1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/scopeDesc.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/linkResolver.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "jfr/jfrEvents.hpp"
  36 #include "jvmtifiles/jvmtiEnv.hpp"
  37 #include "memory/gcLocker.inline.hpp"
  38 #include "memory/metaspaceShared.hpp"
  39 #include "memory/oopFactory.hpp"
  40 #include "memory/universe.inline.hpp"
  41 #include "oops/instanceKlass.hpp"
  42 #include "oops/objArrayOop.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "oops/symbol.hpp"
  45 #include "prims/jvm_misc.hpp"
  46 #include "prims/jvmtiExport.hpp"
  47 #include "prims/jvmtiThreadState.hpp"
  48 #include "prims/privilegedStack.hpp"
  49 #include "runtime/arguments.hpp"
  50 #include "runtime/biasedLocking.hpp"
  51 #include "runtime/deoptimization.hpp"
  52 #include "runtime/fprofiler.hpp"
  53 #include "runtime/frame.inline.hpp"
  54 #include "runtime/init.hpp"
  55 #include "runtime/interfaceSupport.hpp"
  56 #include "runtime/java.hpp"
  57 #include "runtime/javaCalls.hpp"
  58 #include "runtime/jniPeriodicChecker.hpp"
  59 #include "runtime/memprofiler.hpp"
  60 #include "runtime/mutexLocker.hpp"
  61 #include "runtime/objectMonitor.hpp"
  62 #include "runtime/orderAccess.inline.hpp"
  63 #include "runtime/osThread.hpp"
  64 #include "runtime/safepoint.hpp"
  65 #include "runtime/sharedRuntime.hpp"
  66 #include "runtime/statSampler.hpp"
  67 #include "runtime/stubRoutines.hpp"
  68 #include "runtime/task.hpp"
  69 #include "runtime/thread.inline.hpp"
  70 #include "runtime/threadCritical.hpp"
  71 #include "runtime/threadLocalStorage.hpp"
  72 #include "runtime/vframe.hpp"
  73 #include "runtime/vframeArray.hpp"
  74 #include "runtime/vframe_hp.hpp"
  75 #include "runtime/vmThread.hpp"
  76 #include "runtime/vm_operations.hpp"
  77 #include "services/attachListener.hpp"
  78 #include "services/management.hpp"
  79 #include "services/memTracker.hpp"
  80 #include "services/threadService.hpp"
  81 #include "utilities/defaultStream.hpp"
  82 #include "utilities/dtrace.hpp"
  83 #include "utilities/events.hpp"
  84 #include "utilities/preserveException.hpp"
  85 #include "utilities/macros.hpp"
  86 #ifdef TARGET_OS_FAMILY_linux
  87 # include "os_linux.inline.hpp"
  88 #endif
  89 #ifdef TARGET_OS_FAMILY_solaris
  90 # include "os_solaris.inline.hpp"
  91 #endif
  92 #ifdef TARGET_OS_FAMILY_windows
  93 # include "os_windows.inline.hpp"
  94 #endif
  95 #ifdef TARGET_OS_FAMILY_bsd
  96 # include "os_bsd.inline.hpp"
  97 #endif
  98 #if INCLUDE_ALL_GCS
  99 #include "gc_implementation/shenandoah/shenandoahControlThread.hpp"
 100 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
 101 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
 102 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
 103 #endif // INCLUDE_ALL_GCS
 104 #ifdef COMPILER1
 105 #include "c1/c1_Compiler.hpp"
 106 #endif
 107 #ifdef COMPILER2
 108 #include "opto/c2compiler.hpp"
 109 #include "opto/idealGraphPrinter.hpp"
 110 #endif
 111 #if INCLUDE_RTM_OPT
 112 #include "runtime/rtmLocking.hpp"
 113 #endif
 114 #if INCLUDE_JFR
 115 #include "jfr/jfr.hpp"
 116 #endif
 117 
 118 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 119 
 120 #ifdef DTRACE_ENABLED
 121 
 122 // Only bother with this argument setup if dtrace is available
 123 
 124 #ifndef USDT2
 125 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
 126 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
 127 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
 128   intptr_t, intptr_t, bool);
 129 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
 130   intptr_t, intptr_t, bool);
 131 
 132 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 133   {                                                                        \
 134     ResourceMark rm(this);                                                 \
 135     int len = 0;                                                           \
 136     const char* name = (javathread)->get_thread_name();                    \
 137     len = strlen(name);                                                    \
 138     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
 139       name, len,                                                           \
 140       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 141       (javathread)->osthread()->thread_id(),                               \
 142       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 143   }
 144 
 145 #else /* USDT2 */
 146 
 147 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 148 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 149 
 150 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 151   {                                                                        \
 152     ResourceMark rm(this);                                                 \
 153     int len = 0;                                                           \
 154     const char* name = (javathread)->get_thread_name();                    \
 155     len = strlen(name);                                                    \
 156     HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
 157       (char *) name, len,                                                           \
 158       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 159       (uintptr_t) (javathread)->osthread()->thread_id(),                               \
 160       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 161   }
 162 
 163 #endif /* USDT2 */
 164 
 165 #else //  ndef DTRACE_ENABLED
 166 
 167 #define DTRACE_THREAD_PROBE(probe, javathread)
 168 
 169 #endif // ndef DTRACE_ENABLED
 170 
 171 
 172 // Class hierarchy
 173 // - Thread
 174 //   - VMThread
 175 //   - WatcherThread
 176 //   - ConcurrentMarkSweepThread
 177 //   - JavaThread
 178 //     - CompilerThread
 179 
 180 // ======= Thread ========
 181 // Support for forcing alignment of thread objects for biased locking
 182 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 183   if (UseBiasedLocking) {
 184     const int alignment = markOopDesc::biased_lock_alignment;
 185     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 186     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 187                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 188                                               AllocFailStrategy::RETURN_NULL);
 189     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 190     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 191            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 192            "JavaThread alignment code overflowed allocated storage");
 193     if (TraceBiasedLocking) {
 194       if (aligned_addr != real_malloc_addr)
 195         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 196                       real_malloc_addr, aligned_addr);
 197     }
 198     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 199     return aligned_addr;
 200   } else {
 201     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 202                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 203   }
 204 }
 205 
 206 void Thread::operator delete(void* p) {
 207   if (UseBiasedLocking) {
 208     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 209     FreeHeap(real_malloc_addr, mtThread);
 210   } else {
 211     FreeHeap(p, mtThread);
 212   }
 213 }
 214 
 215 
 216 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 217 // JavaThread
 218 
 219 
 220 Thread::Thread() {
 221   // stack and get_thread
 222   set_stack_base(NULL);
 223   set_stack_size(0);
 224   set_self_raw_id(0);
 225   set_lgrp_id(-1);
 226 
 227   // allocated data structures
 228   set_osthread(NULL);
 229   set_resource_area(new (mtThread)ResourceArea());
 230   DEBUG_ONLY(_current_resource_mark = NULL;)
 231   set_handle_area(new (mtThread) HandleArea(NULL));
 232   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 233   set_active_handles(NULL);
 234   set_free_handle_block(NULL);
 235   set_last_handle_mark(NULL);
 236 
 237   // This initial value ==> never claimed.
 238   _oops_do_parity = 0;
 239 
 240   _metadata_on_stack_buffer = NULL;
 241 
 242   // the handle mark links itself to last_handle_mark
 243   new HandleMark(this);
 244 
 245   // plain initialization
 246   debug_only(_owned_locks = NULL;)
 247   debug_only(_allow_allocation_count = 0;)
 248   NOT_PRODUCT(_allow_safepoint_count = 0;)
 249   NOT_PRODUCT(_skip_gcalot = false;)
 250   _jvmti_env_iteration_count = 0;
 251   set_allocated_bytes(0);
 252   _vm_operation_started_count = 0;
 253   _vm_operation_completed_count = 0;
 254   _current_pending_monitor = NULL;
 255   _current_pending_monitor_is_from_java = true;
 256   _current_waiting_monitor = NULL;
 257   _num_nested_signal = 0;
 258   omFreeList = NULL ;
 259   omFreeCount = 0 ;
 260   omFreeProvision = 32 ;
 261   omInUseList = NULL ;
 262   omInUseCount = 0 ;
 263 
 264 #ifdef ASSERT
 265   _visited_for_critical_count = false;
 266 #endif
 267 
 268   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
 269   _suspend_flags = 0;
 270 
 271   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 272   _hashStateX = os::random() ;
 273   _hashStateY = 842502087 ;
 274   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
 275   _hashStateW = 273326509 ;
 276 
 277   _OnTrap   = 0 ;
 278   _schedctl = NULL ;
 279   _Stalled  = 0 ;
 280   _TypeTag  = 0x2BAD ;
 281 
 282   // Many of the following fields are effectively final - immutable
 283   // Note that nascent threads can't use the Native Monitor-Mutex
 284   // construct until the _MutexEvent is initialized ...
 285   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 286   // we might instead use a stack of ParkEvents that we could provision on-demand.
 287   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 288   // and ::Release()
 289   _ParkEvent   = ParkEvent::Allocate (this) ;
 290   _SleepEvent  = ParkEvent::Allocate (this) ;
 291   _MutexEvent  = ParkEvent::Allocate (this) ;
 292   _MuxEvent    = ParkEvent::Allocate (this) ;
 293 
 294 #ifdef CHECK_UNHANDLED_OOPS
 295   if (CheckUnhandledOops) {
 296     _unhandled_oops = new UnhandledOops(this);
 297   }
 298 #endif // CHECK_UNHANDLED_OOPS
 299 #ifdef ASSERT
 300   if (UseBiasedLocking) {
 301     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 302     assert(this == _real_malloc_address ||
 303            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 304            "bug in forced alignment of thread objects");
 305   }
 306 #endif /* ASSERT */
 307 
 308   _oom_during_evac = 0;
 309 #if INCLUDE_ALL_GCS
 310   _gc_state = _gc_state_global;
 311   _worker_id = (uint)(-1); // Actually, ShenandoahWorkerSession::INVALID_WORKER_ID, but avoid dependencies.
 312   _force_satb_flush = false;
 313   _paced_time = 0;
 314 #endif
 315 }
 316 
 317 void Thread::set_oom_during_evac(bool oom) {
 318   if (oom) {
 319     _oom_during_evac |= 1;
 320   } else {
 321     _oom_during_evac &= ~1;
 322   }
 323 }
 324 
 325 bool Thread::is_oom_during_evac() const {
 326   return (_oom_during_evac & 1) == 1;
 327 }
 328 
 329 #ifdef ASSERT
 330 void Thread::set_evac_allowed(bool evac_allowed) {
 331   if (evac_allowed) {
 332     _oom_during_evac |= 2;
 333   } else {
 334     _oom_during_evac &= ~2;
 335   }
 336 }
 337 
 338 bool Thread::is_evac_allowed() const {
 339   return (_oom_during_evac & 2) == 2;
 340 }
 341 #endif
 342 
 343 void Thread::initialize_thread_local_storage() {
 344   // Note: Make sure this method only calls
 345   // non-blocking operations. Otherwise, it might not work
 346   // with the thread-startup/safepoint interaction.
 347 
 348   // During Java thread startup, safepoint code should allow this
 349   // method to complete because it may need to allocate memory to
 350   // store information for the new thread.
 351 
 352   // initialize structure dependent on thread local storage
 353   ThreadLocalStorage::set_thread(this);
 354 }
 355 
 356 void Thread::record_stack_base_and_size() {
 357   set_stack_base(os::current_stack_base());
 358   set_stack_size(os::current_stack_size());
 359   if (is_Java_thread()) {
 360     ((JavaThread*) this)->set_stack_overflow_limit();
 361   }
 362   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 363   // in initialize_thread(). Without the adjustment, stack size is
 364   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 365   // So far, only Solaris has real implementation of initialize_thread().
 366   //
 367   // set up any platform-specific state.
 368   os::initialize_thread(this);
 369 
 370 #if INCLUDE_NMT
 371   // record thread's native stack, stack grows downward
 372   address stack_low_addr = stack_base() - stack_size();
 373   MemTracker::record_thread_stack(stack_low_addr, stack_size());
 374 #endif // INCLUDE_NMT
 375 }
 376 
 377 
 378 Thread::~Thread() {
 379   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 380   ObjectSynchronizer::omFlush (this) ;
 381 
 382   // stack_base can be NULL if the thread is never started or exited before
 383   // record_stack_base_and_size called. Although, we would like to ensure
 384   // that all started threads do call record_stack_base_and_size(), there is
 385   // not proper way to enforce that.
 386 #if INCLUDE_NMT
 387   if (_stack_base != NULL) {
 388     address low_stack_addr = stack_base() - stack_size();
 389     MemTracker::release_thread_stack(low_stack_addr, stack_size());
 390 #ifdef ASSERT
 391     set_stack_base(NULL);
 392 #endif
 393   }
 394 #endif // INCLUDE_NMT
 395 
 396   // deallocate data structures
 397   delete resource_area();
 398   // since the handle marks are using the handle area, we have to deallocated the root
 399   // handle mark before deallocating the thread's handle area,
 400   assert(last_handle_mark() != NULL, "check we have an element");
 401   delete last_handle_mark();
 402   assert(last_handle_mark() == NULL, "check we have reached the end");
 403 
 404   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 405   // We NULL out the fields for good hygiene.
 406   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
 407   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
 408   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
 409   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
 410 
 411   delete handle_area();
 412   delete metadata_handles();
 413 
 414   // osthread() can be NULL, if creation of thread failed.
 415   if (osthread() != NULL) os::free_thread(osthread());
 416 
 417   delete _SR_lock;
 418 
 419   // clear thread local storage if the Thread is deleting itself
 420   if (this == Thread::current()) {
 421     ThreadLocalStorage::set_thread(NULL);
 422   } else {
 423     // In the case where we're not the current thread, invalidate all the
 424     // caches in case some code tries to get the current thread or the
 425     // thread that was destroyed, and gets stale information.
 426     ThreadLocalStorage::invalidate_all();
 427   }
 428   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 429 }
 430 
 431 // NOTE: dummy function for assertion purpose.
 432 void Thread::run() {
 433   ShouldNotReachHere();
 434 }
 435 
 436 #ifdef ASSERT
 437 // Private method to check for dangling thread pointer
 438 void check_for_dangling_thread_pointer(Thread *thread) {
 439  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 440          "possibility of dangling Thread pointer");
 441 }
 442 #endif
 443 
 444 
 445 #ifndef PRODUCT
 446 // Tracing method for basic thread operations
 447 void Thread::trace(const char* msg, const Thread* const thread) {
 448   if (!TraceThreadEvents) return;
 449   ResourceMark rm;
 450   ThreadCritical tc;
 451   const char *name = "non-Java thread";
 452   int prio = -1;
 453   if (thread->is_Java_thread()
 454       && !thread->is_Compiler_thread()) {
 455     // The Threads_lock must be held to get information about
 456     // this thread but may not be in some situations when
 457     // tracing  thread events.
 458     bool release_Threads_lock = false;
 459     if (!Threads_lock->owned_by_self()) {
 460       Threads_lock->lock();
 461       release_Threads_lock = true;
 462     }
 463     JavaThread* jt = (JavaThread *)thread;
 464     name = (char *)jt->get_thread_name();
 465     oop thread_oop = jt->threadObj();
 466     if (thread_oop != NULL) {
 467       prio = java_lang_Thread::priority(thread_oop);
 468     }
 469     if (release_Threads_lock) {
 470       Threads_lock->unlock();
 471     }
 472   }
 473   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
 474 }
 475 #endif
 476 
 477 
 478 ThreadPriority Thread::get_priority(const Thread* const thread) {
 479   trace("get priority", thread);
 480   ThreadPriority priority;
 481   // Can return an error!
 482   (void)os::get_priority(thread, priority);
 483   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 484   return priority;
 485 }
 486 
 487 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 488   trace("set priority", thread);
 489   debug_only(check_for_dangling_thread_pointer(thread);)
 490   // Can return an error!
 491   (void)os::set_priority(thread, priority);
 492 }
 493 
 494 
 495 void Thread::start(Thread* thread) {
 496   trace("start", thread);
 497   // Start is different from resume in that its safety is guaranteed by context or
 498   // being called from a Java method synchronized on the Thread object.
 499   if (!DisableStartThread) {
 500     if (thread->is_Java_thread()) {
 501       // Initialize the thread state to RUNNABLE before starting this thread.
 502       // Can not set it after the thread started because we do not know the
 503       // exact thread state at that time. It could be in MONITOR_WAIT or
 504       // in SLEEPING or some other state.
 505       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 506                                           java_lang_Thread::RUNNABLE);
 507     }
 508     os::start_thread(thread);
 509   }
 510 }
 511 
 512 // Enqueue a VM_Operation to do the job for us - sometime later
 513 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 514   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 515   VMThread::execute(vm_stop);
 516 }
 517 
 518 
 519 //
 520 // Check if an external suspend request has completed (or has been
 521 // cancelled). Returns true if the thread is externally suspended and
 522 // false otherwise.
 523 //
 524 // The bits parameter returns information about the code path through
 525 // the routine. Useful for debugging:
 526 //
 527 // set in is_ext_suspend_completed():
 528 // 0x00000001 - routine was entered
 529 // 0x00000010 - routine return false at end
 530 // 0x00000100 - thread exited (return false)
 531 // 0x00000200 - suspend request cancelled (return false)
 532 // 0x00000400 - thread suspended (return true)
 533 // 0x00001000 - thread is in a suspend equivalent state (return true)
 534 // 0x00002000 - thread is native and walkable (return true)
 535 // 0x00004000 - thread is native_trans and walkable (needed retry)
 536 //
 537 // set in wait_for_ext_suspend_completion():
 538 // 0x00010000 - routine was entered
 539 // 0x00020000 - suspend request cancelled before loop (return false)
 540 // 0x00040000 - thread suspended before loop (return true)
 541 // 0x00080000 - suspend request cancelled in loop (return false)
 542 // 0x00100000 - thread suspended in loop (return true)
 543 // 0x00200000 - suspend not completed during retry loop (return false)
 544 //
 545 
 546 // Helper class for tracing suspend wait debug bits.
 547 //
 548 // 0x00000100 indicates that the target thread exited before it could
 549 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 550 // 0x00080000 each indicate a cancelled suspend request so they don't
 551 // count as wait failures either.
 552 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 553 
 554 class TraceSuspendDebugBits : public StackObj {
 555  private:
 556   JavaThread * jt;
 557   bool         is_wait;
 558   bool         called_by_wait;  // meaningful when !is_wait
 559   uint32_t *   bits;
 560 
 561  public:
 562   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 563                         uint32_t *_bits) {
 564     jt             = _jt;
 565     is_wait        = _is_wait;
 566     called_by_wait = _called_by_wait;
 567     bits           = _bits;
 568   }
 569 
 570   ~TraceSuspendDebugBits() {
 571     if (!is_wait) {
 572 #if 1
 573       // By default, don't trace bits for is_ext_suspend_completed() calls.
 574       // That trace is very chatty.
 575       return;
 576 #else
 577       if (!called_by_wait) {
 578         // If tracing for is_ext_suspend_completed() is enabled, then only
 579         // trace calls to it from wait_for_ext_suspend_completion()
 580         return;
 581       }
 582 #endif
 583     }
 584 
 585     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 586       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 587         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 588         ResourceMark rm;
 589 
 590         tty->print_cr(
 591             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 592             jt->get_thread_name(), *bits);
 593 
 594         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 595       }
 596     }
 597   }
 598 };
 599 #undef DEBUG_FALSE_BITS
 600 
 601 
 602 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
 603   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 604 
 605   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 606   bool do_trans_retry;           // flag to force the retry
 607 
 608   *bits |= 0x00000001;
 609 
 610   do {
 611     do_trans_retry = false;
 612 
 613     if (is_exiting()) {
 614       // Thread is in the process of exiting. This is always checked
 615       // first to reduce the risk of dereferencing a freed JavaThread.
 616       *bits |= 0x00000100;
 617       return false;
 618     }
 619 
 620     if (!is_external_suspend()) {
 621       // Suspend request is cancelled. This is always checked before
 622       // is_ext_suspended() to reduce the risk of a rogue resume
 623       // confusing the thread that made the suspend request.
 624       *bits |= 0x00000200;
 625       return false;
 626     }
 627 
 628     if (is_ext_suspended()) {
 629       // thread is suspended
 630       *bits |= 0x00000400;
 631       return true;
 632     }
 633 
 634     // Now that we no longer do hard suspends of threads running
 635     // native code, the target thread can be changing thread state
 636     // while we are in this routine:
 637     //
 638     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 639     //
 640     // We save a copy of the thread state as observed at this moment
 641     // and make our decision about suspend completeness based on the
 642     // copy. This closes the race where the thread state is seen as
 643     // _thread_in_native_trans in the if-thread_blocked check, but is
 644     // seen as _thread_blocked in if-thread_in_native_trans check.
 645     JavaThreadState save_state = thread_state();
 646 
 647     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 648       // If the thread's state is _thread_blocked and this blocking
 649       // condition is known to be equivalent to a suspend, then we can
 650       // consider the thread to be externally suspended. This means that
 651       // the code that sets _thread_blocked has been modified to do
 652       // self-suspension if the blocking condition releases. We also
 653       // used to check for CONDVAR_WAIT here, but that is now covered by
 654       // the _thread_blocked with self-suspension check.
 655       //
 656       // Return true since we wouldn't be here unless there was still an
 657       // external suspend request.
 658       *bits |= 0x00001000;
 659       return true;
 660     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 661       // Threads running native code will self-suspend on native==>VM/Java
 662       // transitions. If its stack is walkable (should always be the case
 663       // unless this function is called before the actual java_suspend()
 664       // call), then the wait is done.
 665       *bits |= 0x00002000;
 666       return true;
 667     } else if (!called_by_wait && !did_trans_retry &&
 668                save_state == _thread_in_native_trans &&
 669                frame_anchor()->walkable()) {
 670       // The thread is transitioning from thread_in_native to another
 671       // thread state. check_safepoint_and_suspend_for_native_trans()
 672       // will force the thread to self-suspend. If it hasn't gotten
 673       // there yet we may have caught the thread in-between the native
 674       // code check above and the self-suspend. Lucky us. If we were
 675       // called by wait_for_ext_suspend_completion(), then it
 676       // will be doing the retries so we don't have to.
 677       //
 678       // Since we use the saved thread state in the if-statement above,
 679       // there is a chance that the thread has already transitioned to
 680       // _thread_blocked by the time we get here. In that case, we will
 681       // make a single unnecessary pass through the logic below. This
 682       // doesn't hurt anything since we still do the trans retry.
 683 
 684       *bits |= 0x00004000;
 685 
 686       // Once the thread leaves thread_in_native_trans for another
 687       // thread state, we break out of this retry loop. We shouldn't
 688       // need this flag to prevent us from getting back here, but
 689       // sometimes paranoia is good.
 690       did_trans_retry = true;
 691 
 692       // We wait for the thread to transition to a more usable state.
 693       for (int i = 1; i <= SuspendRetryCount; i++) {
 694         // We used to do an "os::yield_all(i)" call here with the intention
 695         // that yielding would increase on each retry. However, the parameter
 696         // is ignored on Linux which means the yield didn't scale up. Waiting
 697         // on the SR_lock below provides a much more predictable scale up for
 698         // the delay. It also provides a simple/direct point to check for any
 699         // safepoint requests from the VMThread
 700 
 701         // temporarily drops SR_lock while doing wait with safepoint check
 702         // (if we're a JavaThread - the WatcherThread can also call this)
 703         // and increase delay with each retry
 704         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 705 
 706         // check the actual thread state instead of what we saved above
 707         if (thread_state() != _thread_in_native_trans) {
 708           // the thread has transitioned to another thread state so
 709           // try all the checks (except this one) one more time.
 710           do_trans_retry = true;
 711           break;
 712         }
 713       } // end retry loop
 714 
 715 
 716     }
 717   } while (do_trans_retry);
 718 
 719   *bits |= 0x00000010;
 720   return false;
 721 }
 722 
 723 //
 724 // Wait for an external suspend request to complete (or be cancelled).
 725 // Returns true if the thread is externally suspended and false otherwise.
 726 //
 727 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 728        uint32_t *bits) {
 729   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 730                              false /* !called_by_wait */, bits);
 731 
 732   // local flag copies to minimize SR_lock hold time
 733   bool is_suspended;
 734   bool pending;
 735   uint32_t reset_bits;
 736 
 737   // set a marker so is_ext_suspend_completed() knows we are the caller
 738   *bits |= 0x00010000;
 739 
 740   // We use reset_bits to reinitialize the bits value at the top of
 741   // each retry loop. This allows the caller to make use of any
 742   // unused bits for their own marking purposes.
 743   reset_bits = *bits;
 744 
 745   {
 746     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 747     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 748                                             delay, bits);
 749     pending = is_external_suspend();
 750   }
 751   // must release SR_lock to allow suspension to complete
 752 
 753   if (!pending) {
 754     // A cancelled suspend request is the only false return from
 755     // is_ext_suspend_completed() that keeps us from entering the
 756     // retry loop.
 757     *bits |= 0x00020000;
 758     return false;
 759   }
 760 
 761   if (is_suspended) {
 762     *bits |= 0x00040000;
 763     return true;
 764   }
 765 
 766   for (int i = 1; i <= retries; i++) {
 767     *bits = reset_bits;  // reinit to only track last retry
 768 
 769     // We used to do an "os::yield_all(i)" call here with the intention
 770     // that yielding would increase on each retry. However, the parameter
 771     // is ignored on Linux which means the yield didn't scale up. Waiting
 772     // on the SR_lock below provides a much more predictable scale up for
 773     // the delay. It also provides a simple/direct point to check for any
 774     // safepoint requests from the VMThread
 775 
 776     {
 777       MutexLocker ml(SR_lock());
 778       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 779       // can also call this)  and increase delay with each retry
 780       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 781 
 782       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 783                                               delay, bits);
 784 
 785       // It is possible for the external suspend request to be cancelled
 786       // (by a resume) before the actual suspend operation is completed.
 787       // Refresh our local copy to see if we still need to wait.
 788       pending = is_external_suspend();
 789     }
 790 
 791     if (!pending) {
 792       // A cancelled suspend request is the only false return from
 793       // is_ext_suspend_completed() that keeps us from staying in the
 794       // retry loop.
 795       *bits |= 0x00080000;
 796       return false;
 797     }
 798 
 799     if (is_suspended) {
 800       *bits |= 0x00100000;
 801       return true;
 802     }
 803   } // end retry loop
 804 
 805   // thread did not suspend after all our retries
 806   *bits |= 0x00200000;
 807   return false;
 808 }
 809 
 810 #ifndef PRODUCT
 811 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
 812 
 813   // This should not need to be atomic as the only way for simultaneous
 814   // updates is via interrupts. Even then this should be rare or non-existant
 815   // and we don't care that much anyway.
 816 
 817   int index = _jmp_ring_index;
 818   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
 819   _jmp_ring[index]._target = (intptr_t) target;
 820   _jmp_ring[index]._instruction = (intptr_t) instr;
 821   _jmp_ring[index]._file = file;
 822   _jmp_ring[index]._line = line;
 823 }
 824 #endif /* PRODUCT */
 825 
 826 // Called by flat profiler
 827 // Callers have already called wait_for_ext_suspend_completion
 828 // The assertion for that is currently too complex to put here:
 829 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 830   bool gotframe = false;
 831   // self suspension saves needed state.
 832   if (has_last_Java_frame() && _anchor.walkable()) {
 833      *_fr = pd_last_frame();
 834      gotframe = true;
 835   }
 836   return gotframe;
 837 }
 838 
 839 void Thread::interrupt(Thread* thread) {
 840   trace("interrupt", thread);
 841   debug_only(check_for_dangling_thread_pointer(thread);)
 842   os::interrupt(thread);
 843 }
 844 
 845 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 846   trace("is_interrupted", thread);
 847   debug_only(check_for_dangling_thread_pointer(thread);)
 848   // Note:  If clear_interrupted==false, this simply fetches and
 849   // returns the value of the field osthread()->interrupted().
 850   return os::is_interrupted(thread, clear_interrupted);
 851 }
 852 
 853 
 854 // GC Support
 855 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 856   jint thread_parity = _oops_do_parity;
 857   if (thread_parity != strong_roots_parity) {
 858     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 859     if (res == thread_parity) {
 860       return true;
 861     } else {
 862       guarantee(res == strong_roots_parity, "Or else what?");
 863       assert(SharedHeap::heap()->workers()->active_workers() > 0,
 864          "Should only fail when parallel.");
 865       return false;
 866     }
 867   }
 868   assert(SharedHeap::heap()->workers()->active_workers() > 0,
 869          "Should only fail when parallel.");
 870   return false;
 871 }
 872 
 873 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
 874   if (active_handles() != NULL) {
 875     active_handles()->oops_do(f);
 876   }
 877   // Do oop for ThreadShadow
 878   f->do_oop((oop*)&_pending_exception);
 879   handle_area()->oops_do(f);
 880 }
 881 
 882 void Thread::nmethods_do(CodeBlobClosure* cf) {
 883   // no nmethods in a generic thread...
 884 }
 885 
 886 void Thread::metadata_do(void f(Metadata*)) {
 887   if (metadata_handles() != NULL) {
 888     for (int i = 0; i< metadata_handles()->length(); i++) {
 889       f(metadata_handles()->at(i));
 890     }
 891   }
 892 }
 893 
 894 void Thread::print_on(outputStream* st) const {
 895   // get_priority assumes osthread initialized
 896   if (osthread() != NULL) {
 897     int os_prio;
 898     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 899       st->print("os_prio=%d ", os_prio);
 900     }
 901     st->print("tid=" INTPTR_FORMAT " ", this);
 902     ext().print_on(st);
 903     osthread()->print_on(st);
 904   }
 905   debug_only(if (WizardMode) print_owned_locks_on(st);)
 906 }
 907 
 908 // Thread::print_on_error() is called by fatal error handler. Don't use
 909 // any lock or allocate memory.
 910 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 911   if      (is_VM_thread())                  st->print("VMThread");
 912   else if (is_Compiler_thread())            st->print("CompilerThread");
 913   else if (is_Java_thread())                st->print("JavaThread");
 914   else if (is_GC_task_thread())             st->print("GCTaskThread");
 915   else if (is_Watcher_thread())             st->print("WatcherThread");
 916   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
 917   else st->print("Thread");
 918 
 919   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 920             _stack_base - _stack_size, _stack_base);
 921 
 922   if (osthread()) {
 923     st->print(" [id=%d]", osthread()->thread_id());
 924   }
 925 }
 926 
 927 #ifdef ASSERT
 928 void Thread::print_owned_locks_on(outputStream* st) const {
 929   Monitor *cur = _owned_locks;
 930   if (cur == NULL) {
 931     st->print(" (no locks) ");
 932   } else {
 933     st->print_cr(" Locks owned:");
 934     while(cur) {
 935       cur->print_on(st);
 936       cur = cur->next();
 937     }
 938   }
 939 }
 940 
 941 static int ref_use_count  = 0;
 942 
 943 bool Thread::owns_locks_but_compiled_lock() const {
 944   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 945     if (cur != Compile_lock) return true;
 946   }
 947   return false;
 948 }
 949 
 950 
 951 #endif
 952 
 953 #ifndef PRODUCT
 954 
 955 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 956 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 957 // no threads which allow_vm_block's are held
 958 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 959     // Check if current thread is allowed to block at a safepoint
 960     if (!(_allow_safepoint_count == 0))
 961       fatal("Possible safepoint reached by thread that does not allow it");
 962     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 963       fatal("LEAF method calling lock?");
 964     }
 965 
 966 #ifdef ASSERT
 967     if (potential_vm_operation && is_Java_thread()
 968         && !Universe::is_bootstrapping()) {
 969       // Make sure we do not hold any locks that the VM thread also uses.
 970       // This could potentially lead to deadlocks
 971       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 972         // Threads_lock is special, since the safepoint synchronization will not start before this is
 973         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 974         // since it is used to transfer control between JavaThreads and the VMThread
 975         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
 976         if ( (cur->allow_vm_block() &&
 977               cur != Threads_lock &&
 978               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
 979               cur != VMOperationRequest_lock &&
 980               cur != VMOperationQueue_lock) ||
 981               cur->rank() == Mutex::special) {
 982           fatal(err_msg("Thread holding lock at safepoint that vm can block on: %s", cur->name()));
 983         }
 984       }
 985     }
 986 
 987     if (GCALotAtAllSafepoints) {
 988       // We could enter a safepoint here and thus have a gc
 989       InterfaceSupport::check_gc_alot();
 990     }
 991 #endif
 992 }
 993 #endif
 994 
 995 bool Thread::is_in_stack(address adr) const {
 996   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 997   address end = os::current_stack_pointer();
 998   // Allow non Java threads to call this without stack_base
 999   if (_stack_base == NULL) return true;
1000   if (stack_base() > adr && adr >= end) return true;
1001 
1002   return false;
1003 }
1004 
1005 
1006 bool Thread::is_in_usable_stack(address adr) const {
1007   size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
1008   size_t usable_stack_size = _stack_size - stack_guard_size;
1009 
1010   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
1011 }
1012 
1013 
1014 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
1015 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
1016 // used for compilation in the future. If that change is made, the need for these methods
1017 // should be revisited, and they should be removed if possible.
1018 
1019 bool Thread::is_lock_owned(address adr) const {
1020   return on_local_stack(adr);
1021 }
1022 
1023 bool Thread::set_as_starting_thread() {
1024  // NOTE: this must be called inside the main thread.
1025   return os::create_main_thread((JavaThread*)this);
1026 }
1027 
1028 static void initialize_class(Symbol* class_name, TRAPS) {
1029   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
1030   InstanceKlass::cast(klass)->initialize(CHECK);
1031 }
1032 
1033 
1034 // Creates the initial ThreadGroup
1035 static Handle create_initial_thread_group(TRAPS) {
1036   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
1037   instanceKlassHandle klass (THREAD, k);
1038 
1039   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
1040   {
1041     JavaValue result(T_VOID);
1042     JavaCalls::call_special(&result,
1043                             system_instance,
1044                             klass,
1045                             vmSymbols::object_initializer_name(),
1046                             vmSymbols::void_method_signature(),
1047                             CHECK_NH);
1048   }
1049   Universe::set_system_thread_group(system_instance());
1050 
1051   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
1052   {
1053     JavaValue result(T_VOID);
1054     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1055     JavaCalls::call_special(&result,
1056                             main_instance,
1057                             klass,
1058                             vmSymbols::object_initializer_name(),
1059                             vmSymbols::threadgroup_string_void_signature(),
1060                             system_instance,
1061                             string,
1062                             CHECK_NH);
1063   }
1064   return main_instance;
1065 }
1066 
1067 // Creates the initial Thread
1068 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
1069   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1070   instanceKlassHandle klass (THREAD, k);
1071   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
1072 
1073   java_lang_Thread::set_thread(thread_oop(), thread);
1074   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1075   thread->set_threadObj(thread_oop());
1076 
1077   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1078 
1079   JavaValue result(T_VOID);
1080   JavaCalls::call_special(&result, thread_oop,
1081                                    klass,
1082                                    vmSymbols::object_initializer_name(),
1083                                    vmSymbols::threadgroup_string_void_signature(),
1084                                    thread_group,
1085                                    string,
1086                                    CHECK_NULL);
1087   return thread_oop();
1088 }
1089 
1090 static void call_initializeSystemClass(TRAPS) {
1091   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1092   instanceKlassHandle klass (THREAD, k);
1093 
1094   JavaValue result(T_VOID);
1095   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1096                                          vmSymbols::void_method_signature(), CHECK);
1097 }
1098 
1099 char java_runtime_name[128] = "";
1100 char java_runtime_version[128] = "";
1101 
1102 // extract the JRE name from sun.misc.Version.java_runtime_name
1103 static const char* get_java_runtime_name(TRAPS) {
1104   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1105                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1106   fieldDescriptor fd;
1107   bool found = k != NULL &&
1108                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1109                                                         vmSymbols::string_signature(), &fd);
1110   if (found) {
1111     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1112     if (name_oop == NULL)
1113       return NULL;
1114     const char* name = java_lang_String::as_utf8_string(name_oop,
1115                                                         java_runtime_name,
1116                                                         sizeof(java_runtime_name));
1117     return name;
1118   } else {
1119     return NULL;
1120   }
1121 }
1122 
1123 // extract the JRE version from sun.misc.Version.java_runtime_version
1124 static const char* get_java_runtime_version(TRAPS) {
1125   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1126                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1127   fieldDescriptor fd;
1128   bool found = k != NULL &&
1129                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1130                                                         vmSymbols::string_signature(), &fd);
1131   if (found) {
1132     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1133     if (name_oop == NULL)
1134       return NULL;
1135     const char* name = java_lang_String::as_utf8_string(name_oop,
1136                                                         java_runtime_version,
1137                                                         sizeof(java_runtime_version));
1138     return name;
1139   } else {
1140     return NULL;
1141   }
1142 }
1143 
1144 // General purpose hook into Java code, run once when the VM is initialized.
1145 // The Java library method itself may be changed independently from the VM.
1146 static void call_postVMInitHook(TRAPS) {
1147   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1148   instanceKlassHandle klass (THREAD, k);
1149   if (klass.not_null()) {
1150     JavaValue result(T_VOID);
1151     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1152                                            vmSymbols::void_method_signature(),
1153                                            CHECK);
1154   }
1155 }
1156 
1157 static void reset_vm_info_property(TRAPS) {
1158   // the vm info string
1159   ResourceMark rm(THREAD);
1160   const char *vm_info = VM_Version::vm_info_string();
1161 
1162   // java.lang.System class
1163   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1164   instanceKlassHandle klass (THREAD, k);
1165 
1166   // setProperty arguments
1167   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1168   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1169 
1170   // return value
1171   JavaValue r(T_OBJECT);
1172 
1173   // public static String setProperty(String key, String value);
1174   JavaCalls::call_static(&r,
1175                          klass,
1176                          vmSymbols::setProperty_name(),
1177                          vmSymbols::string_string_string_signature(),
1178                          key_str,
1179                          value_str,
1180                          CHECK);
1181 }
1182 
1183 
1184 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1185   assert(thread_group.not_null(), "thread group should be specified");
1186   assert(threadObj() == NULL, "should only create Java thread object once");
1187 
1188   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1189   instanceKlassHandle klass (THREAD, k);
1190   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1191 
1192   java_lang_Thread::set_thread(thread_oop(), this);
1193   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1194   set_threadObj(thread_oop());
1195 
1196   JavaValue result(T_VOID);
1197   if (thread_name != NULL) {
1198     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1199     // Thread gets assigned specified name and null target
1200     JavaCalls::call_special(&result,
1201                             thread_oop,
1202                             klass,
1203                             vmSymbols::object_initializer_name(),
1204                             vmSymbols::threadgroup_string_void_signature(),
1205                             thread_group, // Argument 1
1206                             name,         // Argument 2
1207                             THREAD);
1208   } else {
1209     // Thread gets assigned name "Thread-nnn" and null target
1210     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1211     JavaCalls::call_special(&result,
1212                             thread_oop,
1213                             klass,
1214                             vmSymbols::object_initializer_name(),
1215                             vmSymbols::threadgroup_runnable_void_signature(),
1216                             thread_group, // Argument 1
1217                             Handle(),     // Argument 2
1218                             THREAD);
1219   }
1220 
1221 
1222   if (daemon) {
1223       java_lang_Thread::set_daemon(thread_oop());
1224   }
1225 
1226   if (HAS_PENDING_EXCEPTION) {
1227     return;
1228   }
1229 
1230   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1231   Handle threadObj(this, this->threadObj());
1232 
1233   JavaCalls::call_special(&result,
1234                          thread_group,
1235                          group,
1236                          vmSymbols::add_method_name(),
1237                          vmSymbols::thread_void_signature(),
1238                          threadObj,          // Arg 1
1239                          THREAD);
1240 
1241 
1242 }
1243 
1244 // NamedThread --  non-JavaThread subclasses with multiple
1245 // uniquely named instances should derive from this.
1246 NamedThread::NamedThread() : Thread() {
1247   _name = NULL;
1248   _processed_thread = NULL;
1249 }
1250 
1251 NamedThread::~NamedThread() {
1252   JFR_ONLY(Jfr::on_thread_exit(this);)
1253   if (_name != NULL) {
1254     FREE_C_HEAP_ARRAY(char, _name, mtThread);
1255     _name = NULL;
1256   }
1257 }
1258 
1259 void NamedThread::set_name(const char* format, ...) {
1260   guarantee(_name == NULL, "Only get to set name once.");
1261   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1262   guarantee(_name != NULL, "alloc failure");
1263   va_list ap;
1264   va_start(ap, format);
1265   jio_vsnprintf(_name, max_name_len, format, ap);
1266   va_end(ap);
1267 }
1268 
1269 // ======= WatcherThread ========
1270 
1271 // The watcher thread exists to simulate timer interrupts.  It should
1272 // be replaced by an abstraction over whatever native support for
1273 // timer interrupts exists on the platform.
1274 
1275 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1276 bool WatcherThread::_startable = false;
1277 volatile bool  WatcherThread::_should_terminate = false;
1278 
1279 WatcherThread::WatcherThread() : Thread() {
1280   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1281   if (os::create_thread(this, os::watcher_thread)) {
1282     _watcher_thread = this;
1283 
1284     // Set the watcher thread to the highest OS priority which should not be
1285     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1286     // is created. The only normal thread using this priority is the reference
1287     // handler thread, which runs for very short intervals only.
1288     // If the VMThread's priority is not lower than the WatcherThread profiling
1289     // will be inaccurate.
1290     os::set_priority(this, MaxPriority);
1291     if (!DisableStartThread) {
1292       os::start_thread(this);
1293     }
1294   }
1295 }
1296 
1297 int WatcherThread::sleep() const {
1298   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1299 
1300   // remaining will be zero if there are no tasks,
1301   // causing the WatcherThread to sleep until a task is
1302   // enrolled
1303   int remaining = PeriodicTask::time_to_wait();
1304   int time_slept = 0;
1305 
1306   // we expect this to timeout - we only ever get unparked when
1307   // we should terminate or when a new task has been enrolled
1308   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1309 
1310   jlong time_before_loop = os::javaTimeNanos();
1311 
1312   for (;;) {
1313     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
1314     jlong now = os::javaTimeNanos();
1315 
1316     if (remaining == 0) {
1317         // if we didn't have any tasks we could have waited for a long time
1318         // consider the time_slept zero and reset time_before_loop
1319         time_slept = 0;
1320         time_before_loop = now;
1321     } else {
1322         // need to recalulate since we might have new tasks in _tasks
1323         time_slept = (int) ((now - time_before_loop) / 1000000);
1324     }
1325 
1326     // Change to task list or spurious wakeup of some kind
1327     if (timedout || _should_terminate) {
1328         break;
1329     }
1330 
1331     remaining = PeriodicTask::time_to_wait();
1332     if (remaining == 0) {
1333         // Last task was just disenrolled so loop around and wait until
1334         // another task gets enrolled
1335         continue;
1336     }
1337 
1338     remaining -= time_slept;
1339     if (remaining <= 0)
1340       break;
1341   }
1342 
1343   return time_slept;
1344 }
1345 
1346 void WatcherThread::run() {
1347   assert(this == watcher_thread(), "just checking");
1348 
1349   this->record_stack_base_and_size();
1350   this->initialize_thread_local_storage();
1351   this->set_native_thread_name(this->name());
1352   this->set_active_handles(JNIHandleBlock::allocate_block());
1353   while(!_should_terminate) {
1354     assert(watcher_thread() == Thread::current(),  "thread consistency check");
1355     assert(watcher_thread() == this,  "thread consistency check");
1356 
1357     // Calculate how long it'll be until the next PeriodicTask work
1358     // should be done, and sleep that amount of time.
1359     int time_waited = sleep();
1360 
1361     if (is_error_reported()) {
1362       // A fatal error has happened, the error handler(VMError::report_and_die)
1363       // should abort JVM after creating an error log file. However in some
1364       // rare cases, the error handler itself might deadlock. Here we try to
1365       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1366       //
1367       // This code is in WatcherThread because WatcherThread wakes up
1368       // periodically so the fatal error handler doesn't need to do anything;
1369       // also because the WatcherThread is less likely to crash than other
1370       // threads.
1371 
1372       for (;;) {
1373         if (!ShowMessageBoxOnError
1374          && (OnError == NULL || OnError[0] == '\0')
1375          && Arguments::abort_hook() == NULL) {
1376              os::sleep(this, 2 * 60 * 1000, false);
1377              fdStream err(defaultStream::output_fd());
1378              err.print_raw_cr("# [ timer expired, abort... ]");
1379              // skip atexit/vm_exit/vm_abort hooks
1380              os::die();
1381         }
1382 
1383         // Wake up 5 seconds later, the fatal handler may reset OnError or
1384         // ShowMessageBoxOnError when it is ready to abort.
1385         os::sleep(this, 5 * 1000, false);
1386       }
1387     }
1388 
1389     PeriodicTask::real_time_tick(time_waited);
1390   }
1391 
1392   // Signal that it is terminated
1393   {
1394     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1395     _watcher_thread = NULL;
1396     Terminator_lock->notify();
1397   }
1398 
1399   // Thread destructor usually does this..
1400   ThreadLocalStorage::set_thread(NULL);
1401 }
1402 
1403 void WatcherThread::start() {
1404   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1405 
1406   if (watcher_thread() == NULL && _startable) {
1407     _should_terminate = false;
1408     // Create the single instance of WatcherThread
1409     new WatcherThread();
1410   }
1411 }
1412 
1413 void WatcherThread::make_startable() {
1414   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1415   _startable = true;
1416 }
1417 
1418 void WatcherThread::stop() {
1419   {
1420     MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1421     _should_terminate = true;
1422     OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1423 
1424     WatcherThread* watcher = watcher_thread();
1425     if (watcher != NULL)
1426       watcher->unpark();
1427   }
1428 
1429   // it is ok to take late safepoints here, if needed
1430   MutexLocker mu(Terminator_lock);
1431 
1432   while(watcher_thread() != NULL) {
1433     // This wait should make safepoint checks, wait without a timeout,
1434     // and wait as a suspend-equivalent condition.
1435     //
1436     // Note: If the FlatProfiler is running, then this thread is waiting
1437     // for the WatcherThread to terminate and the WatcherThread, via the
1438     // FlatProfiler task, is waiting for the external suspend request on
1439     // this thread to complete. wait_for_ext_suspend_completion() will
1440     // eventually timeout, but that takes time. Making this wait a
1441     // suspend-equivalent condition solves that timeout problem.
1442     //
1443     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1444                           Mutex::_as_suspend_equivalent_flag);
1445   }
1446 }
1447 
1448 void WatcherThread::unpark() {
1449   MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1450   PeriodicTask_lock->notify();
1451 }
1452 
1453 void WatcherThread::print_on(outputStream* st) const {
1454   st->print("\"%s\" ", name());
1455   Thread::print_on(st);
1456   st->cr();
1457 }
1458 
1459 // ======= JavaThread ========
1460 
1461 // A JavaThread is a normal Java thread
1462 
1463 void JavaThread::initialize() {
1464   // Initialize fields
1465 
1466   // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1467   set_claimed_par_id(UINT_MAX);
1468 
1469   set_saved_exception_pc(NULL);
1470   set_threadObj(NULL);
1471   _anchor.clear();
1472   set_entry_point(NULL);
1473   set_jni_functions(jni_functions());
1474   set_callee_target(NULL);
1475   set_vm_result(NULL);
1476   set_vm_result_2(NULL);
1477   set_vframe_array_head(NULL);
1478   set_vframe_array_last(NULL);
1479   set_deferred_locals(NULL);
1480   set_deopt_mark(NULL);
1481   set_deopt_nmethod(NULL);
1482   clear_must_deopt_id();
1483   set_monitor_chunks(NULL);
1484   set_next(NULL);
1485   set_thread_state(_thread_new);
1486   _terminated = _not_terminated;
1487   _privileged_stack_top = NULL;
1488   _array_for_gc = NULL;
1489   _suspend_equivalent = false;
1490   _in_deopt_handler = 0;
1491   _doing_unsafe_access = false;
1492   _stack_guard_state = stack_guard_unused;
1493   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1494   _exception_pc  = 0;
1495   _exception_handler_pc = 0;
1496   _is_method_handle_return = 0;
1497   _jvmti_thread_state= NULL;
1498   _should_post_on_exceptions_flag = JNI_FALSE;
1499   _jvmti_get_loaded_classes_closure = NULL;
1500   _interp_only_mode    = 0;
1501   _special_runtime_exit_condition = _no_async_condition;
1502   _pending_async_exception = NULL;
1503   _thread_stat = NULL;
1504   _thread_stat = new ThreadStatistics();
1505   _blocked_on_compilation = false;
1506   _jni_active_critical = 0;
1507   _pending_jni_exception_check_fn = NULL;
1508   _do_not_unlock_if_synchronized = false;
1509   _cached_monitor_info = NULL;
1510   _parker = Parker::Allocate(this) ;
1511 
1512 #ifndef PRODUCT
1513   _jmp_ring_index = 0;
1514   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1515     record_jump(NULL, NULL, NULL, 0);
1516   }
1517 #endif /* PRODUCT */
1518 
1519   set_thread_profiler(NULL);
1520   if (FlatProfiler::is_active()) {
1521     // This is where we would decide to either give each thread it's own profiler
1522     // or use one global one from FlatProfiler,
1523     // or up to some count of the number of profiled threads, etc.
1524     ThreadProfiler* pp = new ThreadProfiler();
1525     pp->engage();
1526     set_thread_profiler(pp);
1527   }
1528 
1529   // Setup safepoint state info for this thread
1530   ThreadSafepointState::create(this);
1531 
1532   debug_only(_java_call_counter = 0);
1533 
1534   // JVMTI PopFrame support
1535   _popframe_condition = popframe_inactive;
1536   _popframe_preserved_args = NULL;
1537   _popframe_preserved_args_size = 0;
1538   _frames_to_pop_failed_realloc = 0;
1539 
1540   pd_initialize();
1541 }
1542 
1543 #if INCLUDE_ALL_GCS
1544 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1545 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1546 char Thread::_gc_state_global = 0;
1547 #endif // INCLUDE_ALL_GCS
1548 
1549 JavaThread::JavaThread(bool is_attaching_via_jni) :
1550   Thread()
1551 #if INCLUDE_ALL_GCS
1552   , _satb_mark_queue(&_satb_mark_queue_set),
1553   _dirty_card_queue(&_dirty_card_queue_set)
1554 #endif // INCLUDE_ALL_GCS
1555 {
1556   initialize();
1557   if (is_attaching_via_jni) {
1558     _jni_attach_state = _attaching_via_jni;
1559   } else {
1560     _jni_attach_state = _not_attaching_via_jni;
1561   }
1562   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1563 }
1564 
1565 bool JavaThread::reguard_stack(address cur_sp) {
1566   if (_stack_guard_state != stack_guard_yellow_disabled) {
1567     return true; // Stack already guarded or guard pages not needed.
1568   }
1569 
1570   if (register_stack_overflow()) {
1571     // For those architectures which have separate register and
1572     // memory stacks, we must check the register stack to see if
1573     // it has overflowed.
1574     return false;
1575   }
1576 
1577   // Java code never executes within the yellow zone: the latter is only
1578   // there to provoke an exception during stack banging.  If java code
1579   // is executing there, either StackShadowPages should be larger, or
1580   // some exception code in c1, c2 or the interpreter isn't unwinding
1581   // when it should.
1582   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1583 
1584   enable_stack_yellow_zone();
1585   return true;
1586 }
1587 
1588 bool JavaThread::reguard_stack(void) {
1589   return reguard_stack(os::current_stack_pointer());
1590 }
1591 
1592 
1593 void JavaThread::block_if_vm_exited() {
1594   if (_terminated == _vm_exited) {
1595     // _vm_exited is set at safepoint, and Threads_lock is never released
1596     // we will block here forever
1597     Threads_lock->lock_without_safepoint_check();
1598     ShouldNotReachHere();
1599   }
1600 }
1601 
1602 
1603 // Remove this ifdef when C1 is ported to the compiler interface.
1604 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1605 
1606 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1607   Thread()
1608 #if INCLUDE_ALL_GCS
1609   , _satb_mark_queue(&_satb_mark_queue_set),
1610   _dirty_card_queue(&_dirty_card_queue_set)
1611 #endif // INCLUDE_ALL_GCS
1612 {
1613   if (TraceThreadEvents) {
1614     tty->print_cr("creating thread %p", this);
1615   }
1616   initialize();
1617   _jni_attach_state = _not_attaching_via_jni;
1618   set_entry_point(entry_point);
1619   // Create the native thread itself.
1620   // %note runtime_23
1621   os::ThreadType thr_type = os::java_thread;
1622   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1623                                                      os::java_thread;
1624   os::create_thread(this, thr_type, stack_sz);
1625   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1626   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1627   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1628   // the exception consists of creating the exception object & initializing it, initialization
1629   // will leave the VM via a JavaCall and then all locks must be unlocked).
1630   //
1631   // The thread is still suspended when we reach here. Thread must be explicit started
1632   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1633   // by calling Threads:add. The reason why this is not done here, is because the thread
1634   // object must be fully initialized (take a look at JVM_Start)
1635 }
1636 
1637 JavaThread::~JavaThread() {
1638   if (TraceThreadEvents) {
1639       tty->print_cr("terminate thread %p", this);
1640   }
1641 
1642   // JSR166 -- return the parker to the free list
1643   Parker::Release(_parker);
1644   _parker = NULL ;
1645 
1646   // Free any remaining  previous UnrollBlock
1647   vframeArray* old_array = vframe_array_last();
1648 
1649   if (old_array != NULL) {
1650     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1651     old_array->set_unroll_block(NULL);
1652     delete old_info;
1653     delete old_array;
1654   }
1655 
1656   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1657   if (deferred != NULL) {
1658     // This can only happen if thread is destroyed before deoptimization occurs.
1659     assert(deferred->length() != 0, "empty array!");
1660     do {
1661       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1662       deferred->remove_at(0);
1663       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1664       delete dlv;
1665     } while (deferred->length() != 0);
1666     delete deferred;
1667   }
1668 
1669   // All Java related clean up happens in exit
1670   ThreadSafepointState::destroy(this);
1671   if (_thread_profiler != NULL) delete _thread_profiler;
1672   if (_thread_stat != NULL) delete _thread_stat;
1673 }
1674 
1675 
1676 // The first routine called by a new Java thread
1677 void JavaThread::run() {
1678   // initialize thread-local alloc buffer related fields
1679   this->initialize_tlab();
1680 
1681   // used to test validitity of stack trace backs
1682   this->record_base_of_stack_pointer();
1683 
1684   // Record real stack base and size.
1685   this->record_stack_base_and_size();
1686 
1687   // Initialize thread local storage; set before calling MutexLocker
1688   this->initialize_thread_local_storage();
1689 
1690   this->create_stack_guard_pages();
1691 
1692   this->cache_global_variables();
1693 
1694   // Thread is now sufficient initialized to be handled by the safepoint code as being
1695   // in the VM. Change thread state from _thread_new to _thread_in_vm
1696   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1697 
1698   assert(JavaThread::current() == this, "sanity check");
1699   assert(!Thread::current()->owns_locks(), "sanity check");
1700 
1701   DTRACE_THREAD_PROBE(start, this);
1702 
1703   // This operation might block. We call that after all safepoint checks for a new thread has
1704   // been completed.
1705   this->set_active_handles(JNIHandleBlock::allocate_block());
1706 
1707   if (JvmtiExport::should_post_thread_life()) {
1708     JvmtiExport::post_thread_start(this);
1709   }
1710 
1711   JFR_ONLY(Jfr::on_thread_start(this);)
1712 
1713   // We call another function to do the rest so we are sure that the stack addresses used
1714   // from there will be lower than the stack base just computed
1715   thread_main_inner();
1716 
1717   // Note, thread is no longer valid at this point!
1718 }
1719 
1720 
1721 void JavaThread::thread_main_inner() {
1722   assert(JavaThread::current() == this, "sanity check");
1723   assert(this->threadObj() != NULL, "just checking");
1724 
1725   // Execute thread entry point unless this thread has a pending exception
1726   // or has been stopped before starting.
1727   // Note: Due to JVM_StopThread we can have pending exceptions already!
1728   if (!this->has_pending_exception() &&
1729       !java_lang_Thread::is_stillborn(this->threadObj())) {
1730     {
1731       ResourceMark rm(this);
1732       this->set_native_thread_name(this->get_thread_name());
1733     }
1734     HandleMark hm(this);
1735     this->entry_point()(this, this);
1736   }
1737 
1738   DTRACE_THREAD_PROBE(stop, this);
1739 
1740   this->exit(false);
1741   delete this;
1742 }
1743 
1744 
1745 static void ensure_join(JavaThread* thread) {
1746   // We do not need to grap the Threads_lock, since we are operating on ourself.
1747   Handle threadObj(thread, thread->threadObj());
1748   assert(threadObj.not_null(), "java thread object must exist");
1749   ObjectLocker lock(threadObj, thread);
1750   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1751   thread->clear_pending_exception();
1752   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1753   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1754   // Clear the native thread instance - this makes isAlive return false and allows the join()
1755   // to complete once we've done the notify_all below
1756   java_lang_Thread::set_thread(threadObj(), NULL);
1757   lock.notify_all(thread);
1758   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1759   thread->clear_pending_exception();
1760 }
1761 
1762 
1763 // For any new cleanup additions, please check to see if they need to be applied to
1764 // cleanup_failed_attach_current_thread as well.
1765 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1766   assert(this == JavaThread::current(),  "thread consistency check");
1767 
1768   HandleMark hm(this);
1769   Handle uncaught_exception(this, this->pending_exception());
1770   this->clear_pending_exception();
1771   Handle threadObj(this, this->threadObj());
1772   assert(threadObj.not_null(), "Java thread object should be created");
1773 
1774   if (get_thread_profiler() != NULL) {
1775     get_thread_profiler()->disengage();
1776     ResourceMark rm;
1777     get_thread_profiler()->print(get_thread_name());
1778   }
1779 
1780 
1781   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1782   {
1783     EXCEPTION_MARK;
1784 
1785     CLEAR_PENDING_EXCEPTION;
1786   }
1787   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1788   // has to be fixed by a runtime query method
1789   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1790     // JSR-166: change call from from ThreadGroup.uncaughtException to
1791     // java.lang.Thread.dispatchUncaughtException
1792     if (uncaught_exception.not_null()) {
1793       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1794       {
1795         EXCEPTION_MARK;
1796         // Check if the method Thread.dispatchUncaughtException() exists. If so
1797         // call it.  Otherwise we have an older library without the JSR-166 changes,
1798         // so call ThreadGroup.uncaughtException()
1799         KlassHandle recvrKlass(THREAD, threadObj->klass());
1800         CallInfo callinfo;
1801         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1802         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1803                                            vmSymbols::dispatchUncaughtException_name(),
1804                                            vmSymbols::throwable_void_signature(),
1805                                            KlassHandle(), false, false, THREAD);
1806         CLEAR_PENDING_EXCEPTION;
1807         methodHandle method = callinfo.selected_method();
1808         if (method.not_null()) {
1809           JavaValue result(T_VOID);
1810           JavaCalls::call_virtual(&result,
1811                                   threadObj, thread_klass,
1812                                   vmSymbols::dispatchUncaughtException_name(),
1813                                   vmSymbols::throwable_void_signature(),
1814                                   uncaught_exception,
1815                                   THREAD);
1816         } else {
1817           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1818           JavaValue result(T_VOID);
1819           JavaCalls::call_virtual(&result,
1820                                   group, thread_group,
1821                                   vmSymbols::uncaughtException_name(),
1822                                   vmSymbols::thread_throwable_void_signature(),
1823                                   threadObj,           // Arg 1
1824                                   uncaught_exception,  // Arg 2
1825                                   THREAD);
1826         }
1827         if (HAS_PENDING_EXCEPTION) {
1828           ResourceMark rm(this);
1829           jio_fprintf(defaultStream::error_stream(),
1830                 "\nException: %s thrown from the UncaughtExceptionHandler"
1831                 " in thread \"%s\"\n",
1832                 pending_exception()->klass()->external_name(),
1833                 get_thread_name());
1834           CLEAR_PENDING_EXCEPTION;
1835         }
1836       }
1837     }
1838     JFR_ONLY(Jfr::on_java_thread_dismantle(this);)
1839 
1840     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1841     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1842     // is deprecated anyhow.
1843     if (!is_Compiler_thread()) {
1844       int count = 3;
1845       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1846         EXCEPTION_MARK;
1847         JavaValue result(T_VOID);
1848         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1849         JavaCalls::call_virtual(&result,
1850                               threadObj, thread_klass,
1851                               vmSymbols::exit_method_name(),
1852                               vmSymbols::void_method_signature(),
1853                               THREAD);
1854         CLEAR_PENDING_EXCEPTION;
1855       }
1856     }
1857     // notify JVMTI
1858     if (JvmtiExport::should_post_thread_life()) {
1859       JvmtiExport::post_thread_end(this);
1860     }
1861 
1862     // We have notified the agents that we are exiting, before we go on,
1863     // we must check for a pending external suspend request and honor it
1864     // in order to not surprise the thread that made the suspend request.
1865     while (true) {
1866       {
1867         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1868         if (!is_external_suspend()) {
1869           set_terminated(_thread_exiting);
1870           ThreadService::current_thread_exiting(this);
1871           break;
1872         }
1873         // Implied else:
1874         // Things get a little tricky here. We have a pending external
1875         // suspend request, but we are holding the SR_lock so we
1876         // can't just self-suspend. So we temporarily drop the lock
1877         // and then self-suspend.
1878       }
1879 
1880       ThreadBlockInVM tbivm(this);
1881       java_suspend_self();
1882 
1883       // We're done with this suspend request, but we have to loop around
1884       // and check again. Eventually we will get SR_lock without a pending
1885       // external suspend request and will be able to mark ourselves as
1886       // exiting.
1887     }
1888     // no more external suspends are allowed at this point
1889   } else {
1890     // before_exit() has already posted JVMTI THREAD_END events
1891   }
1892 
1893   // Notify waiters on thread object. This has to be done after exit() is called
1894   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1895   // group should have the destroyed bit set before waiters are notified).
1896   ensure_join(this);
1897   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1898 
1899   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1900   // held by this thread must be released.  A detach operation must only
1901   // get here if there are no Java frames on the stack.  Therefore, any
1902   // owned monitors at this point MUST be JNI-acquired monitors which are
1903   // pre-inflated and in the monitor cache.
1904   //
1905   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1906   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1907     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1908     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1909     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1910   }
1911 
1912   // These things needs to be done while we are still a Java Thread. Make sure that thread
1913   // is in a consistent state, in case GC happens
1914   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1915   JFR_ONLY(Jfr::on_thread_exit(this);)
1916 
1917   if (active_handles() != NULL) {
1918     JNIHandleBlock* block = active_handles();
1919     set_active_handles(NULL);
1920     JNIHandleBlock::release_block(block);
1921   }
1922 
1923   if (free_handle_block() != NULL) {
1924     JNIHandleBlock* block = free_handle_block();
1925     set_free_handle_block(NULL);
1926     JNIHandleBlock::release_block(block);
1927   }
1928 
1929   // These have to be removed while this is still a valid thread.
1930   remove_stack_guard_pages();
1931 
1932   if (UseTLAB) {
1933     tlab().make_parsable(true);  // retire TLAB
1934   }
1935 
1936   if (JvmtiEnv::environments_might_exist()) {
1937     JvmtiExport::cleanup_thread(this);
1938   }
1939 
1940   // We must flush any deferred card marks before removing a thread from
1941   // the list of active threads.
1942   Universe::heap()->flush_deferred_store_barrier(this);
1943   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1944 
1945 #if INCLUDE_ALL_GCS
1946   // We must flush the G1-related buffers before removing a thread
1947   // from the list of active threads. We must do this after any deferred
1948   // card marks have been flushed (above) so that any entries that are
1949   // added to the thread's dirty card queue as a result are not lost.
1950   if (UseG1GC || (UseShenandoahGC)) {
1951     flush_barrier_queues();
1952   }
1953   if (UseShenandoahGC && UseTLAB && gclab().is_initialized()) {
1954     gclab().make_parsable(true);
1955   }
1956 #endif // INCLUDE_ALL_GCS
1957 
1958   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1959   Threads::remove(this);
1960 }
1961 
1962 #if INCLUDE_ALL_GCS
1963 // Flush G1-related queues.
1964 void JavaThread::flush_barrier_queues() {
1965   satb_mark_queue().flush();
1966   dirty_card_queue().flush();
1967 }
1968 
1969 void JavaThread::initialize_queues() {
1970   assert(!SafepointSynchronize::is_at_safepoint(),
1971          "we should not be at a safepoint");
1972 
1973   ObjPtrQueue& satb_queue = satb_mark_queue();
1974   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1975   // The SATB queue should have been constructed with its active
1976   // field set to false.
1977   assert(!satb_queue.is_active(), "SATB queue should not be active");
1978   assert(satb_queue.is_empty(), "SATB queue should be empty");
1979   // If we are creating the thread during a marking cycle, we should
1980   // set the active field of the SATB queue to true.
1981   if (satb_queue_set.is_active()) {
1982     satb_queue.set_active(true);
1983   }
1984 
1985   DirtyCardQueue& dirty_queue = dirty_card_queue();
1986   // The dirty card queue should have been constructed with its
1987   // active field set to true.
1988   assert(dirty_queue.is_active(), "dirty card queue should be active");
1989 
1990   _gc_state = _gc_state_global;
1991 }
1992 
1993 void JavaThread::set_gc_state(char in_prog) {
1994   _gc_state = in_prog;
1995 }
1996 
1997 void JavaThread::set_gc_state_all_threads(char in_prog) {
1998   assert_locked_or_safepoint(Threads_lock);
1999   _gc_state_global = in_prog;
2000   for (JavaThread* t = Threads::first(); t != NULL; t = t->next()) {
2001     t->set_gc_state(in_prog);
2002   }
2003 }
2004 
2005 void JavaThread::set_force_satb_flush_all_threads(bool value) {
2006   assert_locked_or_safepoint(Threads_lock);
2007   for (JavaThread* t = Threads::first(); t != NULL; t = t->next()) {
2008     t->set_force_satb_flush(value);
2009   }
2010 }
2011 #endif // INCLUDE_ALL_GCS
2012 
2013 void JavaThread::cleanup_failed_attach_current_thread() {
2014   if (get_thread_profiler() != NULL) {
2015     get_thread_profiler()->disengage();
2016     ResourceMark rm;
2017     get_thread_profiler()->print(get_thread_name());
2018   }
2019 
2020   if (active_handles() != NULL) {
2021     JNIHandleBlock* block = active_handles();
2022     set_active_handles(NULL);
2023     JNIHandleBlock::release_block(block);
2024   }
2025 
2026   if (free_handle_block() != NULL) {
2027     JNIHandleBlock* block = free_handle_block();
2028     set_free_handle_block(NULL);
2029     JNIHandleBlock::release_block(block);
2030   }
2031 
2032   // These have to be removed while this is still a valid thread.
2033   remove_stack_guard_pages();
2034 
2035   if (UseTLAB) {
2036     tlab().make_parsable(true);  // retire TLAB, if any
2037   }
2038 
2039 #if INCLUDE_ALL_GCS
2040   if (UseG1GC || (UseShenandoahGC)) {
2041     flush_barrier_queues();
2042   }
2043   if (UseShenandoahGC && UseTLAB && gclab().is_initialized()) {
2044     gclab().make_parsable(true);
2045   }
2046 #endif // INCLUDE_ALL_GCS
2047 
2048   Threads::remove(this);
2049   delete this;
2050 }
2051 
2052 
2053 
2054 
2055 JavaThread* JavaThread::active() {
2056   Thread* thread = ThreadLocalStorage::thread();
2057   assert(thread != NULL, "just checking");
2058   if (thread->is_Java_thread()) {
2059     return (JavaThread*) thread;
2060   } else {
2061     assert(thread->is_VM_thread(), "this must be a vm thread");
2062     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2063     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2064     assert(ret->is_Java_thread(), "must be a Java thread");
2065     return ret;
2066   }
2067 }
2068 
2069 bool JavaThread::is_lock_owned(address adr) const {
2070   if (Thread::is_lock_owned(adr)) return true;
2071 
2072   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2073     if (chunk->contains(adr)) return true;
2074   }
2075 
2076   return false;
2077 }
2078 
2079 
2080 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2081   chunk->set_next(monitor_chunks());
2082   set_monitor_chunks(chunk);
2083 }
2084 
2085 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2086   guarantee(monitor_chunks() != NULL, "must be non empty");
2087   if (monitor_chunks() == chunk) {
2088     set_monitor_chunks(chunk->next());
2089   } else {
2090     MonitorChunk* prev = monitor_chunks();
2091     while (prev->next() != chunk) prev = prev->next();
2092     prev->set_next(chunk->next());
2093   }
2094 }
2095 
2096 // JVM support.
2097 
2098 // Note: this function shouldn't block if it's called in
2099 // _thread_in_native_trans state (such as from
2100 // check_special_condition_for_native_trans()).
2101 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2102 
2103   if (has_last_Java_frame() && has_async_condition()) {
2104     // If we are at a polling page safepoint (not a poll return)
2105     // then we must defer async exception because live registers
2106     // will be clobbered by the exception path. Poll return is
2107     // ok because the call we a returning from already collides
2108     // with exception handling registers and so there is no issue.
2109     // (The exception handling path kills call result registers but
2110     //  this is ok since the exception kills the result anyway).
2111 
2112     if (is_at_poll_safepoint()) {
2113       // if the code we are returning to has deoptimized we must defer
2114       // the exception otherwise live registers get clobbered on the
2115       // exception path before deoptimization is able to retrieve them.
2116       //
2117       RegisterMap map(this, false);
2118       frame caller_fr = last_frame().sender(&map);
2119       assert(caller_fr.is_compiled_frame(), "what?");
2120       if (caller_fr.is_deoptimized_frame()) {
2121         if (TraceExceptions) {
2122           ResourceMark rm;
2123           tty->print_cr("deferred async exception at compiled safepoint");
2124         }
2125         return;
2126       }
2127     }
2128   }
2129 
2130   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2131   if (condition == _no_async_condition) {
2132     // Conditions have changed since has_special_runtime_exit_condition()
2133     // was called:
2134     // - if we were here only because of an external suspend request,
2135     //   then that was taken care of above (or cancelled) so we are done
2136     // - if we were here because of another async request, then it has
2137     //   been cleared between the has_special_runtime_exit_condition()
2138     //   and now so again we are done
2139     return;
2140   }
2141 
2142   // Check for pending async. exception
2143   if (_pending_async_exception != NULL) {
2144     // Only overwrite an already pending exception, if it is not a threadDeath.
2145     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2146 
2147       // We cannot call Exceptions::_throw(...) here because we cannot block
2148       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2149 
2150       if (TraceExceptions) {
2151         ResourceMark rm;
2152         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2153         if (has_last_Java_frame() ) {
2154           frame f = last_frame();
2155           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2156         }
2157         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2158       }
2159       _pending_async_exception = NULL;
2160       clear_has_async_exception();
2161     }
2162   }
2163 
2164   if (check_unsafe_error &&
2165       condition == _async_unsafe_access_error && !has_pending_exception()) {
2166     condition = _no_async_condition;  // done
2167     switch (thread_state()) {
2168     case _thread_in_vm:
2169       {
2170         JavaThread* THREAD = this;
2171         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2172       }
2173     case _thread_in_native:
2174       {
2175         ThreadInVMfromNative tiv(this);
2176         JavaThread* THREAD = this;
2177         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2178       }
2179     case _thread_in_Java:
2180       {
2181         ThreadInVMfromJava tiv(this);
2182         JavaThread* THREAD = this;
2183         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2184       }
2185     default:
2186       ShouldNotReachHere();
2187     }
2188   }
2189 
2190   assert(condition == _no_async_condition || has_pending_exception() ||
2191          (!check_unsafe_error && condition == _async_unsafe_access_error),
2192          "must have handled the async condition, if no exception");
2193 }
2194 
2195 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2196   //
2197   // Check for pending external suspend. Internal suspend requests do
2198   // not use handle_special_runtime_exit_condition().
2199   // If JNIEnv proxies are allowed, don't self-suspend if the target
2200   // thread is not the current thread. In older versions of jdbx, jdbx
2201   // threads could call into the VM with another thread's JNIEnv so we
2202   // can be here operating on behalf of a suspended thread (4432884).
2203   bool do_self_suspend = is_external_suspend_with_lock();
2204   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2205     //
2206     // Because thread is external suspended the safepoint code will count
2207     // thread as at a safepoint. This can be odd because we can be here
2208     // as _thread_in_Java which would normally transition to _thread_blocked
2209     // at a safepoint. We would like to mark the thread as _thread_blocked
2210     // before calling java_suspend_self like all other callers of it but
2211     // we must then observe proper safepoint protocol. (We can't leave
2212     // _thread_blocked with a safepoint in progress). However we can be
2213     // here as _thread_in_native_trans so we can't use a normal transition
2214     // constructor/destructor pair because they assert on that type of
2215     // transition. We could do something like:
2216     //
2217     // JavaThreadState state = thread_state();
2218     // set_thread_state(_thread_in_vm);
2219     // {
2220     //   ThreadBlockInVM tbivm(this);
2221     //   java_suspend_self()
2222     // }
2223     // set_thread_state(_thread_in_vm_trans);
2224     // if (safepoint) block;
2225     // set_thread_state(state);
2226     //
2227     // but that is pretty messy. Instead we just go with the way the
2228     // code has worked before and note that this is the only path to
2229     // java_suspend_self that doesn't put the thread in _thread_blocked
2230     // mode.
2231 
2232     frame_anchor()->make_walkable(this);
2233     java_suspend_self();
2234 
2235     // We might be here for reasons in addition to the self-suspend request
2236     // so check for other async requests.
2237   }
2238 
2239   if (check_asyncs) {
2240     check_and_handle_async_exceptions();
2241   }
2242 
2243   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(this);)
2244 }
2245 
2246 void JavaThread::send_thread_stop(oop java_throwable)  {
2247   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2248   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2249   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2250 
2251   // Do not throw asynchronous exceptions against the compiler thread
2252   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2253   if (is_Compiler_thread()) return;
2254 
2255   {
2256     // Actually throw the Throwable against the target Thread - however
2257     // only if there is no thread death exception installed already.
2258     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2259       // If the topmost frame is a runtime stub, then we are calling into
2260       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2261       // must deoptimize the caller before continuing, as the compiled  exception handler table
2262       // may not be valid
2263       if (has_last_Java_frame()) {
2264         frame f = last_frame();
2265         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2266           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2267           RegisterMap reg_map(this, UseBiasedLocking);
2268           frame compiled_frame = f.sender(&reg_map);
2269           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2270             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2271           }
2272         }
2273       }
2274 
2275       // Set async. pending exception in thread.
2276       set_pending_async_exception(java_throwable);
2277 
2278       if (TraceExceptions) {
2279        ResourceMark rm;
2280        tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2281       }
2282       // for AbortVMOnException flag
2283       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2284     }
2285   }
2286 
2287 
2288   // Interrupt thread so it will wake up from a potential wait()
2289   Thread::interrupt(this);
2290 }
2291 
2292 // External suspension mechanism.
2293 //
2294 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2295 // to any VM_locks and it is at a transition
2296 // Self-suspension will happen on the transition out of the vm.
2297 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2298 //
2299 // Guarantees on return:
2300 //   + Target thread will not execute any new bytecode (that's why we need to
2301 //     force a safepoint)
2302 //   + Target thread will not enter any new monitors
2303 //
2304 void JavaThread::java_suspend() {
2305   { MutexLocker mu(Threads_lock);
2306     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2307        return;
2308     }
2309   }
2310 
2311   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2312     if (!is_external_suspend()) {
2313       // a racing resume has cancelled us; bail out now
2314       return;
2315     }
2316 
2317     // suspend is done
2318     uint32_t debug_bits = 0;
2319     // Warning: is_ext_suspend_completed() may temporarily drop the
2320     // SR_lock to allow the thread to reach a stable thread state if
2321     // it is currently in a transient thread state.
2322     if (is_ext_suspend_completed(false /* !called_by_wait */,
2323                                  SuspendRetryDelay, &debug_bits) ) {
2324       return;
2325     }
2326   }
2327 
2328   VM_ForceSafepoint vm_suspend;
2329   VMThread::execute(&vm_suspend);
2330 }
2331 
2332 // Part II of external suspension.
2333 // A JavaThread self suspends when it detects a pending external suspend
2334 // request. This is usually on transitions. It is also done in places
2335 // where continuing to the next transition would surprise the caller,
2336 // e.g., monitor entry.
2337 //
2338 // Returns the number of times that the thread self-suspended.
2339 //
2340 // Note: DO NOT call java_suspend_self() when you just want to block current
2341 //       thread. java_suspend_self() is the second stage of cooperative
2342 //       suspension for external suspend requests and should only be used
2343 //       to complete an external suspend request.
2344 //
2345 int JavaThread::java_suspend_self() {
2346   int ret = 0;
2347 
2348   // we are in the process of exiting so don't suspend
2349   if (is_exiting()) {
2350      clear_external_suspend();
2351      return ret;
2352   }
2353 
2354   assert(_anchor.walkable() ||
2355     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2356     "must have walkable stack");
2357 
2358   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2359 
2360   assert(!this->is_ext_suspended(),
2361     "a thread trying to self-suspend should not already be suspended");
2362 
2363   if (this->is_suspend_equivalent()) {
2364     // If we are self-suspending as a result of the lifting of a
2365     // suspend equivalent condition, then the suspend_equivalent
2366     // flag is not cleared until we set the ext_suspended flag so
2367     // that wait_for_ext_suspend_completion() returns consistent
2368     // results.
2369     this->clear_suspend_equivalent();
2370   }
2371 
2372   // A racing resume may have cancelled us before we grabbed SR_lock
2373   // above. Or another external suspend request could be waiting for us
2374   // by the time we return from SR_lock()->wait(). The thread
2375   // that requested the suspension may already be trying to walk our
2376   // stack and if we return now, we can change the stack out from under
2377   // it. This would be a "bad thing (TM)" and cause the stack walker
2378   // to crash. We stay self-suspended until there are no more pending
2379   // external suspend requests.
2380   while (is_external_suspend()) {
2381     ret++;
2382     this->set_ext_suspended();
2383 
2384     // _ext_suspended flag is cleared by java_resume()
2385     while (is_ext_suspended()) {
2386       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2387     }
2388   }
2389 
2390   return ret;
2391 }
2392 
2393 #ifdef ASSERT
2394 // verify the JavaThread has not yet been published in the Threads::list, and
2395 // hence doesn't need protection from concurrent access at this stage
2396 void JavaThread::verify_not_published() {
2397   if (!Threads_lock->owned_by_self()) {
2398    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2399    assert( !Threads::includes(this),
2400            "java thread shouldn't have been published yet!");
2401   }
2402   else {
2403    assert( !Threads::includes(this),
2404            "java thread shouldn't have been published yet!");
2405   }
2406 }
2407 #endif
2408 
2409 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2410 // progress or when _suspend_flags is non-zero.
2411 // Current thread needs to self-suspend if there is a suspend request and/or
2412 // block if a safepoint is in progress.
2413 // Async exception ISN'T checked.
2414 // Note only the ThreadInVMfromNative transition can call this function
2415 // directly and when thread state is _thread_in_native_trans
2416 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2417   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2418 
2419   JavaThread *curJT = JavaThread::current();
2420   bool do_self_suspend = thread->is_external_suspend();
2421 
2422   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2423 
2424   // If JNIEnv proxies are allowed, don't self-suspend if the target
2425   // thread is not the current thread. In older versions of jdbx, jdbx
2426   // threads could call into the VM with another thread's JNIEnv so we
2427   // can be here operating on behalf of a suspended thread (4432884).
2428   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2429     JavaThreadState state = thread->thread_state();
2430 
2431     // We mark this thread_blocked state as a suspend-equivalent so
2432     // that a caller to is_ext_suspend_completed() won't be confused.
2433     // The suspend-equivalent state is cleared by java_suspend_self().
2434     thread->set_suspend_equivalent();
2435 
2436     // If the safepoint code sees the _thread_in_native_trans state, it will
2437     // wait until the thread changes to other thread state. There is no
2438     // guarantee on how soon we can obtain the SR_lock and complete the
2439     // self-suspend request. It would be a bad idea to let safepoint wait for
2440     // too long. Temporarily change the state to _thread_blocked to
2441     // let the VM thread know that this thread is ready for GC. The problem
2442     // of changing thread state is that safepoint could happen just after
2443     // java_suspend_self() returns after being resumed, and VM thread will
2444     // see the _thread_blocked state. We must check for safepoint
2445     // after restoring the state and make sure we won't leave while a safepoint
2446     // is in progress.
2447     thread->set_thread_state(_thread_blocked);
2448     thread->java_suspend_self();
2449     thread->set_thread_state(state);
2450     // Make sure new state is seen by VM thread
2451     if (os::is_MP()) {
2452       if (UseMembar) {
2453         // Force a fence between the write above and read below
2454         OrderAccess::fence();
2455       } else {
2456         // Must use this rather than serialization page in particular on Windows
2457         InterfaceSupport::serialize_memory(thread);
2458       }
2459     }
2460   }
2461 
2462   if (SafepointSynchronize::do_call_back()) {
2463     // If we are safepointing, then block the caller which may not be
2464     // the same as the target thread (see above).
2465     SafepointSynchronize::block(curJT);
2466   }
2467 
2468   if (thread->is_deopt_suspend()) {
2469     thread->clear_deopt_suspend();
2470     RegisterMap map(thread, false);
2471     frame f = thread->last_frame();
2472     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2473       f = f.sender(&map);
2474     }
2475     if (f.id() == thread->must_deopt_id()) {
2476       thread->clear_must_deopt_id();
2477       f.deoptimize(thread);
2478     } else {
2479       fatal("missed deoptimization!");
2480     }
2481   }
2482 
2483   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(thread);)
2484 }
2485 
2486 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2487 // progress or when _suspend_flags is non-zero.
2488 // Current thread needs to self-suspend if there is a suspend request and/or
2489 // block if a safepoint is in progress.
2490 // Also check for pending async exception (not including unsafe access error).
2491 // Note only the native==>VM/Java barriers can call this function and when
2492 // thread state is _thread_in_native_trans.
2493 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2494   check_safepoint_and_suspend_for_native_trans(thread);
2495 
2496   if (thread->has_async_exception()) {
2497     // We are in _thread_in_native_trans state, don't handle unsafe
2498     // access error since that may block.
2499     thread->check_and_handle_async_exceptions(false);
2500   }
2501 }
2502 
2503 // This is a variant of the normal
2504 // check_special_condition_for_native_trans with slightly different
2505 // semantics for use by critical native wrappers.  It does all the
2506 // normal checks but also performs the transition back into
2507 // thread_in_Java state.  This is required so that critical natives
2508 // can potentially block and perform a GC if they are the last thread
2509 // exiting the GC_locker.
2510 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2511   check_special_condition_for_native_trans(thread);
2512 
2513   // Finish the transition
2514   thread->set_thread_state(_thread_in_Java);
2515 
2516   if (thread->do_critical_native_unlock()) {
2517     ThreadInVMfromJavaNoAsyncException tiv(thread);
2518     GC_locker::unlock_critical(thread);
2519     thread->clear_critical_native_unlock();
2520   }
2521 }
2522 
2523 // We need to guarantee the Threads_lock here, since resumes are not
2524 // allowed during safepoint synchronization
2525 // Can only resume from an external suspension
2526 void JavaThread::java_resume() {
2527   assert_locked_or_safepoint(Threads_lock);
2528 
2529   // Sanity check: thread is gone, has started exiting or the thread
2530   // was not externally suspended.
2531   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2532     return;
2533   }
2534 
2535   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2536 
2537   clear_external_suspend();
2538 
2539   if (is_ext_suspended()) {
2540     clear_ext_suspended();
2541     SR_lock()->notify_all();
2542   }
2543 }
2544 
2545 void JavaThread::create_stack_guard_pages() {
2546   if (!os::uses_stack_guard_pages() ||
2547       _stack_guard_state != stack_guard_unused ||
2548       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2549       if (TraceThreadEvents) {
2550         tty->print_cr("Stack guard page creation for thread "
2551                       UINTX_FORMAT " disabled", os::current_thread_id());
2552       }
2553     return;
2554   }
2555   address low_addr = stack_base() - stack_size();
2556   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2557 
2558   int allocate = os::allocate_stack_guard_pages();
2559   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2560 
2561   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2562     warning("Attempt to allocate stack guard pages failed.");
2563     return;
2564   }
2565 
2566   if (os::guard_memory((char *) low_addr, len)) {
2567     _stack_guard_state = stack_guard_enabled;
2568   } else {
2569     warning("Attempt to protect stack guard pages failed.");
2570     if (os::uncommit_memory((char *) low_addr, len)) {
2571       warning("Attempt to deallocate stack guard pages failed.");
2572     }
2573   }
2574 }
2575 
2576 void JavaThread::remove_stack_guard_pages() {
2577   assert(Thread::current() == this, "from different thread");
2578   if (_stack_guard_state == stack_guard_unused) return;
2579   address low_addr = stack_base() - stack_size();
2580   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2581 
2582   if (os::allocate_stack_guard_pages()) {
2583     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2584       _stack_guard_state = stack_guard_unused;
2585     } else {
2586       warning("Attempt to deallocate stack guard pages failed.");
2587     }
2588   } else {
2589     if (_stack_guard_state == stack_guard_unused) return;
2590     if (os::unguard_memory((char *) low_addr, len)) {
2591       _stack_guard_state = stack_guard_unused;
2592     } else {
2593         warning("Attempt to unprotect stack guard pages failed.");
2594     }
2595   }
2596 }
2597 
2598 void JavaThread::enable_stack_yellow_zone() {
2599   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2600   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2601 
2602   // The base notation is from the stacks point of view, growing downward.
2603   // We need to adjust it to work correctly with guard_memory()
2604   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2605 
2606   guarantee(base < stack_base(),"Error calculating stack yellow zone");
2607   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2608 
2609   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2610     _stack_guard_state = stack_guard_enabled;
2611   } else {
2612     warning("Attempt to guard stack yellow zone failed.");
2613   }
2614   enable_register_stack_guard();
2615 }
2616 
2617 void JavaThread::disable_stack_yellow_zone() {
2618   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2619   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2620 
2621   // Simply return if called for a thread that does not use guard pages.
2622   if (_stack_guard_state == stack_guard_unused) return;
2623 
2624   // The base notation is from the stacks point of view, growing downward.
2625   // We need to adjust it to work correctly with guard_memory()
2626   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2627 
2628   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2629     _stack_guard_state = stack_guard_yellow_disabled;
2630   } else {
2631     warning("Attempt to unguard stack yellow zone failed.");
2632   }
2633   disable_register_stack_guard();
2634 }
2635 
2636 void JavaThread::enable_stack_red_zone() {
2637   // The base notation is from the stacks point of view, growing downward.
2638   // We need to adjust it to work correctly with guard_memory()
2639   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2640   address base = stack_red_zone_base() - stack_red_zone_size();
2641 
2642   guarantee(base < stack_base(),"Error calculating stack red zone");
2643   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2644 
2645   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2646     warning("Attempt to guard stack red zone failed.");
2647   }
2648 }
2649 
2650 void JavaThread::disable_stack_red_zone() {
2651   // The base notation is from the stacks point of view, growing downward.
2652   // We need to adjust it to work correctly with guard_memory()
2653   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2654   address base = stack_red_zone_base() - stack_red_zone_size();
2655   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2656     warning("Attempt to unguard stack red zone failed.");
2657   }
2658 }
2659 
2660 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2661   // ignore is there is no stack
2662   if (!has_last_Java_frame()) return;
2663   // traverse the stack frames. Starts from top frame.
2664   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2665     frame* fr = fst.current();
2666     f(fr, fst.register_map());
2667   }
2668 }
2669 
2670 
2671 #ifndef PRODUCT
2672 // Deoptimization
2673 // Function for testing deoptimization
2674 void JavaThread::deoptimize() {
2675   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2676   StackFrameStream fst(this, UseBiasedLocking);
2677   bool deopt = false;           // Dump stack only if a deopt actually happens.
2678   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2679   // Iterate over all frames in the thread and deoptimize
2680   for(; !fst.is_done(); fst.next()) {
2681     if(fst.current()->can_be_deoptimized()) {
2682 
2683       if (only_at) {
2684         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2685         // consists of comma or carriage return separated numbers so
2686         // search for the current bci in that string.
2687         address pc = fst.current()->pc();
2688         nmethod* nm =  (nmethod*) fst.current()->cb();
2689         ScopeDesc* sd = nm->scope_desc_at( pc);
2690         char buffer[8];
2691         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2692         size_t len = strlen(buffer);
2693         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2694         while (found != NULL) {
2695           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2696               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2697             // Check that the bci found is bracketed by terminators.
2698             break;
2699           }
2700           found = strstr(found + 1, buffer);
2701         }
2702         if (!found) {
2703           continue;
2704         }
2705       }
2706 
2707       if (DebugDeoptimization && !deopt) {
2708         deopt = true; // One-time only print before deopt
2709         tty->print_cr("[BEFORE Deoptimization]");
2710         trace_frames();
2711         trace_stack();
2712       }
2713       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2714     }
2715   }
2716 
2717   if (DebugDeoptimization && deopt) {
2718     tty->print_cr("[AFTER Deoptimization]");
2719     trace_frames();
2720   }
2721 }
2722 
2723 
2724 // Make zombies
2725 void JavaThread::make_zombies() {
2726   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2727     if (fst.current()->can_be_deoptimized()) {
2728       // it is a Java nmethod
2729       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2730       nm->make_not_entrant();
2731     }
2732   }
2733 }
2734 #endif // PRODUCT
2735 
2736 
2737 void JavaThread::deoptimized_wrt_marked_nmethods() {
2738   if (!has_last_Java_frame()) return;
2739   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2740   StackFrameStream fst(this, UseBiasedLocking);
2741   for(; !fst.is_done(); fst.next()) {
2742     if (fst.current()->should_be_deoptimized()) {
2743       if (LogCompilation && xtty != NULL) {
2744         nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2745         xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2746                    this->name(), nm != NULL ? nm->compile_id() : -1);
2747       }
2748 
2749       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2750     }
2751   }
2752 }
2753 
2754 
2755 // GC support
2756 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2757 
2758 void JavaThread::gc_epilogue() {
2759   frames_do(frame_gc_epilogue);
2760 }
2761 
2762 
2763 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2764 
2765 void JavaThread::gc_prologue() {
2766   frames_do(frame_gc_prologue);
2767 }
2768 
2769 // If the caller is a NamedThread, then remember, in the current scope,
2770 // the given JavaThread in its _processed_thread field.
2771 class RememberProcessedThread: public StackObj {
2772   NamedThread* _cur_thr;
2773 public:
2774   RememberProcessedThread(JavaThread* jthr) {
2775     Thread* thread = Thread::current();
2776     if (thread->is_Named_thread()) {
2777       _cur_thr = (NamedThread *)thread;
2778       _cur_thr->set_processed_thread(jthr);
2779     } else {
2780       _cur_thr = NULL;
2781     }
2782   }
2783 
2784   ~RememberProcessedThread() {
2785     if (_cur_thr) {
2786       _cur_thr->set_processed_thread(NULL);
2787     }
2788   }
2789 };
2790 
2791 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2792   // Verify that the deferred card marks have been flushed.
2793   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2794 
2795   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2796   // since there may be more than one thread using each ThreadProfiler.
2797 
2798   // Traverse the GCHandles
2799   Thread::oops_do(f, cld_f, cf);
2800 
2801   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2802           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2803 
2804   if (has_last_Java_frame()) {
2805     // Record JavaThread to GC thread
2806     RememberProcessedThread rpt(this);
2807 
2808     // Traverse the privileged stack
2809     if (_privileged_stack_top != NULL) {
2810       _privileged_stack_top->oops_do(f);
2811     }
2812 
2813     // traverse the registered growable array
2814     if (_array_for_gc != NULL) {
2815       for (int index = 0; index < _array_for_gc->length(); index++) {
2816         f->do_oop(_array_for_gc->adr_at(index));
2817       }
2818     }
2819 
2820     // Traverse the monitor chunks
2821     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2822       chunk->oops_do(f);
2823     }
2824 
2825     // Traverse the execution stack
2826     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2827       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2828     }
2829   }
2830 
2831   // callee_target is never live across a gc point so NULL it here should
2832   // it still contain a methdOop.
2833 
2834   set_callee_target(NULL);
2835 
2836   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2837   // If we have deferred set_locals there might be oops waiting to be
2838   // written
2839   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2840   if (list != NULL) {
2841     for (int i = 0; i < list->length(); i++) {
2842       list->at(i)->oops_do(f);
2843     }
2844   }
2845 
2846   // Traverse instance variables at the end since the GC may be moving things
2847   // around using this function
2848   f->do_oop((oop*) &_threadObj);
2849   f->do_oop((oop*) &_vm_result);
2850   f->do_oop((oop*) &_exception_oop);
2851   f->do_oop((oop*) &_pending_async_exception);
2852 
2853   if (jvmti_thread_state() != NULL) {
2854     jvmti_thread_state()->oops_do(f);
2855   }
2856 }
2857 
2858 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2859   Thread::nmethods_do(cf);  // (super method is a no-op)
2860 
2861   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2862           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2863 
2864   if (has_last_Java_frame()) {
2865     // Traverse the execution stack
2866     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2867       fst.current()->nmethods_do(cf);
2868     }
2869   }
2870 }
2871 
2872 void JavaThread::metadata_do(void f(Metadata*)) {
2873   Thread::metadata_do(f);
2874   if (has_last_Java_frame()) {
2875     // Traverse the execution stack to call f() on the methods in the stack
2876     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2877       fst.current()->metadata_do(f);
2878     }
2879   } else if (is_Compiler_thread()) {
2880     // need to walk ciMetadata in current compile tasks to keep alive.
2881     CompilerThread* ct = (CompilerThread*)this;
2882     if (ct->env() != NULL) {
2883       ct->env()->metadata_do(f);
2884     }
2885   }
2886 }
2887 
2888 // Printing
2889 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2890   switch (_thread_state) {
2891   case _thread_uninitialized:     return "_thread_uninitialized";
2892   case _thread_new:               return "_thread_new";
2893   case _thread_new_trans:         return "_thread_new_trans";
2894   case _thread_in_native:         return "_thread_in_native";
2895   case _thread_in_native_trans:   return "_thread_in_native_trans";
2896   case _thread_in_vm:             return "_thread_in_vm";
2897   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2898   case _thread_in_Java:           return "_thread_in_Java";
2899   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2900   case _thread_blocked:           return "_thread_blocked";
2901   case _thread_blocked_trans:     return "_thread_blocked_trans";
2902   default:                        return "unknown thread state";
2903   }
2904 }
2905 
2906 #ifndef PRODUCT
2907 void JavaThread::print_thread_state_on(outputStream *st) const {
2908   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2909 };
2910 void JavaThread::print_thread_state() const {
2911   print_thread_state_on(tty);
2912 };
2913 #endif // PRODUCT
2914 
2915 // Called by Threads::print() for VM_PrintThreads operation
2916 void JavaThread::print_on(outputStream *st) const {
2917   st->print("\"%s\" ", get_thread_name());
2918   oop thread_oop = threadObj();
2919   if (thread_oop != NULL) {
2920     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2921     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2922     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2923   }
2924   Thread::print_on(st);
2925   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2926   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2927   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2928     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2929   }
2930 #ifndef PRODUCT
2931   print_thread_state_on(st);
2932   _safepoint_state->print_on(st);
2933 #endif // PRODUCT
2934 }
2935 
2936 // Called by fatal error handler. The difference between this and
2937 // JavaThread::print() is that we can't grab lock or allocate memory.
2938 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2939   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2940   oop thread_obj = threadObj();
2941   if (thread_obj != NULL) {
2942      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2943   }
2944   st->print(" [");
2945   st->print("%s", _get_thread_state_name(_thread_state));
2946   if (osthread()) {
2947     st->print(", id=%d", osthread()->thread_id());
2948   }
2949   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2950             _stack_base - _stack_size, _stack_base);
2951   st->print("]");
2952   return;
2953 }
2954 
2955 // Verification
2956 
2957 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2958 
2959 void JavaThread::verify() {
2960   // Verify oops in the thread.
2961   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2962 
2963   // Verify the stack frames.
2964   frames_do(frame_verify);
2965 }
2966 
2967 // CR 6300358 (sub-CR 2137150)
2968 // Most callers of this method assume that it can't return NULL but a
2969 // thread may not have a name whilst it is in the process of attaching to
2970 // the VM - see CR 6412693, and there are places where a JavaThread can be
2971 // seen prior to having it's threadObj set (eg JNI attaching threads and
2972 // if vm exit occurs during initialization). These cases can all be accounted
2973 // for such that this method never returns NULL.
2974 const char* JavaThread::get_thread_name() const {
2975 #ifdef ASSERT
2976   // early safepoints can hit while current thread does not yet have TLS
2977   if (!SafepointSynchronize::is_at_safepoint()) {
2978     Thread *cur = Thread::current();
2979     if (!(cur->is_Java_thread() && cur == this)) {
2980       // Current JavaThreads are allowed to get their own name without
2981       // the Threads_lock.
2982       assert_locked_or_safepoint(Threads_lock);
2983     }
2984   }
2985 #endif // ASSERT
2986     return get_thread_name_string();
2987 }
2988 
2989 // Returns a non-NULL representation of this thread's name, or a suitable
2990 // descriptive string if there is no set name
2991 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2992   const char* name_str;
2993   oop thread_obj = threadObj();
2994   if (thread_obj != NULL) {
2995     oop name = java_lang_Thread::name(thread_obj);
2996     if (name != NULL) {
2997       if (buf == NULL) {
2998         name_str = java_lang_String::as_utf8_string(name);
2999       }
3000       else {
3001         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3002       }
3003     }
3004     else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3005       name_str = "<no-name - thread is attaching>";
3006     }
3007     else {
3008       name_str = Thread::name();
3009     }
3010   }
3011   else {
3012     name_str = Thread::name();
3013   }
3014   assert(name_str != NULL, "unexpected NULL thread name");
3015   return name_str;
3016 }
3017 
3018 
3019 const char* JavaThread::get_threadgroup_name() const {
3020   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3021   oop thread_obj = threadObj();
3022   if (thread_obj != NULL) {
3023     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3024     if (thread_group != NULL) {
3025       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
3026       // ThreadGroup.name can be null
3027       if (name != NULL) {
3028         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
3029         return str;
3030       }
3031     }
3032   }
3033   return NULL;
3034 }
3035 
3036 const char* JavaThread::get_parent_name() const {
3037   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3038   oop thread_obj = threadObj();
3039   if (thread_obj != NULL) {
3040     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3041     if (thread_group != NULL) {
3042       oop parent = java_lang_ThreadGroup::parent(thread_group);
3043       if (parent != NULL) {
3044         typeArrayOop name = java_lang_ThreadGroup::name(parent);
3045         // ThreadGroup.name can be null
3046         if (name != NULL) {
3047           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
3048           return str;
3049         }
3050       }
3051     }
3052   }
3053   return NULL;
3054 }
3055 
3056 ThreadPriority JavaThread::java_priority() const {
3057   oop thr_oop = threadObj();
3058   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3059   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3060   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3061   return priority;
3062 }
3063 
3064 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3065 
3066   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3067   // Link Java Thread object <-> C++ Thread
3068 
3069   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3070   // and put it into a new Handle.  The Handle "thread_oop" can then
3071   // be used to pass the C++ thread object to other methods.
3072 
3073   // Set the Java level thread object (jthread) field of the
3074   // new thread (a JavaThread *) to C++ thread object using the
3075   // "thread_oop" handle.
3076 
3077   // Set the thread field (a JavaThread *) of the
3078   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3079 
3080   Handle thread_oop(Thread::current(),
3081                     JNIHandles::resolve_non_null(jni_thread));
3082   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3083     "must be initialized");
3084   set_threadObj(thread_oop());
3085   java_lang_Thread::set_thread(thread_oop(), this);
3086 
3087   if (prio == NoPriority) {
3088     prio = java_lang_Thread::priority(thread_oop());
3089     assert(prio != NoPriority, "A valid priority should be present");
3090   }
3091 
3092   // Push the Java priority down to the native thread; needs Threads_lock
3093   Thread::set_priority(this, prio);
3094 
3095   prepare_ext();
3096 
3097   // Add the new thread to the Threads list and set it in motion.
3098   // We must have threads lock in order to call Threads::add.
3099   // It is crucial that we do not block before the thread is
3100   // added to the Threads list for if a GC happens, then the java_thread oop
3101   // will not be visited by GC.
3102   Threads::add(this);
3103 }
3104 
3105 oop JavaThread::current_park_blocker() {
3106   // Support for JSR-166 locks
3107   oop thread_oop = threadObj();
3108   if (thread_oop != NULL &&
3109       JDK_Version::current().supports_thread_park_blocker()) {
3110     return java_lang_Thread::park_blocker(thread_oop);
3111   }
3112   return NULL;
3113 }
3114 
3115 
3116 void JavaThread::print_stack_on(outputStream* st) {
3117   if (!has_last_Java_frame()) return;
3118   ResourceMark rm;
3119   HandleMark   hm;
3120 
3121   RegisterMap reg_map(this);
3122   vframe* start_vf = last_java_vframe(&reg_map);
3123   int count = 0;
3124   for (vframe* f = start_vf; f; f = f->sender() ) {
3125     if (f->is_java_frame()) {
3126       javaVFrame* jvf = javaVFrame::cast(f);
3127       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3128 
3129       // Print out lock information
3130       if (JavaMonitorsInStackTrace) {
3131         jvf->print_lock_info_on(st, count);
3132       }
3133     } else {
3134       // Ignore non-Java frames
3135     }
3136 
3137     // Bail-out case for too deep stacks
3138     count++;
3139     if (MaxJavaStackTraceDepth == count) return;
3140   }
3141 }
3142 
3143 
3144 // JVMTI PopFrame support
3145 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3146   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3147   if (in_bytes(size_in_bytes) != 0) {
3148     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3149     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3150     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3151   }
3152 }
3153 
3154 void* JavaThread::popframe_preserved_args() {
3155   return _popframe_preserved_args;
3156 }
3157 
3158 ByteSize JavaThread::popframe_preserved_args_size() {
3159   return in_ByteSize(_popframe_preserved_args_size);
3160 }
3161 
3162 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3163   int sz = in_bytes(popframe_preserved_args_size());
3164   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3165   return in_WordSize(sz / wordSize);
3166 }
3167 
3168 void JavaThread::popframe_free_preserved_args() {
3169   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3170   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
3171   _popframe_preserved_args = NULL;
3172   _popframe_preserved_args_size = 0;
3173 }
3174 
3175 #ifndef PRODUCT
3176 
3177 void JavaThread::trace_frames() {
3178   tty->print_cr("[Describe stack]");
3179   int frame_no = 1;
3180   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3181     tty->print("  %d. ", frame_no++);
3182     fst.current()->print_value_on(tty,this);
3183     tty->cr();
3184   }
3185 }
3186 
3187 class PrintAndVerifyOopClosure: public OopClosure {
3188  protected:
3189   template <class T> inline void do_oop_work(T* p) {
3190     oop obj = oopDesc::load_decode_heap_oop(p);
3191     if (obj == NULL) return;
3192     tty->print(INTPTR_FORMAT ": ", p);
3193     if (obj->is_oop_or_null()) {
3194       if (obj->is_objArray()) {
3195         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3196       } else {
3197         obj->print();
3198       }
3199     } else {
3200       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3201     }
3202     tty->cr();
3203   }
3204  public:
3205   virtual void do_oop(oop* p) { do_oop_work(p); }
3206   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3207 };
3208 
3209 
3210 static void oops_print(frame* f, const RegisterMap *map) {
3211   PrintAndVerifyOopClosure print;
3212   f->print_value();
3213   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3214 }
3215 
3216 // Print our all the locations that contain oops and whether they are
3217 // valid or not.  This useful when trying to find the oldest frame
3218 // where an oop has gone bad since the frame walk is from youngest to
3219 // oldest.
3220 void JavaThread::trace_oops() {
3221   tty->print_cr("[Trace oops]");
3222   frames_do(oops_print);
3223 }
3224 
3225 
3226 #ifdef ASSERT
3227 // Print or validate the layout of stack frames
3228 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3229   ResourceMark rm;
3230   PRESERVE_EXCEPTION_MARK;
3231   FrameValues values;
3232   int frame_no = 0;
3233   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3234     fst.current()->describe(values, ++frame_no);
3235     if (depth == frame_no) break;
3236   }
3237   if (validate_only) {
3238     values.validate();
3239   } else {
3240     tty->print_cr("[Describe stack layout]");
3241     values.print(this);
3242   }
3243 }
3244 #endif
3245 
3246 void JavaThread::trace_stack_from(vframe* start_vf) {
3247   ResourceMark rm;
3248   int vframe_no = 1;
3249   for (vframe* f = start_vf; f; f = f->sender() ) {
3250     if (f->is_java_frame()) {
3251       javaVFrame::cast(f)->print_activation(vframe_no++);
3252     } else {
3253       f->print();
3254     }
3255     if (vframe_no > StackPrintLimit) {
3256       tty->print_cr("...<more frames>...");
3257       return;
3258     }
3259   }
3260 }
3261 
3262 
3263 void JavaThread::trace_stack() {
3264   if (!has_last_Java_frame()) return;
3265   ResourceMark rm;
3266   HandleMark   hm;
3267   RegisterMap reg_map(this);
3268   trace_stack_from(last_java_vframe(&reg_map));
3269 }
3270 
3271 
3272 #endif // PRODUCT
3273 
3274 
3275 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3276   assert(reg_map != NULL, "a map must be given");
3277   frame f = last_frame();
3278   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
3279     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3280   }
3281   return NULL;
3282 }
3283 
3284 
3285 Klass* JavaThread::security_get_caller_class(int depth) {
3286   vframeStream vfst(this);
3287   vfst.security_get_caller_frame(depth);
3288   if (!vfst.at_end()) {
3289     return vfst.method()->method_holder();
3290   }
3291   return NULL;
3292 }
3293 
3294 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3295   assert(thread->is_Compiler_thread(), "must be compiler thread");
3296   CompileBroker::compiler_thread_loop();
3297 }
3298 
3299 // Create a CompilerThread
3300 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
3301 : JavaThread(&compiler_thread_entry) {
3302   _env   = NULL;
3303   _log   = NULL;
3304   _task  = NULL;
3305   _queue = queue;
3306   _counters = counters;
3307   _buffer_blob = NULL;
3308   _scanned_nmethod = NULL;
3309   _compiler = NULL;
3310 
3311   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3312   resource_area()->bias_to(mtCompiler);
3313 
3314 #ifndef PRODUCT
3315   _ideal_graph_printer = NULL;
3316 #endif
3317 }
3318 
3319 void CompilerThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3320   JavaThread::oops_do(f, cld_f, cf);
3321   if (_scanned_nmethod != NULL && cf != NULL) {
3322     // Safepoints can occur when the sweeper is scanning an nmethod so
3323     // process it here to make sure it isn't unloaded in the middle of
3324     // a scan.
3325     cf->do_code_blob(_scanned_nmethod);
3326   }
3327 }
3328 
3329 
3330 // ======= Threads ========
3331 
3332 // The Threads class links together all active threads, and provides
3333 // operations over all threads.  It is protected by its own Mutex
3334 // lock, which is also used in other contexts to protect thread
3335 // operations from having the thread being operated on from exiting
3336 // and going away unexpectedly (e.g., safepoint synchronization)
3337 
3338 JavaThread* Threads::_thread_list = NULL;
3339 int         Threads::_number_of_threads = 0;
3340 int         Threads::_number_of_non_daemon_threads = 0;
3341 int         Threads::_return_code = 0;
3342 size_t      JavaThread::_stack_size_at_create = 0;
3343 #ifdef ASSERT
3344 bool        Threads::_vm_complete = false;
3345 #endif
3346 
3347 // All JavaThreads
3348 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3349 
3350 void Threads::java_threads_do(ThreadClosure* tc) {
3351   assert_locked_or_safepoint(Threads_lock);
3352   ALL_JAVA_THREADS(p) {
3353     tc->do_thread(p);
3354   }
3355 }
3356 
3357 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3358 void Threads::threads_do(ThreadClosure* tc) {
3359   assert_locked_or_safepoint(Threads_lock);
3360   // ALL_JAVA_THREADS iterates through all JavaThreads
3361   ALL_JAVA_THREADS(p) {
3362     tc->do_thread(p);
3363   }
3364   // Someday we could have a table or list of all non-JavaThreads.
3365   // For now, just manually iterate through them.
3366   tc->do_thread(VMThread::vm_thread());
3367   Universe::heap()->gc_threads_do(tc);
3368   WatcherThread *wt = WatcherThread::watcher_thread();
3369   // Strictly speaking, the following NULL check isn't sufficient to make sure
3370   // the data for WatcherThread is still valid upon being examined. However,
3371   // considering that WatchThread terminates when the VM is on the way to
3372   // exit at safepoint, the chance of the above is extremely small. The right
3373   // way to prevent termination of WatcherThread would be to acquire
3374   // Terminator_lock, but we can't do that without violating the lock rank
3375   // checking in some cases.
3376   if (wt != NULL)
3377     tc->do_thread(wt);
3378 
3379 #if INCLUDE_JFR
3380   Thread* sampler_thread = Jfr::sampler_thread();
3381   if (sampler_thread != NULL) {
3382     tc->do_thread(sampler_thread);
3383   }
3384 
3385 #endif
3386 
3387   // If CompilerThreads ever become non-JavaThreads, add them here
3388 }
3389 
3390 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3391 
3392   extern void JDK_Version_init();
3393 
3394   // Preinitialize version info.
3395   VM_Version::early_initialize();
3396 
3397   // Check version
3398   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3399 
3400   // Initialize the output stream module
3401   ostream_init();
3402 
3403   // Process java launcher properties.
3404   Arguments::process_sun_java_launcher_properties(args);
3405 
3406   // Initialize the os module before using TLS
3407   os::init();
3408 
3409   // Initialize system properties.
3410   Arguments::init_system_properties();
3411 
3412   // So that JDK version can be used as a discrimintor when parsing arguments
3413   JDK_Version_init();
3414 
3415   // Update/Initialize System properties after JDK version number is known
3416   Arguments::init_version_specific_system_properties();
3417 
3418   // Parse arguments
3419   // Note: this internally calls os::init_container_support()
3420   jint parse_result = Arguments::parse(args);
3421   if (parse_result != JNI_OK) return parse_result;
3422 
3423   os::init_before_ergo();
3424 
3425   jint ergo_result = Arguments::apply_ergo();
3426   if (ergo_result != JNI_OK) return ergo_result;
3427 
3428   if (PauseAtStartup) {
3429     os::pause();
3430   }
3431 
3432 #ifndef USDT2
3433   HS_DTRACE_PROBE(hotspot, vm__init__begin);
3434 #else /* USDT2 */
3435   HOTSPOT_VM_INIT_BEGIN();
3436 #endif /* USDT2 */
3437 
3438   // Record VM creation timing statistics
3439   TraceVmCreationTime create_vm_timer;
3440   create_vm_timer.start();
3441 
3442   // Timing (must come after argument parsing)
3443   TraceTime timer("Create VM", TraceStartupTime);
3444 
3445   // Initialize the os module after parsing the args
3446   jint os_init_2_result = os::init_2();
3447   if (os_init_2_result != JNI_OK) return os_init_2_result;
3448 
3449   jint adjust_after_os_result = Arguments::adjust_after_os();
3450   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3451 
3452   // intialize TLS
3453   ThreadLocalStorage::init();
3454 
3455   // Initialize output stream logging
3456   ostream_init_log();
3457 
3458   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3459   // Must be before create_vm_init_agents()
3460   if (Arguments::init_libraries_at_startup()) {
3461     convert_vm_init_libraries_to_agents();
3462   }
3463 
3464   // Launch -agentlib/-agentpath and converted -Xrun agents
3465   if (Arguments::init_agents_at_startup()) {
3466     create_vm_init_agents();
3467   }
3468 
3469   // Initialize Threads state
3470   _thread_list = NULL;
3471   _number_of_threads = 0;
3472   _number_of_non_daemon_threads = 0;
3473 
3474   // Initialize global data structures and create system classes in heap
3475   vm_init_globals();
3476 
3477   // Attach the main thread to this os thread
3478   JavaThread* main_thread = new JavaThread();
3479   main_thread->set_thread_state(_thread_in_vm);
3480   // must do this before set_active_handles and initialize_thread_local_storage
3481   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3482   // change the stack size recorded here to one based on the java thread
3483   // stacksize. This adjusted size is what is used to figure the placement
3484   // of the guard pages.
3485   main_thread->record_stack_base_and_size();
3486   main_thread->initialize_thread_local_storage();
3487 
3488   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3489 
3490   if (!main_thread->set_as_starting_thread()) {
3491     vm_shutdown_during_initialization(
3492       "Failed necessary internal allocation. Out of swap space");
3493     delete main_thread;
3494     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3495     return JNI_ENOMEM;
3496   }
3497 
3498   // Enable guard page *after* os::create_main_thread(), otherwise it would
3499   // crash Linux VM, see notes in os_linux.cpp.
3500   main_thread->create_stack_guard_pages();
3501 
3502   // Initialize Java-Level synchronization subsystem
3503   ObjectMonitor::Initialize() ;
3504 
3505   // Initialize global modules
3506   jint status = init_globals();
3507   if (status != JNI_OK) {
3508     delete main_thread;
3509     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3510     return status;
3511   }
3512 
3513   JFR_ONLY(Jfr::on_vm_init();)
3514 
3515   // Should be done after the heap is fully created
3516   main_thread->cache_global_variables();
3517 
3518   HandleMark hm;
3519 
3520   { MutexLocker mu(Threads_lock);
3521     Threads::add(main_thread);
3522   }
3523 
3524   // Any JVMTI raw monitors entered in onload will transition into
3525   // real raw monitor. VM is setup enough here for raw monitor enter.
3526   JvmtiExport::transition_pending_onload_raw_monitors();
3527 
3528   // Create the VMThread
3529   { TraceTime timer("Start VMThread", TraceStartupTime);
3530     VMThread::create();
3531     Thread* vmthread = VMThread::vm_thread();
3532 
3533     if (!os::create_thread(vmthread, os::vm_thread))
3534       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3535 
3536     // Wait for the VM thread to become ready, and VMThread::run to initialize
3537     // Monitors can have spurious returns, must always check another state flag
3538     {
3539       MutexLocker ml(Notify_lock);
3540       os::start_thread(vmthread);
3541       while (vmthread->active_handles() == NULL) {
3542         Notify_lock->wait();
3543       }
3544     }
3545   }
3546 
3547   assert (Universe::is_fully_initialized(), "not initialized");
3548   if (VerifyDuringStartup) {
3549     // Make sure we're starting with a clean slate.
3550     VM_Verify verify_op;
3551     VMThread::execute(&verify_op);
3552   }
3553 
3554   EXCEPTION_MARK;
3555 
3556   // At this point, the Universe is initialized, but we have not executed
3557   // any byte code.  Now is a good time (the only time) to dump out the
3558   // internal state of the JVM for sharing.
3559   if (DumpSharedSpaces) {
3560     MetaspaceShared::preload_and_dump(CHECK_0);
3561     ShouldNotReachHere();
3562   }
3563 
3564   // Always call even when there are not JVMTI environments yet, since environments
3565   // may be attached late and JVMTI must track phases of VM execution
3566   JvmtiExport::enter_start_phase();
3567 
3568   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3569   JvmtiExport::post_vm_start();
3570 
3571   {
3572     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3573 
3574     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3575       create_vm_init_libraries();
3576     }
3577 
3578     initialize_class(vmSymbols::java_lang_String(), CHECK_0);
3579 
3580     // Initialize java_lang.System (needed before creating the thread)
3581     initialize_class(vmSymbols::java_lang_System(), CHECK_0);
3582     initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
3583     Handle thread_group = create_initial_thread_group(CHECK_0);
3584     Universe::set_main_thread_group(thread_group());
3585     initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
3586     oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3587     main_thread->set_threadObj(thread_object);
3588     // Set thread status to running since main thread has
3589     // been started and running.
3590     java_lang_Thread::set_thread_status(thread_object,
3591                                         java_lang_Thread::RUNNABLE);
3592 
3593     // The VM creates & returns objects of this class. Make sure it's initialized.
3594     initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
3595 
3596     // The VM preresolves methods to these classes. Make sure that they get initialized
3597     initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
3598     initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
3599     call_initializeSystemClass(CHECK_0);
3600 
3601     // get the Java runtime name after java.lang.System is initialized
3602     JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3603     JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3604 
3605     // an instance of OutOfMemory exception has been allocated earlier
3606     initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
3607     initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
3608     initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
3609     initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
3610     initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
3611     initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
3612     initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
3613     initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
3614   }
3615 
3616   // See        : bugid 4211085.
3617   // Background : the static initializer of java.lang.Compiler tries to read
3618   //              property"java.compiler" and read & write property "java.vm.info".
3619   //              When a security manager is installed through the command line
3620   //              option "-Djava.security.manager", the above properties are not
3621   //              readable and the static initializer for java.lang.Compiler fails
3622   //              resulting in a NoClassDefFoundError.  This can happen in any
3623   //              user code which calls methods in java.lang.Compiler.
3624   // Hack :       the hack is to pre-load and initialize this class, so that only
3625   //              system domains are on the stack when the properties are read.
3626   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3627   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3628   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3629   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3630   //              Once that is done, we should remove this hack.
3631   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
3632 
3633   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3634   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3635   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3636   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3637   // This should also be taken out as soon as 4211383 gets fixed.
3638   reset_vm_info_property(CHECK_0);
3639 
3640   quicken_jni_functions();
3641 
3642   // Set flag that basic initialization has completed. Used by exceptions and various
3643   // debug stuff, that does not work until all basic classes have been initialized.
3644   set_init_completed();
3645 
3646   Metaspace::post_initialize();
3647 
3648 #ifndef USDT2
3649   HS_DTRACE_PROBE(hotspot, vm__init__end);
3650 #else /* USDT2 */
3651   HOTSPOT_VM_INIT_END();
3652 #endif /* USDT2 */
3653 
3654   // record VM initialization completion time
3655 #if INCLUDE_MANAGEMENT
3656   Management::record_vm_init_completed();
3657 #endif // INCLUDE_MANAGEMENT
3658 
3659   // Compute system loader. Note that this has to occur after set_init_completed, since
3660   // valid exceptions may be thrown in the process.
3661   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3662   // set_init_completed has just been called, causing exceptions not to be shortcut
3663   // anymore. We call vm_exit_during_initialization directly instead.
3664   SystemDictionary::compute_java_system_loader(THREAD);
3665   if (HAS_PENDING_EXCEPTION) {
3666     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3667   }
3668 
3669 #if INCLUDE_ALL_GCS
3670   // Support for ConcurrentMarkSweep. This should be cleaned up
3671   // and better encapsulated. The ugly nested if test would go away
3672   // once things are properly refactored. XXX YSR
3673   if (UseConcMarkSweepGC || UseG1GC || UseShenandoahGC) {
3674     if (UseConcMarkSweepGC) {
3675       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3676     } else if (UseShenandoahGC) {
3677       ShenandoahControlThread::makeSurrogateLockerThread(THREAD);
3678     } else {
3679       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3680     }
3681     if (HAS_PENDING_EXCEPTION) {
3682       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3683     }
3684   }
3685 #endif // INCLUDE_ALL_GCS
3686 
3687   // Always call even when there are not JVMTI environments yet, since environments
3688   // may be attached late and JVMTI must track phases of VM execution
3689   JvmtiExport::enter_live_phase();
3690 
3691   // Signal Dispatcher needs to be started before VMInit event is posted
3692   os::signal_init();
3693 
3694   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3695   if (!DisableAttachMechanism) {
3696     AttachListener::vm_start();
3697     if (StartAttachListener || AttachListener::init_at_startup()) {
3698       AttachListener::init();
3699     }
3700   }
3701 
3702   // Launch -Xrun agents
3703   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3704   // back-end can launch with -Xdebug -Xrunjdwp.
3705   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3706     create_vm_init_libraries();
3707   }
3708 
3709   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3710   JvmtiExport::post_vm_initialized();
3711 
3712   JFR_ONLY(Jfr::on_vm_start();)
3713 
3714   if (CleanChunkPoolAsync) {
3715     Chunk::start_chunk_pool_cleaner_task();
3716   }
3717 
3718   // initialize compiler(s)
3719 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3720   CompileBroker::compilation_init();
3721 #endif
3722 
3723   if (EnableInvokeDynamic) {
3724     // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3725     // It is done after compilers are initialized, because otherwise compilations of
3726     // signature polymorphic MH intrinsics can be missed
3727     // (see SystemDictionary::find_method_handle_intrinsic).
3728     initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK_0);
3729     initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK_0);
3730     initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK_0);
3731   }
3732 
3733 #if INCLUDE_MANAGEMENT
3734   Management::initialize(THREAD);
3735 #endif // INCLUDE_MANAGEMENT
3736 
3737   if (HAS_PENDING_EXCEPTION) {
3738     // management agent fails to start possibly due to
3739     // configuration problem and is responsible for printing
3740     // stack trace if appropriate. Simply exit VM.
3741     vm_exit(1);
3742   }
3743 
3744   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3745   if (MemProfiling)                   MemProfiler::engage();
3746   StatSampler::engage();
3747   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3748 
3749   BiasedLocking::init();
3750 
3751 #if INCLUDE_RTM_OPT
3752   RTMLockingCounters::init();
3753 #endif
3754 
3755   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3756     call_postVMInitHook(THREAD);
3757     // The Java side of PostVMInitHook.run must deal with all
3758     // exceptions and provide means of diagnosis.
3759     if (HAS_PENDING_EXCEPTION) {
3760       CLEAR_PENDING_EXCEPTION;
3761     }
3762   }
3763 
3764   {
3765       MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
3766       // Make sure the watcher thread can be started by WatcherThread::start()
3767       // or by dynamic enrollment.
3768       WatcherThread::make_startable();
3769       // Start up the WatcherThread if there are any periodic tasks
3770       // NOTE:  All PeriodicTasks should be registered by now. If they
3771       //   aren't, late joiners might appear to start slowly (we might
3772       //   take a while to process their first tick).
3773       if (PeriodicTask::num_tasks() > 0) {
3774           WatcherThread::start();
3775       }
3776   }
3777 
3778   create_vm_timer.end();
3779 #ifdef ASSERT
3780   _vm_complete = true;
3781 #endif
3782   return JNI_OK;
3783 }
3784 
3785 // type for the Agent_OnLoad and JVM_OnLoad entry points
3786 extern "C" {
3787   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3788 }
3789 // Find a command line agent library and return its entry point for
3790 //         -agentlib:  -agentpath:   -Xrun
3791 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3792 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3793   OnLoadEntry_t on_load_entry = NULL;
3794   void *library = NULL;
3795 
3796   if (!agent->valid()) {
3797     char buffer[JVM_MAXPATHLEN];
3798     char ebuf[1024];
3799     const char *name = agent->name();
3800     const char *msg = "Could not find agent library ";
3801 
3802     // First check to see if agent is statically linked into executable
3803     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3804       library = agent->os_lib();
3805     } else if (agent->is_absolute_path()) {
3806       library = os::dll_load(name, ebuf, sizeof ebuf);
3807       if (library == NULL) {
3808         const char *sub_msg = " in absolute path, with error: ";
3809         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3810         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3811         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3812         // If we can't find the agent, exit.
3813         vm_exit_during_initialization(buf, NULL);
3814         FREE_C_HEAP_ARRAY(char, buf, mtThread);
3815       }
3816     } else {
3817       // Try to load the agent from the standard dll directory
3818       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3819                              name)) {
3820         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3821       }
3822       if (library == NULL) { // Try the local directory
3823         char ns[1] = {0};
3824         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3825           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3826         }
3827         if (library == NULL) {
3828           const char *sub_msg = " on the library path, with error: ";
3829           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3830           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3831           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3832           // If we can't find the agent, exit.
3833           vm_exit_during_initialization(buf, NULL);
3834           FREE_C_HEAP_ARRAY(char, buf, mtThread);
3835         }
3836       }
3837     }
3838     agent->set_os_lib(library);
3839     agent->set_valid();
3840   }
3841 
3842   // Find the OnLoad function.
3843   on_load_entry =
3844     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3845                                                           false,
3846                                                           on_load_symbols,
3847                                                           num_symbol_entries));
3848   return on_load_entry;
3849 }
3850 
3851 // Find the JVM_OnLoad entry point
3852 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3853   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3854   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3855 }
3856 
3857 // Find the Agent_OnLoad entry point
3858 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3859   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3860   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3861 }
3862 
3863 // For backwards compatibility with -Xrun
3864 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3865 // treated like -agentpath:
3866 // Must be called before agent libraries are created
3867 void Threads::convert_vm_init_libraries_to_agents() {
3868   AgentLibrary* agent;
3869   AgentLibrary* next;
3870 
3871   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3872     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3873     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3874 
3875     // If there is an JVM_OnLoad function it will get called later,
3876     // otherwise see if there is an Agent_OnLoad
3877     if (on_load_entry == NULL) {
3878       on_load_entry = lookup_agent_on_load(agent);
3879       if (on_load_entry != NULL) {
3880         // switch it to the agent list -- so that Agent_OnLoad will be called,
3881         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3882         Arguments::convert_library_to_agent(agent);
3883       } else {
3884         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3885       }
3886     }
3887   }
3888 }
3889 
3890 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3891 // Invokes Agent_OnLoad
3892 // Called very early -- before JavaThreads exist
3893 void Threads::create_vm_init_agents() {
3894   extern struct JavaVM_ main_vm;
3895   AgentLibrary* agent;
3896 
3897   JvmtiExport::enter_onload_phase();
3898 
3899   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3900     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3901 
3902     if (on_load_entry != NULL) {
3903       // Invoke the Agent_OnLoad function
3904       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3905       if (err != JNI_OK) {
3906         vm_exit_during_initialization("agent library failed to init", agent->name());
3907       }
3908     } else {
3909       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3910     }
3911   }
3912   JvmtiExport::enter_primordial_phase();
3913 }
3914 
3915 extern "C" {
3916   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3917 }
3918 
3919 void Threads::shutdown_vm_agents() {
3920   // Send any Agent_OnUnload notifications
3921   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3922   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3923   extern struct JavaVM_ main_vm;
3924   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3925 
3926     // Find the Agent_OnUnload function.
3927     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3928       os::find_agent_function(agent,
3929       false,
3930       on_unload_symbols,
3931       num_symbol_entries));
3932 
3933     // Invoke the Agent_OnUnload function
3934     if (unload_entry != NULL) {
3935       JavaThread* thread = JavaThread::current();
3936       ThreadToNativeFromVM ttn(thread);
3937       HandleMark hm(thread);
3938       (*unload_entry)(&main_vm);
3939     }
3940   }
3941 }
3942 
3943 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3944 // Invokes JVM_OnLoad
3945 void Threads::create_vm_init_libraries() {
3946   extern struct JavaVM_ main_vm;
3947   AgentLibrary* agent;
3948 
3949   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3950     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3951 
3952     if (on_load_entry != NULL) {
3953       // Invoke the JVM_OnLoad function
3954       JavaThread* thread = JavaThread::current();
3955       ThreadToNativeFromVM ttn(thread);
3956       HandleMark hm(thread);
3957       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3958       if (err != JNI_OK) {
3959         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3960       }
3961     } else {
3962       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3963     }
3964   }
3965 }
3966 
3967 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
3968   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
3969 
3970   JavaThread* java_thread = NULL;
3971   // Sequential search for now.  Need to do better optimization later.
3972   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
3973     oop tobj = thread->threadObj();
3974     if (!thread->is_exiting() &&
3975         tobj != NULL &&
3976         java_tid == java_lang_Thread::thread_id(tobj)) {
3977       java_thread = thread;
3978       break;
3979     }
3980   }
3981   return java_thread;
3982 }
3983 
3984 
3985 // Last thread running calls java.lang.Shutdown.shutdown()
3986 void JavaThread::invoke_shutdown_hooks() {
3987   HandleMark hm(this);
3988 
3989   // We could get here with a pending exception, if so clear it now.
3990   if (this->has_pending_exception()) {
3991     this->clear_pending_exception();
3992   }
3993 
3994   EXCEPTION_MARK;
3995   Klass* k =
3996     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3997                                       THREAD);
3998   if (k != NULL) {
3999     // SystemDictionary::resolve_or_null will return null if there was
4000     // an exception.  If we cannot load the Shutdown class, just don't
4001     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4002     // and finalizers (if runFinalizersOnExit is set) won't be run.
4003     // Note that if a shutdown hook was registered or runFinalizersOnExit
4004     // was called, the Shutdown class would have already been loaded
4005     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
4006     instanceKlassHandle shutdown_klass (THREAD, k);
4007     JavaValue result(T_VOID);
4008     JavaCalls::call_static(&result,
4009                            shutdown_klass,
4010                            vmSymbols::shutdown_method_name(),
4011                            vmSymbols::void_method_signature(),
4012                            THREAD);
4013   }
4014   CLEAR_PENDING_EXCEPTION;
4015 }
4016 
4017 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4018 // the program falls off the end of main(). Another VM exit path is through
4019 // vm_exit() when the program calls System.exit() to return a value or when
4020 // there is a serious error in VM. The two shutdown paths are not exactly
4021 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4022 // and VM_Exit op at VM level.
4023 //
4024 // Shutdown sequence:
4025 //   + Shutdown native memory tracking if it is on
4026 //   + Wait until we are the last non-daemon thread to execute
4027 //     <-- every thing is still working at this moment -->
4028 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4029 //        shutdown hooks, run finalizers if finalization-on-exit
4030 //   + Call before_exit(), prepare for VM exit
4031 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4032 //        currently the only user of this mechanism is File.deleteOnExit())
4033 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
4034 //        post thread end and vm death events to JVMTI,
4035 //        stop signal thread
4036 //   + Call JavaThread::exit(), it will:
4037 //      > release JNI handle blocks, remove stack guard pages
4038 //      > remove this thread from Threads list
4039 //     <-- no more Java code from this thread after this point -->
4040 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4041 //     the compiler threads at safepoint
4042 //     <-- do not use anything that could get blocked by Safepoint -->
4043 //   + Disable tracing at JNI/JVM barriers
4044 //   + Set _vm_exited flag for threads that are still running native code
4045 //   + Delete this thread
4046 //   + Call exit_globals()
4047 //      > deletes tty
4048 //      > deletes PerfMemory resources
4049 //   + Return to caller
4050 
4051 bool Threads::destroy_vm() {
4052   JavaThread* thread = JavaThread::current();
4053 
4054 #ifdef ASSERT
4055   _vm_complete = false;
4056 #endif
4057   // Wait until we are the last non-daemon thread to execute
4058   { MutexLocker nu(Threads_lock);
4059     while (Threads::number_of_non_daemon_threads() > 1 )
4060       // This wait should make safepoint checks, wait without a timeout,
4061       // and wait as a suspend-equivalent condition.
4062       //
4063       // Note: If the FlatProfiler is running and this thread is waiting
4064       // for another non-daemon thread to finish, then the FlatProfiler
4065       // is waiting for the external suspend request on this thread to
4066       // complete. wait_for_ext_suspend_completion() will eventually
4067       // timeout, but that takes time. Making this wait a suspend-
4068       // equivalent condition solves that timeout problem.
4069       //
4070       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4071                          Mutex::_as_suspend_equivalent_flag);
4072   }
4073 
4074   EventShutdown e;
4075   if (e.should_commit()) {
4076     e.set_reason("No remaining non-daemon Java threads");
4077     e.commit();
4078   }
4079 
4080   // Hang forever on exit if we are reporting an error.
4081   if (ShowMessageBoxOnError && is_error_reported()) {
4082     os::infinite_sleep();
4083   }
4084   os::wait_for_keypress_at_exit();
4085 
4086   if (JDK_Version::is_jdk12x_version()) {
4087     // We are the last thread running, so check if finalizers should be run.
4088     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
4089     HandleMark rm(thread);
4090     Universe::run_finalizers_on_exit();
4091   } else {
4092     // run Java level shutdown hooks
4093     thread->invoke_shutdown_hooks();
4094   }
4095 
4096   before_exit(thread);
4097 
4098   thread->exit(true);
4099 
4100   // Stop VM thread.
4101   {
4102     // 4945125 The vm thread comes to a safepoint during exit.
4103     // GC vm_operations can get caught at the safepoint, and the
4104     // heap is unparseable if they are caught. Grab the Heap_lock
4105     // to prevent this. The GC vm_operations will not be able to
4106     // queue until after the vm thread is dead. After this point,
4107     // we'll never emerge out of the safepoint before the VM exits.
4108 
4109     MutexLocker ml(Heap_lock);
4110 
4111     VMThread::wait_for_vm_thread_exit();
4112     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4113     VMThread::destroy();
4114   }
4115 
4116   // clean up ideal graph printers
4117 #if defined(COMPILER2) && !defined(PRODUCT)
4118   IdealGraphPrinter::clean_up();
4119 #endif
4120 
4121   // Now, all Java threads are gone except daemon threads. Daemon threads
4122   // running Java code or in VM are stopped by the Safepoint. However,
4123   // daemon threads executing native code are still running.  But they
4124   // will be stopped at native=>Java/VM barriers. Note that we can't
4125   // simply kill or suspend them, as it is inherently deadlock-prone.
4126 
4127 #ifndef PRODUCT
4128   // disable function tracing at JNI/JVM barriers
4129   TraceJNICalls = false;
4130   TraceJVMCalls = false;
4131   TraceRuntimeCalls = false;
4132 #endif
4133 
4134   VM_Exit::set_vm_exited();
4135 
4136   notify_vm_shutdown();
4137 
4138   delete thread;
4139 
4140   // exit_globals() will delete tty
4141   exit_globals();
4142 
4143   return true;
4144 }
4145 
4146 
4147 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4148   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4149   return is_supported_jni_version(version);
4150 }
4151 
4152 
4153 jboolean Threads::is_supported_jni_version(jint version) {
4154   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4155   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4156   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4157   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4158   return JNI_FALSE;
4159 }
4160 
4161 
4162 void Threads::add(JavaThread* p, bool force_daemon) {
4163   // The threads lock must be owned at this point
4164   assert_locked_or_safepoint(Threads_lock);
4165 
4166   // See the comment for this method in thread.hpp for its purpose and
4167   // why it is called here.
4168   p->initialize_queues();
4169   p->set_next(_thread_list);
4170   _thread_list = p;
4171   _number_of_threads++;
4172   oop threadObj = p->threadObj();
4173   bool daemon = true;
4174   // Bootstrapping problem: threadObj can be null for initial
4175   // JavaThread (or for threads attached via JNI)
4176   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4177     _number_of_non_daemon_threads++;
4178     daemon = false;
4179   }
4180 
4181   ThreadService::add_thread(p, daemon);
4182 
4183   // Possible GC point.
4184   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4185 }
4186 
4187 void Threads::remove(JavaThread* p) {
4188   // Extra scope needed for Thread_lock, so we can check
4189   // that we do not remove thread without safepoint code notice
4190   { MutexLocker ml(Threads_lock);
4191 
4192     assert(includes(p), "p must be present");
4193 
4194     JavaThread* current = _thread_list;
4195     JavaThread* prev    = NULL;
4196 
4197     while (current != p) {
4198       prev    = current;
4199       current = current->next();
4200     }
4201 
4202     if (prev) {
4203       prev->set_next(current->next());
4204     } else {
4205       _thread_list = p->next();
4206     }
4207     _number_of_threads--;
4208     oop threadObj = p->threadObj();
4209     bool daemon = true;
4210     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4211       _number_of_non_daemon_threads--;
4212       daemon = false;
4213 
4214       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4215       // on destroy_vm will wake up.
4216       if (number_of_non_daemon_threads() == 1)
4217         Threads_lock->notify_all();
4218     }
4219     ThreadService::remove_thread(p, daemon);
4220 
4221     // Make sure that safepoint code disregard this thread. This is needed since
4222     // the thread might mess around with locks after this point. This can cause it
4223     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4224     // of this thread since it is removed from the queue.
4225     p->set_terminated_value();
4226   } // unlock Threads_lock
4227 
4228   // Since Events::log uses a lock, we grab it outside the Threads_lock
4229   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4230 }
4231 
4232 // Threads_lock must be held when this is called (or must be called during a safepoint)
4233 bool Threads::includes(JavaThread* p) {
4234   assert(Threads_lock->is_locked(), "sanity check");
4235   ALL_JAVA_THREADS(q) {
4236     if (q == p ) {
4237       return true;
4238     }
4239   }
4240   return false;
4241 }
4242 
4243 // Operations on the Threads list for GC.  These are not explicitly locked,
4244 // but the garbage collector must provide a safe context for them to run.
4245 // In particular, these things should never be called when the Threads_lock
4246 // is held by some other thread. (Note: the Safepoint abstraction also
4247 // uses the Threads_lock to gurantee this property. It also makes sure that
4248 // all threads gets blocked when exiting or starting).
4249 
4250 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4251   ALL_JAVA_THREADS(p) {
4252     p->oops_do(f, cld_f, cf);
4253   }
4254   VMThread::vm_thread()->oops_do(f, cld_f, cf);
4255 }
4256 
4257 void Threads::possibly_parallel_oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4258   // Introduce a mechanism allowing parallel threads to claim threads as
4259   // root groups.  Overhead should be small enough to use all the time,
4260   // even in sequential code.
4261   SharedHeap* sh = SharedHeap::heap();
4262   // Cannot yet substitute active_workers for n_par_threads
4263   // because of G1CollectedHeap::verify() use of
4264   // SharedHeap::process_roots().  n_par_threads == 0 will
4265   // turn off parallelism in process_roots while active_workers
4266   // is being used for parallelism elsewhere.
4267   bool is_par = sh->n_par_threads() > 0;
4268   assert(!is_par ||
4269          (SharedHeap::heap()->n_par_threads() ==
4270           SharedHeap::heap()->workers()->active_workers()
4271           || UseShenandoahGC), "Mismatch");
4272   int cp = SharedHeap::heap()->strong_roots_parity();
4273   ALL_JAVA_THREADS(p) {
4274     if (p->claim_oops_do(is_par, cp)) {
4275       p->oops_do(f, cld_f, cf);
4276     }
4277   }
4278   VMThread* vmt = VMThread::vm_thread();
4279   if (vmt->claim_oops_do(is_par, cp)) {
4280     vmt->oops_do(f, cld_f, cf);
4281   }
4282 }
4283 
4284 #if INCLUDE_ALL_GCS
4285 // Used by ParallelScavenge
4286 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4287   ALL_JAVA_THREADS(p) {
4288     q->enqueue(new ThreadRootsTask(p));
4289   }
4290   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4291 }
4292 
4293 // Used by Parallel Old
4294 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4295   ALL_JAVA_THREADS(p) {
4296     q->enqueue(new ThreadRootsMarkingTask(p));
4297   }
4298   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4299 }
4300 #endif // INCLUDE_ALL_GCS
4301 
4302 void Threads::nmethods_do(CodeBlobClosure* cf) {
4303   ALL_JAVA_THREADS(p) {
4304     p->nmethods_do(cf);
4305   }
4306   VMThread::vm_thread()->nmethods_do(cf);
4307 }
4308 
4309 void Threads::metadata_do(void f(Metadata*)) {
4310   ALL_JAVA_THREADS(p) {
4311     p->metadata_do(f);
4312   }
4313 }
4314 
4315 void Threads::gc_epilogue() {
4316   ALL_JAVA_THREADS(p) {
4317     p->gc_epilogue();
4318   }
4319 }
4320 
4321 void Threads::gc_prologue() {
4322   ALL_JAVA_THREADS(p) {
4323     p->gc_prologue();
4324   }
4325 }
4326 
4327 void Threads::deoptimized_wrt_marked_nmethods() {
4328   ALL_JAVA_THREADS(p) {
4329     p->deoptimized_wrt_marked_nmethods();
4330   }
4331 }
4332 
4333 
4334 // Get count Java threads that are waiting to enter the specified monitor.
4335 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4336   address monitor, bool doLock) {
4337   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4338     "must grab Threads_lock or be at safepoint");
4339   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4340 
4341   int i = 0;
4342   {
4343     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4344     ALL_JAVA_THREADS(p) {
4345       if (p->is_Compiler_thread()) continue;
4346 
4347       address pending = (address)p->current_pending_monitor();
4348       if (pending == monitor) {             // found a match
4349         if (i < count) result->append(p);   // save the first count matches
4350         i++;
4351       }
4352     }
4353   }
4354   return result;
4355 }
4356 
4357 
4358 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
4359   assert(doLock ||
4360          Threads_lock->owned_by_self() ||
4361          SafepointSynchronize::is_at_safepoint(),
4362          "must grab Threads_lock or be at safepoint");
4363 
4364   // NULL owner means not locked so we can skip the search
4365   if (owner == NULL) return NULL;
4366 
4367   {
4368     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4369     ALL_JAVA_THREADS(p) {
4370       // first, see if owner is the address of a Java thread
4371       if (owner == (address)p) return p;
4372     }
4373   }
4374   // Cannot assert on lack of success here since this function may be
4375   // used by code that is trying to report useful problem information
4376   // like deadlock detection.
4377   if (UseHeavyMonitors) return NULL;
4378 
4379   //
4380   // If we didn't find a matching Java thread and we didn't force use of
4381   // heavyweight monitors, then the owner is the stack address of the
4382   // Lock Word in the owning Java thread's stack.
4383   //
4384   JavaThread* the_owner = NULL;
4385   {
4386     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4387     ALL_JAVA_THREADS(q) {
4388       if (q->is_lock_owned(owner)) {
4389         the_owner = q;
4390         break;
4391       }
4392     }
4393   }
4394   // cannot assert on lack of success here; see above comment
4395   return the_owner;
4396 }
4397 
4398 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4399 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
4400   char buf[32];
4401   st->print_cr("%s", os::local_time_string(buf, sizeof(buf)));
4402 
4403   st->print_cr("Full thread dump %s (%s %s):",
4404                 Abstract_VM_Version::vm_name(),
4405                 Abstract_VM_Version::vm_release(),
4406                 Abstract_VM_Version::vm_info_string()
4407                );
4408   st->cr();
4409 
4410 #if INCLUDE_ALL_GCS
4411   // Dump concurrent locks
4412   ConcurrentLocksDump concurrent_locks;
4413   if (print_concurrent_locks) {
4414     concurrent_locks.dump_at_safepoint();
4415   }
4416 #endif // INCLUDE_ALL_GCS
4417 
4418   ALL_JAVA_THREADS(p) {
4419     ResourceMark rm;
4420     p->print_on(st);
4421     if (print_stacks) {
4422       if (internal_format) {
4423         p->trace_stack();
4424       } else {
4425         p->print_stack_on(st);
4426       }
4427     }
4428     st->cr();
4429 #if INCLUDE_ALL_GCS
4430     if (print_concurrent_locks) {
4431       concurrent_locks.print_locks_on(p, st);
4432     }
4433 #endif // INCLUDE_ALL_GCS
4434   }
4435 
4436   VMThread::vm_thread()->print_on(st);
4437   st->cr();
4438   Universe::heap()->print_gc_threads_on(st);
4439   WatcherThread* wt = WatcherThread::watcher_thread();
4440   if (wt != NULL) {
4441     wt->print_on(st);
4442     st->cr();
4443   }
4444   CompileBroker::print_compiler_threads_on(st);
4445   st->flush();
4446 }
4447 
4448 // Threads::print_on_error() is called by fatal error handler. It's possible
4449 // that VM is not at safepoint and/or current thread is inside signal handler.
4450 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4451 // memory (even in resource area), it might deadlock the error handler.
4452 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4453   bool found_current = false;
4454   st->print_cr("Java Threads: ( => current thread )");
4455   ALL_JAVA_THREADS(thread) {
4456     bool is_current = (current == thread);
4457     found_current = found_current || is_current;
4458 
4459     st->print("%s", is_current ? "=>" : "  ");
4460 
4461     st->print(PTR_FORMAT, thread);
4462     st->print(" ");
4463     thread->print_on_error(st, buf, buflen);
4464     st->cr();
4465   }
4466   st->cr();
4467 
4468   st->print_cr("Other Threads:");
4469   if (VMThread::vm_thread()) {
4470     bool is_current = (current == VMThread::vm_thread());
4471     found_current = found_current || is_current;
4472     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4473 
4474     st->print(PTR_FORMAT, VMThread::vm_thread());
4475     st->print(" ");
4476     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4477     st->cr();
4478   }
4479   WatcherThread* wt = WatcherThread::watcher_thread();
4480   if (wt != NULL) {
4481     bool is_current = (current == wt);
4482     found_current = found_current || is_current;
4483     st->print("%s", is_current ? "=>" : "  ");
4484 
4485     st->print(PTR_FORMAT, wt);
4486     st->print(" ");
4487     wt->print_on_error(st, buf, buflen);
4488     st->cr();
4489   }
4490   if (!found_current) {
4491     st->cr();
4492     st->print("=>" PTR_FORMAT " (exited) ", current);
4493     current->print_on_error(st, buf, buflen);
4494     st->cr();
4495   }
4496 }
4497 
4498 // Internal SpinLock and Mutex
4499 // Based on ParkEvent
4500 
4501 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4502 //
4503 // We employ SpinLocks _only for low-contention, fixed-length
4504 // short-duration critical sections where we're concerned
4505 // about native mutex_t or HotSpot Mutex:: latency.
4506 // The mux construct provides a spin-then-block mutual exclusion
4507 // mechanism.
4508 //
4509 // Testing has shown that contention on the ListLock guarding gFreeList
4510 // is common.  If we implement ListLock as a simple SpinLock it's common
4511 // for the JVM to devolve to yielding with little progress.  This is true
4512 // despite the fact that the critical sections protected by ListLock are
4513 // extremely short.
4514 //
4515 // TODO-FIXME: ListLock should be of type SpinLock.
4516 // We should make this a 1st-class type, integrated into the lock
4517 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4518 // should have sufficient padding to avoid false-sharing and excessive
4519 // cache-coherency traffic.
4520 
4521 
4522 typedef volatile int SpinLockT ;
4523 
4524 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4525   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4526      return ;   // normal fast-path return
4527   }
4528 
4529   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4530   TEVENT (SpinAcquire - ctx) ;
4531   int ctr = 0 ;
4532   int Yields = 0 ;
4533   for (;;) {
4534      while (*adr != 0) {
4535         ++ctr ;
4536         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4537            if (Yields > 5) {
4538              os::naked_short_sleep(1);
4539            } else {
4540              os::NakedYield() ;
4541              ++Yields ;
4542            }
4543         } else {
4544            SpinPause() ;
4545         }
4546      }
4547      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4548   }
4549 }
4550 
4551 void Thread::SpinRelease (volatile int * adr) {
4552   assert (*adr != 0, "invariant") ;
4553   OrderAccess::fence() ;      // guarantee at least release consistency.
4554   // Roach-motel semantics.
4555   // It's safe if subsequent LDs and STs float "up" into the critical section,
4556   // but prior LDs and STs within the critical section can't be allowed
4557   // to reorder or float past the ST that releases the lock.
4558   *adr = 0 ;
4559 }
4560 
4561 // muxAcquire and muxRelease:
4562 //
4563 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4564 //    The LSB of the word is set IFF the lock is held.
4565 //    The remainder of the word points to the head of a singly-linked list
4566 //    of threads blocked on the lock.
4567 //
4568 // *  The current implementation of muxAcquire-muxRelease uses its own
4569 //    dedicated Thread._MuxEvent instance.  If we're interested in
4570 //    minimizing the peak number of extant ParkEvent instances then
4571 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4572 //    as certain invariants were satisfied.  Specifically, care would need
4573 //    to be taken with regards to consuming unpark() "permits".
4574 //    A safe rule of thumb is that a thread would never call muxAcquire()
4575 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4576 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4577 //    consume an unpark() permit intended for monitorenter, for instance.
4578 //    One way around this would be to widen the restricted-range semaphore
4579 //    implemented in park().  Another alternative would be to provide
4580 //    multiple instances of the PlatformEvent() for each thread.  One
4581 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4582 //
4583 // *  Usage:
4584 //    -- Only as leaf locks
4585 //    -- for short-term locking only as muxAcquire does not perform
4586 //       thread state transitions.
4587 //
4588 // Alternatives:
4589 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4590 //    but with parking or spin-then-park instead of pure spinning.
4591 // *  Use Taura-Oyama-Yonenzawa locks.
4592 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4593 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4594 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4595 //    acquiring threads use timers (ParkTimed) to detect and recover from
4596 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4597 //    boundaries by using placement-new.
4598 // *  Augment MCS with advisory back-link fields maintained with CAS().
4599 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4600 //    The validity of the backlinks must be ratified before we trust the value.
4601 //    If the backlinks are invalid the exiting thread must back-track through the
4602 //    the forward links, which are always trustworthy.
4603 // *  Add a successor indication.  The LockWord is currently encoded as
4604 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4605 //    to provide the usual futile-wakeup optimization.
4606 //    See RTStt for details.
4607 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4608 //
4609 
4610 
4611 typedef volatile intptr_t MutexT ;      // Mux Lock-word
4612 enum MuxBits { LOCKBIT = 1 } ;
4613 
4614 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4615   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4616   if (w == 0) return ;
4617   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4618      return ;
4619   }
4620 
4621   TEVENT (muxAcquire - Contention) ;
4622   ParkEvent * const Self = Thread::current()->_MuxEvent ;
4623   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4624   for (;;) {
4625      int its = (os::is_MP() ? 100 : 0) + 1 ;
4626 
4627      // Optional spin phase: spin-then-park strategy
4628      while (--its >= 0) {
4629        w = *Lock ;
4630        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4631           return ;
4632        }
4633      }
4634 
4635      Self->reset() ;
4636      Self->OnList = intptr_t(Lock) ;
4637      // The following fence() isn't _strictly necessary as the subsequent
4638      // CAS() both serializes execution and ratifies the fetched *Lock value.
4639      OrderAccess::fence();
4640      for (;;) {
4641         w = *Lock ;
4642         if ((w & LOCKBIT) == 0) {
4643             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4644                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
4645                 return ;
4646             }
4647             continue ;      // Interference -- *Lock changed -- Just retry
4648         }
4649         assert (w & LOCKBIT, "invariant") ;
4650         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4651         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4652      }
4653 
4654      while (Self->OnList != 0) {
4655         Self->park() ;
4656      }
4657   }
4658 }
4659 
4660 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4661   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4662   if (w == 0) return ;
4663   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4664     return ;
4665   }
4666 
4667   TEVENT (muxAcquire - Contention) ;
4668   ParkEvent * ReleaseAfter = NULL ;
4669   if (ev == NULL) {
4670     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4671   }
4672   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4673   for (;;) {
4674     guarantee (ev->OnList == 0, "invariant") ;
4675     int its = (os::is_MP() ? 100 : 0) + 1 ;
4676 
4677     // Optional spin phase: spin-then-park strategy
4678     while (--its >= 0) {
4679       w = *Lock ;
4680       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4681         if (ReleaseAfter != NULL) {
4682           ParkEvent::Release (ReleaseAfter) ;
4683         }
4684         return ;
4685       }
4686     }
4687 
4688     ev->reset() ;
4689     ev->OnList = intptr_t(Lock) ;
4690     // The following fence() isn't _strictly necessary as the subsequent
4691     // CAS() both serializes execution and ratifies the fetched *Lock value.
4692     OrderAccess::fence();
4693     for (;;) {
4694       w = *Lock ;
4695       if ((w & LOCKBIT) == 0) {
4696         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4697           ev->OnList = 0 ;
4698           // We call ::Release while holding the outer lock, thus
4699           // artificially lengthening the critical section.
4700           // Consider deferring the ::Release() until the subsequent unlock(),
4701           // after we've dropped the outer lock.
4702           if (ReleaseAfter != NULL) {
4703             ParkEvent::Release (ReleaseAfter) ;
4704           }
4705           return ;
4706         }
4707         continue ;      // Interference -- *Lock changed -- Just retry
4708       }
4709       assert (w & LOCKBIT, "invariant") ;
4710       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4711       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4712     }
4713 
4714     while (ev->OnList != 0) {
4715       ev->park() ;
4716     }
4717   }
4718 }
4719 
4720 // Release() must extract a successor from the list and then wake that thread.
4721 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4722 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4723 // Release() would :
4724 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4725 // (B) Extract a successor from the private list "in-hand"
4726 // (C) attempt to CAS() the residual back into *Lock over null.
4727 //     If there were any newly arrived threads and the CAS() would fail.
4728 //     In that case Release() would detach the RATs, re-merge the list in-hand
4729 //     with the RATs and repeat as needed.  Alternately, Release() might
4730 //     detach and extract a successor, but then pass the residual list to the wakee.
4731 //     The wakee would be responsible for reattaching and remerging before it
4732 //     competed for the lock.
4733 //
4734 // Both "pop" and DMR are immune from ABA corruption -- there can be
4735 // multiple concurrent pushers, but only one popper or detacher.
4736 // This implementation pops from the head of the list.  This is unfair,
4737 // but tends to provide excellent throughput as hot threads remain hot.
4738 // (We wake recently run threads first).
4739 
4740 void Thread::muxRelease (volatile intptr_t * Lock)  {
4741   for (;;) {
4742     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4743     assert (w & LOCKBIT, "invariant") ;
4744     if (w == LOCKBIT) return ;
4745     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4746     assert (List != NULL, "invariant") ;
4747     assert (List->OnList == intptr_t(Lock), "invariant") ;
4748     ParkEvent * nxt = List->ListNext ;
4749 
4750     // The following CAS() releases the lock and pops the head element.
4751     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4752       continue ;
4753     }
4754     List->OnList = 0 ;
4755     OrderAccess::fence() ;
4756     List->unpark () ;
4757     return ;
4758   }
4759 }
4760 
4761 
4762 void Threads::verify() {
4763   ALL_JAVA_THREADS(p) {
4764     p->verify();
4765   }
4766   VMThread* thread = VMThread::vm_thread();
4767   if (thread != NULL) thread->verify();
4768 }