1 /*
  2  * Copyright (c) 2016, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "gc/shared/barrierSet.hpp"
 26 #include "gc/shared/c2/barrierSetC2.hpp"
 27 #include "gc/shared/c2/cardTableBarrierSetC2.hpp"
 28 #include "gc/shared/gc_globals.hpp"
 29 #include "opto/arraycopynode.hpp"
 30 #include "opto/graphKit.hpp"
 31 #include "utilities/powerOfTwo.hpp"
 32 
 33 const TypeFunc* ArrayCopyNode::_arraycopy_type_Type = nullptr;
 34 
 35 ArrayCopyNode::ArrayCopyNode(Compile* C, bool alloc_tightly_coupled, bool has_negative_length_guard)
 36   : CallNode(arraycopy_type(), nullptr, TypePtr::BOTTOM),
 37     _kind(None),
 38     _alloc_tightly_coupled(alloc_tightly_coupled),
 39     _has_negative_length_guard(has_negative_length_guard),
 40     _arguments_validated(false),
 41     _src_type(TypeOopPtr::BOTTOM),
 42     _dest_type(TypeOopPtr::BOTTOM) {
 43   init_class_id(Class_ArrayCopy);
 44   init_flags(Flag_is_macro);
 45   C->add_macro_node(this);
 46 }
 47 
 48 uint ArrayCopyNode::size_of() const { return sizeof(*this); }
 49 
 50 ArrayCopyNode* ArrayCopyNode::make(GraphKit* kit, bool may_throw,
 51                                    Node* src, Node* src_offset,
 52                                    Node* dest, Node* dest_offset,
 53                                    Node* length,
 54                                    bool alloc_tightly_coupled,
 55                                    bool has_negative_length_guard,
 56                                    Node* src_klass, Node* dest_klass,
 57                                    Node* src_length, Node* dest_length) {
 58 
 59   ArrayCopyNode* ac = new ArrayCopyNode(kit->C, alloc_tightly_coupled, has_negative_length_guard);
 60   kit->set_predefined_input_for_runtime_call(ac);
 61 
 62   ac->init_req(ArrayCopyNode::Src, src);
 63   ac->init_req(ArrayCopyNode::SrcPos, src_offset);
 64   ac->init_req(ArrayCopyNode::Dest, dest);
 65   ac->init_req(ArrayCopyNode::DestPos, dest_offset);
 66   ac->init_req(ArrayCopyNode::Length, length);
 67   ac->init_req(ArrayCopyNode::SrcLen, src_length);
 68   ac->init_req(ArrayCopyNode::DestLen, dest_length);
 69   ac->init_req(ArrayCopyNode::SrcKlass, src_klass);
 70   ac->init_req(ArrayCopyNode::DestKlass, dest_klass);
 71 
 72   if (may_throw) {
 73     ac->set_req(TypeFunc::I_O , kit->i_o());
 74     kit->add_safepoint_edges(ac, false);
 75   }
 76 
 77   return ac;
 78 }
 79 
 80 void ArrayCopyNode::connect_outputs(GraphKit* kit, bool deoptimize_on_exception) {
 81   kit->set_all_memory_call(this, true);
 82   kit->set_control(kit->gvn().transform(new ProjNode(this,TypeFunc::Control)));
 83   kit->set_i_o(kit->gvn().transform(new ProjNode(this, TypeFunc::I_O)));
 84   kit->make_slow_call_ex(this, kit->env()->Throwable_klass(), true, deoptimize_on_exception);
 85   kit->set_all_memory_call(this);
 86 }
 87 
 88 #ifndef PRODUCT
 89 const char* ArrayCopyNode::_kind_names[] = {"arraycopy", "arraycopy, validated arguments", "clone", "oop array clone", "CopyOf", "CopyOfRange"};
 90 
 91 void ArrayCopyNode::dump_spec(outputStream *st) const {
 92   CallNode::dump_spec(st);
 93   st->print(" (%s%s)", _kind_names[_kind], _alloc_tightly_coupled ? ", tightly coupled allocation" : "");
 94 }
 95 
 96 void ArrayCopyNode::dump_compact_spec(outputStream* st) const {
 97   st->print("%s%s", _kind_names[_kind], _alloc_tightly_coupled ? ",tight" : "");
 98 }
 99 #endif
100 
101 intptr_t ArrayCopyNode::get_length_if_constant(PhaseGVN *phase) const {
102   // check that length is constant
103   Node* length = in(ArrayCopyNode::Length);
104   const Type* length_type = phase->type(length);
105 
106   if (length_type == Type::TOP) {
107     return -1;
108   }
109 
110   assert(is_clonebasic() || is_arraycopy() || is_copyof() || is_copyofrange(), "unexpected array copy type");
111 
112   return is_clonebasic() ? length->find_intptr_t_con(-1) : length->find_int_con(-1);
113 }
114 
115 int ArrayCopyNode::get_count(PhaseGVN *phase) const {
116   Node* src = in(ArrayCopyNode::Src);
117   const Type* src_type = phase->type(src);
118 
119   if (is_clonebasic()) {
120     if (src_type->isa_instptr()) {
121       const TypeInstPtr* inst_src = src_type->is_instptr();
122       ciInstanceKlass* ik = inst_src->instance_klass();
123       // ciInstanceKlass::nof_nonstatic_fields() doesn't take injected
124       // fields into account. They are rare anyway so easier to simply
125       // skip instances with injected fields.
126       if ((!inst_src->klass_is_exact() && (ik->is_interface() || ik->has_subklass())) || ik->has_injected_fields()) {
127         return -1;
128       }
129       int nb_fields = ik->nof_nonstatic_fields();
130       return nb_fields;
131     } else {
132       const TypeAryPtr* ary_src = src_type->isa_aryptr();
133       assert (ary_src != nullptr, "not an array or instance?");
134       // clone passes a length as a rounded number of longs. If we're
135       // cloning an array we'll do it element by element. If the
136       // length of the input array is constant, ArrayCopyNode::Length
137       // must be too. Note that the opposite does not need to hold,
138       // because different input array lengths (e.g. int arrays with
139       // 3 or 4 elements) might lead to the same length input
140       // (e.g. 2 double-words).
141       assert(!ary_src->size()->is_con() || (get_length_if_constant(phase) >= 0) ||
142              phase->is_IterGVN() || phase->C->inlining_incrementally() || StressReflectiveCode, "inconsistent");
143       if (ary_src->size()->is_con()) {
144         return ary_src->size()->get_con();
145       }
146       return -1;
147     }
148   }
149 
150   return get_length_if_constant(phase);
151 }
152 
153 Node* ArrayCopyNode::load(BarrierSetC2* bs, PhaseGVN *phase, Node*& ctl, MergeMemNode* mem, Node* adr, const TypePtr* adr_type, const Type *type, BasicType bt) {
154   // Pin the load: if this is an array load, it's going to be dependent on a condition that's not a range check for that
155   // access. If that condition is replaced by an identical dominating one, then an unpinned load would risk floating
156   // above runtime checks that guarantee it is within bounds.
157   DecoratorSet decorators = C2_READ_ACCESS | C2_CONTROL_DEPENDENT_LOAD | IN_HEAP | C2_ARRAY_COPY | C2_UNKNOWN_CONTROL_LOAD;
158   C2AccessValuePtr addr(adr, adr_type);
159   C2OptAccess access(*phase, ctl, mem, decorators, bt, adr->in(AddPNode::Base), addr);
160   Node* res = bs->load_at(access, type);
161   ctl = access.ctl();
162   return res;
163 }
164 
165 void ArrayCopyNode::store(BarrierSetC2* bs, PhaseGVN *phase, Node*& ctl, MergeMemNode* mem, Node* adr, const TypePtr* adr_type, Node* val, const Type *type, BasicType bt) {
166   DecoratorSet decorators = C2_WRITE_ACCESS | IN_HEAP | C2_ARRAY_COPY;
167   if (is_alloc_tightly_coupled()) {
168     decorators |= C2_TIGHTLY_COUPLED_ALLOC;
169   }
170   C2AccessValuePtr addr(adr, adr_type);
171   C2AccessValue value(val, type);
172   C2OptAccess access(*phase, ctl, mem, decorators, bt, adr->in(AddPNode::Base), addr);
173   bs->store_at(access, value);
174   ctl = access.ctl();
175 }
176 
177 
178 Node* ArrayCopyNode::try_clone_instance(PhaseGVN *phase, bool can_reshape, int count) {
179   if (!is_clonebasic()) {
180     return nullptr;
181   }
182 
183   Node* base_src = in(ArrayCopyNode::Src);
184   Node* base_dest = in(ArrayCopyNode::Dest);
185   Node* ctl = in(TypeFunc::Control);
186   Node* in_mem = in(TypeFunc::Memory);
187 
188   const Type* src_type = phase->type(base_src);
189   const TypeInstPtr* inst_src = src_type->isa_instptr();
190   if (inst_src == nullptr) {
191     return nullptr;
192   }
193 
194   MergeMemNode* mem = phase->transform(MergeMemNode::make(in_mem))->as_MergeMem();
195   if (can_reshape) {
196     phase->is_IterGVN()->_worklist.push(mem);
197   }
198 
199 
200   ciInstanceKlass* ik = inst_src->instance_klass();
201 
202   if (!inst_src->klass_is_exact()) {
203     assert(!ik->is_interface(), "inconsistent klass hierarchy");
204     if (ik->has_subklass()) {
205       // Concurrent class loading.
206       // Fail fast and return NodeSentinel to indicate that the transform failed.
207       return NodeSentinel;
208     } else {
209       phase->C->dependencies()->assert_leaf_type(ik);
210     }
211   }
212 
213   const TypeInstPtr* dest_type = phase->type(base_dest)->is_instptr();
214   if (dest_type->instance_klass() != ik) {
215     // At parse time, the exact type of the object to clone was not known. That inexact type was captured by the CheckCastPP
216     // of the newly allocated cloned object (in dest). The exact type is now known (in src), but the type for the cloned object
217     // (dest) was not updated. When copying the fields below, Store nodes may write to offsets for fields that don't exist in
218     // the inexact class. The stores would then be assigned an incorrect slice.
219     return NodeSentinel;
220   }
221 
222   assert(ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem, "too many fields");
223 
224   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
225   for (int i = 0; i < count; i++) {
226     ciField* field = ik->nonstatic_field_at(i);
227     const TypePtr* adr_type = phase->C->alias_type(field)->adr_type();
228     Node* off = phase->MakeConX(field->offset_in_bytes());
229     Node* next_src = phase->transform(new AddPNode(base_src,base_src,off));
230     Node* next_dest = phase->transform(new AddPNode(base_dest,base_dest,off));
231     assert(phase->C->get_alias_index(adr_type) == phase->C->get_alias_index(phase->type(next_src)->isa_ptr()),
232       "slice of address and input slice don't match");
233     assert(phase->C->get_alias_index(adr_type) == phase->C->get_alias_index(phase->type(next_dest)->isa_ptr()),
234       "slice of address and input slice don't match");
235     BasicType bt = field->layout_type();
236 
237     const Type *type;
238     if (bt == T_OBJECT) {
239       if (!field->type()->is_loaded()) {
240         type = TypeInstPtr::BOTTOM;
241       } else {
242         ciType* field_klass = field->type();
243         type = TypeOopPtr::make_from_klass(field_klass->as_klass());
244       }
245     } else {
246       type = Type::get_const_basic_type(bt);
247     }
248 
249     Node* v = load(bs, phase, ctl, mem, next_src, adr_type, type, bt);
250     store(bs, phase, ctl, mem, next_dest, adr_type, v, type, bt);
251   }
252 
253   if (!finish_transform(phase, can_reshape, ctl, mem)) {
254     // Return NodeSentinel to indicate that the transform failed
255     return NodeSentinel;
256   }
257 
258   return mem;
259 }
260 
261 bool ArrayCopyNode::prepare_array_copy(PhaseGVN *phase, bool can_reshape,
262                                        Node*& adr_src,
263                                        Node*& base_src,
264                                        Node*& adr_dest,
265                                        Node*& base_dest,
266                                        BasicType& copy_type,
267                                        const Type*& value_type,
268                                        bool& disjoint_bases) {
269   base_src = in(ArrayCopyNode::Src);
270   base_dest = in(ArrayCopyNode::Dest);
271   const Type* src_type = phase->type(base_src);
272   const TypeAryPtr* ary_src = src_type->isa_aryptr();
273 
274   Node* src_offset = in(ArrayCopyNode::SrcPos);
275   Node* dest_offset = in(ArrayCopyNode::DestPos);
276 
277   if (is_arraycopy() || is_copyofrange() || is_copyof()) {
278     const Type* dest_type = phase->type(base_dest);
279     const TypeAryPtr* ary_dest = dest_type->isa_aryptr();
280 
281     // newly allocated object is guaranteed to not overlap with source object
282     disjoint_bases = is_alloc_tightly_coupled();
283     if (ary_src  == nullptr || ary_src->elem()  == Type::BOTTOM ||
284         ary_dest == nullptr || ary_dest->elem() == Type::BOTTOM) {
285       // We don't know if arguments are arrays
286       return false;
287     }
288 
289     BasicType src_elem = ary_src->elem()->array_element_basic_type();
290     BasicType dest_elem = ary_dest->elem()->array_element_basic_type();
291     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
292     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
293 
294     if (src_elem != dest_elem || dest_elem == T_VOID) {
295       // We don't know if arguments are arrays of the same type
296       return false;
297     }
298 
299     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
300     if (bs->array_copy_requires_gc_barriers(is_alloc_tightly_coupled(), dest_elem, false, false, BarrierSetC2::Optimization)) {
301       // It's an object array copy but we can't emit the card marking
302       // that is needed
303       return false;
304     }
305 
306     value_type = ary_src->elem();
307 
308     uint shift  = exact_log2(type2aelembytes(dest_elem));
309     uint header = arrayOopDesc::base_offset_in_bytes(dest_elem);
310 
311     src_offset = Compile::conv_I2X_index(phase, src_offset, ary_src->size());
312     if (src_offset->is_top()) {
313       // Offset is out of bounds (the ArrayCopyNode will be removed)
314       return false;
315     }
316     dest_offset = Compile::conv_I2X_index(phase, dest_offset, ary_dest->size());
317     if (dest_offset->is_top()) {
318       // Offset is out of bounds (the ArrayCopyNode will be removed)
319       if (can_reshape) {
320         // record src_offset, so it can be deleted later (if it is dead)
321         phase->is_IterGVN()->_worklist.push(src_offset);
322       }
323       return false;
324     }
325 
326     Node* hook = new Node(1);
327     hook->init_req(0, dest_offset);
328 
329     Node* src_scale  = phase->transform(new LShiftXNode(src_offset, phase->intcon(shift)));
330 
331     hook->destruct(phase);
332 
333     Node* dest_scale = phase->transform(new LShiftXNode(dest_offset, phase->intcon(shift)));
334 
335     adr_src          = phase->transform(new AddPNode(base_src, base_src, src_scale));
336     adr_dest         = phase->transform(new AddPNode(base_dest, base_dest, dest_scale));
337 
338     adr_src          = phase->transform(new AddPNode(base_src, adr_src, phase->MakeConX(header)));
339     adr_dest         = phase->transform(new AddPNode(base_dest, adr_dest, phase->MakeConX(header)));
340 
341     copy_type = dest_elem;
342   } else {
343     assert(ary_src != nullptr, "should be a clone");
344     assert(is_clonebasic(), "should be");
345 
346     disjoint_bases = true;
347 
348     BasicType elem = ary_src->isa_aryptr()->elem()->array_element_basic_type();
349     if (is_reference_type(elem, true)) {
350       elem = T_OBJECT;
351     }
352 
353     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
354     if (bs->array_copy_requires_gc_barriers(true, elem, true, is_clone_inst(), BarrierSetC2::Optimization)) {
355       return false;
356     }
357 
358     adr_src  = phase->transform(new AddPNode(base_src, base_src, src_offset));
359     adr_dest = phase->transform(new AddPNode(base_dest, base_dest, dest_offset));
360 
361     // The address is offsetted to an aligned address where a raw copy would start.
362     // If the clone copy is decomposed into load-stores - the address is adjusted to
363     // point at where the array starts.
364     const Type* toff = phase->type(src_offset);
365     int offset = toff->isa_long() ? (int) toff->is_long()->get_con() : (int) toff->is_int()->get_con();
366     int diff = arrayOopDesc::base_offset_in_bytes(elem) - offset;
367     assert(diff >= 0, "clone should not start after 1st array element");
368     if (diff > 0) {
369       adr_src = phase->transform(new AddPNode(base_src, adr_src, phase->MakeConX(diff)));
370       adr_dest = phase->transform(new AddPNode(base_dest, adr_dest, phase->MakeConX(diff)));
371     }
372     copy_type = elem;
373     value_type = ary_src->elem();
374   }
375   return true;
376 }
377 
378 const TypePtr* ArrayCopyNode::get_address_type(PhaseGVN* phase, const TypePtr* atp, Node* n) {
379   if (atp == TypeOopPtr::BOTTOM) {
380     atp = phase->type(n)->isa_ptr();
381   }
382   // adjust atp to be the correct array element address type
383   return atp->add_offset(Type::OffsetBot);
384 }
385 
386 void ArrayCopyNode::array_copy_test_overlap(PhaseGVN *phase, bool can_reshape, bool disjoint_bases, int count, Node*& forward_ctl, Node*& backward_ctl) {
387   Node* ctl = in(TypeFunc::Control);
388   if (!disjoint_bases && count > 1) {
389     Node* src_offset = in(ArrayCopyNode::SrcPos);
390     Node* dest_offset = in(ArrayCopyNode::DestPos);
391     assert(src_offset != nullptr && dest_offset != nullptr, "should be");
392     Node* cmp = phase->transform(new CmpINode(src_offset, dest_offset));
393     Node *bol = phase->transform(new BoolNode(cmp, BoolTest::lt));
394     IfNode *iff = new IfNode(ctl, bol, PROB_FAIR, COUNT_UNKNOWN);
395 
396     phase->transform(iff);
397 
398     forward_ctl = phase->transform(new IfFalseNode(iff));
399     backward_ctl = phase->transform(new IfTrueNode(iff));
400   } else {
401     forward_ctl = ctl;
402   }
403 }
404 
405 Node* ArrayCopyNode::array_copy_forward(PhaseGVN *phase,
406                                         bool can_reshape,
407                                         Node*& forward_ctl,
408                                         Node* mem,
409                                         const TypePtr* atp_src,
410                                         const TypePtr* atp_dest,
411                                         Node* adr_src,
412                                         Node* base_src,
413                                         Node* adr_dest,
414                                         Node* base_dest,
415                                         BasicType copy_type,
416                                         const Type* value_type,
417                                         int count) {
418   if (!forward_ctl->is_top()) {
419     // copy forward
420     MergeMemNode* mm = MergeMemNode::make(mem);
421 
422     if (count > 0) {
423       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
424       Node* v = load(bs, phase, forward_ctl, mm, adr_src, atp_src, value_type, copy_type);
425       store(bs, phase, forward_ctl, mm, adr_dest, atp_dest, v, value_type, copy_type);
426       for (int i = 1; i < count; i++) {
427         Node* off  = phase->MakeConX(type2aelembytes(copy_type) * i);
428         Node* next_src = phase->transform(new AddPNode(base_src,adr_src,off));
429         Node* next_dest = phase->transform(new AddPNode(base_dest,adr_dest,off));
430         v = load(bs, phase, forward_ctl, mm, next_src, atp_src, value_type, copy_type);
431         store(bs, phase, forward_ctl, mm, next_dest, atp_dest, v, value_type, copy_type);
432       }
433     } else if (can_reshape) {
434       PhaseIterGVN* igvn = phase->is_IterGVN();
435       igvn->_worklist.push(adr_src);
436       igvn->_worklist.push(adr_dest);
437     }
438     return mm;
439   }
440   return phase->C->top();
441 }
442 
443 Node* ArrayCopyNode::array_copy_backward(PhaseGVN *phase,
444                                          bool can_reshape,
445                                          Node*& backward_ctl,
446                                          Node* mem,
447                                          const TypePtr* atp_src,
448                                          const TypePtr* atp_dest,
449                                          Node* adr_src,
450                                          Node* base_src,
451                                          Node* adr_dest,
452                                          Node* base_dest,
453                                          BasicType copy_type,
454                                          const Type* value_type,
455                                          int count) {
456   if (!backward_ctl->is_top()) {
457     // copy backward
458     MergeMemNode* mm = MergeMemNode::make(mem);
459 
460     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
461     assert(copy_type != T_OBJECT || !bs->array_copy_requires_gc_barriers(false, T_OBJECT, false, false, BarrierSetC2::Optimization), "only tightly coupled allocations for object arrays");
462 
463     if (count > 0) {
464       for (int i = count-1; i >= 1; i--) {
465         Node* off  = phase->MakeConX(type2aelembytes(copy_type) * i);
466         Node* next_src = phase->transform(new AddPNode(base_src,adr_src,off));
467         Node* next_dest = phase->transform(new AddPNode(base_dest,adr_dest,off));
468         Node* v = load(bs, phase, backward_ctl, mm, next_src, atp_src, value_type, copy_type);
469         store(bs, phase, backward_ctl, mm, next_dest, atp_dest, v, value_type, copy_type);
470       }
471       Node* v = load(bs, phase, backward_ctl, mm, adr_src, atp_src, value_type, copy_type);
472       store(bs, phase, backward_ctl, mm, adr_dest, atp_dest, v, value_type, copy_type);
473     } else if (can_reshape) {
474       PhaseIterGVN* igvn = phase->is_IterGVN();
475       igvn->_worklist.push(adr_src);
476       igvn->_worklist.push(adr_dest);
477     }
478     return phase->transform(mm);
479   }
480   return phase->C->top();
481 }
482 
483 bool ArrayCopyNode::finish_transform(PhaseGVN *phase, bool can_reshape,
484                                      Node* ctl, Node *mem) {
485   if (can_reshape) {
486     PhaseIterGVN* igvn = phase->is_IterGVN();
487     igvn->set_delay_transform(false);
488     if (is_clonebasic()) {
489       Node* out_mem = proj_out(TypeFunc::Memory);
490 
491       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
492       if (out_mem->outcnt() != 1 || !out_mem->raw_out(0)->is_MergeMem() ||
493           out_mem->raw_out(0)->outcnt() != 1 || !out_mem->raw_out(0)->raw_out(0)->is_MemBar()) {
494         assert(bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, is_clone_inst(), BarrierSetC2::Optimization), "can only happen with card marking");
495         return false;
496       }
497 
498       igvn->replace_node(out_mem->raw_out(0), mem);
499 
500       Node* out_ctl = proj_out(TypeFunc::Control);
501       igvn->replace_node(out_ctl, ctl);
502     } else {
503       // replace fallthrough projections of the ArrayCopyNode by the
504       // new memory, control and the input IO.
505       CallProjections callprojs;
506       extract_projections(&callprojs, true, false);
507 
508       if (callprojs.fallthrough_ioproj != nullptr) {
509         igvn->replace_node(callprojs.fallthrough_ioproj, in(TypeFunc::I_O));
510       }
511       if (callprojs.fallthrough_memproj != nullptr) {
512         igvn->replace_node(callprojs.fallthrough_memproj, mem);
513       }
514       if (callprojs.fallthrough_catchproj != nullptr) {
515         igvn->replace_node(callprojs.fallthrough_catchproj, ctl);
516       }
517 
518       // The ArrayCopyNode is not disconnected. It still has the
519       // projections for the exception case. Replace current
520       // ArrayCopyNode with a dummy new one with a top() control so
521       // that this part of the graph stays consistent but is
522       // eventually removed.
523 
524       set_req(0, phase->C->top());
525       remove_dead_region(phase, can_reshape);
526     }
527   } else {
528     if (in(TypeFunc::Control) != ctl) {
529       // we can't return new memory and control from Ideal at parse time
530       assert(!is_clonebasic() || UseShenandoahGC, "added control for clone?");
531       phase->record_for_igvn(this);
532       return false;
533     }
534   }
535   return true;
536 }
537 
538 
539 Node *ArrayCopyNode::Ideal(PhaseGVN *phase, bool can_reshape) {
540   if (remove_dead_region(phase, can_reshape))  return this;
541 
542   if (StressArrayCopyMacroNode && !can_reshape) {
543     phase->record_for_igvn(this);
544     return nullptr;
545   }
546 
547   // See if it's a small array copy and we can inline it as
548   // loads/stores
549   // Here we can only do:
550   // - arraycopy if all arguments were validated before and we don't
551   // need card marking
552   // - clone for which we don't need to do card marking
553 
554   if (!is_clonebasic() && !is_arraycopy_validated() &&
555       !is_copyofrange_validated() && !is_copyof_validated()) {
556     return nullptr;
557   }
558 
559   assert(in(TypeFunc::Control) != nullptr &&
560          in(TypeFunc::Memory) != nullptr &&
561          in(ArrayCopyNode::Src) != nullptr &&
562          in(ArrayCopyNode::Dest) != nullptr &&
563          in(ArrayCopyNode::Length) != nullptr &&
564          in(ArrayCopyNode::SrcPos) != nullptr &&
565          in(ArrayCopyNode::DestPos) != nullptr, "broken inputs");
566 
567   if (in(TypeFunc::Control)->is_top() ||
568       in(TypeFunc::Memory)->is_top() ||
569       phase->type(in(ArrayCopyNode::Src)) == Type::TOP ||
570       phase->type(in(ArrayCopyNode::Dest)) == Type::TOP ||
571       (in(ArrayCopyNode::SrcPos) != nullptr && in(ArrayCopyNode::SrcPos)->is_top()) ||
572       (in(ArrayCopyNode::DestPos) != nullptr && in(ArrayCopyNode::DestPos)->is_top())) {
573     return nullptr;
574   }
575 
576   int count = get_count(phase);
577 
578   if (count < 0 || count > ArrayCopyLoadStoreMaxElem) {
579     return nullptr;
580   }
581 
582   Node* mem = try_clone_instance(phase, can_reshape, count);
583   if (mem != nullptr) {
584     return (mem == NodeSentinel) ? nullptr : mem;
585   }
586 
587   Node* adr_src = nullptr;
588   Node* base_src = nullptr;
589   Node* adr_dest = nullptr;
590   Node* base_dest = nullptr;
591   BasicType copy_type = T_ILLEGAL;
592   const Type* value_type = nullptr;
593   bool disjoint_bases = false;
594 
595   if (!prepare_array_copy(phase, can_reshape,
596                           adr_src, base_src, adr_dest, base_dest,
597                           copy_type, value_type, disjoint_bases)) {
598     assert(adr_src == nullptr, "no node can be left behind");
599     assert(adr_dest == nullptr, "no node can be left behind");
600     return nullptr;
601   }
602 
603   Node* src = in(ArrayCopyNode::Src);
604   Node* dest = in(ArrayCopyNode::Dest);
605   const TypePtr* atp_src = get_address_type(phase, _src_type, src);
606   const TypePtr* atp_dest = get_address_type(phase, _dest_type, dest);
607   Node* in_mem = in(TypeFunc::Memory);
608 
609   if (can_reshape) {
610     assert(!phase->is_IterGVN()->delay_transform(), "cannot delay transforms");
611     phase->is_IterGVN()->set_delay_transform(true);
612   }
613 
614   Node* backward_ctl = phase->C->top();
615   Node* forward_ctl = phase->C->top();
616   array_copy_test_overlap(phase, can_reshape, disjoint_bases, count, forward_ctl, backward_ctl);
617 
618   Node* forward_mem = array_copy_forward(phase, can_reshape, forward_ctl,
619                                          in_mem,
620                                          atp_src, atp_dest,
621                                          adr_src, base_src, adr_dest, base_dest,
622                                          copy_type, value_type, count);
623 
624   Node* backward_mem = array_copy_backward(phase, can_reshape, backward_ctl,
625                                            in_mem,
626                                            atp_src, atp_dest,
627                                            adr_src, base_src, adr_dest, base_dest,
628                                            copy_type, value_type, count);
629 
630   Node* ctl = nullptr;
631   if (!forward_ctl->is_top() && !backward_ctl->is_top()) {
632     ctl = new RegionNode(3);
633     ctl->init_req(1, forward_ctl);
634     ctl->init_req(2, backward_ctl);
635     ctl = phase->transform(ctl);
636     MergeMemNode* forward_mm = forward_mem->as_MergeMem();
637     MergeMemNode* backward_mm = backward_mem->as_MergeMem();
638     for (MergeMemStream mms(forward_mm, backward_mm); mms.next_non_empty2(); ) {
639       if (mms.memory() != mms.memory2()) {
640         Node* phi = new PhiNode(ctl, Type::MEMORY, phase->C->get_adr_type(mms.alias_idx()));
641         phi->init_req(1, mms.memory());
642         phi->init_req(2, mms.memory2());
643         phi = phase->transform(phi);
644         mms.set_memory(phi);
645       }
646     }
647     mem = forward_mem;
648   } else if (!forward_ctl->is_top()) {
649     ctl = forward_ctl;
650     mem = forward_mem;
651   } else {
652     assert(!backward_ctl->is_top(), "no copy?");
653     ctl = backward_ctl;
654     mem = backward_mem;
655   }
656 
657   if (can_reshape) {
658     assert(phase->is_IterGVN()->delay_transform(), "should be delaying transforms");
659     phase->is_IterGVN()->set_delay_transform(false);
660   }
661 
662   if (!finish_transform(phase, can_reshape, ctl, mem)) {
663     if (can_reshape) {
664       // put in worklist, so that if it happens to be dead it is removed
665       phase->is_IterGVN()->_worklist.push(mem);
666     }
667     return nullptr;
668   }
669 
670   return mem;
671 }
672 
673 bool ArrayCopyNode::may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) {
674   Node* dest = in(ArrayCopyNode::Dest);
675   if (dest->is_top()) {
676     return false;
677   }
678   const TypeOopPtr* dest_t = phase->type(dest)->is_oopptr();
679   assert(!dest_t->is_known_instance() || _dest_type->is_known_instance(), "result of EA not recorded");
680   assert(in(ArrayCopyNode::Src)->is_top() || !phase->type(in(ArrayCopyNode::Src))->is_oopptr()->is_known_instance() ||
681          _src_type->is_known_instance(), "result of EA not recorded");
682 
683   if (_dest_type != TypeOopPtr::BOTTOM || t_oop->is_known_instance()) {
684     assert(_dest_type == TypeOopPtr::BOTTOM || _dest_type->is_known_instance(), "result of EA is known instance");
685     return t_oop->instance_id() == _dest_type->instance_id();
686   }
687 
688   return CallNode::may_modify_arraycopy_helper(dest_t, t_oop, phase);
689 }
690 
691 bool ArrayCopyNode::may_modify_helper(const TypeOopPtr* t_oop, Node* n, PhaseValues* phase, ArrayCopyNode*& ac) {
692   if (n != nullptr &&
693       n->is_ArrayCopy() &&
694       n->as_ArrayCopy()->may_modify(t_oop, phase)) {
695     ac = n->as_ArrayCopy();
696     return true;
697   }
698   return false;
699 }
700 
701 bool ArrayCopyNode::may_modify(const TypeOopPtr* t_oop, MemBarNode* mb, PhaseValues* phase, ArrayCopyNode*& ac) {
702   if (mb->trailing_expanded_array_copy()) {
703     return true;
704   }
705 
706   Node* c = mb->in(0);
707 
708   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
709   // step over g1 gc barrier if we're at e.g. a clone with ReduceInitialCardMarks off
710   c = bs->step_over_gc_barrier(c);
711 
712   CallNode* call = nullptr;
713   guarantee(c != nullptr, "step_over_gc_barrier failed, there must be something to step to.");
714   if (c->is_Region()) {
715     for (uint i = 1; i < c->req(); i++) {
716       if (c->in(i) != nullptr) {
717         Node* n = c->in(i)->in(0);
718         if (may_modify_helper(t_oop, n, phase, ac)) {
719           assert(c == mb->in(0), "only for clone");
720           return true;
721         }
722       }
723     }
724   } else if (may_modify_helper(t_oop, c->in(0), phase, ac)) {
725 #ifdef ASSERT
726     bool use_ReduceInitialCardMarks = BarrierSet::barrier_set()->is_a(BarrierSet::CardTableBarrierSet) &&
727       static_cast<CardTableBarrierSetC2*>(bs)->use_ReduceInitialCardMarks();
728     assert(c == mb->in(0) || (ac->is_clonebasic() && !use_ReduceInitialCardMarks), "only for clone");
729 #endif
730     return true;
731   }
732 
733   return false;
734 }
735 
736 // Does this array copy modify offsets between offset_lo and offset_hi
737 // in the destination array
738 // if must_modify is false, return true if the copy could write
739 // between offset_lo and offset_hi
740 // if must_modify is true, return true if the copy is guaranteed to
741 // write between offset_lo and offset_hi
742 bool ArrayCopyNode::modifies(intptr_t offset_lo, intptr_t offset_hi, PhaseValues* phase, bool must_modify) const {
743   assert(_kind == ArrayCopy || _kind == CopyOf || _kind == CopyOfRange, "only for real array copies");
744 
745   Node* dest = in(Dest);
746   Node* dest_pos = in(DestPos);
747   Node* len = in(Length);
748 
749   const TypeInt *dest_pos_t = phase->type(dest_pos)->isa_int();
750   const TypeInt *len_t = phase->type(len)->isa_int();
751   const TypeAryPtr* ary_t = phase->type(dest)->isa_aryptr();
752 
753   if (dest_pos_t == nullptr || len_t == nullptr || ary_t == nullptr) {
754     return !must_modify;
755   }
756 
757   BasicType ary_elem = ary_t->isa_aryptr()->elem()->array_element_basic_type();
758   if (is_reference_type(ary_elem, true)) ary_elem = T_OBJECT;
759 
760   uint header = arrayOopDesc::base_offset_in_bytes(ary_elem);
761   uint elemsize = type2aelembytes(ary_elem);
762 
763   jlong dest_pos_plus_len_lo = (((jlong)dest_pos_t->_lo) + len_t->_lo) * elemsize + header;
764   jlong dest_pos_plus_len_hi = (((jlong)dest_pos_t->_hi) + len_t->_hi) * elemsize + header;
765   jlong dest_pos_lo = ((jlong)dest_pos_t->_lo) * elemsize + header;
766   jlong dest_pos_hi = ((jlong)dest_pos_t->_hi) * elemsize + header;
767 
768   if (must_modify) {
769     if (offset_lo >= dest_pos_hi && offset_hi < dest_pos_plus_len_lo) {
770       return true;
771     }
772   } else {
773     if (offset_hi >= dest_pos_lo && offset_lo < dest_pos_plus_len_hi) {
774       return true;
775     }
776   }
777   return false;
778 }
779 
780 // As an optimization, choose the optimal vector size for bounded copy length
781 int ArrayCopyNode::get_partial_inline_vector_lane_count(BasicType type, jlong max_len) {
782   assert(max_len > 0, JLONG_FORMAT, max_len);
783   // We only care whether max_size_in_bytes is not larger than 32, we also want to avoid
784   // multiplication overflow, so clamp max_len to [0, 64]
785   int max_size_in_bytes = MIN2<jlong>(max_len, 64) * type2aelembytes(type);
786   if (ArrayOperationPartialInlineSize > 16 && max_size_in_bytes <= 16) {
787     return 16 / type2aelembytes(type);
788   } else if (ArrayOperationPartialInlineSize > 32 && max_size_in_bytes <= 32) {
789     return 32 / type2aelembytes(type);
790   } else {
791     return ArrayOperationPartialInlineSize / type2aelembytes(type);
792   }
793 }