1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "classfile/systemDictionary.hpp"
  34 #include "classfile/vmSymbols.hpp"
  35 #include "code/codeBlob.hpp"
  36 #include "code/compiledIC.hpp"
  37 #include "code/pcDesc.hpp"
  38 #include "code/scopeDesc.hpp"
  39 #include "code/vtableStubs.hpp"
  40 #include "compiler/disassembler.hpp"
  41 #include "gc_interface/collectedHeap.hpp"
  42 #include "interpreter/bytecode.hpp"
  43 #include "interpreter/interpreter.hpp"
  44 #include "memory/allocation.inline.hpp"
  45 #include "memory/barrierSet.hpp"
  46 #include "memory/oopFactory.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "oops/objArrayKlass.hpp"
  49 #include "oops/oop.inline.hpp"
  50 #include "runtime/biasedLocking.hpp"
  51 #include "runtime/compilationPolicy.hpp"
  52 #include "runtime/interfaceSupport.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/sharedRuntime.hpp"
  55 #include "runtime/threadCritical.hpp"
  56 #include "runtime/vframe.hpp"
  57 #include "runtime/vframeArray.hpp"
  58 #include "utilities/copy.hpp"
  59 #include "utilities/events.hpp"
  60 
  61 #ifdef BUILTIN_SIM
  62 #include "../../../../../../simulator/simulator.hpp"
  63 #endif
  64 
  65 // Implementation of StubAssembler
  66 
  67 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
  68   _name = name;
  69   _must_gc_arguments = false;
  70   _frame_size = no_frame_size;
  71   _num_rt_args = 0;
  72   _stub_id = stub_id;
  73 }
  74 
  75 
  76 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
  77   _name = name;
  78   _must_gc_arguments = must_gc_arguments;
  79 }
  80 
  81 
  82 void StubAssembler::set_frame_size(int size) {
  83   if (_frame_size == no_frame_size) {
  84     _frame_size = size;
  85   }
  86   assert(_frame_size == size, "can't change the frame size");
  87 }
  88 
  89 
  90 void StubAssembler::set_num_rt_args(int args) {
  91   if (_num_rt_args == 0) {
  92     _num_rt_args = args;
  93   }
  94   assert(_num_rt_args == args, "can't change the number of args");
  95 }
  96 
  97 // Implementation of Runtime1
  98 
  99 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
 100 const char *Runtime1::_blob_names[] = {
 101   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
 102 };
 103 
 104 #ifndef PRODUCT
 105 // statistics
 106 int Runtime1::_generic_arraycopy_cnt = 0;
 107 int Runtime1::_primitive_arraycopy_cnt = 0;
 108 int Runtime1::_oop_arraycopy_cnt = 0;
 109 int Runtime1::_generic_arraycopystub_cnt = 0;
 110 int Runtime1::_arraycopy_slowcase_cnt = 0;
 111 int Runtime1::_arraycopy_checkcast_cnt = 0;
 112 int Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
 113 int Runtime1::_new_type_array_slowcase_cnt = 0;
 114 int Runtime1::_new_object_array_slowcase_cnt = 0;
 115 int Runtime1::_new_instance_slowcase_cnt = 0;
 116 int Runtime1::_new_multi_array_slowcase_cnt = 0;
 117 int Runtime1::_monitorenter_slowcase_cnt = 0;
 118 int Runtime1::_monitorexit_slowcase_cnt = 0;
 119 int Runtime1::_patch_code_slowcase_cnt = 0;
 120 int Runtime1::_throw_range_check_exception_count = 0;
 121 int Runtime1::_throw_index_exception_count = 0;
 122 int Runtime1::_throw_div0_exception_count = 0;
 123 int Runtime1::_throw_null_pointer_exception_count = 0;
 124 int Runtime1::_throw_class_cast_exception_count = 0;
 125 int Runtime1::_throw_incompatible_class_change_error_count = 0;
 126 int Runtime1::_throw_array_store_exception_count = 0;
 127 int Runtime1::_throw_count = 0;
 128 
 129 static int _byte_arraycopy_cnt = 0;
 130 static int _short_arraycopy_cnt = 0;
 131 static int _int_arraycopy_cnt = 0;
 132 static int _long_arraycopy_cnt = 0;
 133 static int _oop_arraycopy_cnt = 0;
 134 
 135 address Runtime1::arraycopy_count_address(BasicType type) {
 136   switch (type) {
 137   case T_BOOLEAN:
 138   case T_BYTE:   return (address)&_byte_arraycopy_cnt;
 139   case T_CHAR:
 140   case T_SHORT:  return (address)&_short_arraycopy_cnt;
 141   case T_FLOAT:
 142   case T_INT:    return (address)&_int_arraycopy_cnt;
 143   case T_DOUBLE:
 144   case T_LONG:   return (address)&_long_arraycopy_cnt;
 145   case T_ARRAY:
 146   case T_OBJECT: return (address)&_oop_arraycopy_cnt;
 147   default:
 148     ShouldNotReachHere();
 149     return NULL;
 150   }
 151 }
 152 
 153 
 154 #endif
 155 
 156 // Simple helper to see if the caller of a runtime stub which
 157 // entered the VM has been deoptimized
 158 
 159 static bool caller_is_deopted() {
 160   JavaThread* thread = JavaThread::current();
 161   RegisterMap reg_map(thread, false);
 162   frame runtime_frame = thread->last_frame();
 163   frame caller_frame = runtime_frame.sender(&reg_map);
 164   assert(caller_frame.is_compiled_frame(), "must be compiled");
 165   return caller_frame.is_deoptimized_frame();
 166 }
 167 
 168 // Stress deoptimization
 169 static void deopt_caller() {
 170   if ( !caller_is_deopted()) {
 171     JavaThread* thread = JavaThread::current();
 172     RegisterMap reg_map(thread, false);
 173     frame runtime_frame = thread->last_frame();
 174     frame caller_frame = runtime_frame.sender(&reg_map);
 175     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 176     assert(caller_is_deopted(), "Must be deoptimized");
 177   }
 178 }
 179 
 180 
 181 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
 182   assert(0 <= id && id < number_of_ids, "illegal stub id");
 183   ResourceMark rm;
 184   // create code buffer for code storage
 185   CodeBuffer code(buffer_blob);
 186 
 187   Compilation::setup_code_buffer(&code, 0);
 188 
 189   // create assembler for code generation
 190   StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
 191   // generate code for runtime stub
 192   OopMapSet* oop_maps;
 193 #ifdef BUILTIN_SIM
 194     AArch64Simulator *simulator = AArch64Simulator::get_current(UseSimulatorCache, DisableBCCheck);
 195   if (NotifySimulator) {
 196     size_t len = 65536;
 197     char *name = new char[len];
 198 
 199     // tell the sim about the new stub code
 200     strncpy(name, name_for(id), len);
 201     // replace spaces with underscore so we can write to file and reparse
 202     for (char *p = strpbrk(name, " "); p; p = strpbrk(p, " ")) {
 203       *p = '_';
 204     }
 205     unsigned char *base = buffer_blob->code_begin();
 206     simulator->notifyCompile(name, base);
 207 //    delete[] name;
 208   }
 209 #endif
 210   oop_maps = generate_code_for(id, sasm);
 211   assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
 212          "if stub has an oop map it must have a valid frame size");
 213 
 214 #ifdef ASSERT
 215   // Make sure that stubs that need oopmaps have them
 216   switch (id) {
 217     // These stubs don't need to have an oopmap
 218     case dtrace_object_alloc_id:
 219     case g1_pre_barrier_slow_id:
 220     case g1_post_barrier_slow_id:
 221     case slow_subtype_check_id:
 222     case fpu2long_stub_id:
 223     case unwind_exception_id:
 224     case counter_overflow_id:
 225 #if defined(SPARC) || defined(PPC)
 226     case handle_exception_nofpu_id:  // Unused on sparc
 227 #endif
 228       break;
 229 
 230     // All other stubs should have oopmaps
 231     default:
 232       assert(oop_maps != NULL, "must have an oopmap");
 233       break;
 234   }
 235 #endif
 236 
 237   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
 238   sasm->align(BytesPerWord);
 239   // make sure all code is in code buffer
 240   sasm->flush();
 241 
 242   // create blob - distinguish a few special cases
 243   CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
 244                                                  &code,
 245                                                  CodeOffsets::frame_never_safe,
 246                                                  sasm->frame_size(),
 247                                                  oop_maps,
 248                                                  sasm->must_gc_arguments());
 249 #ifdef BUILTIN_SIM
 250   if (NotifySimulator) {
 251     unsigned char *base = buffer_blob->code_begin();
 252     simulator->notifyRelocate(base, blob->code_begin() - base);
 253   }
 254 #endif
 255   // install blob
 256   assert(blob != NULL, "blob must exist");
 257   _blobs[id] = blob;
 258 }
 259 
 260 
 261 void Runtime1::initialize(BufferBlob* blob) {
 262   // platform-dependent initialization
 263   initialize_pd();
 264   // generate stubs
 265   for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
 266   // printing
 267 #ifndef PRODUCT
 268   if (PrintSimpleStubs) {
 269     ResourceMark rm;
 270     for (int id = 0; id < number_of_ids; id++) {
 271       _blobs[id]->print();
 272       if (_blobs[id]->oop_maps() != NULL) {
 273         _blobs[id]->oop_maps()->print();
 274       }
 275     }
 276   }
 277 #endif
 278 }
 279 
 280 
 281 CodeBlob* Runtime1::blob_for(StubID id) {
 282   assert(0 <= id && id < number_of_ids, "illegal stub id");
 283   return _blobs[id];
 284 }
 285 
 286 
 287 const char* Runtime1::name_for(StubID id) {
 288   assert(0 <= id && id < number_of_ids, "illegal stub id");
 289   return _blob_names[id];
 290 }
 291 
 292 const char* Runtime1::name_for_address(address entry) {
 293   for (int id = 0; id < number_of_ids; id++) {
 294     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
 295   }
 296 
 297 #define FUNCTION_CASE(a, f) \
 298   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
 299 
 300   FUNCTION_CASE(entry, os::javaTimeMillis);
 301   FUNCTION_CASE(entry, os::javaTimeNanos);
 302   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
 303   FUNCTION_CASE(entry, SharedRuntime::d2f);
 304   FUNCTION_CASE(entry, SharedRuntime::d2i);
 305   FUNCTION_CASE(entry, SharedRuntime::d2l);
 306   FUNCTION_CASE(entry, SharedRuntime::dcos);
 307   FUNCTION_CASE(entry, SharedRuntime::dexp);
 308   FUNCTION_CASE(entry, SharedRuntime::dlog);
 309   FUNCTION_CASE(entry, SharedRuntime::dlog10);
 310   FUNCTION_CASE(entry, SharedRuntime::dpow);
 311   FUNCTION_CASE(entry, SharedRuntime::drem);
 312   FUNCTION_CASE(entry, SharedRuntime::dsin);
 313   FUNCTION_CASE(entry, SharedRuntime::dtan);
 314   FUNCTION_CASE(entry, SharedRuntime::f2i);
 315   FUNCTION_CASE(entry, SharedRuntime::f2l);
 316   FUNCTION_CASE(entry, SharedRuntime::frem);
 317   FUNCTION_CASE(entry, SharedRuntime::l2d);
 318   FUNCTION_CASE(entry, SharedRuntime::l2f);
 319   FUNCTION_CASE(entry, SharedRuntime::ldiv);
 320   FUNCTION_CASE(entry, SharedRuntime::lmul);
 321   FUNCTION_CASE(entry, SharedRuntime::lrem);
 322   FUNCTION_CASE(entry, SharedRuntime::lrem);
 323   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
 324   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
 325   FUNCTION_CASE(entry, is_instance_of);
 326   FUNCTION_CASE(entry, trace_block_entry);
 327 #ifdef TRACE_HAVE_INTRINSICS
 328   FUNCTION_CASE(entry, TRACE_TIME_METHOD);
 329 #endif
 330   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
 331 
 332 #undef FUNCTION_CASE
 333 
 334   // Soft float adds more runtime names.
 335   return pd_name_for_address(entry);
 336 }
 337 
 338 
 339 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, Klass* klass))
 340   NOT_PRODUCT(_new_instance_slowcase_cnt++;)
 341 
 342   assert(klass->is_klass(), "not a class");
 343   Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 344   instanceKlassHandle h(thread, klass);
 345   h->check_valid_for_instantiation(true, CHECK);
 346   // make sure klass is initialized
 347   h->initialize(CHECK);
 348   // allocate instance and return via TLS
 349   oop obj = h->allocate_instance(CHECK);
 350   thread->set_vm_result(obj);
 351 JRT_END
 352 
 353 
 354 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, Klass* klass, jint length))
 355   NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
 356   // Note: no handle for klass needed since they are not used
 357   //       anymore after new_typeArray() and no GC can happen before.
 358   //       (This may have to change if this code changes!)
 359   assert(klass->is_klass(), "not a class");
 360   BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
 361   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
 362   thread->set_vm_result(obj);
 363   // This is pretty rare but this runtime patch is stressful to deoptimization
 364   // if we deoptimize here so force a deopt to stress the path.
 365   if (DeoptimizeALot) {
 366     deopt_caller();
 367   }
 368 
 369 JRT_END
 370 
 371 
 372 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, Klass* array_klass, jint length))
 373   NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
 374 
 375   // Note: no handle for klass needed since they are not used
 376   //       anymore after new_objArray() and no GC can happen before.
 377   //       (This may have to change if this code changes!)
 378   assert(array_klass->is_klass(), "not a class");
 379   Handle holder(THREAD, array_klass->klass_holder()); // keep the klass alive
 380   Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
 381   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
 382   thread->set_vm_result(obj);
 383   // This is pretty rare but this runtime patch is stressful to deoptimization
 384   // if we deoptimize here so force a deopt to stress the path.
 385   if (DeoptimizeALot) {
 386     deopt_caller();
 387   }
 388 JRT_END
 389 
 390 
 391 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, Klass* klass, int rank, jint* dims))
 392   NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
 393 
 394   assert(klass->is_klass(), "not a class");
 395   assert(rank >= 1, "rank must be nonzero");
 396   Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 397   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
 398   thread->set_vm_result(obj);
 399 JRT_END
 400 
 401 
 402 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
 403   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
 404 JRT_END
 405 
 406 
 407 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread, oopDesc* obj))
 408   ResourceMark rm(thread);
 409   const char* klass_name = obj->klass()->external_name();
 410   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayStoreException(), klass_name);
 411 JRT_END
 412 
 413 
 414 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
 415 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
 416 // method) method oop is passed as an argument. In order to do that it is embedded in the code as
 417 // a constant.
 418 static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, Method* m) {
 419   nmethod* osr_nm = NULL;
 420   methodHandle method(THREAD, m);
 421 
 422   RegisterMap map(THREAD, false);
 423   frame fr =  THREAD->last_frame().sender(&map);
 424   nmethod* nm = (nmethod*) fr.cb();
 425   assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
 426   methodHandle enclosing_method(THREAD, nm->method());
 427 
 428   CompLevel level = (CompLevel)nm->comp_level();
 429   int bci = InvocationEntryBci;
 430   if (branch_bci != InvocationEntryBci) {
 431     // Compute desination bci
 432     address pc = method()->code_base() + branch_bci;
 433     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
 434     int offset = 0;
 435     switch (branch) {
 436       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
 437       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
 438       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
 439       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
 440       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
 441       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
 442       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
 443         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
 444         break;
 445       case Bytecodes::_goto_w:
 446         offset = Bytes::get_Java_u4(pc + 1);
 447         break;
 448       default: ;
 449     }
 450     bci = branch_bci + offset;
 451   }
 452   assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
 453   osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, nm, THREAD);
 454   assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
 455   return osr_nm;
 456 }
 457 
 458 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, Method* method))
 459   nmethod* osr_nm;
 460   JRT_BLOCK
 461     osr_nm = counter_overflow_helper(thread, bci, method);
 462     if (osr_nm != NULL) {
 463       RegisterMap map(thread, false);
 464       frame fr =  thread->last_frame().sender(&map);
 465       Deoptimization::deoptimize_frame(thread, fr.id());
 466     }
 467   JRT_BLOCK_END
 468   return NULL;
 469 JRT_END
 470 
 471 extern void vm_exit(int code);
 472 
 473 // Enter this method from compiled code handler below. This is where we transition
 474 // to VM mode. This is done as a helper routine so that the method called directly
 475 // from compiled code does not have to transition to VM. This allows the entry
 476 // method to see if the nmethod that we have just looked up a handler for has
 477 // been deoptimized while we were in the vm. This simplifies the assembly code
 478 // cpu directories.
 479 //
 480 // We are entering here from exception stub (via the entry method below)
 481 // If there is a compiled exception handler in this method, we will continue there;
 482 // otherwise we will unwind the stack and continue at the caller of top frame method
 483 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
 484 // control the area where we can allow a safepoint. After we exit the safepoint area we can
 485 // check to see if the handler we are going to return is now in a nmethod that has
 486 // been deoptimized. If that is the case we return the deopt blob
 487 // unpack_with_exception entry instead. This makes life for the exception blob easier
 488 // because making that same check and diverting is painful from assembly language.
 489 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
 490   // Reset method handle flag.
 491   thread->set_is_method_handle_return(false);
 492 
 493   Handle exception(thread, ex);
 494   nm = CodeCache::find_nmethod(pc);
 495   assert(nm != NULL, "this is not an nmethod");
 496   // Adjust the pc as needed/
 497   if (nm->is_deopt_pc(pc)) {
 498     RegisterMap map(thread, false);
 499     frame exception_frame = thread->last_frame().sender(&map);
 500     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
 501     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
 502     pc = exception_frame.pc();
 503   }
 504 #ifdef ASSERT
 505   assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
 506   assert(exception->is_oop(), "just checking");
 507   // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
 508   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
 509     if (ExitVMOnVerifyError) vm_exit(-1);
 510     ShouldNotReachHere();
 511   }
 512 #endif
 513 
 514   // Check the stack guard pages and reenable them if necessary and there is
 515   // enough space on the stack to do so.  Use fast exceptions only if the guard
 516   // pages are enabled.
 517   bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
 518   if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 519 
 520   if (JvmtiExport::can_post_on_exceptions()) {
 521     // To ensure correct notification of exception catches and throws
 522     // we have to deoptimize here.  If we attempted to notify the
 523     // catches and throws during this exception lookup it's possible
 524     // we could deoptimize on the way out of the VM and end back in
 525     // the interpreter at the throw site.  This would result in double
 526     // notifications since the interpreter would also notify about
 527     // these same catches and throws as it unwound the frame.
 528 
 529     RegisterMap reg_map(thread);
 530     frame stub_frame = thread->last_frame();
 531     frame caller_frame = stub_frame.sender(&reg_map);
 532 
 533     // We don't really want to deoptimize the nmethod itself since we
 534     // can actually continue in the exception handler ourselves but I
 535     // don't see an easy way to have the desired effect.
 536     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 537     assert(caller_is_deopted(), "Must be deoptimized");
 538 
 539     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 540   }
 541 
 542   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
 543   if (guard_pages_enabled) {
 544     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
 545     if (fast_continuation != NULL) {
 546       // Set flag if return address is a method handle call site.
 547       thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 548       return fast_continuation;
 549     }
 550   }
 551 
 552   // If the stack guard pages are enabled, check whether there is a handler in
 553   // the current method.  Otherwise (guard pages disabled), force an unwind and
 554   // skip the exception cache update (i.e., just leave continuation==NULL).
 555   address continuation = NULL;
 556   if (guard_pages_enabled) {
 557 
 558     // New exception handling mechanism can support inlined methods
 559     // with exception handlers since the mappings are from PC to PC
 560 
 561     // debugging support
 562     // tracing
 563     if (TraceExceptions) {
 564       ttyLocker ttyl;
 565       ResourceMark rm;
 566       tty->print_cr("Exception <%s> (" INTPTR_FORMAT ") thrown in compiled method <%s> at PC " INTPTR_FORMAT " for thread " INTPTR_FORMAT "",
 567                     exception->print_value_string(), p2i((address)exception()), nm->method()->print_value_string(), p2i(pc), p2i(thread));
 568     }
 569     // for AbortVMOnException flag
 570     NOT_PRODUCT(Exceptions::debug_check_abort(exception));
 571 
 572     // Clear out the exception oop and pc since looking up an
 573     // exception handler can cause class loading, which might throw an
 574     // exception and those fields are expected to be clear during
 575     // normal bytecode execution.
 576     thread->clear_exception_oop_and_pc();
 577 
 578     Handle original_exception(thread, exception());
 579 
 580     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false);
 581     // If an exception was thrown during exception dispatch, the exception oop may have changed
 582     thread->set_exception_oop(exception());
 583     thread->set_exception_pc(pc);
 584 
 585     // the exception cache is used only by non-implicit exceptions
 586     // Update the exception cache only when there didn't happen
 587     // another exception during the computation of the compiled
 588     // exception handler.
 589     if (continuation != NULL && original_exception() == exception()) {
 590       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
 591     }
 592   }
 593 
 594   thread->set_vm_result(exception());
 595   // Set flag if return address is a method handle call site.
 596   thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 597 
 598   if (TraceExceptions) {
 599     ttyLocker ttyl;
 600     ResourceMark rm;
 601     tty->print_cr("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT " for exception thrown at PC " PTR_FORMAT,
 602                   p2i(thread), p2i(continuation), p2i(pc));
 603   }
 604 
 605   return continuation;
 606 JRT_END
 607 
 608 // Enter this method from compiled code only if there is a Java exception handler
 609 // in the method handling the exception.
 610 // We are entering here from exception stub. We don't do a normal VM transition here.
 611 // We do it in a helper. This is so we can check to see if the nmethod we have just
 612 // searched for an exception handler has been deoptimized in the meantime.
 613 address Runtime1::exception_handler_for_pc(JavaThread* thread) {
 614   oop exception = thread->exception_oop();
 615   address pc = thread->exception_pc();
 616   // Still in Java mode
 617   DEBUG_ONLY(ResetNoHandleMark rnhm);
 618   nmethod* nm = NULL;
 619   address continuation = NULL;
 620   {
 621     // Enter VM mode by calling the helper
 622     ResetNoHandleMark rnhm;
 623     continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
 624   }
 625   // Back in JAVA, use no oops DON'T safepoint
 626 
 627   // Now check to see if the nmethod we were called from is now deoptimized.
 628   // If so we must return to the deopt blob and deoptimize the nmethod
 629   if (nm != NULL && caller_is_deopted()) {
 630     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 631   }
 632 
 633   assert(continuation != NULL, "no handler found");
 634   return continuation;
 635 }
 636 
 637 
 638 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
 639   NOT_PRODUCT(_throw_range_check_exception_count++;)
 640   char message[jintAsStringSize];
 641   sprintf(message, "%d", index);
 642   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
 643 JRT_END
 644 
 645 
 646 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
 647   NOT_PRODUCT(_throw_index_exception_count++;)
 648   char message[16];
 649   sprintf(message, "%d", index);
 650   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
 651 JRT_END
 652 
 653 
 654 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
 655   NOT_PRODUCT(_throw_div0_exception_count++;)
 656   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 657 JRT_END
 658 
 659 
 660 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
 661   NOT_PRODUCT(_throw_null_pointer_exception_count++;)
 662   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 663 JRT_END
 664 
 665 
 666 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
 667   NOT_PRODUCT(_throw_class_cast_exception_count++;)
 668   ResourceMark rm(thread);
 669   char* message = SharedRuntime::generate_class_cast_message(
 670     thread, object->klass()->external_name());
 671   SharedRuntime::throw_and_post_jvmti_exception(
 672     thread, vmSymbols::java_lang_ClassCastException(), message);
 673 JRT_END
 674 
 675 
 676 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
 677   NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
 678   ResourceMark rm(thread);
 679   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
 680 JRT_END
 681 
 682 
 683 JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
 684   NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
 685   if (PrintBiasedLockingStatistics) {
 686     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
 687   }
 688   Handle h_obj(thread, obj);
 689   assert(h_obj()->is_oop(), "must be NULL or an object");
 690   if (UseBiasedLocking) {
 691     // Retry fast entry if bias is revoked to avoid unnecessary inflation
 692     ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
 693   } else {
 694     if (UseFastLocking) {
 695       // When using fast locking, the compiled code has already tried the fast case
 696       assert(obj == lock->obj(), "must match");
 697       ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
 698     } else {
 699       lock->set_obj(obj);
 700       ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
 701     }
 702   }
 703 JRT_END
 704 
 705 
 706 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
 707   NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
 708   assert(thread == JavaThread::current(), "threads must correspond");
 709   assert(thread->last_Java_sp(), "last_Java_sp must be set");
 710   // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
 711   EXCEPTION_MARK;
 712 
 713   oop obj = lock->obj();
 714   assert(obj->is_oop(), "must be NULL or an object");
 715   if (UseFastLocking) {
 716     // When using fast locking, the compiled code has already tried the fast case
 717     ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
 718   } else {
 719     ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
 720   }
 721 JRT_END
 722 
 723 // Cf. OptoRuntime::deoptimize_caller_frame
 724 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* thread))
 725   // Called from within the owner thread, so no need for safepoint
 726   RegisterMap reg_map(thread, false);
 727   frame stub_frame = thread->last_frame();
 728   assert(stub_frame.is_runtime_frame(), "sanity check");
 729   frame caller_frame = stub_frame.sender(&reg_map);
 730 
 731   // We are coming from a compiled method; check this is true.
 732   assert(CodeCache::find_nmethod(caller_frame.pc()) != NULL, "sanity");
 733 
 734   // Deoptimize the caller frame.
 735   Deoptimization::deoptimize_frame(thread, caller_frame.id());
 736 
 737   // Return to the now deoptimized frame.
 738 JRT_END
 739 
 740 
 741 static Klass* resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
 742   Bytecode_field field_access(caller, bci);
 743   // This can be static or non-static field access
 744   Bytecodes::Code code       = field_access.code();
 745 
 746   // We must load class, initialize class and resolvethe field
 747   fieldDescriptor result; // initialize class if needed
 748   constantPoolHandle constants(THREAD, caller->constants());
 749   LinkResolver::resolve_field_access(result, constants, field_access.index(), Bytecodes::java_code(code), CHECK_NULL);
 750   return result.field_holder();
 751 }
 752 
 753 
 754 //
 755 // This routine patches sites where a class wasn't loaded or
 756 // initialized at the time the code was generated.  It handles
 757 // references to classes, fields and forcing of initialization.  Most
 758 // of the cases are straightforward and involving simply forcing
 759 // resolution of a class, rewriting the instruction stream with the
 760 // needed constant and replacing the call in this function with the
 761 // patched code.  The case for static field is more complicated since
 762 // the thread which is in the process of initializing a class can
 763 // access it's static fields but other threads can't so the code
 764 // either has to deoptimize when this case is detected or execute a
 765 // check that the current thread is the initializing thread.  The
 766 // current
 767 //
 768 // Patches basically look like this:
 769 //
 770 //
 771 // patch_site: jmp patch stub     ;; will be patched
 772 // continue:   ...
 773 //             ...
 774 //             ...
 775 //             ...
 776 //
 777 // They have a stub which looks like this:
 778 //
 779 //             ;; patch body
 780 //             movl <const>, reg           (for class constants)
 781 //        <or> movl [reg1 + <const>], reg  (for field offsets)
 782 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
 783 //             <being_init offset> <bytes to copy> <bytes to skip>
 784 // patch_stub: call Runtime1::patch_code (through a runtime stub)
 785 //             jmp patch_site
 786 //
 787 //
 788 // A normal patch is done by rewriting the patch body, usually a move,
 789 // and then copying it into place over top of the jmp instruction
 790 // being careful to flush caches and doing it in an MP-safe way.  The
 791 // constants following the patch body are used to find various pieces
 792 // of the patch relative to the call site for Runtime1::patch_code.
 793 // The case for getstatic and putstatic is more complicated because
 794 // getstatic and putstatic have special semantics when executing while
 795 // the class is being initialized.  getstatic/putstatic on a class
 796 // which is being_initialized may be executed by the initializing
 797 // thread but other threads have to block when they execute it.  This
 798 // is accomplished in compiled code by executing a test of the current
 799 // thread against the initializing thread of the class.  It's emitted
 800 // as boilerplate in their stub which allows the patched code to be
 801 // executed before it's copied back into the main body of the nmethod.
 802 //
 803 // being_init: get_thread(<tmp reg>
 804 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
 805 //             jne patch_stub
 806 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
 807 //             movl reg, [reg1 + <const>]  (for field offsets)
 808 //             jmp continue
 809 //             <being_init offset> <bytes to copy> <bytes to skip>
 810 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
 811 //             jmp patch_site
 812 //
 813 // If the class is being initialized the patch body is rewritten and
 814 // the patch site is rewritten to jump to being_init, instead of
 815 // patch_stub.  Whenever this code is executed it checks the current
 816 // thread against the intializing thread so other threads will enter
 817 // the runtime and end up blocked waiting the class to finish
 818 // initializing inside the calls to resolve_field below.  The
 819 // initializing class will continue on it's way.  Once the class is
 820 // fully_initialized, the intializing_thread of the class becomes
 821 // NULL, so the next thread to execute this code will fail the test,
 822 // call into patch_code and complete the patching process by copying
 823 // the patch body back into the main part of the nmethod and resume
 824 // executing.
 825 //
 826 //
 827 
 828 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
 829   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
 830 
 831 #ifdef AARCH64
 832   // AArch64 does not patch C1-generated code.
 833   ShouldNotReachHere();
 834 #endif
 835 
 836   ResourceMark rm(thread);
 837   RegisterMap reg_map(thread, false);
 838   frame runtime_frame = thread->last_frame();
 839   frame caller_frame = runtime_frame.sender(&reg_map);
 840 
 841   // last java frame on stack
 842   vframeStream vfst(thread, true);
 843   assert(!vfst.at_end(), "Java frame must exist");
 844 
 845   methodHandle caller_method(THREAD, vfst.method());
 846   // Note that caller_method->code() may not be same as caller_code because of OSR's
 847   // Note also that in the presence of inlining it is not guaranteed
 848   // that caller_method() == caller_code->method()
 849 
 850   int bci = vfst.bci();
 851   Bytecodes::Code code = caller_method()->java_code_at(bci);
 852 
 853 #ifndef PRODUCT
 854   // this is used by assertions in the access_field_patching_id
 855   BasicType patch_field_type = T_ILLEGAL;
 856 #endif // PRODUCT
 857   bool deoptimize_for_volatile = false;
 858   int patch_field_offset = -1;
 859   KlassHandle init_klass(THREAD, NULL); // klass needed by load_klass_patching code
 860   KlassHandle load_klass(THREAD, NULL); // klass needed by load_klass_patching code
 861   Handle mirror(THREAD, NULL);                    // oop needed by load_mirror_patching code
 862   Handle appendix(THREAD, NULL);                  // oop needed by appendix_patching code
 863   bool load_klass_or_mirror_patch_id =
 864     (stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id);
 865 
 866   if (stub_id == Runtime1::access_field_patching_id) {
 867 
 868     Bytecode_field field_access(caller_method, bci);
 869     fieldDescriptor result; // initialize class if needed
 870     Bytecodes::Code code = field_access.code();
 871     constantPoolHandle constants(THREAD, caller_method->constants());
 872     LinkResolver::resolve_field_access(result, constants, field_access.index(), Bytecodes::java_code(code), CHECK);
 873     patch_field_offset = result.offset();
 874 
 875     // If we're patching a field which is volatile then at compile it
 876     // must not have been know to be volatile, so the generated code
 877     // isn't correct for a volatile reference.  The nmethod has to be
 878     // deoptimized so that the code can be regenerated correctly.
 879     // This check is only needed for access_field_patching since this
 880     // is the path for patching field offsets.  load_klass is only
 881     // used for patching references to oops which don't need special
 882     // handling in the volatile case.
 883     deoptimize_for_volatile = result.access_flags().is_volatile();
 884 
 885 #ifndef PRODUCT
 886     patch_field_type = result.field_type();
 887 #endif
 888   } else if (load_klass_or_mirror_patch_id) {
 889     Klass* k = NULL;
 890     switch (code) {
 891       case Bytecodes::_putstatic:
 892       case Bytecodes::_getstatic:
 893         { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
 894           init_klass = KlassHandle(THREAD, klass);
 895           mirror = Handle(THREAD, klass->java_mirror());
 896         }
 897         break;
 898       case Bytecodes::_new:
 899         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
 900           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
 901         }
 902         break;
 903       case Bytecodes::_multianewarray:
 904         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
 905           k = caller_method->constants()->klass_at(mna.index(), CHECK);
 906         }
 907         break;
 908       case Bytecodes::_instanceof:
 909         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
 910           k = caller_method->constants()->klass_at(io.index(), CHECK);
 911         }
 912         break;
 913       case Bytecodes::_checkcast:
 914         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
 915           k = caller_method->constants()->klass_at(cc.index(), CHECK);
 916         }
 917         break;
 918       case Bytecodes::_anewarray:
 919         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
 920           Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
 921           k = ek->array_klass(CHECK);
 922         }
 923         break;
 924       case Bytecodes::_ldc:
 925       case Bytecodes::_ldc_w:
 926         {
 927           Bytecode_loadconstant cc(caller_method, bci);
 928           oop m = cc.resolve_constant(CHECK);
 929           mirror = Handle(THREAD, m);
 930         }
 931         break;
 932       default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
 933     }
 934     // convert to handle
 935     load_klass = KlassHandle(THREAD, k);
 936   } else if (stub_id == load_appendix_patching_id) {
 937     Bytecode_invoke bytecode(caller_method, bci);
 938     Bytecodes::Code bc = bytecode.invoke_code();
 939 
 940     CallInfo info;
 941     constantPoolHandle pool(thread, caller_method->constants());
 942     int index = bytecode.index();
 943     LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
 944     appendix = info.resolved_appendix();
 945     switch (bc) {
 946       case Bytecodes::_invokehandle: {
 947         int cache_index = ConstantPool::decode_cpcache_index(index, true);
 948         assert(cache_index >= 0 && cache_index < pool->cache()->length(), "unexpected cache index");
 949         pool->cache()->entry_at(cache_index)->set_method_handle(pool, info);
 950         break;
 951       }
 952       case Bytecodes::_invokedynamic: {
 953         pool->invokedynamic_cp_cache_entry_at(index)->set_dynamic_call(pool, info);
 954         break;
 955       }
 956       default: fatal("unexpected bytecode for load_appendix_patching_id");
 957     }
 958   } else {
 959     ShouldNotReachHere();
 960   }
 961 
 962   if (deoptimize_for_volatile) {
 963     // At compile time we assumed the field wasn't volatile but after
 964     // loading it turns out it was volatile so we have to throw the
 965     // compiled code out and let it be regenerated.
 966     if (TracePatching) {
 967       tty->print_cr("Deoptimizing for patching volatile field reference");
 968     }
 969     // It's possible the nmethod was invalidated in the last
 970     // safepoint, but if it's still alive then make it not_entrant.
 971     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
 972     if (nm != NULL) {
 973       nm->make_not_entrant();
 974     }
 975 
 976     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 977 
 978     // Return to the now deoptimized frame.
 979   }
 980 
 981   // Now copy code back
 982   {
 983     MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
 984     //
 985     // Deoptimization may have happened while we waited for the lock.
 986     // In that case we don't bother to do any patching we just return
 987     // and let the deopt happen
 988     if (!caller_is_deopted()) {
 989       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
 990       address instr_pc = jump->jump_destination();
 991       NativeInstruction* ni = nativeInstruction_at(instr_pc);
 992       if (ni->is_jump() ) {
 993         // the jump has not been patched yet
 994         // The jump destination is slow case and therefore not part of the stubs
 995         // (stubs are only for StaticCalls)
 996 
 997         // format of buffer
 998         //    ....
 999         //    instr byte 0     <-- copy_buff
1000         //    instr byte 1
1001         //    ..
1002         //    instr byte n-1
1003         //      n
1004         //    ....             <-- call destination
1005 
1006         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
1007         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
1008         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
1009         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
1010         address copy_buff = stub_location - *byte_skip - *byte_count;
1011         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
1012         if (TracePatching) {
1013           tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT "  (%s)", Bytecodes::name(code), bci,
1014                         p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
1015           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
1016           assert(caller_code != NULL, "nmethod not found");
1017 
1018           // NOTE we use pc() not original_pc() because we already know they are
1019           // identical otherwise we'd have never entered this block of code
1020 
1021           OopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
1022           assert(map != NULL, "null check");
1023           map->print();
1024           tty->cr();
1025 
1026           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1027         }
1028         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1029         bool do_patch = true;
1030         if (stub_id == Runtime1::access_field_patching_id) {
1031           // The offset may not be correct if the class was not loaded at code generation time.
1032           // Set it now.
1033           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1034           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1035           assert(patch_field_offset >= 0, "illegal offset");
1036           n_move->add_offset_in_bytes(patch_field_offset);
1037         } else if (load_klass_or_mirror_patch_id) {
1038           // If a getstatic or putstatic is referencing a klass which
1039           // isn't fully initialized, the patch body isn't copied into
1040           // place until initialization is complete.  In this case the
1041           // patch site is setup so that any threads besides the
1042           // initializing thread are forced to come into the VM and
1043           // block.
1044           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1045                      InstanceKlass::cast(init_klass())->is_initialized();
1046           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1047           if (jump->jump_destination() == being_initialized_entry) {
1048             assert(do_patch == true, "initialization must be complete at this point");
1049           } else {
1050             // patch the instruction <move reg, klass>
1051             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1052 
1053             assert(n_copy->data() == 0 ||
1054                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
1055                    "illegal init value");
1056             if (stub_id == Runtime1::load_klass_patching_id) {
1057               assert(load_klass() != NULL, "klass not set");
1058               n_copy->set_data((intx) (load_klass()));
1059             } else {
1060               assert(mirror() != NULL, "klass not set");
1061               // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
1062               n_copy->set_data(cast_from_oop<intx>(mirror()));
1063             }
1064 
1065             if (TracePatching) {
1066               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1067             }
1068           }
1069         } else if (stub_id == Runtime1::load_appendix_patching_id) {
1070           NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1071           assert(n_copy->data() == 0 ||
1072                  n_copy->data() == (intptr_t)Universe::non_oop_word(),
1073                  "illegal init value");
1074           n_copy->set_data(cast_from_oop<intx>(appendix()));
1075 
1076           if (TracePatching) {
1077             Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1078           }
1079         } else {
1080           ShouldNotReachHere();
1081         }
1082 
1083 #if defined(SPARC) || defined(PPC)
1084         if (load_klass_or_mirror_patch_id ||
1085             stub_id == Runtime1::load_appendix_patching_id) {
1086           // Update the location in the nmethod with the proper
1087           // metadata.  When the code was generated, a NULL was stuffed
1088           // in the metadata table and that table needs to be update to
1089           // have the right value.  On intel the value is kept
1090           // directly in the instruction instead of in the metadata
1091           // table, so set_data above effectively updated the value.
1092           nmethod* nm = CodeCache::find_nmethod(instr_pc);
1093           assert(nm != NULL, "invalid nmethod_pc");
1094           RelocIterator mds(nm, copy_buff, copy_buff + 1);
1095           bool found = false;
1096           while (mds.next() && !found) {
1097             if (mds.type() == relocInfo::oop_type) {
1098               assert(stub_id == Runtime1::load_mirror_patching_id ||
1099                      stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1100               oop_Relocation* r = mds.oop_reloc();
1101               oop* oop_adr = r->oop_addr();
1102               *oop_adr = stub_id == Runtime1::load_mirror_patching_id ? mirror() : appendix();
1103               r->fix_oop_relocation();
1104               found = true;
1105             } else if (mds.type() == relocInfo::metadata_type) {
1106               assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1107               metadata_Relocation* r = mds.metadata_reloc();
1108               Metadata** metadata_adr = r->metadata_addr();
1109               *metadata_adr = load_klass();
1110               r->fix_metadata_relocation();
1111               found = true;
1112             }
1113           }
1114           assert(found, "the metadata must exist!");
1115         }
1116 #endif
1117         if (do_patch) {
1118           // replace instructions
1119           // first replace the tail, then the call
1120 #ifdef ARM
1121           if((load_klass_or_mirror_patch_id ||
1122               stub_id == Runtime1::load_appendix_patching_id) &&
1123               nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
1124             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1125             address addr = NULL;
1126             assert(nm != NULL, "invalid nmethod_pc");
1127             RelocIterator mds(nm, copy_buff, copy_buff + 1);
1128             while (mds.next()) {
1129               if (mds.type() == relocInfo::oop_type) {
1130                 assert(stub_id == Runtime1::load_mirror_patching_id ||
1131                        stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1132                 oop_Relocation* r = mds.oop_reloc();
1133                 addr = (address)r->oop_addr();
1134                 break;
1135               } else if (mds.type() == relocInfo::metadata_type) {
1136                 assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1137                 metadata_Relocation* r = mds.metadata_reloc();
1138                 addr = (address)r->metadata_addr();
1139                 break;
1140               }
1141             }
1142             assert(addr != NULL, "metadata relocation must exist");
1143             copy_buff -= *byte_count;
1144             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1145             n_copy2->set_pc_relative_offset(addr, instr_pc);
1146           }
1147 #endif
1148 
1149           for (int i = NativeCall::instruction_size; i < *byte_count; i++) {
1150             address ptr = copy_buff + i;
1151             int a_byte = (*ptr) & 0xFF;
1152             address dst = instr_pc + i;
1153             *(unsigned char*)dst = (unsigned char) a_byte;
1154           }
1155           ICache::invalidate_range(instr_pc, *byte_count);
1156           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1157 
1158           if (load_klass_or_mirror_patch_id ||
1159               stub_id == Runtime1::load_appendix_patching_id) {
1160             relocInfo::relocType rtype =
1161               (stub_id == Runtime1::load_klass_patching_id) ?
1162                                    relocInfo::metadata_type :
1163                                    relocInfo::oop_type;
1164 
1165             // update relocInfo to metadata
1166             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1167             assert(nm != NULL, "invalid nmethod_pc");
1168 
1169             // The old patch site is now a move instruction so update
1170             // the reloc info so that it will get updated during
1171             // future GCs.
1172             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1173             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1174                                                      relocInfo::none, rtype);
1175 #ifdef SPARC
1176             // Sparc takes two relocations for an metadata so update the second one.
1177             address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
1178             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1179             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1180                                                      relocInfo::none, rtype);
1181 #endif
1182 #ifdef PPC
1183           { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
1184             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1185             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1186                                                      relocInfo::none, rtype);
1187           }
1188 #endif
1189           }
1190 
1191         } else {
1192           ICache::invalidate_range(copy_buff, *byte_count);
1193           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1194         }
1195       }
1196     }
1197   }
1198 
1199   // If we are patching in a non-perm oop, make sure the nmethod
1200   // is on the right list.
1201   if (ScavengeRootsInCode && ((mirror.not_null() && mirror()->is_scavengable()) ||
1202                               (appendix.not_null() && appendix->is_scavengable()))) {
1203     MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
1204     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1205     guarantee(nm != NULL, "only nmethods can contain non-perm oops");
1206     if (!nm->on_scavenge_root_list()) {
1207       CodeCache::add_scavenge_root_nmethod(nm);
1208     }
1209 
1210     // Since we've patched some oops in the nmethod,
1211     // (re)register it with the heap.
1212     Universe::heap()->register_nmethod(nm);
1213   }
1214 JRT_END
1215 
1216 //
1217 // Entry point for compiled code. We want to patch a nmethod.
1218 // We don't do a normal VM transition here because we want to
1219 // know after the patching is complete and any safepoint(s) are taken
1220 // if the calling nmethod was deoptimized. We do this by calling a
1221 // helper method which does the normal VM transition and when it
1222 // completes we can check for deoptimization. This simplifies the
1223 // assembly code in the cpu directories.
1224 //
1225 #ifndef TARGET_ARCH_aarch64
1226 int Runtime1::move_klass_patching(JavaThread* thread) {
1227 //
1228 // NOTE: we are still in Java
1229 //
1230   Thread* THREAD = thread;
1231   debug_only(NoHandleMark nhm;)
1232   {
1233     // Enter VM mode
1234 
1235     ResetNoHandleMark rnhm;
1236     patch_code(thread, load_klass_patching_id);
1237   }
1238   // Back in JAVA, use no oops DON'T safepoint
1239 
1240   // Return true if calling code is deoptimized
1241 
1242   return caller_is_deopted();
1243 }
1244 
1245 int Runtime1::move_mirror_patching(JavaThread* thread) {
1246 //
1247 // NOTE: we are still in Java
1248 //
1249   Thread* THREAD = thread;
1250   debug_only(NoHandleMark nhm;)
1251   {
1252     // Enter VM mode
1253 
1254     ResetNoHandleMark rnhm;
1255     patch_code(thread, load_mirror_patching_id);
1256   }
1257   // Back in JAVA, use no oops DON'T safepoint
1258 
1259   // Return true if calling code is deoptimized
1260 
1261   return caller_is_deopted();
1262 }
1263 
1264 int Runtime1::move_appendix_patching(JavaThread* thread) {
1265 //
1266 // NOTE: we are still in Java
1267 //
1268   Thread* THREAD = thread;
1269   debug_only(NoHandleMark nhm;)
1270   {
1271     // Enter VM mode
1272 
1273     ResetNoHandleMark rnhm;
1274     patch_code(thread, load_appendix_patching_id);
1275   }
1276   // Back in JAVA, use no oops DON'T safepoint
1277 
1278   // Return true if calling code is deoptimized
1279 
1280   return caller_is_deopted();
1281 }
1282 //
1283 // Entry point for compiled code. We want to patch a nmethod.
1284 // We don't do a normal VM transition here because we want to
1285 // know after the patching is complete and any safepoint(s) are taken
1286 // if the calling nmethod was deoptimized. We do this by calling a
1287 // helper method which does the normal VM transition and when it
1288 // completes we can check for deoptimization. This simplifies the
1289 // assembly code in the cpu directories.
1290 //
1291 
1292 int Runtime1::access_field_patching(JavaThread* thread) {
1293 //
1294 // NOTE: we are still in Java
1295 //
1296   Thread* THREAD = thread;
1297   debug_only(NoHandleMark nhm;)
1298   {
1299     // Enter VM mode
1300 
1301     ResetNoHandleMark rnhm;
1302     patch_code(thread, access_field_patching_id);
1303   }
1304   // Back in JAVA, use no oops DON'T safepoint
1305 
1306   // Return true if calling code is deoptimized
1307 
1308   return caller_is_deopted();
1309 JRT_END
1310 #endif
1311 
1312 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1313   // for now we just print out the block id
1314   tty->print("%d ", block_id);
1315 JRT_END
1316 
1317 
1318 // Array copy return codes.
1319 enum {
1320   ac_failed = -1, // arraycopy failed
1321   ac_ok = 0       // arraycopy succeeded
1322 };
1323 
1324 
1325 // Below length is the # elements copied.
1326 template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
1327                                           oopDesc* dst, T* dst_addr,
1328                                           int length) {
1329 
1330   // For performance reasons, we assume we are using a card marking write
1331   // barrier. The assert will fail if this is not the case.
1332   // Note that we use the non-virtual inlineable variant of write_ref_array.
1333   BarrierSet* bs = Universe::heap()->barrier_set();
1334   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1335   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1336   if (src == dst) {
1337     // same object, no check
1338     bs->write_ref_array_pre(dst_addr, length);
1339     Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1340     bs->write_ref_array((HeapWord*)dst_addr, length);
1341     return ac_ok;
1342   } else {
1343     Klass* bound = ObjArrayKlass::cast(dst->klass())->element_klass();
1344     Klass* stype = ObjArrayKlass::cast(src->klass())->element_klass();
1345     if (stype == bound || stype->is_subtype_of(bound)) {
1346       // Elements are guaranteed to be subtypes, so no check necessary
1347       bs->write_ref_array_pre(dst_addr, length);
1348       Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1349       bs->write_ref_array((HeapWord*)dst_addr, length);
1350       return ac_ok;
1351     }
1352   }
1353   return ac_failed;
1354 }
1355 
1356 // fast and direct copy of arrays; returning -1, means that an exception may be thrown
1357 // and we did not copy anything
1358 JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
1359 #ifndef PRODUCT
1360   _generic_arraycopy_cnt++;        // Slow-path oop array copy
1361 #endif
1362 
1363   if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
1364   if (!dst->is_array() || !src->is_array()) return ac_failed;
1365   if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
1366   if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
1367 
1368   if (length == 0) return ac_ok;
1369   if (src->is_typeArray()) {
1370     Klass* klass_oop = src->klass();
1371     if (klass_oop != dst->klass()) return ac_failed;
1372     TypeArrayKlass* klass = TypeArrayKlass::cast(klass_oop);
1373     const int l2es = klass->log2_element_size();
1374     const int ihs = klass->array_header_in_bytes() / wordSize;
1375     char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
1376     char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
1377     // Potential problem: memmove is not guaranteed to be word atomic
1378     // Revisit in Merlin
1379     memmove(dst_addr, src_addr, length << l2es);
1380     return ac_ok;
1381   } else if (src->is_objArray() && dst->is_objArray()) {
1382     if (UseCompressedOops) {
1383       narrowOop *src_addr  = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
1384       narrowOop *dst_addr  = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
1385       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1386     } else {
1387       oop *src_addr  = objArrayOop(src)->obj_at_addr<oop>(src_pos);
1388       oop *dst_addr  = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
1389       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1390     }
1391   }
1392   return ac_failed;
1393 JRT_END
1394 
1395 
1396 JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
1397 #ifndef PRODUCT
1398   _primitive_arraycopy_cnt++;
1399 #endif
1400 
1401   if (length == 0) return;
1402   // Not guaranteed to be word atomic, but that doesn't matter
1403   // for anything but an oop array, which is covered by oop_arraycopy.
1404   Copy::conjoint_jbytes(src, dst, length);
1405 JRT_END
1406 
1407 JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
1408 #ifndef PRODUCT
1409   _oop_arraycopy_cnt++;
1410 #endif
1411 
1412   if (num == 0) return;
1413   BarrierSet* bs = Universe::heap()->barrier_set();
1414   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1415   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1416   if (UseCompressedOops) {
1417     bs->write_ref_array_pre((narrowOop*)dst, num);
1418     Copy::conjoint_oops_atomic((narrowOop*) src, (narrowOop*) dst, num);
1419   } else {
1420     bs->write_ref_array_pre((oop*)dst, num);
1421     Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
1422   }
1423   bs->write_ref_array(dst, num);
1424 JRT_END
1425 
1426 
1427 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1428   // had to return int instead of bool, otherwise there may be a mismatch
1429   // between the C calling convention and the Java one.
1430   // e.g., on x86, GCC may clear only %al when returning a bool false, but
1431   // JVM takes the whole %eax as the return value, which may misinterpret
1432   // the return value as a boolean true.
1433 
1434   assert(mirror != NULL, "should null-check on mirror before calling");
1435   Klass* k = java_lang_Class::as_Klass(mirror);
1436   return (k != NULL && obj != NULL && obj->is_a(k)) ? 1 : 0;
1437 JRT_END
1438 
1439 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* thread))
1440   ResourceMark rm;
1441 
1442   assert(!TieredCompilation, "incompatible with tiered compilation");
1443 
1444   RegisterMap reg_map(thread, false);
1445   frame runtime_frame = thread->last_frame();
1446   frame caller_frame = runtime_frame.sender(&reg_map);
1447 
1448   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1449   assert (nm != NULL, "no more nmethod?");
1450   nm->make_not_entrant();
1451 
1452   methodHandle m(nm->method());
1453   MethodData* mdo = m->method_data();
1454 
1455   if (mdo == NULL && !HAS_PENDING_EXCEPTION) {
1456     // Build an MDO.  Ignore errors like OutOfMemory;
1457     // that simply means we won't have an MDO to update.
1458     Method::build_interpreter_method_data(m, THREAD);
1459     if (HAS_PENDING_EXCEPTION) {
1460       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1461       CLEAR_PENDING_EXCEPTION;
1462     }
1463     mdo = m->method_data();
1464   }
1465 
1466   if (mdo != NULL) {
1467     mdo->inc_trap_count(Deoptimization::Reason_none);
1468   }
1469 
1470   if (TracePredicateFailedTraps) {
1471     stringStream ss1, ss2;
1472     vframeStream vfst(thread);
1473     methodHandle inlinee = methodHandle(vfst.method());
1474     inlinee->print_short_name(&ss1);
1475     m->print_short_name(&ss2);
1476     tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.as_string(), vfst.bci(), ss2.as_string(), p2i(caller_frame.pc()));
1477   }
1478 
1479 
1480   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1481 
1482 JRT_END
1483 
1484 #ifndef PRODUCT
1485 void Runtime1::print_statistics() {
1486   tty->print_cr("C1 Runtime statistics:");
1487   tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
1488   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
1489   tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
1490   tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
1491   tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
1492   tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
1493   tty->print_cr(" _generic_arraycopystub_cnt:      %d", _generic_arraycopystub_cnt);
1494   tty->print_cr(" _byte_arraycopy_cnt:             %d", _byte_arraycopy_cnt);
1495   tty->print_cr(" _short_arraycopy_cnt:            %d", _short_arraycopy_cnt);
1496   tty->print_cr(" _int_arraycopy_cnt:              %d", _int_arraycopy_cnt);
1497   tty->print_cr(" _long_arraycopy_cnt:             %d", _long_arraycopy_cnt);
1498   tty->print_cr(" _primitive_arraycopy_cnt:        %d", _primitive_arraycopy_cnt);
1499   tty->print_cr(" _oop_arraycopy_cnt (C):          %d", Runtime1::_oop_arraycopy_cnt);
1500   tty->print_cr(" _oop_arraycopy_cnt (stub):       %d", _oop_arraycopy_cnt);
1501   tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
1502   tty->print_cr(" _arraycopy_checkcast_cnt:        %d", _arraycopy_checkcast_cnt);
1503   tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt);
1504 
1505   tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
1506   tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
1507   tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
1508   tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
1509   tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
1510   tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
1511   tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
1512 
1513   tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
1514   tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
1515   tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
1516   tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
1517   tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
1518   tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
1519   tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
1520   tty->print_cr(" _throw_count:                                  %d:", _throw_count);
1521 
1522   SharedRuntime::print_ic_miss_histogram();
1523   tty->cr();
1524 }
1525 #endif // PRODUCT