 1139 } 1140 } 1141 1142 // This is a safepoint poll. Verify the return address and block. 1143 else { 1144 set_at_poll_safepoint(true); 1145 1146 // verify the blob built the "return address" correctly 1147 assert(real_return_addr == caller_fr.pc(), "must match"); 1148 1149 // Block the thread 1150 SafepointSynchronize::block(thread()); 1151 set_at_poll_safepoint(false); 1152 1153 // If we have a pending async exception deoptimize the frame 1154 // as otherwise we may never deliver it. 1155 if (thread()->has_async_condition()) { 1156 ThreadInVMfromJavaNoAsyncException __tiv(thread()); 1157 Deoptimization::deoptimize_frame(thread(), caller_fr.id()); 1158 } 1159 1160 // If an exception has been installed we must check for a pending deoptimization 1161 // Deoptimize frame if exception has been thrown. 1162 1163 if (thread()->has_pending_exception() ) { 1164 RegisterMap map(thread(), true); 1165 frame caller_fr = stub_fr.sender(&map); 1166 if (caller_fr.is_deoptimized_frame()) { 1167 // The exception patch will destroy registers that are still 1168 // live and will be needed during deoptimization. Defer the 1169 // Async exception should have defered the exception until the 1170 // next safepoint which will be detected when we get into 1171 // the interpreter so if we have an exception now things 1172 // are messed up. 1173 1174 fatal("Exception installed and deoptimization is pending"); 1175 } 1176 } 1177 } 1178 } 1179 1180 1181 // 1182 // Statistics & Instrumentations 1183 // 1184 SafepointSynchronize::SafepointStats* SafepointSynchronize::_safepoint_stats = NULL; 1185 jlong SafepointSynchronize::_safepoint_begin_time = 0; 1186 int SafepointSynchronize::_cur_stat_index = 0; 1187 julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating]; 1188 julong SafepointSynchronize::_coalesced_vmop_count = 0; 1189 jlong SafepointSynchronize::_max_sync_time = 0; 1190 jlong SafepointSynchronize::_max_vmop_time = 0; 1191 float SafepointSynchronize::_ts_of_current_safepoint = 0.0f; 1192 1193 static jlong cleanup_end_time = 0; 1194 static bool need_to_track_page_armed_status = false; 1195 static bool init_done = false; 1196 1197 // Helper method to print the header. 1198 static void print_header() { 1199 tty->print(" vmop " 1200 "[threads: total initially_running wait_to_block] "); 1201 tty->print("[time: spin block sync cleanup vmop] "); 1202 1203 // no page armed status printed out if it is always armed. 1204 if (need_to_track_page_armed_status) { 1205 tty->print("page_armed "); 1206 } 1207 1208 tty->print_cr("page_trap_count"); 1209 } 1210 1211 void SafepointSynchronize::deferred_initialize_stat() { 1212 if (init_done) return; 1213 1214 if (PrintSafepointStatisticsCount <= 0) { 1215 fatal("Wrong PrintSafepointStatisticsCount"); 1216 } 1217 1218 // If PrintSafepointStatisticsTimeout is specified, the statistics data will 1219 // be printed right away, in which case, _safepoint_stats will regress to 1220 // a single element array. Otherwise, it is a circular ring buffer with default 1221 // size of PrintSafepointStatisticsCount. 1222 int stats_array_size; 1223 if (PrintSafepointStatisticsTimeout > 0) { 1224 stats_array_size = 1; 1225 PrintSafepointStatistics = true; 1226 } else { 1227 stats_array_size = PrintSafepointStatisticsCount; 1228 } 1229 _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size 1230 * sizeof(SafepointStats), mtInternal); 1231 guarantee(_safepoint_stats != NULL, 1232 "not enough memory for safepoint instrumentation data"); 1233 1234 if (UseCompilerSafepoints && DeferPollingPageLoopCount >= 0) { 1235 need_to_track_page_armed_status = true; 1236 } 1237 init_done = true; 1238 } 1239 1240 void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) { 1241 assert(init_done, "safepoint statistics array hasn't been initialized"); 1242 SafepointStats *spstat = &_safepoint_stats[_cur_stat_index]; 1243 1244 spstat->_time_stamp = _ts_of_current_safepoint; 1245 1246 VM_Operation *op = VMThread::vm_operation(); 1247 spstat->_vmop_type = (op != NULL ? op->type() : -1); 1248 if (op != NULL) { 1249 _safepoint_reasons[spstat->_vmop_type]++; 1250 } 1251 1252 spstat->_nof_total_threads = nof_threads; 1253 spstat->_nof_initial_running_threads = nof_running; 1254 spstat->_nof_threads_hit_page_trap = 0; 1255 1256 // Records the start time of spinning. The real time spent on spinning 1257 // will be adjusted when spin is done. Same trick is applied for time 1258 // spent on waiting for threads to block. 1259 if (nof_running != 0) { 1260 spstat->_time_to_spin = os::javaTimeNanos(); 1261 } else { 1262 spstat->_time_to_spin = 0; 1263 } 1264 } 1265 1266 void SafepointSynchronize::update_statistics_on_spin_end() { 1267 SafepointStats *spstat = &_safepoint_stats[_cur_stat_index]; 1268 1269 jlong cur_time = os::javaTimeNanos(); 1270 1271 spstat->_nof_threads_wait_to_block = _waiting_to_block; 1272 if (spstat->_nof_initial_running_threads != 0) { 1273 spstat->_time_to_spin = cur_time - spstat->_time_to_spin; 1274 } 1275 1276 if (need_to_track_page_armed_status) { 1277 spstat->_page_armed = (PageArmed == 1); 1278 } 1279 1280 // Records the start time of waiting for to block. Updated when block is done. 1281 if (_waiting_to_block != 0) { 1282 spstat->_time_to_wait_to_block = cur_time; 1283 } else { 1284 spstat->_time_to_wait_to_block = 0; 1285 } 1286 } 1287 1288 void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) { 1289 SafepointStats *spstat = &_safepoint_stats[_cur_stat_index]; 1290 1291 if (spstat->_nof_threads_wait_to_block != 0) { 1292 spstat->_time_to_wait_to_block = end_time - 1293 spstat->_time_to_wait_to_block; 1294 } 1295 1296 // Records the end time of sync which will be used to calculate the total 1297 // vm operation time. Again, the real time spending in syncing will be deducted 1298 // from the start of the sync time later when end_statistics is called. 1299 spstat->_time_to_sync = end_time - _safepoint_begin_time; 1300 if (spstat->_time_to_sync > _max_sync_time) { 1301 _max_sync_time = spstat->_time_to_sync; 1302 } 1303 1304 spstat->_time_to_do_cleanups = end_time; 1305 } 1306 1307 void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) { 1308 SafepointStats *spstat = &_safepoint_stats[_cur_stat_index]; 1309 1310 // Record how long spent in cleanup tasks. 1311 spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups; 1312 1313 cleanup_end_time = end_time; 1314 } 1315 1316 void SafepointSynchronize::end_statistics(jlong vmop_end_time) { 1317 SafepointStats *spstat = &_safepoint_stats[_cur_stat_index]; 1318 1319 // Update the vm operation time. 1320 spstat->_time_to_exec_vmop = vmop_end_time - cleanup_end_time; 1321 if (spstat->_time_to_exec_vmop > _max_vmop_time) { 1322 _max_vmop_time = spstat->_time_to_exec_vmop; 1323 } 1324 // Only the sync time longer than the specified 1325 // PrintSafepointStatisticsTimeout will be printed out right away. 1326 // By default, it is -1 meaning all samples will be put into the list. 1327 if ( PrintSafepointStatisticsTimeout > 0) { 1328 if (spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) { 1329 print_statistics(); 1330 } 1331 } else { 1332 // The safepoint statistics will be printed out when the _safepoin_stats 1333 // array fills up. 1334 if (_cur_stat_index == PrintSafepointStatisticsCount - 1) { 1335 print_statistics(); 1336 _cur_stat_index = 0; 1337 } else { 1338 _cur_stat_index++; 1339 } 1340 } 1341 } 1342 1343 void SafepointSynchronize::print_statistics() { 1344 SafepointStats* sstats = _safepoint_stats; 1345 1346 for (int index = 0; index <= _cur_stat_index; index++) { 1347 if (index % 30 == 0) { 1348 print_header(); 1349 } 1350 sstats = &_safepoint_stats[index]; 1351 tty->print("%.3f: ", sstats->_time_stamp); 1352 tty->print("%-26s [" 1353 INT32_FORMAT_W(8) INT32_FORMAT_W(11) INT32_FORMAT_W(15) 1354 " ] ", 1355 sstats->_vmop_type == -1 ? "no vm operation" : 1356 VM_Operation::name(sstats->_vmop_type), 1357 sstats->_nof_total_threads, 1358 sstats->_nof_initial_running_threads, 1359 sstats->_nof_threads_wait_to_block); 1360 // "/ MICROUNITS " is to convert the unit from nanos to millis. 1361 tty->print(" [" 1362 INT64_FORMAT_W(6) INT64_FORMAT_W(6) 1363 INT64_FORMAT_W(6) INT64_FORMAT_W(6) 1364 INT64_FORMAT_W(6) " ] ", 1365 sstats->_time_to_spin / MICROUNITS, 1366 sstats->_time_to_wait_to_block / MICROUNITS, 1367 sstats->_time_to_sync / MICROUNITS, 1368 sstats->_time_to_do_cleanups / MICROUNITS, 1369 sstats->_time_to_exec_vmop / MICROUNITS); 1370 1371 if (need_to_track_page_armed_status) { 1372 tty->print(INT32_FORMAT " ", sstats->_page_armed); 1373 } 1374 tty->print_cr(INT32_FORMAT " ", sstats->_nof_threads_hit_page_trap); 1375 } 1376 } 1377 1378 // This method will be called when VM exits. It will first call 1379 // print_statistics to print out the rest of the sampling. Then 1380 // it tries to summarize the sampling. 1381 void SafepointSynchronize::print_stat_on_exit() { 1382 if (_safepoint_stats == NULL) return; 1383 1384 SafepointStats *spstat = &_safepoint_stats[_cur_stat_index]; 1385 1386 // During VM exit, end_statistics may not get called and in that 1387 // case, if the sync time is less than PrintSafepointStatisticsTimeout, 1388 // don't print it out. 1389 // Approximate the vm op time. 1390 _safepoint_stats[_cur_stat_index]._time_to_exec_vmop = 1391 os::javaTimeNanos() - cleanup_end_time; 1392 1393 if ( PrintSafepointStatisticsTimeout < 0 || 1394 spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) { 1395 print_statistics(); 1396 } 1397 tty->cr(); 1398 1399 // Print out polling page sampling status. 1400 if (!need_to_track_page_armed_status) { 1401 if (UseCompilerSafepoints) { 1402 tty->print_cr("Polling page always armed"); 1403 } 1404 } else { 1405 tty->print_cr("Defer polling page loop count = %d\n", 1406 DeferPollingPageLoopCount); 1407 } 1408 1409 for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) { 1410 if (_safepoint_reasons[index] != 0) { 1411 tty->print_cr("%-26s" UINT64_FORMAT_W(10), VM_Operation::name(index), 1412 _safepoint_reasons[index]); 1413 } 1414 } 1415 1416 tty->print_cr(UINT64_FORMAT_W(5) " VM operations coalesced during safepoint", 1417 _coalesced_vmop_count); 1418 tty->print_cr("Maximum sync time " INT64_FORMAT_W(5) " ms", 1419 _max_sync_time / MICROUNITS); 1420 tty->print_cr("Maximum vm operation time (except for Exit VM operation) " 1421 INT64_FORMAT_W(5) " ms", 1422 _max_vmop_time / MICROUNITS); 1423 } 1424 1425 // ------------------------------------------------------------------------------------------------ 1426 // Non-product code 1427 1428 #ifndef PRODUCT 1429 1430 void SafepointSynchronize::print_state() { 1431 if (_state == _not_synchronized) { 1432 tty->print_cr("not synchronized"); 1433 } else if (_state == _synchronizing || _state == _synchronized) { 1434 tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" : 1435 "synchronized"); 1436 1437 for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) { 1438 cur->safepoint_state()->print(); 1439 } 1440 } 1441 } 1442 1443 void SafepointSynchronize::safepoint_msg(const char* format, ...) { 1444 if (ShowSafepointMsgs) { 1445 va_list ap; 1446 va_start(ap, format); 1447 tty->vprint_cr(format, ap); 1448 va_end(ap); 1449 } 1450 } 1451 1452 #endif // !PRODUCT