1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #ifndef __STDC_FORMAT_MACROS
  29 #define __STDC_FORMAT_MACROS
  30 #endif
  31 
  32 // Needed for INT64_C and UINT64_C with ISO C99 libraries (see JDK-8272214)
  33 #ifndef __STDC_CONSTANT_MACROS
  34 #define __STDC_CONSTANT_MACROS
  35 #endif
  36 
  37 #ifdef TARGET_COMPILER_gcc
  38 # include "utilities/globalDefinitions_gcc.hpp"
  39 #endif
  40 #ifdef TARGET_COMPILER_visCPP
  41 # include "utilities/globalDefinitions_visCPP.hpp"
  42 #endif
  43 #ifdef TARGET_COMPILER_sparcWorks
  44 # include "utilities/globalDefinitions_sparcWorks.hpp"
  45 #endif
  46 #ifdef TARGET_COMPILER_xlc
  47 # include "utilities/globalDefinitions_xlc.hpp"
  48 #endif
  49 
  50 // Defaults for macros that might be defined per compiler.
  51 #ifndef NOINLINE
  52 #define NOINLINE
  53 #endif
  54 #ifndef ALWAYSINLINE
  55 #define ALWAYSINLINE inline
  56 #endif
  57 
  58 #ifndef PRAGMA_DIAG_PUSH
  59 #define PRAGMA_DIAG_PUSH
  60 #endif
  61 #ifndef PRAGMA_DIAG_POP
  62 #define PRAGMA_DIAG_POP
  63 #endif
  64 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED
  65 #define PRAGMA_FORMAT_NONLITERAL_IGNORED
  66 #endif
  67 #ifndef PRAGMA_FORMAT_IGNORED
  68 #define PRAGMA_FORMAT_IGNORED
  69 #endif
  70 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
  71 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
  72 #endif
  73 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
  74 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
  75 #endif
  76 #ifndef PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  77 #define PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  78 #endif
  79 #ifndef ATTRIBUTE_PRINTF
  80 #define ATTRIBUTE_PRINTF(fmt, vargs)
  81 #endif
  82 
  83 
  84 #include "utilities/macros.hpp"
  85 
  86 // This file holds all globally used constants & types, class (forward)
  87 // declarations and a few frequently used utility functions.
  88 
  89 //----------------------------------------------------------------------------------------------------
  90 // Constants
  91 
  92 const int LogBytesPerShort   = 1;
  93 const int LogBytesPerInt     = 2;
  94 #ifdef _LP64
  95 const int LogBytesPerWord    = 3;
  96 #else
  97 const int LogBytesPerWord    = 2;
  98 #endif
  99 const int LogBytesPerLong    = 3;
 100 
 101 const int BytesPerShort      = 1 << LogBytesPerShort;
 102 const int BytesPerInt        = 1 << LogBytesPerInt;
 103 const int BytesPerWord       = 1 << LogBytesPerWord;
 104 const int BytesPerLong       = 1 << LogBytesPerLong;
 105 
 106 const int LogBitsPerByte     = 3;
 107 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
 108 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
 109 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
 110 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
 111 
 112 const int BitsPerByte        = 1 << LogBitsPerByte;
 113 const int BitsPerShort       = 1 << LogBitsPerShort;
 114 const int BitsPerInt         = 1 << LogBitsPerInt;
 115 const int BitsPerWord        = 1 << LogBitsPerWord;
 116 const int BitsPerLong        = 1 << LogBitsPerLong;
 117 
 118 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
 119 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
 120 
 121 const int WordsPerLong       = 2;       // Number of stack entries for longs
 122 
 123 const int oopSize            = sizeof(char*); // Full-width oop
 124 extern int heapOopSize;                       // Oop within a java object
 125 const int wordSize           = sizeof(char*);
 126 const int longSize           = sizeof(jlong);
 127 const int jintSize           = sizeof(jint);
 128 const int size_tSize         = sizeof(size_t);
 129 
 130 const int BytesPerOop        = BytesPerWord;  // Full-width oop
 131 
 132 extern int LogBytesPerHeapOop;                // Oop within a java object
 133 extern int LogBitsPerHeapOop;
 134 extern int BytesPerHeapOop;
 135 extern int BitsPerHeapOop;
 136 
 137 // Oop encoding heap max
 138 extern uint64_t OopEncodingHeapMax;
 139 
 140 const int BitsPerJavaInteger = 32;
 141 const int BitsPerJavaLong    = 64;
 142 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 143 
 144 // Size of a char[] needed to represent a jint as a string in decimal.
 145 const int jintAsStringSize = 12;
 146 
 147 // In fact this should be
 148 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
 149 // see os::set_memory_serialize_page()
 150 #ifdef _LP64
 151 const int SerializePageShiftCount = 4;
 152 #else
 153 #if INCLUDE_JFR && INCLUDE_ALL_GCS
 154 // JavaThread already has quite a few Shenandoah fields. Adding many JFR fields
 155 // trips sizeof(JavaThread) > 1024. Need to adjust it here.
 156 const int SerializePageShiftCount = 4;
 157 #else
 158 const int SerializePageShiftCount = 3;
 159 #endif
 160 #endif
 161 
 162 // An opaque struct of heap-word width, so that HeapWord* can be a generic
 163 // pointer into the heap.  We require that object sizes be measured in
 164 // units of heap words, so that that
 165 //   HeapWord* hw;
 166 //   hw += oop(hw)->foo();
 167 // works, where foo is a method (like size or scavenge) that returns the
 168 // object size.
 169 class HeapWord {
 170   friend class VMStructs;
 171  private:
 172   char* i;
 173 #ifndef PRODUCT
 174  public:
 175   char* value() { return i; }
 176 #endif
 177 };
 178 
 179 // Analogous opaque struct for metadata allocated from
 180 // metaspaces.
 181 class MetaWord {
 182   friend class VMStructs;
 183  private:
 184   char* i;
 185 };
 186 
 187 // HeapWordSize must be 2^LogHeapWordSize.
 188 const int HeapWordSize        = sizeof(HeapWord);
 189 #ifdef _LP64
 190 const int LogHeapWordSize     = 3;
 191 #else
 192 const int LogHeapWordSize     = 2;
 193 #endif
 194 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 195 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 196 
 197 // The larger HeapWordSize for 64bit requires larger heaps
 198 // for the same application running in 64bit.  See bug 4967770.
 199 // The minimum alignment to a heap word size is done.  Other
 200 // parts of the memory system may required additional alignment
 201 // and are responsible for those alignments.
 202 #ifdef _LP64
 203 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
 204 #else
 205 #define ScaleForWordSize(x) (x)
 206 #endif
 207 
 208 // The minimum number of native machine words necessary to contain "byte_size"
 209 // bytes.
 210 inline size_t heap_word_size(size_t byte_size) {
 211   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 212 }
 213 
 214 
 215 const size_t K                  = 1024;
 216 const size_t M                  = K*K;
 217 const size_t G                  = M*K;
 218 const size_t HWperKB            = K / sizeof(HeapWord);
 219 
 220 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 221 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 222 
 223 // Constants for converting from a base unit to milli-base units.  For
 224 // example from seconds to milliseconds and microseconds
 225 
 226 const int MILLIUNITS    = 1000;         // milli units per base unit
 227 const int MICROUNITS    = 1000000;      // micro units per base unit
 228 const int NANOUNITS     = 1000000000;   // nano units per base unit
 229 
 230 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 231 const jint  NANOSECS_PER_MILLISEC = 1000000;
 232 
 233 // Proper units routines try to maintain at least three significant digits.
 234 // In worst case, it would print five significant digits with lower prefix.
 235 // G is close to MAX_SIZE on 32-bit platforms, so its product can easily overflow,
 236 // and therefore we need to be careful.
 237 
 238 inline const char* proper_unit_for_byte_size(size_t s) {
 239 #ifdef _LP64
 240   if (s >= 100*G) {
 241     return "G";
 242   }
 243 #endif
 244   if (s >= 100*M) {
 245     return "M";
 246   } else if (s >= 100*K) {
 247     return "K";
 248   } else {
 249     return "B";
 250   }
 251 }
 252 
 253 template <class T>
 254 inline T byte_size_in_proper_unit(T s) {
 255 #ifdef _LP64
 256   if (s >= 100*G) {
 257     return (T)(s/G);
 258   }
 259 #endif
 260   if (s >= 100*M) {
 261     return (T)(s/M);
 262   } else if (s >= 100*K) {
 263     return (T)(s/K);
 264   } else {
 265     return s;
 266   }
 267 }
 268 
 269 //----------------------------------------------------------------------------------------------------
 270 // VM type definitions
 271 
 272 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 273 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 274 
 275 typedef intptr_t  intx;
 276 typedef uintptr_t uintx;
 277 
 278 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 279 const intx  max_intx  = (uintx)min_intx - 1;
 280 const uintx max_uintx = (uintx)-1;
 281 
 282 // Table of values:
 283 //      sizeof intx         4               8
 284 // min_intx             0x80000000      0x8000000000000000
 285 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 286 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 287 
 288 typedef unsigned int uint;   NEEDS_CLEANUP
 289 
 290 
 291 //----------------------------------------------------------------------------------------------------
 292 // Java type definitions
 293 
 294 // All kinds of 'plain' byte addresses
 295 typedef   signed char s_char;
 296 typedef unsigned char u_char;
 297 typedef u_char*       address;
 298 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 299                                     // except for some implementations of a C++
 300                                     // linkage pointer to function. Should never
 301                                     // need one of those to be placed in this
 302                                     // type anyway.
 303 
 304 //  Utility functions to "portably" (?) bit twiddle pointers
 305 //  Where portable means keep ANSI C++ compilers quiet
 306 
 307 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 308 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 309 
 310 //  Utility functions to "portably" make cast to/from function pointers.
 311 
 312 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 313 inline address_word  castable_address(address x)              { return address_word(x) ; }
 314 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 315 
 316 // Pointer subtraction.
 317 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 318 // the range we might need to find differences from one end of the heap
 319 // to the other.
 320 // A typical use might be:
 321 //     if (pointer_delta(end(), top()) >= size) {
 322 //       // enough room for an object of size
 323 //       ...
 324 // and then additions like
 325 //       ... top() + size ...
 326 // are safe because we know that top() is at least size below end().
 327 inline size_t pointer_delta(const void* left,
 328                             const void* right,
 329                             size_t element_size) {
 330   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 331 }
 332 // A version specialized for HeapWord*'s.
 333 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 334   return pointer_delta(left, right, sizeof(HeapWord));
 335 }
 336 // A version specialized for MetaWord*'s.
 337 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
 338   return pointer_delta(left, right, sizeof(MetaWord));
 339 }
 340 
 341 //
 342 // ANSI C++ does not allow casting from one pointer type to a function pointer
 343 // directly without at best a warning. This macro accomplishes it silently
 344 // In every case that is present at this point the value be cast is a pointer
 345 // to a C linkage function. In somecase the type used for the cast reflects
 346 // that linkage and a picky compiler would not complain. In other cases because
 347 // there is no convenient place to place a typedef with extern C linkage (i.e
 348 // a platform dependent header file) it doesn't. At this point no compiler seems
 349 // picky enough to catch these instances (which are few). It is possible that
 350 // using templates could fix these for all cases. This use of templates is likely
 351 // so far from the middle of the road that it is likely to be problematic in
 352 // many C++ compilers.
 353 //
 354 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
 355 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 356 
 357 // Unsigned byte types for os and stream.hpp
 358 
 359 // Unsigned one, two, four and eigth byte quantities used for describing
 360 // the .class file format. See JVM book chapter 4.
 361 
 362 typedef jubyte  u1;
 363 typedef jushort u2;
 364 typedef juint   u4;
 365 typedef julong  u8;
 366 
 367 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 368 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 369 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 370 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 371 
 372 typedef jbyte  s1;
 373 typedef jshort s2;
 374 typedef jint   s4;
 375 typedef jlong  s8;
 376 
 377 //----------------------------------------------------------------------------------------------------
 378 // JVM spec restrictions
 379 
 380 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 381 
 382 // Default ProtectionDomainCacheSize values
 383 
 384 const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017);
 385 
 386 //----------------------------------------------------------------------------------------------------
 387 // Default and minimum StringTableSize values
 388 
 389 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
 390 const int minimumStringTableSize = 1009;
 391 
 392 const int defaultSymbolTableSize = 20011;
 393 const int minimumSymbolTableSize = 1009;
 394 
 395 
 396 //----------------------------------------------------------------------------------------------------
 397 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
 398 //
 399 // Determines whether on-the-fly class replacement and frame popping are enabled.
 400 
 401 #define HOTSWAP
 402 
 403 //----------------------------------------------------------------------------------------------------
 404 // Object alignment, in units of HeapWords.
 405 //
 406 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 407 // reference fields can be naturally aligned.
 408 
 409 extern int MinObjAlignment;
 410 extern int MinObjAlignmentInBytes;
 411 extern int MinObjAlignmentInBytesMask;
 412 
 413 extern int LogMinObjAlignment;
 414 extern int LogMinObjAlignmentInBytes;
 415 
 416 const int LogKlassAlignmentInBytes = 3;
 417 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
 418 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
 419 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
 420 
 421 // Klass encoding metaspace max size
 422 const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
 423 
 424 // Machine dependent stuff
 425 
 426 #if defined(X86) && defined(COMPILER2) && !defined(JAVASE_EMBEDDED)
 427 // Include Restricted Transactional Memory lock eliding optimization
 428 #define INCLUDE_RTM_OPT 1
 429 #define RTM_OPT_ONLY(code) code
 430 #else
 431 #define INCLUDE_RTM_OPT 0
 432 #define RTM_OPT_ONLY(code)
 433 #endif
 434 // States of Restricted Transactional Memory usage.
 435 enum RTMState {
 436   NoRTM      = 0x2, // Don't use RTM
 437   UseRTM     = 0x1, // Use RTM
 438   ProfileRTM = 0x0  // Use RTM with abort ratio calculation
 439 };
 440 
 441 // The maximum size of the code cache.  Can be overridden by targets.
 442 #define CODE_CACHE_SIZE_LIMIT (2*G)
 443 // Allow targets to reduce the default size of the code cache.
 444 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
 445 
 446 #ifdef TARGET_ARCH_x86
 447 # include "globalDefinitions_x86.hpp"
 448 #endif
 449 #ifdef TARGET_ARCH_aarch64
 450 # include "globalDefinitions_aarch64.hpp"
 451 #endif
 452 #ifdef TARGET_ARCH_sparc
 453 # include "globalDefinitions_sparc.hpp"
 454 #endif
 455 #ifdef TARGET_ARCH_zero
 456 # include "globalDefinitions_zero.hpp"
 457 #endif
 458 #ifdef TARGET_ARCH_arm
 459 # include "globalDefinitions_arm.hpp"
 460 #endif
 461 #ifdef TARGET_ARCH_ppc
 462 # include "globalDefinitions_ppc.hpp"
 463 #endif
 464 
 465 /*
 466  * If a platform does not support native stack walking
 467  * the platform specific globalDefinitions (above)
 468  * can set PLATFORM_NATIVE_STACK_WALKING_SUPPORTED to 0
 469  */
 470 #ifndef PLATFORM_NATIVE_STACK_WALKING_SUPPORTED
 471 #define PLATFORM_NATIVE_STACK_WALKING_SUPPORTED 1
 472 #endif
 473 
 474 // To assure the IRIW property on processors that are not multiple copy
 475 // atomic, sync instructions must be issued between volatile reads to
 476 // assure their ordering, instead of after volatile stores.
 477 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
 478 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
 479 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
 480 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
 481 #else
 482 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
 483 #endif
 484 
 485 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
 486 // Note: this value must be a power of 2
 487 
 488 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
 489 
 490 // Signed variants of alignment helpers.  There are two versions of each, a macro
 491 // for use in places like enum definitions that require compile-time constant
 492 // expressions and a function for all other places so as to get type checking.
 493 
 494 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
 495 
 496 inline bool is_size_aligned(size_t size, size_t alignment) {
 497   return align_size_up_(size, alignment) == size;
 498 }
 499 
 500 inline bool is_ptr_aligned(void* ptr, size_t alignment) {
 501   return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
 502 }
 503 
 504 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
 505   return align_size_up_(size, alignment);
 506 }
 507 
 508 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
 509 
 510 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
 511   return align_size_down_(size, alignment);
 512 }
 513 
 514 #define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment)))
 515 
 516 inline void* align_ptr_up(void* ptr, size_t alignment) {
 517   return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
 518 }
 519 
 520 inline void* align_ptr_down(void* ptr, size_t alignment) {
 521   return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
 522 }
 523 
 524 // Align objects by rounding up their size, in HeapWord units.
 525 
 526 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
 527 
 528 inline intptr_t align_object_size(intptr_t size) {
 529   return align_size_up(size, MinObjAlignment);
 530 }
 531 
 532 inline bool is_object_aligned(intptr_t addr) {
 533   return addr == align_object_size(addr);
 534 }
 535 
 536 // Pad out certain offsets to jlong alignment, in HeapWord units.
 537 
 538 inline intptr_t align_object_offset(intptr_t offset) {
 539   return align_size_up(offset, HeapWordsPerLong);
 540 }
 541 
 542 inline void* align_pointer_up(const void* addr, size_t size) {
 543   return (void*) align_size_up_((uintptr_t)addr, size);
 544 }
 545 
 546 // Align down with a lower bound. If the aligning results in 0, return 'alignment'.
 547 
 548 inline size_t align_size_down_bounded(size_t size, size_t alignment) {
 549   size_t aligned_size = align_size_down_(size, alignment);
 550   return aligned_size > 0 ? aligned_size : alignment;
 551 }
 552 
 553 // Clamp an address to be within a specific page
 554 // 1. If addr is on the page it is returned as is
 555 // 2. If addr is above the page_address the start of the *next* page will be returned
 556 // 3. Otherwise, if addr is below the page_address the start of the page will be returned
 557 inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
 558   if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
 559     // address is in the specified page, just return it as is
 560     return addr;
 561   } else if (addr > page_address) {
 562     // address is above specified page, return start of next page
 563     return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
 564   } else {
 565     // address is below specified page, return start of page
 566     return (address)align_size_down(intptr_t(page_address), page_size);
 567   }
 568 }
 569 
 570 
 571 // The expected size in bytes of a cache line, used to pad data structures.
 572 #define DEFAULT_CACHE_LINE_SIZE 64
 573 
 574 
 575 //----------------------------------------------------------------------------------------------------
 576 // Utility macros for compilers
 577 // used to silence compiler warnings
 578 
 579 #define Unused_Variable(var) var
 580 
 581 
 582 //----------------------------------------------------------------------------------------------------
 583 // Miscellaneous
 584 
 585 // 6302670 Eliminate Hotspot __fabsf dependency
 586 // All fabs() callers should call this function instead, which will implicitly
 587 // convert the operand to double, avoiding a dependency on __fabsf which
 588 // doesn't exist in early versions of Solaris 8.
 589 inline double fabsd(double value) {
 590   return fabs(value);
 591 }
 592 
 593 //----------------------------------------------------------------------------------------------------
 594 // Special casts
 595 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
 596 typedef union {
 597   jfloat f;
 598   jint i;
 599 } FloatIntConv;
 600 
 601 typedef union {
 602   jdouble d;
 603   jlong l;
 604   julong ul;
 605 } DoubleLongConv;
 606 
 607 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
 608 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
 609 
 610 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
 611 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
 612 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
 613 
 614 inline jint low (jlong value)                    { return jint(value); }
 615 inline jint high(jlong value)                    { return jint(value >> 32); }
 616 
 617 // the fancy casts are a hopefully portable way
 618 // to do unsigned 32 to 64 bit type conversion
 619 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 620                                                    *value |= (jlong)(julong)(juint)low; }
 621 
 622 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 623                                                    *value |= (jlong)high       << 32; }
 624 
 625 inline jlong jlong_from(jint h, jint l) {
 626   jlong result = 0; // initialization to avoid warning
 627   set_high(&result, h);
 628   set_low(&result,  l);
 629   return result;
 630 }
 631 
 632 union jlong_accessor {
 633   jint  words[2];
 634   jlong long_value;
 635 };
 636 
 637 void basic_types_init(); // cannot define here; uses assert
 638 
 639 
 640 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 641 enum BasicType {
 642   T_BOOLEAN     =  4,
 643   T_CHAR        =  5,
 644   T_FLOAT       =  6,
 645   T_DOUBLE      =  7,
 646   T_BYTE        =  8,
 647   T_SHORT       =  9,
 648   T_INT         = 10,
 649   T_LONG        = 11,
 650   T_OBJECT      = 12,
 651   T_ARRAY       = 13,
 652   T_VOID        = 14,
 653   T_ADDRESS     = 15,
 654   T_NARROWOOP   = 16,
 655   T_METADATA    = 17,
 656   T_NARROWKLASS = 18,
 657   T_CONFLICT    = 19, // for stack value type with conflicting contents
 658   T_ILLEGAL     = 99
 659 };
 660 
 661 inline bool is_java_primitive(BasicType t) {
 662   return T_BOOLEAN <= t && t <= T_LONG;
 663 }
 664 
 665 inline bool is_subword_type(BasicType t) {
 666   // these guys are processed exactly like T_INT in calling sequences:
 667   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 668 }
 669 
 670 inline bool is_signed_subword_type(BasicType t) {
 671   return (t == T_BYTE || t == T_SHORT);
 672 }
 673 
 674 inline bool is_reference_type(BasicType t) {
 675   return (t == T_OBJECT || t == T_ARRAY);
 676 }
 677 
 678 // Convert a char from a classfile signature to a BasicType
 679 inline BasicType char2type(char c) {
 680   switch( c ) {
 681   case 'B': return T_BYTE;
 682   case 'C': return T_CHAR;
 683   case 'D': return T_DOUBLE;
 684   case 'F': return T_FLOAT;
 685   case 'I': return T_INT;
 686   case 'J': return T_LONG;
 687   case 'S': return T_SHORT;
 688   case 'Z': return T_BOOLEAN;
 689   case 'V': return T_VOID;
 690   case 'L': return T_OBJECT;
 691   case '[': return T_ARRAY;
 692   }
 693   return T_ILLEGAL;
 694 }
 695 
 696 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 697 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 698 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 699 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 700 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 701 extern BasicType name2type(const char* name);
 702 
 703 // Auxilary math routines
 704 // least common multiple
 705 extern size_t lcm(size_t a, size_t b);
 706 
 707 
 708 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 709 enum BasicTypeSize {
 710   T_BOOLEAN_size     = 1,
 711   T_CHAR_size        = 1,
 712   T_FLOAT_size       = 1,
 713   T_DOUBLE_size      = 2,
 714   T_BYTE_size        = 1,
 715   T_SHORT_size       = 1,
 716   T_INT_size         = 1,
 717   T_LONG_size        = 2,
 718   T_OBJECT_size      = 1,
 719   T_ARRAY_size       = 1,
 720   T_NARROWOOP_size   = 1,
 721   T_NARROWKLASS_size = 1,
 722   T_VOID_size        = 0
 723 };
 724 
 725 
 726 // maps a BasicType to its instance field storage type:
 727 // all sub-word integral types are widened to T_INT
 728 extern BasicType type2field[T_CONFLICT+1];
 729 extern BasicType type2wfield[T_CONFLICT+1];
 730 
 731 
 732 // size in bytes
 733 enum ArrayElementSize {
 734   T_BOOLEAN_aelem_bytes     = 1,
 735   T_CHAR_aelem_bytes        = 2,
 736   T_FLOAT_aelem_bytes       = 4,
 737   T_DOUBLE_aelem_bytes      = 8,
 738   T_BYTE_aelem_bytes        = 1,
 739   T_SHORT_aelem_bytes       = 2,
 740   T_INT_aelem_bytes         = 4,
 741   T_LONG_aelem_bytes        = 8,
 742 #ifdef _LP64
 743   T_OBJECT_aelem_bytes      = 8,
 744   T_ARRAY_aelem_bytes       = 8,
 745 #else
 746   T_OBJECT_aelem_bytes      = 4,
 747   T_ARRAY_aelem_bytes       = 4,
 748 #endif
 749   T_NARROWOOP_aelem_bytes   = 4,
 750   T_NARROWKLASS_aelem_bytes = 4,
 751   T_VOID_aelem_bytes        = 0
 752 };
 753 
 754 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 755 #ifdef ASSERT
 756 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 757 #else
 758 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 759 #endif
 760 
 761 
 762 // JavaValue serves as a container for arbitrary Java values.
 763 
 764 class JavaValue {
 765 
 766  public:
 767   typedef union JavaCallValue {
 768     jfloat   f;
 769     jdouble  d;
 770     jint     i;
 771     jlong    l;
 772     jobject  h;
 773   } JavaCallValue;
 774 
 775  private:
 776   BasicType _type;
 777   JavaCallValue _value;
 778 
 779  public:
 780   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 781 
 782   JavaValue(jfloat value) {
 783     _type    = T_FLOAT;
 784     _value.f = value;
 785   }
 786 
 787   JavaValue(jdouble value) {
 788     _type    = T_DOUBLE;
 789     _value.d = value;
 790   }
 791 
 792  jfloat get_jfloat() const { return _value.f; }
 793  jdouble get_jdouble() const { return _value.d; }
 794  jint get_jint() const { return _value.i; }
 795  jlong get_jlong() const { return _value.l; }
 796  jobject get_jobject() const { return _value.h; }
 797  JavaCallValue* get_value_addr() { return &_value; }
 798  BasicType get_type() const { return _type; }
 799 
 800  void set_jfloat(jfloat f) { _value.f = f;}
 801  void set_jdouble(jdouble d) { _value.d = d;}
 802  void set_jint(jint i) { _value.i = i;}
 803  void set_jlong(jlong l) { _value.l = l;}
 804  void set_jobject(jobject h) { _value.h = h;}
 805  void set_type(BasicType t) { _type = t; }
 806 
 807  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 808  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 809  jchar get_jchar() const { return (jchar) (_value.i);}
 810  jshort get_jshort() const { return (jshort) (_value.i);}
 811 
 812 };
 813 
 814 
 815 #define STACK_BIAS      0
 816 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
 817 // in order to extend the reach of the stack pointer.
 818 #if defined(SPARC) && defined(_LP64)
 819 #undef STACK_BIAS
 820 #define STACK_BIAS      0x7ff
 821 #endif
 822 
 823 
 824 // TosState describes the top-of-stack state before and after the execution of
 825 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 826 // registers. The TosState corresponds to the 'machine represention' of this cached
 827 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 828 // as well as a 5th state in case the top-of-stack value is actually on the top
 829 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 830 // state when it comes to machine representation but is used separately for (oop)
 831 // type specific operations (e.g. verification code).
 832 
 833 enum TosState {         // describes the tos cache contents
 834   btos = 0,             // byte, bool tos cached
 835   ztos = 1,             // byte, bool tos cached
 836   ctos = 2,             // char tos cached
 837   stos = 3,             // short tos cached
 838   itos = 4,             // int tos cached
 839   ltos = 5,             // long tos cached
 840   ftos = 6,             // float tos cached
 841   dtos = 7,             // double tos cached
 842   atos = 8,             // object cached
 843   vtos = 9,             // tos not cached
 844   number_of_states,
 845   ilgl                  // illegal state: should not occur
 846 };
 847 
 848 
 849 inline TosState as_TosState(BasicType type) {
 850   switch (type) {
 851     case T_BYTE   : return btos;
 852     case T_BOOLEAN: return ztos;
 853     case T_CHAR   : return ctos;
 854     case T_SHORT  : return stos;
 855     case T_INT    : return itos;
 856     case T_LONG   : return ltos;
 857     case T_FLOAT  : return ftos;
 858     case T_DOUBLE : return dtos;
 859     case T_VOID   : return vtos;
 860     case T_ARRAY  : // fall through
 861     case T_OBJECT : return atos;
 862   }
 863   return ilgl;
 864 }
 865 
 866 inline BasicType as_BasicType(TosState state) {
 867   switch (state) {
 868     case btos : return T_BYTE;
 869     case ztos : return T_BOOLEAN;
 870     case ctos : return T_CHAR;
 871     case stos : return T_SHORT;
 872     case itos : return T_INT;
 873     case ltos : return T_LONG;
 874     case ftos : return T_FLOAT;
 875     case dtos : return T_DOUBLE;
 876     case atos : return T_OBJECT;
 877     case vtos : return T_VOID;
 878   }
 879   return T_ILLEGAL;
 880 }
 881 
 882 
 883 // Helper function to convert BasicType info into TosState
 884 // Note: Cannot define here as it uses global constant at the time being.
 885 TosState as_TosState(BasicType type);
 886 
 887 
 888 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 889 // information is needed by the safepoint code.
 890 //
 891 // There are 4 essential states:
 892 //
 893 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 894 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 895 //  _thread_in_vm       : Executing in the vm
 896 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 897 //
 898 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 899 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 900 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 901 //
 902 // Given a state, the xxx_trans state can always be found by adding 1.
 903 //
 904 enum JavaThreadState {
 905   _thread_uninitialized     =  0, // should never happen (missing initialization)
 906   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 907   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 908   _thread_in_native         =  4, // running in native code
 909   _thread_in_native_trans   =  5, // corresponding transition state
 910   _thread_in_vm             =  6, // running in VM
 911   _thread_in_vm_trans       =  7, // corresponding transition state
 912   _thread_in_Java           =  8, // running in Java or in stub code
 913   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 914   _thread_blocked           = 10, // blocked in vm
 915   _thread_blocked_trans     = 11, // corresponding transition state
 916   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 917 };
 918 
 919 
 920 // Handy constants for deciding which compiler mode to use.
 921 enum MethodCompilation {
 922   InvocationEntryBci = -1,     // i.e., not a on-stack replacement compilation
 923   InvalidOSREntryBci = -2
 924 };
 925 
 926 // Enumeration to distinguish tiers of compilation
 927 enum CompLevel {
 928   CompLevel_any               = -1,
 929   CompLevel_all               = -1,
 930   CompLevel_none              = 0,         // Interpreter
 931   CompLevel_simple            = 1,         // C1
 932   CompLevel_limited_profile   = 2,         // C1, invocation & backedge counters
 933   CompLevel_full_profile      = 3,         // C1, invocation & backedge counters + mdo
 934   CompLevel_full_optimization = 4,         // C2 or Shark
 935 
 936 #if defined(COMPILER2) || defined(SHARK)
 937   CompLevel_highest_tier      = CompLevel_full_optimization,  // pure C2 and tiered
 938 #elif defined(COMPILER1)
 939   CompLevel_highest_tier      = CompLevel_simple,             // pure C1
 940 #else
 941   CompLevel_highest_tier      = CompLevel_none,
 942 #endif
 943 
 944 #if defined(TIERED)
 945   CompLevel_initial_compile   = CompLevel_full_profile        // tiered
 946 #elif defined(COMPILER1)
 947   CompLevel_initial_compile   = CompLevel_simple              // pure C1
 948 #elif defined(COMPILER2) || defined(SHARK)
 949   CompLevel_initial_compile   = CompLevel_full_optimization   // pure C2
 950 #else
 951   CompLevel_initial_compile   = CompLevel_none
 952 #endif
 953 };
 954 
 955 inline bool is_c1_compile(int comp_level) {
 956   return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
 957 }
 958 
 959 inline bool is_c2_compile(int comp_level) {
 960   return comp_level == CompLevel_full_optimization;
 961 }
 962 
 963 inline bool is_highest_tier_compile(int comp_level) {
 964   return comp_level == CompLevel_highest_tier;
 965 }
 966 
 967 inline bool is_compile(int comp_level) {
 968   return is_c1_compile(comp_level) || is_c2_compile(comp_level);
 969 }
 970 
 971 //----------------------------------------------------------------------------------------------------
 972 // 'Forward' declarations of frequently used classes
 973 // (in order to reduce interface dependencies & reduce
 974 // number of unnecessary compilations after changes)
 975 
 976 class symbolTable;
 977 class ClassFileStream;
 978 
 979 class Event;
 980 
 981 class Thread;
 982 class  VMThread;
 983 class  JavaThread;
 984 class Threads;
 985 
 986 class VM_Operation;
 987 class VMOperationQueue;
 988 
 989 class CodeBlob;
 990 class  nmethod;
 991 class  OSRAdapter;
 992 class  I2CAdapter;
 993 class  C2IAdapter;
 994 class CompiledIC;
 995 class relocInfo;
 996 class ScopeDesc;
 997 class PcDesc;
 998 
 999 class Recompiler;
1000 class Recompilee;
1001 class RecompilationPolicy;
1002 class RFrame;
1003 class  CompiledRFrame;
1004 class  InterpretedRFrame;
1005 
1006 class frame;
1007 
1008 class vframe;
1009 class   javaVFrame;
1010 class     interpretedVFrame;
1011 class     compiledVFrame;
1012 class     deoptimizedVFrame;
1013 class   externalVFrame;
1014 class     entryVFrame;
1015 
1016 class RegisterMap;
1017 
1018 class Mutex;
1019 class Monitor;
1020 class BasicLock;
1021 class BasicObjectLock;
1022 
1023 class PeriodicTask;
1024 
1025 class JavaCallWrapper;
1026 
1027 class   oopDesc;
1028 class   metaDataOopDesc;
1029 
1030 class NativeCall;
1031 
1032 class zone;
1033 
1034 class StubQueue;
1035 
1036 class outputStream;
1037 
1038 class ResourceArea;
1039 
1040 class DebugInformationRecorder;
1041 class ScopeValue;
1042 class CompressedStream;
1043 class   DebugInfoReadStream;
1044 class   DebugInfoWriteStream;
1045 class LocationValue;
1046 class ConstantValue;
1047 class IllegalValue;
1048 
1049 class PrivilegedElement;
1050 class MonitorArray;
1051 
1052 class MonitorInfo;
1053 
1054 class OffsetClosure;
1055 class OopMapCache;
1056 class InterpreterOopMap;
1057 class OopMapCacheEntry;
1058 class OSThread;
1059 
1060 typedef int (*OSThreadStartFunc)(void*);
1061 
1062 class Space;
1063 
1064 class JavaValue;
1065 class methodHandle;
1066 class JavaCallArguments;
1067 
1068 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
1069 
1070 extern void basic_fatal(const char* msg);
1071 
1072 
1073 //----------------------------------------------------------------------------------------------------
1074 // Special constants for debugging
1075 
1076 const jint     badInt           = -3;                       // generic "bad int" value
1077 const intptr_t badAddressVal    = -2;                       // generic "bad address" value
1078 const intptr_t badOopVal        = -1;                       // generic "bad oop" value
1079 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
1080 const int      badStackSegVal   = 0xCA;                     // value used to zap stack segments
1081 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
1082 const int      badResourceValue = 0xAB;                     // value used to zap resource area
1083 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
1084 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
1085 const intptr_t badJNIHandleVal  = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
1086 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
1087 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
1088 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
1089 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
1090 
1091 
1092 // (These must be implemented as #defines because C++ compilers are
1093 // not obligated to inline non-integral constants!)
1094 #define       badAddress        ((address)::badAddressVal)
1095 #define       badOop            (cast_to_oop(::badOopVal))
1096 #define       badHeapWord       (::badHeapWordVal)
1097 #define       badJNIHandle      (cast_to_oop(::badJNIHandleVal))
1098 
1099 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
1100 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
1101 
1102 //----------------------------------------------------------------------------------------------------
1103 // Utility functions for bitfield manipulations
1104 
1105 const intptr_t AllBits    = ~0; // all bits set in a word
1106 const intptr_t NoBits     =  0; // no bits set in a word
1107 const jlong    NoLongBits =  0; // no bits set in a long
1108 const intptr_t OneBit     =  1; // only right_most bit set in a word
1109 
1110 // get a word with the n.th or the right-most or left-most n bits set
1111 // (note: #define used only so that they can be used in enum constant definitions)
1112 #define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
1113 #define right_n_bits(n)   (nth_bit(n) - 1)
1114 #define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
1115 
1116 // bit-operations using a mask m
1117 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
1118 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
1119 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
1120 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
1121 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
1122 
1123 // bit-operations using the n.th bit
1124 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
1125 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
1126 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
1127 
1128 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
1129 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
1130   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
1131 }
1132 
1133 
1134 //----------------------------------------------------------------------------------------------------
1135 // Utility functions for integers
1136 
1137 // Avoid use of global min/max macros which may cause unwanted double
1138 // evaluation of arguments.
1139 #ifdef max
1140 #undef max
1141 #endif
1142 
1143 #ifdef min
1144 #undef min
1145 #endif
1146 
1147 #define max(a,b) Do_not_use_max_use_MAX2_instead
1148 #define min(a,b) Do_not_use_min_use_MIN2_instead
1149 
1150 // It is necessary to use templates here. Having normal overloaded
1151 // functions does not work because it is necessary to provide both 32-
1152 // and 64-bit overloaded functions, which does not work, and having
1153 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1154 // will be even more error-prone than macros.
1155 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
1156 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
1157 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1158 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1159 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1160 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1161 
1162 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
1163 
1164 // true if x is a power of 2, false otherwise
1165 inline bool is_power_of_2(intptr_t x) {
1166   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
1167 }
1168 
1169 // long version of is_power_of_2
1170 inline bool is_power_of_2_long(jlong x) {
1171   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
1172 }
1173 
1174 //* largest i such that 2^i <= x
1175 //  A negative value of 'x' will return '31'
1176 inline int log2_intptr(uintptr_t x) {
1177   int i = -1;
1178   uintptr_t p =  1;
1179   while (p != 0 && p <= x) {
1180     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1181     i++; p *= 2;
1182   }
1183   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1184   // (if p = 0 then overflow occurred and i = 31)
1185   return i;
1186 }
1187 
1188 //* largest i such that 2^i <= x
1189 inline int log2_long(julong x) {
1190   int i = -1;
1191   julong p =  1;
1192   while (p != 0 && p <= x) {
1193     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1194     i++; p *= 2;
1195   }
1196   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1197   // (if p = 0 then overflow occurred and i = 63)
1198   return i;
1199 }
1200 
1201 inline int log2_intptr(intptr_t x) {
1202   return log2_intptr((uintptr_t)x);
1203 }
1204 
1205 inline int log2_int(int x) {
1206   return log2_intptr((uintptr_t)x);
1207 }
1208 
1209 inline int log2_jint(jint x) {
1210   return log2_intptr((uintptr_t)x);
1211 }
1212 
1213 inline int log2_uint(uint x) {
1214   return log2_intptr((uintptr_t)x);
1215 }
1216 
1217 //  A negative value of 'x' will return '63'
1218 inline int log2_jlong(jlong x) {
1219   return log2_long((julong)x);
1220 }
1221 
1222 //* the argument must be exactly a power of 2
1223 inline int exact_log2(intptr_t x) {
1224   #ifdef ASSERT
1225     if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
1226   #endif
1227   return log2_intptr(x);
1228 }
1229 
1230 //* the argument must be exactly a power of 2
1231 inline int exact_log2_long(jlong x) {
1232   #ifdef ASSERT
1233     if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
1234   #endif
1235   return log2_long(x);
1236 }
1237 
1238 
1239 // returns integer round-up to the nearest multiple of s (s must be a power of two)
1240 inline intptr_t round_to(intptr_t x, uintx s) {
1241   #ifdef ASSERT
1242     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1243   #endif
1244   const uintx m = s - 1;
1245   return mask_bits(x + m, ~m);
1246 }
1247 
1248 // returns integer round-down to the nearest multiple of s (s must be a power of two)
1249 inline intptr_t round_down(intptr_t x, uintx s) {
1250   #ifdef ASSERT
1251     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1252   #endif
1253   const uintx m = s - 1;
1254   return mask_bits(x, ~m);
1255 }
1256 
1257 
1258 inline bool is_odd (intx x) { return x & 1;      }
1259 inline bool is_even(intx x) { return !is_odd(x); }
1260 
1261 // abs methods which cannot overflow and so are well-defined across
1262 // the entire domain of integer types.
1263 static inline unsigned int uabs(unsigned int n) {
1264   union {
1265     unsigned int result;
1266     int value;
1267   };
1268   result = n;
1269   if (value < 0) result = 0-result;
1270   return result;
1271 }
1272 static inline julong uabs(julong n) {
1273   union {
1274     julong result;
1275     jlong value;
1276   };
1277   result = n;
1278   if (value < 0) result = 0-result;
1279   return result;
1280 }
1281 static inline julong uabs(jlong n) { return uabs((julong)n); }
1282 static inline unsigned int uabs(int n) { return uabs((unsigned int)n); }
1283 
1284 // "to" should be greater than "from."
1285 inline intx byte_size(void* from, void* to) {
1286   return (address)to - (address)from;
1287 }
1288 
1289 //----------------------------------------------------------------------------------------------------
1290 // Avoid non-portable casts with these routines (DEPRECATED)
1291 
1292 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1293 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1294 
1295 // Given sequence of four bytes, build into a 32-bit word
1296 // following the conventions used in class files.
1297 // On the 386, this could be realized with a simple address cast.
1298 //
1299 
1300 // This routine takes eight bytes:
1301 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1302   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1303        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1304        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1305        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1306        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1307        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1308        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1309        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1310 }
1311 
1312 // This routine takes four bytes:
1313 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1314   return  (( u4(c1) << 24 )  &  0xff000000)
1315        |  (( u4(c2) << 16 )  &  0x00ff0000)
1316        |  (( u4(c3) <<  8 )  &  0x0000ff00)
1317        |  (( u4(c4) <<  0 )  &  0x000000ff);
1318 }
1319 
1320 // And this one works if the four bytes are contiguous in memory:
1321 inline u4 build_u4_from( u1* p ) {
1322   return  build_u4_from( p[0], p[1], p[2], p[3] );
1323 }
1324 
1325 // Ditto for two-byte ints:
1326 inline u2 build_u2_from( u1 c1, u1 c2 ) {
1327   return  u2((( u2(c1) <<  8 )  &  0xff00)
1328           |  (( u2(c2) <<  0 )  &  0x00ff));
1329 }
1330 
1331 // And this one works if the two bytes are contiguous in memory:
1332 inline u2 build_u2_from( u1* p ) {
1333   return  build_u2_from( p[0], p[1] );
1334 }
1335 
1336 // Ditto for floats:
1337 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1338   u4 u = build_u4_from( c1, c2, c3, c4 );
1339   return  *(jfloat*)&u;
1340 }
1341 
1342 inline jfloat build_float_from( u1* p ) {
1343   u4 u = build_u4_from( p );
1344   return  *(jfloat*)&u;
1345 }
1346 
1347 
1348 // now (64-bit) longs
1349 
1350 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1351   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1352        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1353        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1354        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1355        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1356        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1357        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1358        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1359 }
1360 
1361 inline jlong build_long_from( u1* p ) {
1362   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1363 }
1364 
1365 
1366 // Doubles, too!
1367 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1368   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1369   return  *(jdouble*)&u;
1370 }
1371 
1372 inline jdouble build_double_from( u1* p ) {
1373   jlong u = build_long_from( p );
1374   return  *(jdouble*)&u;
1375 }
1376 
1377 
1378 // Portable routines to go the other way:
1379 
1380 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1381   c1 = u1(x >> 8);
1382   c2 = u1(x);
1383 }
1384 
1385 inline void explode_short_to( u2 x, u1* p ) {
1386   explode_short_to( x, p[0], p[1]);
1387 }
1388 
1389 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1390   c1 = u1(x >> 24);
1391   c2 = u1(x >> 16);
1392   c3 = u1(x >>  8);
1393   c4 = u1(x);
1394 }
1395 
1396 inline void explode_int_to( u4 x, u1* p ) {
1397   explode_int_to( x, p[0], p[1], p[2], p[3]);
1398 }
1399 
1400 
1401 // Pack and extract shorts to/from ints:
1402 
1403 inline int extract_low_short_from_int(jint x) {
1404   return x & 0xffff;
1405 }
1406 
1407 inline int extract_high_short_from_int(jint x) {
1408   return (x >> 16) & 0xffff;
1409 }
1410 
1411 inline int build_int_from_shorts( jushort low, jushort high ) {
1412   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1413 }
1414 
1415 // Convert pointer to intptr_t, for use in printing pointers.
1416 inline intptr_t p2i(const void * p) {
1417   return (intptr_t) p;
1418 }
1419 
1420 // Printf-style formatters for fixed- and variable-width types as pointers and
1421 // integers.  These are derived from the definitions in inttypes.h.  If the platform
1422 // doesn't provide appropriate definitions, they should be provided in
1423 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
1424 
1425 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
1426 
1427 // Format 32-bit quantities.
1428 #define INT32_FORMAT           "%" PRId32
1429 #define UINT32_FORMAT          "%" PRIu32
1430 #define INT32_FORMAT_W(width)  "%" #width PRId32
1431 #define UINT32_FORMAT_W(width) "%" #width PRIu32
1432 
1433 #define PTR32_FORMAT           "0x%08" PRIx32
1434 
1435 // Format 64-bit quantities.
1436 #define INT64_FORMAT           "%" PRId64
1437 #define UINT64_FORMAT          "%" PRIu64
1438 #define UINT64_FORMAT_X        "%" PRIx64
1439 #define INT64_FORMAT_W(width)  "%" #width PRId64
1440 #define UINT64_FORMAT_W(width) "%" #width PRIu64
1441 #define UINT64_FORMAT_X_W(width) "%" #width PRIx64
1442 
1443 #define PTR64_FORMAT           "0x%016" PRIx64
1444 
1445 // Format jlong, if necessary
1446 #ifndef JLONG_FORMAT
1447 #define JLONG_FORMAT           INT64_FORMAT
1448 #endif
1449 #ifndef JULONG_FORMAT
1450 #define JULONG_FORMAT          UINT64_FORMAT
1451 #endif
1452 
1453 // Format pointers which change size between 32- and 64-bit.
1454 #ifdef  _LP64
1455 #define INTPTR_FORMAT "0x%016" PRIxPTR
1456 #define PTR_FORMAT    "0x%016" PRIxPTR
1457 #else   // !_LP64
1458 #define INTPTR_FORMAT "0x%08"  PRIxPTR
1459 #define PTR_FORMAT    "0x%08"  PRIxPTR
1460 #endif  // _LP64
1461 
1462 #define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
1463 
1464 #define SSIZE_FORMAT          "%"   PRIdPTR
1465 #define SIZE_FORMAT           "%"   PRIuPTR
1466 #define SIZE_FORMAT_HEX       "0x%" PRIxPTR
1467 #define SSIZE_FORMAT_W(width) "%"   #width PRIdPTR
1468 #define SIZE_FORMAT_W(width)  "%"   #width PRIuPTR
1469 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
1470 
1471 #define INTX_FORMAT           "%" PRIdPTR
1472 #define UINTX_FORMAT          "%" PRIuPTR
1473 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
1474 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
1475 
1476 
1477 // Enable zap-a-lot if in debug version.
1478 
1479 # ifdef ASSERT
1480 # ifdef COMPILER2
1481 #   define ENABLE_ZAP_DEAD_LOCALS
1482 #endif /* COMPILER2 */
1483 # endif /* ASSERT */
1484 
1485 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1486 
1487 //----------------------------------------------------------------------------------------------------
1488 // Sum and product which can never overflow: they wrap, just like the
1489 // Java operations.  Note that we don't intend these to be used for
1490 // general-purpose arithmetic: their purpose is to emulate Java
1491 // operations.
1492 
1493 // The goal of this code to avoid undefined or implementation-defined
1494 // behaviour.  The use of an lvalue to reference cast is explicitly
1495 // permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
1496 // 15 in C++03]
1497 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
1498 inline TYPE NAME (TYPE in1, TYPE in2) {                 \
1499   UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
1500   ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
1501   return reinterpret_cast<TYPE&>(ures);                 \
1502 }
1503 
1504 JAVA_INTEGER_OP(+, java_add, jint, juint)
1505 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
1506 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
1507 JAVA_INTEGER_OP(+, java_add, jlong, julong)
1508 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
1509 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
1510 
1511 #undef JAVA_INTEGER_OP
1512 
1513 // Dereference vptr
1514 // All C++ compilers that we know of have the vtbl pointer in the first
1515 // word.  If there are exceptions, this function needs to be made compiler
1516 // specific.
1517 static inline void* dereference_vptr(const void* addr) {
1518   return *(void**)addr;
1519 }
1520 
1521 #ifndef PRODUCT
1522 
1523 // For unit testing only
1524 class GlobalDefinitions {
1525 public:
1526   static void test_globals();
1527   static void test_proper_unit();
1528 };
1529 
1530 #endif // PRODUCT
1531 
1532 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP