1 /*
2 * Copyright (c) 2018, 2023, Red Hat, Inc. All rights reserved.
3 * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26 #include "gc/shared/barrierSet.hpp"
27 #include "gc/shenandoah/c2/shenandoahBarrierSetC2.hpp"
28 #include "gc/shenandoah/heuristics/shenandoahHeuristics.hpp"
29 #include "gc/shenandoah/shenandoahForwarding.hpp"
30 #include "gc/shenandoah/shenandoahHeap.hpp"
31 #include "gc/shenandoah/shenandoahRuntime.hpp"
32 #include "gc/shenandoah/shenandoahThreadLocalData.hpp"
33 #include "opto/arraycopynode.hpp"
34 #include "opto/escape.hpp"
35 #include "opto/graphKit.hpp"
36 #include "opto/idealKit.hpp"
37 #include "opto/macro.hpp"
38 #include "opto/narrowptrnode.hpp"
39 #include "opto/output.hpp"
40 #include "opto/rootnode.hpp"
41 #include "opto/runtime.hpp"
42
43 ShenandoahBarrierSetC2* ShenandoahBarrierSetC2::bsc2() {
44 return reinterpret_cast<ShenandoahBarrierSetC2*>(BarrierSet::barrier_set()->barrier_set_c2());
45 }
46
47 ShenandoahBarrierSetC2State::ShenandoahBarrierSetC2State(Arena* comp_arena) :
48 BarrierSetC2State(comp_arena),
49 _stubs(new (comp_arena) GrowableArray<ShenandoahBarrierStubC2*>(comp_arena, 8, 0, nullptr)),
50 _stubs_start_offset(0) {
51 }
52
53 #define __ kit->
54
55 static bool satb_can_remove_pre_barrier(GraphKit* kit, PhaseValues* phase, Node* adr,
56 BasicType bt, uint adr_idx) {
57 intptr_t offset = 0;
58 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
59 AllocateNode* alloc = AllocateNode::Ideal_allocation(base);
60
61 if (offset == Type::OffsetBot) {
62 return false; // cannot unalias unless there are precise offsets
63 }
64
65 if (alloc == nullptr) {
66 return false; // No allocation found
67 }
68
69 intptr_t size_in_bytes = type2aelembytes(bt);
70
71 Node* mem = __ memory(adr_idx); // start searching here...
72
73 for (int cnt = 0; cnt < 50; cnt++) {
74
75 if (mem->is_Store()) {
76
77 Node* st_adr = mem->in(MemNode::Address);
78 intptr_t st_offset = 0;
79 Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
80
81 if (st_base == nullptr) {
82 break; // inscrutable pointer
83 }
84
85 // Break we have found a store with same base and offset as ours so break
86 if (st_base == base && st_offset == offset) {
87 break;
88 }
89
90 if (st_offset != offset && st_offset != Type::OffsetBot) {
91 const int MAX_STORE = BytesPerLong;
92 if (st_offset >= offset + size_in_bytes ||
93 st_offset <= offset - MAX_STORE ||
94 st_offset <= offset - mem->as_Store()->memory_size()) {
95 // Success: The offsets are provably independent.
96 // (You may ask, why not just test st_offset != offset and be done?
97 // The answer is that stores of different sizes can co-exist
98 // in the same sequence of RawMem effects. We sometimes initialize
99 // a whole 'tile' of array elements with a single jint or jlong.)
100 mem = mem->in(MemNode::Memory);
101 continue; // advance through independent store memory
102 }
103 }
104
105 if (st_base != base
106 && MemNode::detect_ptr_independence(base, alloc, st_base,
107 AllocateNode::Ideal_allocation(st_base),
108 phase)) {
109 // Success: The bases are provably independent.
110 mem = mem->in(MemNode::Memory);
111 continue; // advance through independent store memory
112 }
113 } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
114
115 InitializeNode* st_init = mem->in(0)->as_Initialize();
116 AllocateNode* st_alloc = st_init->allocation();
117
118 // Make sure that we are looking at the same allocation site.
119 // The alloc variable is guaranteed to not be null here from earlier check.
120 if (alloc == st_alloc) {
121 // Check that the initialization is storing null so that no previous store
122 // has been moved up and directly write a reference
123 Node* captured_store = st_init->find_captured_store(offset,
124 type2aelembytes(T_OBJECT),
125 phase);
126 if (captured_store == nullptr || captured_store == st_init->zero_memory()) {
127 return true;
128 }
129 }
130 }
131
132 // Unless there is an explicit 'continue', we must bail out here,
133 // because 'mem' is an inscrutable memory state (e.g., a call).
134 break;
135 }
136
137 return false;
138 }
139
140 static bool shenandoah_can_remove_post_barrier(GraphKit* kit, PhaseValues* phase, Node* store_ctrl, Node* adr) {
141 intptr_t offset = 0;
142 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
143 AllocateNode* alloc = AllocateNode::Ideal_allocation(base);
144
145 if (offset == Type::OffsetBot) {
146 return false; // Cannot unalias unless there are precise offsets.
147 }
148 if (alloc == nullptr) {
149 return false; // No allocation found.
150 }
151
152 Node* mem = store_ctrl; // Start search from Store node.
153 if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
154 InitializeNode* st_init = mem->in(0)->as_Initialize();
155 AllocateNode* st_alloc = st_init->allocation();
156 // Make sure we are looking at the same allocation
157 if (alloc == st_alloc) {
158 return true;
159 }
160 }
161
162 return false;
163 }
164
165 bool ShenandoahBarrierSetC2::is_shenandoah_clone_call(Node* call) {
166 return call->is_CallLeaf() &&
167 call->as_CallLeaf()->entry_point() == CAST_FROM_FN_PTR(address, ShenandoahRuntime::clone_barrier);
168 }
169
170 const TypeFunc* ShenandoahBarrierSetC2::clone_barrier_Type() {
171 const Type **fields = TypeTuple::fields(1);
172 fields[TypeFunc::Parms+0] = TypeOopPtr::NOTNULL; // src oop
173 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
174
175 // create result type (range)
176 fields = TypeTuple::fields(0);
177 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
178
179 return TypeFunc::make(domain, range);
180 }
181
182 static uint8_t get_store_barrier(C2Access& access) {
183 if (!access.is_parse_access()) {
184 // Only support for eliding barriers at parse time for now.
185 return ShenandoahBarrierSATB | ShenandoahBarrierCardMark;
186 }
187 GraphKit* kit = (static_cast<C2ParseAccess&>(access)).kit();
188 Node* ctl = kit->control();
189 Node* adr = access.addr().node();
190 uint adr_idx = kit->C->get_alias_index(access.addr().type());
191 assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory");
192
193 bool can_remove_pre_barrier = satb_can_remove_pre_barrier(kit, &kit->gvn(), adr, access.type(), adr_idx);
194
195 // We can skip marks on a freshly-allocated object in Eden. Keep this code in
196 // sync with CardTableBarrierSet::on_slowpath_allocation_exit. That routine
197 // informs GC to take appropriate compensating steps, upon a slow-path
198 // allocation, so as to make this card-mark elision safe.
199 // The post-barrier can also be removed if null is written. This case is
200 // handled by ShenandoahBarrierSetC2::expand_barriers, which runs at the end of C2's
201 // platform-independent optimizations to exploit stronger type information.
202 bool can_remove_post_barrier = ReduceInitialCardMarks &&
203 ((access.base() == kit->just_allocated_object(ctl)) ||
204 shenandoah_can_remove_post_barrier(kit, &kit->gvn(), ctl, adr));
205
206 int barriers = 0;
207 if (!can_remove_pre_barrier) {
208 barriers |= ShenandoahBarrierSATB;
209 }
210 if (!can_remove_post_barrier) {
211 barriers |= ShenandoahBarrierCardMark;
212 }
213
214 return barriers;
215 }
216
217 Node* ShenandoahBarrierSetC2::store_at_resolved(C2Access& access, C2AccessValue& val) const {
218 DecoratorSet decorators = access.decorators();
219 bool anonymous = (decorators & ON_UNKNOWN_OOP_REF) != 0;
220 bool in_heap = (decorators & IN_HEAP) != 0;
221 bool tightly_coupled_alloc = (decorators & C2_TIGHTLY_COUPLED_ALLOC) != 0;
222 bool need_store_barrier = !(tightly_coupled_alloc && ReduceInitialCardMarks) && (in_heap || anonymous);
223 bool no_keepalive = (decorators & AS_NO_KEEPALIVE) != 0;
224 if (access.is_oop() && need_store_barrier) {
225 access.set_barrier_data(get_store_barrier(access));
226 if (tightly_coupled_alloc) {
227 assert(!ReduceInitialCardMarks,
228 "post-barriers are only needed for tightly-coupled initialization stores when ReduceInitialCardMarks is disabled");
229 // Pre-barriers are unnecessary for tightly-coupled initialization stores.
230 access.set_barrier_data(access.barrier_data() & ~ShenandoahBarrierSATB);
231 }
232 }
233 if (no_keepalive) {
234 // No keep-alive means no need for the pre-barrier.
235 access.set_barrier_data(access.barrier_data() & ~ShenandoahBarrierSATB);
236 }
237 return BarrierSetC2::store_at_resolved(access, val);
238 }
239
240 static void set_barrier_data(C2Access& access) {
241 if (!access.is_oop()) {
242 return;
243 }
244
245 if (access.decorators() & C2_TIGHTLY_COUPLED_ALLOC) {
246 access.set_barrier_data(ShenandoahBarrierElided);
247 return;
248 }
249
250 uint8_t barrier_data = 0;
251
252 if (access.decorators() & ON_PHANTOM_OOP_REF) {
253 barrier_data |= ShenandoahBarrierPhantom;
254 } else if (access.decorators() & ON_WEAK_OOP_REF) {
255 barrier_data |= ShenandoahBarrierWeak;
256 } else {
257 barrier_data |= ShenandoahBarrierStrong;
258 }
259
260 if (access.decorators() & IN_NATIVE) {
261 barrier_data |= ShenandoahBarrierNative;
262 }
263
264 access.set_barrier_data(barrier_data);
265 }
266
267 Node* ShenandoahBarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const {
268 // 1: non-reference load, no additional barrier is needed
269 if (!access.is_oop()) {
270 return BarrierSetC2::load_at_resolved(access, val_type);
271 }
272
273 // 2. Set barrier data for LRB.
274 set_barrier_data(access);
275
276 // 3. If we are reading the value of the referent field of a Reference object, we
277 // need to record the referent in an SATB log buffer using the pre-barrier
278 // mechanism.
279 DecoratorSet decorators = access.decorators();
280 bool on_weak = (decorators & ON_WEAK_OOP_REF) != 0;
281 bool on_phantom = (decorators & ON_PHANTOM_OOP_REF) != 0;
282 bool no_keepalive = (decorators & AS_NO_KEEPALIVE) != 0;
283 // If we are reading the value of the referent field of a Reference object, we
284 // need to record the referent in an SATB log buffer using the pre-barrier
285 // mechanism. Also we need to add a memory barrier to prevent commoning reads
286 // from this field across safepoints, since GC can change its value.
287 uint8_t barriers = access.barrier_data();
288 bool need_read_barrier = ((on_weak || on_phantom) && !no_keepalive);
289 if (access.is_oop() && need_read_barrier) {
290 barriers |= ShenandoahBarrierSATB;
291 }
292 access.set_barrier_data(barriers);
293
294 return BarrierSetC2::load_at_resolved(access, val_type);
295 }
296
297 Node* ShenandoahBarrierSetC2::atomic_cmpxchg_val_at_resolved(C2AtomicParseAccess& access, Node* expected_val,
298 Node* new_val, const Type* value_type) const {
299 if (ShenandoahCASBarrier) {
300 set_barrier_data(access);
301 }
302
303 if (access.is_oop()) {
304 access.set_barrier_data(access.barrier_data() | ShenandoahBarrierSATB | ShenandoahBarrierCardMark);
305 }
306 return BarrierSetC2::atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, value_type);
307 }
308
309 Node* ShenandoahBarrierSetC2::atomic_cmpxchg_bool_at_resolved(C2AtomicParseAccess& access, Node* expected_val,
310 Node* new_val, const Type* value_type) const {
311 if (ShenandoahCASBarrier) {
312 set_barrier_data(access);
313 }
314 GraphKit* kit = access.kit();
315 if (access.is_oop()) {
316 access.set_barrier_data(access.barrier_data() | ShenandoahBarrierSATB | ShenandoahBarrierCardMark);
317 }
318 return BarrierSetC2::atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type);
319 }
320
321 Node* ShenandoahBarrierSetC2::atomic_xchg_at_resolved(C2AtomicParseAccess& access, Node* val, const Type* value_type) const {
322 if (access.is_oop()) {
323 access.set_barrier_data(ShenandoahBarrierStrong | ShenandoahBarrierSATB | ShenandoahBarrierCardMark);
324 }
325 return BarrierSetC2::atomic_xchg_at_resolved(access, val, value_type);
326 }
327
328
329 bool ShenandoahBarrierSetC2::is_gc_barrier_node(Node* node) const {
330 return is_shenandoah_clone_call(node);
331 }
332
333 static void refine_barrier_by_new_val_type(const Node* n) {
334 if (n->Opcode() != Op_StoreP && n->Opcode() != Op_StoreN) {
335 return;
336 }
337 MemNode* store = n->as_Mem();
338 const Node* newval = n->in(MemNode::ValueIn);
339 assert(newval != nullptr, "");
340 const Type* newval_bottom = newval->bottom_type();
341 TypePtr::PTR newval_type = newval_bottom->make_ptr()->ptr();
342 uint8_t barrier_data = store->barrier_data();
343 if (!newval_bottom->isa_oopptr() &&
344 !newval_bottom->isa_narrowoop() &&
345 newval_type != TypePtr::Null) {
346 // newval is neither an OOP nor null, so there is no barrier to refine.
347 assert(barrier_data == 0, "non-OOP stores should have no barrier data");
348 return;
349 }
350 if (barrier_data == 0) {
351 // No barrier to refine.
352 return;
353 }
354 if (newval_type == TypePtr::Null) {
355 // Simply elide post-barrier if writing null.
356 barrier_data &= ~ShenandoahBarrierCardMark;
357 barrier_data &= ~ShenandoahBarrierCardMarkNotNull;
358 } else if ((barrier_data & ShenandoahBarrierCardMark) != 0 &&
359 newval_type == TypePtr::NotNull) {
360 // If the post-barrier has not been elided yet (e.g. due to newval being
361 // freshly allocated), mark it as not-null (simplifies barrier tests and
362 // compressed OOPs logic).
363 barrier_data |= ShenandoahBarrierCardMarkNotNull;
364 }
365 store->set_barrier_data(barrier_data);
366 }
367
368 bool ShenandoahBarrierSetC2::expand_barriers(Compile* C, PhaseIterGVN& igvn) const {
369 ResourceMark rm;
370 VectorSet visited;
371 Node_List worklist;
372 worklist.push(C->root());
373 while (worklist.size() > 0) {
374 Node* n = worklist.pop();
375 if (visited.test_set(n->_idx)) {
376 continue;
377 }
378 refine_barrier_by_new_val_type(n);
379 for (uint j = 0; j < n->req(); j++) {
380 Node* in = n->in(j);
381 if (in != nullptr) {
382 worklist.push(in);
383 }
384 }
385 }
386 return false;
387 }
388
389 bool ShenandoahBarrierSetC2::array_copy_requires_gc_barriers(bool tightly_coupled_alloc, BasicType type, bool is_clone, bool is_clone_instance, ArrayCopyPhase phase) const {
390 bool is_oop = is_reference_type(type);
391 if (!is_oop) {
392 return false;
393 }
394 if (ShenandoahSATBBarrier && tightly_coupled_alloc) {
395 if (phase == Optimization) {
396 return false;
397 }
398 return !is_clone;
399 }
400 return true;
401 }
402
403 bool ShenandoahBarrierSetC2::clone_needs_barrier(Node* src, PhaseGVN& gvn) {
404 const TypeOopPtr* src_type = gvn.type(src)->is_oopptr();
405 if (src_type->isa_instptr() != nullptr) {
406 ciInstanceKlass* ik = src_type->is_instptr()->instance_klass();
407 if ((src_type->klass_is_exact() || !ik->has_subklass()) && !ik->has_injected_fields()) {
408 if (ik->has_object_fields()) {
409 return true;
410 } else {
411 if (!src_type->klass_is_exact()) {
412 Compile::current()->dependencies()->assert_leaf_type(ik);
413 }
414 }
415 } else {
416 return true;
417 }
418 } else if (src_type->isa_aryptr()) {
419 BasicType src_elem = src_type->isa_aryptr()->elem()->array_element_basic_type();
420 if (is_reference_type(src_elem, true)) {
421 return true;
422 }
423 } else {
424 return true;
425 }
426 return false;
427 }
428
429 void ShenandoahBarrierSetC2::clone_at_expansion(PhaseMacroExpand* phase, ArrayCopyNode* ac) const {
430 Node* ctrl = ac->in(TypeFunc::Control);
431 Node* mem = ac->in(TypeFunc::Memory);
432 Node* src_base = ac->in(ArrayCopyNode::Src);
433 Node* src_offset = ac->in(ArrayCopyNode::SrcPos);
434 Node* dest_base = ac->in(ArrayCopyNode::Dest);
435 Node* dest_offset = ac->in(ArrayCopyNode::DestPos);
436 Node* length = ac->in(ArrayCopyNode::Length);
437
438 Node* src = phase->basic_plus_adr(src_base, src_offset);
439 Node* dest = phase->basic_plus_adr(dest_base, dest_offset);
440
441 if (ShenandoahCloneBarrier && clone_needs_barrier(src, phase->igvn())) {
442 // Check if heap is has forwarded objects. If it does, we need to call into the special
443 // routine that would fix up source references before we can continue.
444
445 enum { _heap_stable = 1, _heap_unstable, PATH_LIMIT };
446 Node* region = new RegionNode(PATH_LIMIT);
447 Node* mem_phi = new PhiNode(region, Type::MEMORY, TypeRawPtr::BOTTOM);
448
449 Node* thread = phase->transform_later(new ThreadLocalNode());
450 Node* offset = phase->igvn().MakeConX(in_bytes(ShenandoahThreadLocalData::gc_state_offset()));
451 Node* gc_state_addr = phase->transform_later(new AddPNode(phase->C->top(), thread, offset));
452
453 uint gc_state_idx = Compile::AliasIdxRaw;
454 const TypePtr* gc_state_adr_type = nullptr; // debug-mode-only argument
455 DEBUG_ONLY(gc_state_adr_type = phase->C->get_adr_type(gc_state_idx));
456
457 Node* gc_state = phase->transform_later(new LoadBNode(ctrl, mem, gc_state_addr, gc_state_adr_type, TypeInt::BYTE, MemNode::unordered));
458 Node* stable_and = phase->transform_later(new AndINode(gc_state, phase->igvn().intcon(ShenandoahHeap::HAS_FORWARDED)));
459 Node* stable_cmp = phase->transform_later(new CmpINode(stable_and, phase->igvn().zerocon(T_INT)));
460 Node* stable_test = phase->transform_later(new BoolNode(stable_cmp, BoolTest::ne));
461
462 IfNode* stable_iff = phase->transform_later(new IfNode(ctrl, stable_test, PROB_UNLIKELY(0.999), COUNT_UNKNOWN))->as_If();
463 Node* stable_ctrl = phase->transform_later(new IfFalseNode(stable_iff));
464 Node* unstable_ctrl = phase->transform_later(new IfTrueNode(stable_iff));
465
466 // Heap is stable, no need to do anything additional
467 region->init_req(_heap_stable, stable_ctrl);
468 mem_phi->init_req(_heap_stable, mem);
469
470 // Heap is unstable, call into clone barrier stub
471 Node* call = phase->make_leaf_call(unstable_ctrl, mem,
472 ShenandoahBarrierSetC2::clone_barrier_Type(),
473 CAST_FROM_FN_PTR(address, ShenandoahRuntime::clone_barrier),
474 "shenandoah_clone",
475 TypeRawPtr::BOTTOM,
476 src_base);
477 call = phase->transform_later(call);
478
479 ctrl = phase->transform_later(new ProjNode(call, TypeFunc::Control));
480 mem = phase->transform_later(new ProjNode(call, TypeFunc::Memory));
481 region->init_req(_heap_unstable, ctrl);
482 mem_phi->init_req(_heap_unstable, mem);
483
484 // Wire up the actual arraycopy stub now
485 ctrl = phase->transform_later(region);
486 mem = phase->transform_later(mem_phi);
487
488 const char* name = "arraycopy";
489 call = phase->make_leaf_call(ctrl, mem,
490 OptoRuntime::fast_arraycopy_Type(),
491 phase->basictype2arraycopy(T_LONG, nullptr, nullptr, true, name, true),
492 name, TypeRawPtr::BOTTOM,
493 src, dest, length
494 LP64_ONLY(COMMA phase->top()));
495 call = phase->transform_later(call);
496
497 // Hook up the whole thing into the graph
498 phase->igvn().replace_node(ac, call);
499 } else {
500 BarrierSetC2::clone_at_expansion(phase, ac);
501 }
502 }
503
504
505 // Support for macro expanded GC barriers
506 void ShenandoahBarrierSetC2::eliminate_gc_barrier_data(Node* node) const {
507 if (node->is_LoadStore()) {
508 LoadStoreNode* loadstore = node->as_LoadStore();
509 loadstore->set_barrier_data(0);
510 } else if (node->is_Mem()) {
511 MemNode* mem = node->as_Mem();
512 mem->set_barrier_data(0);
513 }
514 }
515
516 void ShenandoahBarrierSetC2::eliminate_gc_barrier(PhaseMacroExpand* macro, Node* node) const {
517 eliminate_gc_barrier_data(node);
518 }
519
520 void* ShenandoahBarrierSetC2::create_barrier_state(Arena* comp_arena) const {
521 return new(comp_arena) ShenandoahBarrierSetC2State(comp_arena);
522 }
523
524 ShenandoahBarrierSetC2State* ShenandoahBarrierSetC2::state() const {
525 return reinterpret_cast<ShenandoahBarrierSetC2State*>(Compile::current()->barrier_set_state());
526 }
527
528 #ifdef ASSERT
529 void ShenandoahBarrierSetC2::verify_gc_barriers(Compile* compile, CompilePhase phase) const {
530 // TODO: Re-implement C2 barrier verification.
531 }
532 #endif
533
534 static ShenandoahBarrierSetC2State* barrier_set_state() {
535 return reinterpret_cast<ShenandoahBarrierSetC2State*>(Compile::current()->barrier_set_state());
536 }
537
538 int ShenandoahBarrierSetC2::estimate_stub_size() const {
539 Compile* const C = Compile::current();
540 BufferBlob* const blob = C->output()->scratch_buffer_blob();
541 GrowableArray<ShenandoahBarrierStubC2*>* const stubs = barrier_set_state()->stubs();
542 int size = 0;
543
544 for (int i = 0; i < stubs->length(); i++) {
545 CodeBuffer cb(blob->content_begin(), checked_cast<CodeBuffer::csize_t>((address)C->output()->scratch_locs_memory() - blob->content_begin()));
546 MacroAssembler masm(&cb);
547 stubs->at(i)->emit_code(masm);
548 size += cb.insts_size();
549 }
550
551 return size;
552 }
553
554 void ShenandoahBarrierSetC2::emit_stubs(CodeBuffer& cb) const {
555 MacroAssembler masm(&cb);
556 GrowableArray<ShenandoahBarrierStubC2*>* const stubs = barrier_set_state()->stubs();
557 barrier_set_state()->set_stubs_start_offset(masm.offset());
558
559 for (int i = 0; i < stubs->length(); i++) {
560 // Make sure there is enough space in the code buffer
561 if (cb.insts()->maybe_expand_to_ensure_remaining(PhaseOutput::MAX_inst_size) && cb.blob() == nullptr) {
562 ciEnv::current()->record_failure("CodeCache is full");
563 return;
564 }
565
566 stubs->at(i)->emit_code(masm);
567 }
568
569 masm.flush();
570
571 }
572
573 void ShenandoahBarrierStubC2::register_stub() {
574 if (!Compile::current()->output()->in_scratch_emit_size()) {
575 barrier_set_state()->stubs()->append(this);
576 }
577 }
578
579 ShenandoahLoadRefBarrierStubC2* ShenandoahLoadRefBarrierStubC2::create(const MachNode* node, Register obj, Register addr, Register tmp1, Register tmp2, Register tmp3, bool narrow) {
580 auto* stub = new (Compile::current()->comp_arena()) ShenandoahLoadRefBarrierStubC2(node, obj, addr, tmp1, tmp2, tmp3, narrow);
581 stub->register_stub();
582 return stub;
583 }
584
585 ShenandoahSATBBarrierStubC2* ShenandoahSATBBarrierStubC2::create(const MachNode* node, Register addr, Register preval, Register tmp) {
586 auto* stub = new (Compile::current()->comp_arena()) ShenandoahSATBBarrierStubC2(node, addr, preval, tmp);
587 stub->register_stub();
588 return stub;
589 }
590
591 ShenandoahCASBarrierSlowStubC2* ShenandoahCASBarrierSlowStubC2::create(const MachNode* node, Register addr, Register expected, Register new_val, Register result, Register tmp, bool cae, bool acquire, bool release, bool weak) {
592 auto* stub = new (Compile::current()->comp_arena()) ShenandoahCASBarrierSlowStubC2(node, addr, Address(), expected, new_val, result, tmp, noreg, cae, acquire, release, weak);
593 stub->register_stub();
594 return stub;
595 }
596
597 ShenandoahCASBarrierSlowStubC2* ShenandoahCASBarrierSlowStubC2::create(const MachNode* node, Address addr, Register expected, Register new_val, Register result, Register tmp1, Register tmp2, bool cae) {
598 auto* stub = new (Compile::current()->comp_arena()) ShenandoahCASBarrierSlowStubC2(node, noreg, addr, expected, new_val, result, tmp1, tmp2, cae, false, false, false);
599 stub->register_stub();
600 return stub;
601 }
602
603 ShenandoahCASBarrierMidStubC2* ShenandoahCASBarrierMidStubC2::create(const MachNode* node, ShenandoahCASBarrierSlowStubC2* slow_stub, Register expected, Register result, Register tmp, bool cae) {
604 auto* stub = new (Compile::current()->comp_arena()) ShenandoahCASBarrierMidStubC2(node, slow_stub, expected, result, tmp, cae);
605 stub->register_stub();
606 return stub;
607 }
608
609 bool ShenandoahBarrierSetC2State::needs_liveness_data(const MachNode* mach) const {
610 //assert(mach->barrier_data() != 0, "what else?");
611 // return mach->barrier_data() != 0;
612 //return (mach->barrier_data() & ShenandoahSATBBarrier) != 0;
613 return ShenandoahSATBBarrierStubC2::needs_barrier(mach) || ShenandoahLoadRefBarrierStubC2::needs_barrier(mach);
614 }
615
616 bool ShenandoahBarrierSetC2State::needs_livein_data() const {
617 return true;
618 }