1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #ifndef __STDC_FORMAT_MACROS
  29 #define __STDC_FORMAT_MACROS
  30 #endif
  31 
  32 // Needed for INT64_C and UINT64_C with ISO C99 libraries (see JDK-8272214)
  33 #ifndef __STDC_CONSTANT_MACROS
  34 #define __STDC_CONSTANT_MACROS
  35 #endif
  36 
  37 #ifdef TARGET_COMPILER_gcc
  38 # include "utilities/globalDefinitions_gcc.hpp"
  39 #endif
  40 #ifdef TARGET_COMPILER_visCPP
  41 # include "utilities/globalDefinitions_visCPP.hpp"
  42 #endif
  43 #ifdef TARGET_COMPILER_sparcWorks
  44 # include "utilities/globalDefinitions_sparcWorks.hpp"
  45 #endif
  46 #ifdef TARGET_COMPILER_xlc
  47 # include "utilities/globalDefinitions_xlc.hpp"
  48 #endif
  49 
  50 // Defaults for macros that might be defined per compiler.
  51 #ifndef NOINLINE
  52 #define NOINLINE
  53 #endif
  54 #ifndef ALWAYSINLINE
  55 #define ALWAYSINLINE inline
  56 #endif
  57 
  58 #ifndef PRAGMA_DIAG_PUSH
  59 #define PRAGMA_DIAG_PUSH
  60 #endif
  61 #ifndef PRAGMA_DIAG_POP
  62 #define PRAGMA_DIAG_POP
  63 #endif
  64 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED
  65 #define PRAGMA_FORMAT_NONLITERAL_IGNORED
  66 #endif
  67 #ifndef PRAGMA_FORMAT_IGNORED
  68 #define PRAGMA_FORMAT_IGNORED
  69 #endif
  70 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
  71 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
  72 #endif
  73 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
  74 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
  75 #endif
  76 #ifndef PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  77 #define PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  78 #endif
  79 #ifndef ATTRIBUTE_PRINTF
  80 #define ATTRIBUTE_PRINTF(fmt, vargs)
  81 #endif
  82 
  83 
  84 #include "utilities/macros.hpp"
  85 
  86 // This file holds all globally used constants & types, class (forward)
  87 // declarations and a few frequently used utility functions.
  88 
  89 //----------------------------------------------------------------------------------------------------
  90 // Constants
  91 
  92 const int LogBytesPerShort   = 1;
  93 const int LogBytesPerInt     = 2;
  94 #ifdef _LP64
  95 const int LogBytesPerWord    = 3;
  96 #else
  97 const int LogBytesPerWord    = 2;
  98 #endif
  99 const int LogBytesPerLong    = 3;
 100 
 101 const int BytesPerShort      = 1 << LogBytesPerShort;
 102 const int BytesPerInt        = 1 << LogBytesPerInt;
 103 const int BytesPerWord       = 1 << LogBytesPerWord;
 104 const int BytesPerLong       = 1 << LogBytesPerLong;
 105 
 106 const int LogBitsPerByte     = 3;
 107 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
 108 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
 109 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
 110 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
 111 
 112 const int BitsPerByte        = 1 << LogBitsPerByte;
 113 const int BitsPerShort       = 1 << LogBitsPerShort;
 114 const int BitsPerInt         = 1 << LogBitsPerInt;
 115 const int BitsPerWord        = 1 << LogBitsPerWord;
 116 const int BitsPerLong        = 1 << LogBitsPerLong;
 117 
 118 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
 119 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
 120 
 121 const int WordsPerLong       = 2;       // Number of stack entries for longs
 122 
 123 const int oopSize            = sizeof(char*); // Full-width oop
 124 extern int heapOopSize;                       // Oop within a java object
 125 const int wordSize           = sizeof(char*);
 126 const int longSize           = sizeof(jlong);
 127 const int jintSize           = sizeof(jint);
 128 const int size_tSize         = sizeof(size_t);
 129 
 130 const int BytesPerOop        = BytesPerWord;  // Full-width oop
 131 
 132 extern int LogBytesPerHeapOop;                // Oop within a java object
 133 extern int LogBitsPerHeapOop;
 134 extern int BytesPerHeapOop;
 135 extern int BitsPerHeapOop;
 136 
 137 // Oop encoding heap max
 138 extern uint64_t OopEncodingHeapMax;
 139 
 140 const int BitsPerJavaInteger = 32;
 141 const int BitsPerJavaLong    = 64;
 142 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 143 
 144 // Size of a char[] needed to represent a jint as a string in decimal.
 145 const int jintAsStringSize = 12;
 146 
 147 // In fact this should be
 148 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
 149 // see os::set_memory_serialize_page()
 150 #ifdef _LP64
 151 const int SerializePageShiftCount = 4;
 152 #else
 153 const int SerializePageShiftCount = 3;
 154 #endif
 155 
 156 // An opaque struct of heap-word width, so that HeapWord* can be a generic
 157 // pointer into the heap.  We require that object sizes be measured in
 158 // units of heap words, so that that
 159 //   HeapWord* hw;
 160 //   hw += oop(hw)->foo();
 161 // works, where foo is a method (like size or scavenge) that returns the
 162 // object size.
 163 class HeapWord {
 164   friend class VMStructs;
 165  private:
 166   char* i;
 167 #ifndef PRODUCT
 168  public:
 169   char* value() { return i; }
 170 #endif
 171 };
 172 
 173 // Analogous opaque struct for metadata allocated from
 174 // metaspaces.
 175 class MetaWord {
 176   friend class VMStructs;
 177  private:
 178   char* i;
 179 };
 180 
 181 // HeapWordSize must be 2^LogHeapWordSize.
 182 const int HeapWordSize        = sizeof(HeapWord);
 183 #ifdef _LP64
 184 const int LogHeapWordSize     = 3;
 185 #else
 186 const int LogHeapWordSize     = 2;
 187 #endif
 188 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 189 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 190 
 191 // The larger HeapWordSize for 64bit requires larger heaps
 192 // for the same application running in 64bit.  See bug 4967770.
 193 // The minimum alignment to a heap word size is done.  Other
 194 // parts of the memory system may required additional alignment
 195 // and are responsible for those alignments.
 196 #ifdef _LP64
 197 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
 198 #else
 199 #define ScaleForWordSize(x) (x)
 200 #endif
 201 
 202 // The minimum number of native machine words necessary to contain "byte_size"
 203 // bytes.
 204 inline size_t heap_word_size(size_t byte_size) {
 205   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 206 }
 207 
 208 
 209 const size_t K                  = 1024;
 210 const size_t M                  = K*K;
 211 const size_t G                  = M*K;
 212 const size_t HWperKB            = K / sizeof(HeapWord);
 213 
 214 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 215 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 216 
 217 // Constants for converting from a base unit to milli-base units.  For
 218 // example from seconds to milliseconds and microseconds
 219 
 220 const int MILLIUNITS    = 1000;         // milli units per base unit
 221 const int MICROUNITS    = 1000000;      // micro units per base unit
 222 const int NANOUNITS     = 1000000000;   // nano units per base unit
 223 
 224 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 225 const jint  NANOSECS_PER_MILLISEC = 1000000;
 226 
 227 // Proper units routines try to maintain at least three significant digits.
 228 // In worst case, it would print five significant digits with lower prefix.
 229 // G is close to MAX_SIZE on 32-bit platforms, so its product can easily overflow,
 230 // and therefore we need to be careful.
 231 
 232 inline const char* proper_unit_for_byte_size(size_t s) {
 233 #ifdef _LP64
 234   if (s >= 100*G) {
 235     return "G";
 236   }
 237 #endif
 238   if (s >= 100*M) {
 239     return "M";
 240   } else if (s >= 100*K) {
 241     return "K";
 242   } else {
 243     return "B";
 244   }
 245 }
 246 
 247 template <class T>
 248 inline T byte_size_in_proper_unit(T s) {
 249 #ifdef _LP64
 250   if (s >= 100*G) {
 251     return (T)(s/G);
 252   }
 253 #endif
 254   if (s >= 100*M) {
 255     return (T)(s/M);
 256   } else if (s >= 100*K) {
 257     return (T)(s/K);
 258   } else {
 259     return s;
 260   }
 261 }
 262 
 263 //----------------------------------------------------------------------------------------------------
 264 // VM type definitions
 265 
 266 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 267 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 268 
 269 typedef intptr_t  intx;
 270 typedef uintptr_t uintx;
 271 
 272 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 273 const intx  max_intx  = (uintx)min_intx - 1;
 274 const uintx max_uintx = (uintx)-1;
 275 
 276 // Table of values:
 277 //      sizeof intx         4               8
 278 // min_intx             0x80000000      0x8000000000000000
 279 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 280 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 281 
 282 typedef unsigned int uint;   NEEDS_CLEANUP
 283 
 284 
 285 //----------------------------------------------------------------------------------------------------
 286 // Java type definitions
 287 
 288 // All kinds of 'plain' byte addresses
 289 typedef   signed char s_char;
 290 typedef unsigned char u_char;
 291 typedef u_char*       address;
 292 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 293                                     // except for some implementations of a C++
 294                                     // linkage pointer to function. Should never
 295                                     // need one of those to be placed in this
 296                                     // type anyway.
 297 
 298 //  Utility functions to "portably" (?) bit twiddle pointers
 299 //  Where portable means keep ANSI C++ compilers quiet
 300 
 301 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 302 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 303 
 304 //  Utility functions to "portably" make cast to/from function pointers.
 305 
 306 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 307 inline address_word  castable_address(address x)              { return address_word(x) ; }
 308 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 309 
 310 // Pointer subtraction.
 311 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 312 // the range we might need to find differences from one end of the heap
 313 // to the other.
 314 // A typical use might be:
 315 //     if (pointer_delta(end(), top()) >= size) {
 316 //       // enough room for an object of size
 317 //       ...
 318 // and then additions like
 319 //       ... top() + size ...
 320 // are safe because we know that top() is at least size below end().
 321 inline size_t pointer_delta(const void* left,
 322                             const void* right,
 323                             size_t element_size) {
 324   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 325 }
 326 // A version specialized for HeapWord*'s.
 327 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 328   return pointer_delta(left, right, sizeof(HeapWord));
 329 }
 330 // A version specialized for MetaWord*'s.
 331 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
 332   return pointer_delta(left, right, sizeof(MetaWord));
 333 }
 334 
 335 //
 336 // ANSI C++ does not allow casting from one pointer type to a function pointer
 337 // directly without at best a warning. This macro accomplishes it silently
 338 // In every case that is present at this point the value be cast is a pointer
 339 // to a C linkage function. In somecase the type used for the cast reflects
 340 // that linkage and a picky compiler would not complain. In other cases because
 341 // there is no convenient place to place a typedef with extern C linkage (i.e
 342 // a platform dependent header file) it doesn't. At this point no compiler seems
 343 // picky enough to catch these instances (which are few). It is possible that
 344 // using templates could fix these for all cases. This use of templates is likely
 345 // so far from the middle of the road that it is likely to be problematic in
 346 // many C++ compilers.
 347 //
 348 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
 349 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 350 
 351 // Unsigned byte types for os and stream.hpp
 352 
 353 // Unsigned one, two, four and eigth byte quantities used for describing
 354 // the .class file format. See JVM book chapter 4.
 355 
 356 typedef jubyte  u1;
 357 typedef jushort u2;
 358 typedef juint   u4;
 359 typedef julong  u8;
 360 
 361 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 362 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 363 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 364 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 365 
 366 typedef jbyte  s1;
 367 typedef jshort s2;
 368 typedef jint   s4;
 369 typedef jlong  s8;
 370 
 371 //----------------------------------------------------------------------------------------------------
 372 // JVM spec restrictions
 373 
 374 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 375 
 376 // Default ProtectionDomainCacheSize values
 377 
 378 const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017);
 379 
 380 //----------------------------------------------------------------------------------------------------
 381 // Default and minimum StringTableSize values
 382 
 383 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
 384 const int minimumStringTableSize = 1009;
 385 
 386 const int defaultSymbolTableSize = 20011;
 387 const int minimumSymbolTableSize = 1009;
 388 
 389 
 390 //----------------------------------------------------------------------------------------------------
 391 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
 392 //
 393 // Determines whether on-the-fly class replacement and frame popping are enabled.
 394 
 395 #define HOTSWAP
 396 
 397 //----------------------------------------------------------------------------------------------------
 398 // Object alignment, in units of HeapWords.
 399 //
 400 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 401 // reference fields can be naturally aligned.
 402 
 403 extern int MinObjAlignment;
 404 extern int MinObjAlignmentInBytes;
 405 extern int MinObjAlignmentInBytesMask;
 406 
 407 extern int LogMinObjAlignment;
 408 extern int LogMinObjAlignmentInBytes;
 409 
 410 const int LogKlassAlignmentInBytes = 3;
 411 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
 412 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
 413 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
 414 
 415 // Klass encoding metaspace max size
 416 const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
 417 
 418 // Machine dependent stuff
 419 
 420 #if defined(X86) && defined(COMPILER2) && !defined(JAVASE_EMBEDDED)
 421 // Include Restricted Transactional Memory lock eliding optimization
 422 #define INCLUDE_RTM_OPT 1
 423 #define RTM_OPT_ONLY(code) code
 424 #else
 425 #define INCLUDE_RTM_OPT 0
 426 #define RTM_OPT_ONLY(code)
 427 #endif
 428 // States of Restricted Transactional Memory usage.
 429 enum RTMState {
 430   NoRTM      = 0x2, // Don't use RTM
 431   UseRTM     = 0x1, // Use RTM
 432   ProfileRTM = 0x0  // Use RTM with abort ratio calculation
 433 };
 434 
 435 // The maximum size of the code cache.  Can be overridden by targets.
 436 #define CODE_CACHE_SIZE_LIMIT (2*G)
 437 // Allow targets to reduce the default size of the code cache.
 438 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
 439 
 440 #ifdef TARGET_ARCH_x86
 441 # include "globalDefinitions_x86.hpp"
 442 #endif
 443 #ifdef TARGET_ARCH_aarch64
 444 # include "globalDefinitions_aarch64.hpp"
 445 #endif
 446 #ifdef TARGET_ARCH_sparc
 447 # include "globalDefinitions_sparc.hpp"
 448 #endif
 449 #ifdef TARGET_ARCH_zero
 450 # include "globalDefinitions_zero.hpp"
 451 #endif
 452 #ifdef TARGET_ARCH_arm
 453 # include "globalDefinitions_arm.hpp"
 454 #endif
 455 #ifdef TARGET_ARCH_ppc
 456 # include "globalDefinitions_ppc.hpp"
 457 #endif
 458 
 459 /*
 460  * If a platform does not support native stack walking
 461  * the platform specific globalDefinitions (above)
 462  * can set PLATFORM_NATIVE_STACK_WALKING_SUPPORTED to 0
 463  */
 464 #ifndef PLATFORM_NATIVE_STACK_WALKING_SUPPORTED
 465 #define PLATFORM_NATIVE_STACK_WALKING_SUPPORTED 1
 466 #endif
 467 
 468 // To assure the IRIW property on processors that are not multiple copy
 469 // atomic, sync instructions must be issued between volatile reads to
 470 // assure their ordering, instead of after volatile stores.
 471 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
 472 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
 473 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
 474 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
 475 #else
 476 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
 477 #endif
 478 
 479 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
 480 // Note: this value must be a power of 2
 481 
 482 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
 483 
 484 // Signed variants of alignment helpers.  There are two versions of each, a macro
 485 // for use in places like enum definitions that require compile-time constant
 486 // expressions and a function for all other places so as to get type checking.
 487 
 488 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
 489 
 490 inline bool is_size_aligned(size_t size, size_t alignment) {
 491   return align_size_up_(size, alignment) == size;
 492 }
 493 
 494 inline bool is_ptr_aligned(void* ptr, size_t alignment) {
 495   return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
 496 }
 497 
 498 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
 499   return align_size_up_(size, alignment);
 500 }
 501 
 502 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
 503 
 504 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
 505   return align_size_down_(size, alignment);
 506 }
 507 
 508 #define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment)))
 509 
 510 inline void* align_ptr_up(void* ptr, size_t alignment) {
 511   return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
 512 }
 513 
 514 inline void* align_ptr_down(void* ptr, size_t alignment) {
 515   return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
 516 }
 517 
 518 // Align objects by rounding up their size, in HeapWord units.
 519 
 520 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
 521 
 522 inline intptr_t align_object_size(intptr_t size) {
 523   return align_size_up(size, MinObjAlignment);
 524 }
 525 
 526 inline bool is_object_aligned(intptr_t addr) {
 527   return addr == align_object_size(addr);
 528 }
 529 
 530 // Pad out certain offsets to jlong alignment, in HeapWord units.
 531 
 532 inline intptr_t align_object_offset(intptr_t offset) {
 533   return align_size_up(offset, HeapWordsPerLong);
 534 }
 535 
 536 inline void* align_pointer_up(const void* addr, size_t size) {
 537   return (void*) align_size_up_((uintptr_t)addr, size);
 538 }
 539 
 540 // Align down with a lower bound. If the aligning results in 0, return 'alignment'.
 541 
 542 inline size_t align_size_down_bounded(size_t size, size_t alignment) {
 543   size_t aligned_size = align_size_down_(size, alignment);
 544   return aligned_size > 0 ? aligned_size : alignment;
 545 }
 546 
 547 // Clamp an address to be within a specific page
 548 // 1. If addr is on the page it is returned as is
 549 // 2. If addr is above the page_address the start of the *next* page will be returned
 550 // 3. Otherwise, if addr is below the page_address the start of the page will be returned
 551 inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
 552   if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
 553     // address is in the specified page, just return it as is
 554     return addr;
 555   } else if (addr > page_address) {
 556     // address is above specified page, return start of next page
 557     return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
 558   } else {
 559     // address is below specified page, return start of page
 560     return (address)align_size_down(intptr_t(page_address), page_size);
 561   }
 562 }
 563 
 564 
 565 // The expected size in bytes of a cache line, used to pad data structures.
 566 #define DEFAULT_CACHE_LINE_SIZE 64
 567 
 568 
 569 //----------------------------------------------------------------------------------------------------
 570 // Utility macros for compilers
 571 // used to silence compiler warnings
 572 
 573 #define Unused_Variable(var) var
 574 
 575 
 576 //----------------------------------------------------------------------------------------------------
 577 // Miscellaneous
 578 
 579 // 6302670 Eliminate Hotspot __fabsf dependency
 580 // All fabs() callers should call this function instead, which will implicitly
 581 // convert the operand to double, avoiding a dependency on __fabsf which
 582 // doesn't exist in early versions of Solaris 8.
 583 inline double fabsd(double value) {
 584   return fabs(value);
 585 }
 586 
 587 //----------------------------------------------------------------------------------------------------
 588 // Special casts
 589 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
 590 typedef union {
 591   jfloat f;
 592   jint i;
 593 } FloatIntConv;
 594 
 595 typedef union {
 596   jdouble d;
 597   jlong l;
 598   julong ul;
 599 } DoubleLongConv;
 600 
 601 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
 602 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
 603 
 604 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
 605 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
 606 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
 607 
 608 inline jint low (jlong value)                    { return jint(value); }
 609 inline jint high(jlong value)                    { return jint(value >> 32); }
 610 
 611 // the fancy casts are a hopefully portable way
 612 // to do unsigned 32 to 64 bit type conversion
 613 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 614                                                    *value |= (jlong)(julong)(juint)low; }
 615 
 616 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 617                                                    *value |= (jlong)high       << 32; }
 618 
 619 inline jlong jlong_from(jint h, jint l) {
 620   jlong result = 0; // initialization to avoid warning
 621   set_high(&result, h);
 622   set_low(&result,  l);
 623   return result;
 624 }
 625 
 626 union jlong_accessor {
 627   jint  words[2];
 628   jlong long_value;
 629 };
 630 
 631 void basic_types_init(); // cannot define here; uses assert
 632 
 633 
 634 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 635 enum BasicType {
 636   T_BOOLEAN     =  4,
 637   T_CHAR        =  5,
 638   T_FLOAT       =  6,
 639   T_DOUBLE      =  7,
 640   T_BYTE        =  8,
 641   T_SHORT       =  9,
 642   T_INT         = 10,
 643   T_LONG        = 11,
 644   T_OBJECT      = 12,
 645   T_ARRAY       = 13,
 646   T_VOID        = 14,
 647   T_ADDRESS     = 15,
 648   T_NARROWOOP   = 16,
 649   T_METADATA    = 17,
 650   T_NARROWKLASS = 18,
 651   T_CONFLICT    = 19, // for stack value type with conflicting contents
 652   T_ILLEGAL     = 99
 653 };
 654 
 655 inline bool is_java_primitive(BasicType t) {
 656   return T_BOOLEAN <= t && t <= T_LONG;
 657 }
 658 
 659 inline bool is_subword_type(BasicType t) {
 660   // these guys are processed exactly like T_INT in calling sequences:
 661   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 662 }
 663 
 664 inline bool is_signed_subword_type(BasicType t) {
 665   return (t == T_BYTE || t == T_SHORT);
 666 }
 667 
 668 inline bool is_reference_type(BasicType t) {
 669   return (t == T_OBJECT || t == T_ARRAY);
 670 }
 671 
 672 // Convert a char from a classfile signature to a BasicType
 673 inline BasicType char2type(char c) {
 674   switch( c ) {
 675   case 'B': return T_BYTE;
 676   case 'C': return T_CHAR;
 677   case 'D': return T_DOUBLE;
 678   case 'F': return T_FLOAT;
 679   case 'I': return T_INT;
 680   case 'J': return T_LONG;
 681   case 'S': return T_SHORT;
 682   case 'Z': return T_BOOLEAN;
 683   case 'V': return T_VOID;
 684   case 'L': return T_OBJECT;
 685   case '[': return T_ARRAY;
 686   }
 687   return T_ILLEGAL;
 688 }
 689 
 690 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 691 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 692 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 693 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 694 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 695 extern BasicType name2type(const char* name);
 696 
 697 // Auxilary math routines
 698 // least common multiple
 699 extern size_t lcm(size_t a, size_t b);
 700 
 701 
 702 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 703 enum BasicTypeSize {
 704   T_BOOLEAN_size     = 1,
 705   T_CHAR_size        = 1,
 706   T_FLOAT_size       = 1,
 707   T_DOUBLE_size      = 2,
 708   T_BYTE_size        = 1,
 709   T_SHORT_size       = 1,
 710   T_INT_size         = 1,
 711   T_LONG_size        = 2,
 712   T_OBJECT_size      = 1,
 713   T_ARRAY_size       = 1,
 714   T_NARROWOOP_size   = 1,
 715   T_NARROWKLASS_size = 1,
 716   T_VOID_size        = 0
 717 };
 718 
 719 
 720 // maps a BasicType to its instance field storage type:
 721 // all sub-word integral types are widened to T_INT
 722 extern BasicType type2field[T_CONFLICT+1];
 723 extern BasicType type2wfield[T_CONFLICT+1];
 724 
 725 
 726 // size in bytes
 727 enum ArrayElementSize {
 728   T_BOOLEAN_aelem_bytes     = 1,
 729   T_CHAR_aelem_bytes        = 2,
 730   T_FLOAT_aelem_bytes       = 4,
 731   T_DOUBLE_aelem_bytes      = 8,
 732   T_BYTE_aelem_bytes        = 1,
 733   T_SHORT_aelem_bytes       = 2,
 734   T_INT_aelem_bytes         = 4,
 735   T_LONG_aelem_bytes        = 8,
 736 #ifdef _LP64
 737   T_OBJECT_aelem_bytes      = 8,
 738   T_ARRAY_aelem_bytes       = 8,
 739 #else
 740   T_OBJECT_aelem_bytes      = 4,
 741   T_ARRAY_aelem_bytes       = 4,
 742 #endif
 743   T_NARROWOOP_aelem_bytes   = 4,
 744   T_NARROWKLASS_aelem_bytes = 4,
 745   T_VOID_aelem_bytes        = 0
 746 };
 747 
 748 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 749 #ifdef ASSERT
 750 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 751 #else
 752 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 753 #endif
 754 
 755 
 756 // JavaValue serves as a container for arbitrary Java values.
 757 
 758 class JavaValue {
 759 
 760  public:
 761   typedef union JavaCallValue {
 762     jfloat   f;
 763     jdouble  d;
 764     jint     i;
 765     jlong    l;
 766     jobject  h;
 767   } JavaCallValue;
 768 
 769  private:
 770   BasicType _type;
 771   JavaCallValue _value;
 772 
 773  public:
 774   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 775 
 776   JavaValue(jfloat value) {
 777     _type    = T_FLOAT;
 778     _value.f = value;
 779   }
 780 
 781   JavaValue(jdouble value) {
 782     _type    = T_DOUBLE;
 783     _value.d = value;
 784   }
 785 
 786  jfloat get_jfloat() const { return _value.f; }
 787  jdouble get_jdouble() const { return _value.d; }
 788  jint get_jint() const { return _value.i; }
 789  jlong get_jlong() const { return _value.l; }
 790  jobject get_jobject() const { return _value.h; }
 791  JavaCallValue* get_value_addr() { return &_value; }
 792  BasicType get_type() const { return _type; }
 793 
 794  void set_jfloat(jfloat f) { _value.f = f;}
 795  void set_jdouble(jdouble d) { _value.d = d;}
 796  void set_jint(jint i) { _value.i = i;}
 797  void set_jlong(jlong l) { _value.l = l;}
 798  void set_jobject(jobject h) { _value.h = h;}
 799  void set_type(BasicType t) { _type = t; }
 800 
 801  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 802  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 803  jchar get_jchar() const { return (jchar) (_value.i);}
 804  jshort get_jshort() const { return (jshort) (_value.i);}
 805 
 806 };
 807 
 808 
 809 #define STACK_BIAS      0
 810 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
 811 // in order to extend the reach of the stack pointer.
 812 #if defined(SPARC) && defined(_LP64)
 813 #undef STACK_BIAS
 814 #define STACK_BIAS      0x7ff
 815 #endif
 816 
 817 
 818 // TosState describes the top-of-stack state before and after the execution of
 819 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 820 // registers. The TosState corresponds to the 'machine represention' of this cached
 821 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 822 // as well as a 5th state in case the top-of-stack value is actually on the top
 823 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 824 // state when it comes to machine representation but is used separately for (oop)
 825 // type specific operations (e.g. verification code).
 826 
 827 enum TosState {         // describes the tos cache contents
 828   btos = 0,             // byte, bool tos cached
 829   ztos = 1,             // byte, bool tos cached
 830   ctos = 2,             // char tos cached
 831   stos = 3,             // short tos cached
 832   itos = 4,             // int tos cached
 833   ltos = 5,             // long tos cached
 834   ftos = 6,             // float tos cached
 835   dtos = 7,             // double tos cached
 836   atos = 8,             // object cached
 837   vtos = 9,             // tos not cached
 838   number_of_states,
 839   ilgl                  // illegal state: should not occur
 840 };
 841 
 842 
 843 inline TosState as_TosState(BasicType type) {
 844   switch (type) {
 845     case T_BYTE   : return btos;
 846     case T_BOOLEAN: return ztos;
 847     case T_CHAR   : return ctos;
 848     case T_SHORT  : return stos;
 849     case T_INT    : return itos;
 850     case T_LONG   : return ltos;
 851     case T_FLOAT  : return ftos;
 852     case T_DOUBLE : return dtos;
 853     case T_VOID   : return vtos;
 854     case T_ARRAY  : // fall through
 855     case T_OBJECT : return atos;
 856   }
 857   return ilgl;
 858 }
 859 
 860 inline BasicType as_BasicType(TosState state) {
 861   switch (state) {
 862     case btos : return T_BYTE;
 863     case ztos : return T_BOOLEAN;
 864     case ctos : return T_CHAR;
 865     case stos : return T_SHORT;
 866     case itos : return T_INT;
 867     case ltos : return T_LONG;
 868     case ftos : return T_FLOAT;
 869     case dtos : return T_DOUBLE;
 870     case atos : return T_OBJECT;
 871     case vtos : return T_VOID;
 872   }
 873   return T_ILLEGAL;
 874 }
 875 
 876 
 877 // Helper function to convert BasicType info into TosState
 878 // Note: Cannot define here as it uses global constant at the time being.
 879 TosState as_TosState(BasicType type);
 880 
 881 
 882 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 883 // information is needed by the safepoint code.
 884 //
 885 // There are 4 essential states:
 886 //
 887 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 888 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 889 //  _thread_in_vm       : Executing in the vm
 890 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 891 //
 892 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 893 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 894 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 895 //
 896 // Given a state, the xxx_trans state can always be found by adding 1.
 897 //
 898 enum JavaThreadState {
 899   _thread_uninitialized     =  0, // should never happen (missing initialization)
 900   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 901   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 902   _thread_in_native         =  4, // running in native code
 903   _thread_in_native_trans   =  5, // corresponding transition state
 904   _thread_in_vm             =  6, // running in VM
 905   _thread_in_vm_trans       =  7, // corresponding transition state
 906   _thread_in_Java           =  8, // running in Java or in stub code
 907   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 908   _thread_blocked           = 10, // blocked in vm
 909   _thread_blocked_trans     = 11, // corresponding transition state
 910   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 911 };
 912 
 913 
 914 // Handy constants for deciding which compiler mode to use.
 915 enum MethodCompilation {
 916   InvocationEntryBci = -1,     // i.e., not a on-stack replacement compilation
 917   InvalidOSREntryBci = -2
 918 };
 919 
 920 // Enumeration to distinguish tiers of compilation
 921 enum CompLevel {
 922   CompLevel_any               = -1,
 923   CompLevel_all               = -1,
 924   CompLevel_none              = 0,         // Interpreter
 925   CompLevel_simple            = 1,         // C1
 926   CompLevel_limited_profile   = 2,         // C1, invocation & backedge counters
 927   CompLevel_full_profile      = 3,         // C1, invocation & backedge counters + mdo
 928   CompLevel_full_optimization = 4,         // C2 or Shark
 929 
 930 #if defined(COMPILER2) || defined(SHARK)
 931   CompLevel_highest_tier      = CompLevel_full_optimization,  // pure C2 and tiered
 932 #elif defined(COMPILER1)
 933   CompLevel_highest_tier      = CompLevel_simple,             // pure C1
 934 #else
 935   CompLevel_highest_tier      = CompLevel_none,
 936 #endif
 937 
 938 #if defined(TIERED)
 939   CompLevel_initial_compile   = CompLevel_full_profile        // tiered
 940 #elif defined(COMPILER1)
 941   CompLevel_initial_compile   = CompLevel_simple              // pure C1
 942 #elif defined(COMPILER2) || defined(SHARK)
 943   CompLevel_initial_compile   = CompLevel_full_optimization   // pure C2
 944 #else
 945   CompLevel_initial_compile   = CompLevel_none
 946 #endif
 947 };
 948 
 949 inline bool is_c1_compile(int comp_level) {
 950   return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
 951 }
 952 
 953 inline bool is_c2_compile(int comp_level) {
 954   return comp_level == CompLevel_full_optimization;
 955 }
 956 
 957 inline bool is_highest_tier_compile(int comp_level) {
 958   return comp_level == CompLevel_highest_tier;
 959 }
 960 
 961 inline bool is_compile(int comp_level) {
 962   return is_c1_compile(comp_level) || is_c2_compile(comp_level);
 963 }
 964 
 965 //----------------------------------------------------------------------------------------------------
 966 // 'Forward' declarations of frequently used classes
 967 // (in order to reduce interface dependencies & reduce
 968 // number of unnecessary compilations after changes)
 969 
 970 class symbolTable;
 971 class ClassFileStream;
 972 
 973 class Event;
 974 
 975 class Thread;
 976 class  VMThread;
 977 class  JavaThread;
 978 class Threads;
 979 
 980 class VM_Operation;
 981 class VMOperationQueue;
 982 
 983 class CodeBlob;
 984 class  nmethod;
 985 class  OSRAdapter;
 986 class  I2CAdapter;
 987 class  C2IAdapter;
 988 class CompiledIC;
 989 class relocInfo;
 990 class ScopeDesc;
 991 class PcDesc;
 992 
 993 class Recompiler;
 994 class Recompilee;
 995 class RecompilationPolicy;
 996 class RFrame;
 997 class  CompiledRFrame;
 998 class  InterpretedRFrame;
 999 
1000 class frame;
1001 
1002 class vframe;
1003 class   javaVFrame;
1004 class     interpretedVFrame;
1005 class     compiledVFrame;
1006 class     deoptimizedVFrame;
1007 class   externalVFrame;
1008 class     entryVFrame;
1009 
1010 class RegisterMap;
1011 
1012 class Mutex;
1013 class Monitor;
1014 class BasicLock;
1015 class BasicObjectLock;
1016 
1017 class PeriodicTask;
1018 
1019 class JavaCallWrapper;
1020 
1021 class   oopDesc;
1022 class   metaDataOopDesc;
1023 
1024 class NativeCall;
1025 
1026 class zone;
1027 
1028 class StubQueue;
1029 
1030 class outputStream;
1031 
1032 class ResourceArea;
1033 
1034 class DebugInformationRecorder;
1035 class ScopeValue;
1036 class CompressedStream;
1037 class   DebugInfoReadStream;
1038 class   DebugInfoWriteStream;
1039 class LocationValue;
1040 class ConstantValue;
1041 class IllegalValue;
1042 
1043 class PrivilegedElement;
1044 class MonitorArray;
1045 
1046 class MonitorInfo;
1047 
1048 class OffsetClosure;
1049 class OopMapCache;
1050 class InterpreterOopMap;
1051 class OopMapCacheEntry;
1052 class OSThread;
1053 
1054 typedef int (*OSThreadStartFunc)(void*);
1055 
1056 class Space;
1057 
1058 class JavaValue;
1059 class methodHandle;
1060 class JavaCallArguments;
1061 
1062 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
1063 
1064 extern void basic_fatal(const char* msg);
1065 
1066 
1067 //----------------------------------------------------------------------------------------------------
1068 // Special constants for debugging
1069 
1070 const jint     badInt           = -3;                       // generic "bad int" value
1071 const intptr_t badAddressVal    = -2;                       // generic "bad address" value
1072 const intptr_t badOopVal        = -1;                       // generic "bad oop" value
1073 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
1074 const int      badStackSegVal   = 0xCA;                     // value used to zap stack segments
1075 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
1076 const int      badResourceValue = 0xAB;                     // value used to zap resource area
1077 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
1078 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
1079 const intptr_t badJNIHandleVal  = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
1080 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
1081 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
1082 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
1083 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
1084 
1085 
1086 // (These must be implemented as #defines because C++ compilers are
1087 // not obligated to inline non-integral constants!)
1088 #define       badAddress        ((address)::badAddressVal)
1089 #define       badOop            (cast_to_oop(::badOopVal))
1090 #define       badHeapWord       (::badHeapWordVal)
1091 #define       badJNIHandle      (cast_to_oop(::badJNIHandleVal))
1092 
1093 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
1094 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
1095 
1096 //----------------------------------------------------------------------------------------------------
1097 // Utility functions for bitfield manipulations
1098 
1099 const intptr_t AllBits    = ~0; // all bits set in a word
1100 const intptr_t NoBits     =  0; // no bits set in a word
1101 const jlong    NoLongBits =  0; // no bits set in a long
1102 const intptr_t OneBit     =  1; // only right_most bit set in a word
1103 
1104 // get a word with the n.th or the right-most or left-most n bits set
1105 // (note: #define used only so that they can be used in enum constant definitions)
1106 #define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
1107 #define right_n_bits(n)   (nth_bit(n) - 1)
1108 #define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
1109 
1110 // bit-operations using a mask m
1111 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
1112 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
1113 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
1114 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
1115 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
1116 
1117 // bit-operations using the n.th bit
1118 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
1119 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
1120 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
1121 
1122 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
1123 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
1124   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
1125 }
1126 
1127 
1128 //----------------------------------------------------------------------------------------------------
1129 // Utility functions for integers
1130 
1131 // Avoid use of global min/max macros which may cause unwanted double
1132 // evaluation of arguments.
1133 #ifdef max
1134 #undef max
1135 #endif
1136 
1137 #ifdef min
1138 #undef min
1139 #endif
1140 
1141 #define max(a,b) Do_not_use_max_use_MAX2_instead
1142 #define min(a,b) Do_not_use_min_use_MIN2_instead
1143 
1144 // It is necessary to use templates here. Having normal overloaded
1145 // functions does not work because it is necessary to provide both 32-
1146 // and 64-bit overloaded functions, which does not work, and having
1147 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1148 // will be even more error-prone than macros.
1149 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
1150 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
1151 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1152 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1153 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1154 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1155 
1156 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
1157 
1158 // true if x is a power of 2, false otherwise
1159 inline bool is_power_of_2(intptr_t x) {
1160   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
1161 }
1162 
1163 // long version of is_power_of_2
1164 inline bool is_power_of_2_long(jlong x) {
1165   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
1166 }
1167 
1168 //* largest i such that 2^i <= x
1169 //  A negative value of 'x' will return '31'
1170 inline int log2_intptr(uintptr_t x) {
1171   int i = -1;
1172   uintptr_t p =  1;
1173   while (p != 0 && p <= x) {
1174     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1175     i++; p *= 2;
1176   }
1177   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1178   // (if p = 0 then overflow occurred and i = 31)
1179   return i;
1180 }
1181 
1182 //* largest i such that 2^i <= x
1183 inline int log2_long(julong x) {
1184   int i = -1;
1185   julong p =  1;
1186   while (p != 0 && p <= x) {
1187     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1188     i++; p *= 2;
1189   }
1190   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1191   // (if p = 0 then overflow occurred and i = 63)
1192   return i;
1193 }
1194 
1195 inline int log2_intptr(intptr_t x) {
1196   return log2_intptr((uintptr_t)x);
1197 }
1198 
1199 inline int log2_int(int x) {
1200   return log2_intptr((uintptr_t)x);
1201 }
1202 
1203 inline int log2_jint(jint x) {
1204   return log2_intptr((uintptr_t)x);
1205 }
1206 
1207 inline int log2_uint(uint x) {
1208   return log2_intptr((uintptr_t)x);
1209 }
1210 
1211 //  A negative value of 'x' will return '63'
1212 inline int log2_jlong(jlong x) {
1213   return log2_long((julong)x);
1214 }
1215 
1216 //* the argument must be exactly a power of 2
1217 inline int exact_log2(intptr_t x) {
1218   #ifdef ASSERT
1219     if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
1220   #endif
1221   return log2_intptr(x);
1222 }
1223 
1224 //* the argument must be exactly a power of 2
1225 inline int exact_log2_long(jlong x) {
1226   #ifdef ASSERT
1227     if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
1228   #endif
1229   return log2_long(x);
1230 }
1231 
1232 
1233 // returns integer round-up to the nearest multiple of s (s must be a power of two)
1234 inline intptr_t round_to(intptr_t x, uintx s) {
1235   #ifdef ASSERT
1236     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1237   #endif
1238   const uintx m = s - 1;
1239   return mask_bits(x + m, ~m);
1240 }
1241 
1242 // returns integer round-down to the nearest multiple of s (s must be a power of two)
1243 inline intptr_t round_down(intptr_t x, uintx s) {
1244   #ifdef ASSERT
1245     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1246   #endif
1247   const uintx m = s - 1;
1248   return mask_bits(x, ~m);
1249 }
1250 
1251 
1252 inline bool is_odd (intx x) { return x & 1;      }
1253 inline bool is_even(intx x) { return !is_odd(x); }
1254 
1255 // abs methods which cannot overflow and so are well-defined across
1256 // the entire domain of integer types.
1257 static inline unsigned int uabs(unsigned int n) {
1258   union {
1259     unsigned int result;
1260     int value;
1261   };
1262   result = n;
1263   if (value < 0) result = 0-result;
1264   return result;
1265 }
1266 static inline julong uabs(julong n) {
1267   union {
1268     julong result;
1269     jlong value;
1270   };
1271   result = n;
1272   if (value < 0) result = 0-result;
1273   return result;
1274 }
1275 static inline julong uabs(jlong n) { return uabs((julong)n); }
1276 static inline unsigned int uabs(int n) { return uabs((unsigned int)n); }
1277 
1278 // "to" should be greater than "from."
1279 inline intx byte_size(void* from, void* to) {
1280   return (address)to - (address)from;
1281 }
1282 
1283 //----------------------------------------------------------------------------------------------------
1284 // Avoid non-portable casts with these routines (DEPRECATED)
1285 
1286 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1287 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1288 
1289 // Given sequence of four bytes, build into a 32-bit word
1290 // following the conventions used in class files.
1291 // On the 386, this could be realized with a simple address cast.
1292 //
1293 
1294 // This routine takes eight bytes:
1295 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1296   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1297        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1298        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1299        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1300        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1301        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1302        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1303        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1304 }
1305 
1306 // This routine takes four bytes:
1307 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1308   return  (( u4(c1) << 24 )  &  0xff000000)
1309        |  (( u4(c2) << 16 )  &  0x00ff0000)
1310        |  (( u4(c3) <<  8 )  &  0x0000ff00)
1311        |  (( u4(c4) <<  0 )  &  0x000000ff);
1312 }
1313 
1314 // And this one works if the four bytes are contiguous in memory:
1315 inline u4 build_u4_from( u1* p ) {
1316   return  build_u4_from( p[0], p[1], p[2], p[3] );
1317 }
1318 
1319 // Ditto for two-byte ints:
1320 inline u2 build_u2_from( u1 c1, u1 c2 ) {
1321   return  u2((( u2(c1) <<  8 )  &  0xff00)
1322           |  (( u2(c2) <<  0 )  &  0x00ff));
1323 }
1324 
1325 // And this one works if the two bytes are contiguous in memory:
1326 inline u2 build_u2_from( u1* p ) {
1327   return  build_u2_from( p[0], p[1] );
1328 }
1329 
1330 // Ditto for floats:
1331 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1332   u4 u = build_u4_from( c1, c2, c3, c4 );
1333   return  *(jfloat*)&u;
1334 }
1335 
1336 inline jfloat build_float_from( u1* p ) {
1337   u4 u = build_u4_from( p );
1338   return  *(jfloat*)&u;
1339 }
1340 
1341 
1342 // now (64-bit) longs
1343 
1344 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1345   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1346        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1347        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1348        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1349        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1350        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1351        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1352        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1353 }
1354 
1355 inline jlong build_long_from( u1* p ) {
1356   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1357 }
1358 
1359 
1360 // Doubles, too!
1361 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1362   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1363   return  *(jdouble*)&u;
1364 }
1365 
1366 inline jdouble build_double_from( u1* p ) {
1367   jlong u = build_long_from( p );
1368   return  *(jdouble*)&u;
1369 }
1370 
1371 
1372 // Portable routines to go the other way:
1373 
1374 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1375   c1 = u1(x >> 8);
1376   c2 = u1(x);
1377 }
1378 
1379 inline void explode_short_to( u2 x, u1* p ) {
1380   explode_short_to( x, p[0], p[1]);
1381 }
1382 
1383 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1384   c1 = u1(x >> 24);
1385   c2 = u1(x >> 16);
1386   c3 = u1(x >>  8);
1387   c4 = u1(x);
1388 }
1389 
1390 inline void explode_int_to( u4 x, u1* p ) {
1391   explode_int_to( x, p[0], p[1], p[2], p[3]);
1392 }
1393 
1394 
1395 // Pack and extract shorts to/from ints:
1396 
1397 inline int extract_low_short_from_int(jint x) {
1398   return x & 0xffff;
1399 }
1400 
1401 inline int extract_high_short_from_int(jint x) {
1402   return (x >> 16) & 0xffff;
1403 }
1404 
1405 inline int build_int_from_shorts( jushort low, jushort high ) {
1406   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1407 }
1408 
1409 // Convert pointer to intptr_t, for use in printing pointers.
1410 inline intptr_t p2i(const void * p) {
1411   return (intptr_t) p;
1412 }
1413 
1414 // Printf-style formatters for fixed- and variable-width types as pointers and
1415 // integers.  These are derived from the definitions in inttypes.h.  If the platform
1416 // doesn't provide appropriate definitions, they should be provided in
1417 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
1418 
1419 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
1420 
1421 // Format 32-bit quantities.
1422 #define INT32_FORMAT           "%" PRId32
1423 #define UINT32_FORMAT          "%" PRIu32
1424 #define INT32_FORMAT_W(width)  "%" #width PRId32
1425 #define UINT32_FORMAT_W(width) "%" #width PRIu32
1426 
1427 #define PTR32_FORMAT           "0x%08" PRIx32
1428 
1429 // Format 64-bit quantities.
1430 #define INT64_FORMAT           "%" PRId64
1431 #define UINT64_FORMAT          "%" PRIu64
1432 #define UINT64_FORMAT_X        "%" PRIx64
1433 #define INT64_FORMAT_W(width)  "%" #width PRId64
1434 #define UINT64_FORMAT_W(width) "%" #width PRIu64
1435 
1436 #define PTR64_FORMAT           "0x%016" PRIx64
1437 
1438 // Format jlong, if necessary
1439 #ifndef JLONG_FORMAT
1440 #define JLONG_FORMAT           INT64_FORMAT
1441 #endif
1442 #ifndef JULONG_FORMAT
1443 #define JULONG_FORMAT          UINT64_FORMAT
1444 #endif
1445 
1446 // Format pointers which change size between 32- and 64-bit.
1447 #ifdef  _LP64
1448 #define INTPTR_FORMAT "0x%016" PRIxPTR
1449 #define PTR_FORMAT    "0x%016" PRIxPTR
1450 #else   // !_LP64
1451 #define INTPTR_FORMAT "0x%08"  PRIxPTR
1452 #define PTR_FORMAT    "0x%08"  PRIxPTR
1453 #endif  // _LP64
1454 
1455 #define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
1456 
1457 #define SSIZE_FORMAT          "%"   PRIdPTR
1458 #define SIZE_FORMAT           "%"   PRIuPTR
1459 #define SIZE_FORMAT_HEX       "0x%" PRIxPTR
1460 #define SSIZE_FORMAT_W(width) "%"   #width PRIdPTR
1461 #define SIZE_FORMAT_W(width)  "%"   #width PRIuPTR
1462 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
1463 
1464 #define INTX_FORMAT           "%" PRIdPTR
1465 #define UINTX_FORMAT          "%" PRIuPTR
1466 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
1467 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
1468 
1469 
1470 // Enable zap-a-lot if in debug version.
1471 
1472 # ifdef ASSERT
1473 # ifdef COMPILER2
1474 #   define ENABLE_ZAP_DEAD_LOCALS
1475 #endif /* COMPILER2 */
1476 # endif /* ASSERT */
1477 
1478 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1479 
1480 //----------------------------------------------------------------------------------------------------
1481 // Sum and product which can never overflow: they wrap, just like the
1482 // Java operations.  Note that we don't intend these to be used for
1483 // general-purpose arithmetic: their purpose is to emulate Java
1484 // operations.
1485 
1486 // The goal of this code to avoid undefined or implementation-defined
1487 // behaviour.  The use of an lvalue to reference cast is explicitly
1488 // permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
1489 // 15 in C++03]
1490 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
1491 inline TYPE NAME (TYPE in1, TYPE in2) {                 \
1492   UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
1493   ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
1494   return reinterpret_cast<TYPE&>(ures);                 \
1495 }
1496 
1497 JAVA_INTEGER_OP(+, java_add, jint, juint)
1498 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
1499 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
1500 JAVA_INTEGER_OP(+, java_add, jlong, julong)
1501 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
1502 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
1503 
1504 #undef JAVA_INTEGER_OP
1505 
1506 // Dereference vptr
1507 // All C++ compilers that we know of have the vtbl pointer in the first
1508 // word.  If there are exceptions, this function needs to be made compiler
1509 // specific.
1510 static inline void* dereference_vptr(const void* addr) {
1511   return *(void**)addr;
1512 }
1513 
1514 #ifndef PRODUCT
1515 
1516 // For unit testing only
1517 class GlobalDefinitions {
1518 public:
1519   static void test_globals();
1520   static void test_proper_unit();
1521 };
1522 
1523 #endif // PRODUCT
1524 
1525 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP