1 /*
  2  * Copyright (c) 2018, 2023, Red Hat, Inc. All rights reserved.
  3  * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
  4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  5  *
  6  * This code is free software; you can redistribute it and/or modify it
  7  * under the terms of the GNU General Public License version 2 only, as
  8  * published by the Free Software Foundation.
  9  *
 10  * This code is distributed in the hope that it will be useful, but WITHOUT
 11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 13  * version 2 for more details (a copy is included in the LICENSE file that
 14  * accompanied this code).
 15  *
 16  * You should have received a copy of the GNU General Public License version
 17  * 2 along with this work; if not, write to the Free Software Foundation,
 18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 19  *
 20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 21  * or visit www.oracle.com if you need additional information or have any
 22  * questions.
 23  *
 24  */
 25 
 26 #include "classfile/javaClasses.inline.hpp"
 27 #include "gc/shared/barrierSet.hpp"
 28 #include "gc/shenandoah/c2/shenandoahBarrierSetC2.hpp"
 29 #include "gc/shenandoah/heuristics/shenandoahHeuristics.hpp"
 30 #include "gc/shenandoah/shenandoahForwarding.hpp"
 31 #include "gc/shenandoah/shenandoahHeap.hpp"
 32 #include "gc/shenandoah/shenandoahRuntime.hpp"
 33 #include "gc/shenandoah/shenandoahThreadLocalData.hpp"
 34 #include "opto/arraycopynode.hpp"
 35 #include "opto/escape.hpp"
 36 #include "opto/graphKit.hpp"
 37 #include "opto/idealKit.hpp"
 38 #include "opto/macro.hpp"
 39 #include "opto/narrowptrnode.hpp"
 40 #include "opto/output.hpp"
 41 #include "opto/rootnode.hpp"
 42 #include "opto/runtime.hpp"
 43 
 44 ShenandoahBarrierSetC2* ShenandoahBarrierSetC2::bsc2() {
 45   return reinterpret_cast<ShenandoahBarrierSetC2*>(BarrierSet::barrier_set()->barrier_set_c2());
 46 }
 47 
 48 ShenandoahBarrierSetC2State::ShenandoahBarrierSetC2State(Arena* comp_arena) :
 49     BarrierSetC2State(comp_arena),
 50     _stubs(new (comp_arena) GrowableArray<ShenandoahBarrierStubC2*>(comp_arena, 8,  0, nullptr)),
 51     _stubs_start_offset(0) {
 52 }
 53 
 54 #define __ kit->
 55 
 56 static bool satb_can_remove_pre_barrier(GraphKit* kit, PhaseValues* phase, Node* adr,
 57                                         BasicType bt, uint adr_idx) {
 58   intptr_t offset = 0;
 59   Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 60   AllocateNode* alloc = AllocateNode::Ideal_allocation(base);
 61 
 62   if (offset == Type::OffsetBot) {
 63     return false; // cannot unalias unless there are precise offsets
 64   }
 65 
 66   if (alloc == nullptr) {
 67     return false; // No allocation found
 68   }
 69 
 70   intptr_t size_in_bytes = type2aelembytes(bt);
 71 
 72   Node* mem = __ memory(adr_idx); // start searching here...
 73 
 74   for (int cnt = 0; cnt < 50; cnt++) {
 75 
 76     if (mem->is_Store()) {
 77 
 78       Node* st_adr = mem->in(MemNode::Address);
 79       intptr_t st_offset = 0;
 80       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 81 
 82       if (st_base == nullptr) {
 83         break; // inscrutable pointer
 84       }
 85 
 86       // Break we have found a store with same base and offset as ours so break
 87       if (st_base == base && st_offset == offset) {
 88         break;
 89       }
 90 
 91       if (st_offset != offset && st_offset != Type::OffsetBot) {
 92         const int MAX_STORE = BytesPerLong;
 93         if (st_offset >= offset + size_in_bytes ||
 94             st_offset <= offset - MAX_STORE ||
 95             st_offset <= offset - mem->as_Store()->memory_size()) {
 96           // Success:  The offsets are provably independent.
 97           // (You may ask, why not just test st_offset != offset and be done?
 98           // The answer is that stores of different sizes can co-exist
 99           // in the same sequence of RawMem effects.  We sometimes initialize
100           // a whole 'tile' of array elements with a single jint or jlong.)
101           mem = mem->in(MemNode::Memory);
102           continue; // advance through independent store memory
103         }
104       }
105 
106       if (st_base != base
107           && MemNode::detect_ptr_independence(base, alloc, st_base,
108                                               AllocateNode::Ideal_allocation(st_base),
109                                               phase)) {
110         // Success:  The bases are provably independent.
111         mem = mem->in(MemNode::Memory);
112         continue; // advance through independent store memory
113       }
114     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
115 
116       InitializeNode* st_init = mem->in(0)->as_Initialize();
117       AllocateNode* st_alloc = st_init->allocation();
118 
119       // Make sure that we are looking at the same allocation site.
120       // The alloc variable is guaranteed to not be null here from earlier check.
121       if (alloc == st_alloc) {
122         // Check that the initialization is storing null so that no previous store
123         // has been moved up and directly write a reference
124         Node* captured_store = st_init->find_captured_store(offset,
125                                                             type2aelembytes(T_OBJECT),
126                                                             phase);
127         if (captured_store == nullptr || captured_store == st_init->zero_memory()) {
128           return true;
129         }
130       }
131     }
132 
133     // Unless there is an explicit 'continue', we must bail out here,
134     // because 'mem' is an inscrutable memory state (e.g., a call).
135     break;
136   }
137 
138   return false;
139 }
140 
141 static bool shenandoah_can_remove_post_barrier(GraphKit* kit, PhaseValues* phase, Node* store_ctrl, Node* adr) {
142   intptr_t      offset = 0;
143   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
144   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base);
145 
146   if (offset == Type::OffsetBot) {
147     return false; // Cannot unalias unless there are precise offsets.
148   }
149   if (alloc == nullptr) {
150     return false; // No allocation found.
151   }
152 
153   Node* mem = store_ctrl;   // Start search from Store node.
154   if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
155     InitializeNode* st_init = mem->in(0)->as_Initialize();
156     AllocateNode*  st_alloc = st_init->allocation();
157     // Make sure we are looking at the same allocation
158     if (alloc == st_alloc) {
159       return true;
160     }
161   }
162 
163   return false;
164 }
165 
166 bool ShenandoahBarrierSetC2::is_shenandoah_clone_call(Node* call) {
167   return call->is_CallLeaf() &&
168          call->as_CallLeaf()->entry_point() == CAST_FROM_FN_PTR(address, ShenandoahRuntime::clone_barrier);
169 }
170 
171 const TypeFunc* ShenandoahBarrierSetC2::clone_barrier_Type() {
172   const Type **fields = TypeTuple::fields(1);
173   fields[TypeFunc::Parms+0] = TypeOopPtr::NOTNULL; // src oop
174   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
175 
176   // create result type (range)
177   fields = TypeTuple::fields(0);
178   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
179 
180   return TypeFunc::make(domain, range);
181 }
182 
183 static uint8_t get_store_barrier(C2Access& access) {
184   if (!access.is_parse_access()) {
185     // Only support for eliding barriers at parse time for now.
186     return ShenandoahBarrierSATB | ShenandoahBarrierCardMark;
187   }
188   GraphKit* kit = (static_cast<C2ParseAccess&>(access)).kit();
189   Node* ctl = kit->control();
190   Node* adr = access.addr().node();
191   uint adr_idx = kit->C->get_alias_index(access.addr().type());
192   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory");
193 
194   bool can_remove_pre_barrier = satb_can_remove_pre_barrier(kit, &kit->gvn(), adr, access.type(), adr_idx);
195 
196   // We can skip marks on a freshly-allocated object in Eden. Keep this code in
197   // sync with CardTableBarrierSet::on_slowpath_allocation_exit. That routine
198   // informs GC to take appropriate compensating steps, upon a slow-path
199   // allocation, so as to make this card-mark elision safe.
200   // The post-barrier can also be removed if null is written. This case is
201   // handled by ShenandoahBarrierSetC2::expand_barriers, which runs at the end of C2's
202   // platform-independent optimizations to exploit stronger type information.
203   bool can_remove_post_barrier = ReduceInitialCardMarks &&
204     ((access.base() == kit->just_allocated_object(ctl)) ||
205      shenandoah_can_remove_post_barrier(kit, &kit->gvn(), ctl, adr));
206 
207   int barriers = 0;
208   if (!can_remove_pre_barrier) {
209     barriers |= ShenandoahBarrierSATB;
210   } else {
211     barriers |= ShenandoahBarrierElided;
212   }
213 
214   if (!can_remove_post_barrier) {
215     barriers |= ShenandoahBarrierCardMark;
216   } else {
217     barriers |= ShenandoahBarrierElided;
218   }
219 
220   return barriers;
221 }
222 
223 Node* ShenandoahBarrierSetC2::store_at_resolved(C2Access& access, C2AccessValue& val) const {
224   DecoratorSet decorators = access.decorators();
225   bool anonymous = (decorators & ON_UNKNOWN_OOP_REF) != 0;
226   bool in_heap = (decorators & IN_HEAP) != 0;
227   bool tightly_coupled_alloc = (decorators & C2_TIGHTLY_COUPLED_ALLOC) != 0;
228   bool needs_pre_barrier = access.is_oop() && (in_heap || anonymous);
229   // Pre-barriers are unnecessary for tightly-coupled initialization stores.
230   bool can_be_elided = needs_pre_barrier && tightly_coupled_alloc && ReduceInitialCardMarks;
231   bool no_keepalive = (decorators & AS_NO_KEEPALIVE) != 0;
232   if (needs_pre_barrier) {
233     if (can_be_elided) {
234       access.set_barrier_data(access.barrier_data() & ~ShenandoahBarrierSATB);
235       access.set_barrier_data(access.barrier_data() | ShenandoahBarrierElided);
236     } else {
237       access.set_barrier_data(get_store_barrier(access));
238     }
239   }
240   if (no_keepalive) {
241     // No keep-alive means no need for the pre-barrier.
242     access.set_barrier_data(access.barrier_data() & ~ShenandoahBarrierSATB);
243   }
244   return BarrierSetC2::store_at_resolved(access, val);
245 }
246 
247 static void set_barrier_data(C2Access& access) {
248   if (!access.is_oop()) {
249     return;
250   }
251 
252   if (access.decorators() & C2_TIGHTLY_COUPLED_ALLOC) {
253     access.set_barrier_data(ShenandoahBarrierElided);
254     return;
255   }
256 
257   uint8_t barrier_data = 0;
258 
259   if (access.decorators() & ON_PHANTOM_OOP_REF) {
260     barrier_data |= ShenandoahBarrierPhantom;
261   } else if (access.decorators() & ON_WEAK_OOP_REF) {
262     barrier_data |= ShenandoahBarrierWeak;
263   } else {
264     barrier_data |= ShenandoahBarrierStrong;
265   }
266 
267   if (access.decorators() & IN_NATIVE) {
268     barrier_data |= ShenandoahBarrierNative;
269   }
270 
271   access.set_barrier_data(barrier_data);
272 }
273 
274 Node* ShenandoahBarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const {
275   // 1: non-reference load, no additional barrier is needed
276   if (!access.is_oop()) {
277     return BarrierSetC2::load_at_resolved(access, val_type);
278   }
279 
280   // 2. Set barrier data for LRB.
281   set_barrier_data(access);
282 
283   // 3. If we are reading the value of the referent field of a Reference object, we
284   // need to record the referent in an SATB log buffer using the pre-barrier
285   // mechanism.
286   DecoratorSet decorators = access.decorators();
287   bool on_weak = (decorators & ON_WEAK_OOP_REF) != 0;
288   bool on_phantom = (decorators & ON_PHANTOM_OOP_REF) != 0;
289   bool no_keepalive = (decorators & AS_NO_KEEPALIVE) != 0;
290   // If we are reading the value of the referent field of a Reference object, we
291   // need to record the referent in an SATB log buffer using the pre-barrier
292   // mechanism. Also we need to add a memory barrier to prevent commoning reads
293   // from this field across safepoints, since GC can change its value.
294   uint8_t barriers = access.barrier_data();
295   bool need_read_barrier = ((on_weak || on_phantom) && !no_keepalive);
296   if (access.is_oop() && need_read_barrier) {
297     barriers |= ShenandoahBarrierSATB;
298   }
299   access.set_barrier_data(barriers);
300 
301   return BarrierSetC2::load_at_resolved(access, val_type);
302 }
303 
304 Node* ShenandoahBarrierSetC2::atomic_cmpxchg_val_at_resolved(C2AtomicParseAccess& access, Node* expected_val,
305                                                              Node* new_val, const Type* value_type) const {
306   if (ShenandoahCASBarrier) {
307     set_barrier_data(access);
308   }
309 
310   if (access.is_oop()) {
311     access.set_barrier_data(access.barrier_data() | ShenandoahBarrierSATB | ShenandoahBarrierCardMark);
312   }
313   return BarrierSetC2::atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, value_type);
314 }
315 
316 Node* ShenandoahBarrierSetC2::atomic_cmpxchg_bool_at_resolved(C2AtomicParseAccess& access, Node* expected_val,
317                                                               Node* new_val, const Type* value_type) const {
318   if (ShenandoahCASBarrier) {
319     set_barrier_data(access);
320   }
321   GraphKit* kit = access.kit();
322   if (access.is_oop()) {
323     access.set_barrier_data(access.barrier_data() | ShenandoahBarrierSATB | ShenandoahBarrierCardMark);
324   }
325   return BarrierSetC2::atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type);
326 }
327 
328 Node* ShenandoahBarrierSetC2::atomic_xchg_at_resolved(C2AtomicParseAccess& access, Node* val, const Type* value_type) const {
329   if (access.is_oop()) {
330     access.set_barrier_data(ShenandoahBarrierStrong | ShenandoahBarrierSATB | ShenandoahBarrierCardMark);
331   }
332   return BarrierSetC2::atomic_xchg_at_resolved(access, val, value_type);
333 }
334 
335 
336 bool ShenandoahBarrierSetC2::is_gc_barrier_node(Node* node) const {
337   return is_shenandoah_clone_call(node);
338 }
339 
340 static void refine_barrier_by_new_val_type(const Node* n) {
341   if (n->Opcode() != Op_StoreP && n->Opcode() != Op_StoreN) {
342     return;
343   }
344   MemNode* store = n->as_Mem();
345   const Node* newval = n->in(MemNode::ValueIn);
346   assert(newval != nullptr, "");
347   const Type* newval_bottom = newval->bottom_type();
348   TypePtr::PTR newval_type = newval_bottom->make_ptr()->ptr();
349   uint8_t barrier_data = store->barrier_data();
350   if (!newval_bottom->isa_oopptr() &&
351       !newval_bottom->isa_narrowoop() &&
352       newval_type != TypePtr::Null) {
353     // newval is neither an OOP nor null, so there is no barrier to refine.
354     assert(barrier_data == 0, "non-OOP stores should have no barrier data");
355     return;
356   }
357   if (barrier_data == 0) {
358     // No barrier to refine.
359     return;
360   }
361   if (newval_type == TypePtr::Null) {
362     // Simply elide post-barrier if writing null.
363     barrier_data &= ~ShenandoahBarrierCardMark;
364     barrier_data &= ~ShenandoahBarrierCardMarkNotNull;
365   } else if ((barrier_data & ShenandoahBarrierCardMark) != 0 &&
366              newval_type == TypePtr::NotNull) {
367     // If the post-barrier has not been elided yet (e.g. due to newval being
368     // freshly allocated), mark it as not-null (simplifies barrier tests and
369     // compressed OOPs logic).
370     barrier_data |= ShenandoahBarrierCardMarkNotNull;
371   }
372   store->set_barrier_data(barrier_data);
373 }
374 
375 bool ShenandoahBarrierSetC2::expand_barriers(Compile* C, PhaseIterGVN& igvn) const {
376   ResourceMark rm;
377   VectorSet visited;
378   Node_List worklist;
379   worklist.push(C->root());
380   while (worklist.size() > 0) {
381     Node* n = worklist.pop();
382     if (visited.test_set(n->_idx)) {
383       continue;
384     }
385     refine_barrier_by_new_val_type(n);
386     for (uint j = 0; j < n->req(); j++) {
387       Node* in = n->in(j);
388       if (in != nullptr) {
389         worklist.push(in);
390       }
391     }
392   }
393   return false;
394 }
395 
396 bool ShenandoahBarrierSetC2::array_copy_requires_gc_barriers(bool tightly_coupled_alloc, BasicType type, bool is_clone, bool is_clone_instance, ArrayCopyPhase phase) const {
397   bool is_oop = is_reference_type(type);
398   if (!is_oop) {
399     return false;
400   }
401   if (ShenandoahSATBBarrier && tightly_coupled_alloc) {
402     if (phase == Optimization) {
403       return false;
404     }
405     return !is_clone;
406   }
407   return true;
408 }
409 
410 bool ShenandoahBarrierSetC2::clone_needs_barrier(Node* src, PhaseGVN& gvn) {
411   const TypeOopPtr* src_type = gvn.type(src)->is_oopptr();
412   if (src_type->isa_instptr() != nullptr) {
413     ciInstanceKlass* ik = src_type->is_instptr()->instance_klass();
414     if ((src_type->klass_is_exact() || !ik->has_subklass()) && !ik->has_injected_fields()) {
415       if (ik->has_object_fields()) {
416         return true;
417       } else {
418         if (!src_type->klass_is_exact()) {
419           Compile::current()->dependencies()->assert_leaf_type(ik);
420         }
421       }
422     } else {
423       return true;
424         }
425   } else if (src_type->isa_aryptr()) {
426     BasicType src_elem = src_type->isa_aryptr()->elem()->array_element_basic_type();
427     if (is_reference_type(src_elem, true)) {
428       return true;
429     }
430   } else {
431     return true;
432   }
433   return false;
434 }
435 
436 void ShenandoahBarrierSetC2::clone_at_expansion(PhaseMacroExpand* phase, ArrayCopyNode* ac) const {
437   Node* ctrl = ac->in(TypeFunc::Control);
438   Node* mem = ac->in(TypeFunc::Memory);
439   Node* src_base = ac->in(ArrayCopyNode::Src);
440   Node* src_offset = ac->in(ArrayCopyNode::SrcPos);
441   Node* dest_base = ac->in(ArrayCopyNode::Dest);
442   Node* dest_offset = ac->in(ArrayCopyNode::DestPos);
443   Node* length = ac->in(ArrayCopyNode::Length);
444 
445   Node* src = phase->basic_plus_adr(src_base, src_offset);
446   Node* dest = phase->basic_plus_adr(dest_base, dest_offset);
447 
448   if (ShenandoahCloneBarrier && clone_needs_barrier(src, phase->igvn())) {
449     // Check if heap is has forwarded objects. If it does, we need to call into the special
450     // routine that would fix up source references before we can continue.
451 
452     enum { _heap_stable = 1, _heap_unstable, PATH_LIMIT };
453     Node* region = new RegionNode(PATH_LIMIT);
454     Node* mem_phi = new PhiNode(region, Type::MEMORY, TypeRawPtr::BOTTOM);
455 
456     Node* thread = phase->transform_later(new ThreadLocalNode());
457     Node* offset = phase->igvn().MakeConX(in_bytes(ShenandoahThreadLocalData::gc_state_offset()));
458     Node* gc_state_addr = phase->transform_later(new AddPNode(phase->C->top(), thread, offset));
459 
460     uint gc_state_idx = Compile::AliasIdxRaw;
461     const TypePtr* gc_state_adr_type = nullptr; // debug-mode-only argument
462     DEBUG_ONLY(gc_state_adr_type = phase->C->get_adr_type(gc_state_idx));
463 
464     Node* gc_state    = phase->transform_later(new LoadBNode(ctrl, mem, gc_state_addr, gc_state_adr_type, TypeInt::BYTE, MemNode::unordered));
465     Node* stable_and  = phase->transform_later(new AndINode(gc_state, phase->igvn().intcon(ShenandoahHeap::HAS_FORWARDED)));
466     Node* stable_cmp  = phase->transform_later(new CmpINode(stable_and, phase->igvn().zerocon(T_INT)));
467     Node* stable_test = phase->transform_later(new BoolNode(stable_cmp, BoolTest::ne));
468 
469     IfNode* stable_iff  = phase->transform_later(new IfNode(ctrl, stable_test, PROB_UNLIKELY(0.999), COUNT_UNKNOWN))->as_If();
470     Node* stable_ctrl   = phase->transform_later(new IfFalseNode(stable_iff));
471     Node* unstable_ctrl = phase->transform_later(new IfTrueNode(stable_iff));
472 
473     // Heap is stable, no need to do anything additional
474     region->init_req(_heap_stable, stable_ctrl);
475     mem_phi->init_req(_heap_stable, mem);
476 
477     // Heap is unstable, call into clone barrier stub
478     Node* call = phase->make_leaf_call(unstable_ctrl, mem,
479                                        ShenandoahBarrierSetC2::clone_barrier_Type(),
480                                        CAST_FROM_FN_PTR(address, ShenandoahRuntime::clone_barrier),
481                                        "shenandoah_clone",
482                                        TypeRawPtr::BOTTOM,
483                                        src_base);
484     call = phase->transform_later(call);
485 
486     ctrl = phase->transform_later(new ProjNode(call, TypeFunc::Control));
487     mem = phase->transform_later(new ProjNode(call, TypeFunc::Memory));
488     region->init_req(_heap_unstable, ctrl);
489     mem_phi->init_req(_heap_unstable, mem);
490 
491     // Wire up the actual arraycopy stub now
492     ctrl = phase->transform_later(region);
493     mem = phase->transform_later(mem_phi);
494 
495     const char* name = "arraycopy";
496     call = phase->make_leaf_call(ctrl, mem,
497                                  OptoRuntime::fast_arraycopy_Type(),
498                                  phase->basictype2arraycopy(T_LONG, nullptr, nullptr, true, name, true),
499                                  name, TypeRawPtr::BOTTOM,
500                                  src, dest, length
501                                  LP64_ONLY(COMMA phase->top()));
502     call = phase->transform_later(call);
503 
504     // Hook up the whole thing into the graph
505     phase->igvn().replace_node(ac, call);
506   } else {
507     BarrierSetC2::clone_at_expansion(phase, ac);
508   }
509 }
510 
511 
512 // Support for macro expanded GC barriers
513 void ShenandoahBarrierSetC2::eliminate_gc_barrier_data(Node* node) const {
514   if (node->is_LoadStore()) {
515     LoadStoreNode* loadstore = node->as_LoadStore();
516     loadstore->set_barrier_data(0);
517   } else if (node->is_Mem()) {
518     MemNode* mem = node->as_Mem();
519     mem->set_barrier_data(0);
520   }
521 }
522 
523 void ShenandoahBarrierSetC2::eliminate_gc_barrier(PhaseMacroExpand* macro, Node* node) const {
524   eliminate_gc_barrier_data(node);
525 }
526 
527 void* ShenandoahBarrierSetC2::create_barrier_state(Arena* comp_arena) const {
528   return new(comp_arena) ShenandoahBarrierSetC2State(comp_arena);
529 }
530 
531 ShenandoahBarrierSetC2State* ShenandoahBarrierSetC2::state() const {
532   return reinterpret_cast<ShenandoahBarrierSetC2State*>(Compile::current()->barrier_set_state());
533 }
534 
535 #ifdef ASSERT
536 void ShenandoahBarrierSetC2::report_verify_failure(bool failed, const char* msg, Node* n) {
537   if (failed) {
538     tty->print_cr("----------------------------------- IDX  %d -----------------------------------", n->_idx);
539     n->dump(3);
540     tty->print_cr("---------------------------------------------------------------------------------");
541     fatal("%s", msg);
542   }
543 }
544 
545 void ShenandoahBarrierSetC2::verify_gc_barriers(Compile* compile, CompilePhase phase) const {
546   if (!ShenandoahVerifyOptoBarriers) {
547     return;
548   }
549 
550   Unique_Node_List wq;
551   Node_Stack phis(0);
552   VectorSet visited;
553 
554   wq.push(compile->root());
555   for (uint next = 0; next < wq.size(); next++) {
556     Node *n = wq.at(next);
557     int opc = n->Opcode();
558 
559     if (opc == Op_LoadP || opc == Op_LoadN) {
560       const TypePtr* adr_type = n->as_Load()->adr_type();
561 
562       if (!adr_type->isa_oopptr()) {
563         continue;
564       } else if (adr_type->isa_instptr() &&
565                   adr_type->is_instptr()->instance_klass()->is_subtype_of(Compile::current()->env()->Reference_klass()) &&
566                   adr_type->is_instptr()->offset() == java_lang_ref_Reference::referent_offset()) {
567         continue;
568       } else {
569         report_verify_failure(n->as_Load()->barrier_data() == 0, "Load should have barriers.", n);
570       }
571     } else if (opc == Op_StoreP || opc == Op_StoreN) {
572       const TypePtr* adr_type = n->as_Store()->adr_type();
573       if (adr_type->isa_oopptr() && n->in(MemNode::ValueIn)->bottom_type()->make_oopptr()) {
574         const TypePtr* adr_type = n->as_Store()->in(MemNode::Memory)->adr_type();
575         if (adr_type->isa_oopptr()) {
576           report_verify_failure(n->as_Store()->barrier_data() == 0, "Store should have barrier data.", n);
577         }
578       }
579     } else if (n->is_LoadStore()) {
580       report_verify_failure(n->bottom_type()->make_oopptr() && n->as_LoadStore()->barrier_data() == 0, "LoadStore should have barrier data.", n);
581     }
582 
583     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
584       Node* m = n->fast_out(i);
585       wq.push(m);
586     }
587   }
588 }
589 #endif
590 
591 static ShenandoahBarrierSetC2State* barrier_set_state() {
592   return reinterpret_cast<ShenandoahBarrierSetC2State*>(Compile::current()->barrier_set_state());
593 }
594 
595 int ShenandoahBarrierSetC2::estimate_stub_size() const {
596   Compile* const C = Compile::current();
597   BufferBlob* const blob = C->output()->scratch_buffer_blob();
598   GrowableArray<ShenandoahBarrierStubC2*>* const stubs = barrier_set_state()->stubs();
599   int size = 0;
600 
601   for (int i = 0; i < stubs->length(); i++) {
602     CodeBuffer cb(blob->content_begin(), checked_cast<CodeBuffer::csize_t>((address)C->output()->scratch_locs_memory() - blob->content_begin()));
603     MacroAssembler masm(&cb);
604     stubs->at(i)->emit_code(masm);
605     size += cb.insts_size();
606   }
607 
608   return size;
609 }
610 
611 void ShenandoahBarrierSetC2::emit_stubs(CodeBuffer& cb) const {
612   MacroAssembler masm(&cb);
613   GrowableArray<ShenandoahBarrierStubC2*>* const stubs = barrier_set_state()->stubs();
614   barrier_set_state()->set_stubs_start_offset(masm.offset());
615 
616   for (int i = 0; i < stubs->length(); i++) {
617     // Make sure there is enough space in the code buffer
618     if (cb.insts()->maybe_expand_to_ensure_remaining(PhaseOutput::MAX_inst_size) && cb.blob() == nullptr) {
619       ciEnv::current()->record_failure("CodeCache is full");
620       return;
621     }
622 
623     stubs->at(i)->emit_code(masm);
624   }
625 
626   masm.flush();
627 
628 }
629 
630 void ShenandoahBarrierStubC2::register_stub() {
631   if (!Compile::current()->output()->in_scratch_emit_size()) {
632     barrier_set_state()->stubs()->append(this);
633   }
634 }
635 
636 ShenandoahLoadRefBarrierStubC2* ShenandoahLoadRefBarrierStubC2::create(const MachNode* node, Register obj, Register addr, Register tmp1, Register tmp2, Register tmp3, bool narrow) {
637   auto* stub = new (Compile::current()->comp_arena()) ShenandoahLoadRefBarrierStubC2(node, obj, addr, tmp1, tmp2, tmp3, narrow);
638   stub->register_stub();
639   return stub;
640 }
641 
642 ShenandoahSATBBarrierStubC2* ShenandoahSATBBarrierStubC2::create(const MachNode* node, Register addr, Register preval, Register tmp) {
643   auto* stub = new (Compile::current()->comp_arena()) ShenandoahSATBBarrierStubC2(node, addr, preval, tmp);
644   stub->register_stub();
645   return stub;
646 }
647 
648 ShenandoahCASBarrierSlowStubC2* ShenandoahCASBarrierSlowStubC2::create(const MachNode* node, Register addr, Register expected, Register new_val, Register result, Register tmp, bool cae, bool acquire, bool release, bool weak) {
649   auto* stub = new (Compile::current()->comp_arena()) ShenandoahCASBarrierSlowStubC2(node, addr, Address(), expected, new_val, result, tmp, noreg, cae, acquire, release, weak);
650   stub->register_stub();
651   return stub;
652 }
653 
654 ShenandoahCASBarrierSlowStubC2* ShenandoahCASBarrierSlowStubC2::create(const MachNode* node, Address addr, Register expected, Register new_val, Register result, Register tmp1, Register tmp2, bool cae) {
655   auto* stub = new (Compile::current()->comp_arena()) ShenandoahCASBarrierSlowStubC2(node, noreg, addr, expected, new_val, result, tmp1, tmp2, cae, false, false, false);
656   stub->register_stub();
657   return stub;
658 }
659 
660 ShenandoahCASBarrierMidStubC2* ShenandoahCASBarrierMidStubC2::create(const MachNode* node, ShenandoahCASBarrierSlowStubC2* slow_stub, Register expected, Register result, Register tmp, bool cae) {
661   auto* stub = new (Compile::current()->comp_arena()) ShenandoahCASBarrierMidStubC2(node, slow_stub, expected, result, tmp, cae);
662   stub->register_stub();
663   return stub;
664 }
665 
666 bool ShenandoahBarrierSetC2State::needs_liveness_data(const MachNode* mach) const {
667   //assert(mach->barrier_data() != 0, "what else?");
668   // return mach->barrier_data() != 0;
669   //return (mach->barrier_data() & ShenandoahSATBBarrier) != 0;
670   return ShenandoahSATBBarrierStubC2::needs_barrier(mach) || ShenandoahLoadRefBarrierStubC2::needs_barrier(mach);
671 }
672 
673 bool ShenandoahBarrierSetC2State::needs_livein_data() const {
674   return true;
675 }