1 /* 2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP 26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP 27 28 #ifndef __STDC_FORMAT_MACROS 29 #define __STDC_FORMAT_MACROS 30 #endif 31 32 // Needed for INT64_C and UINT64_C with ISO C99 libraries (see JDK-8272214) 33 #ifndef __STDC_CONSTANT_MACROS 34 #define __STDC_CONSTANT_MACROS 35 #endif 36 37 #ifdef TARGET_COMPILER_gcc 38 # include "utilities/globalDefinitions_gcc.hpp" 39 #endif 40 #ifdef TARGET_COMPILER_visCPP 41 # include "utilities/globalDefinitions_visCPP.hpp" 42 #endif 43 #ifdef TARGET_COMPILER_sparcWorks 44 # include "utilities/globalDefinitions_sparcWorks.hpp" 45 #endif 46 #ifdef TARGET_COMPILER_xlc 47 # include "utilities/globalDefinitions_xlc.hpp" 48 #endif 49 50 // Defaults for macros that might be defined per compiler. 51 #ifndef NOINLINE 52 #define NOINLINE 53 #endif 54 #ifndef ALWAYSINLINE 55 #define ALWAYSINLINE inline 56 #endif 57 58 #ifndef PRAGMA_DIAG_PUSH 59 #define PRAGMA_DIAG_PUSH 60 #endif 61 #ifndef PRAGMA_DIAG_POP 62 #define PRAGMA_DIAG_POP 63 #endif 64 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED 65 #define PRAGMA_FORMAT_NONLITERAL_IGNORED 66 #endif 67 #ifndef PRAGMA_FORMAT_IGNORED 68 #define PRAGMA_FORMAT_IGNORED 69 #endif 70 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL 71 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL 72 #endif 73 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL 74 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL 75 #endif 76 #ifndef PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC 77 #define PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC 78 #endif 79 #ifndef ATTRIBUTE_PRINTF 80 #define ATTRIBUTE_PRINTF(fmt, vargs) 81 #endif 82 83 84 #include "utilities/macros.hpp" 85 86 // This file holds all globally used constants & types, class (forward) 87 // declarations and a few frequently used utility functions. 88 89 //---------------------------------------------------------------------------------------------------- 90 // Constants 91 92 const int LogBytesPerShort = 1; 93 const int LogBytesPerInt = 2; 94 #ifdef _LP64 95 const int LogBytesPerWord = 3; 96 #else 97 const int LogBytesPerWord = 2; 98 #endif 99 const int LogBytesPerLong = 3; 100 101 const int BytesPerShort = 1 << LogBytesPerShort; 102 const int BytesPerInt = 1 << LogBytesPerInt; 103 const int BytesPerWord = 1 << LogBytesPerWord; 104 const int BytesPerLong = 1 << LogBytesPerLong; 105 106 const int LogBitsPerByte = 3; 107 const int LogBitsPerShort = LogBitsPerByte + LogBytesPerShort; 108 const int LogBitsPerInt = LogBitsPerByte + LogBytesPerInt; 109 const int LogBitsPerWord = LogBitsPerByte + LogBytesPerWord; 110 const int LogBitsPerLong = LogBitsPerByte + LogBytesPerLong; 111 112 const int BitsPerByte = 1 << LogBitsPerByte; 113 const int BitsPerShort = 1 << LogBitsPerShort; 114 const int BitsPerInt = 1 << LogBitsPerInt; 115 const int BitsPerWord = 1 << LogBitsPerWord; 116 const int BitsPerLong = 1 << LogBitsPerLong; 117 118 const int WordAlignmentMask = (1 << LogBytesPerWord) - 1; 119 const int LongAlignmentMask = (1 << LogBytesPerLong) - 1; 120 121 const int WordsPerLong = 2; // Number of stack entries for longs 122 123 const int oopSize = sizeof(char*); // Full-width oop 124 extern int heapOopSize; // Oop within a java object 125 const int wordSize = sizeof(char*); 126 const int longSize = sizeof(jlong); 127 const int jintSize = sizeof(jint); 128 const int size_tSize = sizeof(size_t); 129 130 const int BytesPerOop = BytesPerWord; // Full-width oop 131 132 extern int LogBytesPerHeapOop; // Oop within a java object 133 extern int LogBitsPerHeapOop; 134 extern int BytesPerHeapOop; 135 extern int BitsPerHeapOop; 136 137 // Oop encoding heap max 138 extern uint64_t OopEncodingHeapMax; 139 140 const int BitsPerJavaInteger = 32; 141 const int BitsPerJavaLong = 64; 142 const int BitsPerSize_t = size_tSize * BitsPerByte; 143 144 // Size of a char[] needed to represent a jint as a string in decimal. 145 const int jintAsStringSize = 12; 146 147 // In fact this should be 148 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64); 149 // see os::set_memory_serialize_page() 150 #ifdef _LP64 151 const int SerializePageShiftCount = 4; 152 #else 153 #if INCLUDE_JFR && INCLUDE_ALL_GCS 154 // JavaThread already has quite a few Shenandoah fields. Adding many JFR fields 155 // trips sizeof(JavaThread) > 1024. Need to adjust it here. 156 const int SerializePageShiftCount = 4; 157 #else 158 const int SerializePageShiftCount = 3; 159 #endif 160 #endif 161 162 // An opaque struct of heap-word width, so that HeapWord* can be a generic 163 // pointer into the heap. We require that object sizes be measured in 164 // units of heap words, so that that 165 // HeapWord* hw; 166 // hw += oop(hw)->foo(); 167 // works, where foo is a method (like size or scavenge) that returns the 168 // object size. 169 class HeapWord { 170 friend class VMStructs; 171 private: 172 char* i; 173 #ifndef PRODUCT 174 public: 175 char* value() { return i; } 176 #endif 177 }; 178 179 // Analogous opaque struct for metadata allocated from 180 // metaspaces. 181 class MetaWord { 182 friend class VMStructs; 183 private: 184 char* i; 185 }; 186 187 // HeapWordSize must be 2^LogHeapWordSize. 188 const int HeapWordSize = sizeof(HeapWord); 189 #ifdef _LP64 190 const int LogHeapWordSize = 3; 191 #else 192 const int LogHeapWordSize = 2; 193 #endif 194 const int HeapWordsPerLong = BytesPerLong / HeapWordSize; 195 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize; 196 197 // The larger HeapWordSize for 64bit requires larger heaps 198 // for the same application running in 64bit. See bug 4967770. 199 // The minimum alignment to a heap word size is done. Other 200 // parts of the memory system may required additional alignment 201 // and are responsible for those alignments. 202 #ifdef _LP64 203 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize) 204 #else 205 #define ScaleForWordSize(x) (x) 206 #endif 207 208 // The minimum number of native machine words necessary to contain "byte_size" 209 // bytes. 210 inline size_t heap_word_size(size_t byte_size) { 211 return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize; 212 } 213 214 215 const size_t K = 1024; 216 const size_t M = K*K; 217 const size_t G = M*K; 218 const size_t HWperKB = K / sizeof(HeapWord); 219 220 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint 221 const jint max_jint = (juint)min_jint - 1; // 0x7FFFFFFF == largest jint 222 223 // Constants for converting from a base unit to milli-base units. For 224 // example from seconds to milliseconds and microseconds 225 226 const int MILLIUNITS = 1000; // milli units per base unit 227 const int MICROUNITS = 1000000; // micro units per base unit 228 const int NANOUNITS = 1000000000; // nano units per base unit 229 230 const jlong NANOSECS_PER_SEC = CONST64(1000000000); 231 const jint NANOSECS_PER_MILLISEC = 1000000; 232 233 // Proper units routines try to maintain at least three significant digits. 234 // In worst case, it would print five significant digits with lower prefix. 235 // G is close to MAX_SIZE on 32-bit platforms, so its product can easily overflow, 236 // and therefore we need to be careful. 237 238 inline const char* proper_unit_for_byte_size(size_t s) { 239 #ifdef _LP64 240 if (s >= 100*G) { 241 return "G"; 242 } 243 #endif 244 if (s >= 100*M) { 245 return "M"; 246 } else if (s >= 100*K) { 247 return "K"; 248 } else { 249 return "B"; 250 } 251 } 252 253 template <class T> 254 inline T byte_size_in_proper_unit(T s) { 255 #ifdef _LP64 256 if (s >= 100*G) { 257 return (T)(s/G); 258 } 259 #endif 260 if (s >= 100*M) { 261 return (T)(s/M); 262 } else if (s >= 100*K) { 263 return (T)(s/K); 264 } else { 265 return s; 266 } 267 } 268 269 //---------------------------------------------------------------------------------------------------- 270 // VM type definitions 271 272 // intx and uintx are the 'extended' int and 'extended' unsigned int types; 273 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform. 274 275 typedef intptr_t intx; 276 typedef uintptr_t uintx; 277 278 const intx min_intx = (intx)1 << (sizeof(intx)*BitsPerByte-1); 279 const intx max_intx = (uintx)min_intx - 1; 280 const uintx max_uintx = (uintx)-1; 281 282 // Table of values: 283 // sizeof intx 4 8 284 // min_intx 0x80000000 0x8000000000000000 285 // max_intx 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF 286 // max_uintx 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF 287 288 typedef unsigned int uint; NEEDS_CLEANUP 289 290 291 //---------------------------------------------------------------------------------------------------- 292 // Java type definitions 293 294 // All kinds of 'plain' byte addresses 295 typedef signed char s_char; 296 typedef unsigned char u_char; 297 typedef u_char* address; 298 typedef uintptr_t address_word; // unsigned integer which will hold a pointer 299 // except for some implementations of a C++ 300 // linkage pointer to function. Should never 301 // need one of those to be placed in this 302 // type anyway. 303 304 // Utility functions to "portably" (?) bit twiddle pointers 305 // Where portable means keep ANSI C++ compilers quiet 306 307 inline address set_address_bits(address x, int m) { return address(intptr_t(x) | m); } 308 inline address clear_address_bits(address x, int m) { return address(intptr_t(x) & ~m); } 309 310 // Utility functions to "portably" make cast to/from function pointers. 311 312 inline address_word mask_address_bits(address x, int m) { return address_word(x) & m; } 313 inline address_word castable_address(address x) { return address_word(x) ; } 314 inline address_word castable_address(void* x) { return address_word(x) ; } 315 316 // Pointer subtraction. 317 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have 318 // the range we might need to find differences from one end of the heap 319 // to the other. 320 // A typical use might be: 321 // if (pointer_delta(end(), top()) >= size) { 322 // // enough room for an object of size 323 // ... 324 // and then additions like 325 // ... top() + size ... 326 // are safe because we know that top() is at least size below end(). 327 inline size_t pointer_delta(const void* left, 328 const void* right, 329 size_t element_size) { 330 return (((uintptr_t) left) - ((uintptr_t) right)) / element_size; 331 } 332 // A version specialized for HeapWord*'s. 333 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) { 334 return pointer_delta(left, right, sizeof(HeapWord)); 335 } 336 // A version specialized for MetaWord*'s. 337 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) { 338 return pointer_delta(left, right, sizeof(MetaWord)); 339 } 340 341 // 342 // ANSI C++ does not allow casting from one pointer type to a function pointer 343 // directly without at best a warning. This macro accomplishes it silently 344 // In every case that is present at this point the value be cast is a pointer 345 // to a C linkage function. In somecase the type used for the cast reflects 346 // that linkage and a picky compiler would not complain. In other cases because 347 // there is no convenient place to place a typedef with extern C linkage (i.e 348 // a platform dependent header file) it doesn't. At this point no compiler seems 349 // picky enough to catch these instances (which are few). It is possible that 350 // using templates could fix these for all cases. This use of templates is likely 351 // so far from the middle of the road that it is likely to be problematic in 352 // many C++ compilers. 353 // 354 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value)) 355 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr))) 356 357 // Unsigned byte types for os and stream.hpp 358 359 // Unsigned one, two, four and eigth byte quantities used for describing 360 // the .class file format. See JVM book chapter 4. 361 362 typedef jubyte u1; 363 typedef jushort u2; 364 typedef juint u4; 365 typedef julong u8; 366 367 const jubyte max_jubyte = (jubyte)-1; // 0xFF largest jubyte 368 const jushort max_jushort = (jushort)-1; // 0xFFFF largest jushort 369 const juint max_juint = (juint)-1; // 0xFFFFFFFF largest juint 370 const julong max_julong = (julong)-1; // 0xFF....FF largest julong 371 372 typedef jbyte s1; 373 typedef jshort s2; 374 typedef jint s4; 375 typedef jlong s8; 376 377 //---------------------------------------------------------------------------------------------------- 378 // JVM spec restrictions 379 380 const int max_method_code_size = 64*K - 1; // JVM spec, 2nd ed. section 4.8.1 (p.134) 381 382 // Default ProtectionDomainCacheSize values 383 384 const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017); 385 386 //---------------------------------------------------------------------------------------------------- 387 // Default and minimum StringTableSize values 388 389 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013); 390 const int minimumStringTableSize = 1009; 391 392 const int defaultSymbolTableSize = 20011; 393 const int minimumSymbolTableSize = 1009; 394 395 396 //---------------------------------------------------------------------------------------------------- 397 // HotSwap - for JVMTI aka Class File Replacement and PopFrame 398 // 399 // Determines whether on-the-fly class replacement and frame popping are enabled. 400 401 #define HOTSWAP 402 403 //---------------------------------------------------------------------------------------------------- 404 // Object alignment, in units of HeapWords. 405 // 406 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and 407 // reference fields can be naturally aligned. 408 409 extern int MinObjAlignment; 410 extern int MinObjAlignmentInBytes; 411 extern int MinObjAlignmentInBytesMask; 412 413 extern int LogMinObjAlignment; 414 extern int LogMinObjAlignmentInBytes; 415 416 const int LogKlassAlignmentInBytes = 3; 417 const int LogKlassAlignment = LogKlassAlignmentInBytes - LogHeapWordSize; 418 const int KlassAlignmentInBytes = 1 << LogKlassAlignmentInBytes; 419 const int KlassAlignment = KlassAlignmentInBytes / HeapWordSize; 420 421 // Klass encoding metaspace max size 422 const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes; 423 424 // Machine dependent stuff 425 426 #if defined(X86) && defined(COMPILER2) && !defined(JAVASE_EMBEDDED) 427 // Include Restricted Transactional Memory lock eliding optimization 428 #define INCLUDE_RTM_OPT 1 429 #define RTM_OPT_ONLY(code) code 430 #else 431 #define INCLUDE_RTM_OPT 0 432 #define RTM_OPT_ONLY(code) 433 #endif 434 // States of Restricted Transactional Memory usage. 435 enum RTMState { 436 NoRTM = 0x2, // Don't use RTM 437 UseRTM = 0x1, // Use RTM 438 ProfileRTM = 0x0 // Use RTM with abort ratio calculation 439 }; 440 441 // The maximum size of the code cache. Can be overridden by targets. 442 #define CODE_CACHE_SIZE_LIMIT (2*G) 443 // Allow targets to reduce the default size of the code cache. 444 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT 445 446 #ifdef TARGET_ARCH_x86 447 # include "globalDefinitions_x86.hpp" 448 #endif 449 #ifdef TARGET_ARCH_aarch64 450 # include "globalDefinitions_aarch64.hpp" 451 #endif 452 #ifdef TARGET_ARCH_sparc 453 # include "globalDefinitions_sparc.hpp" 454 #endif 455 #ifdef TARGET_ARCH_zero 456 # include "globalDefinitions_zero.hpp" 457 #endif 458 #ifdef TARGET_ARCH_arm 459 # include "globalDefinitions_arm.hpp" 460 #endif 461 #ifdef TARGET_ARCH_ppc 462 # include "globalDefinitions_ppc.hpp" 463 #endif 464 465 /* 466 * If a platform does not support native stack walking 467 * the platform specific globalDefinitions (above) 468 * can set PLATFORM_NATIVE_STACK_WALKING_SUPPORTED to 0 469 */ 470 #ifndef PLATFORM_NATIVE_STACK_WALKING_SUPPORTED 471 #define PLATFORM_NATIVE_STACK_WALKING_SUPPORTED 1 472 #endif 473 474 // To assure the IRIW property on processors that are not multiple copy 475 // atomic, sync instructions must be issued between volatile reads to 476 // assure their ordering, instead of after volatile stores. 477 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models" 478 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge) 479 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC 480 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true; 481 #else 482 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false; 483 #endif 484 485 // The byte alignment to be used by Arena::Amalloc. See bugid 4169348. 486 // Note: this value must be a power of 2 487 488 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord) 489 490 // Signed variants of alignment helpers. There are two versions of each, a macro 491 // for use in places like enum definitions that require compile-time constant 492 // expressions and a function for all other places so as to get type checking. 493 494 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1)) 495 496 inline bool is_size_aligned(size_t size, size_t alignment) { 497 return align_size_up_(size, alignment) == size; 498 } 499 500 inline bool is_ptr_aligned(void* ptr, size_t alignment) { 501 return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr; 502 } 503 504 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) { 505 return align_size_up_(size, alignment); 506 } 507 508 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1)) 509 510 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) { 511 return align_size_down_(size, alignment); 512 } 513 514 #define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment))) 515 516 inline void* align_ptr_up(void* ptr, size_t alignment) { 517 return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment); 518 } 519 520 inline void* align_ptr_down(void* ptr, size_t alignment) { 521 return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment); 522 } 523 524 // Align objects by rounding up their size, in HeapWord units. 525 526 #define align_object_size_(size) align_size_up_(size, MinObjAlignment) 527 528 inline intptr_t align_object_size(intptr_t size) { 529 return align_size_up(size, MinObjAlignment); 530 } 531 532 inline bool is_object_aligned(intptr_t addr) { 533 return addr == align_object_size(addr); 534 } 535 536 // Pad out certain offsets to jlong alignment, in HeapWord units. 537 538 inline intptr_t align_object_offset(intptr_t offset) { 539 return align_size_up(offset, HeapWordsPerLong); 540 } 541 542 inline void* align_pointer_up(const void* addr, size_t size) { 543 return (void*) align_size_up_((uintptr_t)addr, size); 544 } 545 546 // Align down with a lower bound. If the aligning results in 0, return 'alignment'. 547 548 inline size_t align_size_down_bounded(size_t size, size_t alignment) { 549 size_t aligned_size = align_size_down_(size, alignment); 550 return aligned_size > 0 ? aligned_size : alignment; 551 } 552 553 // Clamp an address to be within a specific page 554 // 1. If addr is on the page it is returned as is 555 // 2. If addr is above the page_address the start of the *next* page will be returned 556 // 3. Otherwise, if addr is below the page_address the start of the page will be returned 557 inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) { 558 if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) { 559 // address is in the specified page, just return it as is 560 return addr; 561 } else if (addr > page_address) { 562 // address is above specified page, return start of next page 563 return (address)align_size_down(intptr_t(page_address), page_size) + page_size; 564 } else { 565 // address is below specified page, return start of page 566 return (address)align_size_down(intptr_t(page_address), page_size); 567 } 568 } 569 570 571 // The expected size in bytes of a cache line, used to pad data structures. 572 #define DEFAULT_CACHE_LINE_SIZE 64 573 574 575 //---------------------------------------------------------------------------------------------------- 576 // Utility macros for compilers 577 // used to silence compiler warnings 578 579 #define Unused_Variable(var) var 580 581 582 //---------------------------------------------------------------------------------------------------- 583 // Miscellaneous 584 585 // 6302670 Eliminate Hotspot __fabsf dependency 586 // All fabs() callers should call this function instead, which will implicitly 587 // convert the operand to double, avoiding a dependency on __fabsf which 588 // doesn't exist in early versions of Solaris 8. 589 inline double fabsd(double value) { 590 return fabs(value); 591 } 592 593 //---------------------------------------------------------------------------------------------------- 594 // Special casts 595 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern 596 typedef union { 597 jfloat f; 598 jint i; 599 } FloatIntConv; 600 601 typedef union { 602 jdouble d; 603 jlong l; 604 julong ul; 605 } DoubleLongConv; 606 607 inline jint jint_cast (jfloat x) { return ((FloatIntConv*)&x)->i; } 608 inline jfloat jfloat_cast (jint x) { return ((FloatIntConv*)&x)->f; } 609 610 inline jlong jlong_cast (jdouble x) { return ((DoubleLongConv*)&x)->l; } 611 inline julong julong_cast (jdouble x) { return ((DoubleLongConv*)&x)->ul; } 612 inline jdouble jdouble_cast (jlong x) { return ((DoubleLongConv*)&x)->d; } 613 614 inline jint low (jlong value) { return jint(value); } 615 inline jint high(jlong value) { return jint(value >> 32); } 616 617 // the fancy casts are a hopefully portable way 618 // to do unsigned 32 to 64 bit type conversion 619 inline void set_low (jlong* value, jint low ) { *value &= (jlong)0xffffffff << 32; 620 *value |= (jlong)(julong)(juint)low; } 621 622 inline void set_high(jlong* value, jint high) { *value &= (jlong)(julong)(juint)0xffffffff; 623 *value |= (jlong)high << 32; } 624 625 inline jlong jlong_from(jint h, jint l) { 626 jlong result = 0; // initialization to avoid warning 627 set_high(&result, h); 628 set_low(&result, l); 629 return result; 630 } 631 632 union jlong_accessor { 633 jint words[2]; 634 jlong long_value; 635 }; 636 637 void basic_types_init(); // cannot define here; uses assert 638 639 640 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java 641 enum BasicType { 642 T_BOOLEAN = 4, 643 T_CHAR = 5, 644 T_FLOAT = 6, 645 T_DOUBLE = 7, 646 T_BYTE = 8, 647 T_SHORT = 9, 648 T_INT = 10, 649 T_LONG = 11, 650 T_OBJECT = 12, 651 T_ARRAY = 13, 652 T_VOID = 14, 653 T_ADDRESS = 15, 654 T_NARROWOOP = 16, 655 T_METADATA = 17, 656 T_NARROWKLASS = 18, 657 T_CONFLICT = 19, // for stack value type with conflicting contents 658 T_ILLEGAL = 99 659 }; 660 661 inline bool is_java_primitive(BasicType t) { 662 return T_BOOLEAN <= t && t <= T_LONG; 663 } 664 665 inline bool is_subword_type(BasicType t) { 666 // these guys are processed exactly like T_INT in calling sequences: 667 return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT); 668 } 669 670 inline bool is_signed_subword_type(BasicType t) { 671 return (t == T_BYTE || t == T_SHORT); 672 } 673 674 inline bool is_reference_type(BasicType t) { 675 return (t == T_OBJECT || t == T_ARRAY); 676 } 677 678 // Convert a char from a classfile signature to a BasicType 679 inline BasicType char2type(char c) { 680 switch( c ) { 681 case 'B': return T_BYTE; 682 case 'C': return T_CHAR; 683 case 'D': return T_DOUBLE; 684 case 'F': return T_FLOAT; 685 case 'I': return T_INT; 686 case 'J': return T_LONG; 687 case 'S': return T_SHORT; 688 case 'Z': return T_BOOLEAN; 689 case 'V': return T_VOID; 690 case 'L': return T_OBJECT; 691 case '[': return T_ARRAY; 692 } 693 return T_ILLEGAL; 694 } 695 696 extern char type2char_tab[T_CONFLICT+1]; // Map a BasicType to a jchar 697 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; } 698 extern int type2size[T_CONFLICT+1]; // Map BasicType to result stack elements 699 extern const char* type2name_tab[T_CONFLICT+1]; // Map a BasicType to a jchar 700 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; } 701 extern BasicType name2type(const char* name); 702 703 // Auxilary math routines 704 // least common multiple 705 extern size_t lcm(size_t a, size_t b); 706 707 708 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java 709 enum BasicTypeSize { 710 T_BOOLEAN_size = 1, 711 T_CHAR_size = 1, 712 T_FLOAT_size = 1, 713 T_DOUBLE_size = 2, 714 T_BYTE_size = 1, 715 T_SHORT_size = 1, 716 T_INT_size = 1, 717 T_LONG_size = 2, 718 T_OBJECT_size = 1, 719 T_ARRAY_size = 1, 720 T_NARROWOOP_size = 1, 721 T_NARROWKLASS_size = 1, 722 T_VOID_size = 0 723 }; 724 725 726 // maps a BasicType to its instance field storage type: 727 // all sub-word integral types are widened to T_INT 728 extern BasicType type2field[T_CONFLICT+1]; 729 extern BasicType type2wfield[T_CONFLICT+1]; 730 731 732 // size in bytes 733 enum ArrayElementSize { 734 T_BOOLEAN_aelem_bytes = 1, 735 T_CHAR_aelem_bytes = 2, 736 T_FLOAT_aelem_bytes = 4, 737 T_DOUBLE_aelem_bytes = 8, 738 T_BYTE_aelem_bytes = 1, 739 T_SHORT_aelem_bytes = 2, 740 T_INT_aelem_bytes = 4, 741 T_LONG_aelem_bytes = 8, 742 #ifdef _LP64 743 T_OBJECT_aelem_bytes = 8, 744 T_ARRAY_aelem_bytes = 8, 745 #else 746 T_OBJECT_aelem_bytes = 4, 747 T_ARRAY_aelem_bytes = 4, 748 #endif 749 T_NARROWOOP_aelem_bytes = 4, 750 T_NARROWKLASS_aelem_bytes = 4, 751 T_VOID_aelem_bytes = 0 752 }; 753 754 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element 755 #ifdef ASSERT 756 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts 757 #else 758 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; } 759 #endif 760 761 762 // JavaValue serves as a container for arbitrary Java values. 763 764 class JavaValue { 765 766 public: 767 typedef union JavaCallValue { 768 jfloat f; 769 jdouble d; 770 jint i; 771 jlong l; 772 jobject h; 773 } JavaCallValue; 774 775 private: 776 BasicType _type; 777 JavaCallValue _value; 778 779 public: 780 JavaValue(BasicType t = T_ILLEGAL) { _type = t; } 781 782 JavaValue(jfloat value) { 783 _type = T_FLOAT; 784 _value.f = value; 785 } 786 787 JavaValue(jdouble value) { 788 _type = T_DOUBLE; 789 _value.d = value; 790 } 791 792 jfloat get_jfloat() const { return _value.f; } 793 jdouble get_jdouble() const { return _value.d; } 794 jint get_jint() const { return _value.i; } 795 jlong get_jlong() const { return _value.l; } 796 jobject get_jobject() const { return _value.h; } 797 JavaCallValue* get_value_addr() { return &_value; } 798 BasicType get_type() const { return _type; } 799 800 void set_jfloat(jfloat f) { _value.f = f;} 801 void set_jdouble(jdouble d) { _value.d = d;} 802 void set_jint(jint i) { _value.i = i;} 803 void set_jlong(jlong l) { _value.l = l;} 804 void set_jobject(jobject h) { _value.h = h;} 805 void set_type(BasicType t) { _type = t; } 806 807 jboolean get_jboolean() const { return (jboolean) (_value.i);} 808 jbyte get_jbyte() const { return (jbyte) (_value.i);} 809 jchar get_jchar() const { return (jchar) (_value.i);} 810 jshort get_jshort() const { return (jshort) (_value.i);} 811 812 }; 813 814 815 #define STACK_BIAS 0 816 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff 817 // in order to extend the reach of the stack pointer. 818 #if defined(SPARC) && defined(_LP64) 819 #undef STACK_BIAS 820 #define STACK_BIAS 0x7ff 821 #endif 822 823 824 // TosState describes the top-of-stack state before and after the execution of 825 // a bytecode or method. The top-of-stack value may be cached in one or more CPU 826 // registers. The TosState corresponds to the 'machine represention' of this cached 827 // value. There's 4 states corresponding to the JAVA types int, long, float & double 828 // as well as a 5th state in case the top-of-stack value is actually on the top 829 // of stack (in memory) and thus not cached. The atos state corresponds to the itos 830 // state when it comes to machine representation but is used separately for (oop) 831 // type specific operations (e.g. verification code). 832 833 enum TosState { // describes the tos cache contents 834 btos = 0, // byte, bool tos cached 835 ztos = 1, // byte, bool tos cached 836 ctos = 2, // char tos cached 837 stos = 3, // short tos cached 838 itos = 4, // int tos cached 839 ltos = 5, // long tos cached 840 ftos = 6, // float tos cached 841 dtos = 7, // double tos cached 842 atos = 8, // object cached 843 vtos = 9, // tos not cached 844 number_of_states, 845 ilgl // illegal state: should not occur 846 }; 847 848 849 inline TosState as_TosState(BasicType type) { 850 switch (type) { 851 case T_BYTE : return btos; 852 case T_BOOLEAN: return ztos; 853 case T_CHAR : return ctos; 854 case T_SHORT : return stos; 855 case T_INT : return itos; 856 case T_LONG : return ltos; 857 case T_FLOAT : return ftos; 858 case T_DOUBLE : return dtos; 859 case T_VOID : return vtos; 860 case T_ARRAY : // fall through 861 case T_OBJECT : return atos; 862 } 863 return ilgl; 864 } 865 866 inline BasicType as_BasicType(TosState state) { 867 switch (state) { 868 case btos : return T_BYTE; 869 case ztos : return T_BOOLEAN; 870 case ctos : return T_CHAR; 871 case stos : return T_SHORT; 872 case itos : return T_INT; 873 case ltos : return T_LONG; 874 case ftos : return T_FLOAT; 875 case dtos : return T_DOUBLE; 876 case atos : return T_OBJECT; 877 case vtos : return T_VOID; 878 } 879 return T_ILLEGAL; 880 } 881 882 883 // Helper function to convert BasicType info into TosState 884 // Note: Cannot define here as it uses global constant at the time being. 885 TosState as_TosState(BasicType type); 886 887 888 // JavaThreadState keeps track of which part of the code a thread is executing in. This 889 // information is needed by the safepoint code. 890 // 891 // There are 4 essential states: 892 // 893 // _thread_new : Just started, but not executed init. code yet (most likely still in OS init code) 894 // _thread_in_native : In native code. This is a safepoint region, since all oops will be in jobject handles 895 // _thread_in_vm : Executing in the vm 896 // _thread_in_Java : Executing either interpreted or compiled Java code (or could be in a stub) 897 // 898 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in 899 // a transition from one state to another. These extra states makes it possible for the safepoint code to 900 // handle certain thread_states without having to suspend the thread - making the safepoint code faster. 901 // 902 // Given a state, the xxx_trans state can always be found by adding 1. 903 // 904 enum JavaThreadState { 905 _thread_uninitialized = 0, // should never happen (missing initialization) 906 _thread_new = 2, // just starting up, i.e., in process of being initialized 907 _thread_new_trans = 3, // corresponding transition state (not used, included for completness) 908 _thread_in_native = 4, // running in native code 909 _thread_in_native_trans = 5, // corresponding transition state 910 _thread_in_vm = 6, // running in VM 911 _thread_in_vm_trans = 7, // corresponding transition state 912 _thread_in_Java = 8, // running in Java or in stub code 913 _thread_in_Java_trans = 9, // corresponding transition state (not used, included for completness) 914 _thread_blocked = 10, // blocked in vm 915 _thread_blocked_trans = 11, // corresponding transition state 916 _thread_max_state = 12 // maximum thread state+1 - used for statistics allocation 917 }; 918 919 920 // Handy constants for deciding which compiler mode to use. 921 enum MethodCompilation { 922 InvocationEntryBci = -1, // i.e., not a on-stack replacement compilation 923 InvalidOSREntryBci = -2 924 }; 925 926 // Enumeration to distinguish tiers of compilation 927 enum CompLevel { 928 CompLevel_any = -1, 929 CompLevel_all = -1, 930 CompLevel_none = 0, // Interpreter 931 CompLevel_simple = 1, // C1 932 CompLevel_limited_profile = 2, // C1, invocation & backedge counters 933 CompLevel_full_profile = 3, // C1, invocation & backedge counters + mdo 934 CompLevel_full_optimization = 4, // C2 or Shark 935 936 #if defined(COMPILER2) || defined(SHARK) 937 CompLevel_highest_tier = CompLevel_full_optimization, // pure C2 and tiered 938 #elif defined(COMPILER1) 939 CompLevel_highest_tier = CompLevel_simple, // pure C1 940 #else 941 CompLevel_highest_tier = CompLevel_none, 942 #endif 943 944 #if defined(TIERED) 945 CompLevel_initial_compile = CompLevel_full_profile // tiered 946 #elif defined(COMPILER1) 947 CompLevel_initial_compile = CompLevel_simple // pure C1 948 #elif defined(COMPILER2) || defined(SHARK) 949 CompLevel_initial_compile = CompLevel_full_optimization // pure C2 950 #else 951 CompLevel_initial_compile = CompLevel_none 952 #endif 953 }; 954 955 inline bool is_c1_compile(int comp_level) { 956 return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization; 957 } 958 959 inline bool is_c2_compile(int comp_level) { 960 return comp_level == CompLevel_full_optimization; 961 } 962 963 inline bool is_highest_tier_compile(int comp_level) { 964 return comp_level == CompLevel_highest_tier; 965 } 966 967 inline bool is_compile(int comp_level) { 968 return is_c1_compile(comp_level) || is_c2_compile(comp_level); 969 } 970 971 //---------------------------------------------------------------------------------------------------- 972 // 'Forward' declarations of frequently used classes 973 // (in order to reduce interface dependencies & reduce 974 // number of unnecessary compilations after changes) 975 976 class symbolTable; 977 class ClassFileStream; 978 979 class Event; 980 981 class Thread; 982 class VMThread; 983 class JavaThread; 984 class Threads; 985 986 class VM_Operation; 987 class VMOperationQueue; 988 989 class CodeBlob; 990 class nmethod; 991 class OSRAdapter; 992 class I2CAdapter; 993 class C2IAdapter; 994 class CompiledIC; 995 class relocInfo; 996 class ScopeDesc; 997 class PcDesc; 998 999 class Recompiler; 1000 class Recompilee; 1001 class RecompilationPolicy; 1002 class RFrame; 1003 class CompiledRFrame; 1004 class InterpretedRFrame; 1005 1006 class frame; 1007 1008 class vframe; 1009 class javaVFrame; 1010 class interpretedVFrame; 1011 class compiledVFrame; 1012 class deoptimizedVFrame; 1013 class externalVFrame; 1014 class entryVFrame; 1015 1016 class RegisterMap; 1017 1018 class Mutex; 1019 class Monitor; 1020 class BasicLock; 1021 class BasicObjectLock; 1022 1023 class PeriodicTask; 1024 1025 class JavaCallWrapper; 1026 1027 class oopDesc; 1028 class metaDataOopDesc; 1029 1030 class NativeCall; 1031 1032 class zone; 1033 1034 class StubQueue; 1035 1036 class outputStream; 1037 1038 class ResourceArea; 1039 1040 class DebugInformationRecorder; 1041 class ScopeValue; 1042 class CompressedStream; 1043 class DebugInfoReadStream; 1044 class DebugInfoWriteStream; 1045 class LocationValue; 1046 class ConstantValue; 1047 class IllegalValue; 1048 1049 class PrivilegedElement; 1050 class MonitorArray; 1051 1052 class MonitorInfo; 1053 1054 class OffsetClosure; 1055 class OopMapCache; 1056 class InterpreterOopMap; 1057 class OopMapCacheEntry; 1058 class OSThread; 1059 1060 typedef int (*OSThreadStartFunc)(void*); 1061 1062 class Space; 1063 1064 class JavaValue; 1065 class methodHandle; 1066 class JavaCallArguments; 1067 1068 // Basic support for errors (general debug facilities not defined at this point fo the include phase) 1069 1070 extern void basic_fatal(const char* msg); 1071 1072 1073 //---------------------------------------------------------------------------------------------------- 1074 // Special constants for debugging 1075 1076 const jint badInt = -3; // generic "bad int" value 1077 const intptr_t badAddressVal = -2; // generic "bad address" value 1078 const intptr_t badOopVal = -1; // generic "bad oop" value 1079 const intptr_t badHeapOopVal = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC 1080 const int badStackSegVal = 0xCA; // value used to zap stack segments 1081 const int badHandleValue = 0xBC; // value used to zap vm handle area 1082 const int badResourceValue = 0xAB; // value used to zap resource area 1083 const int freeBlockPad = 0xBA; // value used to pad freed blocks. 1084 const int uninitBlockPad = 0xF1; // value used to zap newly malloc'd blocks. 1085 const intptr_t badJNIHandleVal = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area 1086 const juint badHeapWordVal = 0xBAADBABE; // value used to zap heap after GC 1087 const juint badMetaWordVal = 0xBAADFADE; // value used to zap metadata heap after GC 1088 const int badCodeHeapNewVal= 0xCC; // value used to zap Code heap at allocation 1089 const int badCodeHeapFreeVal = 0xDD; // value used to zap Code heap at deallocation 1090 1091 1092 // (These must be implemented as #defines because C++ compilers are 1093 // not obligated to inline non-integral constants!) 1094 #define badAddress ((address)::badAddressVal) 1095 #define badOop (cast_to_oop(::badOopVal)) 1096 #define badHeapWord (::badHeapWordVal) 1097 #define badJNIHandle (cast_to_oop(::badJNIHandleVal)) 1098 1099 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit) 1100 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17)) 1101 1102 //---------------------------------------------------------------------------------------------------- 1103 // Utility functions for bitfield manipulations 1104 1105 const intptr_t AllBits = ~0; // all bits set in a word 1106 const intptr_t NoBits = 0; // no bits set in a word 1107 const jlong NoLongBits = 0; // no bits set in a long 1108 const intptr_t OneBit = 1; // only right_most bit set in a word 1109 1110 // get a word with the n.th or the right-most or left-most n bits set 1111 // (note: #define used only so that they can be used in enum constant definitions) 1112 #define nth_bit(n) (n >= BitsPerWord ? 0 : OneBit << (n)) 1113 #define right_n_bits(n) (nth_bit(n) - 1) 1114 #define left_n_bits(n) (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n))) 1115 1116 // bit-operations using a mask m 1117 inline void set_bits (intptr_t& x, intptr_t m) { x |= m; } 1118 inline void clear_bits (intptr_t& x, intptr_t m) { x &= ~m; } 1119 inline intptr_t mask_bits (intptr_t x, intptr_t m) { return x & m; } 1120 inline jlong mask_long_bits (jlong x, jlong m) { return x & m; } 1121 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; } 1122 1123 // bit-operations using the n.th bit 1124 inline void set_nth_bit(intptr_t& x, int n) { set_bits (x, nth_bit(n)); } 1125 inline void clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); } 1126 inline bool is_set_nth_bit(intptr_t x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; } 1127 1128 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!) 1129 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) { 1130 return mask_bits(x >> start_bit_no, right_n_bits(field_length)); 1131 } 1132 1133 1134 //---------------------------------------------------------------------------------------------------- 1135 // Utility functions for integers 1136 1137 // Avoid use of global min/max macros which may cause unwanted double 1138 // evaluation of arguments. 1139 #ifdef max 1140 #undef max 1141 #endif 1142 1143 #ifdef min 1144 #undef min 1145 #endif 1146 1147 #define max(a,b) Do_not_use_max_use_MAX2_instead 1148 #define min(a,b) Do_not_use_min_use_MIN2_instead 1149 1150 // It is necessary to use templates here. Having normal overloaded 1151 // functions does not work because it is necessary to provide both 32- 1152 // and 64-bit overloaded functions, which does not work, and having 1153 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L) 1154 // will be even more error-prone than macros. 1155 template<class T> inline T MAX2(T a, T b) { return (a > b) ? a : b; } 1156 template<class T> inline T MIN2(T a, T b) { return (a < b) ? a : b; } 1157 template<class T> inline T MAX3(T a, T b, T c) { return MAX2(MAX2(a, b), c); } 1158 template<class T> inline T MIN3(T a, T b, T c) { return MIN2(MIN2(a, b), c); } 1159 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); } 1160 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); } 1161 1162 template<class T> inline T ABS(T x) { return (x > 0) ? x : -x; } 1163 1164 // true if x is a power of 2, false otherwise 1165 inline bool is_power_of_2(intptr_t x) { 1166 return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits)); 1167 } 1168 1169 // long version of is_power_of_2 1170 inline bool is_power_of_2_long(jlong x) { 1171 return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits)); 1172 } 1173 1174 //* largest i such that 2^i <= x 1175 // A negative value of 'x' will return '31' 1176 inline int log2_intptr(uintptr_t x) { 1177 int i = -1; 1178 uintptr_t p = 1; 1179 while (p != 0 && p <= x) { 1180 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x) 1181 i++; p *= 2; 1182 } 1183 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1)) 1184 // (if p = 0 then overflow occurred and i = 31) 1185 return i; 1186 } 1187 1188 //* largest i such that 2^i <= x 1189 inline int log2_long(julong x) { 1190 int i = -1; 1191 julong p = 1; 1192 while (p != 0 && p <= x) { 1193 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x) 1194 i++; p *= 2; 1195 } 1196 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1)) 1197 // (if p = 0 then overflow occurred and i = 63) 1198 return i; 1199 } 1200 1201 inline int log2_intptr(intptr_t x) { 1202 return log2_intptr((uintptr_t)x); 1203 } 1204 1205 inline int log2_int(int x) { 1206 return log2_intptr((uintptr_t)x); 1207 } 1208 1209 inline int log2_jint(jint x) { 1210 return log2_intptr((uintptr_t)x); 1211 } 1212 1213 inline int log2_uint(uint x) { 1214 return log2_intptr((uintptr_t)x); 1215 } 1216 1217 // A negative value of 'x' will return '63' 1218 inline int log2_jlong(jlong x) { 1219 return log2_long((julong)x); 1220 } 1221 1222 //* the argument must be exactly a power of 2 1223 inline int exact_log2(intptr_t x) { 1224 #ifdef ASSERT 1225 if (!is_power_of_2(x)) basic_fatal("x must be a power of 2"); 1226 #endif 1227 return log2_intptr(x); 1228 } 1229 1230 //* the argument must be exactly a power of 2 1231 inline int exact_log2_long(jlong x) { 1232 #ifdef ASSERT 1233 if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2"); 1234 #endif 1235 return log2_long(x); 1236 } 1237 1238 1239 // returns integer round-up to the nearest multiple of s (s must be a power of two) 1240 inline intptr_t round_to(intptr_t x, uintx s) { 1241 #ifdef ASSERT 1242 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2"); 1243 #endif 1244 const uintx m = s - 1; 1245 return mask_bits(x + m, ~m); 1246 } 1247 1248 // returns integer round-down to the nearest multiple of s (s must be a power of two) 1249 inline intptr_t round_down(intptr_t x, uintx s) { 1250 #ifdef ASSERT 1251 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2"); 1252 #endif 1253 const uintx m = s - 1; 1254 return mask_bits(x, ~m); 1255 } 1256 1257 1258 inline bool is_odd (intx x) { return x & 1; } 1259 inline bool is_even(intx x) { return !is_odd(x); } 1260 1261 // abs methods which cannot overflow and so are well-defined across 1262 // the entire domain of integer types. 1263 static inline unsigned int uabs(unsigned int n) { 1264 union { 1265 unsigned int result; 1266 int value; 1267 }; 1268 result = n; 1269 if (value < 0) result = 0-result; 1270 return result; 1271 } 1272 static inline julong uabs(julong n) { 1273 union { 1274 julong result; 1275 jlong value; 1276 }; 1277 result = n; 1278 if (value < 0) result = 0-result; 1279 return result; 1280 } 1281 static inline julong uabs(jlong n) { return uabs((julong)n); } 1282 static inline unsigned int uabs(int n) { return uabs((unsigned int)n); } 1283 1284 // "to" should be greater than "from." 1285 inline intx byte_size(void* from, void* to) { 1286 return (address)to - (address)from; 1287 } 1288 1289 //---------------------------------------------------------------------------------------------------- 1290 // Avoid non-portable casts with these routines (DEPRECATED) 1291 1292 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE 1293 // Bytes is optimized machine-specifically and may be much faster then the portable routines below. 1294 1295 // Given sequence of four bytes, build into a 32-bit word 1296 // following the conventions used in class files. 1297 // On the 386, this could be realized with a simple address cast. 1298 // 1299 1300 // This routine takes eight bytes: 1301 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) { 1302 return (( u8(c1) << 56 ) & ( u8(0xff) << 56 )) 1303 | (( u8(c2) << 48 ) & ( u8(0xff) << 48 )) 1304 | (( u8(c3) << 40 ) & ( u8(0xff) << 40 )) 1305 | (( u8(c4) << 32 ) & ( u8(0xff) << 32 )) 1306 | (( u8(c5) << 24 ) & ( u8(0xff) << 24 )) 1307 | (( u8(c6) << 16 ) & ( u8(0xff) << 16 )) 1308 | (( u8(c7) << 8 ) & ( u8(0xff) << 8 )) 1309 | (( u8(c8) << 0 ) & ( u8(0xff) << 0 )); 1310 } 1311 1312 // This routine takes four bytes: 1313 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) { 1314 return (( u4(c1) << 24 ) & 0xff000000) 1315 | (( u4(c2) << 16 ) & 0x00ff0000) 1316 | (( u4(c3) << 8 ) & 0x0000ff00) 1317 | (( u4(c4) << 0 ) & 0x000000ff); 1318 } 1319 1320 // And this one works if the four bytes are contiguous in memory: 1321 inline u4 build_u4_from( u1* p ) { 1322 return build_u4_from( p[0], p[1], p[2], p[3] ); 1323 } 1324 1325 // Ditto for two-byte ints: 1326 inline u2 build_u2_from( u1 c1, u1 c2 ) { 1327 return u2((( u2(c1) << 8 ) & 0xff00) 1328 | (( u2(c2) << 0 ) & 0x00ff)); 1329 } 1330 1331 // And this one works if the two bytes are contiguous in memory: 1332 inline u2 build_u2_from( u1* p ) { 1333 return build_u2_from( p[0], p[1] ); 1334 } 1335 1336 // Ditto for floats: 1337 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) { 1338 u4 u = build_u4_from( c1, c2, c3, c4 ); 1339 return *(jfloat*)&u; 1340 } 1341 1342 inline jfloat build_float_from( u1* p ) { 1343 u4 u = build_u4_from( p ); 1344 return *(jfloat*)&u; 1345 } 1346 1347 1348 // now (64-bit) longs 1349 1350 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) { 1351 return (( jlong(c1) << 56 ) & ( jlong(0xff) << 56 )) 1352 | (( jlong(c2) << 48 ) & ( jlong(0xff) << 48 )) 1353 | (( jlong(c3) << 40 ) & ( jlong(0xff) << 40 )) 1354 | (( jlong(c4) << 32 ) & ( jlong(0xff) << 32 )) 1355 | (( jlong(c5) << 24 ) & ( jlong(0xff) << 24 )) 1356 | (( jlong(c6) << 16 ) & ( jlong(0xff) << 16 )) 1357 | (( jlong(c7) << 8 ) & ( jlong(0xff) << 8 )) 1358 | (( jlong(c8) << 0 ) & ( jlong(0xff) << 0 )); 1359 } 1360 1361 inline jlong build_long_from( u1* p ) { 1362 return build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] ); 1363 } 1364 1365 1366 // Doubles, too! 1367 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) { 1368 jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 ); 1369 return *(jdouble*)&u; 1370 } 1371 1372 inline jdouble build_double_from( u1* p ) { 1373 jlong u = build_long_from( p ); 1374 return *(jdouble*)&u; 1375 } 1376 1377 1378 // Portable routines to go the other way: 1379 1380 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) { 1381 c1 = u1(x >> 8); 1382 c2 = u1(x); 1383 } 1384 1385 inline void explode_short_to( u2 x, u1* p ) { 1386 explode_short_to( x, p[0], p[1]); 1387 } 1388 1389 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) { 1390 c1 = u1(x >> 24); 1391 c2 = u1(x >> 16); 1392 c3 = u1(x >> 8); 1393 c4 = u1(x); 1394 } 1395 1396 inline void explode_int_to( u4 x, u1* p ) { 1397 explode_int_to( x, p[0], p[1], p[2], p[3]); 1398 } 1399 1400 1401 // Pack and extract shorts to/from ints: 1402 1403 inline int extract_low_short_from_int(jint x) { 1404 return x & 0xffff; 1405 } 1406 1407 inline int extract_high_short_from_int(jint x) { 1408 return (x >> 16) & 0xffff; 1409 } 1410 1411 inline int build_int_from_shorts( jushort low, jushort high ) { 1412 return ((int)((unsigned int)high << 16) | (unsigned int)low); 1413 } 1414 1415 // Convert pointer to intptr_t, for use in printing pointers. 1416 inline intptr_t p2i(const void * p) { 1417 return (intptr_t) p; 1418 } 1419 1420 // Printf-style formatters for fixed- and variable-width types as pointers and 1421 // integers. These are derived from the definitions in inttypes.h. If the platform 1422 // doesn't provide appropriate definitions, they should be provided in 1423 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp) 1424 1425 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false") 1426 1427 // Format 32-bit quantities. 1428 #define INT32_FORMAT "%" PRId32 1429 #define UINT32_FORMAT "%" PRIu32 1430 #define INT32_FORMAT_W(width) "%" #width PRId32 1431 #define UINT32_FORMAT_W(width) "%" #width PRIu32 1432 1433 #define PTR32_FORMAT "0x%08" PRIx32 1434 1435 // Format 64-bit quantities. 1436 #define INT64_FORMAT "%" PRId64 1437 #define UINT64_FORMAT "%" PRIu64 1438 #define UINT64_FORMAT_X "%" PRIx64 1439 #define INT64_FORMAT_W(width) "%" #width PRId64 1440 #define UINT64_FORMAT_W(width) "%" #width PRIu64 1441 #define UINT64_FORMAT_X_W(width) "%" #width PRIx64 1442 1443 #define PTR64_FORMAT "0x%016" PRIx64 1444 1445 // Format jlong, if necessary 1446 #ifndef JLONG_FORMAT 1447 #define JLONG_FORMAT INT64_FORMAT 1448 #endif 1449 #ifndef JULONG_FORMAT 1450 #define JULONG_FORMAT UINT64_FORMAT 1451 #endif 1452 1453 // Format pointers which change size between 32- and 64-bit. 1454 #ifdef _LP64 1455 #define INTPTR_FORMAT "0x%016" PRIxPTR 1456 #define PTR_FORMAT "0x%016" PRIxPTR 1457 #else // !_LP64 1458 #define INTPTR_FORMAT "0x%08" PRIxPTR 1459 #define PTR_FORMAT "0x%08" PRIxPTR 1460 #endif // _LP64 1461 1462 #define INTPTR_FORMAT_W(width) "%" #width PRIxPTR 1463 1464 #define SSIZE_FORMAT "%" PRIdPTR 1465 #define SIZE_FORMAT "%" PRIuPTR 1466 #define SIZE_FORMAT_HEX "0x%" PRIxPTR 1467 #define SSIZE_FORMAT_W(width) "%" #width PRIdPTR 1468 #define SIZE_FORMAT_W(width) "%" #width PRIuPTR 1469 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR 1470 1471 #define INTX_FORMAT "%" PRIdPTR 1472 #define UINTX_FORMAT "%" PRIuPTR 1473 #define INTX_FORMAT_W(width) "%" #width PRIdPTR 1474 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR 1475 1476 1477 // Enable zap-a-lot if in debug version. 1478 1479 # ifdef ASSERT 1480 # ifdef COMPILER2 1481 # define ENABLE_ZAP_DEAD_LOCALS 1482 #endif /* COMPILER2 */ 1483 # endif /* ASSERT */ 1484 1485 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0])) 1486 1487 //---------------------------------------------------------------------------------------------------- 1488 // Sum and product which can never overflow: they wrap, just like the 1489 // Java operations. Note that we don't intend these to be used for 1490 // general-purpose arithmetic: their purpose is to emulate Java 1491 // operations. 1492 1493 // The goal of this code to avoid undefined or implementation-defined 1494 // behaviour. The use of an lvalue to reference cast is explicitly 1495 // permitted by Lvalues and rvalues [basic.lval]. [Section 3.10 Para 1496 // 15 in C++03] 1497 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE) \ 1498 inline TYPE NAME (TYPE in1, TYPE in2) { \ 1499 UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \ 1500 ures OP ## = static_cast<UNSIGNED_TYPE>(in2); \ 1501 return reinterpret_cast<TYPE&>(ures); \ 1502 } 1503 1504 JAVA_INTEGER_OP(+, java_add, jint, juint) 1505 JAVA_INTEGER_OP(-, java_subtract, jint, juint) 1506 JAVA_INTEGER_OP(*, java_multiply, jint, juint) 1507 JAVA_INTEGER_OP(+, java_add, jlong, julong) 1508 JAVA_INTEGER_OP(-, java_subtract, jlong, julong) 1509 JAVA_INTEGER_OP(*, java_multiply, jlong, julong) 1510 1511 #undef JAVA_INTEGER_OP 1512 1513 // Dereference vptr 1514 // All C++ compilers that we know of have the vtbl pointer in the first 1515 // word. If there are exceptions, this function needs to be made compiler 1516 // specific. 1517 static inline void* dereference_vptr(const void* addr) { 1518 return *(void**)addr; 1519 } 1520 1521 #ifndef PRODUCT 1522 1523 // For unit testing only 1524 class GlobalDefinitions { 1525 public: 1526 static void test_globals(); 1527 static void test_proper_unit(); 1528 }; 1529 1530 #endif // PRODUCT 1531 1532 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP