1 /*
   2  * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_TASKQUEUE_HPP
  26 #define SHARE_VM_UTILITIES_TASKQUEUE_HPP
  27 
  28 #include "memory/allocation.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "memory/padded.hpp"
  31 #include "runtime/mutex.hpp"
  32 #include "runtime/orderAccess.inline.hpp"
  33 #include "utilities/globalDefinitions.hpp"
  34 #include "utilities/stack.hpp"
  35 
  36 // Simple TaskQueue stats that are collected by default in debug builds.
  37 
  38 #if !defined(TASKQUEUE_STATS) && defined(ASSERT)
  39 #define TASKQUEUE_STATS 1
  40 #elif !defined(TASKQUEUE_STATS)
  41 #define TASKQUEUE_STATS 0
  42 #endif
  43 
  44 #if TASKQUEUE_STATS
  45 #define TASKQUEUE_STATS_ONLY(code) code
  46 #else
  47 #define TASKQUEUE_STATS_ONLY(code)
  48 #endif // TASKQUEUE_STATS
  49 
  50 #if TASKQUEUE_STATS
  51 class TaskQueueStats {
  52 public:
  53   enum StatId {
  54     push,             // number of taskqueue pushes
  55     pop,              // number of taskqueue pops
  56     pop_slow,         // subset of taskqueue pops that were done slow-path
  57     steal_attempt,    // number of taskqueue steal attempts
  58     steal,            // number of taskqueue steals
  59     overflow,         // number of overflow pushes
  60     overflow_max_len, // max length of overflow stack
  61     last_stat_id
  62   };
  63 
  64 public:
  65   inline TaskQueueStats()       { reset(); }
  66 
  67   inline void record_push()     { ++_stats[push]; }
  68   inline void record_pop()      { ++_stats[pop]; }
  69   inline void record_pop_slow() { record_pop(); ++_stats[pop_slow]; }
  70   inline void record_steal(bool success);
  71   inline void record_overflow(size_t new_length);
  72 
  73   TaskQueueStats & operator +=(const TaskQueueStats & addend);
  74 
  75   inline size_t get(StatId id) const { return _stats[id]; }
  76   inline const size_t* get() const   { return _stats; }
  77 
  78   inline void reset();
  79 
  80   // Print the specified line of the header (does not include a line separator).
  81   static void print_header(unsigned int line, outputStream* const stream = tty,
  82                            unsigned int width = 10);
  83   // Print the statistics (does not include a line separator).
  84   void print(outputStream* const stream = tty, unsigned int width = 10) const;
  85 
  86   DEBUG_ONLY(void verify() const;)
  87 
  88 private:
  89   size_t                    _stats[last_stat_id];
  90   static const char * const _names[last_stat_id];
  91 };
  92 
  93 void TaskQueueStats::record_steal(bool success) {
  94   ++_stats[steal_attempt];
  95   if (success) ++_stats[steal];
  96 }
  97 
  98 void TaskQueueStats::record_overflow(size_t new_len) {
  99   ++_stats[overflow];
 100   if (new_len > _stats[overflow_max_len]) _stats[overflow_max_len] = new_len;
 101 }
 102 
 103 void TaskQueueStats::reset() {
 104   memset(_stats, 0, sizeof(_stats));
 105 }
 106 #endif // TASKQUEUE_STATS
 107 
 108 // TaskQueueSuper collects functionality common to all GenericTaskQueue instances.
 109 
 110 template <unsigned int N, MEMFLAGS F>
 111 class TaskQueueSuper: public CHeapObj<F> {
 112 protected:
 113   // Internal type for indexing the queue; also used for the tag.
 114   typedef NOT_LP64(uint16_t) LP64_ONLY(uint32_t) idx_t;
 115 
 116   enum { MOD_N_MASK = N - 1 };
 117 
 118   class Age {
 119   public:
 120     Age(size_t data = 0)         { _data = data; }
 121     Age(const Age& age)          { _data = age._data; }
 122     Age(idx_t top, idx_t tag)    { _fields._top = top; _fields._tag = tag; }
 123 
 124     Age   get()        const volatile { return _data; }
 125     void  set(Age age) volatile       { _data = age._data; }
 126 
 127     idx_t top()        const volatile { return _fields._top; }
 128     idx_t tag()        const volatile { return _fields._tag; }
 129 
 130     // Increment top; if it wraps, increment tag also.
 131     void increment() {
 132       _fields._top = increment_index(_fields._top);
 133       if (_fields._top == 0) ++_fields._tag;
 134     }
 135 
 136     Age cmpxchg(const Age new_age, const Age old_age) volatile {
 137       return (size_t) Atomic::cmpxchg_ptr((intptr_t)new_age._data,
 138                                           (volatile intptr_t *)&_data,
 139                                           (intptr_t)old_age._data);
 140     }
 141 
 142     bool operator ==(const Age& other) const { return _data == other._data; }
 143 
 144   private:
 145     struct fields {
 146       idx_t _top;
 147       idx_t _tag;
 148     };
 149     union {
 150       size_t _data;
 151       fields _fields;
 152     };
 153   };
 154 
 155   // The first free element after the last one pushed (mod N).
 156   volatile uint _bottom;
 157   // Add paddings to reduce false-sharing cache contention between _bottom and _age
 158   DEFINE_PAD_MINUS_SIZE(0, DEFAULT_CACHE_LINE_SIZE, sizeof(uint));
 159   volatile Age _age;
 160 
 161   // These both operate mod N.
 162   static uint increment_index(uint ind) {
 163     return (ind + 1) & MOD_N_MASK;
 164   }
 165   static uint decrement_index(uint ind) {
 166     return (ind - 1) & MOD_N_MASK;
 167   }
 168 
 169   // Returns a number in the range [0..N).  If the result is "N-1", it should be
 170   // interpreted as 0.
 171   uint dirty_size(uint bot, uint top) const {
 172     return (bot - top) & MOD_N_MASK;
 173   }
 174 
 175   // Returns the size corresponding to the given "bot" and "top".
 176   uint size(uint bot, uint top) const {
 177     uint sz = dirty_size(bot, top);
 178     // Has the queue "wrapped", so that bottom is less than top?  There's a
 179     // complicated special case here.  A pair of threads could perform pop_local
 180     // and pop_global operations concurrently, starting from a state in which
 181     // _bottom == _top+1.  The pop_local could succeed in decrementing _bottom,
 182     // and the pop_global in incrementing _top (in which case the pop_global
 183     // will be awarded the contested queue element.)  The resulting state must
 184     // be interpreted as an empty queue.  (We only need to worry about one such
 185     // event: only the queue owner performs pop_local's, and several concurrent
 186     // threads attempting to perform the pop_global will all perform the same
 187     // CAS, and only one can succeed.)  Any stealing thread that reads after
 188     // either the increment or decrement will see an empty queue, and will not
 189     // join the competitors.  The "sz == -1 || sz == N-1" state will not be
 190     // modified by concurrent queues, so the owner thread can reset the state to
 191     // _bottom == top so subsequent pushes will be performed normally.
 192     return (sz == N - 1) ? 0 : sz;
 193   }
 194 
 195 public:
 196   TaskQueueSuper() : _bottom(0), _age() {}
 197 
 198   // Return true if the TaskQueue contains/does not contain any tasks.
 199   bool peek()     const { return _bottom != _age.top(); }
 200   bool is_empty() const { return size() == 0; }
 201 
 202   // Return an estimate of the number of elements in the queue.
 203   // The "careful" version admits the possibility of pop_local/pop_global
 204   // races.
 205   uint size() const {
 206     return size(_bottom, _age.top());
 207   }
 208 
 209   uint dirty_size() const {
 210     return dirty_size(_bottom, _age.top());
 211   }
 212 
 213   void set_empty() {
 214     _bottom = 0;
 215     _age.set(0);
 216   }
 217 
 218   // Maximum number of elements allowed in the queue.  This is two less
 219   // than the actual queue size, for somewhat complicated reasons.
 220   uint max_elems() const { return N - 2; }
 221 
 222   // Total size of queue.
 223   static const uint total_size() { return N; }
 224 
 225   TASKQUEUE_STATS_ONLY(TaskQueueStats stats;)
 226 };
 227 
 228 //
 229 // GenericTaskQueue implements an ABP, Aurora-Blumofe-Plaxton, double-
 230 // ended-queue (deque), intended for use in work stealing. Queue operations
 231 // are non-blocking.
 232 //
 233 // A queue owner thread performs push() and pop_local() operations on one end
 234 // of the queue, while other threads may steal work using the pop_global()
 235 // method.
 236 //
 237 // The main difference to the original algorithm is that this
 238 // implementation allows wrap-around at the end of its allocated
 239 // storage, which is an array.
 240 //
 241 // The original paper is:
 242 //
 243 // Arora, N. S., Blumofe, R. D., and Plaxton, C. G.
 244 // Thread scheduling for multiprogrammed multiprocessors.
 245 // Theory of Computing Systems 34, 2 (2001), 115-144.
 246 //
 247 // The following paper provides an correctness proof and an
 248 // implementation for weakly ordered memory models including (pseudo-)
 249 // code containing memory barriers for a Chase-Lev deque. Chase-Lev is
 250 // similar to ABP, with the main difference that it allows resizing of the
 251 // underlying storage:
 252 //
 253 // Le, N. M., Pop, A., Cohen A., and Nardell, F. Z.
 254 // Correct and efficient work-stealing for weak memory models
 255 // Proceedings of the 18th ACM SIGPLAN symposium on Principles and
 256 // practice of parallel programming (PPoPP 2013), 69-80
 257 //
 258 
 259 template <class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE>
 260 class GenericTaskQueue: public TaskQueueSuper<N, F> {
 261   ArrayAllocator<E, F> _array_allocator;
 262 protected:
 263   typedef typename TaskQueueSuper<N, F>::Age Age;
 264   typedef typename TaskQueueSuper<N, F>::idx_t idx_t;
 265 
 266   using TaskQueueSuper<N, F>::_bottom;
 267   using TaskQueueSuper<N, F>::_age;
 268   using TaskQueueSuper<N, F>::increment_index;
 269   using TaskQueueSuper<N, F>::decrement_index;
 270   using TaskQueueSuper<N, F>::dirty_size;
 271 
 272 public:
 273   using TaskQueueSuper<N, F>::max_elems;
 274   using TaskQueueSuper<N, F>::size;
 275 
 276 #if  TASKQUEUE_STATS
 277   using TaskQueueSuper<N, F>::stats;
 278 #endif
 279 
 280 private:
 281   // Slow paths for push, pop_local.  (pop_global has no fast path.)
 282   bool push_slow(E t, uint dirty_n_elems);
 283   bool pop_local_slow(uint localBot, Age oldAge);
 284 
 285 public:
 286   typedef E element_type;
 287 
 288   // Initializes the queue to empty.
 289   GenericTaskQueue();
 290 
 291   void initialize();
 292 
 293   // Push the task "t" on the queue.  Returns "false" iff the queue is full.
 294   inline bool push(E t);
 295 
 296   // Attempts to claim a task from the "local" end of the queue (the most
 297   // recently pushed).  If successful, returns true and sets t to the task;
 298   // otherwise, returns false (the queue is empty).
 299   inline bool pop_local(volatile E& t);
 300 
 301   // Like pop_local(), but uses the "global" end of the queue (the least
 302   // recently pushed).
 303   bool pop_global(volatile E& t);
 304 
 305   // Delete any resource associated with the queue.
 306   ~GenericTaskQueue();
 307 
 308   // apply the closure to all elements in the task queue
 309   void oops_do(OopClosure* f);
 310 
 311 private:
 312   // Element array.
 313   volatile E* _elems;
 314 };
 315 
 316 template<class E, MEMFLAGS F, unsigned int N>
 317 GenericTaskQueue<E, F, N>::GenericTaskQueue() {
 318   assert(sizeof(Age) == sizeof(size_t), "Depends on this.");
 319 }
 320 
 321 template<class E, MEMFLAGS F, unsigned int N>
 322 void GenericTaskQueue<E, F, N>::initialize() {
 323   _elems = _array_allocator.allocate(N);
 324 }
 325 
 326 template<class E, MEMFLAGS F, unsigned int N>
 327 void GenericTaskQueue<E, F, N>::oops_do(OopClosure* f) {
 328   // tty->print_cr("START OopTaskQueue::oops_do");
 329   uint iters = size();
 330   uint index = _bottom;
 331   for (uint i = 0; i < iters; ++i) {
 332     index = decrement_index(index);
 333     // tty->print_cr("  doing entry %d," INTPTR_T " -> " INTPTR_T,
 334     //            index, &_elems[index], _elems[index]);
 335     E* t = (E*)&_elems[index];      // cast away volatility
 336     oop* p = (oop*)t;
 337     // G1 does its own checking
 338     assert(UseG1GC || (*t)->is_oop_or_null(), "Not an oop or null");
 339     f->do_oop(p);
 340   }
 341   // tty->print_cr("END OopTaskQueue::oops_do");
 342 }
 343 
 344 template<class E, MEMFLAGS F, unsigned int N>
 345 bool GenericTaskQueue<E, F, N>::push_slow(E t, uint dirty_n_elems) {
 346   if (dirty_n_elems == N - 1) {
 347     // Actually means 0, so do the push.
 348     uint localBot = _bottom;
 349     // g++ complains if the volatile result of the assignment is
 350     // unused, so we cast the volatile away.  We cannot cast directly
 351     // to void, because gcc treats that as not using the result of the
 352     // assignment.  However, casting to E& means that we trigger an
 353     // unused-value warning.  So, we cast the E& to void.
 354     (void)const_cast<E&>(_elems[localBot] = t);
 355     OrderAccess::release_store(&_bottom, increment_index(localBot));
 356     TASKQUEUE_STATS_ONLY(stats.record_push());
 357     return true;
 358   }
 359   return false;
 360 }
 361 
 362 // pop_local_slow() is done by the owning thread and is trying to
 363 // get the last task in the queue.  It will compete with pop_global()
 364 // that will be used by other threads.  The tag age is incremented
 365 // whenever the queue goes empty which it will do here if this thread
 366 // gets the last task or in pop_global() if the queue wraps (top == 0
 367 // and pop_global() succeeds, see pop_global()).
 368 template<class E, MEMFLAGS F, unsigned int N>
 369 bool GenericTaskQueue<E, F, N>::pop_local_slow(uint localBot, Age oldAge) {
 370   // This queue was observed to contain exactly one element; either this
 371   // thread will claim it, or a competing "pop_global".  In either case,
 372   // the queue will be logically empty afterwards.  Create a new Age value
 373   // that represents the empty queue for the given value of "_bottom".  (We
 374   // must also increment "tag" because of the case where "bottom == 1",
 375   // "top == 0".  A pop_global could read the queue element in that case,
 376   // then have the owner thread do a pop followed by another push.  Without
 377   // the incrementing of "tag", the pop_global's CAS could succeed,
 378   // allowing it to believe it has claimed the stale element.)
 379   Age newAge((idx_t)localBot, oldAge.tag() + 1);
 380   // Perhaps a competing pop_global has already incremented "top", in which
 381   // case it wins the element.
 382   if (localBot == oldAge.top()) {
 383     // No competing pop_global has yet incremented "top"; we'll try to
 384     // install new_age, thus claiming the element.
 385     Age tempAge = _age.cmpxchg(newAge, oldAge);
 386     if (tempAge == oldAge) {
 387       // We win.
 388       assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
 389       TASKQUEUE_STATS_ONLY(stats.record_pop_slow());
 390       return true;
 391     }
 392   }
 393   // We lose; a completing pop_global gets the element.  But the queue is empty
 394   // and top is greater than bottom.  Fix this representation of the empty queue
 395   // to become the canonical one.
 396   _age.set(newAge);
 397   assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
 398   return false;
 399 }
 400 
 401 template<class E, MEMFLAGS F, unsigned int N>
 402 bool GenericTaskQueue<E, F, N>::pop_global(volatile E& t) {
 403   Age oldAge = _age.get();
 404   // Architectures with weak memory model require a barrier here
 405   // to guarantee that bottom is not older than age,
 406   // which is crucial for the correctness of the algorithm.
 407 #if !(defined SPARC || defined IA32 || defined AMD64)
 408   OrderAccess::fence();
 409 #endif
 410   uint localBot = OrderAccess::load_acquire((volatile juint*)&_bottom);
 411   uint n_elems = size(localBot, oldAge.top());
 412   if (n_elems == 0) {
 413     return false;
 414   }
 415 
 416   // g++ complains if the volatile result of the assignment is
 417   // unused, so we cast the volatile away.  We cannot cast directly
 418   // to void, because gcc treats that as not using the result of the
 419   // assignment.  However, casting to E& means that we trigger an
 420   // unused-value warning.  So, we cast the E& to void.
 421   (void) const_cast<E&>(t = _elems[oldAge.top()]);
 422   Age newAge(oldAge);
 423   newAge.increment();
 424   Age resAge = _age.cmpxchg(newAge, oldAge);
 425 
 426   // Note that using "_bottom" here might fail, since a pop_local might
 427   // have decremented it.
 428   assert(dirty_size(localBot, newAge.top()) != N - 1, "sanity");
 429   return resAge == oldAge;
 430 }
 431 
 432 template<class E, MEMFLAGS F, unsigned int N>
 433 GenericTaskQueue<E, F, N>::~GenericTaskQueue() {}
 434 
 435 // OverflowTaskQueue is a TaskQueue that also includes an overflow stack for
 436 // elements that do not fit in the TaskQueue.
 437 //
 438 // This class hides two methods from super classes:
 439 //
 440 // push() - push onto the task queue or, if that fails, onto the overflow stack
 441 // is_empty() - return true if both the TaskQueue and overflow stack are empty
 442 //
 443 // Note that size() is not hidden--it returns the number of elements in the
 444 // TaskQueue, and does not include the size of the overflow stack.  This
 445 // simplifies replacement of GenericTaskQueues with OverflowTaskQueues.
 446 template<class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE>
 447 class OverflowTaskQueue: public GenericTaskQueue<E, F, N>
 448 {
 449 public:
 450   typedef Stack<E, F>               overflow_t;
 451   typedef GenericTaskQueue<E, F, N> taskqueue_t;
 452 
 453   TASKQUEUE_STATS_ONLY(using taskqueue_t::stats;)
 454 
 455   // Push task t onto the queue or onto the overflow stack.  Return true.
 456   inline bool push(E t);
 457 
 458   // Try to push task t onto the queue only. Returns true if successful, false otherwise.
 459   inline bool try_push_to_taskqueue(E t);
 460 
 461   // Attempt to pop from the overflow stack; return true if anything was popped.
 462   inline bool pop_overflow(E& t);
 463 
 464   inline overflow_t* overflow_stack() { return &_overflow_stack; }
 465 
 466   inline bool taskqueue_empty() const { return taskqueue_t::is_empty(); }
 467   inline bool overflow_empty()  const { return _overflow_stack.is_empty(); }
 468   inline bool is_empty()        const {
 469     return taskqueue_empty() && overflow_empty();
 470   }
 471 
 472 private:
 473   overflow_t _overflow_stack;
 474 };
 475 
 476 template <class E, MEMFLAGS F, unsigned int N>
 477 bool OverflowTaskQueue<E, F, N>::push(E t)
 478 {
 479   if (!taskqueue_t::push(t)) {
 480     overflow_stack()->push(t);
 481     TASKQUEUE_STATS_ONLY(stats.record_overflow(overflow_stack()->size()));
 482   }
 483   return true;
 484 }
 485 
 486 template <class E, MEMFLAGS F, unsigned int N>
 487 bool OverflowTaskQueue<E, F, N>::pop_overflow(E& t)
 488 {
 489   if (overflow_empty()) return false;
 490   t = overflow_stack()->pop();
 491   return true;
 492 }
 493 
 494 template <class E, MEMFLAGS F, unsigned int N>
 495 bool OverflowTaskQueue<E, F, N>::try_push_to_taskqueue(E t) {
 496   return taskqueue_t::push(t);
 497 }
 498 class TaskQueueSetSuper {
 499 protected:
 500   static int randomParkAndMiller(int* seed0);
 501 public:
 502   // Returns "true" if some TaskQueue in the set contains a task.
 503   virtual bool peek() = 0;
 504   virtual size_t tasks() = 0;
 505 };
 506 
 507 template <MEMFLAGS F> class TaskQueueSetSuperImpl: public CHeapObj<F>, public TaskQueueSetSuper {
 508 };
 509 
 510 template<class T, MEMFLAGS F>
 511 class GenericTaskQueueSet: public TaskQueueSetSuperImpl<F> {
 512 private:
 513   uint _n;
 514   T** _queues;
 515 
 516 public:
 517   typedef typename T::element_type E;
 518 
 519   GenericTaskQueueSet(int n) : _n(n) {
 520     typedef T* GenericTaskQueuePtr;
 521     _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n, F);
 522     for (int i = 0; i < n; i++) {
 523       _queues[i] = NULL;
 524     }
 525   }
 526 
 527   bool steal_best_of_2(uint queue_num, int* seed, E& t);
 528 
 529   void register_queue(uint i, T* q);
 530 
 531   T* queue(uint n);
 532 
 533   // The thread with queue number "queue_num" (and whose random number seed is
 534   // at "seed") is trying to steal a task from some other queue.  (It may try
 535   // several queues, according to some configuration parameter.)  If some steal
 536   // succeeds, returns "true" and sets "t" to the stolen task, otherwise returns
 537   // false.
 538   bool steal(uint queue_num, int* seed, E& t);
 539 
 540   bool peek();
 541   size_t tasks();
 542 
 543   uint size() const { return _n; }
 544 };
 545 
 546 template<class T, MEMFLAGS F> void
 547 GenericTaskQueueSet<T, F>::register_queue(uint i, T* q) {
 548   assert(i < _n, "index out of range.");
 549   _queues[i] = q;
 550 }
 551 
 552 template<class T, MEMFLAGS F> T*
 553 GenericTaskQueueSet<T, F>::queue(uint i) {
 554   return _queues[i];
 555 }
 556 
 557 template<class T, MEMFLAGS F> bool
 558 GenericTaskQueueSet<T, F>::steal(uint queue_num, int* seed, E& t) {
 559   for (uint i = 0; i < 2 * _n; i++) {
 560     if (steal_best_of_2(queue_num, seed, t)) {
 561       TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(true));
 562       return true;
 563     }
 564   }
 565   TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(false));
 566   return false;
 567 }
 568 
 569 template<class T, MEMFLAGS F> bool
 570 GenericTaskQueueSet<T, F>::steal_best_of_2(uint queue_num, int* seed, E& t) {
 571   if (_n > 2) {
 572     uint k1 = queue_num;
 573     while (k1 == queue_num) k1 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
 574     uint k2 = queue_num;
 575     while (k2 == queue_num || k2 == k1) k2 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
 576     // Sample both and try the larger.
 577     uint sz1 = _queues[k1]->size();
 578     uint sz2 = _queues[k2]->size();
 579     if (sz2 > sz1) return _queues[k2]->pop_global(t);
 580     else return _queues[k1]->pop_global(t);
 581   } else if (_n == 2) {
 582     // Just try the other one.
 583     uint k = (queue_num + 1) % 2;
 584     return _queues[k]->pop_global(t);
 585   } else {
 586     assert(_n == 1, "can't be zero.");
 587     return false;
 588   }
 589 }
 590 
 591 template<class T, MEMFLAGS F>
 592 bool GenericTaskQueueSet<T, F>::peek() {
 593   // Try all the queues.
 594   for (uint j = 0; j < _n; j++) {
 595     if (_queues[j]->peek())
 596       return true;
 597   }
 598   return false;
 599 }
 600 
 601 template<class T, MEMFLAGS F>
 602 size_t GenericTaskQueueSet<T, F>::tasks() {
 603   size_t n = 0;
 604   for (uint j = 0; j < _n; j++) {
 605     n += _queues[j]->size();
 606   }
 607   return n;
 608 }
 609 
 610 // When to terminate from the termination protocol.
 611 class TerminatorTerminator: public CHeapObj<mtInternal> {
 612 public:
 613   virtual bool should_exit_termination() = 0;
 614 };
 615 
 616 // A class to aid in the termination of a set of parallel tasks using
 617 // TaskQueueSet's for work stealing.
 618 
 619 #undef TRACESPINNING
 620 
 621 class ParallelTaskTerminator: public StackObj {
 622 protected:
 623   int _n_threads;
 624   TaskQueueSetSuper* _queue_set;
 625   char _pad_before[DEFAULT_CACHE_LINE_SIZE];
 626   int _offered_termination;
 627   char _pad_after[DEFAULT_CACHE_LINE_SIZE];
 628 
 629 #ifdef TRACESPINNING
 630   static uint _total_yields;
 631   static uint _total_spins;
 632   static uint _total_peeks;
 633 #endif
 634 
 635   bool peek_in_queue_set();
 636 protected:
 637   virtual void yield();
 638   void sleep(uint millis);
 639 
 640 public:
 641 
 642   // "n_threads" is the number of threads to be terminated.  "queue_set" is a
 643   // queue sets of work queues of other threads.
 644   ParallelTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set);
 645 
 646   // The current thread has no work, and is ready to terminate if everyone
 647   // else is.  If returns "true", all threads are terminated.  If returns
 648   // "false", available work has been observed in one of the task queues,
 649   // so the global task is not complete.
 650   virtual bool offer_termination() {
 651     return offer_termination(NULL);
 652   }
 653 
 654   // As above, but it also terminates if the should_exit_termination()
 655   // method of the terminator parameter returns true. If terminator is
 656   // NULL, then it is ignored.
 657   bool offer_termination(TerminatorTerminator* terminator);
 658 
 659   // Reset the terminator, so that it may be reused again.
 660   // The caller is responsible for ensuring that this is done
 661   // in an MT-safe manner, once the previous round of use of
 662   // the terminator is finished.
 663   void reset_for_reuse();
 664   // Same as above but the number of parallel threads is set to the
 665   // given number.
 666   void reset_for_reuse(int n_threads);
 667 
 668 #ifdef TRACESPINNING
 669   static uint total_yields() { return _total_yields; }
 670   static uint total_spins() { return _total_spins; }
 671   static uint total_peeks() { return _total_peeks; }
 672   static void print_termination_counts();
 673 #endif
 674 };
 675 
 676 template<class E, MEMFLAGS F, unsigned int N> inline bool
 677 GenericTaskQueue<E, F, N>::push(E t) {
 678   uint localBot = _bottom;
 679   assert(localBot < N, "_bottom out of range.");
 680   idx_t top = _age.top();
 681   uint dirty_n_elems = dirty_size(localBot, top);
 682   assert(dirty_n_elems < N, "n_elems out of range.");
 683   if (dirty_n_elems < max_elems()) {
 684     // g++ complains if the volatile result of the assignment is
 685     // unused, so we cast the volatile away.  We cannot cast directly
 686     // to void, because gcc treats that as not using the result of the
 687     // assignment.  However, casting to E& means that we trigger an
 688     // unused-value warning.  So, we cast the E& to void.
 689     (void) const_cast<E&>(_elems[localBot] = t);
 690     OrderAccess::release_store(&_bottom, increment_index(localBot));
 691     TASKQUEUE_STATS_ONLY(stats.record_push());
 692     return true;
 693   } else {
 694     return push_slow(t, dirty_n_elems);
 695   }
 696 }
 697 
 698 template<class E, MEMFLAGS F, unsigned int N> inline bool
 699 GenericTaskQueue<E, F, N>::pop_local(volatile E& t) {
 700   uint localBot = _bottom;
 701   // This value cannot be N-1.  That can only occur as a result of
 702   // the assignment to bottom in this method.  If it does, this method
 703   // resets the size to 0 before the next call (which is sequential,
 704   // since this is pop_local.)
 705   uint dirty_n_elems = dirty_size(localBot, _age.top());
 706   assert(dirty_n_elems != N - 1, "Shouldn't be possible...");
 707   if (dirty_n_elems == 0) return false;
 708   localBot = decrement_index(localBot);
 709   _bottom = localBot;
 710   // This is necessary to prevent any read below from being reordered
 711   // before the store just above.
 712   OrderAccess::fence();
 713   // g++ complains if the volatile result of the assignment is
 714   // unused, so we cast the volatile away.  We cannot cast directly
 715   // to void, because gcc treats that as not using the result of the
 716   // assignment.  However, casting to E& means that we trigger an
 717   // unused-value warning.  So, we cast the E& to void.
 718   (void) const_cast<E&>(t = _elems[localBot]);
 719   // This is a second read of "age"; the "size()" above is the first.
 720   // If there's still at least one element in the queue, based on the
 721   // "_bottom" and "age" we've read, then there can be no interference with
 722   // a "pop_global" operation, and we're done.
 723   idx_t tp = _age.top();    // XXX
 724   if (size(localBot, tp) > 0) {
 725     assert(dirty_size(localBot, tp) != N - 1, "sanity");
 726     TASKQUEUE_STATS_ONLY(stats.record_pop());
 727     return true;
 728   } else {
 729     // Otherwise, the queue contained exactly one element; we take the slow
 730     // path.
 731 
 732     // The barrier is required to prevent reordering the two reads of _age:
 733     // one is the _age.get() below, and the other is _age.top() above the if-stmt.
 734     // The algorithm may fail if _age.get() reads an older value than _age.top().
 735     OrderAccess::loadload();
 736     return pop_local_slow(localBot, _age.get());
 737   }
 738 }
 739 
 740 typedef GenericTaskQueue<oop, mtGC>             OopTaskQueue;
 741 typedef GenericTaskQueueSet<OopTaskQueue, mtGC> OopTaskQueueSet;
 742 
 743 #ifdef _MSC_VER
 744 #pragma warning(push)
 745 // warning C4522: multiple assignment operators specified
 746 #pragma warning(disable:4522)
 747 #endif
 748 
 749 // This is a container class for either an oop* or a narrowOop*.
 750 // Both are pushed onto a task queue and the consumer will test is_narrow()
 751 // to determine which should be processed.
 752 class StarTask {
 753   void*  _holder;        // either union oop* or narrowOop*
 754 
 755   enum { COMPRESSED_OOP_MASK = 1 };
 756 
 757  public:
 758   StarTask(narrowOop* p) {
 759     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
 760     _holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK);
 761   }
 762   StarTask(oop* p)       {
 763     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
 764     _holder = (void*)p;
 765   }
 766   StarTask()             { _holder = NULL; }
 767   operator oop*()        { return (oop*)_holder; }
 768   operator narrowOop*()  {
 769     return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK);
 770   }
 771 
 772   StarTask& operator=(const StarTask& t) {
 773     _holder = t._holder;
 774     return *this;
 775   }
 776   volatile StarTask& operator=(const volatile StarTask& t) volatile {
 777     _holder = t._holder;
 778     return *this;
 779   }
 780 
 781   bool is_narrow() const {
 782     return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0);
 783   }
 784 };
 785 
 786 class ObjArrayTask
 787 {
 788 public:
 789   ObjArrayTask(oop o = NULL, int idx = 0): _obj(o), _index(idx) { }
 790   ObjArrayTask(oop o, size_t idx): _obj(o), _index(int(idx)) {
 791     assert(idx <= size_t(max_jint), "too big");
 792   }
 793   ObjArrayTask(const ObjArrayTask& t): _obj(t._obj), _index(t._index) { }
 794 
 795   ObjArrayTask& operator =(const ObjArrayTask& t) {
 796     _obj = t._obj;
 797     _index = t._index;
 798     return *this;
 799   }
 800   volatile ObjArrayTask&
 801   operator =(const volatile ObjArrayTask& t) volatile {
 802     (void)const_cast<oop&>(_obj = t._obj);
 803     _index = t._index;
 804     return *this;
 805   }
 806 
 807   inline oop obj()   const { return _obj; }
 808   inline int index() const { return _index; }
 809 
 810   DEBUG_ONLY(bool is_valid() const); // Tasks to be pushed/popped must be valid.
 811 
 812 private:
 813   oop _obj;
 814   int _index;
 815 };
 816 
 817 #ifdef _MSC_VER
 818 #pragma warning(pop)
 819 #endif
 820 
 821 typedef OverflowTaskQueue<StarTask, mtClass>           OopStarTaskQueue;
 822 typedef GenericTaskQueueSet<OopStarTaskQueue, mtClass> OopStarTaskQueueSet;
 823 
 824 typedef OverflowTaskQueue<size_t, mtInternal>             RegionTaskQueue;
 825 typedef GenericTaskQueueSet<RegionTaskQueue, mtClass>     RegionTaskQueueSet;
 826 
 827 
 828 #endif // SHARE_VM_UTILITIES_TASKQUEUE_HPP