1 /* 2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP 26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP 27 28 #ifndef __STDC_FORMAT_MACROS 29 #define __STDC_FORMAT_MACROS 30 #endif 31 32 // Needed for INT64_C and UINT64_C with ISO C99 libraries (see JDK-8272214) 33 #ifndef __STDC_CONSTANT_MACROS 34 #define __STDC_CONSTANT_MACROS 35 #endif 36 37 #ifdef TARGET_COMPILER_gcc 38 # include "utilities/globalDefinitions_gcc.hpp" 39 #endif 40 #ifdef TARGET_COMPILER_visCPP 41 # include "utilities/globalDefinitions_visCPP.hpp" 42 #endif 43 #ifdef TARGET_COMPILER_sparcWorks 44 # include "utilities/globalDefinitions_sparcWorks.hpp" 45 #endif 46 #ifdef TARGET_COMPILER_xlc 47 # include "utilities/globalDefinitions_xlc.hpp" 48 #endif 49 50 // Defaults for macros that might be defined per compiler. 51 #ifndef NOINLINE 52 #define NOINLINE 53 #endif 54 #ifndef ALWAYSINLINE 55 #define ALWAYSINLINE inline 56 #endif 57 58 #ifndef PRAGMA_DIAG_PUSH 59 #define PRAGMA_DIAG_PUSH 60 #endif 61 #ifndef PRAGMA_DIAG_POP 62 #define PRAGMA_DIAG_POP 63 #endif 64 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED 65 #define PRAGMA_FORMAT_NONLITERAL_IGNORED 66 #endif 67 #ifndef PRAGMA_FORMAT_IGNORED 68 #define PRAGMA_FORMAT_IGNORED 69 #endif 70 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL 71 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL 72 #endif 73 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL 74 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL 75 #endif 76 #ifndef PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC 77 #define PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC 78 #endif 79 #ifndef ATTRIBUTE_PRINTF 80 #define ATTRIBUTE_PRINTF(fmt, vargs) 81 #endif 82 83 84 #include "utilities/macros.hpp" 85 86 // This file holds all globally used constants & types, class (forward) 87 // declarations and a few frequently used utility functions. 88 89 //---------------------------------------------------------------------------------------------------- 90 // Constants 91 92 const int LogBytesPerShort = 1; 93 const int LogBytesPerInt = 2; 94 #ifdef _LP64 95 const int LogBytesPerWord = 3; 96 #else 97 const int LogBytesPerWord = 2; 98 #endif 99 const int LogBytesPerLong = 3; 100 101 const int BytesPerShort = 1 << LogBytesPerShort; 102 const int BytesPerInt = 1 << LogBytesPerInt; 103 const int BytesPerWord = 1 << LogBytesPerWord; 104 const int BytesPerLong = 1 << LogBytesPerLong; 105 106 const int LogBitsPerByte = 3; 107 const int LogBitsPerShort = LogBitsPerByte + LogBytesPerShort; 108 const int LogBitsPerInt = LogBitsPerByte + LogBytesPerInt; 109 const int LogBitsPerWord = LogBitsPerByte + LogBytesPerWord; 110 const int LogBitsPerLong = LogBitsPerByte + LogBytesPerLong; 111 112 const int BitsPerByte = 1 << LogBitsPerByte; 113 const int BitsPerShort = 1 << LogBitsPerShort; 114 const int BitsPerInt = 1 << LogBitsPerInt; 115 const int BitsPerWord = 1 << LogBitsPerWord; 116 const int BitsPerLong = 1 << LogBitsPerLong; 117 118 const int WordAlignmentMask = (1 << LogBytesPerWord) - 1; 119 const int LongAlignmentMask = (1 << LogBytesPerLong) - 1; 120 121 const int WordsPerLong = 2; // Number of stack entries for longs 122 123 const int oopSize = sizeof(char*); // Full-width oop 124 extern int heapOopSize; // Oop within a java object 125 const int wordSize = sizeof(char*); 126 const int longSize = sizeof(jlong); 127 const int jintSize = sizeof(jint); 128 const int size_tSize = sizeof(size_t); 129 130 const int BytesPerOop = BytesPerWord; // Full-width oop 131 132 extern int LogBytesPerHeapOop; // Oop within a java object 133 extern int LogBitsPerHeapOop; 134 extern int BytesPerHeapOop; 135 extern int BitsPerHeapOop; 136 137 // Oop encoding heap max 138 extern uint64_t OopEncodingHeapMax; 139 140 const int BitsPerJavaInteger = 32; 141 const int BitsPerJavaLong = 64; 142 const int BitsPerSize_t = size_tSize * BitsPerByte; 143 144 // Size of a char[] needed to represent a jint as a string in decimal. 145 const int jintAsStringSize = 12; 146 147 // In fact this should be 148 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64); 149 // see os::set_memory_serialize_page() 150 #ifdef _LP64 151 const int SerializePageShiftCount = 4; 152 #else 153 const int SerializePageShiftCount = 3; 154 #endif 155 156 // An opaque struct of heap-word width, so that HeapWord* can be a generic 157 // pointer into the heap. We require that object sizes be measured in 158 // units of heap words, so that that 159 // HeapWord* hw; 160 // hw += oop(hw)->foo(); 161 // works, where foo is a method (like size or scavenge) that returns the 162 // object size. 163 class HeapWord { 164 friend class VMStructs; 165 private: 166 char* i; 167 #ifndef PRODUCT 168 public: 169 char* value() { return i; } 170 #endif 171 }; 172 173 // Analogous opaque struct for metadata allocated from 174 // metaspaces. 175 class MetaWord { 176 friend class VMStructs; 177 private: 178 char* i; 179 }; 180 181 // HeapWordSize must be 2^LogHeapWordSize. 182 const int HeapWordSize = sizeof(HeapWord); 183 #ifdef _LP64 184 const int LogHeapWordSize = 3; 185 #else 186 const int LogHeapWordSize = 2; 187 #endif 188 const int HeapWordsPerLong = BytesPerLong / HeapWordSize; 189 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize; 190 191 // The larger HeapWordSize for 64bit requires larger heaps 192 // for the same application running in 64bit. See bug 4967770. 193 // The minimum alignment to a heap word size is done. Other 194 // parts of the memory system may required additional alignment 195 // and are responsible for those alignments. 196 #ifdef _LP64 197 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize) 198 #else 199 #define ScaleForWordSize(x) (x) 200 #endif 201 202 // The minimum number of native machine words necessary to contain "byte_size" 203 // bytes. 204 inline size_t heap_word_size(size_t byte_size) { 205 return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize; 206 } 207 208 209 const size_t K = 1024; 210 const size_t M = K*K; 211 const size_t G = M*K; 212 const size_t HWperKB = K / sizeof(HeapWord); 213 214 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint 215 const jint max_jint = (juint)min_jint - 1; // 0x7FFFFFFF == largest jint 216 217 // Constants for converting from a base unit to milli-base units. For 218 // example from seconds to milliseconds and microseconds 219 220 const int MILLIUNITS = 1000; // milli units per base unit 221 const int MICROUNITS = 1000000; // micro units per base unit 222 const int NANOUNITS = 1000000000; // nano units per base unit 223 224 const jlong NANOSECS_PER_SEC = CONST64(1000000000); 225 const jint NANOSECS_PER_MILLISEC = 1000000; 226 227 // Proper units routines try to maintain at least three significant digits. 228 // In worst case, it would print five significant digits with lower prefix. 229 // G is close to MAX_SIZE on 32-bit platforms, so its product can easily overflow, 230 // and therefore we need to be careful. 231 232 inline const char* proper_unit_for_byte_size(size_t s) { 233 #ifdef _LP64 234 if (s >= 100*G) { 235 return "G"; 236 } 237 #endif 238 if (s >= 100*M) { 239 return "M"; 240 } else if (s >= 100*K) { 241 return "K"; 242 } else { 243 return "B"; 244 } 245 } 246 247 template <class T> 248 inline T byte_size_in_proper_unit(T s) { 249 #ifdef _LP64 250 if (s >= 100*G) { 251 return (T)(s/G); 252 } 253 #endif 254 if (s >= 100*M) { 255 return (T)(s/M); 256 } else if (s >= 100*K) { 257 return (T)(s/K); 258 } else { 259 return s; 260 } 261 } 262 263 //---------------------------------------------------------------------------------------------------- 264 // VM type definitions 265 266 // intx and uintx are the 'extended' int and 'extended' unsigned int types; 267 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform. 268 269 typedef intptr_t intx; 270 typedef uintptr_t uintx; 271 272 const intx min_intx = (intx)1 << (sizeof(intx)*BitsPerByte-1); 273 const intx max_intx = (uintx)min_intx - 1; 274 const uintx max_uintx = (uintx)-1; 275 276 // Table of values: 277 // sizeof intx 4 8 278 // min_intx 0x80000000 0x8000000000000000 279 // max_intx 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF 280 // max_uintx 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF 281 282 typedef unsigned int uint; NEEDS_CLEANUP 283 284 285 //---------------------------------------------------------------------------------------------------- 286 // Java type definitions 287 288 // All kinds of 'plain' byte addresses 289 typedef signed char s_char; 290 typedef unsigned char u_char; 291 typedef u_char* address; 292 typedef uintptr_t address_word; // unsigned integer which will hold a pointer 293 // except for some implementations of a C++ 294 // linkage pointer to function. Should never 295 // need one of those to be placed in this 296 // type anyway. 297 298 // Utility functions to "portably" (?) bit twiddle pointers 299 // Where portable means keep ANSI C++ compilers quiet 300 301 inline address set_address_bits(address x, int m) { return address(intptr_t(x) | m); } 302 inline address clear_address_bits(address x, int m) { return address(intptr_t(x) & ~m); } 303 304 // Utility functions to "portably" make cast to/from function pointers. 305 306 inline address_word mask_address_bits(address x, int m) { return address_word(x) & m; } 307 inline address_word castable_address(address x) { return address_word(x) ; } 308 inline address_word castable_address(void* x) { return address_word(x) ; } 309 310 // Pointer subtraction. 311 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have 312 // the range we might need to find differences from one end of the heap 313 // to the other. 314 // A typical use might be: 315 // if (pointer_delta(end(), top()) >= size) { 316 // // enough room for an object of size 317 // ... 318 // and then additions like 319 // ... top() + size ... 320 // are safe because we know that top() is at least size below end(). 321 inline size_t pointer_delta(const void* left, 322 const void* right, 323 size_t element_size) { 324 return (((uintptr_t) left) - ((uintptr_t) right)) / element_size; 325 } 326 // A version specialized for HeapWord*'s. 327 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) { 328 return pointer_delta(left, right, sizeof(HeapWord)); 329 } 330 // A version specialized for MetaWord*'s. 331 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) { 332 return pointer_delta(left, right, sizeof(MetaWord)); 333 } 334 335 // 336 // ANSI C++ does not allow casting from one pointer type to a function pointer 337 // directly without at best a warning. This macro accomplishes it silently 338 // In every case that is present at this point the value be cast is a pointer 339 // to a C linkage function. In somecase the type used for the cast reflects 340 // that linkage and a picky compiler would not complain. In other cases because 341 // there is no convenient place to place a typedef with extern C linkage (i.e 342 // a platform dependent header file) it doesn't. At this point no compiler seems 343 // picky enough to catch these instances (which are few). It is possible that 344 // using templates could fix these for all cases. This use of templates is likely 345 // so far from the middle of the road that it is likely to be problematic in 346 // many C++ compilers. 347 // 348 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value)) 349 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr))) 350 351 // Unsigned byte types for os and stream.hpp 352 353 // Unsigned one, two, four and eigth byte quantities used for describing 354 // the .class file format. See JVM book chapter 4. 355 356 typedef jubyte u1; 357 typedef jushort u2; 358 typedef juint u4; 359 typedef julong u8; 360 361 const jubyte max_jubyte = (jubyte)-1; // 0xFF largest jubyte 362 const jushort max_jushort = (jushort)-1; // 0xFFFF largest jushort 363 const juint max_juint = (juint)-1; // 0xFFFFFFFF largest juint 364 const julong max_julong = (julong)-1; // 0xFF....FF largest julong 365 366 typedef jbyte s1; 367 typedef jshort s2; 368 typedef jint s4; 369 typedef jlong s8; 370 371 //---------------------------------------------------------------------------------------------------- 372 // JVM spec restrictions 373 374 const int max_method_code_size = 64*K - 1; // JVM spec, 2nd ed. section 4.8.1 (p.134) 375 376 // Default ProtectionDomainCacheSize values 377 378 const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017); 379 380 //---------------------------------------------------------------------------------------------------- 381 // Default and minimum StringTableSize values 382 383 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013); 384 const int minimumStringTableSize = 1009; 385 386 const int defaultSymbolTableSize = 20011; 387 const int minimumSymbolTableSize = 1009; 388 389 390 //---------------------------------------------------------------------------------------------------- 391 // HotSwap - for JVMTI aka Class File Replacement and PopFrame 392 // 393 // Determines whether on-the-fly class replacement and frame popping are enabled. 394 395 #define HOTSWAP 396 397 //---------------------------------------------------------------------------------------------------- 398 // Object alignment, in units of HeapWords. 399 // 400 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and 401 // reference fields can be naturally aligned. 402 403 extern int MinObjAlignment; 404 extern int MinObjAlignmentInBytes; 405 extern int MinObjAlignmentInBytesMask; 406 407 extern int LogMinObjAlignment; 408 extern int LogMinObjAlignmentInBytes; 409 410 const int LogKlassAlignmentInBytes = 3; 411 const int LogKlassAlignment = LogKlassAlignmentInBytes - LogHeapWordSize; 412 const int KlassAlignmentInBytes = 1 << LogKlassAlignmentInBytes; 413 const int KlassAlignment = KlassAlignmentInBytes / HeapWordSize; 414 415 // Klass encoding metaspace max size 416 const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes; 417 418 // Machine dependent stuff 419 420 #if defined(X86) && defined(COMPILER2) && !defined(JAVASE_EMBEDDED) 421 // Include Restricted Transactional Memory lock eliding optimization 422 #define INCLUDE_RTM_OPT 1 423 #define RTM_OPT_ONLY(code) code 424 #else 425 #define INCLUDE_RTM_OPT 0 426 #define RTM_OPT_ONLY(code) 427 #endif 428 // States of Restricted Transactional Memory usage. 429 enum RTMState { 430 NoRTM = 0x2, // Don't use RTM 431 UseRTM = 0x1, // Use RTM 432 ProfileRTM = 0x0 // Use RTM with abort ratio calculation 433 }; 434 435 // The maximum size of the code cache. Can be overridden by targets. 436 #define CODE_CACHE_SIZE_LIMIT (2*G) 437 // Allow targets to reduce the default size of the code cache. 438 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT 439 440 #ifdef TARGET_ARCH_x86 441 # include "globalDefinitions_x86.hpp" 442 #endif 443 #ifdef TARGET_ARCH_aarch64 444 # include "globalDefinitions_aarch64.hpp" 445 #endif 446 #ifdef TARGET_ARCH_sparc 447 # include "globalDefinitions_sparc.hpp" 448 #endif 449 #ifdef TARGET_ARCH_zero 450 # include "globalDefinitions_zero.hpp" 451 #endif 452 #ifdef TARGET_ARCH_arm 453 # include "globalDefinitions_arm.hpp" 454 #endif 455 #ifdef TARGET_ARCH_ppc 456 # include "globalDefinitions_ppc.hpp" 457 #endif 458 459 /* 460 * If a platform does not support native stack walking 461 * the platform specific globalDefinitions (above) 462 * can set PLATFORM_NATIVE_STACK_WALKING_SUPPORTED to 0 463 */ 464 #ifndef PLATFORM_NATIVE_STACK_WALKING_SUPPORTED 465 #define PLATFORM_NATIVE_STACK_WALKING_SUPPORTED 1 466 #endif 467 468 // To assure the IRIW property on processors that are not multiple copy 469 // atomic, sync instructions must be issued between volatile reads to 470 // assure their ordering, instead of after volatile stores. 471 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models" 472 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge) 473 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC 474 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true; 475 #else 476 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false; 477 #endif 478 479 // The byte alignment to be used by Arena::Amalloc. See bugid 4169348. 480 // Note: this value must be a power of 2 481 482 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord) 483 484 // Signed variants of alignment helpers. There are two versions of each, a macro 485 // for use in places like enum definitions that require compile-time constant 486 // expressions and a function for all other places so as to get type checking. 487 488 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1)) 489 490 inline bool is_size_aligned(size_t size, size_t alignment) { 491 return align_size_up_(size, alignment) == size; 492 } 493 494 inline bool is_ptr_aligned(void* ptr, size_t alignment) { 495 return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr; 496 } 497 498 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) { 499 return align_size_up_(size, alignment); 500 } 501 502 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1)) 503 504 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) { 505 return align_size_down_(size, alignment); 506 } 507 508 #define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment))) 509 510 inline void* align_ptr_up(void* ptr, size_t alignment) { 511 return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment); 512 } 513 514 inline void* align_ptr_down(void* ptr, size_t alignment) { 515 return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment); 516 } 517 518 // Align objects by rounding up their size, in HeapWord units. 519 520 #define align_object_size_(size) align_size_up_(size, MinObjAlignment) 521 522 inline intptr_t align_object_size(intptr_t size) { 523 return align_size_up(size, MinObjAlignment); 524 } 525 526 inline bool is_object_aligned(intptr_t addr) { 527 return addr == align_object_size(addr); 528 } 529 530 // Pad out certain offsets to jlong alignment, in HeapWord units. 531 532 inline intptr_t align_object_offset(intptr_t offset) { 533 return align_size_up(offset, HeapWordsPerLong); 534 } 535 536 inline void* align_pointer_up(const void* addr, size_t size) { 537 return (void*) align_size_up_((uintptr_t)addr, size); 538 } 539 540 // Align down with a lower bound. If the aligning results in 0, return 'alignment'. 541 542 inline size_t align_size_down_bounded(size_t size, size_t alignment) { 543 size_t aligned_size = align_size_down_(size, alignment); 544 return aligned_size > 0 ? aligned_size : alignment; 545 } 546 547 // Clamp an address to be within a specific page 548 // 1. If addr is on the page it is returned as is 549 // 2. If addr is above the page_address the start of the *next* page will be returned 550 // 3. Otherwise, if addr is below the page_address the start of the page will be returned 551 inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) { 552 if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) { 553 // address is in the specified page, just return it as is 554 return addr; 555 } else if (addr > page_address) { 556 // address is above specified page, return start of next page 557 return (address)align_size_down(intptr_t(page_address), page_size) + page_size; 558 } else { 559 // address is below specified page, return start of page 560 return (address)align_size_down(intptr_t(page_address), page_size); 561 } 562 } 563 564 565 // The expected size in bytes of a cache line, used to pad data structures. 566 #define DEFAULT_CACHE_LINE_SIZE 64 567 568 569 //---------------------------------------------------------------------------------------------------- 570 // Utility macros for compilers 571 // used to silence compiler warnings 572 573 #define Unused_Variable(var) var 574 575 576 //---------------------------------------------------------------------------------------------------- 577 // Miscellaneous 578 579 // 6302670 Eliminate Hotspot __fabsf dependency 580 // All fabs() callers should call this function instead, which will implicitly 581 // convert the operand to double, avoiding a dependency on __fabsf which 582 // doesn't exist in early versions of Solaris 8. 583 inline double fabsd(double value) { 584 return fabs(value); 585 } 586 587 //---------------------------------------------------------------------------------------------------- 588 // Special casts 589 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern 590 typedef union { 591 jfloat f; 592 jint i; 593 } FloatIntConv; 594 595 typedef union { 596 jdouble d; 597 jlong l; 598 julong ul; 599 } DoubleLongConv; 600 601 inline jint jint_cast (jfloat x) { return ((FloatIntConv*)&x)->i; } 602 inline jfloat jfloat_cast (jint x) { return ((FloatIntConv*)&x)->f; } 603 604 inline jlong jlong_cast (jdouble x) { return ((DoubleLongConv*)&x)->l; } 605 inline julong julong_cast (jdouble x) { return ((DoubleLongConv*)&x)->ul; } 606 inline jdouble jdouble_cast (jlong x) { return ((DoubleLongConv*)&x)->d; } 607 608 inline jint low (jlong value) { return jint(value); } 609 inline jint high(jlong value) { return jint(value >> 32); } 610 611 // the fancy casts are a hopefully portable way 612 // to do unsigned 32 to 64 bit type conversion 613 inline void set_low (jlong* value, jint low ) { *value &= (jlong)0xffffffff << 32; 614 *value |= (jlong)(julong)(juint)low; } 615 616 inline void set_high(jlong* value, jint high) { *value &= (jlong)(julong)(juint)0xffffffff; 617 *value |= (jlong)high << 32; } 618 619 inline jlong jlong_from(jint h, jint l) { 620 jlong result = 0; // initialization to avoid warning 621 set_high(&result, h); 622 set_low(&result, l); 623 return result; 624 } 625 626 union jlong_accessor { 627 jint words[2]; 628 jlong long_value; 629 }; 630 631 void basic_types_init(); // cannot define here; uses assert 632 633 634 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java 635 enum BasicType { 636 T_BOOLEAN = 4, 637 T_CHAR = 5, 638 T_FLOAT = 6, 639 T_DOUBLE = 7, 640 T_BYTE = 8, 641 T_SHORT = 9, 642 T_INT = 10, 643 T_LONG = 11, 644 T_OBJECT = 12, 645 T_ARRAY = 13, 646 T_VOID = 14, 647 T_ADDRESS = 15, 648 T_NARROWOOP = 16, 649 T_METADATA = 17, 650 T_NARROWKLASS = 18, 651 T_CONFLICT = 19, // for stack value type with conflicting contents 652 T_ILLEGAL = 99 653 }; 654 655 inline bool is_java_primitive(BasicType t) { 656 return T_BOOLEAN <= t && t <= T_LONG; 657 } 658 659 inline bool is_subword_type(BasicType t) { 660 // these guys are processed exactly like T_INT in calling sequences: 661 return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT); 662 } 663 664 inline bool is_signed_subword_type(BasicType t) { 665 return (t == T_BYTE || t == T_SHORT); 666 } 667 668 inline bool is_reference_type(BasicType t) { 669 return (t == T_OBJECT || t == T_ARRAY); 670 } 671 672 // Convert a char from a classfile signature to a BasicType 673 inline BasicType char2type(char c) { 674 switch( c ) { 675 case 'B': return T_BYTE; 676 case 'C': return T_CHAR; 677 case 'D': return T_DOUBLE; 678 case 'F': return T_FLOAT; 679 case 'I': return T_INT; 680 case 'J': return T_LONG; 681 case 'S': return T_SHORT; 682 case 'Z': return T_BOOLEAN; 683 case 'V': return T_VOID; 684 case 'L': return T_OBJECT; 685 case '[': return T_ARRAY; 686 } 687 return T_ILLEGAL; 688 } 689 690 extern char type2char_tab[T_CONFLICT+1]; // Map a BasicType to a jchar 691 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; } 692 extern int type2size[T_CONFLICT+1]; // Map BasicType to result stack elements 693 extern const char* type2name_tab[T_CONFLICT+1]; // Map a BasicType to a jchar 694 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; } 695 extern BasicType name2type(const char* name); 696 697 // Auxilary math routines 698 // least common multiple 699 extern size_t lcm(size_t a, size_t b); 700 701 702 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java 703 enum BasicTypeSize { 704 T_BOOLEAN_size = 1, 705 T_CHAR_size = 1, 706 T_FLOAT_size = 1, 707 T_DOUBLE_size = 2, 708 T_BYTE_size = 1, 709 T_SHORT_size = 1, 710 T_INT_size = 1, 711 T_LONG_size = 2, 712 T_OBJECT_size = 1, 713 T_ARRAY_size = 1, 714 T_NARROWOOP_size = 1, 715 T_NARROWKLASS_size = 1, 716 T_VOID_size = 0 717 }; 718 719 720 // maps a BasicType to its instance field storage type: 721 // all sub-word integral types are widened to T_INT 722 extern BasicType type2field[T_CONFLICT+1]; 723 extern BasicType type2wfield[T_CONFLICT+1]; 724 725 726 // size in bytes 727 enum ArrayElementSize { 728 T_BOOLEAN_aelem_bytes = 1, 729 T_CHAR_aelem_bytes = 2, 730 T_FLOAT_aelem_bytes = 4, 731 T_DOUBLE_aelem_bytes = 8, 732 T_BYTE_aelem_bytes = 1, 733 T_SHORT_aelem_bytes = 2, 734 T_INT_aelem_bytes = 4, 735 T_LONG_aelem_bytes = 8, 736 #ifdef _LP64 737 T_OBJECT_aelem_bytes = 8, 738 T_ARRAY_aelem_bytes = 8, 739 #else 740 T_OBJECT_aelem_bytes = 4, 741 T_ARRAY_aelem_bytes = 4, 742 #endif 743 T_NARROWOOP_aelem_bytes = 4, 744 T_NARROWKLASS_aelem_bytes = 4, 745 T_VOID_aelem_bytes = 0 746 }; 747 748 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element 749 #ifdef ASSERT 750 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts 751 #else 752 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; } 753 #endif 754 755 756 // JavaValue serves as a container for arbitrary Java values. 757 758 class JavaValue { 759 760 public: 761 typedef union JavaCallValue { 762 jfloat f; 763 jdouble d; 764 jint i; 765 jlong l; 766 jobject h; 767 } JavaCallValue; 768 769 private: 770 BasicType _type; 771 JavaCallValue _value; 772 773 public: 774 JavaValue(BasicType t = T_ILLEGAL) { _type = t; } 775 776 JavaValue(jfloat value) { 777 _type = T_FLOAT; 778 _value.f = value; 779 } 780 781 JavaValue(jdouble value) { 782 _type = T_DOUBLE; 783 _value.d = value; 784 } 785 786 jfloat get_jfloat() const { return _value.f; } 787 jdouble get_jdouble() const { return _value.d; } 788 jint get_jint() const { return _value.i; } 789 jlong get_jlong() const { return _value.l; } 790 jobject get_jobject() const { return _value.h; } 791 JavaCallValue* get_value_addr() { return &_value; } 792 BasicType get_type() const { return _type; } 793 794 void set_jfloat(jfloat f) { _value.f = f;} 795 void set_jdouble(jdouble d) { _value.d = d;} 796 void set_jint(jint i) { _value.i = i;} 797 void set_jlong(jlong l) { _value.l = l;} 798 void set_jobject(jobject h) { _value.h = h;} 799 void set_type(BasicType t) { _type = t; } 800 801 jboolean get_jboolean() const { return (jboolean) (_value.i);} 802 jbyte get_jbyte() const { return (jbyte) (_value.i);} 803 jchar get_jchar() const { return (jchar) (_value.i);} 804 jshort get_jshort() const { return (jshort) (_value.i);} 805 806 }; 807 808 809 #define STACK_BIAS 0 810 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff 811 // in order to extend the reach of the stack pointer. 812 #if defined(SPARC) && defined(_LP64) 813 #undef STACK_BIAS 814 #define STACK_BIAS 0x7ff 815 #endif 816 817 818 // TosState describes the top-of-stack state before and after the execution of 819 // a bytecode or method. The top-of-stack value may be cached in one or more CPU 820 // registers. The TosState corresponds to the 'machine represention' of this cached 821 // value. There's 4 states corresponding to the JAVA types int, long, float & double 822 // as well as a 5th state in case the top-of-stack value is actually on the top 823 // of stack (in memory) and thus not cached. The atos state corresponds to the itos 824 // state when it comes to machine representation but is used separately for (oop) 825 // type specific operations (e.g. verification code). 826 827 enum TosState { // describes the tos cache contents 828 btos = 0, // byte, bool tos cached 829 ztos = 1, // byte, bool tos cached 830 ctos = 2, // char tos cached 831 stos = 3, // short tos cached 832 itos = 4, // int tos cached 833 ltos = 5, // long tos cached 834 ftos = 6, // float tos cached 835 dtos = 7, // double tos cached 836 atos = 8, // object cached 837 vtos = 9, // tos not cached 838 number_of_states, 839 ilgl // illegal state: should not occur 840 }; 841 842 843 inline TosState as_TosState(BasicType type) { 844 switch (type) { 845 case T_BYTE : return btos; 846 case T_BOOLEAN: return ztos; 847 case T_CHAR : return ctos; 848 case T_SHORT : return stos; 849 case T_INT : return itos; 850 case T_LONG : return ltos; 851 case T_FLOAT : return ftos; 852 case T_DOUBLE : return dtos; 853 case T_VOID : return vtos; 854 case T_ARRAY : // fall through 855 case T_OBJECT : return atos; 856 } 857 return ilgl; 858 } 859 860 inline BasicType as_BasicType(TosState state) { 861 switch (state) { 862 case btos : return T_BYTE; 863 case ztos : return T_BOOLEAN; 864 case ctos : return T_CHAR; 865 case stos : return T_SHORT; 866 case itos : return T_INT; 867 case ltos : return T_LONG; 868 case ftos : return T_FLOAT; 869 case dtos : return T_DOUBLE; 870 case atos : return T_OBJECT; 871 case vtos : return T_VOID; 872 } 873 return T_ILLEGAL; 874 } 875 876 877 // Helper function to convert BasicType info into TosState 878 // Note: Cannot define here as it uses global constant at the time being. 879 TosState as_TosState(BasicType type); 880 881 882 // JavaThreadState keeps track of which part of the code a thread is executing in. This 883 // information is needed by the safepoint code. 884 // 885 // There are 4 essential states: 886 // 887 // _thread_new : Just started, but not executed init. code yet (most likely still in OS init code) 888 // _thread_in_native : In native code. This is a safepoint region, since all oops will be in jobject handles 889 // _thread_in_vm : Executing in the vm 890 // _thread_in_Java : Executing either interpreted or compiled Java code (or could be in a stub) 891 // 892 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in 893 // a transition from one state to another. These extra states makes it possible for the safepoint code to 894 // handle certain thread_states without having to suspend the thread - making the safepoint code faster. 895 // 896 // Given a state, the xxx_trans state can always be found by adding 1. 897 // 898 enum JavaThreadState { 899 _thread_uninitialized = 0, // should never happen (missing initialization) 900 _thread_new = 2, // just starting up, i.e., in process of being initialized 901 _thread_new_trans = 3, // corresponding transition state (not used, included for completness) 902 _thread_in_native = 4, // running in native code 903 _thread_in_native_trans = 5, // corresponding transition state 904 _thread_in_vm = 6, // running in VM 905 _thread_in_vm_trans = 7, // corresponding transition state 906 _thread_in_Java = 8, // running in Java or in stub code 907 _thread_in_Java_trans = 9, // corresponding transition state (not used, included for completness) 908 _thread_blocked = 10, // blocked in vm 909 _thread_blocked_trans = 11, // corresponding transition state 910 _thread_max_state = 12 // maximum thread state+1 - used for statistics allocation 911 }; 912 913 914 // Handy constants for deciding which compiler mode to use. 915 enum MethodCompilation { 916 InvocationEntryBci = -1, // i.e., not a on-stack replacement compilation 917 InvalidOSREntryBci = -2 918 }; 919 920 // Enumeration to distinguish tiers of compilation 921 enum CompLevel { 922 CompLevel_any = -1, 923 CompLevel_all = -1, 924 CompLevel_none = 0, // Interpreter 925 CompLevel_simple = 1, // C1 926 CompLevel_limited_profile = 2, // C1, invocation & backedge counters 927 CompLevel_full_profile = 3, // C1, invocation & backedge counters + mdo 928 CompLevel_full_optimization = 4, // C2 or Shark 929 930 #if defined(COMPILER2) || defined(SHARK) 931 CompLevel_highest_tier = CompLevel_full_optimization, // pure C2 and tiered 932 #elif defined(COMPILER1) 933 CompLevel_highest_tier = CompLevel_simple, // pure C1 934 #else 935 CompLevel_highest_tier = CompLevel_none, 936 #endif 937 938 #if defined(TIERED) 939 CompLevel_initial_compile = CompLevel_full_profile // tiered 940 #elif defined(COMPILER1) 941 CompLevel_initial_compile = CompLevel_simple // pure C1 942 #elif defined(COMPILER2) || defined(SHARK) 943 CompLevel_initial_compile = CompLevel_full_optimization // pure C2 944 #else 945 CompLevel_initial_compile = CompLevel_none 946 #endif 947 }; 948 949 inline bool is_c1_compile(int comp_level) { 950 return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization; 951 } 952 953 inline bool is_c2_compile(int comp_level) { 954 return comp_level == CompLevel_full_optimization; 955 } 956 957 inline bool is_highest_tier_compile(int comp_level) { 958 return comp_level == CompLevel_highest_tier; 959 } 960 961 inline bool is_compile(int comp_level) { 962 return is_c1_compile(comp_level) || is_c2_compile(comp_level); 963 } 964 965 //---------------------------------------------------------------------------------------------------- 966 // 'Forward' declarations of frequently used classes 967 // (in order to reduce interface dependencies & reduce 968 // number of unnecessary compilations after changes) 969 970 class symbolTable; 971 class ClassFileStream; 972 973 class Event; 974 975 class Thread; 976 class VMThread; 977 class JavaThread; 978 class Threads; 979 980 class VM_Operation; 981 class VMOperationQueue; 982 983 class CodeBlob; 984 class nmethod; 985 class OSRAdapter; 986 class I2CAdapter; 987 class C2IAdapter; 988 class CompiledIC; 989 class relocInfo; 990 class ScopeDesc; 991 class PcDesc; 992 993 class Recompiler; 994 class Recompilee; 995 class RecompilationPolicy; 996 class RFrame; 997 class CompiledRFrame; 998 class InterpretedRFrame; 999 1000 class frame; 1001 1002 class vframe; 1003 class javaVFrame; 1004 class interpretedVFrame; 1005 class compiledVFrame; 1006 class deoptimizedVFrame; 1007 class externalVFrame; 1008 class entryVFrame; 1009 1010 class RegisterMap; 1011 1012 class Mutex; 1013 class Monitor; 1014 class BasicLock; 1015 class BasicObjectLock; 1016 1017 class PeriodicTask; 1018 1019 class JavaCallWrapper; 1020 1021 class oopDesc; 1022 class metaDataOopDesc; 1023 1024 class NativeCall; 1025 1026 class zone; 1027 1028 class StubQueue; 1029 1030 class outputStream; 1031 1032 class ResourceArea; 1033 1034 class DebugInformationRecorder; 1035 class ScopeValue; 1036 class CompressedStream; 1037 class DebugInfoReadStream; 1038 class DebugInfoWriteStream; 1039 class LocationValue; 1040 class ConstantValue; 1041 class IllegalValue; 1042 1043 class PrivilegedElement; 1044 class MonitorArray; 1045 1046 class MonitorInfo; 1047 1048 class OffsetClosure; 1049 class OopMapCache; 1050 class InterpreterOopMap; 1051 class OopMapCacheEntry; 1052 class OSThread; 1053 1054 typedef int (*OSThreadStartFunc)(void*); 1055 1056 class Space; 1057 1058 class JavaValue; 1059 class methodHandle; 1060 class JavaCallArguments; 1061 1062 // Basic support for errors (general debug facilities not defined at this point fo the include phase) 1063 1064 extern void basic_fatal(const char* msg); 1065 1066 1067 //---------------------------------------------------------------------------------------------------- 1068 // Special constants for debugging 1069 1070 const jint badInt = -3; // generic "bad int" value 1071 const intptr_t badAddressVal = -2; // generic "bad address" value 1072 const intptr_t badOopVal = -1; // generic "bad oop" value 1073 const intptr_t badHeapOopVal = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC 1074 const int badStackSegVal = 0xCA; // value used to zap stack segments 1075 const int badHandleValue = 0xBC; // value used to zap vm handle area 1076 const int badResourceValue = 0xAB; // value used to zap resource area 1077 const int freeBlockPad = 0xBA; // value used to pad freed blocks. 1078 const int uninitBlockPad = 0xF1; // value used to zap newly malloc'd blocks. 1079 const intptr_t badJNIHandleVal = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area 1080 const juint badHeapWordVal = 0xBAADBABE; // value used to zap heap after GC 1081 const juint badMetaWordVal = 0xBAADFADE; // value used to zap metadata heap after GC 1082 const int badCodeHeapNewVal= 0xCC; // value used to zap Code heap at allocation 1083 const int badCodeHeapFreeVal = 0xDD; // value used to zap Code heap at deallocation 1084 1085 1086 // (These must be implemented as #defines because C++ compilers are 1087 // not obligated to inline non-integral constants!) 1088 #define badAddress ((address)::badAddressVal) 1089 #define badOop (cast_to_oop(::badOopVal)) 1090 #define badHeapWord (::badHeapWordVal) 1091 #define badJNIHandle (cast_to_oop(::badJNIHandleVal)) 1092 1093 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit) 1094 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17)) 1095 1096 //---------------------------------------------------------------------------------------------------- 1097 // Utility functions for bitfield manipulations 1098 1099 const intptr_t AllBits = ~0; // all bits set in a word 1100 const intptr_t NoBits = 0; // no bits set in a word 1101 const jlong NoLongBits = 0; // no bits set in a long 1102 const intptr_t OneBit = 1; // only right_most bit set in a word 1103 1104 // get a word with the n.th or the right-most or left-most n bits set 1105 // (note: #define used only so that they can be used in enum constant definitions) 1106 #define nth_bit(n) (n >= BitsPerWord ? 0 : OneBit << (n)) 1107 #define right_n_bits(n) (nth_bit(n) - 1) 1108 #define left_n_bits(n) (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n))) 1109 1110 // bit-operations using a mask m 1111 inline void set_bits (intptr_t& x, intptr_t m) { x |= m; } 1112 inline void clear_bits (intptr_t& x, intptr_t m) { x &= ~m; } 1113 inline intptr_t mask_bits (intptr_t x, intptr_t m) { return x & m; } 1114 inline jlong mask_long_bits (jlong x, jlong m) { return x & m; } 1115 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; } 1116 1117 // bit-operations using the n.th bit 1118 inline void set_nth_bit(intptr_t& x, int n) { set_bits (x, nth_bit(n)); } 1119 inline void clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); } 1120 inline bool is_set_nth_bit(intptr_t x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; } 1121 1122 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!) 1123 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) { 1124 return mask_bits(x >> start_bit_no, right_n_bits(field_length)); 1125 } 1126 1127 1128 //---------------------------------------------------------------------------------------------------- 1129 // Utility functions for integers 1130 1131 // Avoid use of global min/max macros which may cause unwanted double 1132 // evaluation of arguments. 1133 #ifdef max 1134 #undef max 1135 #endif 1136 1137 #ifdef min 1138 #undef min 1139 #endif 1140 1141 #define max(a,b) Do_not_use_max_use_MAX2_instead 1142 #define min(a,b) Do_not_use_min_use_MIN2_instead 1143 1144 // It is necessary to use templates here. Having normal overloaded 1145 // functions does not work because it is necessary to provide both 32- 1146 // and 64-bit overloaded functions, which does not work, and having 1147 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L) 1148 // will be even more error-prone than macros. 1149 template<class T> inline T MAX2(T a, T b) { return (a > b) ? a : b; } 1150 template<class T> inline T MIN2(T a, T b) { return (a < b) ? a : b; } 1151 template<class T> inline T MAX3(T a, T b, T c) { return MAX2(MAX2(a, b), c); } 1152 template<class T> inline T MIN3(T a, T b, T c) { return MIN2(MIN2(a, b), c); } 1153 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); } 1154 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); } 1155 1156 template<class T> inline T ABS(T x) { return (x > 0) ? x : -x; } 1157 1158 // true if x is a power of 2, false otherwise 1159 inline bool is_power_of_2(intptr_t x) { 1160 return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits)); 1161 } 1162 1163 // long version of is_power_of_2 1164 inline bool is_power_of_2_long(jlong x) { 1165 return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits)); 1166 } 1167 1168 //* largest i such that 2^i <= x 1169 // A negative value of 'x' will return '31' 1170 inline int log2_intptr(uintptr_t x) { 1171 int i = -1; 1172 uintptr_t p = 1; 1173 while (p != 0 && p <= x) { 1174 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x) 1175 i++; p *= 2; 1176 } 1177 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1)) 1178 // (if p = 0 then overflow occurred and i = 31) 1179 return i; 1180 } 1181 1182 //* largest i such that 2^i <= x 1183 inline int log2_long(julong x) { 1184 int i = -1; 1185 julong p = 1; 1186 while (p != 0 && p <= x) { 1187 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x) 1188 i++; p *= 2; 1189 } 1190 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1)) 1191 // (if p = 0 then overflow occurred and i = 63) 1192 return i; 1193 } 1194 1195 inline int log2_intptr(intptr_t x) { 1196 return log2_intptr((uintptr_t)x); 1197 } 1198 1199 inline int log2_int(int x) { 1200 return log2_intptr((uintptr_t)x); 1201 } 1202 1203 inline int log2_jint(jint x) { 1204 return log2_intptr((uintptr_t)x); 1205 } 1206 1207 inline int log2_uint(uint x) { 1208 return log2_intptr((uintptr_t)x); 1209 } 1210 1211 // A negative value of 'x' will return '63' 1212 inline int log2_jlong(jlong x) { 1213 return log2_long((julong)x); 1214 } 1215 1216 //* the argument must be exactly a power of 2 1217 inline int exact_log2(intptr_t x) { 1218 #ifdef ASSERT 1219 if (!is_power_of_2(x)) basic_fatal("x must be a power of 2"); 1220 #endif 1221 return log2_intptr(x); 1222 } 1223 1224 //* the argument must be exactly a power of 2 1225 inline int exact_log2_long(jlong x) { 1226 #ifdef ASSERT 1227 if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2"); 1228 #endif 1229 return log2_long(x); 1230 } 1231 1232 1233 // returns integer round-up to the nearest multiple of s (s must be a power of two) 1234 inline intptr_t round_to(intptr_t x, uintx s) { 1235 #ifdef ASSERT 1236 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2"); 1237 #endif 1238 const uintx m = s - 1; 1239 return mask_bits(x + m, ~m); 1240 } 1241 1242 // returns integer round-down to the nearest multiple of s (s must be a power of two) 1243 inline intptr_t round_down(intptr_t x, uintx s) { 1244 #ifdef ASSERT 1245 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2"); 1246 #endif 1247 const uintx m = s - 1; 1248 return mask_bits(x, ~m); 1249 } 1250 1251 1252 inline bool is_odd (intx x) { return x & 1; } 1253 inline bool is_even(intx x) { return !is_odd(x); } 1254 1255 // abs methods which cannot overflow and so are well-defined across 1256 // the entire domain of integer types. 1257 static inline unsigned int uabs(unsigned int n) { 1258 union { 1259 unsigned int result; 1260 int value; 1261 }; 1262 result = n; 1263 if (value < 0) result = 0-result; 1264 return result; 1265 } 1266 static inline julong uabs(julong n) { 1267 union { 1268 julong result; 1269 jlong value; 1270 }; 1271 result = n; 1272 if (value < 0) result = 0-result; 1273 return result; 1274 } 1275 static inline julong uabs(jlong n) { return uabs((julong)n); } 1276 static inline unsigned int uabs(int n) { return uabs((unsigned int)n); } 1277 1278 // "to" should be greater than "from." 1279 inline intx byte_size(void* from, void* to) { 1280 return (address)to - (address)from; 1281 } 1282 1283 //---------------------------------------------------------------------------------------------------- 1284 // Avoid non-portable casts with these routines (DEPRECATED) 1285 1286 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE 1287 // Bytes is optimized machine-specifically and may be much faster then the portable routines below. 1288 1289 // Given sequence of four bytes, build into a 32-bit word 1290 // following the conventions used in class files. 1291 // On the 386, this could be realized with a simple address cast. 1292 // 1293 1294 // This routine takes eight bytes: 1295 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) { 1296 return (( u8(c1) << 56 ) & ( u8(0xff) << 56 )) 1297 | (( u8(c2) << 48 ) & ( u8(0xff) << 48 )) 1298 | (( u8(c3) << 40 ) & ( u8(0xff) << 40 )) 1299 | (( u8(c4) << 32 ) & ( u8(0xff) << 32 )) 1300 | (( u8(c5) << 24 ) & ( u8(0xff) << 24 )) 1301 | (( u8(c6) << 16 ) & ( u8(0xff) << 16 )) 1302 | (( u8(c7) << 8 ) & ( u8(0xff) << 8 )) 1303 | (( u8(c8) << 0 ) & ( u8(0xff) << 0 )); 1304 } 1305 1306 // This routine takes four bytes: 1307 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) { 1308 return (( u4(c1) << 24 ) & 0xff000000) 1309 | (( u4(c2) << 16 ) & 0x00ff0000) 1310 | (( u4(c3) << 8 ) & 0x0000ff00) 1311 | (( u4(c4) << 0 ) & 0x000000ff); 1312 } 1313 1314 // And this one works if the four bytes are contiguous in memory: 1315 inline u4 build_u4_from( u1* p ) { 1316 return build_u4_from( p[0], p[1], p[2], p[3] ); 1317 } 1318 1319 // Ditto for two-byte ints: 1320 inline u2 build_u2_from( u1 c1, u1 c2 ) { 1321 return u2((( u2(c1) << 8 ) & 0xff00) 1322 | (( u2(c2) << 0 ) & 0x00ff)); 1323 } 1324 1325 // And this one works if the two bytes are contiguous in memory: 1326 inline u2 build_u2_from( u1* p ) { 1327 return build_u2_from( p[0], p[1] ); 1328 } 1329 1330 // Ditto for floats: 1331 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) { 1332 u4 u = build_u4_from( c1, c2, c3, c4 ); 1333 return *(jfloat*)&u; 1334 } 1335 1336 inline jfloat build_float_from( u1* p ) { 1337 u4 u = build_u4_from( p ); 1338 return *(jfloat*)&u; 1339 } 1340 1341 1342 // now (64-bit) longs 1343 1344 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) { 1345 return (( jlong(c1) << 56 ) & ( jlong(0xff) << 56 )) 1346 | (( jlong(c2) << 48 ) & ( jlong(0xff) << 48 )) 1347 | (( jlong(c3) << 40 ) & ( jlong(0xff) << 40 )) 1348 | (( jlong(c4) << 32 ) & ( jlong(0xff) << 32 )) 1349 | (( jlong(c5) << 24 ) & ( jlong(0xff) << 24 )) 1350 | (( jlong(c6) << 16 ) & ( jlong(0xff) << 16 )) 1351 | (( jlong(c7) << 8 ) & ( jlong(0xff) << 8 )) 1352 | (( jlong(c8) << 0 ) & ( jlong(0xff) << 0 )); 1353 } 1354 1355 inline jlong build_long_from( u1* p ) { 1356 return build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] ); 1357 } 1358 1359 1360 // Doubles, too! 1361 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) { 1362 jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 ); 1363 return *(jdouble*)&u; 1364 } 1365 1366 inline jdouble build_double_from( u1* p ) { 1367 jlong u = build_long_from( p ); 1368 return *(jdouble*)&u; 1369 } 1370 1371 1372 // Portable routines to go the other way: 1373 1374 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) { 1375 c1 = u1(x >> 8); 1376 c2 = u1(x); 1377 } 1378 1379 inline void explode_short_to( u2 x, u1* p ) { 1380 explode_short_to( x, p[0], p[1]); 1381 } 1382 1383 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) { 1384 c1 = u1(x >> 24); 1385 c2 = u1(x >> 16); 1386 c3 = u1(x >> 8); 1387 c4 = u1(x); 1388 } 1389 1390 inline void explode_int_to( u4 x, u1* p ) { 1391 explode_int_to( x, p[0], p[1], p[2], p[3]); 1392 } 1393 1394 1395 // Pack and extract shorts to/from ints: 1396 1397 inline int extract_low_short_from_int(jint x) { 1398 return x & 0xffff; 1399 } 1400 1401 inline int extract_high_short_from_int(jint x) { 1402 return (x >> 16) & 0xffff; 1403 } 1404 1405 inline int build_int_from_shorts( jushort low, jushort high ) { 1406 return ((int)((unsigned int)high << 16) | (unsigned int)low); 1407 } 1408 1409 // Convert pointer to intptr_t, for use in printing pointers. 1410 inline intptr_t p2i(const void * p) { 1411 return (intptr_t) p; 1412 } 1413 1414 // Printf-style formatters for fixed- and variable-width types as pointers and 1415 // integers. These are derived from the definitions in inttypes.h. If the platform 1416 // doesn't provide appropriate definitions, they should be provided in 1417 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp) 1418 1419 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false") 1420 1421 // Format 32-bit quantities. 1422 #define INT32_FORMAT "%" PRId32 1423 #define UINT32_FORMAT "%" PRIu32 1424 #define INT32_FORMAT_W(width) "%" #width PRId32 1425 #define UINT32_FORMAT_W(width) "%" #width PRIu32 1426 1427 #define PTR32_FORMAT "0x%08" PRIx32 1428 1429 // Format 64-bit quantities. 1430 #define INT64_FORMAT "%" PRId64 1431 #define UINT64_FORMAT "%" PRIu64 1432 #define UINT64_FORMAT_X "%" PRIx64 1433 #define INT64_FORMAT_W(width) "%" #width PRId64 1434 #define UINT64_FORMAT_W(width) "%" #width PRIu64 1435 1436 #define PTR64_FORMAT "0x%016" PRIx64 1437 1438 // Format jlong, if necessary 1439 #ifndef JLONG_FORMAT 1440 #define JLONG_FORMAT INT64_FORMAT 1441 #endif 1442 #ifndef JULONG_FORMAT 1443 #define JULONG_FORMAT UINT64_FORMAT 1444 #endif 1445 1446 // Format pointers which change size between 32- and 64-bit. 1447 #ifdef _LP64 1448 #define INTPTR_FORMAT "0x%016" PRIxPTR 1449 #define PTR_FORMAT "0x%016" PRIxPTR 1450 #else // !_LP64 1451 #define INTPTR_FORMAT "0x%08" PRIxPTR 1452 #define PTR_FORMAT "0x%08" PRIxPTR 1453 #endif // _LP64 1454 1455 #define INTPTR_FORMAT_W(width) "%" #width PRIxPTR 1456 1457 #define SSIZE_FORMAT "%" PRIdPTR 1458 #define SIZE_FORMAT "%" PRIuPTR 1459 #define SIZE_FORMAT_HEX "0x%" PRIxPTR 1460 #define SSIZE_FORMAT_W(width) "%" #width PRIdPTR 1461 #define SIZE_FORMAT_W(width) "%" #width PRIuPTR 1462 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR 1463 1464 #define INTX_FORMAT "%" PRIdPTR 1465 #define UINTX_FORMAT "%" PRIuPTR 1466 #define INTX_FORMAT_W(width) "%" #width PRIdPTR 1467 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR 1468 1469 1470 // Enable zap-a-lot if in debug version. 1471 1472 # ifdef ASSERT 1473 # ifdef COMPILER2 1474 # define ENABLE_ZAP_DEAD_LOCALS 1475 #endif /* COMPILER2 */ 1476 # endif /* ASSERT */ 1477 1478 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0])) 1479 1480 //---------------------------------------------------------------------------------------------------- 1481 // Sum and product which can never overflow: they wrap, just like the 1482 // Java operations. Note that we don't intend these to be used for 1483 // general-purpose arithmetic: their purpose is to emulate Java 1484 // operations. 1485 1486 // The goal of this code to avoid undefined or implementation-defined 1487 // behaviour. The use of an lvalue to reference cast is explicitly 1488 // permitted by Lvalues and rvalues [basic.lval]. [Section 3.10 Para 1489 // 15 in C++03] 1490 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE) \ 1491 inline TYPE NAME (TYPE in1, TYPE in2) { \ 1492 UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \ 1493 ures OP ## = static_cast<UNSIGNED_TYPE>(in2); \ 1494 return reinterpret_cast<TYPE&>(ures); \ 1495 } 1496 1497 JAVA_INTEGER_OP(+, java_add, jint, juint) 1498 JAVA_INTEGER_OP(-, java_subtract, jint, juint) 1499 JAVA_INTEGER_OP(*, java_multiply, jint, juint) 1500 JAVA_INTEGER_OP(+, java_add, jlong, julong) 1501 JAVA_INTEGER_OP(-, java_subtract, jlong, julong) 1502 JAVA_INTEGER_OP(*, java_multiply, jlong, julong) 1503 1504 #undef JAVA_INTEGER_OP 1505 1506 // Dereference vptr 1507 // All C++ compilers that we know of have the vtbl pointer in the first 1508 // word. If there are exceptions, this function needs to be made compiler 1509 // specific. 1510 static inline void* dereference_vptr(const void* addr) { 1511 return *(void**)addr; 1512 } 1513 1514 #ifndef PRODUCT 1515 1516 // For unit testing only 1517 class GlobalDefinitions { 1518 public: 1519 static void test_globals(); 1520 static void test_proper_unit(); 1521 }; 1522 1523 #endif // PRODUCT 1524 1525 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP