1 /* 2 * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/classLoader.hpp" 27 #include "classfile/javaClasses.hpp" 28 #include "classfile/systemDictionary.hpp" 29 #include "classfile/vmSymbols.hpp" 30 #include "code/scopeDesc.hpp" 31 #include "compiler/compileBroker.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "interpreter/linkResolver.hpp" 34 #include "interpreter/oopMapCache.hpp" 35 #include "jfr/jfrEvents.hpp" 36 #include "jvmtifiles/jvmtiEnv.hpp" 37 #include "memory/gcLocker.inline.hpp" 38 #include "memory/metaspaceShared.hpp" 39 #include "memory/oopFactory.hpp" 40 #include "memory/universe.inline.hpp" 41 #include "oops/instanceKlass.hpp" 42 #include "oops/objArrayOop.hpp" 43 #include "oops/oop.inline.hpp" 44 #include "oops/symbol.hpp" 45 #include "prims/jvm_misc.hpp" 46 #include "prims/jvmtiExport.hpp" 47 #include "prims/jvmtiThreadState.hpp" 48 #include "prims/privilegedStack.hpp" 49 #include "runtime/arguments.hpp" 50 #include "runtime/biasedLocking.hpp" 51 #include "runtime/deoptimization.hpp" 52 #include "runtime/fprofiler.hpp" 53 #include "runtime/frame.inline.hpp" 54 #include "runtime/init.hpp" 55 #include "runtime/interfaceSupport.hpp" 56 #include "runtime/java.hpp" 57 #include "runtime/javaCalls.hpp" 58 #include "runtime/jniPeriodicChecker.hpp" 59 #include "runtime/memprofiler.hpp" 60 #include "runtime/mutexLocker.hpp" 61 #include "runtime/objectMonitor.hpp" 62 #include "runtime/orderAccess.inline.hpp" 63 #include "runtime/osThread.hpp" 64 #include "runtime/safepoint.hpp" 65 #include "runtime/sharedRuntime.hpp" 66 #include "runtime/statSampler.hpp" 67 #include "runtime/stubRoutines.hpp" 68 #include "runtime/task.hpp" 69 #include "runtime/thread.inline.hpp" 70 #include "runtime/threadCritical.hpp" 71 #include "runtime/threadLocalStorage.hpp" 72 #include "runtime/vframe.hpp" 73 #include "runtime/vframeArray.hpp" 74 #include "runtime/vframe_hp.hpp" 75 #include "runtime/vmThread.hpp" 76 #include "runtime/vm_operations.hpp" 77 #include "services/attachListener.hpp" 78 #include "services/management.hpp" 79 #include "services/memTracker.hpp" 80 #include "services/threadService.hpp" 81 #include "utilities/defaultStream.hpp" 82 #include "utilities/dtrace.hpp" 83 #include "utilities/events.hpp" 84 #include "utilities/preserveException.hpp" 85 #include "utilities/macros.hpp" 86 #ifdef TARGET_OS_FAMILY_linux 87 # include "os_linux.inline.hpp" 88 #endif 89 #ifdef TARGET_OS_FAMILY_solaris 90 # include "os_solaris.inline.hpp" 91 #endif 92 #ifdef TARGET_OS_FAMILY_windows 93 # include "os_windows.inline.hpp" 94 #endif 95 #ifdef TARGET_OS_FAMILY_bsd 96 # include "os_bsd.inline.hpp" 97 #endif 98 #if INCLUDE_ALL_GCS 99 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp" 100 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp" 101 #include "gc_implementation/parallelScavenge/pcTasks.hpp" 102 #endif // INCLUDE_ALL_GCS 103 #ifdef COMPILER1 104 #include "c1/c1_Compiler.hpp" 105 #endif 106 #ifdef COMPILER2 107 #include "opto/c2compiler.hpp" 108 #include "opto/idealGraphPrinter.hpp" 109 #endif 110 #if INCLUDE_RTM_OPT 111 #include "runtime/rtmLocking.hpp" 112 #endif 113 #if INCLUDE_JFR 114 #include "jfr/jfr.hpp" 115 #endif 116 117 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC 118 119 #ifdef DTRACE_ENABLED 120 121 // Only bother with this argument setup if dtrace is available 122 123 #ifndef USDT2 124 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin); 125 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end); 126 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t, 127 intptr_t, intptr_t, bool); 128 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t, 129 intptr_t, intptr_t, bool); 130 131 #define DTRACE_THREAD_PROBE(probe, javathread) \ 132 { \ 133 ResourceMark rm(this); \ 134 int len = 0; \ 135 const char* name = (javathread)->get_thread_name(); \ 136 len = strlen(name); \ 137 HS_DTRACE_PROBE5(hotspot, thread__##probe, \ 138 name, len, \ 139 java_lang_Thread::thread_id((javathread)->threadObj()), \ 140 (javathread)->osthread()->thread_id(), \ 141 java_lang_Thread::is_daemon((javathread)->threadObj())); \ 142 } 143 144 #else /* USDT2 */ 145 146 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START 147 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP 148 149 #define DTRACE_THREAD_PROBE(probe, javathread) \ 150 { \ 151 ResourceMark rm(this); \ 152 int len = 0; \ 153 const char* name = (javathread)->get_thread_name(); \ 154 len = strlen(name); \ 155 HOTSPOT_THREAD_PROBE_##probe( /* probe = start, stop */ \ 156 (char *) name, len, \ 157 java_lang_Thread::thread_id((javathread)->threadObj()), \ 158 (uintptr_t) (javathread)->osthread()->thread_id(), \ 159 java_lang_Thread::is_daemon((javathread)->threadObj())); \ 160 } 161 162 #endif /* USDT2 */ 163 164 #else // ndef DTRACE_ENABLED 165 166 #define DTRACE_THREAD_PROBE(probe, javathread) 167 168 #endif // ndef DTRACE_ENABLED 169 170 171 // Class hierarchy 172 // - Thread 173 // - VMThread 174 // - WatcherThread 175 // - ConcurrentMarkSweepThread 176 // - JavaThread 177 // - CompilerThread 178 179 // ======= Thread ======== 180 // Support for forcing alignment of thread objects for biased locking 181 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) { 182 if (UseBiasedLocking) { 183 const int alignment = markOopDesc::biased_lock_alignment; 184 size_t aligned_size = size + (alignment - sizeof(intptr_t)); 185 void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC) 186 : AllocateHeap(aligned_size, flags, CURRENT_PC, 187 AllocFailStrategy::RETURN_NULL); 188 void* aligned_addr = (void*) align_size_up((intptr_t) real_malloc_addr, alignment); 189 assert(((uintptr_t) aligned_addr + (uintptr_t) size) <= 190 ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size), 191 "JavaThread alignment code overflowed allocated storage"); 192 if (TraceBiasedLocking) { 193 if (aligned_addr != real_malloc_addr) 194 tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT, 195 real_malloc_addr, aligned_addr); 196 } 197 ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr; 198 return aligned_addr; 199 } else { 200 return throw_excpt? AllocateHeap(size, flags, CURRENT_PC) 201 : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL); 202 } 203 } 204 205 void Thread::operator delete(void* p) { 206 if (UseBiasedLocking) { 207 void* real_malloc_addr = ((Thread*) p)->_real_malloc_address; 208 FreeHeap(real_malloc_addr, mtThread); 209 } else { 210 FreeHeap(p, mtThread); 211 } 212 } 213 214 215 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread, 216 // JavaThread 217 218 219 Thread::Thread() { 220 // stack and get_thread 221 set_stack_base(NULL); 222 set_stack_size(0); 223 set_self_raw_id(0); 224 set_lgrp_id(-1); 225 226 // allocated data structures 227 set_osthread(NULL); 228 set_resource_area(new (mtThread)ResourceArea()); 229 DEBUG_ONLY(_current_resource_mark = NULL;) 230 set_handle_area(new (mtThread) HandleArea(NULL)); 231 set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true)); 232 set_active_handles(NULL); 233 set_free_handle_block(NULL); 234 set_last_handle_mark(NULL); 235 236 // This initial value ==> never claimed. 237 _oops_do_parity = 0; 238 239 _metadata_on_stack_buffer = NULL; 240 241 // the handle mark links itself to last_handle_mark 242 new HandleMark(this); 243 244 // plain initialization 245 debug_only(_owned_locks = NULL;) 246 debug_only(_allow_allocation_count = 0;) 247 NOT_PRODUCT(_allow_safepoint_count = 0;) 248 NOT_PRODUCT(_skip_gcalot = false;) 249 _jvmti_env_iteration_count = 0; 250 set_allocated_bytes(0); 251 _vm_operation_started_count = 0; 252 _vm_operation_completed_count = 0; 253 _current_pending_monitor = NULL; 254 _current_pending_monitor_is_from_java = true; 255 _current_waiting_monitor = NULL; 256 _num_nested_signal = 0; 257 omFreeList = NULL ; 258 omFreeCount = 0 ; 259 omFreeProvision = 32 ; 260 omInUseList = NULL ; 261 omInUseCount = 0 ; 262 263 #ifdef ASSERT 264 _visited_for_critical_count = false; 265 #endif 266 267 _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true); 268 _suspend_flags = 0; 269 270 // thread-specific hashCode stream generator state - Marsaglia shift-xor form 271 _hashStateX = os::random() ; 272 _hashStateY = 842502087 ; 273 _hashStateZ = 0x8767 ; // (int)(3579807591LL & 0xffff) ; 274 _hashStateW = 273326509 ; 275 276 _OnTrap = 0 ; 277 _schedctl = NULL ; 278 _Stalled = 0 ; 279 _TypeTag = 0x2BAD ; 280 281 // Many of the following fields are effectively final - immutable 282 // Note that nascent threads can't use the Native Monitor-Mutex 283 // construct until the _MutexEvent is initialized ... 284 // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents 285 // we might instead use a stack of ParkEvents that we could provision on-demand. 286 // The stack would act as a cache to avoid calls to ParkEvent::Allocate() 287 // and ::Release() 288 _ParkEvent = ParkEvent::Allocate (this) ; 289 _SleepEvent = ParkEvent::Allocate (this) ; 290 _MutexEvent = ParkEvent::Allocate (this) ; 291 _MuxEvent = ParkEvent::Allocate (this) ; 292 293 #ifdef CHECK_UNHANDLED_OOPS 294 if (CheckUnhandledOops) { 295 _unhandled_oops = new UnhandledOops(this); 296 } 297 #endif // CHECK_UNHANDLED_OOPS 298 #ifdef ASSERT 299 if (UseBiasedLocking) { 300 assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed"); 301 assert(this == _real_malloc_address || 302 this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment), 303 "bug in forced alignment of thread objects"); 304 } 305 #endif /* ASSERT */ 306 } 307 308 void Thread::initialize_thread_local_storage() { 309 // Note: Make sure this method only calls 310 // non-blocking operations. Otherwise, it might not work 311 // with the thread-startup/safepoint interaction. 312 313 // During Java thread startup, safepoint code should allow this 314 // method to complete because it may need to allocate memory to 315 // store information for the new thread. 316 317 // initialize structure dependent on thread local storage 318 ThreadLocalStorage::set_thread(this); 319 } 320 321 void Thread::record_stack_base_and_size() { 322 set_stack_base(os::current_stack_base()); 323 set_stack_size(os::current_stack_size()); 324 if (is_Java_thread()) { 325 ((JavaThread*) this)->set_stack_overflow_limit(); 326 } 327 // CR 7190089: on Solaris, primordial thread's stack is adjusted 328 // in initialize_thread(). Without the adjustment, stack size is 329 // incorrect if stack is set to unlimited (ulimit -s unlimited). 330 // So far, only Solaris has real implementation of initialize_thread(). 331 // 332 // set up any platform-specific state. 333 os::initialize_thread(this); 334 335 #if INCLUDE_NMT 336 // record thread's native stack, stack grows downward 337 address stack_low_addr = stack_base() - stack_size(); 338 MemTracker::record_thread_stack(stack_low_addr, stack_size()); 339 #endif // INCLUDE_NMT 340 } 341 342 343 Thread::~Thread() { 344 // Reclaim the objectmonitors from the omFreeList of the moribund thread. 345 ObjectSynchronizer::omFlush (this) ; 346 347 // stack_base can be NULL if the thread is never started or exited before 348 // record_stack_base_and_size called. Although, we would like to ensure 349 // that all started threads do call record_stack_base_and_size(), there is 350 // not proper way to enforce that. 351 #if INCLUDE_NMT 352 if (_stack_base != NULL) { 353 address low_stack_addr = stack_base() - stack_size(); 354 MemTracker::release_thread_stack(low_stack_addr, stack_size()); 355 #ifdef ASSERT 356 set_stack_base(NULL); 357 #endif 358 } 359 #endif // INCLUDE_NMT 360 361 // deallocate data structures 362 delete resource_area(); 363 // since the handle marks are using the handle area, we have to deallocated the root 364 // handle mark before deallocating the thread's handle area, 365 assert(last_handle_mark() != NULL, "check we have an element"); 366 delete last_handle_mark(); 367 assert(last_handle_mark() == NULL, "check we have reached the end"); 368 369 // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads. 370 // We NULL out the fields for good hygiene. 371 ParkEvent::Release (_ParkEvent) ; _ParkEvent = NULL ; 372 ParkEvent::Release (_SleepEvent) ; _SleepEvent = NULL ; 373 ParkEvent::Release (_MutexEvent) ; _MutexEvent = NULL ; 374 ParkEvent::Release (_MuxEvent) ; _MuxEvent = NULL ; 375 376 delete handle_area(); 377 delete metadata_handles(); 378 379 // osthread() can be NULL, if creation of thread failed. 380 if (osthread() != NULL) os::free_thread(osthread()); 381 382 delete _SR_lock; 383 384 // clear thread local storage if the Thread is deleting itself 385 if (this == Thread::current()) { 386 ThreadLocalStorage::set_thread(NULL); 387 } else { 388 // In the case where we're not the current thread, invalidate all the 389 // caches in case some code tries to get the current thread or the 390 // thread that was destroyed, and gets stale information. 391 ThreadLocalStorage::invalidate_all(); 392 } 393 CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();) 394 } 395 396 // NOTE: dummy function for assertion purpose. 397 void Thread::run() { 398 ShouldNotReachHere(); 399 } 400 401 #ifdef ASSERT 402 // Private method to check for dangling thread pointer 403 void check_for_dangling_thread_pointer(Thread *thread) { 404 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(), 405 "possibility of dangling Thread pointer"); 406 } 407 #endif 408 409 410 #ifndef PRODUCT 411 // Tracing method for basic thread operations 412 void Thread::trace(const char* msg, const Thread* const thread) { 413 if (!TraceThreadEvents) return; 414 ResourceMark rm; 415 ThreadCritical tc; 416 const char *name = "non-Java thread"; 417 int prio = -1; 418 if (thread->is_Java_thread() 419 && !thread->is_Compiler_thread()) { 420 // The Threads_lock must be held to get information about 421 // this thread but may not be in some situations when 422 // tracing thread events. 423 bool release_Threads_lock = false; 424 if (!Threads_lock->owned_by_self()) { 425 Threads_lock->lock(); 426 release_Threads_lock = true; 427 } 428 JavaThread* jt = (JavaThread *)thread; 429 name = (char *)jt->get_thread_name(); 430 oop thread_oop = jt->threadObj(); 431 if (thread_oop != NULL) { 432 prio = java_lang_Thread::priority(thread_oop); 433 } 434 if (release_Threads_lock) { 435 Threads_lock->unlock(); 436 } 437 } 438 tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio); 439 } 440 #endif 441 442 443 ThreadPriority Thread::get_priority(const Thread* const thread) { 444 trace("get priority", thread); 445 ThreadPriority priority; 446 // Can return an error! 447 (void)os::get_priority(thread, priority); 448 assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found"); 449 return priority; 450 } 451 452 void Thread::set_priority(Thread* thread, ThreadPriority priority) { 453 trace("set priority", thread); 454 debug_only(check_for_dangling_thread_pointer(thread);) 455 // Can return an error! 456 (void)os::set_priority(thread, priority); 457 } 458 459 460 void Thread::start(Thread* thread) { 461 trace("start", thread); 462 // Start is different from resume in that its safety is guaranteed by context or 463 // being called from a Java method synchronized on the Thread object. 464 if (!DisableStartThread) { 465 if (thread->is_Java_thread()) { 466 // Initialize the thread state to RUNNABLE before starting this thread. 467 // Can not set it after the thread started because we do not know the 468 // exact thread state at that time. It could be in MONITOR_WAIT or 469 // in SLEEPING or some other state. 470 java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(), 471 java_lang_Thread::RUNNABLE); 472 } 473 os::start_thread(thread); 474 } 475 } 476 477 // Enqueue a VM_Operation to do the job for us - sometime later 478 void Thread::send_async_exception(oop java_thread, oop java_throwable) { 479 VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable); 480 VMThread::execute(vm_stop); 481 } 482 483 484 // 485 // Check if an external suspend request has completed (or has been 486 // cancelled). Returns true if the thread is externally suspended and 487 // false otherwise. 488 // 489 // The bits parameter returns information about the code path through 490 // the routine. Useful for debugging: 491 // 492 // set in is_ext_suspend_completed(): 493 // 0x00000001 - routine was entered 494 // 0x00000010 - routine return false at end 495 // 0x00000100 - thread exited (return false) 496 // 0x00000200 - suspend request cancelled (return false) 497 // 0x00000400 - thread suspended (return true) 498 // 0x00001000 - thread is in a suspend equivalent state (return true) 499 // 0x00002000 - thread is native and walkable (return true) 500 // 0x00004000 - thread is native_trans and walkable (needed retry) 501 // 502 // set in wait_for_ext_suspend_completion(): 503 // 0x00010000 - routine was entered 504 // 0x00020000 - suspend request cancelled before loop (return false) 505 // 0x00040000 - thread suspended before loop (return true) 506 // 0x00080000 - suspend request cancelled in loop (return false) 507 // 0x00100000 - thread suspended in loop (return true) 508 // 0x00200000 - suspend not completed during retry loop (return false) 509 // 510 511 // Helper class for tracing suspend wait debug bits. 512 // 513 // 0x00000100 indicates that the target thread exited before it could 514 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and 515 // 0x00080000 each indicate a cancelled suspend request so they don't 516 // count as wait failures either. 517 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000) 518 519 class TraceSuspendDebugBits : public StackObj { 520 private: 521 JavaThread * jt; 522 bool is_wait; 523 bool called_by_wait; // meaningful when !is_wait 524 uint32_t * bits; 525 526 public: 527 TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait, 528 uint32_t *_bits) { 529 jt = _jt; 530 is_wait = _is_wait; 531 called_by_wait = _called_by_wait; 532 bits = _bits; 533 } 534 535 ~TraceSuspendDebugBits() { 536 if (!is_wait) { 537 #if 1 538 // By default, don't trace bits for is_ext_suspend_completed() calls. 539 // That trace is very chatty. 540 return; 541 #else 542 if (!called_by_wait) { 543 // If tracing for is_ext_suspend_completed() is enabled, then only 544 // trace calls to it from wait_for_ext_suspend_completion() 545 return; 546 } 547 #endif 548 } 549 550 if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) { 551 if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) { 552 MutexLocker ml(Threads_lock); // needed for get_thread_name() 553 ResourceMark rm; 554 555 tty->print_cr( 556 "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)", 557 jt->get_thread_name(), *bits); 558 559 guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed"); 560 } 561 } 562 } 563 }; 564 #undef DEBUG_FALSE_BITS 565 566 567 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) { 568 TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits); 569 570 bool did_trans_retry = false; // only do thread_in_native_trans retry once 571 bool do_trans_retry; // flag to force the retry 572 573 *bits |= 0x00000001; 574 575 do { 576 do_trans_retry = false; 577 578 if (is_exiting()) { 579 // Thread is in the process of exiting. This is always checked 580 // first to reduce the risk of dereferencing a freed JavaThread. 581 *bits |= 0x00000100; 582 return false; 583 } 584 585 if (!is_external_suspend()) { 586 // Suspend request is cancelled. This is always checked before 587 // is_ext_suspended() to reduce the risk of a rogue resume 588 // confusing the thread that made the suspend request. 589 *bits |= 0x00000200; 590 return false; 591 } 592 593 if (is_ext_suspended()) { 594 // thread is suspended 595 *bits |= 0x00000400; 596 return true; 597 } 598 599 // Now that we no longer do hard suspends of threads running 600 // native code, the target thread can be changing thread state 601 // while we are in this routine: 602 // 603 // _thread_in_native -> _thread_in_native_trans -> _thread_blocked 604 // 605 // We save a copy of the thread state as observed at this moment 606 // and make our decision about suspend completeness based on the 607 // copy. This closes the race where the thread state is seen as 608 // _thread_in_native_trans in the if-thread_blocked check, but is 609 // seen as _thread_blocked in if-thread_in_native_trans check. 610 JavaThreadState save_state = thread_state(); 611 612 if (save_state == _thread_blocked && is_suspend_equivalent()) { 613 // If the thread's state is _thread_blocked and this blocking 614 // condition is known to be equivalent to a suspend, then we can 615 // consider the thread to be externally suspended. This means that 616 // the code that sets _thread_blocked has been modified to do 617 // self-suspension if the blocking condition releases. We also 618 // used to check for CONDVAR_WAIT here, but that is now covered by 619 // the _thread_blocked with self-suspension check. 620 // 621 // Return true since we wouldn't be here unless there was still an 622 // external suspend request. 623 *bits |= 0x00001000; 624 return true; 625 } else if (save_state == _thread_in_native && frame_anchor()->walkable()) { 626 // Threads running native code will self-suspend on native==>VM/Java 627 // transitions. If its stack is walkable (should always be the case 628 // unless this function is called before the actual java_suspend() 629 // call), then the wait is done. 630 *bits |= 0x00002000; 631 return true; 632 } else if (!called_by_wait && !did_trans_retry && 633 save_state == _thread_in_native_trans && 634 frame_anchor()->walkable()) { 635 // The thread is transitioning from thread_in_native to another 636 // thread state. check_safepoint_and_suspend_for_native_trans() 637 // will force the thread to self-suspend. If it hasn't gotten 638 // there yet we may have caught the thread in-between the native 639 // code check above and the self-suspend. Lucky us. If we were 640 // called by wait_for_ext_suspend_completion(), then it 641 // will be doing the retries so we don't have to. 642 // 643 // Since we use the saved thread state in the if-statement above, 644 // there is a chance that the thread has already transitioned to 645 // _thread_blocked by the time we get here. In that case, we will 646 // make a single unnecessary pass through the logic below. This 647 // doesn't hurt anything since we still do the trans retry. 648 649 *bits |= 0x00004000; 650 651 // Once the thread leaves thread_in_native_trans for another 652 // thread state, we break out of this retry loop. We shouldn't 653 // need this flag to prevent us from getting back here, but 654 // sometimes paranoia is good. 655 did_trans_retry = true; 656 657 // We wait for the thread to transition to a more usable state. 658 for (int i = 1; i <= SuspendRetryCount; i++) { 659 // We used to do an "os::yield_all(i)" call here with the intention 660 // that yielding would increase on each retry. However, the parameter 661 // is ignored on Linux which means the yield didn't scale up. Waiting 662 // on the SR_lock below provides a much more predictable scale up for 663 // the delay. It also provides a simple/direct point to check for any 664 // safepoint requests from the VMThread 665 666 // temporarily drops SR_lock while doing wait with safepoint check 667 // (if we're a JavaThread - the WatcherThread can also call this) 668 // and increase delay with each retry 669 SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay); 670 671 // check the actual thread state instead of what we saved above 672 if (thread_state() != _thread_in_native_trans) { 673 // the thread has transitioned to another thread state so 674 // try all the checks (except this one) one more time. 675 do_trans_retry = true; 676 break; 677 } 678 } // end retry loop 679 680 681 } 682 } while (do_trans_retry); 683 684 *bits |= 0x00000010; 685 return false; 686 } 687 688 // 689 // Wait for an external suspend request to complete (or be cancelled). 690 // Returns true if the thread is externally suspended and false otherwise. 691 // 692 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay, 693 uint32_t *bits) { 694 TraceSuspendDebugBits tsdb(this, true /* is_wait */, 695 false /* !called_by_wait */, bits); 696 697 // local flag copies to minimize SR_lock hold time 698 bool is_suspended; 699 bool pending; 700 uint32_t reset_bits; 701 702 // set a marker so is_ext_suspend_completed() knows we are the caller 703 *bits |= 0x00010000; 704 705 // We use reset_bits to reinitialize the bits value at the top of 706 // each retry loop. This allows the caller to make use of any 707 // unused bits for their own marking purposes. 708 reset_bits = *bits; 709 710 { 711 MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag); 712 is_suspended = is_ext_suspend_completed(true /* called_by_wait */, 713 delay, bits); 714 pending = is_external_suspend(); 715 } 716 // must release SR_lock to allow suspension to complete 717 718 if (!pending) { 719 // A cancelled suspend request is the only false return from 720 // is_ext_suspend_completed() that keeps us from entering the 721 // retry loop. 722 *bits |= 0x00020000; 723 return false; 724 } 725 726 if (is_suspended) { 727 *bits |= 0x00040000; 728 return true; 729 } 730 731 for (int i = 1; i <= retries; i++) { 732 *bits = reset_bits; // reinit to only track last retry 733 734 // We used to do an "os::yield_all(i)" call here with the intention 735 // that yielding would increase on each retry. However, the parameter 736 // is ignored on Linux which means the yield didn't scale up. Waiting 737 // on the SR_lock below provides a much more predictable scale up for 738 // the delay. It also provides a simple/direct point to check for any 739 // safepoint requests from the VMThread 740 741 { 742 MutexLocker ml(SR_lock()); 743 // wait with safepoint check (if we're a JavaThread - the WatcherThread 744 // can also call this) and increase delay with each retry 745 SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay); 746 747 is_suspended = is_ext_suspend_completed(true /* called_by_wait */, 748 delay, bits); 749 750 // It is possible for the external suspend request to be cancelled 751 // (by a resume) before the actual suspend operation is completed. 752 // Refresh our local copy to see if we still need to wait. 753 pending = is_external_suspend(); 754 } 755 756 if (!pending) { 757 // A cancelled suspend request is the only false return from 758 // is_ext_suspend_completed() that keeps us from staying in the 759 // retry loop. 760 *bits |= 0x00080000; 761 return false; 762 } 763 764 if (is_suspended) { 765 *bits |= 0x00100000; 766 return true; 767 } 768 } // end retry loop 769 770 // thread did not suspend after all our retries 771 *bits |= 0x00200000; 772 return false; 773 } 774 775 #ifndef PRODUCT 776 void JavaThread::record_jump(address target, address instr, const char* file, int line) { 777 778 // This should not need to be atomic as the only way for simultaneous 779 // updates is via interrupts. Even then this should be rare or non-existant 780 // and we don't care that much anyway. 781 782 int index = _jmp_ring_index; 783 _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1); 784 _jmp_ring[index]._target = (intptr_t) target; 785 _jmp_ring[index]._instruction = (intptr_t) instr; 786 _jmp_ring[index]._file = file; 787 _jmp_ring[index]._line = line; 788 } 789 #endif /* PRODUCT */ 790 791 // Called by flat profiler 792 // Callers have already called wait_for_ext_suspend_completion 793 // The assertion for that is currently too complex to put here: 794 bool JavaThread::profile_last_Java_frame(frame* _fr) { 795 bool gotframe = false; 796 // self suspension saves needed state. 797 if (has_last_Java_frame() && _anchor.walkable()) { 798 *_fr = pd_last_frame(); 799 gotframe = true; 800 } 801 return gotframe; 802 } 803 804 void Thread::interrupt(Thread* thread) { 805 trace("interrupt", thread); 806 debug_only(check_for_dangling_thread_pointer(thread);) 807 os::interrupt(thread); 808 } 809 810 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) { 811 trace("is_interrupted", thread); 812 debug_only(check_for_dangling_thread_pointer(thread);) 813 // Note: If clear_interrupted==false, this simply fetches and 814 // returns the value of the field osthread()->interrupted(). 815 return os::is_interrupted(thread, clear_interrupted); 816 } 817 818 819 // GC Support 820 bool Thread::claim_oops_do_par_case(int strong_roots_parity) { 821 jint thread_parity = _oops_do_parity; 822 if (thread_parity != strong_roots_parity) { 823 jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity); 824 if (res == thread_parity) { 825 return true; 826 } else { 827 guarantee(res == strong_roots_parity, "Or else what?"); 828 assert(SharedHeap::heap()->workers()->active_workers() > 0, 829 "Should only fail when parallel."); 830 return false; 831 } 832 } 833 assert(SharedHeap::heap()->workers()->active_workers() > 0, 834 "Should only fail when parallel."); 835 return false; 836 } 837 838 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) { 839 if (active_handles() != NULL) { 840 active_handles()->oops_do(f); 841 } 842 // Do oop for ThreadShadow 843 f->do_oop((oop*)&_pending_exception); 844 handle_area()->oops_do(f); 845 } 846 847 void Thread::nmethods_do(CodeBlobClosure* cf) { 848 // no nmethods in a generic thread... 849 } 850 851 void Thread::metadata_do(void f(Metadata*)) { 852 if (metadata_handles() != NULL) { 853 for (int i = 0; i< metadata_handles()->length(); i++) { 854 f(metadata_handles()->at(i)); 855 } 856 } 857 } 858 859 void Thread::print_on(outputStream* st) const { 860 // get_priority assumes osthread initialized 861 if (osthread() != NULL) { 862 int os_prio; 863 if (os::get_native_priority(this, &os_prio) == OS_OK) { 864 st->print("os_prio=%d ", os_prio); 865 } 866 st->print("tid=" INTPTR_FORMAT " ", this); 867 ext().print_on(st); 868 osthread()->print_on(st); 869 } 870 debug_only(if (WizardMode) print_owned_locks_on(st);) 871 } 872 873 // Thread::print_on_error() is called by fatal error handler. Don't use 874 // any lock or allocate memory. 875 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const { 876 if (is_VM_thread()) st->print("VMThread"); 877 else if (is_Compiler_thread()) st->print("CompilerThread"); 878 else if (is_Java_thread()) st->print("JavaThread"); 879 else if (is_GC_task_thread()) st->print("GCTaskThread"); 880 else if (is_Watcher_thread()) st->print("WatcherThread"); 881 else if (is_ConcurrentGC_thread()) st->print("ConcurrentGCThread"); 882 else st->print("Thread"); 883 884 st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]", 885 _stack_base - _stack_size, _stack_base); 886 887 if (osthread()) { 888 st->print(" [id=%d]", osthread()->thread_id()); 889 } 890 } 891 892 #ifdef ASSERT 893 void Thread::print_owned_locks_on(outputStream* st) const { 894 Monitor *cur = _owned_locks; 895 if (cur == NULL) { 896 st->print(" (no locks) "); 897 } else { 898 st->print_cr(" Locks owned:"); 899 while(cur) { 900 cur->print_on(st); 901 cur = cur->next(); 902 } 903 } 904 } 905 906 static int ref_use_count = 0; 907 908 bool Thread::owns_locks_but_compiled_lock() const { 909 for(Monitor *cur = _owned_locks; cur; cur = cur->next()) { 910 if (cur != Compile_lock) return true; 911 } 912 return false; 913 } 914 915 916 #endif 917 918 #ifndef PRODUCT 919 920 // The flag: potential_vm_operation notifies if this particular safepoint state could potential 921 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that 922 // no threads which allow_vm_block's are held 923 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) { 924 // Check if current thread is allowed to block at a safepoint 925 if (!(_allow_safepoint_count == 0)) 926 fatal("Possible safepoint reached by thread that does not allow it"); 927 if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) { 928 fatal("LEAF method calling lock?"); 929 } 930 931 #ifdef ASSERT 932 if (potential_vm_operation && is_Java_thread() 933 && !Universe::is_bootstrapping()) { 934 // Make sure we do not hold any locks that the VM thread also uses. 935 // This could potentially lead to deadlocks 936 for(Monitor *cur = _owned_locks; cur; cur = cur->next()) { 937 // Threads_lock is special, since the safepoint synchronization will not start before this is 938 // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock, 939 // since it is used to transfer control between JavaThreads and the VMThread 940 // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first! 941 if ( (cur->allow_vm_block() && 942 cur != Threads_lock && 943 cur != Compile_lock && // Temporary: should not be necessary when we get spearate compilation 944 cur != VMOperationRequest_lock && 945 cur != VMOperationQueue_lock) || 946 cur->rank() == Mutex::special) { 947 fatal(err_msg("Thread holding lock at safepoint that vm can block on: %s", cur->name())); 948 } 949 } 950 } 951 952 if (GCALotAtAllSafepoints) { 953 // We could enter a safepoint here and thus have a gc 954 InterfaceSupport::check_gc_alot(); 955 } 956 #endif 957 } 958 #endif 959 960 bool Thread::is_in_stack(address adr) const { 961 assert(Thread::current() == this, "is_in_stack can only be called from current thread"); 962 address end = os::current_stack_pointer(); 963 // Allow non Java threads to call this without stack_base 964 if (_stack_base == NULL) return true; 965 if (stack_base() > adr && adr >= end) return true; 966 967 return false; 968 } 969 970 971 bool Thread::is_in_usable_stack(address adr) const { 972 size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0; 973 size_t usable_stack_size = _stack_size - stack_guard_size; 974 975 return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size)); 976 } 977 978 979 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter 980 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being 981 // used for compilation in the future. If that change is made, the need for these methods 982 // should be revisited, and they should be removed if possible. 983 984 bool Thread::is_lock_owned(address adr) const { 985 return on_local_stack(adr); 986 } 987 988 bool Thread::set_as_starting_thread() { 989 // NOTE: this must be called inside the main thread. 990 return os::create_main_thread((JavaThread*)this); 991 } 992 993 static void initialize_class(Symbol* class_name, TRAPS) { 994 Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK); 995 InstanceKlass::cast(klass)->initialize(CHECK); 996 } 997 998 999 // Creates the initial ThreadGroup 1000 static Handle create_initial_thread_group(TRAPS) { 1001 Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH); 1002 instanceKlassHandle klass (THREAD, k); 1003 1004 Handle system_instance = klass->allocate_instance_handle(CHECK_NH); 1005 { 1006 JavaValue result(T_VOID); 1007 JavaCalls::call_special(&result, 1008 system_instance, 1009 klass, 1010 vmSymbols::object_initializer_name(), 1011 vmSymbols::void_method_signature(), 1012 CHECK_NH); 1013 } 1014 Universe::set_system_thread_group(system_instance()); 1015 1016 Handle main_instance = klass->allocate_instance_handle(CHECK_NH); 1017 { 1018 JavaValue result(T_VOID); 1019 Handle string = java_lang_String::create_from_str("main", CHECK_NH); 1020 JavaCalls::call_special(&result, 1021 main_instance, 1022 klass, 1023 vmSymbols::object_initializer_name(), 1024 vmSymbols::threadgroup_string_void_signature(), 1025 system_instance, 1026 string, 1027 CHECK_NH); 1028 } 1029 return main_instance; 1030 } 1031 1032 // Creates the initial Thread 1033 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) { 1034 Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL); 1035 instanceKlassHandle klass (THREAD, k); 1036 instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL); 1037 1038 java_lang_Thread::set_thread(thread_oop(), thread); 1039 java_lang_Thread::set_priority(thread_oop(), NormPriority); 1040 thread->set_threadObj(thread_oop()); 1041 1042 Handle string = java_lang_String::create_from_str("main", CHECK_NULL); 1043 1044 JavaValue result(T_VOID); 1045 JavaCalls::call_special(&result, thread_oop, 1046 klass, 1047 vmSymbols::object_initializer_name(), 1048 vmSymbols::threadgroup_string_void_signature(), 1049 thread_group, 1050 string, 1051 CHECK_NULL); 1052 return thread_oop(); 1053 } 1054 1055 static void call_initializeSystemClass(TRAPS) { 1056 Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK); 1057 instanceKlassHandle klass (THREAD, k); 1058 1059 JavaValue result(T_VOID); 1060 JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(), 1061 vmSymbols::void_method_signature(), CHECK); 1062 } 1063 1064 char java_runtime_name[128] = ""; 1065 char java_runtime_version[128] = ""; 1066 1067 // extract the JRE name from sun.misc.Version.java_runtime_name 1068 static const char* get_java_runtime_name(TRAPS) { 1069 Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(), 1070 Handle(), Handle(), CHECK_AND_CLEAR_NULL); 1071 fieldDescriptor fd; 1072 bool found = k != NULL && 1073 InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(), 1074 vmSymbols::string_signature(), &fd); 1075 if (found) { 1076 oop name_oop = k->java_mirror()->obj_field(fd.offset()); 1077 if (name_oop == NULL) 1078 return NULL; 1079 const char* name = java_lang_String::as_utf8_string(name_oop, 1080 java_runtime_name, 1081 sizeof(java_runtime_name)); 1082 return name; 1083 } else { 1084 return NULL; 1085 } 1086 } 1087 1088 // extract the JRE version from sun.misc.Version.java_runtime_version 1089 static const char* get_java_runtime_version(TRAPS) { 1090 Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(), 1091 Handle(), Handle(), CHECK_AND_CLEAR_NULL); 1092 fieldDescriptor fd; 1093 bool found = k != NULL && 1094 InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(), 1095 vmSymbols::string_signature(), &fd); 1096 if (found) { 1097 oop name_oop = k->java_mirror()->obj_field(fd.offset()); 1098 if (name_oop == NULL) 1099 return NULL; 1100 const char* name = java_lang_String::as_utf8_string(name_oop, 1101 java_runtime_version, 1102 sizeof(java_runtime_version)); 1103 return name; 1104 } else { 1105 return NULL; 1106 } 1107 } 1108 1109 // General purpose hook into Java code, run once when the VM is initialized. 1110 // The Java library method itself may be changed independently from the VM. 1111 static void call_postVMInitHook(TRAPS) { 1112 Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD); 1113 instanceKlassHandle klass (THREAD, k); 1114 if (klass.not_null()) { 1115 JavaValue result(T_VOID); 1116 JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(), 1117 vmSymbols::void_method_signature(), 1118 CHECK); 1119 } 1120 } 1121 1122 static void reset_vm_info_property(TRAPS) { 1123 // the vm info string 1124 ResourceMark rm(THREAD); 1125 const char *vm_info = VM_Version::vm_info_string(); 1126 1127 // java.lang.System class 1128 Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK); 1129 instanceKlassHandle klass (THREAD, k); 1130 1131 // setProperty arguments 1132 Handle key_str = java_lang_String::create_from_str("java.vm.info", CHECK); 1133 Handle value_str = java_lang_String::create_from_str(vm_info, CHECK); 1134 1135 // return value 1136 JavaValue r(T_OBJECT); 1137 1138 // public static String setProperty(String key, String value); 1139 JavaCalls::call_static(&r, 1140 klass, 1141 vmSymbols::setProperty_name(), 1142 vmSymbols::string_string_string_signature(), 1143 key_str, 1144 value_str, 1145 CHECK); 1146 } 1147 1148 1149 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) { 1150 assert(thread_group.not_null(), "thread group should be specified"); 1151 assert(threadObj() == NULL, "should only create Java thread object once"); 1152 1153 Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK); 1154 instanceKlassHandle klass (THREAD, k); 1155 instanceHandle thread_oop = klass->allocate_instance_handle(CHECK); 1156 1157 java_lang_Thread::set_thread(thread_oop(), this); 1158 java_lang_Thread::set_priority(thread_oop(), NormPriority); 1159 set_threadObj(thread_oop()); 1160 1161 JavaValue result(T_VOID); 1162 if (thread_name != NULL) { 1163 Handle name = java_lang_String::create_from_str(thread_name, CHECK); 1164 // Thread gets assigned specified name and null target 1165 JavaCalls::call_special(&result, 1166 thread_oop, 1167 klass, 1168 vmSymbols::object_initializer_name(), 1169 vmSymbols::threadgroup_string_void_signature(), 1170 thread_group, // Argument 1 1171 name, // Argument 2 1172 THREAD); 1173 } else { 1174 // Thread gets assigned name "Thread-nnn" and null target 1175 // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument) 1176 JavaCalls::call_special(&result, 1177 thread_oop, 1178 klass, 1179 vmSymbols::object_initializer_name(), 1180 vmSymbols::threadgroup_runnable_void_signature(), 1181 thread_group, // Argument 1 1182 Handle(), // Argument 2 1183 THREAD); 1184 } 1185 1186 1187 if (daemon) { 1188 java_lang_Thread::set_daemon(thread_oop()); 1189 } 1190 1191 if (HAS_PENDING_EXCEPTION) { 1192 return; 1193 } 1194 1195 KlassHandle group(this, SystemDictionary::ThreadGroup_klass()); 1196 Handle threadObj(this, this->threadObj()); 1197 1198 JavaCalls::call_special(&result, 1199 thread_group, 1200 group, 1201 vmSymbols::add_method_name(), 1202 vmSymbols::thread_void_signature(), 1203 threadObj, // Arg 1 1204 THREAD); 1205 1206 1207 } 1208 1209 // NamedThread -- non-JavaThread subclasses with multiple 1210 // uniquely named instances should derive from this. 1211 NamedThread::NamedThread() : Thread() { 1212 _name = NULL; 1213 _processed_thread = NULL; 1214 } 1215 1216 NamedThread::~NamedThread() { 1217 JFR_ONLY(Jfr::on_thread_exit(this);) 1218 if (_name != NULL) { 1219 FREE_C_HEAP_ARRAY(char, _name, mtThread); 1220 _name = NULL; 1221 } 1222 } 1223 1224 void NamedThread::set_name(const char* format, ...) { 1225 guarantee(_name == NULL, "Only get to set name once."); 1226 _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread); 1227 guarantee(_name != NULL, "alloc failure"); 1228 va_list ap; 1229 va_start(ap, format); 1230 jio_vsnprintf(_name, max_name_len, format, ap); 1231 va_end(ap); 1232 } 1233 1234 // ======= WatcherThread ======== 1235 1236 // The watcher thread exists to simulate timer interrupts. It should 1237 // be replaced by an abstraction over whatever native support for 1238 // timer interrupts exists on the platform. 1239 1240 WatcherThread* WatcherThread::_watcher_thread = NULL; 1241 bool WatcherThread::_startable = false; 1242 volatile bool WatcherThread::_should_terminate = false; 1243 1244 WatcherThread::WatcherThread() : Thread() { 1245 assert(watcher_thread() == NULL, "we can only allocate one WatcherThread"); 1246 if (os::create_thread(this, os::watcher_thread)) { 1247 _watcher_thread = this; 1248 1249 // Set the watcher thread to the highest OS priority which should not be 1250 // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY 1251 // is created. The only normal thread using this priority is the reference 1252 // handler thread, which runs for very short intervals only. 1253 // If the VMThread's priority is not lower than the WatcherThread profiling 1254 // will be inaccurate. 1255 os::set_priority(this, MaxPriority); 1256 if (!DisableStartThread) { 1257 os::start_thread(this); 1258 } 1259 } 1260 } 1261 1262 int WatcherThread::sleep() const { 1263 MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag); 1264 1265 // remaining will be zero if there are no tasks, 1266 // causing the WatcherThread to sleep until a task is 1267 // enrolled 1268 int remaining = PeriodicTask::time_to_wait(); 1269 int time_slept = 0; 1270 1271 // we expect this to timeout - we only ever get unparked when 1272 // we should terminate or when a new task has been enrolled 1273 OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */); 1274 1275 jlong time_before_loop = os::javaTimeNanos(); 1276 1277 for (;;) { 1278 bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining); 1279 jlong now = os::javaTimeNanos(); 1280 1281 if (remaining == 0) { 1282 // if we didn't have any tasks we could have waited for a long time 1283 // consider the time_slept zero and reset time_before_loop 1284 time_slept = 0; 1285 time_before_loop = now; 1286 } else { 1287 // need to recalulate since we might have new tasks in _tasks 1288 time_slept = (int) ((now - time_before_loop) / 1000000); 1289 } 1290 1291 // Change to task list or spurious wakeup of some kind 1292 if (timedout || _should_terminate) { 1293 break; 1294 } 1295 1296 remaining = PeriodicTask::time_to_wait(); 1297 if (remaining == 0) { 1298 // Last task was just disenrolled so loop around and wait until 1299 // another task gets enrolled 1300 continue; 1301 } 1302 1303 remaining -= time_slept; 1304 if (remaining <= 0) 1305 break; 1306 } 1307 1308 return time_slept; 1309 } 1310 1311 void WatcherThread::run() { 1312 assert(this == watcher_thread(), "just checking"); 1313 1314 this->record_stack_base_and_size(); 1315 this->initialize_thread_local_storage(); 1316 this->set_native_thread_name(this->name()); 1317 this->set_active_handles(JNIHandleBlock::allocate_block()); 1318 while(!_should_terminate) { 1319 assert(watcher_thread() == Thread::current(), "thread consistency check"); 1320 assert(watcher_thread() == this, "thread consistency check"); 1321 1322 // Calculate how long it'll be until the next PeriodicTask work 1323 // should be done, and sleep that amount of time. 1324 int time_waited = sleep(); 1325 1326 if (is_error_reported()) { 1327 // A fatal error has happened, the error handler(VMError::report_and_die) 1328 // should abort JVM after creating an error log file. However in some 1329 // rare cases, the error handler itself might deadlock. Here we try to 1330 // kill JVM if the fatal error handler fails to abort in 2 minutes. 1331 // 1332 // This code is in WatcherThread because WatcherThread wakes up 1333 // periodically so the fatal error handler doesn't need to do anything; 1334 // also because the WatcherThread is less likely to crash than other 1335 // threads. 1336 1337 for (;;) { 1338 if (!ShowMessageBoxOnError 1339 && (OnError == NULL || OnError[0] == '\0') 1340 && Arguments::abort_hook() == NULL) { 1341 os::sleep(this, 2 * 60 * 1000, false); 1342 fdStream err(defaultStream::output_fd()); 1343 err.print_raw_cr("# [ timer expired, abort... ]"); 1344 // skip atexit/vm_exit/vm_abort hooks 1345 os::die(); 1346 } 1347 1348 // Wake up 5 seconds later, the fatal handler may reset OnError or 1349 // ShowMessageBoxOnError when it is ready to abort. 1350 os::sleep(this, 5 * 1000, false); 1351 } 1352 } 1353 1354 PeriodicTask::real_time_tick(time_waited); 1355 } 1356 1357 // Signal that it is terminated 1358 { 1359 MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag); 1360 _watcher_thread = NULL; 1361 Terminator_lock->notify(); 1362 } 1363 1364 // Thread destructor usually does this.. 1365 ThreadLocalStorage::set_thread(NULL); 1366 } 1367 1368 void WatcherThread::start() { 1369 assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required"); 1370 1371 if (watcher_thread() == NULL && _startable) { 1372 _should_terminate = false; 1373 // Create the single instance of WatcherThread 1374 new WatcherThread(); 1375 } 1376 } 1377 1378 void WatcherThread::make_startable() { 1379 assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required"); 1380 _startable = true; 1381 } 1382 1383 void WatcherThread::stop() { 1384 { 1385 MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag); 1386 _should_terminate = true; 1387 OrderAccess::fence(); // ensure WatcherThread sees update in main loop 1388 1389 WatcherThread* watcher = watcher_thread(); 1390 if (watcher != NULL) 1391 watcher->unpark(); 1392 } 1393 1394 // it is ok to take late safepoints here, if needed 1395 MutexLocker mu(Terminator_lock); 1396 1397 while(watcher_thread() != NULL) { 1398 // This wait should make safepoint checks, wait without a timeout, 1399 // and wait as a suspend-equivalent condition. 1400 // 1401 // Note: If the FlatProfiler is running, then this thread is waiting 1402 // for the WatcherThread to terminate and the WatcherThread, via the 1403 // FlatProfiler task, is waiting for the external suspend request on 1404 // this thread to complete. wait_for_ext_suspend_completion() will 1405 // eventually timeout, but that takes time. Making this wait a 1406 // suspend-equivalent condition solves that timeout problem. 1407 // 1408 Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0, 1409 Mutex::_as_suspend_equivalent_flag); 1410 } 1411 } 1412 1413 void WatcherThread::unpark() { 1414 MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag); 1415 PeriodicTask_lock->notify(); 1416 } 1417 1418 void WatcherThread::print_on(outputStream* st) const { 1419 st->print("\"%s\" ", name()); 1420 Thread::print_on(st); 1421 st->cr(); 1422 } 1423 1424 // ======= JavaThread ======== 1425 1426 // A JavaThread is a normal Java thread 1427 1428 void JavaThread::initialize() { 1429 // Initialize fields 1430 1431 // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids) 1432 set_claimed_par_id(UINT_MAX); 1433 1434 set_saved_exception_pc(NULL); 1435 set_threadObj(NULL); 1436 _anchor.clear(); 1437 set_entry_point(NULL); 1438 set_jni_functions(jni_functions()); 1439 set_callee_target(NULL); 1440 set_vm_result(NULL); 1441 set_vm_result_2(NULL); 1442 set_vframe_array_head(NULL); 1443 set_vframe_array_last(NULL); 1444 set_deferred_locals(NULL); 1445 set_deopt_mark(NULL); 1446 set_deopt_nmethod(NULL); 1447 clear_must_deopt_id(); 1448 set_monitor_chunks(NULL); 1449 set_next(NULL); 1450 set_thread_state(_thread_new); 1451 _terminated = _not_terminated; 1452 _privileged_stack_top = NULL; 1453 _array_for_gc = NULL; 1454 _suspend_equivalent = false; 1455 _in_deopt_handler = 0; 1456 _doing_unsafe_access = false; 1457 _stack_guard_state = stack_guard_unused; 1458 (void)const_cast<oop&>(_exception_oop = oop(NULL)); 1459 _exception_pc = 0; 1460 _exception_handler_pc = 0; 1461 _is_method_handle_return = 0; 1462 _jvmti_thread_state= NULL; 1463 _should_post_on_exceptions_flag = JNI_FALSE; 1464 _jvmti_get_loaded_classes_closure = NULL; 1465 _interp_only_mode = 0; 1466 _special_runtime_exit_condition = _no_async_condition; 1467 _pending_async_exception = NULL; 1468 _thread_stat = NULL; 1469 _thread_stat = new ThreadStatistics(); 1470 _blocked_on_compilation = false; 1471 _jni_active_critical = 0; 1472 _pending_jni_exception_check_fn = NULL; 1473 _do_not_unlock_if_synchronized = false; 1474 _cached_monitor_info = NULL; 1475 _parker = Parker::Allocate(this) ; 1476 1477 #ifndef PRODUCT 1478 _jmp_ring_index = 0; 1479 for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) { 1480 record_jump(NULL, NULL, NULL, 0); 1481 } 1482 #endif /* PRODUCT */ 1483 1484 set_thread_profiler(NULL); 1485 if (FlatProfiler::is_active()) { 1486 // This is where we would decide to either give each thread it's own profiler 1487 // or use one global one from FlatProfiler, 1488 // or up to some count of the number of profiled threads, etc. 1489 ThreadProfiler* pp = new ThreadProfiler(); 1490 pp->engage(); 1491 set_thread_profiler(pp); 1492 } 1493 1494 // Setup safepoint state info for this thread 1495 ThreadSafepointState::create(this); 1496 1497 debug_only(_java_call_counter = 0); 1498 1499 // JVMTI PopFrame support 1500 _popframe_condition = popframe_inactive; 1501 _popframe_preserved_args = NULL; 1502 _popframe_preserved_args_size = 0; 1503 _frames_to_pop_failed_realloc = 0; 1504 1505 pd_initialize(); 1506 } 1507 1508 #if INCLUDE_ALL_GCS 1509 SATBMarkQueueSet JavaThread::_satb_mark_queue_set; 1510 DirtyCardQueueSet JavaThread::_dirty_card_queue_set; 1511 #endif // INCLUDE_ALL_GCS 1512 1513 JavaThread::JavaThread(bool is_attaching_via_jni) : 1514 Thread() 1515 #if INCLUDE_ALL_GCS 1516 , _satb_mark_queue(&_satb_mark_queue_set), 1517 _dirty_card_queue(&_dirty_card_queue_set) 1518 #endif // INCLUDE_ALL_GCS 1519 { 1520 initialize(); 1521 if (is_attaching_via_jni) { 1522 _jni_attach_state = _attaching_via_jni; 1523 } else { 1524 _jni_attach_state = _not_attaching_via_jni; 1525 } 1526 assert(deferred_card_mark().is_empty(), "Default MemRegion ctor"); 1527 } 1528 1529 bool JavaThread::reguard_stack(address cur_sp) { 1530 if (_stack_guard_state != stack_guard_yellow_disabled) { 1531 return true; // Stack already guarded or guard pages not needed. 1532 } 1533 1534 if (register_stack_overflow()) { 1535 // For those architectures which have separate register and 1536 // memory stacks, we must check the register stack to see if 1537 // it has overflowed. 1538 return false; 1539 } 1540 1541 // Java code never executes within the yellow zone: the latter is only 1542 // there to provoke an exception during stack banging. If java code 1543 // is executing there, either StackShadowPages should be larger, or 1544 // some exception code in c1, c2 or the interpreter isn't unwinding 1545 // when it should. 1546 guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages"); 1547 1548 enable_stack_yellow_zone(); 1549 return true; 1550 } 1551 1552 bool JavaThread::reguard_stack(void) { 1553 return reguard_stack(os::current_stack_pointer()); 1554 } 1555 1556 1557 void JavaThread::block_if_vm_exited() { 1558 if (_terminated == _vm_exited) { 1559 // _vm_exited is set at safepoint, and Threads_lock is never released 1560 // we will block here forever 1561 Threads_lock->lock_without_safepoint_check(); 1562 ShouldNotReachHere(); 1563 } 1564 } 1565 1566 1567 // Remove this ifdef when C1 is ported to the compiler interface. 1568 static void compiler_thread_entry(JavaThread* thread, TRAPS); 1569 1570 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) : 1571 Thread() 1572 #if INCLUDE_ALL_GCS 1573 , _satb_mark_queue(&_satb_mark_queue_set), 1574 _dirty_card_queue(&_dirty_card_queue_set) 1575 #endif // INCLUDE_ALL_GCS 1576 { 1577 if (TraceThreadEvents) { 1578 tty->print_cr("creating thread %p", this); 1579 } 1580 initialize(); 1581 _jni_attach_state = _not_attaching_via_jni; 1582 set_entry_point(entry_point); 1583 // Create the native thread itself. 1584 // %note runtime_23 1585 os::ThreadType thr_type = os::java_thread; 1586 thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread : 1587 os::java_thread; 1588 os::create_thread(this, thr_type, stack_sz); 1589 // The _osthread may be NULL here because we ran out of memory (too many threads active). 1590 // We need to throw and OutOfMemoryError - however we cannot do this here because the caller 1591 // may hold a lock and all locks must be unlocked before throwing the exception (throwing 1592 // the exception consists of creating the exception object & initializing it, initialization 1593 // will leave the VM via a JavaCall and then all locks must be unlocked). 1594 // 1595 // The thread is still suspended when we reach here. Thread must be explicit started 1596 // by creator! Furthermore, the thread must also explicitly be added to the Threads list 1597 // by calling Threads:add. The reason why this is not done here, is because the thread 1598 // object must be fully initialized (take a look at JVM_Start) 1599 } 1600 1601 JavaThread::~JavaThread() { 1602 if (TraceThreadEvents) { 1603 tty->print_cr("terminate thread %p", this); 1604 } 1605 1606 // JSR166 -- return the parker to the free list 1607 Parker::Release(_parker); 1608 _parker = NULL ; 1609 1610 // Free any remaining previous UnrollBlock 1611 vframeArray* old_array = vframe_array_last(); 1612 1613 if (old_array != NULL) { 1614 Deoptimization::UnrollBlock* old_info = old_array->unroll_block(); 1615 old_array->set_unroll_block(NULL); 1616 delete old_info; 1617 delete old_array; 1618 } 1619 1620 GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals(); 1621 if (deferred != NULL) { 1622 // This can only happen if thread is destroyed before deoptimization occurs. 1623 assert(deferred->length() != 0, "empty array!"); 1624 do { 1625 jvmtiDeferredLocalVariableSet* dlv = deferred->at(0); 1626 deferred->remove_at(0); 1627 // individual jvmtiDeferredLocalVariableSet are CHeapObj's 1628 delete dlv; 1629 } while (deferred->length() != 0); 1630 delete deferred; 1631 } 1632 1633 // All Java related clean up happens in exit 1634 ThreadSafepointState::destroy(this); 1635 if (_thread_profiler != NULL) delete _thread_profiler; 1636 if (_thread_stat != NULL) delete _thread_stat; 1637 } 1638 1639 1640 // The first routine called by a new Java thread 1641 void JavaThread::run() { 1642 // initialize thread-local alloc buffer related fields 1643 this->initialize_tlab(); 1644 1645 // used to test validitity of stack trace backs 1646 this->record_base_of_stack_pointer(); 1647 1648 // Record real stack base and size. 1649 this->record_stack_base_and_size(); 1650 1651 // Initialize thread local storage; set before calling MutexLocker 1652 this->initialize_thread_local_storage(); 1653 1654 this->create_stack_guard_pages(); 1655 1656 this->cache_global_variables(); 1657 1658 // Thread is now sufficient initialized to be handled by the safepoint code as being 1659 // in the VM. Change thread state from _thread_new to _thread_in_vm 1660 ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm); 1661 1662 assert(JavaThread::current() == this, "sanity check"); 1663 assert(!Thread::current()->owns_locks(), "sanity check"); 1664 1665 DTRACE_THREAD_PROBE(start, this); 1666 1667 // This operation might block. We call that after all safepoint checks for a new thread has 1668 // been completed. 1669 this->set_active_handles(JNIHandleBlock::allocate_block()); 1670 1671 if (JvmtiExport::should_post_thread_life()) { 1672 JvmtiExport::post_thread_start(this); 1673 } 1674 1675 JFR_ONLY(Jfr::on_thread_start(this);) 1676 1677 // We call another function to do the rest so we are sure that the stack addresses used 1678 // from there will be lower than the stack base just computed 1679 thread_main_inner(); 1680 1681 // Note, thread is no longer valid at this point! 1682 } 1683 1684 1685 void JavaThread::thread_main_inner() { 1686 assert(JavaThread::current() == this, "sanity check"); 1687 assert(this->threadObj() != NULL, "just checking"); 1688 1689 // Execute thread entry point unless this thread has a pending exception 1690 // or has been stopped before starting. 1691 // Note: Due to JVM_StopThread we can have pending exceptions already! 1692 if (!this->has_pending_exception() && 1693 !java_lang_Thread::is_stillborn(this->threadObj())) { 1694 { 1695 ResourceMark rm(this); 1696 this->set_native_thread_name(this->get_thread_name()); 1697 } 1698 HandleMark hm(this); 1699 this->entry_point()(this, this); 1700 } 1701 1702 DTRACE_THREAD_PROBE(stop, this); 1703 1704 this->exit(false); 1705 delete this; 1706 } 1707 1708 1709 static void ensure_join(JavaThread* thread) { 1710 // We do not need to grap the Threads_lock, since we are operating on ourself. 1711 Handle threadObj(thread, thread->threadObj()); 1712 assert(threadObj.not_null(), "java thread object must exist"); 1713 ObjectLocker lock(threadObj, thread); 1714 // Ignore pending exception (ThreadDeath), since we are exiting anyway 1715 thread->clear_pending_exception(); 1716 // Thread is exiting. So set thread_status field in java.lang.Thread class to TERMINATED. 1717 java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED); 1718 // Clear the native thread instance - this makes isAlive return false and allows the join() 1719 // to complete once we've done the notify_all below 1720 java_lang_Thread::set_thread(threadObj(), NULL); 1721 lock.notify_all(thread); 1722 // Ignore pending exception (ThreadDeath), since we are exiting anyway 1723 thread->clear_pending_exception(); 1724 } 1725 1726 1727 // For any new cleanup additions, please check to see if they need to be applied to 1728 // cleanup_failed_attach_current_thread as well. 1729 void JavaThread::exit(bool destroy_vm, ExitType exit_type) { 1730 assert(this == JavaThread::current(), "thread consistency check"); 1731 1732 HandleMark hm(this); 1733 Handle uncaught_exception(this, this->pending_exception()); 1734 this->clear_pending_exception(); 1735 Handle threadObj(this, this->threadObj()); 1736 assert(threadObj.not_null(), "Java thread object should be created"); 1737 1738 if (get_thread_profiler() != NULL) { 1739 get_thread_profiler()->disengage(); 1740 ResourceMark rm; 1741 get_thread_profiler()->print(get_thread_name()); 1742 } 1743 1744 1745 // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place 1746 { 1747 EXCEPTION_MARK; 1748 1749 CLEAR_PENDING_EXCEPTION; 1750 } 1751 // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This 1752 // has to be fixed by a runtime query method 1753 if (!destroy_vm || JDK_Version::is_jdk12x_version()) { 1754 // JSR-166: change call from from ThreadGroup.uncaughtException to 1755 // java.lang.Thread.dispatchUncaughtException 1756 if (uncaught_exception.not_null()) { 1757 Handle group(this, java_lang_Thread::threadGroup(threadObj())); 1758 { 1759 EXCEPTION_MARK; 1760 // Check if the method Thread.dispatchUncaughtException() exists. If so 1761 // call it. Otherwise we have an older library without the JSR-166 changes, 1762 // so call ThreadGroup.uncaughtException() 1763 KlassHandle recvrKlass(THREAD, threadObj->klass()); 1764 CallInfo callinfo; 1765 KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass()); 1766 LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass, 1767 vmSymbols::dispatchUncaughtException_name(), 1768 vmSymbols::throwable_void_signature(), 1769 KlassHandle(), false, false, THREAD); 1770 CLEAR_PENDING_EXCEPTION; 1771 methodHandle method = callinfo.selected_method(); 1772 if (method.not_null()) { 1773 JavaValue result(T_VOID); 1774 JavaCalls::call_virtual(&result, 1775 threadObj, thread_klass, 1776 vmSymbols::dispatchUncaughtException_name(), 1777 vmSymbols::throwable_void_signature(), 1778 uncaught_exception, 1779 THREAD); 1780 } else { 1781 KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass()); 1782 JavaValue result(T_VOID); 1783 JavaCalls::call_virtual(&result, 1784 group, thread_group, 1785 vmSymbols::uncaughtException_name(), 1786 vmSymbols::thread_throwable_void_signature(), 1787 threadObj, // Arg 1 1788 uncaught_exception, // Arg 2 1789 THREAD); 1790 } 1791 if (HAS_PENDING_EXCEPTION) { 1792 ResourceMark rm(this); 1793 jio_fprintf(defaultStream::error_stream(), 1794 "\nException: %s thrown from the UncaughtExceptionHandler" 1795 " in thread \"%s\"\n", 1796 pending_exception()->klass()->external_name(), 1797 get_thread_name()); 1798 CLEAR_PENDING_EXCEPTION; 1799 } 1800 } 1801 } 1802 JFR_ONLY(Jfr::on_java_thread_dismantle(this);) 1803 1804 // Call Thread.exit(). We try 3 times in case we got another Thread.stop during 1805 // the execution of the method. If that is not enough, then we don't really care. Thread.stop 1806 // is deprecated anyhow. 1807 if (!is_Compiler_thread()) { 1808 int count = 3; 1809 while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) { 1810 EXCEPTION_MARK; 1811 JavaValue result(T_VOID); 1812 KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass()); 1813 JavaCalls::call_virtual(&result, 1814 threadObj, thread_klass, 1815 vmSymbols::exit_method_name(), 1816 vmSymbols::void_method_signature(), 1817 THREAD); 1818 CLEAR_PENDING_EXCEPTION; 1819 } 1820 } 1821 // notify JVMTI 1822 if (JvmtiExport::should_post_thread_life()) { 1823 JvmtiExport::post_thread_end(this); 1824 } 1825 1826 // We have notified the agents that we are exiting, before we go on, 1827 // we must check for a pending external suspend request and honor it 1828 // in order to not surprise the thread that made the suspend request. 1829 while (true) { 1830 { 1831 MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag); 1832 if (!is_external_suspend()) { 1833 set_terminated(_thread_exiting); 1834 ThreadService::current_thread_exiting(this); 1835 break; 1836 } 1837 // Implied else: 1838 // Things get a little tricky here. We have a pending external 1839 // suspend request, but we are holding the SR_lock so we 1840 // can't just self-suspend. So we temporarily drop the lock 1841 // and then self-suspend. 1842 } 1843 1844 ThreadBlockInVM tbivm(this); 1845 java_suspend_self(); 1846 1847 // We're done with this suspend request, but we have to loop around 1848 // and check again. Eventually we will get SR_lock without a pending 1849 // external suspend request and will be able to mark ourselves as 1850 // exiting. 1851 } 1852 // no more external suspends are allowed at this point 1853 } else { 1854 // before_exit() has already posted JVMTI THREAD_END events 1855 } 1856 1857 // Notify waiters on thread object. This has to be done after exit() is called 1858 // on the thread (if the thread is the last thread in a daemon ThreadGroup the 1859 // group should have the destroyed bit set before waiters are notified). 1860 ensure_join(this); 1861 assert(!this->has_pending_exception(), "ensure_join should have cleared"); 1862 1863 // 6282335 JNI DetachCurrentThread spec states that all Java monitors 1864 // held by this thread must be released. A detach operation must only 1865 // get here if there are no Java frames on the stack. Therefore, any 1866 // owned monitors at this point MUST be JNI-acquired monitors which are 1867 // pre-inflated and in the monitor cache. 1868 // 1869 // ensure_join() ignores IllegalThreadStateExceptions, and so does this. 1870 if (exit_type == jni_detach && JNIDetachReleasesMonitors) { 1871 assert(!this->has_last_Java_frame(), "detaching with Java frames?"); 1872 ObjectSynchronizer::release_monitors_owned_by_thread(this); 1873 assert(!this->has_pending_exception(), "release_monitors should have cleared"); 1874 } 1875 1876 // These things needs to be done while we are still a Java Thread. Make sure that thread 1877 // is in a consistent state, in case GC happens 1878 assert(_privileged_stack_top == NULL, "must be NULL when we get here"); 1879 JFR_ONLY(Jfr::on_thread_exit(this);) 1880 1881 if (active_handles() != NULL) { 1882 JNIHandleBlock* block = active_handles(); 1883 set_active_handles(NULL); 1884 JNIHandleBlock::release_block(block); 1885 } 1886 1887 if (free_handle_block() != NULL) { 1888 JNIHandleBlock* block = free_handle_block(); 1889 set_free_handle_block(NULL); 1890 JNIHandleBlock::release_block(block); 1891 } 1892 1893 // These have to be removed while this is still a valid thread. 1894 remove_stack_guard_pages(); 1895 1896 if (UseTLAB) { 1897 tlab().make_parsable(true); // retire TLAB 1898 } 1899 1900 if (JvmtiEnv::environments_might_exist()) { 1901 JvmtiExport::cleanup_thread(this); 1902 } 1903 1904 // We must flush any deferred card marks before removing a thread from 1905 // the list of active threads. 1906 Universe::heap()->flush_deferred_store_barrier(this); 1907 assert(deferred_card_mark().is_empty(), "Should have been flushed"); 1908 1909 #if INCLUDE_ALL_GCS 1910 // We must flush the G1-related buffers before removing a thread 1911 // from the list of active threads. We must do this after any deferred 1912 // card marks have been flushed (above) so that any entries that are 1913 // added to the thread's dirty card queue as a result are not lost. 1914 if (UseG1GC) { 1915 flush_barrier_queues(); 1916 } 1917 #endif // INCLUDE_ALL_GCS 1918 1919 // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread 1920 Threads::remove(this); 1921 } 1922 1923 #if INCLUDE_ALL_GCS 1924 // Flush G1-related queues. 1925 void JavaThread::flush_barrier_queues() { 1926 satb_mark_queue().flush(); 1927 dirty_card_queue().flush(); 1928 } 1929 1930 void JavaThread::initialize_queues() { 1931 assert(!SafepointSynchronize::is_at_safepoint(), 1932 "we should not be at a safepoint"); 1933 1934 ObjPtrQueue& satb_queue = satb_mark_queue(); 1935 SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set(); 1936 // The SATB queue should have been constructed with its active 1937 // field set to false. 1938 assert(!satb_queue.is_active(), "SATB queue should not be active"); 1939 assert(satb_queue.is_empty(), "SATB queue should be empty"); 1940 // If we are creating the thread during a marking cycle, we should 1941 // set the active field of the SATB queue to true. 1942 if (satb_queue_set.is_active()) { 1943 satb_queue.set_active(true); 1944 } 1945 1946 DirtyCardQueue& dirty_queue = dirty_card_queue(); 1947 // The dirty card queue should have been constructed with its 1948 // active field set to true. 1949 assert(dirty_queue.is_active(), "dirty card queue should be active"); 1950 } 1951 #endif // INCLUDE_ALL_GCS 1952 1953 void JavaThread::cleanup_failed_attach_current_thread() { 1954 if (get_thread_profiler() != NULL) { 1955 get_thread_profiler()->disengage(); 1956 ResourceMark rm; 1957 get_thread_profiler()->print(get_thread_name()); 1958 } 1959 1960 if (active_handles() != NULL) { 1961 JNIHandleBlock* block = active_handles(); 1962 set_active_handles(NULL); 1963 JNIHandleBlock::release_block(block); 1964 } 1965 1966 if (free_handle_block() != NULL) { 1967 JNIHandleBlock* block = free_handle_block(); 1968 set_free_handle_block(NULL); 1969 JNIHandleBlock::release_block(block); 1970 } 1971 1972 // These have to be removed while this is still a valid thread. 1973 remove_stack_guard_pages(); 1974 1975 if (UseTLAB) { 1976 tlab().make_parsable(true); // retire TLAB, if any 1977 } 1978 1979 #if INCLUDE_ALL_GCS 1980 if (UseG1GC) { 1981 flush_barrier_queues(); 1982 } 1983 #endif // INCLUDE_ALL_GCS 1984 1985 Threads::remove(this); 1986 delete this; 1987 } 1988 1989 1990 1991 1992 JavaThread* JavaThread::active() { 1993 Thread* thread = ThreadLocalStorage::thread(); 1994 assert(thread != NULL, "just checking"); 1995 if (thread->is_Java_thread()) { 1996 return (JavaThread*) thread; 1997 } else { 1998 assert(thread->is_VM_thread(), "this must be a vm thread"); 1999 VM_Operation* op = ((VMThread*) thread)->vm_operation(); 2000 JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread(); 2001 assert(ret->is_Java_thread(), "must be a Java thread"); 2002 return ret; 2003 } 2004 } 2005 2006 bool JavaThread::is_lock_owned(address adr) const { 2007 if (Thread::is_lock_owned(adr)) return true; 2008 2009 for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) { 2010 if (chunk->contains(adr)) return true; 2011 } 2012 2013 return false; 2014 } 2015 2016 2017 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) { 2018 chunk->set_next(monitor_chunks()); 2019 set_monitor_chunks(chunk); 2020 } 2021 2022 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) { 2023 guarantee(monitor_chunks() != NULL, "must be non empty"); 2024 if (monitor_chunks() == chunk) { 2025 set_monitor_chunks(chunk->next()); 2026 } else { 2027 MonitorChunk* prev = monitor_chunks(); 2028 while (prev->next() != chunk) prev = prev->next(); 2029 prev->set_next(chunk->next()); 2030 } 2031 } 2032 2033 // JVM support. 2034 2035 // Note: this function shouldn't block if it's called in 2036 // _thread_in_native_trans state (such as from 2037 // check_special_condition_for_native_trans()). 2038 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) { 2039 2040 if (has_last_Java_frame() && has_async_condition()) { 2041 // If we are at a polling page safepoint (not a poll return) 2042 // then we must defer async exception because live registers 2043 // will be clobbered by the exception path. Poll return is 2044 // ok because the call we a returning from already collides 2045 // with exception handling registers and so there is no issue. 2046 // (The exception handling path kills call result registers but 2047 // this is ok since the exception kills the result anyway). 2048 2049 if (is_at_poll_safepoint()) { 2050 // if the code we are returning to has deoptimized we must defer 2051 // the exception otherwise live registers get clobbered on the 2052 // exception path before deoptimization is able to retrieve them. 2053 // 2054 RegisterMap map(this, false); 2055 frame caller_fr = last_frame().sender(&map); 2056 assert(caller_fr.is_compiled_frame(), "what?"); 2057 if (caller_fr.is_deoptimized_frame()) { 2058 if (TraceExceptions) { 2059 ResourceMark rm; 2060 tty->print_cr("deferred async exception at compiled safepoint"); 2061 } 2062 return; 2063 } 2064 } 2065 } 2066 2067 JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition(); 2068 if (condition == _no_async_condition) { 2069 // Conditions have changed since has_special_runtime_exit_condition() 2070 // was called: 2071 // - if we were here only because of an external suspend request, 2072 // then that was taken care of above (or cancelled) so we are done 2073 // - if we were here because of another async request, then it has 2074 // been cleared between the has_special_runtime_exit_condition() 2075 // and now so again we are done 2076 return; 2077 } 2078 2079 // Check for pending async. exception 2080 if (_pending_async_exception != NULL) { 2081 // Only overwrite an already pending exception, if it is not a threadDeath. 2082 if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) { 2083 2084 // We cannot call Exceptions::_throw(...) here because we cannot block 2085 set_pending_exception(_pending_async_exception, __FILE__, __LINE__); 2086 2087 if (TraceExceptions) { 2088 ResourceMark rm; 2089 tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this); 2090 if (has_last_Java_frame() ) { 2091 frame f = last_frame(); 2092 tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp()); 2093 } 2094 tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name()); 2095 } 2096 _pending_async_exception = NULL; 2097 clear_has_async_exception(); 2098 } 2099 } 2100 2101 if (check_unsafe_error && 2102 condition == _async_unsafe_access_error && !has_pending_exception()) { 2103 condition = _no_async_condition; // done 2104 switch (thread_state()) { 2105 case _thread_in_vm: 2106 { 2107 JavaThread* THREAD = this; 2108 THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation"); 2109 } 2110 case _thread_in_native: 2111 { 2112 ThreadInVMfromNative tiv(this); 2113 JavaThread* THREAD = this; 2114 THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation"); 2115 } 2116 case _thread_in_Java: 2117 { 2118 ThreadInVMfromJava tiv(this); 2119 JavaThread* THREAD = this; 2120 THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code"); 2121 } 2122 default: 2123 ShouldNotReachHere(); 2124 } 2125 } 2126 2127 assert(condition == _no_async_condition || has_pending_exception() || 2128 (!check_unsafe_error && condition == _async_unsafe_access_error), 2129 "must have handled the async condition, if no exception"); 2130 } 2131 2132 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) { 2133 // 2134 // Check for pending external suspend. Internal suspend requests do 2135 // not use handle_special_runtime_exit_condition(). 2136 // If JNIEnv proxies are allowed, don't self-suspend if the target 2137 // thread is not the current thread. In older versions of jdbx, jdbx 2138 // threads could call into the VM with another thread's JNIEnv so we 2139 // can be here operating on behalf of a suspended thread (4432884). 2140 bool do_self_suspend = is_external_suspend_with_lock(); 2141 if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) { 2142 // 2143 // Because thread is external suspended the safepoint code will count 2144 // thread as at a safepoint. This can be odd because we can be here 2145 // as _thread_in_Java which would normally transition to _thread_blocked 2146 // at a safepoint. We would like to mark the thread as _thread_blocked 2147 // before calling java_suspend_self like all other callers of it but 2148 // we must then observe proper safepoint protocol. (We can't leave 2149 // _thread_blocked with a safepoint in progress). However we can be 2150 // here as _thread_in_native_trans so we can't use a normal transition 2151 // constructor/destructor pair because they assert on that type of 2152 // transition. We could do something like: 2153 // 2154 // JavaThreadState state = thread_state(); 2155 // set_thread_state(_thread_in_vm); 2156 // { 2157 // ThreadBlockInVM tbivm(this); 2158 // java_suspend_self() 2159 // } 2160 // set_thread_state(_thread_in_vm_trans); 2161 // if (safepoint) block; 2162 // set_thread_state(state); 2163 // 2164 // but that is pretty messy. Instead we just go with the way the 2165 // code has worked before and note that this is the only path to 2166 // java_suspend_self that doesn't put the thread in _thread_blocked 2167 // mode. 2168 2169 frame_anchor()->make_walkable(this); 2170 java_suspend_self(); 2171 2172 // We might be here for reasons in addition to the self-suspend request 2173 // so check for other async requests. 2174 } 2175 2176 if (check_asyncs) { 2177 check_and_handle_async_exceptions(); 2178 } 2179 2180 JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(this);) 2181 } 2182 2183 void JavaThread::send_thread_stop(oop java_throwable) { 2184 assert(Thread::current()->is_VM_thread(), "should be in the vm thread"); 2185 assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code"); 2186 assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped"); 2187 2188 // Do not throw asynchronous exceptions against the compiler thread 2189 // (the compiler thread should not be a Java thread -- fix in 1.4.2) 2190 if (is_Compiler_thread()) return; 2191 2192 { 2193 // Actually throw the Throwable against the target Thread - however 2194 // only if there is no thread death exception installed already. 2195 if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) { 2196 // If the topmost frame is a runtime stub, then we are calling into 2197 // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..) 2198 // must deoptimize the caller before continuing, as the compiled exception handler table 2199 // may not be valid 2200 if (has_last_Java_frame()) { 2201 frame f = last_frame(); 2202 if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) { 2203 // BiasedLocking needs an updated RegisterMap for the revoke monitors pass 2204 RegisterMap reg_map(this, UseBiasedLocking); 2205 frame compiled_frame = f.sender(®_map); 2206 if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) { 2207 Deoptimization::deoptimize(this, compiled_frame, ®_map); 2208 } 2209 } 2210 } 2211 2212 // Set async. pending exception in thread. 2213 set_pending_async_exception(java_throwable); 2214 2215 if (TraceExceptions) { 2216 ResourceMark rm; 2217 tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name()); 2218 } 2219 // for AbortVMOnException flag 2220 NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name())); 2221 } 2222 } 2223 2224 2225 // Interrupt thread so it will wake up from a potential wait() 2226 Thread::interrupt(this); 2227 } 2228 2229 // External suspension mechanism. 2230 // 2231 // Tell the VM to suspend a thread when ever it knows that it does not hold on 2232 // to any VM_locks and it is at a transition 2233 // Self-suspension will happen on the transition out of the vm. 2234 // Catch "this" coming in from JNIEnv pointers when the thread has been freed 2235 // 2236 // Guarantees on return: 2237 // + Target thread will not execute any new bytecode (that's why we need to 2238 // force a safepoint) 2239 // + Target thread will not enter any new monitors 2240 // 2241 void JavaThread::java_suspend() { 2242 { MutexLocker mu(Threads_lock); 2243 if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) { 2244 return; 2245 } 2246 } 2247 2248 { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag); 2249 if (!is_external_suspend()) { 2250 // a racing resume has cancelled us; bail out now 2251 return; 2252 } 2253 2254 // suspend is done 2255 uint32_t debug_bits = 0; 2256 // Warning: is_ext_suspend_completed() may temporarily drop the 2257 // SR_lock to allow the thread to reach a stable thread state if 2258 // it is currently in a transient thread state. 2259 if (is_ext_suspend_completed(false /* !called_by_wait */, 2260 SuspendRetryDelay, &debug_bits) ) { 2261 return; 2262 } 2263 } 2264 2265 VM_ForceSafepoint vm_suspend; 2266 VMThread::execute(&vm_suspend); 2267 } 2268 2269 // Part II of external suspension. 2270 // A JavaThread self suspends when it detects a pending external suspend 2271 // request. This is usually on transitions. It is also done in places 2272 // where continuing to the next transition would surprise the caller, 2273 // e.g., monitor entry. 2274 // 2275 // Returns the number of times that the thread self-suspended. 2276 // 2277 // Note: DO NOT call java_suspend_self() when you just want to block current 2278 // thread. java_suspend_self() is the second stage of cooperative 2279 // suspension for external suspend requests and should only be used 2280 // to complete an external suspend request. 2281 // 2282 int JavaThread::java_suspend_self() { 2283 int ret = 0; 2284 2285 // we are in the process of exiting so don't suspend 2286 if (is_exiting()) { 2287 clear_external_suspend(); 2288 return ret; 2289 } 2290 2291 assert(_anchor.walkable() || 2292 (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()), 2293 "must have walkable stack"); 2294 2295 MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag); 2296 2297 assert(!this->is_ext_suspended(), 2298 "a thread trying to self-suspend should not already be suspended"); 2299 2300 if (this->is_suspend_equivalent()) { 2301 // If we are self-suspending as a result of the lifting of a 2302 // suspend equivalent condition, then the suspend_equivalent 2303 // flag is not cleared until we set the ext_suspended flag so 2304 // that wait_for_ext_suspend_completion() returns consistent 2305 // results. 2306 this->clear_suspend_equivalent(); 2307 } 2308 2309 // A racing resume may have cancelled us before we grabbed SR_lock 2310 // above. Or another external suspend request could be waiting for us 2311 // by the time we return from SR_lock()->wait(). The thread 2312 // that requested the suspension may already be trying to walk our 2313 // stack and if we return now, we can change the stack out from under 2314 // it. This would be a "bad thing (TM)" and cause the stack walker 2315 // to crash. We stay self-suspended until there are no more pending 2316 // external suspend requests. 2317 while (is_external_suspend()) { 2318 ret++; 2319 this->set_ext_suspended(); 2320 2321 // _ext_suspended flag is cleared by java_resume() 2322 while (is_ext_suspended()) { 2323 this->SR_lock()->wait(Mutex::_no_safepoint_check_flag); 2324 } 2325 } 2326 2327 return ret; 2328 } 2329 2330 #ifdef ASSERT 2331 // verify the JavaThread has not yet been published in the Threads::list, and 2332 // hence doesn't need protection from concurrent access at this stage 2333 void JavaThread::verify_not_published() { 2334 if (!Threads_lock->owned_by_self()) { 2335 MutexLockerEx ml(Threads_lock, Mutex::_no_safepoint_check_flag); 2336 assert( !Threads::includes(this), 2337 "java thread shouldn't have been published yet!"); 2338 } 2339 else { 2340 assert( !Threads::includes(this), 2341 "java thread shouldn't have been published yet!"); 2342 } 2343 } 2344 #endif 2345 2346 // Slow path when the native==>VM/Java barriers detect a safepoint is in 2347 // progress or when _suspend_flags is non-zero. 2348 // Current thread needs to self-suspend if there is a suspend request and/or 2349 // block if a safepoint is in progress. 2350 // Async exception ISN'T checked. 2351 // Note only the ThreadInVMfromNative transition can call this function 2352 // directly and when thread state is _thread_in_native_trans 2353 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) { 2354 assert(thread->thread_state() == _thread_in_native_trans, "wrong state"); 2355 2356 JavaThread *curJT = JavaThread::current(); 2357 bool do_self_suspend = thread->is_external_suspend(); 2358 2359 assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition"); 2360 2361 // If JNIEnv proxies are allowed, don't self-suspend if the target 2362 // thread is not the current thread. In older versions of jdbx, jdbx 2363 // threads could call into the VM with another thread's JNIEnv so we 2364 // can be here operating on behalf of a suspended thread (4432884). 2365 if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) { 2366 JavaThreadState state = thread->thread_state(); 2367 2368 // We mark this thread_blocked state as a suspend-equivalent so 2369 // that a caller to is_ext_suspend_completed() won't be confused. 2370 // The suspend-equivalent state is cleared by java_suspend_self(). 2371 thread->set_suspend_equivalent(); 2372 2373 // If the safepoint code sees the _thread_in_native_trans state, it will 2374 // wait until the thread changes to other thread state. There is no 2375 // guarantee on how soon we can obtain the SR_lock and complete the 2376 // self-suspend request. It would be a bad idea to let safepoint wait for 2377 // too long. Temporarily change the state to _thread_blocked to 2378 // let the VM thread know that this thread is ready for GC. The problem 2379 // of changing thread state is that safepoint could happen just after 2380 // java_suspend_self() returns after being resumed, and VM thread will 2381 // see the _thread_blocked state. We must check for safepoint 2382 // after restoring the state and make sure we won't leave while a safepoint 2383 // is in progress. 2384 thread->set_thread_state(_thread_blocked); 2385 thread->java_suspend_self(); 2386 thread->set_thread_state(state); 2387 // Make sure new state is seen by VM thread 2388 if (os::is_MP()) { 2389 if (UseMembar) { 2390 // Force a fence between the write above and read below 2391 OrderAccess::fence(); 2392 } else { 2393 // Must use this rather than serialization page in particular on Windows 2394 InterfaceSupport::serialize_memory(thread); 2395 } 2396 } 2397 } 2398 2399 if (SafepointSynchronize::do_call_back()) { 2400 // If we are safepointing, then block the caller which may not be 2401 // the same as the target thread (see above). 2402 SafepointSynchronize::block(curJT); 2403 } 2404 2405 if (thread->is_deopt_suspend()) { 2406 thread->clear_deopt_suspend(); 2407 RegisterMap map(thread, false); 2408 frame f = thread->last_frame(); 2409 while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) { 2410 f = f.sender(&map); 2411 } 2412 if (f.id() == thread->must_deopt_id()) { 2413 thread->clear_must_deopt_id(); 2414 f.deoptimize(thread); 2415 } else { 2416 fatal("missed deoptimization!"); 2417 } 2418 } 2419 2420 JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(thread);) 2421 } 2422 2423 // Slow path when the native==>VM/Java barriers detect a safepoint is in 2424 // progress or when _suspend_flags is non-zero. 2425 // Current thread needs to self-suspend if there is a suspend request and/or 2426 // block if a safepoint is in progress. 2427 // Also check for pending async exception (not including unsafe access error). 2428 // Note only the native==>VM/Java barriers can call this function and when 2429 // thread state is _thread_in_native_trans. 2430 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) { 2431 check_safepoint_and_suspend_for_native_trans(thread); 2432 2433 if (thread->has_async_exception()) { 2434 // We are in _thread_in_native_trans state, don't handle unsafe 2435 // access error since that may block. 2436 thread->check_and_handle_async_exceptions(false); 2437 } 2438 } 2439 2440 // This is a variant of the normal 2441 // check_special_condition_for_native_trans with slightly different 2442 // semantics for use by critical native wrappers. It does all the 2443 // normal checks but also performs the transition back into 2444 // thread_in_Java state. This is required so that critical natives 2445 // can potentially block and perform a GC if they are the last thread 2446 // exiting the GC_locker. 2447 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) { 2448 check_special_condition_for_native_trans(thread); 2449 2450 // Finish the transition 2451 thread->set_thread_state(_thread_in_Java); 2452 2453 if (thread->do_critical_native_unlock()) { 2454 ThreadInVMfromJavaNoAsyncException tiv(thread); 2455 GC_locker::unlock_critical(thread); 2456 thread->clear_critical_native_unlock(); 2457 } 2458 } 2459 2460 // We need to guarantee the Threads_lock here, since resumes are not 2461 // allowed during safepoint synchronization 2462 // Can only resume from an external suspension 2463 void JavaThread::java_resume() { 2464 assert_locked_or_safepoint(Threads_lock); 2465 2466 // Sanity check: thread is gone, has started exiting or the thread 2467 // was not externally suspended. 2468 if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) { 2469 return; 2470 } 2471 2472 MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag); 2473 2474 clear_external_suspend(); 2475 2476 if (is_ext_suspended()) { 2477 clear_ext_suspended(); 2478 SR_lock()->notify_all(); 2479 } 2480 } 2481 2482 void JavaThread::create_stack_guard_pages() { 2483 if (!os::uses_stack_guard_pages() || 2484 _stack_guard_state != stack_guard_unused || 2485 (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) { 2486 if (TraceThreadEvents) { 2487 tty->print_cr("Stack guard page creation for thread " 2488 UINTX_FORMAT " disabled", os::current_thread_id()); 2489 } 2490 return; 2491 } 2492 address low_addr = stack_base() - stack_size(); 2493 size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size(); 2494 2495 int allocate = os::allocate_stack_guard_pages(); 2496 // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len); 2497 2498 if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) { 2499 warning("Attempt to allocate stack guard pages failed."); 2500 return; 2501 } 2502 2503 if (os::guard_memory((char *) low_addr, len)) { 2504 _stack_guard_state = stack_guard_enabled; 2505 } else { 2506 warning("Attempt to protect stack guard pages failed."); 2507 if (os::uncommit_memory((char *) low_addr, len)) { 2508 warning("Attempt to deallocate stack guard pages failed."); 2509 } 2510 } 2511 } 2512 2513 void JavaThread::remove_stack_guard_pages() { 2514 assert(Thread::current() == this, "from different thread"); 2515 if (_stack_guard_state == stack_guard_unused) return; 2516 address low_addr = stack_base() - stack_size(); 2517 size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size(); 2518 2519 if (os::allocate_stack_guard_pages()) { 2520 if (os::remove_stack_guard_pages((char *) low_addr, len)) { 2521 _stack_guard_state = stack_guard_unused; 2522 } else { 2523 warning("Attempt to deallocate stack guard pages failed."); 2524 } 2525 } else { 2526 if (_stack_guard_state == stack_guard_unused) return; 2527 if (os::unguard_memory((char *) low_addr, len)) { 2528 _stack_guard_state = stack_guard_unused; 2529 } else { 2530 warning("Attempt to unprotect stack guard pages failed."); 2531 } 2532 } 2533 } 2534 2535 void JavaThread::enable_stack_yellow_zone() { 2536 assert(_stack_guard_state != stack_guard_unused, "must be using guard pages."); 2537 assert(_stack_guard_state != stack_guard_enabled, "already enabled"); 2538 2539 // The base notation is from the stacks point of view, growing downward. 2540 // We need to adjust it to work correctly with guard_memory() 2541 address base = stack_yellow_zone_base() - stack_yellow_zone_size(); 2542 2543 guarantee(base < stack_base(),"Error calculating stack yellow zone"); 2544 guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone"); 2545 2546 if (os::guard_memory((char *) base, stack_yellow_zone_size())) { 2547 _stack_guard_state = stack_guard_enabled; 2548 } else { 2549 warning("Attempt to guard stack yellow zone failed."); 2550 } 2551 enable_register_stack_guard(); 2552 } 2553 2554 void JavaThread::disable_stack_yellow_zone() { 2555 assert(_stack_guard_state != stack_guard_unused, "must be using guard pages."); 2556 assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled"); 2557 2558 // Simply return if called for a thread that does not use guard pages. 2559 if (_stack_guard_state == stack_guard_unused) return; 2560 2561 // The base notation is from the stacks point of view, growing downward. 2562 // We need to adjust it to work correctly with guard_memory() 2563 address base = stack_yellow_zone_base() - stack_yellow_zone_size(); 2564 2565 if (os::unguard_memory((char *)base, stack_yellow_zone_size())) { 2566 _stack_guard_state = stack_guard_yellow_disabled; 2567 } else { 2568 warning("Attempt to unguard stack yellow zone failed."); 2569 } 2570 disable_register_stack_guard(); 2571 } 2572 2573 void JavaThread::enable_stack_red_zone() { 2574 // The base notation is from the stacks point of view, growing downward. 2575 // We need to adjust it to work correctly with guard_memory() 2576 assert(_stack_guard_state != stack_guard_unused, "must be using guard pages."); 2577 address base = stack_red_zone_base() - stack_red_zone_size(); 2578 2579 guarantee(base < stack_base(),"Error calculating stack red zone"); 2580 guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone"); 2581 2582 if(!os::guard_memory((char *) base, stack_red_zone_size())) { 2583 warning("Attempt to guard stack red zone failed."); 2584 } 2585 } 2586 2587 void JavaThread::disable_stack_red_zone() { 2588 // The base notation is from the stacks point of view, growing downward. 2589 // We need to adjust it to work correctly with guard_memory() 2590 assert(_stack_guard_state != stack_guard_unused, "must be using guard pages."); 2591 address base = stack_red_zone_base() - stack_red_zone_size(); 2592 if (!os::unguard_memory((char *)base, stack_red_zone_size())) { 2593 warning("Attempt to unguard stack red zone failed."); 2594 } 2595 } 2596 2597 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) { 2598 // ignore is there is no stack 2599 if (!has_last_Java_frame()) return; 2600 // traverse the stack frames. Starts from top frame. 2601 for(StackFrameStream fst(this); !fst.is_done(); fst.next()) { 2602 frame* fr = fst.current(); 2603 f(fr, fst.register_map()); 2604 } 2605 } 2606 2607 2608 #ifndef PRODUCT 2609 // Deoptimization 2610 // Function for testing deoptimization 2611 void JavaThread::deoptimize() { 2612 // BiasedLocking needs an updated RegisterMap for the revoke monitors pass 2613 StackFrameStream fst(this, UseBiasedLocking); 2614 bool deopt = false; // Dump stack only if a deopt actually happens. 2615 bool only_at = strlen(DeoptimizeOnlyAt) > 0; 2616 // Iterate over all frames in the thread and deoptimize 2617 for(; !fst.is_done(); fst.next()) { 2618 if(fst.current()->can_be_deoptimized()) { 2619 2620 if (only_at) { 2621 // Deoptimize only at particular bcis. DeoptimizeOnlyAt 2622 // consists of comma or carriage return separated numbers so 2623 // search for the current bci in that string. 2624 address pc = fst.current()->pc(); 2625 nmethod* nm = (nmethod*) fst.current()->cb(); 2626 ScopeDesc* sd = nm->scope_desc_at( pc); 2627 char buffer[8]; 2628 jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci()); 2629 size_t len = strlen(buffer); 2630 const char * found = strstr(DeoptimizeOnlyAt, buffer); 2631 while (found != NULL) { 2632 if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') && 2633 (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) { 2634 // Check that the bci found is bracketed by terminators. 2635 break; 2636 } 2637 found = strstr(found + 1, buffer); 2638 } 2639 if (!found) { 2640 continue; 2641 } 2642 } 2643 2644 if (DebugDeoptimization && !deopt) { 2645 deopt = true; // One-time only print before deopt 2646 tty->print_cr("[BEFORE Deoptimization]"); 2647 trace_frames(); 2648 trace_stack(); 2649 } 2650 Deoptimization::deoptimize(this, *fst.current(), fst.register_map()); 2651 } 2652 } 2653 2654 if (DebugDeoptimization && deopt) { 2655 tty->print_cr("[AFTER Deoptimization]"); 2656 trace_frames(); 2657 } 2658 } 2659 2660 2661 // Make zombies 2662 void JavaThread::make_zombies() { 2663 for(StackFrameStream fst(this); !fst.is_done(); fst.next()) { 2664 if (fst.current()->can_be_deoptimized()) { 2665 // it is a Java nmethod 2666 nmethod* nm = CodeCache::find_nmethod(fst.current()->pc()); 2667 nm->make_not_entrant(); 2668 } 2669 } 2670 } 2671 #endif // PRODUCT 2672 2673 2674 void JavaThread::deoptimized_wrt_marked_nmethods() { 2675 if (!has_last_Java_frame()) return; 2676 // BiasedLocking needs an updated RegisterMap for the revoke monitors pass 2677 StackFrameStream fst(this, UseBiasedLocking); 2678 for(; !fst.is_done(); fst.next()) { 2679 if (fst.current()->should_be_deoptimized()) { 2680 if (LogCompilation && xtty != NULL) { 2681 nmethod* nm = fst.current()->cb()->as_nmethod_or_null(); 2682 xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'", 2683 this->name(), nm != NULL ? nm->compile_id() : -1); 2684 } 2685 2686 Deoptimization::deoptimize(this, *fst.current(), fst.register_map()); 2687 } 2688 } 2689 } 2690 2691 2692 // GC support 2693 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); } 2694 2695 void JavaThread::gc_epilogue() { 2696 frames_do(frame_gc_epilogue); 2697 } 2698 2699 2700 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); } 2701 2702 void JavaThread::gc_prologue() { 2703 frames_do(frame_gc_prologue); 2704 } 2705 2706 // If the caller is a NamedThread, then remember, in the current scope, 2707 // the given JavaThread in its _processed_thread field. 2708 class RememberProcessedThread: public StackObj { 2709 NamedThread* _cur_thr; 2710 public: 2711 RememberProcessedThread(JavaThread* jthr) { 2712 Thread* thread = Thread::current(); 2713 if (thread->is_Named_thread()) { 2714 _cur_thr = (NamedThread *)thread; 2715 _cur_thr->set_processed_thread(jthr); 2716 } else { 2717 _cur_thr = NULL; 2718 } 2719 } 2720 2721 ~RememberProcessedThread() { 2722 if (_cur_thr) { 2723 _cur_thr->set_processed_thread(NULL); 2724 } 2725 } 2726 }; 2727 2728 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) { 2729 // Verify that the deferred card marks have been flushed. 2730 assert(deferred_card_mark().is_empty(), "Should be empty during GC"); 2731 2732 // The ThreadProfiler oops_do is done from FlatProfiler::oops_do 2733 // since there may be more than one thread using each ThreadProfiler. 2734 2735 // Traverse the GCHandles 2736 Thread::oops_do(f, cld_f, cf); 2737 2738 assert( (!has_last_Java_frame() && java_call_counter() == 0) || 2739 (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!"); 2740 2741 if (has_last_Java_frame()) { 2742 // Record JavaThread to GC thread 2743 RememberProcessedThread rpt(this); 2744 2745 // Traverse the privileged stack 2746 if (_privileged_stack_top != NULL) { 2747 _privileged_stack_top->oops_do(f); 2748 } 2749 2750 // traverse the registered growable array 2751 if (_array_for_gc != NULL) { 2752 for (int index = 0; index < _array_for_gc->length(); index++) { 2753 f->do_oop(_array_for_gc->adr_at(index)); 2754 } 2755 } 2756 2757 // Traverse the monitor chunks 2758 for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) { 2759 chunk->oops_do(f); 2760 } 2761 2762 // Traverse the execution stack 2763 for(StackFrameStream fst(this); !fst.is_done(); fst.next()) { 2764 fst.current()->oops_do(f, cld_f, cf, fst.register_map()); 2765 } 2766 } 2767 2768 // callee_target is never live across a gc point so NULL it here should 2769 // it still contain a methdOop. 2770 2771 set_callee_target(NULL); 2772 2773 assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!"); 2774 // If we have deferred set_locals there might be oops waiting to be 2775 // written 2776 GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals(); 2777 if (list != NULL) { 2778 for (int i = 0; i < list->length(); i++) { 2779 list->at(i)->oops_do(f); 2780 } 2781 } 2782 2783 // Traverse instance variables at the end since the GC may be moving things 2784 // around using this function 2785 f->do_oop((oop*) &_threadObj); 2786 f->do_oop((oop*) &_vm_result); 2787 f->do_oop((oop*) &_exception_oop); 2788 f->do_oop((oop*) &_pending_async_exception); 2789 2790 if (jvmti_thread_state() != NULL) { 2791 jvmti_thread_state()->oops_do(f); 2792 } 2793 } 2794 2795 void JavaThread::nmethods_do(CodeBlobClosure* cf) { 2796 Thread::nmethods_do(cf); // (super method is a no-op) 2797 2798 assert( (!has_last_Java_frame() && java_call_counter() == 0) || 2799 (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!"); 2800 2801 if (has_last_Java_frame()) { 2802 // Traverse the execution stack 2803 for(StackFrameStream fst(this); !fst.is_done(); fst.next()) { 2804 fst.current()->nmethods_do(cf); 2805 } 2806 } 2807 } 2808 2809 void JavaThread::metadata_do(void f(Metadata*)) { 2810 Thread::metadata_do(f); 2811 if (has_last_Java_frame()) { 2812 // Traverse the execution stack to call f() on the methods in the stack 2813 for(StackFrameStream fst(this); !fst.is_done(); fst.next()) { 2814 fst.current()->metadata_do(f); 2815 } 2816 } else if (is_Compiler_thread()) { 2817 // need to walk ciMetadata in current compile tasks to keep alive. 2818 CompilerThread* ct = (CompilerThread*)this; 2819 if (ct->env() != NULL) { 2820 ct->env()->metadata_do(f); 2821 } 2822 } 2823 } 2824 2825 // Printing 2826 const char* _get_thread_state_name(JavaThreadState _thread_state) { 2827 switch (_thread_state) { 2828 case _thread_uninitialized: return "_thread_uninitialized"; 2829 case _thread_new: return "_thread_new"; 2830 case _thread_new_trans: return "_thread_new_trans"; 2831 case _thread_in_native: return "_thread_in_native"; 2832 case _thread_in_native_trans: return "_thread_in_native_trans"; 2833 case _thread_in_vm: return "_thread_in_vm"; 2834 case _thread_in_vm_trans: return "_thread_in_vm_trans"; 2835 case _thread_in_Java: return "_thread_in_Java"; 2836 case _thread_in_Java_trans: return "_thread_in_Java_trans"; 2837 case _thread_blocked: return "_thread_blocked"; 2838 case _thread_blocked_trans: return "_thread_blocked_trans"; 2839 default: return "unknown thread state"; 2840 } 2841 } 2842 2843 #ifndef PRODUCT 2844 void JavaThread::print_thread_state_on(outputStream *st) const { 2845 st->print_cr(" JavaThread state: %s", _get_thread_state_name(_thread_state)); 2846 }; 2847 void JavaThread::print_thread_state() const { 2848 print_thread_state_on(tty); 2849 }; 2850 #endif // PRODUCT 2851 2852 // Called by Threads::print() for VM_PrintThreads operation 2853 void JavaThread::print_on(outputStream *st) const { 2854 st->print("\"%s\" ", get_thread_name()); 2855 oop thread_oop = threadObj(); 2856 if (thread_oop != NULL) { 2857 st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop)); 2858 if (java_lang_Thread::is_daemon(thread_oop)) st->print("daemon "); 2859 st->print("prio=%d ", java_lang_Thread::priority(thread_oop)); 2860 } 2861 Thread::print_on(st); 2862 // print guess for valid stack memory region (assume 4K pages); helps lock debugging 2863 st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12)); 2864 if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) { 2865 st->print_cr(" java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop)); 2866 } 2867 #ifndef PRODUCT 2868 print_thread_state_on(st); 2869 _safepoint_state->print_on(st); 2870 #endif // PRODUCT 2871 } 2872 2873 // Called by fatal error handler. The difference between this and 2874 // JavaThread::print() is that we can't grab lock or allocate memory. 2875 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const { 2876 st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen)); 2877 oop thread_obj = threadObj(); 2878 if (thread_obj != NULL) { 2879 if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon"); 2880 } 2881 st->print(" ["); 2882 st->print("%s", _get_thread_state_name(_thread_state)); 2883 if (osthread()) { 2884 st->print(", id=%d", osthread()->thread_id()); 2885 } 2886 st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")", 2887 _stack_base - _stack_size, _stack_base); 2888 st->print("]"); 2889 return; 2890 } 2891 2892 // Verification 2893 2894 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); } 2895 2896 void JavaThread::verify() { 2897 // Verify oops in the thread. 2898 oops_do(&VerifyOopClosure::verify_oop, NULL, NULL); 2899 2900 // Verify the stack frames. 2901 frames_do(frame_verify); 2902 } 2903 2904 // CR 6300358 (sub-CR 2137150) 2905 // Most callers of this method assume that it can't return NULL but a 2906 // thread may not have a name whilst it is in the process of attaching to 2907 // the VM - see CR 6412693, and there are places where a JavaThread can be 2908 // seen prior to having it's threadObj set (eg JNI attaching threads and 2909 // if vm exit occurs during initialization). These cases can all be accounted 2910 // for such that this method never returns NULL. 2911 const char* JavaThread::get_thread_name() const { 2912 #ifdef ASSERT 2913 // early safepoints can hit while current thread does not yet have TLS 2914 if (!SafepointSynchronize::is_at_safepoint()) { 2915 Thread *cur = Thread::current(); 2916 if (!(cur->is_Java_thread() && cur == this)) { 2917 // Current JavaThreads are allowed to get their own name without 2918 // the Threads_lock. 2919 assert_locked_or_safepoint(Threads_lock); 2920 } 2921 } 2922 #endif // ASSERT 2923 return get_thread_name_string(); 2924 } 2925 2926 // Returns a non-NULL representation of this thread's name, or a suitable 2927 // descriptive string if there is no set name 2928 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const { 2929 const char* name_str; 2930 oop thread_obj = threadObj(); 2931 if (thread_obj != NULL) { 2932 oop name = java_lang_Thread::name(thread_obj); 2933 if (name != NULL) { 2934 if (buf == NULL) { 2935 name_str = java_lang_String::as_utf8_string(name); 2936 } 2937 else { 2938 name_str = java_lang_String::as_utf8_string(name, buf, buflen); 2939 } 2940 } 2941 else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306 2942 name_str = "<no-name - thread is attaching>"; 2943 } 2944 else { 2945 name_str = Thread::name(); 2946 } 2947 } 2948 else { 2949 name_str = Thread::name(); 2950 } 2951 assert(name_str != NULL, "unexpected NULL thread name"); 2952 return name_str; 2953 } 2954 2955 2956 const char* JavaThread::get_threadgroup_name() const { 2957 debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);) 2958 oop thread_obj = threadObj(); 2959 if (thread_obj != NULL) { 2960 oop thread_group = java_lang_Thread::threadGroup(thread_obj); 2961 if (thread_group != NULL) { 2962 typeArrayOop name = java_lang_ThreadGroup::name(thread_group); 2963 // ThreadGroup.name can be null 2964 if (name != NULL) { 2965 const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length()); 2966 return str; 2967 } 2968 } 2969 } 2970 return NULL; 2971 } 2972 2973 const char* JavaThread::get_parent_name() const { 2974 debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);) 2975 oop thread_obj = threadObj(); 2976 if (thread_obj != NULL) { 2977 oop thread_group = java_lang_Thread::threadGroup(thread_obj); 2978 if (thread_group != NULL) { 2979 oop parent = java_lang_ThreadGroup::parent(thread_group); 2980 if (parent != NULL) { 2981 typeArrayOop name = java_lang_ThreadGroup::name(parent); 2982 // ThreadGroup.name can be null 2983 if (name != NULL) { 2984 const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length()); 2985 return str; 2986 } 2987 } 2988 } 2989 } 2990 return NULL; 2991 } 2992 2993 ThreadPriority JavaThread::java_priority() const { 2994 oop thr_oop = threadObj(); 2995 if (thr_oop == NULL) return NormPriority; // Bootstrapping 2996 ThreadPriority priority = java_lang_Thread::priority(thr_oop); 2997 assert(MinPriority <= priority && priority <= MaxPriority, "sanity check"); 2998 return priority; 2999 } 3000 3001 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) { 3002 3003 assert(Threads_lock->owner() == Thread::current(), "must have threads lock"); 3004 // Link Java Thread object <-> C++ Thread 3005 3006 // Get the C++ thread object (an oop) from the JNI handle (a jthread) 3007 // and put it into a new Handle. The Handle "thread_oop" can then 3008 // be used to pass the C++ thread object to other methods. 3009 3010 // Set the Java level thread object (jthread) field of the 3011 // new thread (a JavaThread *) to C++ thread object using the 3012 // "thread_oop" handle. 3013 3014 // Set the thread field (a JavaThread *) of the 3015 // oop representing the java_lang_Thread to the new thread (a JavaThread *). 3016 3017 Handle thread_oop(Thread::current(), 3018 JNIHandles::resolve_non_null(jni_thread)); 3019 assert(InstanceKlass::cast(thread_oop->klass())->is_linked(), 3020 "must be initialized"); 3021 set_threadObj(thread_oop()); 3022 java_lang_Thread::set_thread(thread_oop(), this); 3023 3024 if (prio == NoPriority) { 3025 prio = java_lang_Thread::priority(thread_oop()); 3026 assert(prio != NoPriority, "A valid priority should be present"); 3027 } 3028 3029 // Push the Java priority down to the native thread; needs Threads_lock 3030 Thread::set_priority(this, prio); 3031 3032 prepare_ext(); 3033 3034 // Add the new thread to the Threads list and set it in motion. 3035 // We must have threads lock in order to call Threads::add. 3036 // It is crucial that we do not block before the thread is 3037 // added to the Threads list for if a GC happens, then the java_thread oop 3038 // will not be visited by GC. 3039 Threads::add(this); 3040 } 3041 3042 oop JavaThread::current_park_blocker() { 3043 // Support for JSR-166 locks 3044 oop thread_oop = threadObj(); 3045 if (thread_oop != NULL && 3046 JDK_Version::current().supports_thread_park_blocker()) { 3047 return java_lang_Thread::park_blocker(thread_oop); 3048 } 3049 return NULL; 3050 } 3051 3052 3053 void JavaThread::print_stack_on(outputStream* st) { 3054 if (!has_last_Java_frame()) return; 3055 ResourceMark rm; 3056 HandleMark hm; 3057 3058 RegisterMap reg_map(this); 3059 vframe* start_vf = last_java_vframe(®_map); 3060 int count = 0; 3061 for (vframe* f = start_vf; f; f = f->sender() ) { 3062 if (f->is_java_frame()) { 3063 javaVFrame* jvf = javaVFrame::cast(f); 3064 java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci()); 3065 3066 // Print out lock information 3067 if (JavaMonitorsInStackTrace) { 3068 jvf->print_lock_info_on(st, count); 3069 } 3070 } else { 3071 // Ignore non-Java frames 3072 } 3073 3074 // Bail-out case for too deep stacks 3075 count++; 3076 if (MaxJavaStackTraceDepth == count) return; 3077 } 3078 } 3079 3080 3081 // JVMTI PopFrame support 3082 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) { 3083 assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments"); 3084 if (in_bytes(size_in_bytes) != 0) { 3085 _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread); 3086 _popframe_preserved_args_size = in_bytes(size_in_bytes); 3087 Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size); 3088 } 3089 } 3090 3091 void* JavaThread::popframe_preserved_args() { 3092 return _popframe_preserved_args; 3093 } 3094 3095 ByteSize JavaThread::popframe_preserved_args_size() { 3096 return in_ByteSize(_popframe_preserved_args_size); 3097 } 3098 3099 WordSize JavaThread::popframe_preserved_args_size_in_words() { 3100 int sz = in_bytes(popframe_preserved_args_size()); 3101 assert(sz % wordSize == 0, "argument size must be multiple of wordSize"); 3102 return in_WordSize(sz / wordSize); 3103 } 3104 3105 void JavaThread::popframe_free_preserved_args() { 3106 assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice"); 3107 FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread); 3108 _popframe_preserved_args = NULL; 3109 _popframe_preserved_args_size = 0; 3110 } 3111 3112 #ifndef PRODUCT 3113 3114 void JavaThread::trace_frames() { 3115 tty->print_cr("[Describe stack]"); 3116 int frame_no = 1; 3117 for(StackFrameStream fst(this); !fst.is_done(); fst.next()) { 3118 tty->print(" %d. ", frame_no++); 3119 fst.current()->print_value_on(tty,this); 3120 tty->cr(); 3121 } 3122 } 3123 3124 class PrintAndVerifyOopClosure: public OopClosure { 3125 protected: 3126 template <class T> inline void do_oop_work(T* p) { 3127 oop obj = oopDesc::load_decode_heap_oop(p); 3128 if (obj == NULL) return; 3129 tty->print(INTPTR_FORMAT ": ", p); 3130 if (obj->is_oop_or_null()) { 3131 if (obj->is_objArray()) { 3132 tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj); 3133 } else { 3134 obj->print(); 3135 } 3136 } else { 3137 tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj); 3138 } 3139 tty->cr(); 3140 } 3141 public: 3142 virtual void do_oop(oop* p) { do_oop_work(p); } 3143 virtual void do_oop(narrowOop* p) { do_oop_work(p); } 3144 }; 3145 3146 3147 static void oops_print(frame* f, const RegisterMap *map) { 3148 PrintAndVerifyOopClosure print; 3149 f->print_value(); 3150 f->oops_do(&print, NULL, NULL, (RegisterMap*)map); 3151 } 3152 3153 // Print our all the locations that contain oops and whether they are 3154 // valid or not. This useful when trying to find the oldest frame 3155 // where an oop has gone bad since the frame walk is from youngest to 3156 // oldest. 3157 void JavaThread::trace_oops() { 3158 tty->print_cr("[Trace oops]"); 3159 frames_do(oops_print); 3160 } 3161 3162 3163 #ifdef ASSERT 3164 // Print or validate the layout of stack frames 3165 void JavaThread::print_frame_layout(int depth, bool validate_only) { 3166 ResourceMark rm; 3167 PRESERVE_EXCEPTION_MARK; 3168 FrameValues values; 3169 int frame_no = 0; 3170 for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) { 3171 fst.current()->describe(values, ++frame_no); 3172 if (depth == frame_no) break; 3173 } 3174 if (validate_only) { 3175 values.validate(); 3176 } else { 3177 tty->print_cr("[Describe stack layout]"); 3178 values.print(this); 3179 } 3180 } 3181 #endif 3182 3183 void JavaThread::trace_stack_from(vframe* start_vf) { 3184 ResourceMark rm; 3185 int vframe_no = 1; 3186 for (vframe* f = start_vf; f; f = f->sender() ) { 3187 if (f->is_java_frame()) { 3188 javaVFrame::cast(f)->print_activation(vframe_no++); 3189 } else { 3190 f->print(); 3191 } 3192 if (vframe_no > StackPrintLimit) { 3193 tty->print_cr("...<more frames>..."); 3194 return; 3195 } 3196 } 3197 } 3198 3199 3200 void JavaThread::trace_stack() { 3201 if (!has_last_Java_frame()) return; 3202 ResourceMark rm; 3203 HandleMark hm; 3204 RegisterMap reg_map(this); 3205 trace_stack_from(last_java_vframe(®_map)); 3206 } 3207 3208 3209 #endif // PRODUCT 3210 3211 3212 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) { 3213 assert(reg_map != NULL, "a map must be given"); 3214 frame f = last_frame(); 3215 for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) { 3216 if (vf->is_java_frame()) return javaVFrame::cast(vf); 3217 } 3218 return NULL; 3219 } 3220 3221 3222 Klass* JavaThread::security_get_caller_class(int depth) { 3223 vframeStream vfst(this); 3224 vfst.security_get_caller_frame(depth); 3225 if (!vfst.at_end()) { 3226 return vfst.method()->method_holder(); 3227 } 3228 return NULL; 3229 } 3230 3231 static void compiler_thread_entry(JavaThread* thread, TRAPS) { 3232 assert(thread->is_Compiler_thread(), "must be compiler thread"); 3233 CompileBroker::compiler_thread_loop(); 3234 } 3235 3236 // Create a CompilerThread 3237 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters) 3238 : JavaThread(&compiler_thread_entry) { 3239 _env = NULL; 3240 _log = NULL; 3241 _task = NULL; 3242 _queue = queue; 3243 _counters = counters; 3244 _buffer_blob = NULL; 3245 _scanned_nmethod = NULL; 3246 _compiler = NULL; 3247 3248 // Compiler uses resource area for compilation, let's bias it to mtCompiler 3249 resource_area()->bias_to(mtCompiler); 3250 3251 #ifndef PRODUCT 3252 _ideal_graph_printer = NULL; 3253 #endif 3254 } 3255 3256 void CompilerThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) { 3257 JavaThread::oops_do(f, cld_f, cf); 3258 if (_scanned_nmethod != NULL && cf != NULL) { 3259 // Safepoints can occur when the sweeper is scanning an nmethod so 3260 // process it here to make sure it isn't unloaded in the middle of 3261 // a scan. 3262 cf->do_code_blob(_scanned_nmethod); 3263 } 3264 } 3265 3266 3267 // ======= Threads ======== 3268 3269 // The Threads class links together all active threads, and provides 3270 // operations over all threads. It is protected by its own Mutex 3271 // lock, which is also used in other contexts to protect thread 3272 // operations from having the thread being operated on from exiting 3273 // and going away unexpectedly (e.g., safepoint synchronization) 3274 3275 JavaThread* Threads::_thread_list = NULL; 3276 int Threads::_number_of_threads = 0; 3277 int Threads::_number_of_non_daemon_threads = 0; 3278 int Threads::_return_code = 0; 3279 size_t JavaThread::_stack_size_at_create = 0; 3280 #ifdef ASSERT 3281 bool Threads::_vm_complete = false; 3282 #endif 3283 3284 // All JavaThreads 3285 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next()) 3286 3287 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system) 3288 void Threads::threads_do(ThreadClosure* tc) { 3289 assert_locked_or_safepoint(Threads_lock); 3290 // ALL_JAVA_THREADS iterates through all JavaThreads 3291 ALL_JAVA_THREADS(p) { 3292 tc->do_thread(p); 3293 } 3294 // Someday we could have a table or list of all non-JavaThreads. 3295 // For now, just manually iterate through them. 3296 tc->do_thread(VMThread::vm_thread()); 3297 Universe::heap()->gc_threads_do(tc); 3298 WatcherThread *wt = WatcherThread::watcher_thread(); 3299 // Strictly speaking, the following NULL check isn't sufficient to make sure 3300 // the data for WatcherThread is still valid upon being examined. However, 3301 // considering that WatchThread terminates when the VM is on the way to 3302 // exit at safepoint, the chance of the above is extremely small. The right 3303 // way to prevent termination of WatcherThread would be to acquire 3304 // Terminator_lock, but we can't do that without violating the lock rank 3305 // checking in some cases. 3306 if (wt != NULL) 3307 tc->do_thread(wt); 3308 3309 #if INCLUDE_JFR 3310 Thread* sampler_thread = Jfr::sampler_thread(); 3311 if (sampler_thread != NULL) { 3312 tc->do_thread(sampler_thread); 3313 } 3314 3315 #endif 3316 3317 // If CompilerThreads ever become non-JavaThreads, add them here 3318 } 3319 3320 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) { 3321 3322 extern void JDK_Version_init(); 3323 3324 // Preinitialize version info. 3325 VM_Version::early_initialize(); 3326 3327 // Check version 3328 if (!is_supported_jni_version(args->version)) return JNI_EVERSION; 3329 3330 // Initialize the output stream module 3331 ostream_init(); 3332 3333 // Process java launcher properties. 3334 Arguments::process_sun_java_launcher_properties(args); 3335 3336 // Initialize the os module before using TLS 3337 os::init(); 3338 3339 // Initialize system properties. 3340 Arguments::init_system_properties(); 3341 3342 // So that JDK version can be used as a discrimintor when parsing arguments 3343 JDK_Version_init(); 3344 3345 // Update/Initialize System properties after JDK version number is known 3346 Arguments::init_version_specific_system_properties(); 3347 3348 // Parse arguments 3349 // Note: this internally calls os::init_container_support() 3350 jint parse_result = Arguments::parse(args); 3351 if (parse_result != JNI_OK) return parse_result; 3352 3353 os::init_before_ergo(); 3354 3355 jint ergo_result = Arguments::apply_ergo(); 3356 if (ergo_result != JNI_OK) return ergo_result; 3357 3358 if (PauseAtStartup) { 3359 os::pause(); 3360 } 3361 3362 #ifndef USDT2 3363 HS_DTRACE_PROBE(hotspot, vm__init__begin); 3364 #else /* USDT2 */ 3365 HOTSPOT_VM_INIT_BEGIN(); 3366 #endif /* USDT2 */ 3367 3368 // Record VM creation timing statistics 3369 TraceVmCreationTime create_vm_timer; 3370 create_vm_timer.start(); 3371 3372 // Timing (must come after argument parsing) 3373 TraceTime timer("Create VM", TraceStartupTime); 3374 3375 // Initialize the os module after parsing the args 3376 jint os_init_2_result = os::init_2(); 3377 if (os_init_2_result != JNI_OK) return os_init_2_result; 3378 3379 jint adjust_after_os_result = Arguments::adjust_after_os(); 3380 if (adjust_after_os_result != JNI_OK) return adjust_after_os_result; 3381 3382 // intialize TLS 3383 ThreadLocalStorage::init(); 3384 3385 // Initialize output stream logging 3386 ostream_init_log(); 3387 3388 // Convert -Xrun to -agentlib: if there is no JVM_OnLoad 3389 // Must be before create_vm_init_agents() 3390 if (Arguments::init_libraries_at_startup()) { 3391 convert_vm_init_libraries_to_agents(); 3392 } 3393 3394 // Launch -agentlib/-agentpath and converted -Xrun agents 3395 if (Arguments::init_agents_at_startup()) { 3396 create_vm_init_agents(); 3397 } 3398 3399 // Initialize Threads state 3400 _thread_list = NULL; 3401 _number_of_threads = 0; 3402 _number_of_non_daemon_threads = 0; 3403 3404 // Initialize global data structures and create system classes in heap 3405 vm_init_globals(); 3406 3407 // Attach the main thread to this os thread 3408 JavaThread* main_thread = new JavaThread(); 3409 main_thread->set_thread_state(_thread_in_vm); 3410 // must do this before set_active_handles and initialize_thread_local_storage 3411 // Note: on solaris initialize_thread_local_storage() will (indirectly) 3412 // change the stack size recorded here to one based on the java thread 3413 // stacksize. This adjusted size is what is used to figure the placement 3414 // of the guard pages. 3415 main_thread->record_stack_base_and_size(); 3416 main_thread->initialize_thread_local_storage(); 3417 3418 main_thread->set_active_handles(JNIHandleBlock::allocate_block()); 3419 3420 if (!main_thread->set_as_starting_thread()) { 3421 vm_shutdown_during_initialization( 3422 "Failed necessary internal allocation. Out of swap space"); 3423 delete main_thread; 3424 *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again 3425 return JNI_ENOMEM; 3426 } 3427 3428 // Enable guard page *after* os::create_main_thread(), otherwise it would 3429 // crash Linux VM, see notes in os_linux.cpp. 3430 main_thread->create_stack_guard_pages(); 3431 3432 // Initialize Java-Level synchronization subsystem 3433 ObjectMonitor::Initialize() ; 3434 3435 // Initialize global modules 3436 jint status = init_globals(); 3437 if (status != JNI_OK) { 3438 delete main_thread; 3439 *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again 3440 return status; 3441 } 3442 3443 JFR_ONLY(Jfr::on_vm_init();) 3444 3445 // Should be done after the heap is fully created 3446 main_thread->cache_global_variables(); 3447 3448 HandleMark hm; 3449 3450 { MutexLocker mu(Threads_lock); 3451 Threads::add(main_thread); 3452 } 3453 3454 // Any JVMTI raw monitors entered in onload will transition into 3455 // real raw monitor. VM is setup enough here for raw monitor enter. 3456 JvmtiExport::transition_pending_onload_raw_monitors(); 3457 3458 // Create the VMThread 3459 { TraceTime timer("Start VMThread", TraceStartupTime); 3460 VMThread::create(); 3461 Thread* vmthread = VMThread::vm_thread(); 3462 3463 if (!os::create_thread(vmthread, os::vm_thread)) 3464 vm_exit_during_initialization("Cannot create VM thread. Out of system resources."); 3465 3466 // Wait for the VM thread to become ready, and VMThread::run to initialize 3467 // Monitors can have spurious returns, must always check another state flag 3468 { 3469 MutexLocker ml(Notify_lock); 3470 os::start_thread(vmthread); 3471 while (vmthread->active_handles() == NULL) { 3472 Notify_lock->wait(); 3473 } 3474 } 3475 } 3476 3477 assert (Universe::is_fully_initialized(), "not initialized"); 3478 if (VerifyDuringStartup) { 3479 // Make sure we're starting with a clean slate. 3480 VM_Verify verify_op; 3481 VMThread::execute(&verify_op); 3482 } 3483 3484 EXCEPTION_MARK; 3485 3486 // At this point, the Universe is initialized, but we have not executed 3487 // any byte code. Now is a good time (the only time) to dump out the 3488 // internal state of the JVM for sharing. 3489 if (DumpSharedSpaces) { 3490 MetaspaceShared::preload_and_dump(CHECK_0); 3491 ShouldNotReachHere(); 3492 } 3493 3494 // Always call even when there are not JVMTI environments yet, since environments 3495 // may be attached late and JVMTI must track phases of VM execution 3496 JvmtiExport::enter_start_phase(); 3497 3498 // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents. 3499 JvmtiExport::post_vm_start(); 3500 3501 { 3502 TraceTime timer("Initialize java.lang classes", TraceStartupTime); 3503 3504 if (EagerXrunInit && Arguments::init_libraries_at_startup()) { 3505 create_vm_init_libraries(); 3506 } 3507 3508 initialize_class(vmSymbols::java_lang_String(), CHECK_0); 3509 3510 // Initialize java_lang.System (needed before creating the thread) 3511 initialize_class(vmSymbols::java_lang_System(), CHECK_0); 3512 initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0); 3513 Handle thread_group = create_initial_thread_group(CHECK_0); 3514 Universe::set_main_thread_group(thread_group()); 3515 initialize_class(vmSymbols::java_lang_Thread(), CHECK_0); 3516 oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0); 3517 main_thread->set_threadObj(thread_object); 3518 // Set thread status to running since main thread has 3519 // been started and running. 3520 java_lang_Thread::set_thread_status(thread_object, 3521 java_lang_Thread::RUNNABLE); 3522 3523 // The VM creates & returns objects of this class. Make sure it's initialized. 3524 initialize_class(vmSymbols::java_lang_Class(), CHECK_0); 3525 3526 // The VM preresolves methods to these classes. Make sure that they get initialized 3527 initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0); 3528 initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK_0); 3529 call_initializeSystemClass(CHECK_0); 3530 3531 // get the Java runtime name after java.lang.System is initialized 3532 JDK_Version::set_runtime_name(get_java_runtime_name(THREAD)); 3533 JDK_Version::set_runtime_version(get_java_runtime_version(THREAD)); 3534 3535 // an instance of OutOfMemory exception has been allocated earlier 3536 initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0); 3537 initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0); 3538 initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0); 3539 initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0); 3540 initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0); 3541 initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0); 3542 initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0); 3543 initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0); 3544 } 3545 3546 // See : bugid 4211085. 3547 // Background : the static initializer of java.lang.Compiler tries to read 3548 // property"java.compiler" and read & write property "java.vm.info". 3549 // When a security manager is installed through the command line 3550 // option "-Djava.security.manager", the above properties are not 3551 // readable and the static initializer for java.lang.Compiler fails 3552 // resulting in a NoClassDefFoundError. This can happen in any 3553 // user code which calls methods in java.lang.Compiler. 3554 // Hack : the hack is to pre-load and initialize this class, so that only 3555 // system domains are on the stack when the properties are read. 3556 // Currently even the AWT code has calls to methods in java.lang.Compiler. 3557 // On the classic VM, java.lang.Compiler is loaded very early to load the JIT. 3558 // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and 3559 // read and write"java.vm.info" in the default policy file. See bugid 4211383 3560 // Once that is done, we should remove this hack. 3561 initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0); 3562 3563 // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to 3564 // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot 3565 // compiler does not get loaded through java.lang.Compiler). "java -version" with the 3566 // hotspot vm says "nojit" all the time which is confusing. So, we reset it here. 3567 // This should also be taken out as soon as 4211383 gets fixed. 3568 reset_vm_info_property(CHECK_0); 3569 3570 quicken_jni_functions(); 3571 3572 // Set flag that basic initialization has completed. Used by exceptions and various 3573 // debug stuff, that does not work until all basic classes have been initialized. 3574 set_init_completed(); 3575 3576 Metaspace::post_initialize(); 3577 3578 #ifndef USDT2 3579 HS_DTRACE_PROBE(hotspot, vm__init__end); 3580 #else /* USDT2 */ 3581 HOTSPOT_VM_INIT_END(); 3582 #endif /* USDT2 */ 3583 3584 // record VM initialization completion time 3585 #if INCLUDE_MANAGEMENT 3586 Management::record_vm_init_completed(); 3587 #endif // INCLUDE_MANAGEMENT 3588 3589 // Compute system loader. Note that this has to occur after set_init_completed, since 3590 // valid exceptions may be thrown in the process. 3591 // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and 3592 // set_init_completed has just been called, causing exceptions not to be shortcut 3593 // anymore. We call vm_exit_during_initialization directly instead. 3594 SystemDictionary::compute_java_system_loader(THREAD); 3595 if (HAS_PENDING_EXCEPTION) { 3596 vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION)); 3597 } 3598 3599 #if INCLUDE_ALL_GCS 3600 // Support for ConcurrentMarkSweep. This should be cleaned up 3601 // and better encapsulated. The ugly nested if test would go away 3602 // once things are properly refactored. XXX YSR 3603 if (UseConcMarkSweepGC || UseG1GC) { 3604 if (UseConcMarkSweepGC) { 3605 ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD); 3606 } else { 3607 ConcurrentMarkThread::makeSurrogateLockerThread(THREAD); 3608 } 3609 if (HAS_PENDING_EXCEPTION) { 3610 vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION)); 3611 } 3612 } 3613 #endif // INCLUDE_ALL_GCS 3614 3615 // Always call even when there are not JVMTI environments yet, since environments 3616 // may be attached late and JVMTI must track phases of VM execution 3617 JvmtiExport::enter_live_phase(); 3618 3619 // Signal Dispatcher needs to be started before VMInit event is posted 3620 os::signal_init(); 3621 3622 // Start Attach Listener if +StartAttachListener or it can't be started lazily 3623 if (!DisableAttachMechanism) { 3624 AttachListener::vm_start(); 3625 if (StartAttachListener || AttachListener::init_at_startup()) { 3626 AttachListener::init(); 3627 } 3628 } 3629 3630 // Launch -Xrun agents 3631 // Must be done in the JVMTI live phase so that for backward compatibility the JDWP 3632 // back-end can launch with -Xdebug -Xrunjdwp. 3633 if (!EagerXrunInit && Arguments::init_libraries_at_startup()) { 3634 create_vm_init_libraries(); 3635 } 3636 3637 // Notify JVMTI agents that VM initialization is complete - nop if no agents. 3638 JvmtiExport::post_vm_initialized(); 3639 3640 JFR_ONLY(Jfr::on_vm_start();) 3641 3642 if (CleanChunkPoolAsync) { 3643 Chunk::start_chunk_pool_cleaner_task(); 3644 } 3645 3646 // initialize compiler(s) 3647 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) 3648 CompileBroker::compilation_init(); 3649 #endif 3650 3651 if (EnableInvokeDynamic) { 3652 // Pre-initialize some JSR292 core classes to avoid deadlock during class loading. 3653 // It is done after compilers are initialized, because otherwise compilations of 3654 // signature polymorphic MH intrinsics can be missed 3655 // (see SystemDictionary::find_method_handle_intrinsic). 3656 initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK_0); 3657 initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK_0); 3658 initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK_0); 3659 } 3660 3661 #if INCLUDE_MANAGEMENT 3662 Management::initialize(THREAD); 3663 #endif // INCLUDE_MANAGEMENT 3664 3665 if (HAS_PENDING_EXCEPTION) { 3666 // management agent fails to start possibly due to 3667 // configuration problem and is responsible for printing 3668 // stack trace if appropriate. Simply exit VM. 3669 vm_exit(1); 3670 } 3671 3672 if (Arguments::has_profile()) FlatProfiler::engage(main_thread, true); 3673 if (MemProfiling) MemProfiler::engage(); 3674 StatSampler::engage(); 3675 if (CheckJNICalls) JniPeriodicChecker::engage(); 3676 3677 BiasedLocking::init(); 3678 3679 #if INCLUDE_RTM_OPT 3680 RTMLockingCounters::init(); 3681 #endif 3682 3683 if (JDK_Version::current().post_vm_init_hook_enabled()) { 3684 call_postVMInitHook(THREAD); 3685 // The Java side of PostVMInitHook.run must deal with all 3686 // exceptions and provide means of diagnosis. 3687 if (HAS_PENDING_EXCEPTION) { 3688 CLEAR_PENDING_EXCEPTION; 3689 } 3690 } 3691 3692 { 3693 MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag); 3694 // Make sure the watcher thread can be started by WatcherThread::start() 3695 // or by dynamic enrollment. 3696 WatcherThread::make_startable(); 3697 // Start up the WatcherThread if there are any periodic tasks 3698 // NOTE: All PeriodicTasks should be registered by now. If they 3699 // aren't, late joiners might appear to start slowly (we might 3700 // take a while to process their first tick). 3701 if (PeriodicTask::num_tasks() > 0) { 3702 WatcherThread::start(); 3703 } 3704 } 3705 3706 create_vm_timer.end(); 3707 #ifdef ASSERT 3708 _vm_complete = true; 3709 #endif 3710 return JNI_OK; 3711 } 3712 3713 // type for the Agent_OnLoad and JVM_OnLoad entry points 3714 extern "C" { 3715 typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *); 3716 } 3717 // Find a command line agent library and return its entry point for 3718 // -agentlib: -agentpath: -Xrun 3719 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array. 3720 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) { 3721 OnLoadEntry_t on_load_entry = NULL; 3722 void *library = NULL; 3723 3724 if (!agent->valid()) { 3725 char buffer[JVM_MAXPATHLEN]; 3726 char ebuf[1024]; 3727 const char *name = agent->name(); 3728 const char *msg = "Could not find agent library "; 3729 3730 // First check to see if agent is statically linked into executable 3731 if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) { 3732 library = agent->os_lib(); 3733 } else if (agent->is_absolute_path()) { 3734 library = os::dll_load(name, ebuf, sizeof ebuf); 3735 if (library == NULL) { 3736 const char *sub_msg = " in absolute path, with error: "; 3737 size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1; 3738 char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread); 3739 jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf); 3740 // If we can't find the agent, exit. 3741 vm_exit_during_initialization(buf, NULL); 3742 FREE_C_HEAP_ARRAY(char, buf, mtThread); 3743 } 3744 } else { 3745 // Try to load the agent from the standard dll directory 3746 if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), 3747 name)) { 3748 library = os::dll_load(buffer, ebuf, sizeof ebuf); 3749 } 3750 if (library == NULL) { // Try the local directory 3751 char ns[1] = {0}; 3752 if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) { 3753 library = os::dll_load(buffer, ebuf, sizeof ebuf); 3754 } 3755 if (library == NULL) { 3756 const char *sub_msg = " on the library path, with error: "; 3757 size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1; 3758 char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread); 3759 jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf); 3760 // If we can't find the agent, exit. 3761 vm_exit_during_initialization(buf, NULL); 3762 FREE_C_HEAP_ARRAY(char, buf, mtThread); 3763 } 3764 } 3765 } 3766 agent->set_os_lib(library); 3767 agent->set_valid(); 3768 } 3769 3770 // Find the OnLoad function. 3771 on_load_entry = 3772 CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent, 3773 false, 3774 on_load_symbols, 3775 num_symbol_entries)); 3776 return on_load_entry; 3777 } 3778 3779 // Find the JVM_OnLoad entry point 3780 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) { 3781 const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS; 3782 return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*)); 3783 } 3784 3785 // Find the Agent_OnLoad entry point 3786 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) { 3787 const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS; 3788 return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*)); 3789 } 3790 3791 // For backwards compatibility with -Xrun 3792 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be 3793 // treated like -agentpath: 3794 // Must be called before agent libraries are created 3795 void Threads::convert_vm_init_libraries_to_agents() { 3796 AgentLibrary* agent; 3797 AgentLibrary* next; 3798 3799 for (agent = Arguments::libraries(); agent != NULL; agent = next) { 3800 next = agent->next(); // cache the next agent now as this agent may get moved off this list 3801 OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent); 3802 3803 // If there is an JVM_OnLoad function it will get called later, 3804 // otherwise see if there is an Agent_OnLoad 3805 if (on_load_entry == NULL) { 3806 on_load_entry = lookup_agent_on_load(agent); 3807 if (on_load_entry != NULL) { 3808 // switch it to the agent list -- so that Agent_OnLoad will be called, 3809 // JVM_OnLoad won't be attempted and Agent_OnUnload will 3810 Arguments::convert_library_to_agent(agent); 3811 } else { 3812 vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name()); 3813 } 3814 } 3815 } 3816 } 3817 3818 // Create agents for -agentlib: -agentpath: and converted -Xrun 3819 // Invokes Agent_OnLoad 3820 // Called very early -- before JavaThreads exist 3821 void Threads::create_vm_init_agents() { 3822 extern struct JavaVM_ main_vm; 3823 AgentLibrary* agent; 3824 3825 JvmtiExport::enter_onload_phase(); 3826 3827 for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) { 3828 OnLoadEntry_t on_load_entry = lookup_agent_on_load(agent); 3829 3830 if (on_load_entry != NULL) { 3831 // Invoke the Agent_OnLoad function 3832 jint err = (*on_load_entry)(&main_vm, agent->options(), NULL); 3833 if (err != JNI_OK) { 3834 vm_exit_during_initialization("agent library failed to init", agent->name()); 3835 } 3836 } else { 3837 vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name()); 3838 } 3839 } 3840 JvmtiExport::enter_primordial_phase(); 3841 } 3842 3843 extern "C" { 3844 typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *); 3845 } 3846 3847 void Threads::shutdown_vm_agents() { 3848 // Send any Agent_OnUnload notifications 3849 const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS; 3850 size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols); 3851 extern struct JavaVM_ main_vm; 3852 for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) { 3853 3854 // Find the Agent_OnUnload function. 3855 Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t, 3856 os::find_agent_function(agent, 3857 false, 3858 on_unload_symbols, 3859 num_symbol_entries)); 3860 3861 // Invoke the Agent_OnUnload function 3862 if (unload_entry != NULL) { 3863 JavaThread* thread = JavaThread::current(); 3864 ThreadToNativeFromVM ttn(thread); 3865 HandleMark hm(thread); 3866 (*unload_entry)(&main_vm); 3867 } 3868 } 3869 } 3870 3871 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries 3872 // Invokes JVM_OnLoad 3873 void Threads::create_vm_init_libraries() { 3874 extern struct JavaVM_ main_vm; 3875 AgentLibrary* agent; 3876 3877 for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) { 3878 OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent); 3879 3880 if (on_load_entry != NULL) { 3881 // Invoke the JVM_OnLoad function 3882 JavaThread* thread = JavaThread::current(); 3883 ThreadToNativeFromVM ttn(thread); 3884 HandleMark hm(thread); 3885 jint err = (*on_load_entry)(&main_vm, agent->options(), NULL); 3886 if (err != JNI_OK) { 3887 vm_exit_during_initialization("-Xrun library failed to init", agent->name()); 3888 } 3889 } else { 3890 vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name()); 3891 } 3892 } 3893 } 3894 3895 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) { 3896 assert(Threads_lock->owned_by_self(), "Must hold Threads_lock"); 3897 3898 JavaThread* java_thread = NULL; 3899 // Sequential search for now. Need to do better optimization later. 3900 for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) { 3901 oop tobj = thread->threadObj(); 3902 if (!thread->is_exiting() && 3903 tobj != NULL && 3904 java_tid == java_lang_Thread::thread_id(tobj)) { 3905 java_thread = thread; 3906 break; 3907 } 3908 } 3909 return java_thread; 3910 } 3911 3912 3913 // Last thread running calls java.lang.Shutdown.shutdown() 3914 void JavaThread::invoke_shutdown_hooks() { 3915 HandleMark hm(this); 3916 3917 // We could get here with a pending exception, if so clear it now. 3918 if (this->has_pending_exception()) { 3919 this->clear_pending_exception(); 3920 } 3921 3922 EXCEPTION_MARK; 3923 Klass* k = 3924 SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(), 3925 THREAD); 3926 if (k != NULL) { 3927 // SystemDictionary::resolve_or_null will return null if there was 3928 // an exception. If we cannot load the Shutdown class, just don't 3929 // call Shutdown.shutdown() at all. This will mean the shutdown hooks 3930 // and finalizers (if runFinalizersOnExit is set) won't be run. 3931 // Note that if a shutdown hook was registered or runFinalizersOnExit 3932 // was called, the Shutdown class would have already been loaded 3933 // (Runtime.addShutdownHook and runFinalizersOnExit will load it). 3934 instanceKlassHandle shutdown_klass (THREAD, k); 3935 JavaValue result(T_VOID); 3936 JavaCalls::call_static(&result, 3937 shutdown_klass, 3938 vmSymbols::shutdown_method_name(), 3939 vmSymbols::void_method_signature(), 3940 THREAD); 3941 } 3942 CLEAR_PENDING_EXCEPTION; 3943 } 3944 3945 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when 3946 // the program falls off the end of main(). Another VM exit path is through 3947 // vm_exit() when the program calls System.exit() to return a value or when 3948 // there is a serious error in VM. The two shutdown paths are not exactly 3949 // the same, but they share Shutdown.shutdown() at Java level and before_exit() 3950 // and VM_Exit op at VM level. 3951 // 3952 // Shutdown sequence: 3953 // + Shutdown native memory tracking if it is on 3954 // + Wait until we are the last non-daemon thread to execute 3955 // <-- every thing is still working at this moment --> 3956 // + Call java.lang.Shutdown.shutdown(), which will invoke Java level 3957 // shutdown hooks, run finalizers if finalization-on-exit 3958 // + Call before_exit(), prepare for VM exit 3959 // > run VM level shutdown hooks (they are registered through JVM_OnExit(), 3960 // currently the only user of this mechanism is File.deleteOnExit()) 3961 // > stop flat profiler, StatSampler, watcher thread, CMS threads, 3962 // post thread end and vm death events to JVMTI, 3963 // stop signal thread 3964 // + Call JavaThread::exit(), it will: 3965 // > release JNI handle blocks, remove stack guard pages 3966 // > remove this thread from Threads list 3967 // <-- no more Java code from this thread after this point --> 3968 // + Stop VM thread, it will bring the remaining VM to a safepoint and stop 3969 // the compiler threads at safepoint 3970 // <-- do not use anything that could get blocked by Safepoint --> 3971 // + Disable tracing at JNI/JVM barriers 3972 // + Set _vm_exited flag for threads that are still running native code 3973 // + Delete this thread 3974 // + Call exit_globals() 3975 // > deletes tty 3976 // > deletes PerfMemory resources 3977 // + Return to caller 3978 3979 bool Threads::destroy_vm() { 3980 JavaThread* thread = JavaThread::current(); 3981 3982 #ifdef ASSERT 3983 _vm_complete = false; 3984 #endif 3985 // Wait until we are the last non-daemon thread to execute 3986 { MutexLocker nu(Threads_lock); 3987 while (Threads::number_of_non_daemon_threads() > 1 ) 3988 // This wait should make safepoint checks, wait without a timeout, 3989 // and wait as a suspend-equivalent condition. 3990 // 3991 // Note: If the FlatProfiler is running and this thread is waiting 3992 // for another non-daemon thread to finish, then the FlatProfiler 3993 // is waiting for the external suspend request on this thread to 3994 // complete. wait_for_ext_suspend_completion() will eventually 3995 // timeout, but that takes time. Making this wait a suspend- 3996 // equivalent condition solves that timeout problem. 3997 // 3998 Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0, 3999 Mutex::_as_suspend_equivalent_flag); 4000 } 4001 4002 EventShutdown e; 4003 if (e.should_commit()) { 4004 e.set_reason("No remaining non-daemon Java threads"); 4005 e.commit(); 4006 } 4007 4008 // Hang forever on exit if we are reporting an error. 4009 if (ShowMessageBoxOnError && is_error_reported()) { 4010 os::infinite_sleep(); 4011 } 4012 os::wait_for_keypress_at_exit(); 4013 4014 if (JDK_Version::is_jdk12x_version()) { 4015 // We are the last thread running, so check if finalizers should be run. 4016 // For 1.3 or later this is done in thread->invoke_shutdown_hooks() 4017 HandleMark rm(thread); 4018 Universe::run_finalizers_on_exit(); 4019 } else { 4020 // run Java level shutdown hooks 4021 thread->invoke_shutdown_hooks(); 4022 } 4023 4024 before_exit(thread); 4025 4026 thread->exit(true); 4027 4028 // Stop VM thread. 4029 { 4030 // 4945125 The vm thread comes to a safepoint during exit. 4031 // GC vm_operations can get caught at the safepoint, and the 4032 // heap is unparseable if they are caught. Grab the Heap_lock 4033 // to prevent this. The GC vm_operations will not be able to 4034 // queue until after the vm thread is dead. After this point, 4035 // we'll never emerge out of the safepoint before the VM exits. 4036 4037 MutexLocker ml(Heap_lock); 4038 4039 VMThread::wait_for_vm_thread_exit(); 4040 assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint"); 4041 VMThread::destroy(); 4042 } 4043 4044 // clean up ideal graph printers 4045 #if defined(COMPILER2) && !defined(PRODUCT) 4046 IdealGraphPrinter::clean_up(); 4047 #endif 4048 4049 // Now, all Java threads are gone except daemon threads. Daemon threads 4050 // running Java code or in VM are stopped by the Safepoint. However, 4051 // daemon threads executing native code are still running. But they 4052 // will be stopped at native=>Java/VM barriers. Note that we can't 4053 // simply kill or suspend them, as it is inherently deadlock-prone. 4054 4055 #ifndef PRODUCT 4056 // disable function tracing at JNI/JVM barriers 4057 TraceJNICalls = false; 4058 TraceJVMCalls = false; 4059 TraceRuntimeCalls = false; 4060 #endif 4061 4062 VM_Exit::set_vm_exited(); 4063 4064 notify_vm_shutdown(); 4065 4066 delete thread; 4067 4068 // exit_globals() will delete tty 4069 exit_globals(); 4070 4071 return true; 4072 } 4073 4074 4075 jboolean Threads::is_supported_jni_version_including_1_1(jint version) { 4076 if (version == JNI_VERSION_1_1) return JNI_TRUE; 4077 return is_supported_jni_version(version); 4078 } 4079 4080 4081 jboolean Threads::is_supported_jni_version(jint version) { 4082 if (version == JNI_VERSION_1_2) return JNI_TRUE; 4083 if (version == JNI_VERSION_1_4) return JNI_TRUE; 4084 if (version == JNI_VERSION_1_6) return JNI_TRUE; 4085 if (version == JNI_VERSION_1_8) return JNI_TRUE; 4086 return JNI_FALSE; 4087 } 4088 4089 4090 void Threads::add(JavaThread* p, bool force_daemon) { 4091 // The threads lock must be owned at this point 4092 assert_locked_or_safepoint(Threads_lock); 4093 4094 // See the comment for this method in thread.hpp for its purpose and 4095 // why it is called here. 4096 p->initialize_queues(); 4097 p->set_next(_thread_list); 4098 _thread_list = p; 4099 _number_of_threads++; 4100 oop threadObj = p->threadObj(); 4101 bool daemon = true; 4102 // Bootstrapping problem: threadObj can be null for initial 4103 // JavaThread (or for threads attached via JNI) 4104 if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) { 4105 _number_of_non_daemon_threads++; 4106 daemon = false; 4107 } 4108 4109 ThreadService::add_thread(p, daemon); 4110 4111 // Possible GC point. 4112 Events::log(p, "Thread added: " INTPTR_FORMAT, p); 4113 } 4114 4115 void Threads::remove(JavaThread* p) { 4116 // Extra scope needed for Thread_lock, so we can check 4117 // that we do not remove thread without safepoint code notice 4118 { MutexLocker ml(Threads_lock); 4119 4120 assert(includes(p), "p must be present"); 4121 4122 JavaThread* current = _thread_list; 4123 JavaThread* prev = NULL; 4124 4125 while (current != p) { 4126 prev = current; 4127 current = current->next(); 4128 } 4129 4130 if (prev) { 4131 prev->set_next(current->next()); 4132 } else { 4133 _thread_list = p->next(); 4134 } 4135 _number_of_threads--; 4136 oop threadObj = p->threadObj(); 4137 bool daemon = true; 4138 if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) { 4139 _number_of_non_daemon_threads--; 4140 daemon = false; 4141 4142 // Only one thread left, do a notify on the Threads_lock so a thread waiting 4143 // on destroy_vm will wake up. 4144 if (number_of_non_daemon_threads() == 1) 4145 Threads_lock->notify_all(); 4146 } 4147 ThreadService::remove_thread(p, daemon); 4148 4149 // Make sure that safepoint code disregard this thread. This is needed since 4150 // the thread might mess around with locks after this point. This can cause it 4151 // to do callbacks into the safepoint code. However, the safepoint code is not aware 4152 // of this thread since it is removed from the queue. 4153 p->set_terminated_value(); 4154 } // unlock Threads_lock 4155 4156 // Since Events::log uses a lock, we grab it outside the Threads_lock 4157 Events::log(p, "Thread exited: " INTPTR_FORMAT, p); 4158 } 4159 4160 // Threads_lock must be held when this is called (or must be called during a safepoint) 4161 bool Threads::includes(JavaThread* p) { 4162 assert(Threads_lock->is_locked(), "sanity check"); 4163 ALL_JAVA_THREADS(q) { 4164 if (q == p ) { 4165 return true; 4166 } 4167 } 4168 return false; 4169 } 4170 4171 // Operations on the Threads list for GC. These are not explicitly locked, 4172 // but the garbage collector must provide a safe context for them to run. 4173 // In particular, these things should never be called when the Threads_lock 4174 // is held by some other thread. (Note: the Safepoint abstraction also 4175 // uses the Threads_lock to gurantee this property. It also makes sure that 4176 // all threads gets blocked when exiting or starting). 4177 4178 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) { 4179 ALL_JAVA_THREADS(p) { 4180 p->oops_do(f, cld_f, cf); 4181 } 4182 VMThread::vm_thread()->oops_do(f, cld_f, cf); 4183 } 4184 4185 void Threads::possibly_parallel_oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) { 4186 // Introduce a mechanism allowing parallel threads to claim threads as 4187 // root groups. Overhead should be small enough to use all the time, 4188 // even in sequential code. 4189 SharedHeap* sh = SharedHeap::heap(); 4190 // Cannot yet substitute active_workers for n_par_threads 4191 // because of G1CollectedHeap::verify() use of 4192 // SharedHeap::process_roots(). n_par_threads == 0 will 4193 // turn off parallelism in process_roots while active_workers 4194 // is being used for parallelism elsewhere. 4195 bool is_par = sh->n_par_threads() > 0; 4196 assert(!is_par || 4197 (SharedHeap::heap()->n_par_threads() == 4198 SharedHeap::heap()->workers()->active_workers()), "Mismatch"); 4199 int cp = SharedHeap::heap()->strong_roots_parity(); 4200 ALL_JAVA_THREADS(p) { 4201 if (p->claim_oops_do(is_par, cp)) { 4202 p->oops_do(f, cld_f, cf); 4203 } 4204 } 4205 VMThread* vmt = VMThread::vm_thread(); 4206 if (vmt->claim_oops_do(is_par, cp)) { 4207 vmt->oops_do(f, cld_f, cf); 4208 } 4209 } 4210 4211 #if INCLUDE_ALL_GCS 4212 // Used by ParallelScavenge 4213 void Threads::create_thread_roots_tasks(GCTaskQueue* q) { 4214 ALL_JAVA_THREADS(p) { 4215 q->enqueue(new ThreadRootsTask(p)); 4216 } 4217 q->enqueue(new ThreadRootsTask(VMThread::vm_thread())); 4218 } 4219 4220 // Used by Parallel Old 4221 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) { 4222 ALL_JAVA_THREADS(p) { 4223 q->enqueue(new ThreadRootsMarkingTask(p)); 4224 } 4225 q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread())); 4226 } 4227 #endif // INCLUDE_ALL_GCS 4228 4229 void Threads::nmethods_do(CodeBlobClosure* cf) { 4230 ALL_JAVA_THREADS(p) { 4231 p->nmethods_do(cf); 4232 } 4233 VMThread::vm_thread()->nmethods_do(cf); 4234 } 4235 4236 void Threads::metadata_do(void f(Metadata*)) { 4237 ALL_JAVA_THREADS(p) { 4238 p->metadata_do(f); 4239 } 4240 } 4241 4242 void Threads::gc_epilogue() { 4243 ALL_JAVA_THREADS(p) { 4244 p->gc_epilogue(); 4245 } 4246 } 4247 4248 void Threads::gc_prologue() { 4249 ALL_JAVA_THREADS(p) { 4250 p->gc_prologue(); 4251 } 4252 } 4253 4254 void Threads::deoptimized_wrt_marked_nmethods() { 4255 ALL_JAVA_THREADS(p) { 4256 p->deoptimized_wrt_marked_nmethods(); 4257 } 4258 } 4259 4260 4261 // Get count Java threads that are waiting to enter the specified monitor. 4262 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count, 4263 address monitor, bool doLock) { 4264 assert(doLock || SafepointSynchronize::is_at_safepoint(), 4265 "must grab Threads_lock or be at safepoint"); 4266 GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count); 4267 4268 int i = 0; 4269 { 4270 MutexLockerEx ml(doLock ? Threads_lock : NULL); 4271 ALL_JAVA_THREADS(p) { 4272 if (p->is_Compiler_thread()) continue; 4273 4274 address pending = (address)p->current_pending_monitor(); 4275 if (pending == monitor) { // found a match 4276 if (i < count) result->append(p); // save the first count matches 4277 i++; 4278 } 4279 } 4280 } 4281 return result; 4282 } 4283 4284 4285 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) { 4286 assert(doLock || 4287 Threads_lock->owned_by_self() || 4288 SafepointSynchronize::is_at_safepoint(), 4289 "must grab Threads_lock or be at safepoint"); 4290 4291 // NULL owner means not locked so we can skip the search 4292 if (owner == NULL) return NULL; 4293 4294 { 4295 MutexLockerEx ml(doLock ? Threads_lock : NULL); 4296 ALL_JAVA_THREADS(p) { 4297 // first, see if owner is the address of a Java thread 4298 if (owner == (address)p) return p; 4299 } 4300 } 4301 // Cannot assert on lack of success here since this function may be 4302 // used by code that is trying to report useful problem information 4303 // like deadlock detection. 4304 if (UseHeavyMonitors) return NULL; 4305 4306 // 4307 // If we didn't find a matching Java thread and we didn't force use of 4308 // heavyweight monitors, then the owner is the stack address of the 4309 // Lock Word in the owning Java thread's stack. 4310 // 4311 JavaThread* the_owner = NULL; 4312 { 4313 MutexLockerEx ml(doLock ? Threads_lock : NULL); 4314 ALL_JAVA_THREADS(q) { 4315 if (q->is_lock_owned(owner)) { 4316 the_owner = q; 4317 break; 4318 } 4319 } 4320 } 4321 // cannot assert on lack of success here; see above comment 4322 return the_owner; 4323 } 4324 4325 // Threads::print_on() is called at safepoint by VM_PrintThreads operation. 4326 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) { 4327 char buf[32]; 4328 st->print_cr("%s", os::local_time_string(buf, sizeof(buf))); 4329 4330 st->print_cr("Full thread dump %s (%s %s):", 4331 Abstract_VM_Version::vm_name(), 4332 Abstract_VM_Version::vm_release(), 4333 Abstract_VM_Version::vm_info_string() 4334 ); 4335 st->cr(); 4336 4337 #if INCLUDE_ALL_GCS 4338 // Dump concurrent locks 4339 ConcurrentLocksDump concurrent_locks; 4340 if (print_concurrent_locks) { 4341 concurrent_locks.dump_at_safepoint(); 4342 } 4343 #endif // INCLUDE_ALL_GCS 4344 4345 ALL_JAVA_THREADS(p) { 4346 ResourceMark rm; 4347 p->print_on(st); 4348 if (print_stacks) { 4349 if (internal_format) { 4350 p->trace_stack(); 4351 } else { 4352 p->print_stack_on(st); 4353 } 4354 } 4355 st->cr(); 4356 #if INCLUDE_ALL_GCS 4357 if (print_concurrent_locks) { 4358 concurrent_locks.print_locks_on(p, st); 4359 } 4360 #endif // INCLUDE_ALL_GCS 4361 } 4362 4363 VMThread::vm_thread()->print_on(st); 4364 st->cr(); 4365 Universe::heap()->print_gc_threads_on(st); 4366 WatcherThread* wt = WatcherThread::watcher_thread(); 4367 if (wt != NULL) { 4368 wt->print_on(st); 4369 st->cr(); 4370 } 4371 CompileBroker::print_compiler_threads_on(st); 4372 st->flush(); 4373 } 4374 4375 // Threads::print_on_error() is called by fatal error handler. It's possible 4376 // that VM is not at safepoint and/or current thread is inside signal handler. 4377 // Don't print stack trace, as the stack may not be walkable. Don't allocate 4378 // memory (even in resource area), it might deadlock the error handler. 4379 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) { 4380 bool found_current = false; 4381 st->print_cr("Java Threads: ( => current thread )"); 4382 ALL_JAVA_THREADS(thread) { 4383 bool is_current = (current == thread); 4384 found_current = found_current || is_current; 4385 4386 st->print("%s", is_current ? "=>" : " "); 4387 4388 st->print(PTR_FORMAT, thread); 4389 st->print(" "); 4390 thread->print_on_error(st, buf, buflen); 4391 st->cr(); 4392 } 4393 st->cr(); 4394 4395 st->print_cr("Other Threads:"); 4396 if (VMThread::vm_thread()) { 4397 bool is_current = (current == VMThread::vm_thread()); 4398 found_current = found_current || is_current; 4399 st->print("%s", current == VMThread::vm_thread() ? "=>" : " "); 4400 4401 st->print(PTR_FORMAT, VMThread::vm_thread()); 4402 st->print(" "); 4403 VMThread::vm_thread()->print_on_error(st, buf, buflen); 4404 st->cr(); 4405 } 4406 WatcherThread* wt = WatcherThread::watcher_thread(); 4407 if (wt != NULL) { 4408 bool is_current = (current == wt); 4409 found_current = found_current || is_current; 4410 st->print("%s", is_current ? "=>" : " "); 4411 4412 st->print(PTR_FORMAT, wt); 4413 st->print(" "); 4414 wt->print_on_error(st, buf, buflen); 4415 st->cr(); 4416 } 4417 if (!found_current) { 4418 st->cr(); 4419 st->print("=>" PTR_FORMAT " (exited) ", current); 4420 current->print_on_error(st, buf, buflen); 4421 st->cr(); 4422 } 4423 } 4424 4425 // Internal SpinLock and Mutex 4426 // Based on ParkEvent 4427 4428 // Ad-hoc mutual exclusion primitives: SpinLock and Mux 4429 // 4430 // We employ SpinLocks _only for low-contention, fixed-length 4431 // short-duration critical sections where we're concerned 4432 // about native mutex_t or HotSpot Mutex:: latency. 4433 // The mux construct provides a spin-then-block mutual exclusion 4434 // mechanism. 4435 // 4436 // Testing has shown that contention on the ListLock guarding gFreeList 4437 // is common. If we implement ListLock as a simple SpinLock it's common 4438 // for the JVM to devolve to yielding with little progress. This is true 4439 // despite the fact that the critical sections protected by ListLock are 4440 // extremely short. 4441 // 4442 // TODO-FIXME: ListLock should be of type SpinLock. 4443 // We should make this a 1st-class type, integrated into the lock 4444 // hierarchy as leaf-locks. Critically, the SpinLock structure 4445 // should have sufficient padding to avoid false-sharing and excessive 4446 // cache-coherency traffic. 4447 4448 4449 typedef volatile int SpinLockT ; 4450 4451 void Thread::SpinAcquire (volatile int * adr, const char * LockName) { 4452 if (Atomic::cmpxchg (1, adr, 0) == 0) { 4453 return ; // normal fast-path return 4454 } 4455 4456 // Slow-path : We've encountered contention -- Spin/Yield/Block strategy. 4457 TEVENT (SpinAcquire - ctx) ; 4458 int ctr = 0 ; 4459 int Yields = 0 ; 4460 for (;;) { 4461 while (*adr != 0) { 4462 ++ctr ; 4463 if ((ctr & 0xFFF) == 0 || !os::is_MP()) { 4464 if (Yields > 5) { 4465 os::naked_short_sleep(1); 4466 } else { 4467 os::NakedYield() ; 4468 ++Yields ; 4469 } 4470 } else { 4471 SpinPause() ; 4472 } 4473 } 4474 if (Atomic::cmpxchg (1, adr, 0) == 0) return ; 4475 } 4476 } 4477 4478 void Thread::SpinRelease (volatile int * adr) { 4479 assert (*adr != 0, "invariant") ; 4480 OrderAccess::fence() ; // guarantee at least release consistency. 4481 // Roach-motel semantics. 4482 // It's safe if subsequent LDs and STs float "up" into the critical section, 4483 // but prior LDs and STs within the critical section can't be allowed 4484 // to reorder or float past the ST that releases the lock. 4485 *adr = 0 ; 4486 } 4487 4488 // muxAcquire and muxRelease: 4489 // 4490 // * muxAcquire and muxRelease support a single-word lock-word construct. 4491 // The LSB of the word is set IFF the lock is held. 4492 // The remainder of the word points to the head of a singly-linked list 4493 // of threads blocked on the lock. 4494 // 4495 // * The current implementation of muxAcquire-muxRelease uses its own 4496 // dedicated Thread._MuxEvent instance. If we're interested in 4497 // minimizing the peak number of extant ParkEvent instances then 4498 // we could eliminate _MuxEvent and "borrow" _ParkEvent as long 4499 // as certain invariants were satisfied. Specifically, care would need 4500 // to be taken with regards to consuming unpark() "permits". 4501 // A safe rule of thumb is that a thread would never call muxAcquire() 4502 // if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently 4503 // park(). Otherwise the _ParkEvent park() operation in muxAcquire() could 4504 // consume an unpark() permit intended for monitorenter, for instance. 4505 // One way around this would be to widen the restricted-range semaphore 4506 // implemented in park(). Another alternative would be to provide 4507 // multiple instances of the PlatformEvent() for each thread. One 4508 // instance would be dedicated to muxAcquire-muxRelease, for instance. 4509 // 4510 // * Usage: 4511 // -- Only as leaf locks 4512 // -- for short-term locking only as muxAcquire does not perform 4513 // thread state transitions. 4514 // 4515 // Alternatives: 4516 // * We could implement muxAcquire and muxRelease with MCS or CLH locks 4517 // but with parking or spin-then-park instead of pure spinning. 4518 // * Use Taura-Oyama-Yonenzawa locks. 4519 // * It's possible to construct a 1-0 lock if we encode the lockword as 4520 // (List,LockByte). Acquire will CAS the full lockword while Release 4521 // will STB 0 into the LockByte. The 1-0 scheme admits stranding, so 4522 // acquiring threads use timers (ParkTimed) to detect and recover from 4523 // the stranding window. Thread/Node structures must be aligned on 256-byte 4524 // boundaries by using placement-new. 4525 // * Augment MCS with advisory back-link fields maintained with CAS(). 4526 // Pictorially: LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner. 4527 // The validity of the backlinks must be ratified before we trust the value. 4528 // If the backlinks are invalid the exiting thread must back-track through the 4529 // the forward links, which are always trustworthy. 4530 // * Add a successor indication. The LockWord is currently encoded as 4531 // (List, LOCKBIT:1). We could also add a SUCCBIT or an explicit _succ variable 4532 // to provide the usual futile-wakeup optimization. 4533 // See RTStt for details. 4534 // * Consider schedctl.sc_nopreempt to cover the critical section. 4535 // 4536 4537 4538 typedef volatile intptr_t MutexT ; // Mux Lock-word 4539 enum MuxBits { LOCKBIT = 1 } ; 4540 4541 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) { 4542 intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ; 4543 if (w == 0) return ; 4544 if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) { 4545 return ; 4546 } 4547 4548 TEVENT (muxAcquire - Contention) ; 4549 ParkEvent * const Self = Thread::current()->_MuxEvent ; 4550 assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ; 4551 for (;;) { 4552 int its = (os::is_MP() ? 100 : 0) + 1 ; 4553 4554 // Optional spin phase: spin-then-park strategy 4555 while (--its >= 0) { 4556 w = *Lock ; 4557 if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) { 4558 return ; 4559 } 4560 } 4561 4562 Self->reset() ; 4563 Self->OnList = intptr_t(Lock) ; 4564 // The following fence() isn't _strictly necessary as the subsequent 4565 // CAS() both serializes execution and ratifies the fetched *Lock value. 4566 OrderAccess::fence(); 4567 for (;;) { 4568 w = *Lock ; 4569 if ((w & LOCKBIT) == 0) { 4570 if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) { 4571 Self->OnList = 0 ; // hygiene - allows stronger asserts 4572 return ; 4573 } 4574 continue ; // Interference -- *Lock changed -- Just retry 4575 } 4576 assert (w & LOCKBIT, "invariant") ; 4577 Self->ListNext = (ParkEvent *) (w & ~LOCKBIT ); 4578 if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ; 4579 } 4580 4581 while (Self->OnList != 0) { 4582 Self->park() ; 4583 } 4584 } 4585 } 4586 4587 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) { 4588 intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ; 4589 if (w == 0) return ; 4590 if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) { 4591 return ; 4592 } 4593 4594 TEVENT (muxAcquire - Contention) ; 4595 ParkEvent * ReleaseAfter = NULL ; 4596 if (ev == NULL) { 4597 ev = ReleaseAfter = ParkEvent::Allocate (NULL) ; 4598 } 4599 assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ; 4600 for (;;) { 4601 guarantee (ev->OnList == 0, "invariant") ; 4602 int its = (os::is_MP() ? 100 : 0) + 1 ; 4603 4604 // Optional spin phase: spin-then-park strategy 4605 while (--its >= 0) { 4606 w = *Lock ; 4607 if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) { 4608 if (ReleaseAfter != NULL) { 4609 ParkEvent::Release (ReleaseAfter) ; 4610 } 4611 return ; 4612 } 4613 } 4614 4615 ev->reset() ; 4616 ev->OnList = intptr_t(Lock) ; 4617 // The following fence() isn't _strictly necessary as the subsequent 4618 // CAS() both serializes execution and ratifies the fetched *Lock value. 4619 OrderAccess::fence(); 4620 for (;;) { 4621 w = *Lock ; 4622 if ((w & LOCKBIT) == 0) { 4623 if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) { 4624 ev->OnList = 0 ; 4625 // We call ::Release while holding the outer lock, thus 4626 // artificially lengthening the critical section. 4627 // Consider deferring the ::Release() until the subsequent unlock(), 4628 // after we've dropped the outer lock. 4629 if (ReleaseAfter != NULL) { 4630 ParkEvent::Release (ReleaseAfter) ; 4631 } 4632 return ; 4633 } 4634 continue ; // Interference -- *Lock changed -- Just retry 4635 } 4636 assert (w & LOCKBIT, "invariant") ; 4637 ev->ListNext = (ParkEvent *) (w & ~LOCKBIT ); 4638 if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ; 4639 } 4640 4641 while (ev->OnList != 0) { 4642 ev->park() ; 4643 } 4644 } 4645 } 4646 4647 // Release() must extract a successor from the list and then wake that thread. 4648 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme 4649 // similar to that used by ParkEvent::Allocate() and ::Release(). DMR-based 4650 // Release() would : 4651 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list. 4652 // (B) Extract a successor from the private list "in-hand" 4653 // (C) attempt to CAS() the residual back into *Lock over null. 4654 // If there were any newly arrived threads and the CAS() would fail. 4655 // In that case Release() would detach the RATs, re-merge the list in-hand 4656 // with the RATs and repeat as needed. Alternately, Release() might 4657 // detach and extract a successor, but then pass the residual list to the wakee. 4658 // The wakee would be responsible for reattaching and remerging before it 4659 // competed for the lock. 4660 // 4661 // Both "pop" and DMR are immune from ABA corruption -- there can be 4662 // multiple concurrent pushers, but only one popper or detacher. 4663 // This implementation pops from the head of the list. This is unfair, 4664 // but tends to provide excellent throughput as hot threads remain hot. 4665 // (We wake recently run threads first). 4666 4667 void Thread::muxRelease (volatile intptr_t * Lock) { 4668 for (;;) { 4669 const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ; 4670 assert (w & LOCKBIT, "invariant") ; 4671 if (w == LOCKBIT) return ; 4672 ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ; 4673 assert (List != NULL, "invariant") ; 4674 assert (List->OnList == intptr_t(Lock), "invariant") ; 4675 ParkEvent * nxt = List->ListNext ; 4676 4677 // The following CAS() releases the lock and pops the head element. 4678 if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) { 4679 continue ; 4680 } 4681 List->OnList = 0 ; 4682 OrderAccess::fence() ; 4683 List->unpark () ; 4684 return ; 4685 } 4686 } 4687 4688 4689 void Threads::verify() { 4690 ALL_JAVA_THREADS(p) { 4691 p->verify(); 4692 } 4693 VMThread* thread = VMThread::vm_thread(); 4694 if (thread != NULL) thread->verify(); 4695 }