1 /*
   2  * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/bcEscapeAnalyzer.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "gc/shared/barrierSet.hpp"
  28 #include "gc/shared/c2/barrierSetC2.hpp"
  29 #include "libadt/vectset.hpp"
  30 #include "memory/allocation.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "opto/arraycopynode.hpp"
  33 #include "opto/c2compiler.hpp"
  34 #include "opto/callnode.hpp"
  35 #include "opto/castnode.hpp"
  36 #include "opto/cfgnode.hpp"
  37 #include "opto/compile.hpp"
  38 #include "opto/escape.hpp"
  39 #include "opto/locknode.hpp"
  40 #include "opto/macro.hpp"
  41 #include "opto/movenode.hpp"
  42 #include "opto/narrowptrnode.hpp"
  43 #include "opto/phaseX.hpp"
  44 #include "opto/rootnode.hpp"
  45 #include "utilities/macros.hpp"
  46 
  47 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn, int invocation) :
  48   // If ReduceAllocationMerges is enabled we might call split_through_phi during
  49   // split_unique_types and that will create additional nodes that need to be
  50   // pushed to the ConnectionGraph. The code below bumps the initial capacity of
  51   // _nodes by 10% to account for these additional nodes. If capacity is exceeded
  52   // the array will be reallocated.
  53   _nodes(C->comp_arena(), C->do_reduce_allocation_merges() ? C->unique()*1.10 : C->unique(), C->unique(), nullptr),
  54   _in_worklist(C->comp_arena()),
  55   _next_pidx(0),
  56   _collecting(true),
  57   _verify(false),
  58   _compile(C),
  59   _igvn(igvn),
  60   _invocation(invocation),
  61   _build_iterations(0),
  62   _build_time(0.),
  63   _node_map(C->comp_arena()) {
  64   // Add unknown java object.
  65   add_java_object(C->top(), PointsToNode::GlobalEscape);
  66   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
  67   set_not_scalar_replaceable(phantom_obj NOT_PRODUCT(COMMA "Phantom object"));
  68   // Add ConP and ConN null oop nodes
  69   Node* oop_null = igvn->zerocon(T_OBJECT);
  70   assert(oop_null->_idx < nodes_size(), "should be created already");
  71   add_java_object(oop_null, PointsToNode::NoEscape);
  72   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
  73   set_not_scalar_replaceable(null_obj NOT_PRODUCT(COMMA "Null object"));
  74   if (UseCompressedOops) {
  75     Node* noop_null = igvn->zerocon(T_NARROWOOP);
  76     assert(noop_null->_idx < nodes_size(), "should be created already");
  77     map_ideal_node(noop_null, null_obj);
  78   }
  79 }
  80 
  81 bool ConnectionGraph::has_candidates(Compile *C) {
  82   // EA brings benefits only when the code has allocations and/or locks which
  83   // are represented by ideal Macro nodes.
  84   int cnt = C->macro_count();
  85   for (int i = 0; i < cnt; i++) {
  86     Node *n = C->macro_node(i);
  87     if (n->is_Allocate()) {
  88       return true;
  89     }
  90     if (n->is_Lock()) {
  91       Node* obj = n->as_Lock()->obj_node()->uncast();
  92       if (!(obj->is_Parm() || obj->is_Con())) {
  93         return true;
  94       }
  95     }
  96     if (n->is_CallStaticJava() &&
  97         n->as_CallStaticJava()->is_boxing_method()) {
  98       return true;
  99     }
 100   }
 101   return false;
 102 }
 103 
 104 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
 105   Compile::TracePhase tp(Phase::_t_escapeAnalysis);
 106   ResourceMark rm;
 107 
 108   // Add ConP and ConN null oop nodes before ConnectionGraph construction
 109   // to create space for them in ConnectionGraph::_nodes[].
 110   Node* oop_null = igvn->zerocon(T_OBJECT);
 111   Node* noop_null = igvn->zerocon(T_NARROWOOP);
 112   int invocation = 0;
 113   if (C->congraph() != nullptr) {
 114     invocation = C->congraph()->_invocation + 1;
 115   }
 116   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn, invocation);
 117   NOT_PRODUCT(if (C->should_print_igv(/* Any level */ 1)) C->igv_printer()->set_congraph(congraph);)
 118   // Perform escape analysis
 119   if (congraph->compute_escape()) {
 120     // There are non escaping objects.
 121     C->set_congraph(congraph);
 122   }
 123   NOT_PRODUCT(if (C->should_print_igv(/* Any level */ 1)) C->igv_printer()->set_congraph(nullptr);)
 124   // Cleanup.
 125   if (oop_null->outcnt() == 0) {
 126     igvn->hash_delete(oop_null);
 127   }
 128   if (noop_null->outcnt() == 0) {
 129     igvn->hash_delete(noop_null);
 130   }
 131 
 132   C->print_method(PHASE_AFTER_EA, 2);
 133 }
 134 
 135 bool ConnectionGraph::compute_escape() {
 136   Compile* C = _compile;
 137   PhaseGVN* igvn = _igvn;
 138 
 139   // Worklists used by EA.
 140   Unique_Node_List delayed_worklist;
 141   Unique_Node_List reducible_merges;
 142   GrowableArray<Node*> alloc_worklist;
 143   GrowableArray<Node*> ptr_cmp_worklist;
 144   GrowableArray<MemBarStoreStoreNode*> storestore_worklist;
 145   GrowableArray<ArrayCopyNode*>  arraycopy_worklist;
 146   GrowableArray<PointsToNode*>   ptnodes_worklist;
 147   GrowableArray<JavaObjectNode*> java_objects_worklist;
 148   GrowableArray<JavaObjectNode*> non_escaped_allocs_worklist;
 149   GrowableArray<FieldNode*>      oop_fields_worklist;
 150   GrowableArray<SafePointNode*>  sfn_worklist;
 151   GrowableArray<MergeMemNode*>   mergemem_worklist;
 152   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 153 
 154   { Compile::TracePhase tp(Phase::_t_connectionGraph);
 155 
 156   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 157   ideal_nodes.map(C->live_nodes(), nullptr);  // preallocate space
 158   // Initialize worklist
 159   if (C->root() != nullptr) {
 160     ideal_nodes.push(C->root());
 161   }
 162   // Processed ideal nodes are unique on ideal_nodes list
 163   // but several ideal nodes are mapped to the phantom_obj.
 164   // To avoid duplicated entries on the following worklists
 165   // add the phantom_obj only once to them.
 166   ptnodes_worklist.append(phantom_obj);
 167   java_objects_worklist.append(phantom_obj);
 168   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 169     Node* n = ideal_nodes.at(next);
 170     // Create PointsTo nodes and add them to Connection Graph. Called
 171     // only once per ideal node since ideal_nodes is Unique_Node list.
 172     add_node_to_connection_graph(n, &delayed_worklist);
 173     PointsToNode* ptn = ptnode_adr(n->_idx);
 174     if (ptn != nullptr && ptn != phantom_obj) {
 175       ptnodes_worklist.append(ptn);
 176       if (ptn->is_JavaObject()) {
 177         java_objects_worklist.append(ptn->as_JavaObject());
 178         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 179             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 180           // Only allocations and java static calls results are interesting.
 181           non_escaped_allocs_worklist.append(ptn->as_JavaObject());
 182         }
 183       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 184         oop_fields_worklist.append(ptn->as_Field());
 185       }
 186     }
 187     // Collect some interesting nodes for further use.
 188     switch (n->Opcode()) {
 189       case Op_MergeMem:
 190         // Collect all MergeMem nodes to add memory slices for
 191         // scalar replaceable objects in split_unique_types().
 192         mergemem_worklist.append(n->as_MergeMem());
 193         break;
 194       case Op_CmpP:
 195       case Op_CmpN:
 196         // Collect compare pointers nodes.
 197         if (OptimizePtrCompare) {
 198           ptr_cmp_worklist.append(n);
 199         }
 200         break;
 201       case Op_MemBarStoreStore:
 202         // Collect all MemBarStoreStore nodes so that depending on the
 203         // escape status of the associated Allocate node some of them
 204         // may be eliminated.
 205         if (!UseStoreStoreForCtor || n->req() > MemBarNode::Precedent) {
 206           storestore_worklist.append(n->as_MemBarStoreStore());
 207         }
 208         // If MemBarStoreStore has a precedent edge add it to the worklist (like MemBarRelease)
 209       case Op_MemBarRelease:
 210         if (n->req() > MemBarNode::Precedent) {
 211           record_for_optimizer(n);
 212         }
 213         break;
 214 #ifdef ASSERT
 215       case Op_AddP:
 216         // Collect address nodes for graph verification.
 217         addp_worklist.append(n);
 218         break;
 219 #endif
 220       case Op_ArrayCopy:
 221         // Keep a list of ArrayCopy nodes so if one of its input is non
 222         // escaping, we can record a unique type
 223         arraycopy_worklist.append(n->as_ArrayCopy());
 224         break;
 225       default:
 226         // not interested now, ignore...
 227         break;
 228     }
 229     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 230       Node* m = n->fast_out(i);   // Get user
 231       ideal_nodes.push(m);
 232     }
 233     if (n->is_SafePoint()) {
 234       sfn_worklist.append(n->as_SafePoint());
 235     }
 236   }
 237 
 238 #ifndef PRODUCT
 239   if (_compile->directive()->TraceEscapeAnalysisOption) {
 240     tty->print("+++++ Initial worklist for ");
 241     _compile->method()->print_name();
 242     tty->print_cr(" (ea_inv=%d)", _invocation);
 243     for (int i = 0; i < ptnodes_worklist.length(); i++) {
 244       PointsToNode* ptn = ptnodes_worklist.at(i);
 245       ptn->dump();
 246     }
 247     tty->print_cr("+++++ Calculating escape states and scalar replaceability");
 248   }
 249 #endif
 250 
 251   if (non_escaped_allocs_worklist.length() == 0) {
 252     _collecting = false;
 253     NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 254     return false; // Nothing to do.
 255   }
 256   // Add final simple edges to graph.
 257   while(delayed_worklist.size() > 0) {
 258     Node* n = delayed_worklist.pop();
 259     add_final_edges(n);
 260   }
 261 
 262 #ifdef ASSERT
 263   if (VerifyConnectionGraph) {
 264     // Verify that no new simple edges could be created and all
 265     // local vars has edges.
 266     _verify = true;
 267     int ptnodes_length = ptnodes_worklist.length();
 268     for (int next = 0; next < ptnodes_length; ++next) {
 269       PointsToNode* ptn = ptnodes_worklist.at(next);
 270       add_final_edges(ptn->ideal_node());
 271       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
 272         ptn->dump();
 273         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
 274       }
 275     }
 276     _verify = false;
 277   }
 278 #endif
 279   // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes
 280   // processing, calls to CI to resolve symbols (types, fields, methods)
 281   // referenced in bytecode. During symbol resolution VM may throw
 282   // an exception which CI cleans and converts to compilation failure.
 283   if (C->failing()) {
 284     NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 285     return false;
 286   }
 287 
 288   _compile->print_method(PHASE_EA_AFTER_INITIAL_CONGRAPH, 4);
 289 
 290   // 2. Finish Graph construction by propagating references to all
 291   //    java objects through graph.
 292   if (!complete_connection_graph(ptnodes_worklist, non_escaped_allocs_worklist,
 293                                  java_objects_worklist, oop_fields_worklist)) {
 294     // All objects escaped or hit time or iterations limits.
 295     _collecting = false;
 296     NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 297     return false;
 298   }
 299 
 300   _compile->print_method(PHASE_EA_AFTER_COMPLETE_CONGRAPH, 4);
 301 
 302   // 3. Adjust scalar_replaceable state of nonescaping objects and push
 303   //    scalar replaceable allocations on alloc_worklist for processing
 304   //    in split_unique_types().
 305   GrowableArray<JavaObjectNode*> jobj_worklist;
 306   int non_escaped_length = non_escaped_allocs_worklist.length();
 307   bool found_nsr_alloc = false;
 308   for (int next = 0; next < non_escaped_length; next++) {
 309     JavaObjectNode* ptn = non_escaped_allocs_worklist.at(next);
 310     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
 311     Node* n = ptn->ideal_node();
 312     if (n->is_Allocate()) {
 313       n->as_Allocate()->_is_non_escaping = noescape;
 314     }
 315     if (noescape && ptn->scalar_replaceable()) {
 316       adjust_scalar_replaceable_state(ptn, reducible_merges);
 317       if (ptn->scalar_replaceable()) {
 318         jobj_worklist.push(ptn);
 319       } else {
 320         found_nsr_alloc = true;
 321       }
 322     }
 323     _compile->print_method(PHASE_EA_ADJUST_SCALAR_REPLACEABLE_ITER, 6, n);
 324   }
 325 
 326   // Propagate NSR (Not Scalar Replaceable) state.
 327   if (found_nsr_alloc) {
 328     find_scalar_replaceable_allocs(jobj_worklist, reducible_merges);
 329   }
 330 
 331   // alloc_worklist will be processed in reverse push order.
 332   // Therefore the reducible Phis will be processed for last and that's what we
 333   // want because by then the scalarizable inputs of the merge will already have
 334   // an unique instance type.
 335   for (uint i = 0; i < reducible_merges.size(); i++ ) {
 336     Node* n = reducible_merges.at(i);
 337     alloc_worklist.append(n);
 338   }
 339 
 340   for (int next = 0; next < jobj_worklist.length(); ++next) {
 341     JavaObjectNode* jobj = jobj_worklist.at(next);
 342     if (jobj->scalar_replaceable()) {
 343       alloc_worklist.append(jobj->ideal_node());
 344     }
 345   }
 346 
 347 #ifdef ASSERT
 348   if (VerifyConnectionGraph) {
 349     // Verify that graph is complete - no new edges could be added or needed.
 350     verify_connection_graph(ptnodes_worklist, non_escaped_allocs_worklist,
 351                             java_objects_worklist, addp_worklist);
 352   }
 353   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
 354   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
 355          null_obj->edge_count() == 0 &&
 356          !null_obj->arraycopy_src() &&
 357          !null_obj->arraycopy_dst(), "sanity");
 358 #endif
 359 
 360   _collecting = false;
 361 
 362   _compile->print_method(PHASE_EA_AFTER_PROPAGATE_NSR, 4);
 363   } // TracePhase t3("connectionGraph")
 364 
 365   // 4. Optimize ideal graph based on EA information.
 366   bool has_non_escaping_obj = (non_escaped_allocs_worklist.length() > 0);
 367   if (has_non_escaping_obj) {
 368     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
 369   }
 370 
 371 #ifndef PRODUCT
 372   if (PrintEscapeAnalysis) {
 373     dump(ptnodes_worklist); // Dump ConnectionGraph
 374   }
 375 #endif
 376 
 377 #ifdef ASSERT
 378   if (VerifyConnectionGraph) {
 379     int alloc_length = alloc_worklist.length();
 380     for (int next = 0; next < alloc_length; ++next) {
 381       Node* n = alloc_worklist.at(next);
 382       PointsToNode* ptn = ptnode_adr(n->_idx);
 383       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
 384     }
 385   }
 386 
 387   if (VerifyReduceAllocationMerges) {
 388     for (uint i = 0; i < reducible_merges.size(); i++ ) {
 389       Node* n = reducible_merges.at(i);
 390       if (!can_reduce_phi(n->as_Phi())) {
 391         TraceReduceAllocationMerges = true;
 392         n->dump(2);
 393         n->dump(-2);
 394         assert(can_reduce_phi(n->as_Phi()), "Sanity: previous reducible Phi is no longer reducible before SUT.");
 395       }
 396     }
 397   }
 398 #endif
 399 
 400   _compile->print_method(PHASE_EA_AFTER_GRAPH_OPTIMIZATION, 4);
 401 
 402   // 5. Separate memory graph for scalar replaceable allcations.
 403   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
 404   if (has_scalar_replaceable_candidates && EliminateAllocations) {
 405     assert(C->do_aliasing(), "Aliasing should be enabled");
 406     // Now use the escape information to create unique types for
 407     // scalar replaceable objects.
 408     split_unique_types(alloc_worklist, arraycopy_worklist, mergemem_worklist, reducible_merges);
 409     if (C->failing()) {
 410       NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 411       return false;
 412     }
 413 
 414 #ifdef ASSERT
 415   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
 416     tty->print("=== No allocations eliminated for ");
 417     C->method()->print_short_name();
 418     if (!EliminateAllocations) {
 419       tty->print(" since EliminateAllocations is off ===");
 420     } else if(!has_scalar_replaceable_candidates) {
 421       tty->print(" since there are no scalar replaceable candidates ===");
 422     }
 423     tty->cr();
 424 #endif
 425   }
 426 
 427   _compile->print_method(PHASE_EA_AFTER_SPLIT_UNIQUE_TYPES, 4);
 428 
 429   // 6. Reduce allocation merges used as debug information. This is done after
 430   // split_unique_types because the methods used to create SafePointScalarObject
 431   // need to traverse the memory graph to find values for object fields. We also
 432   // set to null the scalarized inputs of reducible Phis so that the Allocate
 433   // that they point can be later scalar replaced.
 434   bool delay = _igvn->delay_transform();
 435   _igvn->set_delay_transform(true);
 436   for (uint i = 0; i < reducible_merges.size(); i++) {
 437     Node* n = reducible_merges.at(i);
 438     if (n->outcnt() > 0) {
 439       if (!reduce_phi_on_safepoints(n->as_Phi())) {
 440         NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 441         C->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
 442         return false;
 443       }
 444 
 445       // Now we set the scalar replaceable inputs of ophi to null, which is
 446       // the last piece that would prevent it from being scalar replaceable.
 447       reset_scalar_replaceable_entries(n->as_Phi());
 448     }
 449   }
 450   _igvn->set_delay_transform(delay);
 451 
 452   // Annotate at safepoints if they have <= ArgEscape objects in their scope and at
 453   // java calls if they pass ArgEscape objects as parameters.
 454   if (has_non_escaping_obj &&
 455       (C->env()->should_retain_local_variables() ||
 456        C->env()->jvmti_can_get_owned_monitor_info() ||
 457        C->env()->jvmti_can_walk_any_space() ||
 458        DeoptimizeObjectsALot)) {
 459     int sfn_length = sfn_worklist.length();
 460     for (int next = 0; next < sfn_length; next++) {
 461       SafePointNode* sfn = sfn_worklist.at(next);
 462       sfn->set_has_ea_local_in_scope(has_ea_local_in_scope(sfn));
 463       if (sfn->is_CallJava()) {
 464         CallJavaNode* call = sfn->as_CallJava();
 465         call->set_arg_escape(has_arg_escape(call));
 466       }
 467     }
 468   }
 469 
 470   _compile->print_method(PHASE_EA_AFTER_REDUCE_PHI_ON_SAFEPOINTS, 4);
 471 
 472   NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 473   return has_non_escaping_obj;
 474 }
 475 
 476 // Check if it's profitable to reduce the Phi passed as parameter.  Returns true
 477 // if at least one scalar replaceable allocation participates in the merge.
 478 bool ConnectionGraph::can_reduce_phi_check_inputs(PhiNode* ophi) const {
 479   bool found_sr_allocate = false;
 480 
 481   for (uint i = 1; i < ophi->req(); i++) {
 482     JavaObjectNode* ptn = unique_java_object(ophi->in(i));
 483     if (ptn != nullptr && ptn->scalar_replaceable()) {
 484       AllocateNode* alloc = ptn->ideal_node()->as_Allocate();
 485 
 486       // Don't handle arrays.
 487       if (alloc->Opcode() != Op_Allocate) {
 488         assert(alloc->Opcode() == Op_AllocateArray, "Unexpected type of allocation.");
 489         continue;
 490       }
 491 
 492       if (PhaseMacroExpand::can_eliminate_allocation(_igvn, alloc, nullptr)) {
 493         found_sr_allocate = true;
 494       } else {
 495         NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("%dth input of Phi %d is SR but can't be eliminated.", i, ophi->_idx);)
 496         ptn->set_scalar_replaceable(false);
 497       }
 498     }
 499   }
 500 
 501   NOT_PRODUCT(if (TraceReduceAllocationMerges && !found_sr_allocate) tty->print_cr("Can NOT reduce Phi %d on invocation %d. No SR Allocate as input.", ophi->_idx, _invocation);)
 502   return found_sr_allocate;
 503 }
 504 
 505 // We can reduce the Cmp if it's a comparison between the Phi and a constant.
 506 // I require the 'other' input to be a constant so that I can move the Cmp
 507 // around safely.
 508 bool ConnectionGraph::can_reduce_cmp(Node* n, Node* cmp) const {
 509   assert(cmp->Opcode() == Op_CmpP || cmp->Opcode() == Op_CmpN, "not expected node: %s", cmp->Name());
 510   Node* left = cmp->in(1);
 511   Node* right = cmp->in(2);
 512 
 513   return (left == n || right == n) &&
 514          (left->is_Con() || right->is_Con()) &&
 515          cmp->outcnt() == 1;
 516 }
 517 
 518 // We are going to check if any of the SafePointScalarMerge entries
 519 // in the SafePoint reference the Phi that we are checking.
 520 bool ConnectionGraph::has_been_reduced(PhiNode* n, SafePointNode* sfpt) const {
 521   JVMState *jvms = sfpt->jvms();
 522 
 523   for (uint i = jvms->debug_start(); i < jvms->debug_end(); i++) {
 524     Node* sfpt_in = sfpt->in(i);
 525     if (sfpt_in->is_SafePointScalarMerge()) {
 526       SafePointScalarMergeNode* smerge = sfpt_in->as_SafePointScalarMerge();
 527       Node* nsr_ptr = sfpt->in(smerge->merge_pointer_idx(jvms));
 528       if (nsr_ptr == n) {
 529         return true;
 530       }
 531     }
 532   }
 533 
 534   return false;
 535 }
 536 
 537 // Check if we are able to untangle the merge. The following patterns are
 538 // supported:
 539 //  - Phi -> SafePoints
 540 //  - Phi -> CmpP/N
 541 //  - Phi -> AddP -> Load
 542 //  - Phi -> CastPP -> SafePoints
 543 //  - Phi -> CastPP -> AddP -> Load
 544 bool ConnectionGraph::can_reduce_check_users(Node* n, uint nesting) const {
 545   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 546     Node* use = n->fast_out(i);
 547 
 548     if (use->is_SafePoint()) {
 549       if (use->is_Call() && use->as_Call()->has_non_debug_use(n)) {
 550         NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. Call has non_debug_use().", n->_idx, _invocation);)
 551         return false;
 552       } else if (has_been_reduced(n->is_Phi() ? n->as_Phi() : n->as_CastPP()->in(1)->as_Phi(), use->as_SafePoint())) {
 553         NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. It has already been reduced.", n->_idx, _invocation);)
 554         return false;
 555       }
 556     } else if (use->is_AddP()) {
 557       Node* addp = use;
 558       for (DUIterator_Fast jmax, j = addp->fast_outs(jmax); j < jmax; j++) {
 559         Node* use_use = addp->fast_out(j);
 560         const Type* load_type = _igvn->type(use_use);
 561 
 562         if (!use_use->is_Load() || !use_use->as_Load()->can_split_through_phi_base(_igvn)) {
 563           NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. AddP user isn't a [splittable] Load(): %s", n->_idx, _invocation, use_use->Name());)
 564           return false;
 565         } else if (load_type->isa_narrowklass() || load_type->isa_klassptr()) {
 566           NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. [Narrow] Klass Load: %s", n->_idx, _invocation, use_use->Name());)
 567           return false;
 568         }
 569       }
 570     } else if (nesting > 0) {
 571       NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. Unsupported user %s at nesting level %d.", n->_idx, _invocation, use->Name(), nesting);)
 572       return false;
 573     } else if (use->is_CastPP()) {
 574       const Type* cast_t = _igvn->type(use);
 575       if (cast_t == nullptr || cast_t->make_ptr()->isa_instptr() == nullptr) {
 576 #ifndef PRODUCT
 577         if (TraceReduceAllocationMerges) {
 578           tty->print_cr("Can NOT reduce Phi %d on invocation %d. CastPP is not to an instance.", n->_idx, _invocation);
 579           use->dump();
 580         }
 581 #endif
 582         return false;
 583       }
 584 
 585       bool is_trivial_control = use->in(0) == nullptr || use->in(0) == n->in(0);
 586       if (!is_trivial_control) {
 587         // If it's not a trivial control then we check if we can reduce the
 588         // CmpP/N used by the If controlling the cast.
 589         if (use->in(0)->is_IfTrue() || use->in(0)->is_IfFalse()) {
 590           Node* iff = use->in(0)->in(0);
 591           // We may have an OpaqueNotNull node between If and Bool nodes. But we could also have a sub class of IfNode,
 592           // for example, an OuterStripMinedLoopEnd or a Parse Predicate. Bail out in all these cases.
 593           bool can_reduce = (iff->Opcode() == Op_If) && iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp();
 594           if (can_reduce) {
 595             Node* iff_cmp = iff->in(1)->in(1);
 596             int opc = iff_cmp->Opcode();
 597             can_reduce = (opc == Op_CmpP || opc == Op_CmpN) && can_reduce_cmp(n, iff_cmp);
 598           }
 599           if (!can_reduce) {
 600 #ifndef PRODUCT
 601             if (TraceReduceAllocationMerges) {
 602               tty->print_cr("Can NOT reduce Phi %d on invocation %d. CastPP %d doesn't have simple control.", n->_idx, _invocation, use->_idx);
 603               n->dump(5);
 604             }
 605 #endif
 606             return false;
 607           }
 608         }
 609       }
 610 
 611       if (!can_reduce_check_users(use, nesting+1)) {
 612         return false;
 613       }
 614     } else if (use->Opcode() == Op_CmpP || use->Opcode() == Op_CmpN) {
 615       if (!can_reduce_cmp(n, use)) {
 616         NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. CmpP/N %d isn't reducible.", n->_idx, _invocation, use->_idx);)
 617         return false;
 618       }
 619     } else {
 620       NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. One of the uses is: %d %s", n->_idx, _invocation, use->_idx, use->Name());)
 621       return false;
 622     }
 623   }
 624 
 625   return true;
 626 }
 627 
 628 // Returns true if: 1) It's profitable to reduce the merge, and 2) The Phi is
 629 // only used in some certain code shapes. Check comments in
 630 // 'can_reduce_phi_inputs' and 'can_reduce_phi_users' for more
 631 // details.
 632 bool ConnectionGraph::can_reduce_phi(PhiNode* ophi) const {
 633   // If there was an error attempting to reduce allocation merges for this
 634   // method we might have disabled the compilation and be retrying with RAM
 635   // disabled.
 636   if (!_compile->do_reduce_allocation_merges() || ophi->region()->Opcode() != Op_Region) {
 637     return false;
 638   }
 639 
 640   const Type* phi_t = _igvn->type(ophi);
 641   if (phi_t == nullptr ||
 642       phi_t->make_ptr() == nullptr ||
 643       phi_t->make_ptr()->isa_aryptr() != nullptr) {
 644     return false;
 645   }
 646 
 647   if (!can_reduce_phi_check_inputs(ophi) || !can_reduce_check_users(ophi, /* nesting: */ 0)) {
 648     return false;
 649   }
 650 
 651   NOT_PRODUCT(if (TraceReduceAllocationMerges) { tty->print_cr("Can reduce Phi %d during invocation %d: ", ophi->_idx, _invocation); })
 652   return true;
 653 }
 654 
 655 // This method will return a CmpP/N that we need to use on the If controlling a
 656 // CastPP after it was split. This method is only called on bases that are
 657 // nullable therefore we always need a controlling if for the splitted CastPP.
 658 //
 659 // 'curr_ctrl' is the control of the CastPP that we want to split through phi.
 660 // If the CastPP currently doesn't have a control then the CmpP/N will be
 661 // against the null constant, otherwise it will be against the constant input of
 662 // the existing CmpP/N. It's guaranteed that there will be a CmpP/N in the later
 663 // case because we have constraints on it and because the CastPP has a control
 664 // input.
 665 Node* ConnectionGraph::specialize_cmp(Node* base, Node* curr_ctrl) {
 666   const Type* t = base->bottom_type();
 667   Node* con = nullptr;
 668 
 669   if (curr_ctrl == nullptr || curr_ctrl->is_Region()) {
 670     con = _igvn->zerocon(t->basic_type());
 671   } else {
 672     // can_reduce_check_users() verified graph: true/false -> if -> bool -> cmp
 673     assert(curr_ctrl->in(0)->Opcode() == Op_If, "unexpected node %s", curr_ctrl->in(0)->Name());
 674     Node* bol = curr_ctrl->in(0)->in(1);
 675     assert(bol->is_Bool(), "unexpected node %s", bol->Name());
 676     Node* curr_cmp = bol->in(1);
 677     assert(curr_cmp->Opcode() == Op_CmpP || curr_cmp->Opcode() == Op_CmpN, "unexpected node %s", curr_cmp->Name());
 678     con = curr_cmp->in(1)->is_Con() ? curr_cmp->in(1) : curr_cmp->in(2);
 679   }
 680 
 681   return CmpNode::make(base, con, t->basic_type());
 682 }
 683 
 684 // This method 'specializes' the CastPP passed as parameter to the base passed
 685 // as parameter. Note that the existing CastPP input is a Phi. "Specialize"
 686 // means that the CastPP now will be specific for a given base instead of a Phi.
 687 // An If-Then-Else-Region block is inserted to control the CastPP. The control
 688 // of the CastPP is a copy of the current one (if there is one) or a check
 689 // against null.
 690 //
 691 // Before:
 692 //
 693 //    C1     C2  ... Cn
 694 //     \      |      /
 695 //      \     |     /
 696 //       \    |    /
 697 //        \   |   /
 698 //         \  |  /
 699 //          \ | /
 700 //           \|/
 701 //          Region     B1      B2  ... Bn
 702 //            |          \      |      /
 703 //            |           \     |     /
 704 //            |            \    |    /
 705 //            |             \   |   /
 706 //            |              \  |  /
 707 //            |               \ | /
 708 //            ---------------> Phi
 709 //                              |
 710 //                      X       |
 711 //                      |       |
 712 //                      |       |
 713 //                      ------> CastPP
 714 //
 715 // After (only partial illustration; base = B2, current_control = C2):
 716 //
 717 //                      C2
 718 //                      |
 719 //                      If
 720 //                     / \
 721 //                    /   \
 722 //                   T     F
 723 //                  /\     /
 724 //                 /  \   /
 725 //                /    \ /
 726 //      C1    CastPP   Reg        Cn
 727 //       |              |          |
 728 //       |              |          |
 729 //       |              |          |
 730 //       -------------- | ----------
 731 //                    | | |
 732 //                    Region
 733 //
 734 Node* ConnectionGraph::specialize_castpp(Node* castpp, Node* base, Node* current_control) {
 735   Node* control_successor  = current_control->unique_ctrl_out();
 736   Node* cmp                = _igvn->transform(specialize_cmp(base, castpp->in(0)));
 737   Node* bol                = _igvn->transform(new BoolNode(cmp, BoolTest::ne));
 738   IfNode* if_ne            = _igvn->transform(new IfNode(current_control, bol, PROB_MIN, COUNT_UNKNOWN))->as_If();
 739   Node* not_eq_control     = _igvn->transform(new IfTrueNode(if_ne));
 740   Node* yes_eq_control     = _igvn->transform(new IfFalseNode(if_ne));
 741   Node* end_region         = _igvn->transform(new RegionNode(3));
 742 
 743   // Insert the new if-else-region block into the graph
 744   end_region->set_req(1, not_eq_control);
 745   end_region->set_req(2, yes_eq_control);
 746   control_successor->replace_edge(current_control, end_region, _igvn);
 747 
 748   _igvn->_worklist.push(current_control);
 749   _igvn->_worklist.push(control_successor);
 750 
 751   return _igvn->transform(ConstraintCastNode::make_cast_for_type(not_eq_control, base, _igvn->type(castpp), ConstraintCastNode::UnconditionalDependency, nullptr));
 752 }
 753 
 754 Node* ConnectionGraph::split_castpp_load_through_phi(Node* curr_addp, Node* curr_load, Node* region, GrowableArray<Node*>* bases_for_loads, GrowableArray<Node *>  &alloc_worklist) {
 755   const Type* load_type = _igvn->type(curr_load);
 756   Node* nsr_value = _igvn->zerocon(load_type->basic_type());
 757   Node* memory = curr_load->in(MemNode::Memory);
 758 
 759   // The data_phi merging the loads needs to be nullable if
 760   // we are loading pointers.
 761   if (load_type->make_ptr() != nullptr) {
 762     if (load_type->isa_narrowoop()) {
 763       load_type = load_type->meet(TypeNarrowOop::NULL_PTR);
 764     } else if (load_type->isa_ptr()) {
 765       load_type = load_type->meet(TypePtr::NULL_PTR);
 766     } else {
 767       assert(false, "Unexpected load ptr type.");
 768     }
 769   }
 770 
 771   Node* data_phi = PhiNode::make(region, nsr_value, load_type);
 772 
 773   for (int i = 1; i < bases_for_loads->length(); i++) {
 774     Node* base = bases_for_loads->at(i);
 775     Node* cmp_region = nullptr;
 776     if (base != nullptr) {
 777       if (base->is_CFG()) { // means that we added a CastPP as child of this CFG node
 778         cmp_region = base->unique_ctrl_out_or_null();
 779         assert(cmp_region != nullptr, "There should be.");
 780         base = base->find_out_with(Op_CastPP);
 781       }
 782 
 783       Node* addr = _igvn->transform(new AddPNode(base, base, curr_addp->in(AddPNode::Offset)));
 784       Node* mem = (memory->is_Phi() && (memory->in(0) == region)) ? memory->in(i) : memory;
 785       Node* load = curr_load->clone();
 786       load->set_req(0, nullptr);
 787       load->set_req(1, mem);
 788       load->set_req(2, addr);
 789 
 790       if (cmp_region != nullptr) { // see comment on previous if
 791         Node* intermediate_phi = PhiNode::make(cmp_region, nsr_value, load_type);
 792         intermediate_phi->set_req(1, _igvn->transform(load));
 793         load = intermediate_phi;
 794       }
 795 
 796       data_phi->set_req(i, _igvn->transform(load));
 797     } else {
 798       // Just use the default, which is already in phi
 799     }
 800   }
 801 
 802   // Takes care of updating CG and split_unique_types worklists due
 803   // to cloned AddP->Load.
 804   updates_after_load_split(data_phi, curr_load, alloc_worklist);
 805 
 806   return _igvn->transform(data_phi);
 807 }
 808 
 809 // This method only reduces CastPP fields loads; SafePoints are handled
 810 // separately. The idea here is basically to clone the CastPP and place copies
 811 // on each input of the Phi, including non-scalar replaceable inputs.
 812 // Experimentation shows that the resulting IR graph is simpler that way than if
 813 // we just split the cast through scalar-replaceable inputs.
 814 //
 815 // The reduction process requires that CastPP's control be one of:
 816 //  1) no control,
 817 //  2) the same region as Ophi, or
 818 //  3) an IfTrue/IfFalse coming from an CmpP/N between Ophi and a constant.
 819 //
 820 // After splitting the CastPP we'll put it under an If-Then-Else-Region control
 821 // flow. If the CastPP originally had an IfTrue/False control input then we'll
 822 // use a similar CmpP/N to control the new If-Then-Else-Region. Otherwise, we'll
 823 // juse use a CmpP/N against the null constant.
 824 //
 825 // The If-Then-Else-Region isn't always needed. For instance, if input to
 826 // splitted cast was not nullable (or if it was the null constant) then we don't
 827 // need (shouldn't) use a CastPP at all.
 828 //
 829 // After the casts are splitted we'll split the AddP->Loads through the Phi and
 830 // connect them to the just split CastPPs.
 831 //
 832 // Before (CastPP control is same as Phi):
 833 //
 834 //          Region     Allocate   Null    Call
 835 //            |             \      |      /
 836 //            |              \     |     /
 837 //            |               \    |    /
 838 //            |                \   |   /
 839 //            |                 \  |  /
 840 //            |                  \ | /
 841 //            ------------------> Phi            # Oop Phi
 842 //            |                    |
 843 //            |                    |
 844 //            |                    |
 845 //            |                    |
 846 //            ----------------> CastPP
 847 //                                 |
 848 //                               AddP
 849 //                                 |
 850 //                               Load
 851 //
 852 // After (Very much simplified):
 853 //
 854 //                         Call  Null
 855 //                            \  /
 856 //                            CmpP
 857 //                             |
 858 //                           Bool#NE
 859 //                             |
 860 //                             If
 861 //                            / \
 862 //                           T   F
 863 //                          / \ /
 864 //                         /   R
 865 //                     CastPP  |
 866 //                       |     |
 867 //                     AddP    |
 868 //                       |     |
 869 //                     Load    |
 870 //                         \   |   0
 871 //            Allocate      \  |  /
 872 //                \          \ | /
 873 //               AddP         Phi
 874 //                  \         /
 875 //                 Load      /
 876 //                    \  0  /
 877 //                     \ | /
 878 //                      \|/
 879 //                      Phi        # "Field" Phi
 880 //
 881 void ConnectionGraph::reduce_phi_on_castpp_field_load(Node* curr_castpp, GrowableArray<Node*> &alloc_worklist) {
 882   Node* ophi = curr_castpp->in(1);
 883   assert(ophi->is_Phi(), "Expected this to be a Phi node.");
 884 
 885   // Identify which base should be used for AddP->Load later when spliting the
 886   // CastPP->Loads through ophi. Three kind of values may be stored in this
 887   // array, depending on the nullability status of the corresponding input in
 888   // ophi.
 889   //
 890   //  - nullptr:    Meaning that the base is actually the null constant and therefore
 891   //                we won't try to load from it.
 892   //
 893   //  - CFG Node:   Meaning that the base is a CastPP that was specialized for
 894   //                this input of Ophi. I.e., we added an If->Then->Else-Region
 895   //                that will 'activate' the CastPp only when the input is not Null.
 896   //
 897   //  - Other Node: Meaning that the base is not nullable and therefore we'll try
 898   //                to load directly from it.
 899   GrowableArray<Node*> bases_for_loads(ophi->req(), ophi->req(), nullptr);
 900 
 901   for (uint i = 1; i < ophi->req(); i++) {
 902     Node* base = ophi->in(i);
 903     const Type* base_t = _igvn->type(base);
 904 
 905     if (base_t->maybe_null()) {
 906       if (base->is_Con()) {
 907         // Nothing todo as bases_for_loads[i] is already null
 908       } else {
 909         Node* new_castpp = specialize_castpp(curr_castpp, base, ophi->in(0)->in(i));
 910         bases_for_loads.at_put(i, new_castpp->in(0)); // Use the ctrl of the new node just as a flag
 911       }
 912     } else {
 913       bases_for_loads.at_put(i, base);
 914     }
 915   }
 916 
 917   // Now let's split the CastPP->Loads through the Phi
 918   for (int i = curr_castpp->outcnt()-1; i >= 0;) {
 919     Node* use = curr_castpp->raw_out(i);
 920     if (use->is_AddP()) {
 921       for (int j = use->outcnt()-1; j >= 0;) {
 922         Node* use_use = use->raw_out(j);
 923         assert(use_use->is_Load(), "Expected this to be a Load node.");
 924 
 925         // We can't make an unconditional load from a nullable input. The
 926         // 'split_castpp_load_through_phi` method will add an
 927         // 'If-Then-Else-Region` around nullable bases and only load from them
 928         // when the input is not null.
 929         Node* phi = split_castpp_load_through_phi(use, use_use, ophi->in(0), &bases_for_loads, alloc_worklist);
 930         _igvn->replace_node(use_use, phi);
 931 
 932         --j;
 933         j = MIN2(j, (int)use->outcnt()-1);
 934       }
 935 
 936       _igvn->remove_dead_node(use);
 937     }
 938     --i;
 939     i = MIN2(i, (int)curr_castpp->outcnt()-1);
 940   }
 941 }
 942 
 943 // This method split a given CmpP/N through the Phi used in one of its inputs.
 944 // As a result we convert a comparison with a pointer to a comparison with an
 945 // integer.
 946 // The only requirement is that one of the inputs of the CmpP/N must be a Phi
 947 // while the other must be a constant.
 948 // The splitting process is basically just cloning the CmpP/N above the input
 949 // Phi.  However, some (most) of the cloned CmpP/Ns won't be requred because we
 950 // can prove at compile time the result of the comparison.
 951 //
 952 // Before:
 953 //
 954 //             in1    in2 ... inN
 955 //              \      |      /
 956 //               \     |     /
 957 //                \    |    /
 958 //                 \   |   /
 959 //                  \  |  /
 960 //                   \ | /
 961 //                    Phi
 962 //                     |   Other
 963 //                     |    /
 964 //                     |   /
 965 //                     |  /
 966 //                    CmpP/N
 967 //
 968 // After:
 969 //
 970 //        in1  Other   in2 Other  inN  Other
 971 //         |    |      |   |      |    |
 972 //         \    |      |   |      |    |
 973 //          \  /       |   /      |    /
 974 //          CmpP/N    CmpP/N     CmpP/N
 975 //          Bool      Bool       Bool
 976 //            \        |        /
 977 //             \       |       /
 978 //              \      |      /
 979 //               \     |     /
 980 //                \    |    /
 981 //                 \   |   /
 982 //                  \  |  /
 983 //                   \ | /
 984 //                    Phi
 985 //                     |
 986 //                     |   Zero
 987 //                     |    /
 988 //                     |   /
 989 //                     |  /
 990 //                     CmpI
 991 //
 992 //
 993 void ConnectionGraph::reduce_phi_on_cmp(Node* cmp) {
 994   Node* ophi = cmp->in(1)->is_Con() ? cmp->in(2) : cmp->in(1);
 995   assert(ophi->is_Phi(), "Expected this to be a Phi node.");
 996 
 997   Node* other = cmp->in(1)->is_Con() ? cmp->in(1) : cmp->in(2);
 998   Node* zero = _igvn->intcon(0);
 999   Node* one = _igvn->intcon(1);
1000   BoolTest::mask mask = cmp->unique_out()->as_Bool()->_test._test;
1001 
1002   // This Phi will merge the result of the Cmps split through the Phi
1003   Node* res_phi = PhiNode::make(ophi->in(0), zero, TypeInt::INT);
1004 
1005   for (uint i=1; i<ophi->req(); i++) {
1006     Node* ophi_input = ophi->in(i);
1007     Node* res_phi_input = nullptr;
1008 
1009     const TypeInt* tcmp = optimize_ptr_compare(ophi_input, other);
1010     if (tcmp->singleton()) {
1011       if ((mask == BoolTest::mask::eq && tcmp == TypeInt::CC_EQ) ||
1012           (mask == BoolTest::mask::ne && tcmp == TypeInt::CC_GT)) {
1013         res_phi_input = one;
1014       } else {
1015         res_phi_input = zero;
1016       }
1017     } else {
1018       Node* ncmp = _igvn->transform(cmp->clone());
1019       ncmp->set_req(1, ophi_input);
1020       ncmp->set_req(2, other);
1021       Node* bol = _igvn->transform(new BoolNode(ncmp, mask));
1022       res_phi_input = bol->as_Bool()->as_int_value(_igvn);
1023     }
1024 
1025     res_phi->set_req(i, res_phi_input);
1026   }
1027 
1028   // This CMP always compares whether the output of "res_phi" is TRUE as far as the "mask".
1029   Node* new_cmp = _igvn->transform(new CmpINode(_igvn->transform(res_phi), (mask == BoolTest::mask::eq) ? one : zero));
1030   _igvn->replace_node(cmp, new_cmp);
1031 }
1032 
1033 // Push the newly created AddP on alloc_worklist and patch
1034 // the connection graph. Note that the changes in the CG below
1035 // won't affect the ES of objects since the new nodes have the
1036 // same status as the old ones.
1037 void ConnectionGraph::updates_after_load_split(Node* data_phi, Node* previous_load, GrowableArray<Node *>  &alloc_worklist) {
1038   assert(data_phi != nullptr, "Output of split_through_phi is null.");
1039   assert(data_phi != previous_load, "Output of split_through_phi is same as input.");
1040   assert(data_phi->is_Phi(), "Output of split_through_phi isn't a Phi.");
1041 
1042   if (data_phi == nullptr || !data_phi->is_Phi()) {
1043     // Make this a retry?
1044     return ;
1045   }
1046 
1047   Node* previous_addp = previous_load->in(MemNode::Address);
1048   FieldNode* fn = ptnode_adr(previous_addp->_idx)->as_Field();
1049   for (uint i = 1; i < data_phi->req(); i++) {
1050     Node* new_load = data_phi->in(i);
1051 
1052     if (new_load->is_Phi()) {
1053       // new_load is currently the "intermediate_phi" from an specialized
1054       // CastPP.
1055       new_load = new_load->in(1);
1056     }
1057 
1058     // "new_load" might actually be a constant, parameter, etc.
1059     if (new_load->is_Load()) {
1060       Node* new_addp = new_load->in(MemNode::Address);
1061       Node* base = get_addp_base(new_addp);
1062 
1063       // The base might not be something that we can create an unique
1064       // type for. If that's the case we are done with that input.
1065       PointsToNode* jobj_ptn = unique_java_object(base);
1066       if (jobj_ptn == nullptr || !jobj_ptn->scalar_replaceable()) {
1067         continue;
1068       }
1069 
1070       // Push to alloc_worklist since the base has an unique_type
1071       alloc_worklist.append_if_missing(new_addp);
1072 
1073       // Now let's add the node to the connection graph
1074       _nodes.at_grow(new_addp->_idx, nullptr);
1075       add_field(new_addp, fn->escape_state(), fn->offset());
1076       add_base(ptnode_adr(new_addp->_idx)->as_Field(), ptnode_adr(base->_idx));
1077 
1078       // If the load doesn't load an object then it won't be
1079       // part of the connection graph
1080       PointsToNode* curr_load_ptn = ptnode_adr(previous_load->_idx);
1081       if (curr_load_ptn != nullptr) {
1082         _nodes.at_grow(new_load->_idx, nullptr);
1083         add_local_var(new_load, curr_load_ptn->escape_state());
1084         add_edge(ptnode_adr(new_load->_idx), ptnode_adr(new_addp->_idx)->as_Field());
1085       }
1086     }
1087   }
1088 }
1089 
1090 void ConnectionGraph::reduce_phi_on_field_access(Node* previous_addp, GrowableArray<Node *>  &alloc_worklist) {
1091   // We'll pass this to 'split_through_phi' so that it'll do the split even
1092   // though the load doesn't have an unique instance type.
1093   bool ignore_missing_instance_id = true;
1094 
1095   // All AddPs are present in the connection graph
1096   FieldNode* fn = ptnode_adr(previous_addp->_idx)->as_Field();
1097 
1098   // Iterate over AddP looking for a Load
1099   for (int k = previous_addp->outcnt()-1; k >= 0;) {
1100     Node* previous_load = previous_addp->raw_out(k);
1101     if (previous_load->is_Load()) {
1102       Node* data_phi = previous_load->as_Load()->split_through_phi(_igvn, ignore_missing_instance_id);
1103 
1104       // Takes care of updating CG and split_unique_types worklists due to cloned
1105       // AddP->Load.
1106       updates_after_load_split(data_phi, previous_load, alloc_worklist);
1107 
1108       _igvn->replace_node(previous_load, data_phi);
1109     }
1110     --k;
1111     k = MIN2(k, (int)previous_addp->outcnt()-1);
1112   }
1113 
1114   // Remove the old AddP from the processing list because it's dead now
1115   assert(previous_addp->outcnt() == 0, "AddP should be dead now.");
1116   alloc_worklist.remove_if_existing(previous_addp);
1117 }
1118 
1119 // Create a 'selector' Phi based on the inputs of 'ophi'. If index 'i' of the
1120 // selector is:
1121 //    -> a '-1' constant, the i'th input of the original Phi is NSR.
1122 //    -> a 'x' constant >=0, the i'th input of of original Phi will be SR and
1123 //       the info about the scalarized object will be at index x of ObjectMergeValue::possible_objects
1124 PhiNode* ConnectionGraph::create_selector(PhiNode* ophi) const {
1125   Node* minus_one = _igvn->register_new_node_with_optimizer(ConINode::make(-1));
1126   Node* selector  = _igvn->register_new_node_with_optimizer(PhiNode::make(ophi->region(), minus_one, TypeInt::INT));
1127   uint number_of_sr_objects = 0;
1128   for (uint i = 1; i < ophi->req(); i++) {
1129     Node* base = ophi->in(i);
1130     JavaObjectNode* ptn = unique_java_object(base);
1131 
1132     if (ptn != nullptr && ptn->scalar_replaceable()) {
1133       Node* sr_obj_idx = _igvn->register_new_node_with_optimizer(ConINode::make(number_of_sr_objects));
1134       selector->set_req(i, sr_obj_idx);
1135       number_of_sr_objects++;
1136     }
1137   }
1138 
1139   return selector->as_Phi();
1140 }
1141 
1142 // Returns true if the AddP node 'n' has at least one base that is a reducible
1143 // merge. If the base is a CastPP/CheckCastPP then the input of the cast is
1144 // checked instead.
1145 bool ConnectionGraph::has_reducible_merge_base(AddPNode* n, Unique_Node_List &reducible_merges) {
1146   PointsToNode* ptn = ptnode_adr(n->_idx);
1147   if (ptn == nullptr || !ptn->is_Field() || ptn->as_Field()->base_count() < 2) {
1148     return false;
1149   }
1150 
1151   for (BaseIterator i(ptn->as_Field()); i.has_next(); i.next()) {
1152     Node* base = i.get()->ideal_node();
1153 
1154     if (reducible_merges.member(base)) {
1155       return true;
1156     }
1157 
1158     if (base->is_CastPP() || base->is_CheckCastPP()) {
1159       base = base->in(1);
1160       if (reducible_merges.member(base)) {
1161         return true;
1162       }
1163     }
1164   }
1165 
1166   return false;
1167 }
1168 
1169 // This method will call its helper method to reduce SafePoint nodes that use
1170 // 'ophi' or a casted version of 'ophi'. All SafePoint nodes using the same
1171 // "version" of Phi use the same debug information (regarding the Phi).
1172 // Therefore, I collect all safepoints and patch them all at once.
1173 //
1174 // The safepoints using the Phi node have to be processed before safepoints of
1175 // CastPP nodes. The reason is, when reducing a CastPP we add a reference (the
1176 // NSR merge pointer) to the input of the CastPP (i.e., the Phi) in the
1177 // safepoint. If we process CastPP's safepoints before Phi's safepoints the
1178 // algorithm that process Phi's safepoints will think that the added Phi
1179 // reference is a regular reference.
1180 bool ConnectionGraph::reduce_phi_on_safepoints(PhiNode* ophi) {
1181   PhiNode* selector = create_selector(ophi);
1182   Unique_Node_List safepoints;
1183   Unique_Node_List casts;
1184 
1185   // Just collect the users of the Phis for later processing
1186   // in the needed order.
1187   for (uint i = 0; i < ophi->outcnt(); i++) {
1188     Node* use = ophi->raw_out(i);
1189     if (use->is_SafePoint()) {
1190       safepoints.push(use);
1191     } else if (use->is_CastPP()) {
1192       casts.push(use);
1193     } else {
1194       assert(use->outcnt() == 0, "Only CastPP & SafePoint users should be left.");
1195     }
1196   }
1197 
1198   // Need to process safepoints using the Phi first
1199   if (!reduce_phi_on_safepoints_helper(ophi, nullptr, selector, safepoints)) {
1200     return false;
1201   }
1202 
1203   // Now process CastPP->safepoints
1204   for (uint i = 0; i < casts.size(); i++) {
1205     Node* cast = casts.at(i);
1206     Unique_Node_List cast_sfpts;
1207 
1208     for (DUIterator_Fast jmax, j = cast->fast_outs(jmax); j < jmax; j++) {
1209       Node* use_use = cast->fast_out(j);
1210       if (use_use->is_SafePoint()) {
1211         cast_sfpts.push(use_use);
1212       } else {
1213         assert(use_use->outcnt() == 0, "Only SafePoint users should be left.");
1214       }
1215     }
1216 
1217     if (!reduce_phi_on_safepoints_helper(ophi, cast, selector, cast_sfpts)) {
1218       return false;
1219     }
1220   }
1221 
1222   return true;
1223 }
1224 
1225 // This method will create a SafePointScalarMERGEnode for each SafePoint in
1226 // 'safepoints'. It then will iterate on the inputs of 'ophi' and create a
1227 // SafePointScalarObjectNode for each scalar replaceable input. Each
1228 // SafePointScalarMergeNode may describe multiple scalar replaced objects -
1229 // check detailed description in SafePointScalarMergeNode class header.
1230 bool ConnectionGraph::reduce_phi_on_safepoints_helper(Node* ophi, Node* cast, Node* selector, Unique_Node_List& safepoints) {
1231   PhaseMacroExpand mexp(*_igvn);
1232   Node* original_sfpt_parent =  cast != nullptr ? cast : ophi;
1233   const TypeOopPtr* merge_t = _igvn->type(original_sfpt_parent)->make_oopptr();
1234 
1235   Node* nsr_merge_pointer = ophi;
1236   if (cast != nullptr) {
1237     const Type* new_t = merge_t->meet(TypePtr::NULL_PTR);
1238     nsr_merge_pointer = _igvn->transform(ConstraintCastNode::make_cast_for_type(cast->in(0), cast->in(1), new_t, ConstraintCastNode::RegularDependency, nullptr));
1239   }
1240 
1241   for (uint spi = 0; spi < safepoints.size(); spi++) {
1242     SafePointNode* sfpt = safepoints.at(spi)->as_SafePoint();
1243     JVMState *jvms      = sfpt->jvms();
1244     uint merge_idx      = (sfpt->req() - jvms->scloff());
1245     int debug_start     = jvms->debug_start();
1246 
1247     SafePointScalarMergeNode* smerge = new SafePointScalarMergeNode(merge_t, merge_idx);
1248     smerge->init_req(0, _compile->root());
1249     _igvn->register_new_node_with_optimizer(smerge);
1250 
1251     // The next two inputs are:
1252     //  (1) A copy of the original pointer to NSR objects.
1253     //  (2) A selector, used to decide if we need to rematerialize an object
1254     //      or use the pointer to a NSR object.
1255     // See more details of these fields in the declaration of SafePointScalarMergeNode
1256     sfpt->add_req(nsr_merge_pointer);
1257     sfpt->add_req(selector);
1258 
1259     for (uint i = 1; i < ophi->req(); i++) {
1260       Node* base = ophi->in(i);
1261       JavaObjectNode* ptn = unique_java_object(base);
1262 
1263       // If the base is not scalar replaceable we don't need to register information about
1264       // it at this time.
1265       if (ptn == nullptr || !ptn->scalar_replaceable()) {
1266         continue;
1267       }
1268 
1269       AllocateNode* alloc = ptn->ideal_node()->as_Allocate();
1270       SafePointScalarObjectNode* sobj = mexp.create_scalarized_object_description(alloc, sfpt);
1271       if (sobj == nullptr) {
1272         return false;
1273       }
1274 
1275       // Now make a pass over the debug information replacing any references
1276       // to the allocated object with "sobj"
1277       Node* ccpp = alloc->result_cast();
1278       sfpt->replace_edges_in_range(ccpp, sobj, debug_start, jvms->debug_end(), _igvn);
1279 
1280       // Register the scalarized object as a candidate for reallocation
1281       smerge->add_req(sobj);
1282     }
1283 
1284     // Replaces debug information references to "original_sfpt_parent" in "sfpt" with references to "smerge"
1285     sfpt->replace_edges_in_range(original_sfpt_parent, smerge, debug_start, jvms->debug_end(), _igvn);
1286 
1287     // The call to 'replace_edges_in_range' above might have removed the
1288     // reference to ophi that we need at _merge_pointer_idx. The line below make
1289     // sure the reference is maintained.
1290     sfpt->set_req(smerge->merge_pointer_idx(jvms), nsr_merge_pointer);
1291     _igvn->_worklist.push(sfpt);
1292   }
1293 
1294   return true;
1295 }
1296 
1297 void ConnectionGraph::reduce_phi(PhiNode* ophi, GrowableArray<Node*> &alloc_worklist) {
1298   bool delay = _igvn->delay_transform();
1299   _igvn->set_delay_transform(true);
1300   _igvn->hash_delete(ophi);
1301 
1302   // Copying all users first because some will be removed and others won't.
1303   // Ophi also may acquire some new users as part of Cast reduction.
1304   // CastPPs also need to be processed before CmpPs.
1305   Unique_Node_List castpps;
1306   Unique_Node_List others;
1307   for (DUIterator_Fast imax, i = ophi->fast_outs(imax); i < imax; i++) {
1308     Node* use = ophi->fast_out(i);
1309 
1310     if (use->is_CastPP()) {
1311       castpps.push(use);
1312     } else if (use->is_AddP() || use->is_Cmp()) {
1313       others.push(use);
1314     } else {
1315       // Safepoints to be processed later; other users aren't expected here
1316       assert(use->is_SafePoint(), "Unexpected user of reducible Phi %d -> %d:%s:%d", ophi->_idx, use->_idx, use->Name(), use->outcnt());
1317     }
1318   }
1319 
1320   _compile->print_method(PHASE_EA_BEFORE_PHI_REDUCTION, 5, ophi);
1321 
1322   // CastPPs need to be processed before Cmps because during the process of
1323   // splitting CastPPs we make reference to the inputs of the Cmp that is used
1324   // by the If controlling the CastPP.
1325   for (uint i = 0; i < castpps.size(); i++) {
1326     reduce_phi_on_castpp_field_load(castpps.at(i), alloc_worklist);
1327     _compile->print_method(PHASE_EA_AFTER_PHI_CASTPP_REDUCTION, 6, castpps.at(i));
1328   }
1329 
1330   for (uint i = 0; i < others.size(); i++) {
1331     Node* use = others.at(i);
1332 
1333     if (use->is_AddP()) {
1334       reduce_phi_on_field_access(use, alloc_worklist);
1335       _compile->print_method(PHASE_EA_AFTER_PHI_ADDP_REDUCTION, 6, use);
1336     } else if(use->is_Cmp()) {
1337       reduce_phi_on_cmp(use);
1338       _compile->print_method(PHASE_EA_AFTER_PHI_CMP_REDUCTION, 6, use);
1339     }
1340   }
1341 
1342   _igvn->set_delay_transform(delay);
1343 }
1344 
1345 void ConnectionGraph::reset_scalar_replaceable_entries(PhiNode* ophi) {
1346   Node* null_ptr            = _igvn->makecon(TypePtr::NULL_PTR);
1347   const TypeOopPtr* merge_t = _igvn->type(ophi)->make_oopptr();
1348   const Type* new_t         = merge_t->meet(TypePtr::NULL_PTR);
1349   Node* new_phi             = _igvn->register_new_node_with_optimizer(PhiNode::make(ophi->region(), null_ptr, new_t));
1350 
1351   for (uint i = 1; i < ophi->req(); i++) {
1352     Node* base          = ophi->in(i);
1353     JavaObjectNode* ptn = unique_java_object(base);
1354 
1355     if (ptn != nullptr && ptn->scalar_replaceable()) {
1356       new_phi->set_req(i, null_ptr);
1357     } else {
1358       new_phi->set_req(i, ophi->in(i));
1359     }
1360   }
1361 
1362   for (int i = ophi->outcnt()-1; i >= 0;) {
1363     Node* out = ophi->raw_out(i);
1364 
1365     if (out->is_ConstraintCast()) {
1366       const Type* out_t = _igvn->type(out)->make_ptr();
1367       const Type* out_new_t = out_t->meet(TypePtr::NULL_PTR);
1368       bool change = out_new_t != out_t;
1369 
1370       for (int j = out->outcnt()-1; change && j >= 0; --j) {
1371         Node* out2 = out->raw_out(j);
1372         if (!out2->is_SafePoint()) {
1373           change = false;
1374           break;
1375         }
1376       }
1377 
1378       if (change) {
1379         Node* new_cast = ConstraintCastNode::make_cast_for_type(out->in(0), out->in(1), out_new_t, ConstraintCastNode::StrongDependency, nullptr);
1380         _igvn->replace_node(out, new_cast);
1381         _igvn->register_new_node_with_optimizer(new_cast);
1382       }
1383     }
1384 
1385     --i;
1386     i = MIN2(i, (int)ophi->outcnt()-1);
1387   }
1388 
1389   _igvn->replace_node(ophi, new_phi);
1390 }
1391 
1392 void ConnectionGraph::verify_ram_nodes(Compile* C, Node* root) {
1393   if (!C->do_reduce_allocation_merges()) return;
1394 
1395   Unique_Node_List ideal_nodes;
1396   ideal_nodes.map(C->live_nodes(), nullptr);  // preallocate space
1397   ideal_nodes.push(root);
1398 
1399   for (uint next = 0; next < ideal_nodes.size(); ++next) {
1400     Node* n = ideal_nodes.at(next);
1401 
1402     if (n->is_SafePointScalarMerge()) {
1403       SafePointScalarMergeNode* merge = n->as_SafePointScalarMerge();
1404 
1405       // Validate inputs of merge
1406       for (uint i = 1; i < merge->req(); i++) {
1407         if (merge->in(i) != nullptr && !merge->in(i)->is_top() && !merge->in(i)->is_SafePointScalarObject()) {
1408           assert(false, "SafePointScalarMerge inputs should be null/top or SafePointScalarObject.");
1409           C->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
1410         }
1411       }
1412 
1413       // Validate users of merge
1414       for (DUIterator_Fast imax, i = merge->fast_outs(imax); i < imax; i++) {
1415         Node* sfpt = merge->fast_out(i);
1416         if (sfpt->is_SafePoint()) {
1417           int merge_idx = merge->merge_pointer_idx(sfpt->as_SafePoint()->jvms());
1418 
1419           if (sfpt->in(merge_idx) != nullptr && sfpt->in(merge_idx)->is_SafePointScalarMerge()) {
1420             assert(false, "SafePointScalarMerge nodes can't be nested.");
1421             C->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
1422           }
1423         } else {
1424           assert(false, "Only safepoints can use SafePointScalarMerge nodes.");
1425           C->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
1426         }
1427       }
1428     }
1429 
1430     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1431       Node* m = n->fast_out(i);
1432       ideal_nodes.push(m);
1433     }
1434   }
1435 }
1436 
1437 // Returns true if there is an object in the scope of sfn that does not escape globally.
1438 bool ConnectionGraph::has_ea_local_in_scope(SafePointNode* sfn) {
1439   Compile* C = _compile;
1440   for (JVMState* jvms = sfn->jvms(); jvms != nullptr; jvms = jvms->caller()) {
1441     if (C->env()->should_retain_local_variables() || C->env()->jvmti_can_walk_any_space() ||
1442         DeoptimizeObjectsALot) {
1443       // Jvmti agents can access locals. Must provide info about local objects at runtime.
1444       int num_locs = jvms->loc_size();
1445       for (int idx = 0; idx < num_locs; idx++) {
1446         Node* l = sfn->local(jvms, idx);
1447         if (not_global_escape(l)) {
1448           return true;
1449         }
1450       }
1451     }
1452     if (C->env()->jvmti_can_get_owned_monitor_info() ||
1453         C->env()->jvmti_can_walk_any_space() || DeoptimizeObjectsALot) {
1454       // Jvmti agents can read monitors. Must provide info about locked objects at runtime.
1455       int num_mon = jvms->nof_monitors();
1456       for (int idx = 0; idx < num_mon; idx++) {
1457         Node* m = sfn->monitor_obj(jvms, idx);
1458         if (m != nullptr && not_global_escape(m)) {
1459           return true;
1460         }
1461       }
1462     }
1463   }
1464   return false;
1465 }
1466 
1467 // Returns true if at least one of the arguments to the call is an object
1468 // that does not escape globally.
1469 bool ConnectionGraph::has_arg_escape(CallJavaNode* call) {
1470   if (call->method() != nullptr) {
1471     uint max_idx = TypeFunc::Parms + call->method()->arg_size();
1472     for (uint idx = TypeFunc::Parms; idx < max_idx; idx++) {
1473       Node* p = call->in(idx);
1474       if (not_global_escape(p)) {
1475         return true;
1476       }
1477     }
1478   } else {
1479     const char* name = call->as_CallStaticJava()->_name;
1480     assert(name != nullptr, "no name");
1481     // no arg escapes through uncommon traps
1482     if (strcmp(name, "uncommon_trap") != 0) {
1483       // process_call_arguments() assumes that all arguments escape globally
1484       const TypeTuple* d = call->tf()->domain();
1485       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1486         const Type* at = d->field_at(i);
1487         if (at->isa_oopptr() != nullptr) {
1488           return true;
1489         }
1490       }
1491     }
1492   }
1493   return false;
1494 }
1495 
1496 
1497 
1498 // Utility function for nodes that load an object
1499 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
1500   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1501   // ThreadLocal has RawPtr type.
1502   const Type* t = _igvn->type(n);
1503   if (t->make_ptr() != nullptr) {
1504     Node* adr = n->in(MemNode::Address);
1505 #ifdef ASSERT
1506     if (!adr->is_AddP()) {
1507       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
1508     } else {
1509       assert((ptnode_adr(adr->_idx) == nullptr ||
1510               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
1511     }
1512 #endif
1513     add_local_var_and_edge(n, PointsToNode::NoEscape,
1514                            adr, delayed_worklist);
1515   }
1516 }
1517 
1518 // Populate Connection Graph with PointsTo nodes and create simple
1519 // connection graph edges.
1520 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
1521   assert(!_verify, "this method should not be called for verification");
1522   PhaseGVN* igvn = _igvn;
1523   uint n_idx = n->_idx;
1524   PointsToNode* n_ptn = ptnode_adr(n_idx);
1525   if (n_ptn != nullptr) {
1526     return; // No need to redefine PointsTo node during first iteration.
1527   }
1528   int opcode = n->Opcode();
1529   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_to_con_graph(this, igvn, delayed_worklist, n, opcode);
1530   if (gc_handled) {
1531     return; // Ignore node if already handled by GC.
1532   }
1533 
1534   if (n->is_Call()) {
1535     // Arguments to allocation and locking don't escape.
1536     if (n->is_AbstractLock()) {
1537       // Put Lock and Unlock nodes on IGVN worklist to process them during
1538       // first IGVN optimization when escape information is still available.
1539       record_for_optimizer(n);
1540     } else if (n->is_Allocate()) {
1541       add_call_node(n->as_Call());
1542       record_for_optimizer(n);
1543     } else {
1544       if (n->is_CallStaticJava()) {
1545         const char* name = n->as_CallStaticJava()->_name;
1546         if (name != nullptr && strcmp(name, "uncommon_trap") == 0) {
1547           return; // Skip uncommon traps
1548         }
1549       }
1550       // Don't mark as processed since call's arguments have to be processed.
1551       delayed_worklist->push(n);
1552       // Check if a call returns an object.
1553       if ((n->as_Call()->returns_pointer() &&
1554            n->as_Call()->proj_out_or_null(TypeFunc::Parms) != nullptr) ||
1555           (n->is_CallStaticJava() &&
1556            n->as_CallStaticJava()->is_boxing_method())) {
1557         add_call_node(n->as_Call());
1558       }
1559     }
1560     return;
1561   }
1562   // Put this check here to process call arguments since some call nodes
1563   // point to phantom_obj.
1564   if (n_ptn == phantom_obj || n_ptn == null_obj) {
1565     return; // Skip predefined nodes.
1566   }
1567   switch (opcode) {
1568     case Op_AddP: {
1569       Node* base = get_addp_base(n);
1570       PointsToNode* ptn_base = ptnode_adr(base->_idx);
1571       // Field nodes are created for all field types. They are used in
1572       // adjust_scalar_replaceable_state() and split_unique_types().
1573       // Note, non-oop fields will have only base edges in Connection
1574       // Graph because such fields are not used for oop loads and stores.
1575       int offset = address_offset(n, igvn);
1576       add_field(n, PointsToNode::NoEscape, offset);
1577       if (ptn_base == nullptr) {
1578         delayed_worklist->push(n); // Process it later.
1579       } else {
1580         n_ptn = ptnode_adr(n_idx);
1581         add_base(n_ptn->as_Field(), ptn_base);
1582       }
1583       break;
1584     }
1585     case Op_CastX2P: {
1586       map_ideal_node(n, phantom_obj);
1587       break;
1588     }
1589     case Op_CastPP:
1590     case Op_CheckCastPP:
1591     case Op_EncodeP:
1592     case Op_DecodeN:
1593     case Op_EncodePKlass:
1594     case Op_DecodeNKlass: {
1595       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), delayed_worklist);
1596       break;
1597     }
1598     case Op_CMoveP: {
1599       add_local_var(n, PointsToNode::NoEscape);
1600       // Do not add edges during first iteration because some could be
1601       // not defined yet.
1602       delayed_worklist->push(n);
1603       break;
1604     }
1605     case Op_ConP:
1606     case Op_ConN:
1607     case Op_ConNKlass: {
1608       // assume all oop constants globally escape except for null
1609       PointsToNode::EscapeState es;
1610       const Type* t = igvn->type(n);
1611       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
1612         es = PointsToNode::NoEscape;
1613       } else {
1614         es = PointsToNode::GlobalEscape;
1615       }
1616       PointsToNode* ptn_con = add_java_object(n, es);
1617       set_not_scalar_replaceable(ptn_con NOT_PRODUCT(COMMA "Constant pointer"));
1618       break;
1619     }
1620     case Op_CreateEx: {
1621       // assume that all exception objects globally escape
1622       map_ideal_node(n, phantom_obj);
1623       break;
1624     }
1625     case Op_LoadKlass:
1626     case Op_LoadNKlass: {
1627       // Unknown class is loaded
1628       map_ideal_node(n, phantom_obj);
1629       break;
1630     }
1631     case Op_LoadP:
1632     case Op_LoadN: {
1633       add_objload_to_connection_graph(n, delayed_worklist);
1634       break;
1635     }
1636     case Op_Parm: {
1637       map_ideal_node(n, phantom_obj);
1638       break;
1639     }
1640     case Op_PartialSubtypeCheck: {
1641       // Produces Null or notNull and is used in only in CmpP so
1642       // phantom_obj could be used.
1643       map_ideal_node(n, phantom_obj); // Result is unknown
1644       break;
1645     }
1646     case Op_Phi: {
1647       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1648       // ThreadLocal has RawPtr type.
1649       const Type* t = n->as_Phi()->type();
1650       if (t->make_ptr() != nullptr) {
1651         add_local_var(n, PointsToNode::NoEscape);
1652         // Do not add edges during first iteration because some could be
1653         // not defined yet.
1654         delayed_worklist->push(n);
1655       }
1656       break;
1657     }
1658     case Op_Proj: {
1659       // we are only interested in the oop result projection from a call
1660       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
1661           n->in(0)->as_Call()->returns_pointer()) {
1662         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), delayed_worklist);
1663       }
1664       break;
1665     }
1666     case Op_Rethrow: // Exception object escapes
1667     case Op_Return: {
1668       if (n->req() > TypeFunc::Parms &&
1669           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
1670         // Treat Return value as LocalVar with GlobalEscape escape state.
1671         add_local_var_and_edge(n, PointsToNode::GlobalEscape, n->in(TypeFunc::Parms), delayed_worklist);
1672       }
1673       break;
1674     }
1675     case Op_CompareAndExchangeP:
1676     case Op_CompareAndExchangeN:
1677     case Op_GetAndSetP:
1678     case Op_GetAndSetN: {
1679       add_objload_to_connection_graph(n, delayed_worklist);
1680       // fall-through
1681     }
1682     case Op_StoreP:
1683     case Op_StoreN:
1684     case Op_StoreNKlass:
1685     case Op_WeakCompareAndSwapP:
1686     case Op_WeakCompareAndSwapN:
1687     case Op_CompareAndSwapP:
1688     case Op_CompareAndSwapN: {
1689       add_to_congraph_unsafe_access(n, opcode, delayed_worklist);
1690       break;
1691     }
1692     case Op_AryEq:
1693     case Op_CountPositives:
1694     case Op_StrComp:
1695     case Op_StrEquals:
1696     case Op_StrIndexOf:
1697     case Op_StrIndexOfChar:
1698     case Op_StrInflatedCopy:
1699     case Op_StrCompressedCopy:
1700     case Op_VectorizedHashCode:
1701     case Op_EncodeISOArray: {
1702       add_local_var(n, PointsToNode::ArgEscape);
1703       delayed_worklist->push(n); // Process it later.
1704       break;
1705     }
1706     case Op_ThreadLocal: {
1707       PointsToNode* ptn_thr = add_java_object(n, PointsToNode::ArgEscape);
1708       set_not_scalar_replaceable(ptn_thr NOT_PRODUCT(COMMA "Constant pointer"));
1709       break;
1710     }
1711     case Op_Blackhole: {
1712       // All blackhole pointer arguments are globally escaping.
1713       // Only do this if there is at least one pointer argument.
1714       // Do not add edges during first iteration because some could be
1715       // not defined yet, defer to final step.
1716       for (uint i = 0; i < n->req(); i++) {
1717         Node* in = n->in(i);
1718         if (in != nullptr) {
1719           const Type* at = _igvn->type(in);
1720           if (!at->isa_ptr()) continue;
1721 
1722           add_local_var(n, PointsToNode::GlobalEscape);
1723           delayed_worklist->push(n);
1724           break;
1725         }
1726       }
1727       break;
1728     }
1729     default:
1730       ; // Do nothing for nodes not related to EA.
1731   }
1732   return;
1733 }
1734 
1735 // Add final simple edges to graph.
1736 void ConnectionGraph::add_final_edges(Node *n) {
1737   PointsToNode* n_ptn = ptnode_adr(n->_idx);
1738 #ifdef ASSERT
1739   if (_verify && n_ptn->is_JavaObject())
1740     return; // This method does not change graph for JavaObject.
1741 #endif
1742 
1743   if (n->is_Call()) {
1744     process_call_arguments(n->as_Call());
1745     return;
1746   }
1747   assert(n->is_Store() || n->is_LoadStore() ||
1748          ((n_ptn != nullptr) && (n_ptn->ideal_node() != nullptr)),
1749          "node should be registered already");
1750   int opcode = n->Opcode();
1751   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_final_edges(this, _igvn, n, opcode);
1752   if (gc_handled) {
1753     return; // Ignore node if already handled by GC.
1754   }
1755   switch (opcode) {
1756     case Op_AddP: {
1757       Node* base = get_addp_base(n);
1758       PointsToNode* ptn_base = ptnode_adr(base->_idx);
1759       assert(ptn_base != nullptr, "field's base should be registered");
1760       add_base(n_ptn->as_Field(), ptn_base);
1761       break;
1762     }
1763     case Op_CastPP:
1764     case Op_CheckCastPP:
1765     case Op_EncodeP:
1766     case Op_DecodeN:
1767     case Op_EncodePKlass:
1768     case Op_DecodeNKlass: {
1769       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), nullptr);
1770       break;
1771     }
1772     case Op_CMoveP: {
1773       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
1774         Node* in = n->in(i);
1775         if (in == nullptr) {
1776           continue;  // ignore null
1777         }
1778         Node* uncast_in = in->uncast();
1779         if (uncast_in->is_top() || uncast_in == n) {
1780           continue;  // ignore top or inputs which go back this node
1781         }
1782         PointsToNode* ptn = ptnode_adr(in->_idx);
1783         assert(ptn != nullptr, "node should be registered");
1784         add_edge(n_ptn, ptn);
1785       }
1786       break;
1787     }
1788     case Op_LoadP:
1789     case Op_LoadN: {
1790       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1791       // ThreadLocal has RawPtr type.
1792       assert(_igvn->type(n)->make_ptr() != nullptr, "Unexpected node type");
1793       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(MemNode::Address), nullptr);
1794       break;
1795     }
1796     case Op_Phi: {
1797       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1798       // ThreadLocal has RawPtr type.
1799       assert(n->as_Phi()->type()->make_ptr() != nullptr, "Unexpected node type");
1800       for (uint i = 1; i < n->req(); i++) {
1801         Node* in = n->in(i);
1802         if (in == nullptr) {
1803           continue;  // ignore null
1804         }
1805         Node* uncast_in = in->uncast();
1806         if (uncast_in->is_top() || uncast_in == n) {
1807           continue;  // ignore top or inputs which go back this node
1808         }
1809         PointsToNode* ptn = ptnode_adr(in->_idx);
1810         assert(ptn != nullptr, "node should be registered");
1811         add_edge(n_ptn, ptn);
1812       }
1813       break;
1814     }
1815     case Op_Proj: {
1816       // we are only interested in the oop result projection from a call
1817       assert(n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
1818              n->in(0)->as_Call()->returns_pointer(), "Unexpected node type");
1819       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), nullptr);
1820       break;
1821     }
1822     case Op_Rethrow: // Exception object escapes
1823     case Op_Return: {
1824       assert(n->req() > TypeFunc::Parms && _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr(),
1825              "Unexpected node type");
1826       // Treat Return value as LocalVar with GlobalEscape escape state.
1827       add_local_var_and_edge(n, PointsToNode::GlobalEscape, n->in(TypeFunc::Parms), nullptr);
1828       break;
1829     }
1830     case Op_CompareAndExchangeP:
1831     case Op_CompareAndExchangeN:
1832     case Op_GetAndSetP:
1833     case Op_GetAndSetN:{
1834       assert(_igvn->type(n)->make_ptr() != nullptr, "Unexpected node type");
1835       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(MemNode::Address), nullptr);
1836       // fall-through
1837     }
1838     case Op_CompareAndSwapP:
1839     case Op_CompareAndSwapN:
1840     case Op_WeakCompareAndSwapP:
1841     case Op_WeakCompareAndSwapN:
1842     case Op_StoreP:
1843     case Op_StoreN:
1844     case Op_StoreNKlass:{
1845       add_final_edges_unsafe_access(n, opcode);
1846       break;
1847     }
1848     case Op_VectorizedHashCode:
1849     case Op_AryEq:
1850     case Op_CountPositives:
1851     case Op_StrComp:
1852     case Op_StrEquals:
1853     case Op_StrIndexOf:
1854     case Op_StrIndexOfChar:
1855     case Op_StrInflatedCopy:
1856     case Op_StrCompressedCopy:
1857     case Op_EncodeISOArray: {
1858       // char[]/byte[] arrays passed to string intrinsic do not escape but
1859       // they are not scalar replaceable. Adjust escape state for them.
1860       // Start from in(2) edge since in(1) is memory edge.
1861       for (uint i = 2; i < n->req(); i++) {
1862         Node* adr = n->in(i);
1863         const Type* at = _igvn->type(adr);
1864         if (!adr->is_top() && at->isa_ptr()) {
1865           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
1866                  at->isa_ptr() != nullptr, "expecting a pointer");
1867           if (adr->is_AddP()) {
1868             adr = get_addp_base(adr);
1869           }
1870           PointsToNode* ptn = ptnode_adr(adr->_idx);
1871           assert(ptn != nullptr, "node should be registered");
1872           add_edge(n_ptn, ptn);
1873         }
1874       }
1875       break;
1876     }
1877     case Op_Blackhole: {
1878       // All blackhole pointer arguments are globally escaping.
1879       for (uint i = 0; i < n->req(); i++) {
1880         Node* in = n->in(i);
1881         if (in != nullptr) {
1882           const Type* at = _igvn->type(in);
1883           if (!at->isa_ptr()) continue;
1884 
1885           if (in->is_AddP()) {
1886             in = get_addp_base(in);
1887           }
1888 
1889           PointsToNode* ptn = ptnode_adr(in->_idx);
1890           assert(ptn != nullptr, "should be defined already");
1891           set_escape_state(ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA "blackhole"));
1892           add_edge(n_ptn, ptn);
1893         }
1894       }
1895       break;
1896     }
1897     default: {
1898       // This method should be called only for EA specific nodes which may
1899       // miss some edges when they were created.
1900 #ifdef ASSERT
1901       n->dump(1);
1902 #endif
1903       guarantee(false, "unknown node");
1904     }
1905   }
1906   return;
1907 }
1908 
1909 void ConnectionGraph::add_to_congraph_unsafe_access(Node* n, uint opcode, Unique_Node_List* delayed_worklist) {
1910   Node* adr = n->in(MemNode::Address);
1911   const Type* adr_type = _igvn->type(adr);
1912   adr_type = adr_type->make_ptr();
1913   if (adr_type == nullptr) {
1914     return; // skip dead nodes
1915   }
1916   if (adr_type->isa_oopptr()
1917       || ((opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass)
1918           && adr_type == TypeRawPtr::NOTNULL
1919           && is_captured_store_address(adr))) {
1920     delayed_worklist->push(n); // Process it later.
1921 #ifdef ASSERT
1922     assert (adr->is_AddP(), "expecting an AddP");
1923     if (adr_type == TypeRawPtr::NOTNULL) {
1924       // Verify a raw address for a store captured by Initialize node.
1925       int offs = (int) _igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
1926       assert(offs != Type::OffsetBot, "offset must be a constant");
1927     }
1928 #endif
1929   } else {
1930     // Ignore copy the displaced header to the BoxNode (OSR compilation).
1931     if (adr->is_BoxLock()) {
1932       return;
1933     }
1934     // Stored value escapes in unsafe access.
1935     if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
1936       delayed_worklist->push(n); // Process unsafe access later.
1937       return;
1938     }
1939 #ifdef ASSERT
1940     n->dump(1);
1941     assert(false, "not unsafe");
1942 #endif
1943   }
1944 }
1945 
1946 bool ConnectionGraph::add_final_edges_unsafe_access(Node* n, uint opcode) {
1947   Node* adr = n->in(MemNode::Address);
1948   const Type *adr_type = _igvn->type(adr);
1949   adr_type = adr_type->make_ptr();
1950 #ifdef ASSERT
1951   if (adr_type == nullptr) {
1952     n->dump(1);
1953     assert(adr_type != nullptr, "dead node should not be on list");
1954     return true;
1955   }
1956 #endif
1957 
1958   if (adr_type->isa_oopptr()
1959       || ((opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass)
1960            && adr_type == TypeRawPtr::NOTNULL
1961            && is_captured_store_address(adr))) {
1962     // Point Address to Value
1963     PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
1964     assert(adr_ptn != nullptr &&
1965            adr_ptn->as_Field()->is_oop(), "node should be registered");
1966     Node* val = n->in(MemNode::ValueIn);
1967     PointsToNode* ptn = ptnode_adr(val->_idx);
1968     assert(ptn != nullptr, "node should be registered");
1969     add_edge(adr_ptn, ptn);
1970     return true;
1971   } else if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
1972     // Stored value escapes in unsafe access.
1973     Node* val = n->in(MemNode::ValueIn);
1974     PointsToNode* ptn = ptnode_adr(val->_idx);
1975     assert(ptn != nullptr, "node should be registered");
1976     set_escape_state(ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA "stored at raw address"));
1977     // Add edge to object for unsafe access with offset.
1978     PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
1979     assert(adr_ptn != nullptr, "node should be registered");
1980     if (adr_ptn->is_Field()) {
1981       assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
1982       add_edge(adr_ptn, ptn);
1983     }
1984     return true;
1985   }
1986 #ifdef ASSERT
1987   n->dump(1);
1988   assert(false, "not unsafe");
1989 #endif
1990   return false;
1991 }
1992 
1993 void ConnectionGraph::add_call_node(CallNode* call) {
1994   assert(call->returns_pointer(), "only for call which returns pointer");
1995   uint call_idx = call->_idx;
1996   if (call->is_Allocate()) {
1997     Node* k = call->in(AllocateNode::KlassNode);
1998     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
1999     assert(kt != nullptr, "TypeKlassPtr  required.");
2000     PointsToNode::EscapeState es = PointsToNode::NoEscape;
2001     bool scalar_replaceable = true;
2002     NOT_PRODUCT(const char* nsr_reason = "");
2003     if (call->is_AllocateArray()) {
2004       if (!kt->isa_aryklassptr()) { // StressReflectiveCode
2005         es = PointsToNode::GlobalEscape;
2006       } else {
2007         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
2008         if (length < 0) {
2009           // Not scalar replaceable if the length is not constant.
2010           scalar_replaceable = false;
2011           NOT_PRODUCT(nsr_reason = "has a non-constant length");
2012         } else if (length > EliminateAllocationArraySizeLimit) {
2013           // Not scalar replaceable if the length is too big.
2014           scalar_replaceable = false;
2015           NOT_PRODUCT(nsr_reason = "has a length that is too big");
2016         }
2017       }
2018     } else {  // Allocate instance
2019       if (!kt->isa_instklassptr()) { // StressReflectiveCode
2020         es = PointsToNode::GlobalEscape;
2021       } else {
2022         const TypeInstKlassPtr* ikt = kt->is_instklassptr();
2023         ciInstanceKlass* ik = ikt->klass_is_exact() ? ikt->exact_klass()->as_instance_klass() : ikt->instance_klass();
2024         if (ik->is_subclass_of(_compile->env()->Thread_klass()) ||
2025             ik->is_subclass_of(_compile->env()->Reference_klass()) ||
2026             !ik->can_be_instantiated() ||
2027             ik->has_finalizer()) {
2028           es = PointsToNode::GlobalEscape;
2029         } else {
2030           int nfields = ik->as_instance_klass()->nof_nonstatic_fields();
2031           if (nfields > EliminateAllocationFieldsLimit) {
2032             // Not scalar replaceable if there are too many fields.
2033             scalar_replaceable = false;
2034             NOT_PRODUCT(nsr_reason = "has too many fields");
2035           }
2036         }
2037       }
2038     }
2039     add_java_object(call, es);
2040     PointsToNode* ptn = ptnode_adr(call_idx);
2041     if (!scalar_replaceable && ptn->scalar_replaceable()) {
2042       set_not_scalar_replaceable(ptn NOT_PRODUCT(COMMA nsr_reason));
2043     }
2044   } else if (call->is_CallStaticJava()) {
2045     // Call nodes could be different types:
2046     //
2047     // 1. CallDynamicJavaNode (what happened during call is unknown):
2048     //
2049     //    - mapped to GlobalEscape JavaObject node if oop is returned;
2050     //
2051     //    - all oop arguments are escaping globally;
2052     //
2053     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
2054     //
2055     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
2056     //
2057     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
2058     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
2059     //      during call is returned;
2060     //    - mapped to ArgEscape LocalVar node pointed to object arguments
2061     //      which are returned and does not escape during call;
2062     //
2063     //    - oop arguments escaping status is defined by bytecode analysis;
2064     //
2065     // For a static call, we know exactly what method is being called.
2066     // Use bytecode estimator to record whether the call's return value escapes.
2067     ciMethod* meth = call->as_CallJava()->method();
2068     if (meth == nullptr) {
2069       const char* name = call->as_CallStaticJava()->_name;
2070       assert(strncmp(name, "C2 Runtime multianewarray", 25) == 0, "TODO: add failed case check");
2071       // Returns a newly allocated non-escaped object.
2072       add_java_object(call, PointsToNode::NoEscape);
2073       set_not_scalar_replaceable(ptnode_adr(call_idx) NOT_PRODUCT(COMMA "is result of multinewarray"));
2074     } else if (meth->is_boxing_method()) {
2075       // Returns boxing object
2076       PointsToNode::EscapeState es;
2077       vmIntrinsics::ID intr = meth->intrinsic_id();
2078       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
2079         // It does not escape if object is always allocated.
2080         es = PointsToNode::NoEscape;
2081       } else {
2082         // It escapes globally if object could be loaded from cache.
2083         es = PointsToNode::GlobalEscape;
2084       }
2085       add_java_object(call, es);
2086       if (es == PointsToNode::GlobalEscape) {
2087         set_not_scalar_replaceable(ptnode_adr(call->_idx) NOT_PRODUCT(COMMA "object can be loaded from boxing cache"));
2088       }
2089     } else {
2090       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
2091       call_analyzer->copy_dependencies(_compile->dependencies());
2092       if (call_analyzer->is_return_allocated()) {
2093         // Returns a newly allocated non-escaped object, simply
2094         // update dependency information.
2095         // Mark it as NoEscape so that objects referenced by
2096         // it's fields will be marked as NoEscape at least.
2097         add_java_object(call, PointsToNode::NoEscape);
2098         set_not_scalar_replaceable(ptnode_adr(call_idx) NOT_PRODUCT(COMMA "is result of call"));
2099       } else {
2100         // Determine whether any arguments are returned.
2101         const TypeTuple* d = call->tf()->domain();
2102         bool ret_arg = false;
2103         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2104           if (d->field_at(i)->isa_ptr() != nullptr &&
2105               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
2106             ret_arg = true;
2107             break;
2108           }
2109         }
2110         if (ret_arg) {
2111           add_local_var(call, PointsToNode::ArgEscape);
2112         } else {
2113           // Returns unknown object.
2114           map_ideal_node(call, phantom_obj);
2115         }
2116       }
2117     }
2118   } else {
2119     // An other type of call, assume the worst case:
2120     // returned value is unknown and globally escapes.
2121     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
2122     map_ideal_node(call, phantom_obj);
2123   }
2124 }
2125 
2126 void ConnectionGraph::process_call_arguments(CallNode *call) {
2127     bool is_arraycopy = false;
2128     switch (call->Opcode()) {
2129 #ifdef ASSERT
2130     case Op_Allocate:
2131     case Op_AllocateArray:
2132     case Op_Lock:
2133     case Op_Unlock:
2134       assert(false, "should be done already");
2135       break;
2136 #endif
2137     case Op_ArrayCopy:
2138     case Op_CallLeafNoFP:
2139       // Most array copies are ArrayCopy nodes at this point but there
2140       // are still a few direct calls to the copy subroutines (See
2141       // PhaseStringOpts::copy_string())
2142       is_arraycopy = (call->Opcode() == Op_ArrayCopy) ||
2143         call->as_CallLeaf()->is_call_to_arraycopystub();
2144       // fall through
2145     case Op_CallLeafVector:
2146     case Op_CallLeaf: {
2147       // Stub calls, objects do not escape but they are not scale replaceable.
2148       // Adjust escape state for outgoing arguments.
2149       const TypeTuple * d = call->tf()->domain();
2150       bool src_has_oops = false;
2151       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2152         const Type* at = d->field_at(i);
2153         Node *arg = call->in(i);
2154         if (arg == nullptr) {
2155           continue;
2156         }
2157         const Type *aat = _igvn->type(arg);
2158         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr()) {
2159           continue;
2160         }
2161         if (arg->is_AddP()) {
2162           //
2163           // The inline_native_clone() case when the arraycopy stub is called
2164           // after the allocation before Initialize and CheckCastPP nodes.
2165           // Or normal arraycopy for object arrays case.
2166           //
2167           // Set AddP's base (Allocate) as not scalar replaceable since
2168           // pointer to the base (with offset) is passed as argument.
2169           //
2170           arg = get_addp_base(arg);
2171         }
2172         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
2173         assert(arg_ptn != nullptr, "should be registered");
2174         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
2175         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
2176           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
2177                  aat->isa_ptr() != nullptr, "expecting an Ptr");
2178           bool arg_has_oops = aat->isa_oopptr() &&
2179                               (aat->isa_instptr() ||
2180                                (aat->isa_aryptr() && (aat->isa_aryptr()->elem() == Type::BOTTOM || aat->isa_aryptr()->elem()->make_oopptr() != nullptr)));
2181           if (i == TypeFunc::Parms) {
2182             src_has_oops = arg_has_oops;
2183           }
2184           //
2185           // src or dst could be j.l.Object when other is basic type array:
2186           //
2187           //   arraycopy(char[],0,Object*,0,size);
2188           //   arraycopy(Object*,0,char[],0,size);
2189           //
2190           // Don't add edges in such cases.
2191           //
2192           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
2193                                        arg_has_oops && (i > TypeFunc::Parms);
2194 #ifdef ASSERT
2195           if (!(is_arraycopy ||
2196                 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(call) ||
2197                 (call->as_CallLeaf()->_name != nullptr &&
2198                  (strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
2199                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 ||
2200                   strcmp(call->as_CallLeaf()->_name, "updateBytesAdler32") == 0 ||
2201                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
2202                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
2203                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
2204                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
2205                   strcmp(call->as_CallLeaf()->_name, "electronicCodeBook_encryptAESCrypt") == 0 ||
2206                   strcmp(call->as_CallLeaf()->_name, "electronicCodeBook_decryptAESCrypt") == 0 ||
2207                   strcmp(call->as_CallLeaf()->_name, "counterMode_AESCrypt") == 0 ||
2208                   strcmp(call->as_CallLeaf()->_name, "galoisCounterMode_AESCrypt") == 0 ||
2209                   strcmp(call->as_CallLeaf()->_name, "poly1305_processBlocks") == 0 ||
2210                   strcmp(call->as_CallLeaf()->_name, "intpoly_montgomeryMult_P256") == 0 ||
2211                   strcmp(call->as_CallLeaf()->_name, "intpoly_assign") == 0 ||
2212                   strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 ||
2213                   strcmp(call->as_CallLeaf()->_name, "chacha20Block") == 0 ||
2214                   strcmp(call->as_CallLeaf()->_name, "kyberNtt") == 0 ||
2215                   strcmp(call->as_CallLeaf()->_name, "kyberInverseNtt") == 0 ||
2216                   strcmp(call->as_CallLeaf()->_name, "kyberNttMult") == 0 ||
2217                   strcmp(call->as_CallLeaf()->_name, "kyberAddPoly_2") == 0 ||
2218                   strcmp(call->as_CallLeaf()->_name, "kyberAddPoly_3") == 0 ||
2219                   strcmp(call->as_CallLeaf()->_name, "kyber12To16") == 0 ||
2220                   strcmp(call->as_CallLeaf()->_name, "kyberBarrettReduce") == 0 ||
2221                   strcmp(call->as_CallLeaf()->_name, "dilithiumAlmostNtt") == 0 ||
2222                   strcmp(call->as_CallLeaf()->_name, "dilithiumAlmostInverseNtt") == 0 ||
2223                   strcmp(call->as_CallLeaf()->_name, "dilithiumNttMult") == 0 ||
2224                   strcmp(call->as_CallLeaf()->_name, "dilithiumMontMulByConstant") == 0 ||
2225                   strcmp(call->as_CallLeaf()->_name, "dilithiumDecomposePoly") == 0 ||
2226                   strcmp(call->as_CallLeaf()->_name, "encodeBlock") == 0 ||
2227                   strcmp(call->as_CallLeaf()->_name, "decodeBlock") == 0 ||
2228                   strcmp(call->as_CallLeaf()->_name, "md5_implCompress") == 0 ||
2229                   strcmp(call->as_CallLeaf()->_name, "md5_implCompressMB") == 0 ||
2230                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
2231                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
2232                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
2233                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
2234                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
2235                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
2236                   strcmp(call->as_CallLeaf()->_name, "sha3_implCompress") == 0 ||
2237                   strcmp(call->as_CallLeaf()->_name, "double_keccak") == 0 ||
2238                   strcmp(call->as_CallLeaf()->_name, "sha3_implCompressMB") == 0 ||
2239                   strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
2240                   strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
2241                   strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 ||
2242                   strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 ||
2243                   strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0 ||
2244                   strcmp(call->as_CallLeaf()->_name, "bigIntegerRightShiftWorker") == 0 ||
2245                   strcmp(call->as_CallLeaf()->_name, "bigIntegerLeftShiftWorker") == 0 ||
2246                   strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0 ||
2247                   strcmp(call->as_CallLeaf()->_name, "stringIndexOf") == 0 ||
2248                   strcmp(call->as_CallLeaf()->_name, "arraysort_stub") == 0 ||
2249                   strcmp(call->as_CallLeaf()->_name, "array_partition_stub") == 0 ||
2250                   strcmp(call->as_CallLeaf()->_name, "get_class_id_intrinsic") == 0 ||
2251                   strcmp(call->as_CallLeaf()->_name, "unsafe_setmemory") == 0)
2252                  ))) {
2253             call->dump();
2254             fatal("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name);
2255           }
2256 #endif
2257           // Always process arraycopy's destination object since
2258           // we need to add all possible edges to references in
2259           // source object.
2260           if (arg_esc >= PointsToNode::ArgEscape &&
2261               !arg_is_arraycopy_dest) {
2262             continue;
2263           }
2264           PointsToNode::EscapeState es = PointsToNode::ArgEscape;
2265           if (call->is_ArrayCopy()) {
2266             ArrayCopyNode* ac = call->as_ArrayCopy();
2267             if (ac->is_clonebasic() ||
2268                 ac->is_arraycopy_validated() ||
2269                 ac->is_copyof_validated() ||
2270                 ac->is_copyofrange_validated()) {
2271               es = PointsToNode::NoEscape;
2272             }
2273           }
2274           set_escape_state(arg_ptn, es NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2275           if (arg_is_arraycopy_dest) {
2276             Node* src = call->in(TypeFunc::Parms);
2277             if (src->is_AddP()) {
2278               src = get_addp_base(src);
2279             }
2280             PointsToNode* src_ptn = ptnode_adr(src->_idx);
2281             assert(src_ptn != nullptr, "should be registered");
2282             // Special arraycopy edge:
2283             // Only escape state of destination object's fields affects
2284             // escape state of fields in source object.
2285             add_arraycopy(call, es, src_ptn, arg_ptn);
2286           }
2287         }
2288       }
2289       break;
2290     }
2291     case Op_CallStaticJava: {
2292       // For a static call, we know exactly what method is being called.
2293       // Use bytecode estimator to record the call's escape affects
2294 #ifdef ASSERT
2295       const char* name = call->as_CallStaticJava()->_name;
2296       assert((name == nullptr || strcmp(name, "uncommon_trap") != 0), "normal calls only");
2297 #endif
2298       ciMethod* meth = call->as_CallJava()->method();
2299       if ((meth != nullptr) && meth->is_boxing_method()) {
2300         break; // Boxing methods do not modify any oops.
2301       }
2302       BCEscapeAnalyzer* call_analyzer = (meth !=nullptr) ? meth->get_bcea() : nullptr;
2303       // fall-through if not a Java method or no analyzer information
2304       if (call_analyzer != nullptr) {
2305         PointsToNode* call_ptn = ptnode_adr(call->_idx);
2306         const TypeTuple* d = call->tf()->domain();
2307         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2308           const Type* at = d->field_at(i);
2309           int k = i - TypeFunc::Parms;
2310           Node* arg = call->in(i);
2311           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
2312           if (at->isa_ptr() != nullptr &&
2313               call_analyzer->is_arg_returned(k)) {
2314             // The call returns arguments.
2315             if (call_ptn != nullptr) { // Is call's result used?
2316               assert(call_ptn->is_LocalVar(), "node should be registered");
2317               assert(arg_ptn != nullptr, "node should be registered");
2318               add_edge(call_ptn, arg_ptn);
2319             }
2320           }
2321           if (at->isa_oopptr() != nullptr &&
2322               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
2323             if (!call_analyzer->is_arg_stack(k)) {
2324               // The argument global escapes
2325               set_escape_state(arg_ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2326             } else {
2327               set_escape_state(arg_ptn, PointsToNode::ArgEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2328               if (!call_analyzer->is_arg_local(k)) {
2329                 // The argument itself doesn't escape, but any fields might
2330                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2331               }
2332             }
2333           }
2334         }
2335         if (call_ptn != nullptr && call_ptn->is_LocalVar()) {
2336           // The call returns arguments.
2337           assert(call_ptn->edge_count() > 0, "sanity");
2338           if (!call_analyzer->is_return_local()) {
2339             // Returns also unknown object.
2340             add_edge(call_ptn, phantom_obj);
2341           }
2342         }
2343         break;
2344       }
2345     }
2346     default: {
2347       // Fall-through here if not a Java method or no analyzer information
2348       // or some other type of call, assume the worst case: all arguments
2349       // globally escape.
2350       const TypeTuple* d = call->tf()->domain();
2351       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2352         const Type* at = d->field_at(i);
2353         if (at->isa_oopptr() != nullptr) {
2354           Node* arg = call->in(i);
2355           if (arg->is_AddP()) {
2356             arg = get_addp_base(arg);
2357           }
2358           assert(ptnode_adr(arg->_idx) != nullptr, "should be defined already");
2359           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2360         }
2361       }
2362     }
2363   }
2364 }
2365 
2366 
2367 // Finish Graph construction.
2368 bool ConnectionGraph::complete_connection_graph(
2369                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
2370                          GrowableArray<JavaObjectNode*>& non_escaped_allocs_worklist,
2371                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
2372                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
2373   // Normally only 1-3 passes needed to build Connection Graph depending
2374   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
2375   // Set limit to 20 to catch situation when something did go wrong and
2376   // bailout Escape Analysis.
2377   // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag.
2378 #define GRAPH_BUILD_ITER_LIMIT 20
2379 
2380   // Propagate GlobalEscape and ArgEscape escape states and check that
2381   // we still have non-escaping objects. The method pushs on _worklist
2382   // Field nodes which reference phantom_object.
2383   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_allocs_worklist)) {
2384     return false; // Nothing to do.
2385   }
2386   // Now propagate references to all JavaObject nodes.
2387   int java_objects_length = java_objects_worklist.length();
2388   elapsedTimer build_time;
2389   build_time.start();
2390   elapsedTimer time;
2391   bool timeout = false;
2392   int new_edges = 1;
2393   int iterations = 0;
2394   do {
2395     while ((new_edges > 0) &&
2396            (iterations++ < GRAPH_BUILD_ITER_LIMIT)) {
2397       double start_time = time.seconds();
2398       time.start();
2399       new_edges = 0;
2400       // Propagate references to phantom_object for nodes pushed on _worklist
2401       // by find_non_escaped_objects() and find_field_value().
2402       new_edges += add_java_object_edges(phantom_obj, false);
2403       for (int next = 0; next < java_objects_length; ++next) {
2404         JavaObjectNode* ptn = java_objects_worklist.at(next);
2405         new_edges += add_java_object_edges(ptn, true);
2406 
2407 #define SAMPLE_SIZE 4
2408         if ((next % SAMPLE_SIZE) == 0) {
2409           // Each 4 iterations calculate how much time it will take
2410           // to complete graph construction.
2411           time.stop();
2412           // Poll for requests from shutdown mechanism to quiesce compiler
2413           // because Connection graph construction may take long time.
2414           CompileBroker::maybe_block();
2415           double stop_time = time.seconds();
2416           double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE;
2417           double time_until_end = time_per_iter * (double)(java_objects_length - next);
2418           if ((start_time + time_until_end) >= EscapeAnalysisTimeout) {
2419             timeout = true;
2420             break; // Timeout
2421           }
2422           start_time = stop_time;
2423           time.start();
2424         }
2425 #undef SAMPLE_SIZE
2426 
2427       }
2428       if (timeout) break;
2429       if (new_edges > 0) {
2430         // Update escape states on each iteration if graph was updated.
2431         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_allocs_worklist)) {
2432           return false; // Nothing to do.
2433         }
2434       }
2435       time.stop();
2436       if (time.seconds() >= EscapeAnalysisTimeout) {
2437         timeout = true;
2438         break;
2439       }
2440       _compile->print_method(PHASE_EA_COMPLETE_CONNECTION_GRAPH_ITER, 5);
2441     }
2442     if ((iterations < GRAPH_BUILD_ITER_LIMIT) && !timeout) {
2443       time.start();
2444       // Find fields which have unknown value.
2445       int fields_length = oop_fields_worklist.length();
2446       for (int next = 0; next < fields_length; next++) {
2447         FieldNode* field = oop_fields_worklist.at(next);
2448         if (field->edge_count() == 0) {
2449           new_edges += find_field_value(field);
2450           // This code may added new edges to phantom_object.
2451           // Need an other cycle to propagate references to phantom_object.
2452         }
2453       }
2454       time.stop();
2455       if (time.seconds() >= EscapeAnalysisTimeout) {
2456         timeout = true;
2457         break;
2458       }
2459     } else {
2460       new_edges = 0; // Bailout
2461     }
2462   } while (new_edges > 0);
2463 
2464   build_time.stop();
2465   _build_time = build_time.seconds();
2466   _build_iterations = iterations;
2467 
2468   // Bailout if passed limits.
2469   if ((iterations >= GRAPH_BUILD_ITER_LIMIT) || timeout) {
2470     Compile* C = _compile;
2471     if (C->log() != nullptr) {
2472       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
2473       C->log()->text("%s", timeout ? "time" : "iterations");
2474       C->log()->end_elem(" limit'");
2475     }
2476     assert(ExitEscapeAnalysisOnTimeout, "infinite EA connection graph build during invocation %d (%f sec, %d iterations) with %d nodes and worklist size %d",
2477            _invocation, _build_time, _build_iterations, nodes_size(), ptnodes_worklist.length());
2478     // Possible infinite build_connection_graph loop,
2479     // bailout (no changes to ideal graph were made).
2480     return false;
2481   }
2482 
2483 #undef GRAPH_BUILD_ITER_LIMIT
2484 
2485   // Find fields initialized by null for non-escaping Allocations.
2486   int non_escaped_length = non_escaped_allocs_worklist.length();
2487   for (int next = 0; next < non_escaped_length; next++) {
2488     JavaObjectNode* ptn = non_escaped_allocs_worklist.at(next);
2489     PointsToNode::EscapeState es = ptn->escape_state();
2490     assert(es <= PointsToNode::ArgEscape, "sanity");
2491     if (es == PointsToNode::NoEscape) {
2492       if (find_init_values_null(ptn, _igvn) > 0) {
2493         // Adding references to null object does not change escape states
2494         // since it does not escape. Also no fields are added to null object.
2495         add_java_object_edges(null_obj, false);
2496       }
2497     }
2498     Node* n = ptn->ideal_node();
2499     if (n->is_Allocate()) {
2500       // The object allocated by this Allocate node will never be
2501       // seen by an other thread. Mark it so that when it is
2502       // expanded no MemBarStoreStore is added.
2503       InitializeNode* ini = n->as_Allocate()->initialization();
2504       if (ini != nullptr)
2505         ini->set_does_not_escape();
2506     }
2507   }
2508   return true; // Finished graph construction.
2509 }
2510 
2511 // Propagate GlobalEscape and ArgEscape escape states to all nodes
2512 // and check that we still have non-escaping java objects.
2513 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
2514                                                GrowableArray<JavaObjectNode*>& non_escaped_allocs_worklist,
2515                                                bool print_method) {
2516   GrowableArray<PointsToNode*> escape_worklist;
2517   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
2518   int ptnodes_length = ptnodes_worklist.length();
2519   for (int next = 0; next < ptnodes_length; ++next) {
2520     PointsToNode* ptn = ptnodes_worklist.at(next);
2521     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
2522         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
2523       escape_worklist.push(ptn);
2524     }
2525   }
2526   // Set escape states to referenced nodes (edges list).
2527   while (escape_worklist.length() > 0) {
2528     PointsToNode* ptn = escape_worklist.pop();
2529     PointsToNode::EscapeState es  = ptn->escape_state();
2530     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
2531     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
2532         es >= PointsToNode::ArgEscape) {
2533       // GlobalEscape or ArgEscape state of field means it has unknown value.
2534       if (add_edge(ptn, phantom_obj)) {
2535         // New edge was added
2536         add_field_uses_to_worklist(ptn->as_Field());
2537       }
2538     }
2539     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2540       PointsToNode* e = i.get();
2541       if (e->is_Arraycopy()) {
2542         assert(ptn->arraycopy_dst(), "sanity");
2543         // Propagate only fields escape state through arraycopy edge.
2544         if (e->fields_escape_state() < field_es) {
2545           set_fields_escape_state(e, field_es NOT_PRODUCT(COMMA trace_propagate_message(ptn)));
2546           escape_worklist.push(e);
2547         }
2548       } else if (es >= field_es) {
2549         // fields_escape_state is also set to 'es' if it is less than 'es'.
2550         if (e->escape_state() < es) {
2551           set_escape_state(e, es NOT_PRODUCT(COMMA trace_propagate_message(ptn)));
2552           escape_worklist.push(e);
2553         }
2554       } else {
2555         // Propagate field escape state.
2556         bool es_changed = false;
2557         if (e->fields_escape_state() < field_es) {
2558           set_fields_escape_state(e, field_es NOT_PRODUCT(COMMA trace_propagate_message(ptn)));
2559           es_changed = true;
2560         }
2561         if ((e->escape_state() < field_es) &&
2562             e->is_Field() && ptn->is_JavaObject() &&
2563             e->as_Field()->is_oop()) {
2564           // Change escape state of referenced fields.
2565           set_escape_state(e, field_es NOT_PRODUCT(COMMA trace_propagate_message(ptn)));
2566           es_changed = true;
2567         } else if (e->escape_state() < es) {
2568           set_escape_state(e, es NOT_PRODUCT(COMMA trace_propagate_message(ptn)));
2569           es_changed = true;
2570         }
2571         if (es_changed) {
2572           escape_worklist.push(e);
2573         }
2574       }
2575       if (print_method) {
2576         _compile->print_method(PHASE_EA_CONNECTION_GRAPH_PROPAGATE_ITER, 6, e->ideal_node());
2577       }
2578     }
2579   }
2580   // Remove escaped objects from non_escaped list.
2581   for (int next = non_escaped_allocs_worklist.length()-1; next >= 0 ; --next) {
2582     JavaObjectNode* ptn = non_escaped_allocs_worklist.at(next);
2583     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
2584       non_escaped_allocs_worklist.delete_at(next);
2585     }
2586     if (ptn->escape_state() == PointsToNode::NoEscape) {
2587       // Find fields in non-escaped allocations which have unknown value.
2588       find_init_values_phantom(ptn);
2589     }
2590   }
2591   return (non_escaped_allocs_worklist.length() > 0);
2592 }
2593 
2594 // Add all references to JavaObject node by walking over all uses.
2595 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
2596   int new_edges = 0;
2597   if (populate_worklist) {
2598     // Populate _worklist by uses of jobj's uses.
2599     for (UseIterator i(jobj); i.has_next(); i.next()) {
2600       PointsToNode* use = i.get();
2601       if (use->is_Arraycopy()) {
2602         continue;
2603       }
2604       add_uses_to_worklist(use);
2605       if (use->is_Field() && use->as_Field()->is_oop()) {
2606         // Put on worklist all field's uses (loads) and
2607         // related field nodes (same base and offset).
2608         add_field_uses_to_worklist(use->as_Field());
2609       }
2610     }
2611   }
2612   for (int l = 0; l < _worklist.length(); l++) {
2613     PointsToNode* use = _worklist.at(l);
2614     if (PointsToNode::is_base_use(use)) {
2615       // Add reference from jobj to field and from field to jobj (field's base).
2616       use = PointsToNode::get_use_node(use)->as_Field();
2617       if (add_base(use->as_Field(), jobj)) {
2618         new_edges++;
2619       }
2620       continue;
2621     }
2622     assert(!use->is_JavaObject(), "sanity");
2623     if (use->is_Arraycopy()) {
2624       if (jobj == null_obj) { // null object does not have field edges
2625         continue;
2626       }
2627       // Added edge from Arraycopy node to arraycopy's source java object
2628       if (add_edge(use, jobj)) {
2629         jobj->set_arraycopy_src();
2630         new_edges++;
2631       }
2632       // and stop here.
2633       continue;
2634     }
2635     if (!add_edge(use, jobj)) {
2636       continue; // No new edge added, there was such edge already.
2637     }
2638     new_edges++;
2639     if (use->is_LocalVar()) {
2640       add_uses_to_worklist(use);
2641       if (use->arraycopy_dst()) {
2642         for (EdgeIterator i(use); i.has_next(); i.next()) {
2643           PointsToNode* e = i.get();
2644           if (e->is_Arraycopy()) {
2645             if (jobj == null_obj) { // null object does not have field edges
2646               continue;
2647             }
2648             // Add edge from arraycopy's destination java object to Arraycopy node.
2649             if (add_edge(jobj, e)) {
2650               new_edges++;
2651               jobj->set_arraycopy_dst();
2652             }
2653           }
2654         }
2655       }
2656     } else {
2657       // Added new edge to stored in field values.
2658       // Put on worklist all field's uses (loads) and
2659       // related field nodes (same base and offset).
2660       add_field_uses_to_worklist(use->as_Field());
2661     }
2662   }
2663   _worklist.clear();
2664   _in_worklist.reset();
2665   return new_edges;
2666 }
2667 
2668 // Put on worklist all related field nodes.
2669 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
2670   assert(field->is_oop(), "sanity");
2671   int offset = field->offset();
2672   add_uses_to_worklist(field);
2673   // Loop over all bases of this field and push on worklist Field nodes
2674   // with the same offset and base (since they may reference the same field).
2675   for (BaseIterator i(field); i.has_next(); i.next()) {
2676     PointsToNode* base = i.get();
2677     add_fields_to_worklist(field, base);
2678     // Check if the base was source object of arraycopy and go over arraycopy's
2679     // destination objects since values stored to a field of source object are
2680     // accessible by uses (loads) of fields of destination objects.
2681     if (base->arraycopy_src()) {
2682       for (UseIterator j(base); j.has_next(); j.next()) {
2683         PointsToNode* arycp = j.get();
2684         if (arycp->is_Arraycopy()) {
2685           for (UseIterator k(arycp); k.has_next(); k.next()) {
2686             PointsToNode* abase = k.get();
2687             if (abase->arraycopy_dst() && abase != base) {
2688               // Look for the same arraycopy reference.
2689               add_fields_to_worklist(field, abase);
2690             }
2691           }
2692         }
2693       }
2694     }
2695   }
2696 }
2697 
2698 // Put on worklist all related field nodes.
2699 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
2700   int offset = field->offset();
2701   if (base->is_LocalVar()) {
2702     for (UseIterator j(base); j.has_next(); j.next()) {
2703       PointsToNode* f = j.get();
2704       if (PointsToNode::is_base_use(f)) { // Field
2705         f = PointsToNode::get_use_node(f);
2706         if (f == field || !f->as_Field()->is_oop()) {
2707           continue;
2708         }
2709         int offs = f->as_Field()->offset();
2710         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
2711           add_to_worklist(f);
2712         }
2713       }
2714     }
2715   } else {
2716     assert(base->is_JavaObject(), "sanity");
2717     if (// Skip phantom_object since it is only used to indicate that
2718         // this field's content globally escapes.
2719         (base != phantom_obj) &&
2720         // null object node does not have fields.
2721         (base != null_obj)) {
2722       for (EdgeIterator i(base); i.has_next(); i.next()) {
2723         PointsToNode* f = i.get();
2724         // Skip arraycopy edge since store to destination object field
2725         // does not update value in source object field.
2726         if (f->is_Arraycopy()) {
2727           assert(base->arraycopy_dst(), "sanity");
2728           continue;
2729         }
2730         if (f == field || !f->as_Field()->is_oop()) {
2731           continue;
2732         }
2733         int offs = f->as_Field()->offset();
2734         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
2735           add_to_worklist(f);
2736         }
2737       }
2738     }
2739   }
2740 }
2741 
2742 // Find fields which have unknown value.
2743 int ConnectionGraph::find_field_value(FieldNode* field) {
2744   // Escaped fields should have init value already.
2745   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
2746   int new_edges = 0;
2747   for (BaseIterator i(field); i.has_next(); i.next()) {
2748     PointsToNode* base = i.get();
2749     if (base->is_JavaObject()) {
2750       // Skip Allocate's fields which will be processed later.
2751       if (base->ideal_node()->is_Allocate()) {
2752         return 0;
2753       }
2754       assert(base == null_obj, "only null ptr base expected here");
2755     }
2756   }
2757   if (add_edge(field, phantom_obj)) {
2758     // New edge was added
2759     new_edges++;
2760     add_field_uses_to_worklist(field);
2761   }
2762   return new_edges;
2763 }
2764 
2765 // Find fields initializing values for allocations.
2766 int ConnectionGraph::find_init_values_phantom(JavaObjectNode* pta) {
2767   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
2768   Node* alloc = pta->ideal_node();
2769 
2770   // Do nothing for Allocate nodes since its fields values are
2771   // "known" unless they are initialized by arraycopy/clone.
2772   if (alloc->is_Allocate() && !pta->arraycopy_dst()) {
2773     return 0;
2774   }
2775   assert(pta->arraycopy_dst() || alloc->as_CallStaticJava(), "sanity");
2776 #ifdef ASSERT
2777   if (!pta->arraycopy_dst() && alloc->as_CallStaticJava()->method() == nullptr) {
2778     const char* name = alloc->as_CallStaticJava()->_name;
2779     assert(strncmp(name, "C2 Runtime multianewarray", 25) == 0, "sanity");
2780   }
2781 #endif
2782   // Non-escaped allocation returned from Java or runtime call have unknown values in fields.
2783   int new_edges = 0;
2784   for (EdgeIterator i(pta); i.has_next(); i.next()) {
2785     PointsToNode* field = i.get();
2786     if (field->is_Field() && field->as_Field()->is_oop()) {
2787       if (add_edge(field, phantom_obj)) {
2788         // New edge was added
2789         new_edges++;
2790         add_field_uses_to_worklist(field->as_Field());
2791       }
2792     }
2793   }
2794   return new_edges;
2795 }
2796 
2797 // Find fields initializing values for allocations.
2798 int ConnectionGraph::find_init_values_null(JavaObjectNode* pta, PhaseValues* phase) {
2799   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
2800   Node* alloc = pta->ideal_node();
2801   // Do nothing for Call nodes since its fields values are unknown.
2802   if (!alloc->is_Allocate()) {
2803     return 0;
2804   }
2805   InitializeNode* ini = alloc->as_Allocate()->initialization();
2806   bool visited_bottom_offset = false;
2807   GrowableArray<int> offsets_worklist;
2808   int new_edges = 0;
2809 
2810   // Check if an oop field's initializing value is recorded and add
2811   // a corresponding null if field's value if it is not recorded.
2812   // Connection Graph does not record a default initialization by null
2813   // captured by Initialize node.
2814   //
2815   for (EdgeIterator i(pta); i.has_next(); i.next()) {
2816     PointsToNode* field = i.get(); // Field (AddP)
2817     if (!field->is_Field() || !field->as_Field()->is_oop()) {
2818       continue; // Not oop field
2819     }
2820     int offset = field->as_Field()->offset();
2821     if (offset == Type::OffsetBot) {
2822       if (!visited_bottom_offset) {
2823         // OffsetBot is used to reference array's element,
2824         // always add reference to null to all Field nodes since we don't
2825         // known which element is referenced.
2826         if (add_edge(field, null_obj)) {
2827           // New edge was added
2828           new_edges++;
2829           add_field_uses_to_worklist(field->as_Field());
2830           visited_bottom_offset = true;
2831         }
2832       }
2833     } else {
2834       // Check only oop fields.
2835       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
2836       if (adr_type->isa_rawptr()) {
2837 #ifdef ASSERT
2838         // Raw pointers are used for initializing stores so skip it
2839         // since it should be recorded already
2840         Node* base = get_addp_base(field->ideal_node());
2841         assert(adr_type->isa_rawptr() && is_captured_store_address(field->ideal_node()), "unexpected pointer type");
2842 #endif
2843         continue;
2844       }
2845       if (!offsets_worklist.contains(offset)) {
2846         offsets_worklist.append(offset);
2847         Node* value = nullptr;
2848         if (ini != nullptr) {
2849           // StoreP::value_basic_type() == T_ADDRESS
2850           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
2851           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
2852           // Make sure initializing store has the same type as this AddP.
2853           // This AddP may reference non existing field because it is on a
2854           // dead branch of bimorphic call which is not eliminated yet.
2855           if (store != nullptr && store->is_Store() &&
2856               store->as_Store()->value_basic_type() == ft) {
2857             value = store->in(MemNode::ValueIn);
2858 #ifdef ASSERT
2859             if (VerifyConnectionGraph) {
2860               // Verify that AddP already points to all objects the value points to.
2861               PointsToNode* val = ptnode_adr(value->_idx);
2862               assert((val != nullptr), "should be processed already");
2863               PointsToNode* missed_obj = nullptr;
2864               if (val->is_JavaObject()) {
2865                 if (!field->points_to(val->as_JavaObject())) {
2866                   missed_obj = val;
2867                 }
2868               } else {
2869                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
2870                   tty->print_cr("----------init store has invalid value -----");
2871                   store->dump();
2872                   val->dump();
2873                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
2874                 }
2875                 for (EdgeIterator j(val); j.has_next(); j.next()) {
2876                   PointsToNode* obj = j.get();
2877                   if (obj->is_JavaObject()) {
2878                     if (!field->points_to(obj->as_JavaObject())) {
2879                       missed_obj = obj;
2880                       break;
2881                     }
2882                   }
2883                 }
2884               }
2885               if (missed_obj != nullptr) {
2886                 tty->print_cr("----------field---------------------------------");
2887                 field->dump();
2888                 tty->print_cr("----------missed referernce to object-----------");
2889                 missed_obj->dump();
2890                 tty->print_cr("----------object referernced by init store -----");
2891                 store->dump();
2892                 val->dump();
2893                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
2894               }
2895             }
2896 #endif
2897           } else {
2898             // There could be initializing stores which follow allocation.
2899             // For example, a volatile field store is not collected
2900             // by Initialize node.
2901             //
2902             // Need to check for dependent loads to separate such stores from
2903             // stores which follow loads. For now, add initial value null so
2904             // that compare pointers optimization works correctly.
2905           }
2906         }
2907         if (value == nullptr) {
2908           // A field's initializing value was not recorded. Add null.
2909           if (add_edge(field, null_obj)) {
2910             // New edge was added
2911             new_edges++;
2912             add_field_uses_to_worklist(field->as_Field());
2913           }
2914         }
2915       }
2916     }
2917   }
2918   return new_edges;
2919 }
2920 
2921 // Adjust scalar_replaceable state after Connection Graph is built.
2922 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj, Unique_Node_List &reducible_merges) {
2923   // A Phi 'x' is a _candidate_ to be reducible if 'can_reduce_phi(x)'
2924   // returns true. If one of the constraints in this method set 'jobj' to NSR
2925   // then the candidate Phi is discarded. If the Phi has another SR 'jobj' as
2926   // input, 'adjust_scalar_replaceable_state' will eventually be called with
2927   // that other object and the Phi will become a reducible Phi.
2928   // There could be multiple merges involving the same jobj.
2929   Unique_Node_List candidates;
2930 
2931   // Search for non-escaping objects which are not scalar replaceable
2932   // and mark them to propagate the state to referenced objects.
2933 
2934   for (UseIterator i(jobj); i.has_next(); i.next()) {
2935     PointsToNode* use = i.get();
2936     if (use->is_Arraycopy()) {
2937       continue;
2938     }
2939     if (use->is_Field()) {
2940       FieldNode* field = use->as_Field();
2941       assert(field->is_oop() && field->scalar_replaceable(), "sanity");
2942       // 1. An object is not scalar replaceable if the field into which it is
2943       // stored has unknown offset (stored into unknown element of an array).
2944       if (field->offset() == Type::OffsetBot) {
2945         set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is stored at unknown offset"));
2946         return;
2947       }
2948       for (BaseIterator i(field); i.has_next(); i.next()) {
2949         PointsToNode* base = i.get();
2950         // 2. An object is not scalar replaceable if the field into which it is
2951         // stored has multiple bases one of which is null.
2952         if ((base == null_obj) && (field->base_count() > 1)) {
2953           set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is stored into field with potentially null base"));
2954           return;
2955         }
2956         // 2.5. An object is not scalar replaceable if the field into which it is
2957         // stored has NSR base.
2958         if (!base->scalar_replaceable()) {
2959           set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is stored into field with NSR base"));
2960           return;
2961         }
2962       }
2963     }
2964     assert(use->is_Field() || use->is_LocalVar(), "sanity");
2965     // 3. An object is not scalar replaceable if it is merged with other objects
2966     // and we can't remove the merge
2967     for (EdgeIterator j(use); j.has_next(); j.next()) {
2968       PointsToNode* ptn = j.get();
2969       if (ptn->is_JavaObject() && ptn != jobj) {
2970         Node* use_n = use->ideal_node();
2971 
2972         // These other local vars may point to multiple objects through a Phi
2973         // In this case we skip them and see if we can reduce the Phi.
2974         if (use_n->is_CastPP() || use_n->is_CheckCastPP()) {
2975           use_n = use_n->in(1);
2976         }
2977 
2978         // If it's already a candidate or confirmed reducible merge we can skip verification
2979         if (candidates.member(use_n) || reducible_merges.member(use_n)) {
2980           continue;
2981         }
2982 
2983         if (use_n->is_Phi() && can_reduce_phi(use_n->as_Phi())) {
2984           candidates.push(use_n);
2985         } else {
2986           // Mark all objects as NSR if we can't remove the merge
2987           set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA trace_merged_message(ptn)));
2988           set_not_scalar_replaceable(ptn NOT_PRODUCT(COMMA trace_merged_message(jobj)));
2989         }
2990       }
2991     }
2992     if (!jobj->scalar_replaceable()) {
2993       return;
2994     }
2995   }
2996 
2997   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
2998     if (j.get()->is_Arraycopy()) {
2999       continue;
3000     }
3001 
3002     // Non-escaping object node should point only to field nodes.
3003     FieldNode* field = j.get()->as_Field();
3004     int offset = field->as_Field()->offset();
3005 
3006     // 4. An object is not scalar replaceable if it has a field with unknown
3007     // offset (array's element is accessed in loop).
3008     if (offset == Type::OffsetBot) {
3009       set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "has field with unknown offset"));
3010       return;
3011     }
3012     // 5. Currently an object is not scalar replaceable if a LoadStore node
3013     // access its field since the field value is unknown after it.
3014     //
3015     Node* n = field->ideal_node();
3016 
3017     // Test for an unsafe access that was parsed as maybe off heap
3018     // (with a CheckCastPP to raw memory).
3019     assert(n->is_AddP(), "expect an address computation");
3020     if (n->in(AddPNode::Base)->is_top() &&
3021         n->in(AddPNode::Address)->Opcode() == Op_CheckCastPP) {
3022       assert(n->in(AddPNode::Address)->bottom_type()->isa_rawptr(), "raw address so raw cast expected");
3023       assert(_igvn->type(n->in(AddPNode::Address)->in(1))->isa_oopptr(), "cast pattern at unsafe access expected");
3024       set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is used as base of mixed unsafe access"));
3025       return;
3026     }
3027 
3028     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3029       Node* u = n->fast_out(i);
3030       if (u->is_LoadStore() || (u->is_Mem() && u->as_Mem()->is_mismatched_access())) {
3031         set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is used in LoadStore or mismatched access"));
3032         return;
3033       }
3034     }
3035 
3036     // 6. Or the address may point to more then one object. This may produce
3037     // the false positive result (set not scalar replaceable)
3038     // since the flow-insensitive escape analysis can't separate
3039     // the case when stores overwrite the field's value from the case
3040     // when stores happened on different control branches.
3041     //
3042     // Note: it will disable scalar replacement in some cases:
3043     //
3044     //    Point p[] = new Point[1];
3045     //    p[0] = new Point(); // Will be not scalar replaced
3046     //
3047     // but it will save us from incorrect optimizations in next cases:
3048     //
3049     //    Point p[] = new Point[1];
3050     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
3051     //
3052     if (field->base_count() > 1 && candidates.size() == 0) {
3053       if (has_non_reducible_merge(field, reducible_merges)) {
3054         for (BaseIterator i(field); i.has_next(); i.next()) {
3055           PointsToNode* base = i.get();
3056           // Don't take into account LocalVar nodes which
3057           // may point to only one object which should be also
3058           // this field's base by now.
3059           if (base->is_JavaObject() && base != jobj) {
3060             // Mark all bases.
3061             set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "may point to more than one object"));
3062             set_not_scalar_replaceable(base NOT_PRODUCT(COMMA "may point to more than one object"));
3063           }
3064         }
3065 
3066         if (!jobj->scalar_replaceable()) {
3067           return;
3068         }
3069       }
3070     }
3071   }
3072 
3073   // The candidate is truly a reducible merge only if none of the other
3074   // constraints ruled it as NSR. There could be multiple merges involving the
3075   // same jobj.
3076   assert(jobj->scalar_replaceable(), "sanity");
3077   for (uint i = 0; i < candidates.size(); i++ ) {
3078     Node* candidate = candidates.at(i);
3079     reducible_merges.push(candidate);
3080   }
3081 }
3082 
3083 bool ConnectionGraph::has_non_reducible_merge(FieldNode* field, Unique_Node_List& reducible_merges) {
3084   for (BaseIterator i(field); i.has_next(); i.next()) {
3085     Node* base = i.get()->ideal_node();
3086     if (base->is_Phi() && !reducible_merges.member(base)) {
3087       return true;
3088     }
3089   }
3090   return false;
3091 }
3092 
3093 void ConnectionGraph::revisit_reducible_phi_status(JavaObjectNode* jobj, Unique_Node_List& reducible_merges) {
3094   assert(jobj != nullptr && !jobj->scalar_replaceable(), "jobj should be set as NSR before calling this function.");
3095 
3096   // Look for 'phis' that refer to 'jobj' as the last
3097   // remaining scalar replaceable input.
3098   uint reducible_merges_cnt = reducible_merges.size();
3099   for (uint i = 0; i < reducible_merges_cnt; i++) {
3100     Node* phi = reducible_merges.at(i);
3101 
3102     // This 'Phi' will be a 'good' if it still points to
3103     // at least one scalar replaceable object. Note that 'obj'
3104     // was/should be marked as NSR before calling this function.
3105     bool good_phi = false;
3106 
3107     for (uint j = 1; j < phi->req(); j++) {
3108       JavaObjectNode* phi_in_obj = unique_java_object(phi->in(j));
3109       if (phi_in_obj != nullptr && phi_in_obj->scalar_replaceable()) {
3110         good_phi = true;
3111         break;
3112       }
3113     }
3114 
3115     if (!good_phi) {
3116       NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Phi %d became non-reducible after node %d became NSR.", phi->_idx, jobj->ideal_node()->_idx);)
3117       reducible_merges.remove(i);
3118 
3119       // Decrement the index because the 'remove' call above actually
3120       // moves the last entry of the list to position 'i'.
3121       i--;
3122 
3123       reducible_merges_cnt--;
3124     }
3125   }
3126 }
3127 
3128 // Propagate NSR (Not scalar replaceable) state.
3129 void ConnectionGraph::find_scalar_replaceable_allocs(GrowableArray<JavaObjectNode*>& jobj_worklist, Unique_Node_List &reducible_merges) {
3130   int jobj_length = jobj_worklist.length();
3131   bool found_nsr_alloc = true;
3132   while (found_nsr_alloc) {
3133     found_nsr_alloc = false;
3134     for (int next = 0; next < jobj_length; ++next) {
3135       JavaObjectNode* jobj = jobj_worklist.at(next);
3136       for (UseIterator i(jobj); (jobj->scalar_replaceable() && i.has_next()); i.next()) {
3137         PointsToNode* use = i.get();
3138         if (use->is_Field()) {
3139           FieldNode* field = use->as_Field();
3140           assert(field->is_oop() && field->scalar_replaceable(), "sanity");
3141           assert(field->offset() != Type::OffsetBot, "sanity");
3142           for (BaseIterator i(field); i.has_next(); i.next()) {
3143             PointsToNode* base = i.get();
3144             // An object is not scalar replaceable if the field into which
3145             // it is stored has NSR base.
3146             if ((base != null_obj) && !base->scalar_replaceable()) {
3147               set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is stored into field with NSR base"));
3148               // Any merge that had only 'jobj' as scalar-replaceable will now be non-reducible,
3149               // because there is no point in reducing a Phi that won't improve the number of SR
3150               // objects.
3151               revisit_reducible_phi_status(jobj, reducible_merges);
3152               found_nsr_alloc = true;
3153               break;
3154             }
3155           }
3156         } else if (use->is_LocalVar()) {
3157           Node* phi = use->ideal_node();
3158           if (phi->Opcode() == Op_Phi && reducible_merges.member(phi) && !can_reduce_phi(phi->as_Phi())) {
3159             set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is merged in a non-reducible phi"));
3160             reducible_merges.yank(phi);
3161             found_nsr_alloc = true;
3162             break;
3163           }
3164         }
3165         _compile->print_method(PHASE_EA_PROPAGATE_NSR_ITER, 5, jobj->ideal_node());
3166       }
3167     }
3168   }
3169 }
3170 
3171 #ifdef ASSERT
3172 void ConnectionGraph::verify_connection_graph(
3173                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
3174                          GrowableArray<JavaObjectNode*>& non_escaped_allocs_worklist,
3175                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
3176                          GrowableArray<Node*>& addp_worklist) {
3177   // Verify that graph is complete - no new edges could be added.
3178   int java_objects_length = java_objects_worklist.length();
3179   int non_escaped_length  = non_escaped_allocs_worklist.length();
3180   int new_edges = 0;
3181   for (int next = 0; next < java_objects_length; ++next) {
3182     JavaObjectNode* ptn = java_objects_worklist.at(next);
3183     new_edges += add_java_object_edges(ptn, true);
3184   }
3185   assert(new_edges == 0, "graph was not complete");
3186   // Verify that escape state is final.
3187   int length = non_escaped_allocs_worklist.length();
3188   find_non_escaped_objects(ptnodes_worklist, non_escaped_allocs_worklist, /*print_method=*/ false);
3189   assert((non_escaped_length == non_escaped_allocs_worklist.length()) &&
3190          (non_escaped_length == length) &&
3191          (_worklist.length() == 0), "escape state was not final");
3192 
3193   // Verify fields information.
3194   int addp_length = addp_worklist.length();
3195   for (int next = 0; next < addp_length; ++next ) {
3196     Node* n = addp_worklist.at(next);
3197     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
3198     if (field->is_oop()) {
3199       // Verify that field has all bases
3200       Node* base = get_addp_base(n);
3201       PointsToNode* ptn = ptnode_adr(base->_idx);
3202       if (ptn->is_JavaObject()) {
3203         assert(field->has_base(ptn->as_JavaObject()), "sanity");
3204       } else {
3205         assert(ptn->is_LocalVar(), "sanity");
3206         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
3207           PointsToNode* e = i.get();
3208           if (e->is_JavaObject()) {
3209             assert(field->has_base(e->as_JavaObject()), "sanity");
3210           }
3211         }
3212       }
3213       // Verify that all fields have initializing values.
3214       if (field->edge_count() == 0) {
3215         tty->print_cr("----------field does not have references----------");
3216         field->dump();
3217         for (BaseIterator i(field); i.has_next(); i.next()) {
3218           PointsToNode* base = i.get();
3219           tty->print_cr("----------field has next base---------------------");
3220           base->dump();
3221           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
3222             tty->print_cr("----------base has fields-------------------------");
3223             for (EdgeIterator j(base); j.has_next(); j.next()) {
3224               j.get()->dump();
3225             }
3226             tty->print_cr("----------base has references---------------------");
3227             for (UseIterator j(base); j.has_next(); j.next()) {
3228               j.get()->dump();
3229             }
3230           }
3231         }
3232         for (UseIterator i(field); i.has_next(); i.next()) {
3233           i.get()->dump();
3234         }
3235         assert(field->edge_count() > 0, "sanity");
3236       }
3237     }
3238   }
3239 }
3240 #endif
3241 
3242 // Optimize ideal graph.
3243 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
3244                                            GrowableArray<MemBarStoreStoreNode*>& storestore_worklist) {
3245   Compile* C = _compile;
3246   PhaseIterGVN* igvn = _igvn;
3247   if (EliminateLocks) {
3248     // Mark locks before changing ideal graph.
3249     int cnt = C->macro_count();
3250     for (int i = 0; i < cnt; i++) {
3251       Node *n = C->macro_node(i);
3252       if (n->is_AbstractLock()) { // Lock and Unlock nodes
3253         AbstractLockNode* alock = n->as_AbstractLock();
3254         if (!alock->is_non_esc_obj()) {
3255           if (can_eliminate_lock(alock)) {
3256             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
3257             // The lock could be marked eliminated by lock coarsening
3258             // code during first IGVN before EA. Replace coarsened flag
3259             // to eliminate all associated locks/unlocks.
3260 #ifdef ASSERT
3261             alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
3262 #endif
3263             alock->set_non_esc_obj();
3264           }
3265         }
3266       }
3267     }
3268   }
3269 
3270   if (OptimizePtrCompare) {
3271     for (int i = 0; i < ptr_cmp_worklist.length(); i++) {
3272       Node *n = ptr_cmp_worklist.at(i);
3273       assert(n->Opcode() == Op_CmpN || n->Opcode() == Op_CmpP, "must be");
3274       const TypeInt* tcmp = optimize_ptr_compare(n->in(1), n->in(2));
3275       if (tcmp->singleton()) {
3276         Node* cmp = igvn->makecon(tcmp);
3277 #ifndef PRODUCT
3278         if (PrintOptimizePtrCompare) {
3279           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (tcmp == TypeInt::CC_EQ ? "EQ" : "NotEQ"));
3280           if (Verbose) {
3281             n->dump(1);
3282           }
3283         }
3284 #endif
3285         igvn->replace_node(n, cmp);
3286       }
3287     }
3288   }
3289 
3290   // For MemBarStoreStore nodes added in library_call.cpp, check
3291   // escape status of associated AllocateNode and optimize out
3292   // MemBarStoreStore node if the allocated object never escapes.
3293   for (int i = 0; i < storestore_worklist.length(); i++) {
3294     Node* storestore = storestore_worklist.at(i);
3295     Node* alloc = storestore->in(MemBarNode::Precedent)->in(0);
3296     if (alloc->is_Allocate() && not_global_escape(alloc)) {
3297       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
3298       mb->init_req(TypeFunc::Memory,  storestore->in(TypeFunc::Memory));
3299       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
3300       igvn->register_new_node_with_optimizer(mb);
3301       igvn->replace_node(storestore, mb);
3302     }
3303   }
3304 }
3305 
3306 // Optimize objects compare.
3307 const TypeInt* ConnectionGraph::optimize_ptr_compare(Node* left, Node* right) {
3308   const TypeInt* UNKNOWN = TypeInt::CC;    // [-1, 0,1]
3309   if (!OptimizePtrCompare) {
3310     return UNKNOWN;
3311   }
3312   const TypeInt* EQ = TypeInt::CC_EQ; // [0] == ZERO
3313   const TypeInt* NE = TypeInt::CC_GT; // [1] == ONE
3314 
3315   PointsToNode* ptn1 = ptnode_adr(left->_idx);
3316   PointsToNode* ptn2 = ptnode_adr(right->_idx);
3317   JavaObjectNode* jobj1 = unique_java_object(left);
3318   JavaObjectNode* jobj2 = unique_java_object(right);
3319 
3320   // The use of this method during allocation merge reduction may cause 'left'
3321   // or 'right' be something (e.g., a Phi) that isn't in the connection graph or
3322   // that doesn't reference an unique java object.
3323   if (ptn1 == nullptr || ptn2 == nullptr ||
3324       jobj1 == nullptr || jobj2 == nullptr) {
3325     return UNKNOWN;
3326   }
3327 
3328   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
3329   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
3330 
3331   // Check simple cases first.
3332   if (jobj1 != nullptr) {
3333     if (jobj1->escape_state() == PointsToNode::NoEscape) {
3334       if (jobj1 == jobj2) {
3335         // Comparing the same not escaping object.
3336         return EQ;
3337       }
3338       Node* obj = jobj1->ideal_node();
3339       // Comparing not escaping allocation.
3340       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
3341           !ptn2->points_to(jobj1)) {
3342         return NE; // This includes nullness check.
3343       }
3344     }
3345   }
3346   if (jobj2 != nullptr) {
3347     if (jobj2->escape_state() == PointsToNode::NoEscape) {
3348       Node* obj = jobj2->ideal_node();
3349       // Comparing not escaping allocation.
3350       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
3351           !ptn1->points_to(jobj2)) {
3352         return NE; // This includes nullness check.
3353       }
3354     }
3355   }
3356   if (jobj1 != nullptr && jobj1 != phantom_obj &&
3357       jobj2 != nullptr && jobj2 != phantom_obj &&
3358       jobj1->ideal_node()->is_Con() &&
3359       jobj2->ideal_node()->is_Con()) {
3360     // Klass or String constants compare. Need to be careful with
3361     // compressed pointers - compare types of ConN and ConP instead of nodes.
3362     const Type* t1 = jobj1->ideal_node()->get_ptr_type();
3363     const Type* t2 = jobj2->ideal_node()->get_ptr_type();
3364     if (t1->make_ptr() == t2->make_ptr()) {
3365       return EQ;
3366     } else {
3367       return NE;
3368     }
3369   }
3370   if (ptn1->meet(ptn2)) {
3371     return UNKNOWN; // Sets are not disjoint
3372   }
3373 
3374   // Sets are disjoint.
3375   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
3376   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
3377   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
3378   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
3379   if ((set1_has_unknown_ptr && set2_has_null_ptr) ||
3380       (set2_has_unknown_ptr && set1_has_null_ptr)) {
3381     // Check nullness of unknown object.
3382     return UNKNOWN;
3383   }
3384 
3385   // Disjointness by itself is not sufficient since
3386   // alias analysis is not complete for escaped objects.
3387   // Disjoint sets are definitely unrelated only when
3388   // at least one set has only not escaping allocations.
3389   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
3390     if (ptn1->non_escaping_allocation()) {
3391       return NE;
3392     }
3393   }
3394   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
3395     if (ptn2->non_escaping_allocation()) {
3396       return NE;
3397     }
3398   }
3399   return UNKNOWN;
3400 }
3401 
3402 // Connection Graph construction functions.
3403 
3404 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
3405   PointsToNode* ptadr = _nodes.at(n->_idx);
3406   if (ptadr != nullptr) {
3407     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
3408     return;
3409   }
3410   Compile* C = _compile;
3411   ptadr = new (C->comp_arena()) LocalVarNode(this, n, es);
3412   map_ideal_node(n, ptadr);
3413 }
3414 
3415 PointsToNode* ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
3416   PointsToNode* ptadr = _nodes.at(n->_idx);
3417   if (ptadr != nullptr) {
3418     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
3419     return ptadr;
3420   }
3421   Compile* C = _compile;
3422   ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es);
3423   map_ideal_node(n, ptadr);
3424   return ptadr;
3425 }
3426 
3427 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
3428   PointsToNode* ptadr = _nodes.at(n->_idx);
3429   if (ptadr != nullptr) {
3430     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
3431     return;
3432   }
3433   bool unsafe = false;
3434   bool is_oop = is_oop_field(n, offset, &unsafe);
3435   if (unsafe) {
3436     es = PointsToNode::GlobalEscape;
3437   }
3438   Compile* C = _compile;
3439   FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop);
3440   map_ideal_node(n, field);
3441 }
3442 
3443 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
3444                                     PointsToNode* src, PointsToNode* dst) {
3445   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
3446   assert((src != null_obj) && (dst != null_obj), "not for ConP null");
3447   PointsToNode* ptadr = _nodes.at(n->_idx);
3448   if (ptadr != nullptr) {
3449     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
3450     return;
3451   }
3452   Compile* C = _compile;
3453   ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
3454   map_ideal_node(n, ptadr);
3455   // Add edge from arraycopy node to source object.
3456   (void)add_edge(ptadr, src);
3457   src->set_arraycopy_src();
3458   // Add edge from destination object to arraycopy node.
3459   (void)add_edge(dst, ptadr);
3460   dst->set_arraycopy_dst();
3461 }
3462 
3463 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
3464   const Type* adr_type = n->as_AddP()->bottom_type();
3465   BasicType bt = T_INT;
3466   if (offset == Type::OffsetBot) {
3467     // Check only oop fields.
3468     if (!adr_type->isa_aryptr() ||
3469         adr_type->isa_aryptr()->elem() == Type::BOTTOM ||
3470         adr_type->isa_aryptr()->elem()->make_oopptr() != nullptr) {
3471       // OffsetBot is used to reference array's element. Ignore first AddP.
3472       if (find_second_addp(n, n->in(AddPNode::Base)) == nullptr) {
3473         bt = T_OBJECT;
3474       }
3475     }
3476   } else if (offset != oopDesc::klass_offset_in_bytes()) {
3477     if (adr_type->isa_instptr()) {
3478       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
3479       if (field != nullptr) {
3480         bt = field->layout_type();
3481       } else {
3482         // Check for unsafe oop field access
3483         if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
3484             n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
3485             n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
3486             BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
3487           bt = T_OBJECT;
3488           (*unsafe) = true;
3489         }
3490       }
3491     } else if (adr_type->isa_aryptr()) {
3492       if (offset == arrayOopDesc::length_offset_in_bytes()) {
3493         // Ignore array length load.
3494       } else if (find_second_addp(n, n->in(AddPNode::Base)) != nullptr) {
3495         // Ignore first AddP.
3496       } else {
3497         const Type* elemtype = adr_type->isa_aryptr()->elem();
3498         bt = elemtype->array_element_basic_type();
3499       }
3500     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
3501       // Allocation initialization, ThreadLocal field access, unsafe access
3502       if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
3503           n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
3504           n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
3505           BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
3506         bt = T_OBJECT;
3507       }
3508     }
3509   }
3510   // Note: T_NARROWOOP is not classed as a real reference type
3511   return (is_reference_type(bt) || bt == T_NARROWOOP);
3512 }
3513 
3514 // Returns unique pointed java object or null.
3515 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) const {
3516   // If the node was created after the escape computation we can't answer.
3517   uint idx = n->_idx;
3518   if (idx >= nodes_size()) {
3519     return nullptr;
3520   }
3521   PointsToNode* ptn = ptnode_adr(idx);
3522   if (ptn == nullptr) {
3523     return nullptr;
3524   }
3525   if (ptn->is_JavaObject()) {
3526     return ptn->as_JavaObject();
3527   }
3528   assert(ptn->is_LocalVar(), "sanity");
3529   // Check all java objects it points to.
3530   JavaObjectNode* jobj = nullptr;
3531   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
3532     PointsToNode* e = i.get();
3533     if (e->is_JavaObject()) {
3534       if (jobj == nullptr) {
3535         jobj = e->as_JavaObject();
3536       } else if (jobj != e) {
3537         return nullptr;
3538       }
3539     }
3540   }
3541   return jobj;
3542 }
3543 
3544 // Return true if this node points only to non-escaping allocations.
3545 bool PointsToNode::non_escaping_allocation() {
3546   if (is_JavaObject()) {
3547     Node* n = ideal_node();
3548     if (n->is_Allocate() || n->is_CallStaticJava()) {
3549       return (escape_state() == PointsToNode::NoEscape);
3550     } else {
3551       return false;
3552     }
3553   }
3554   assert(is_LocalVar(), "sanity");
3555   // Check all java objects it points to.
3556   for (EdgeIterator i(this); i.has_next(); i.next()) {
3557     PointsToNode* e = i.get();
3558     if (e->is_JavaObject()) {
3559       Node* n = e->ideal_node();
3560       if ((e->escape_state() != PointsToNode::NoEscape) ||
3561           !(n->is_Allocate() || n->is_CallStaticJava())) {
3562         return false;
3563       }
3564     }
3565   }
3566   return true;
3567 }
3568 
3569 // Return true if we know the node does not escape globally.
3570 bool ConnectionGraph::not_global_escape(Node *n) {
3571   assert(!_collecting, "should not call during graph construction");
3572   // If the node was created after the escape computation we can't answer.
3573   uint idx = n->_idx;
3574   if (idx >= nodes_size()) {
3575     return false;
3576   }
3577   PointsToNode* ptn = ptnode_adr(idx);
3578   if (ptn == nullptr) {
3579     return false; // not in congraph (e.g. ConI)
3580   }
3581   PointsToNode::EscapeState es = ptn->escape_state();
3582   // If we have already computed a value, return it.
3583   if (es >= PointsToNode::GlobalEscape) {
3584     return false;
3585   }
3586   if (ptn->is_JavaObject()) {
3587     return true; // (es < PointsToNode::GlobalEscape);
3588   }
3589   assert(ptn->is_LocalVar(), "sanity");
3590   // Check all java objects it points to.
3591   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
3592     if (i.get()->escape_state() >= PointsToNode::GlobalEscape) {
3593       return false;
3594     }
3595   }
3596   return true;
3597 }
3598 
3599 // Return true if locked object does not escape globally
3600 // and locked code region (identified by BoxLockNode) is balanced:
3601 // all compiled code paths have corresponding Lock/Unlock pairs.
3602 bool ConnectionGraph::can_eliminate_lock(AbstractLockNode* alock) {
3603   if (alock->is_balanced() && not_global_escape(alock->obj_node())) {
3604     if (EliminateNestedLocks) {
3605       // We can mark whole locking region as Local only when only
3606       // one object is used for locking.
3607       alock->box_node()->as_BoxLock()->set_local();
3608     }
3609     return true;
3610   }
3611   return false;
3612 }
3613 
3614 // Helper functions
3615 
3616 // Return true if this node points to specified node or nodes it points to.
3617 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
3618   if (is_JavaObject()) {
3619     return (this == ptn);
3620   }
3621   assert(is_LocalVar() || is_Field(), "sanity");
3622   for (EdgeIterator i(this); i.has_next(); i.next()) {
3623     if (i.get() == ptn) {
3624       return true;
3625     }
3626   }
3627   return false;
3628 }
3629 
3630 // Return true if one node points to an other.
3631 bool PointsToNode::meet(PointsToNode* ptn) {
3632   if (this == ptn) {
3633     return true;
3634   } else if (ptn->is_JavaObject()) {
3635     return this->points_to(ptn->as_JavaObject());
3636   } else if (this->is_JavaObject()) {
3637     return ptn->points_to(this->as_JavaObject());
3638   }
3639   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
3640   int ptn_count =  ptn->edge_count();
3641   for (EdgeIterator i(this); i.has_next(); i.next()) {
3642     PointsToNode* this_e = i.get();
3643     for (int j = 0; j < ptn_count; j++) {
3644       if (this_e == ptn->edge(j)) {
3645         return true;
3646       }
3647     }
3648   }
3649   return false;
3650 }
3651 
3652 #ifdef ASSERT
3653 // Return true if bases point to this java object.
3654 bool FieldNode::has_base(JavaObjectNode* jobj) const {
3655   for (BaseIterator i(this); i.has_next(); i.next()) {
3656     if (i.get() == jobj) {
3657       return true;
3658     }
3659   }
3660   return false;
3661 }
3662 #endif
3663 
3664 bool ConnectionGraph::is_captured_store_address(Node* addp) {
3665   // Handle simple case first.
3666   assert(_igvn->type(addp)->isa_oopptr() == nullptr, "should be raw access");
3667   if (addp->in(AddPNode::Address)->is_Proj() && addp->in(AddPNode::Address)->in(0)->is_Allocate()) {
3668     return true;
3669   } else if (addp->in(AddPNode::Address)->is_Phi()) {
3670     for (DUIterator_Fast imax, i = addp->fast_outs(imax); i < imax; i++) {
3671       Node* addp_use = addp->fast_out(i);
3672       if (addp_use->is_Store()) {
3673         for (DUIterator_Fast jmax, j = addp_use->fast_outs(jmax); j < jmax; j++) {
3674           if (addp_use->fast_out(j)->is_Initialize()) {
3675             return true;
3676           }
3677         }
3678       }
3679     }
3680   }
3681   return false;
3682 }
3683 
3684 int ConnectionGraph::address_offset(Node* adr, PhaseValues* phase) {
3685   const Type *adr_type = phase->type(adr);
3686   if (adr->is_AddP() && adr_type->isa_oopptr() == nullptr && is_captured_store_address(adr)) {
3687     // We are computing a raw address for a store captured by an Initialize
3688     // compute an appropriate address type. AddP cases #3 and #5 (see below).
3689     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
3690     assert(offs != Type::OffsetBot ||
3691            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
3692            "offset must be a constant or it is initialization of array");
3693     return offs;
3694   }
3695   const TypePtr *t_ptr = adr_type->isa_ptr();
3696   assert(t_ptr != nullptr, "must be a pointer type");
3697   return t_ptr->offset();
3698 }
3699 
3700 Node* ConnectionGraph::get_addp_base(Node *addp) {
3701   assert(addp->is_AddP(), "must be AddP");
3702   //
3703   // AddP cases for Base and Address inputs:
3704   // case #1. Direct object's field reference:
3705   //     Allocate
3706   //       |
3707   //     Proj #5 ( oop result )
3708   //       |
3709   //     CheckCastPP (cast to instance type)
3710   //      | |
3711   //     AddP  ( base == address )
3712   //
3713   // case #2. Indirect object's field reference:
3714   //      Phi
3715   //       |
3716   //     CastPP (cast to instance type)
3717   //      | |
3718   //     AddP  ( base == address )
3719   //
3720   // case #3. Raw object's field reference for Initialize node:
3721   //      Allocate
3722   //        |
3723   //      Proj #5 ( oop result )
3724   //  top   |
3725   //     \  |
3726   //     AddP  ( base == top )
3727   //
3728   // case #4. Array's element reference:
3729   //   {CheckCastPP | CastPP}
3730   //     |  | |
3731   //     |  AddP ( array's element offset )
3732   //     |  |
3733   //     AddP ( array's offset )
3734   //
3735   // case #5. Raw object's field reference for arraycopy stub call:
3736   //          The inline_native_clone() case when the arraycopy stub is called
3737   //          after the allocation before Initialize and CheckCastPP nodes.
3738   //      Allocate
3739   //        |
3740   //      Proj #5 ( oop result )
3741   //       | |
3742   //       AddP  ( base == address )
3743   //
3744   // case #6. Constant Pool, ThreadLocal, CastX2P or
3745   //          Raw object's field reference:
3746   //      {ConP, ThreadLocal, CastX2P, raw Load}
3747   //  top   |
3748   //     \  |
3749   //     AddP  ( base == top )
3750   //
3751   // case #7. Klass's field reference.
3752   //      LoadKlass
3753   //       | |
3754   //       AddP  ( base == address )
3755   //
3756   // case #8. narrow Klass's field reference.
3757   //      LoadNKlass
3758   //       |
3759   //      DecodeN
3760   //       | |
3761   //       AddP  ( base == address )
3762   //
3763   // case #9. Mixed unsafe access
3764   //    {instance}
3765   //        |
3766   //      CheckCastPP (raw)
3767   //  top   |
3768   //     \  |
3769   //     AddP  ( base == top )
3770   //
3771   Node *base = addp->in(AddPNode::Base);
3772   if (base->uncast()->is_top()) { // The AddP case #3 and #6 and #9.
3773     base = addp->in(AddPNode::Address);
3774     while (base->is_AddP()) {
3775       // Case #6 (unsafe access) may have several chained AddP nodes.
3776       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
3777       base = base->in(AddPNode::Address);
3778     }
3779     if (base->Opcode() == Op_CheckCastPP &&
3780         base->bottom_type()->isa_rawptr() &&
3781         _igvn->type(base->in(1))->isa_oopptr()) {
3782       base = base->in(1); // Case #9
3783     } else {
3784       Node* uncast_base = base->uncast();
3785       int opcode = uncast_base->Opcode();
3786       assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
3787              opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
3788              (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != nullptr)) ||
3789              is_captured_store_address(addp), "sanity");
3790     }
3791   }
3792   return base;
3793 }
3794 
3795 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
3796   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
3797   Node* addp2 = addp->raw_out(0);
3798   if (addp->outcnt() == 1 && addp2->is_AddP() &&
3799       addp2->in(AddPNode::Base) == n &&
3800       addp2->in(AddPNode::Address) == addp) {
3801     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
3802     //
3803     // Find array's offset to push it on worklist first and
3804     // as result process an array's element offset first (pushed second)
3805     // to avoid CastPP for the array's offset.
3806     // Otherwise the inserted CastPP (LocalVar) will point to what
3807     // the AddP (Field) points to. Which would be wrong since
3808     // the algorithm expects the CastPP has the same point as
3809     // as AddP's base CheckCastPP (LocalVar).
3810     //
3811     //    ArrayAllocation
3812     //     |
3813     //    CheckCastPP
3814     //     |
3815     //    memProj (from ArrayAllocation CheckCastPP)
3816     //     |  ||
3817     //     |  ||   Int (element index)
3818     //     |  ||    |   ConI (log(element size))
3819     //     |  ||    |   /
3820     //     |  ||   LShift
3821     //     |  ||  /
3822     //     |  AddP (array's element offset)
3823     //     |  |
3824     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
3825     //     | / /
3826     //     AddP (array's offset)
3827     //      |
3828     //     Load/Store (memory operation on array's element)
3829     //
3830     return addp2;
3831   }
3832   return nullptr;
3833 }
3834 
3835 //
3836 // Adjust the type and inputs of an AddP which computes the
3837 // address of a field of an instance
3838 //
3839 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
3840   PhaseGVN* igvn = _igvn;
3841   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
3842   assert(base_t != nullptr && base_t->is_known_instance(), "expecting instance oopptr");
3843   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
3844   if (t == nullptr) {
3845     // We are computing a raw address for a store captured by an Initialize
3846     // compute an appropriate address type (cases #3 and #5).
3847     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
3848     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
3849     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
3850     assert(offs != Type::OffsetBot, "offset must be a constant");
3851     t = base_t->add_offset(offs)->is_oopptr();
3852   }
3853   int inst_id =  base_t->instance_id();
3854   assert(!t->is_known_instance() || t->instance_id() == inst_id,
3855                              "old type must be non-instance or match new type");
3856 
3857   // The type 't' could be subclass of 'base_t'.
3858   // As result t->offset() could be large then base_t's size and it will
3859   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
3860   // constructor verifies correctness of the offset.
3861   //
3862   // It could happened on subclass's branch (from the type profiling
3863   // inlining) which was not eliminated during parsing since the exactness
3864   // of the allocation type was not propagated to the subclass type check.
3865   //
3866   // Or the type 't' could be not related to 'base_t' at all.
3867   // It could happened when CHA type is different from MDO type on a dead path
3868   // (for example, from instanceof check) which is not collapsed during parsing.
3869   //
3870   // Do nothing for such AddP node and don't process its users since
3871   // this code branch will go away.
3872   //
3873   if (!t->is_known_instance() &&
3874       !base_t->maybe_java_subtype_of(t)) {
3875      return false; // bail out
3876   }
3877   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
3878   // Do NOT remove the next line: ensure a new alias index is allocated
3879   // for the instance type. Note: C++ will not remove it since the call
3880   // has side effect.
3881   int alias_idx = _compile->get_alias_index(tinst);
3882   igvn->set_type(addp, tinst);
3883   // record the allocation in the node map
3884   set_map(addp, get_map(base->_idx));
3885   // Set addp's Base and Address to 'base'.
3886   Node *abase = addp->in(AddPNode::Base);
3887   Node *adr   = addp->in(AddPNode::Address);
3888   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
3889       adr->in(0)->_idx == (uint)inst_id) {
3890     // Skip AddP cases #3 and #5.
3891   } else {
3892     assert(!abase->is_top(), "sanity"); // AddP case #3
3893     if (abase != base) {
3894       igvn->hash_delete(addp);
3895       addp->set_req(AddPNode::Base, base);
3896       if (abase == adr) {
3897         addp->set_req(AddPNode::Address, base);
3898       } else {
3899         // AddP case #4 (adr is array's element offset AddP node)
3900 #ifdef ASSERT
3901         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
3902         assert(adr->is_AddP() && atype != nullptr &&
3903                atype->instance_id() == inst_id, "array's element offset should be processed first");
3904 #endif
3905       }
3906       igvn->hash_insert(addp);
3907     }
3908   }
3909   // Put on IGVN worklist since at least addp's type was changed above.
3910   record_for_optimizer(addp);
3911   return true;
3912 }
3913 
3914 //
3915 // Create a new version of orig_phi if necessary. Returns either the newly
3916 // created phi or an existing phi.  Sets create_new to indicate whether a new
3917 // phi was created.  Cache the last newly created phi in the node map.
3918 //
3919 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
3920   Compile *C = _compile;
3921   PhaseGVN* igvn = _igvn;
3922   new_created = false;
3923   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
3924   // nothing to do if orig_phi is bottom memory or matches alias_idx
3925   if (phi_alias_idx == alias_idx) {
3926     return orig_phi;
3927   }
3928   // Have we recently created a Phi for this alias index?
3929   PhiNode *result = get_map_phi(orig_phi->_idx);
3930   if (result != nullptr && C->get_alias_index(result->adr_type()) == alias_idx) {
3931     return result;
3932   }
3933   // Previous check may fail when the same wide memory Phi was split into Phis
3934   // for different memory slices. Search all Phis for this region.
3935   if (result != nullptr) {
3936     Node* region = orig_phi->in(0);
3937     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
3938       Node* phi = region->fast_out(i);
3939       if (phi->is_Phi() &&
3940           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
3941         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
3942         return phi->as_Phi();
3943       }
3944     }
3945   }
3946   if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) {
3947     if (C->do_escape_analysis() == true && !C->failing()) {
3948       // Retry compilation without escape analysis.
3949       // If this is the first failure, the sentinel string will "stick"
3950       // to the Compile object, and the C2Compiler will see it and retry.
3951       C->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis());
3952     }
3953     return nullptr;
3954   }
3955   orig_phi_worklist.append_if_missing(orig_phi);
3956   const TypePtr *atype = C->get_adr_type(alias_idx);
3957   result = PhiNode::make(orig_phi->in(0), nullptr, Type::MEMORY, atype);
3958   C->copy_node_notes_to(result, orig_phi);
3959   igvn->set_type(result, result->bottom_type());
3960   record_for_optimizer(result);
3961   set_map(orig_phi, result);
3962   new_created = true;
3963   return result;
3964 }
3965 
3966 //
3967 // Return a new version of Memory Phi "orig_phi" with the inputs having the
3968 // specified alias index.
3969 //
3970 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, uint rec_depth) {
3971   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
3972   Compile *C = _compile;
3973   PhaseGVN* igvn = _igvn;
3974   bool new_phi_created;
3975   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
3976   if (!new_phi_created) {
3977     return result;
3978   }
3979   GrowableArray<PhiNode *>  phi_list;
3980   GrowableArray<uint>  cur_input;
3981   PhiNode *phi = orig_phi;
3982   uint idx = 1;
3983   bool finished = false;
3984   while(!finished) {
3985     while (idx < phi->req()) {
3986       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, rec_depth + 1);
3987       if (mem != nullptr && mem->is_Phi()) {
3988         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
3989         if (new_phi_created) {
3990           // found an phi for which we created a new split, push current one on worklist and begin
3991           // processing new one
3992           phi_list.push(phi);
3993           cur_input.push(idx);
3994           phi = mem->as_Phi();
3995           result = newphi;
3996           idx = 1;
3997           continue;
3998         } else {
3999           mem = newphi;
4000         }
4001       }
4002       if (C->failing()) {
4003         return nullptr;
4004       }
4005       result->set_req(idx++, mem);
4006     }
4007 #ifdef ASSERT
4008     // verify that the new Phi has an input for each input of the original
4009     assert( phi->req() == result->req(), "must have same number of inputs.");
4010     assert( result->in(0) != nullptr && result->in(0) == phi->in(0), "regions must match");
4011 #endif
4012     // Check if all new phi's inputs have specified alias index.
4013     // Otherwise use old phi.
4014     for (uint i = 1; i < phi->req(); i++) {
4015       Node* in = result->in(i);
4016       assert((phi->in(i) == nullptr) == (in == nullptr), "inputs must correspond.");
4017     }
4018     // we have finished processing a Phi, see if there are any more to do
4019     finished = (phi_list.length() == 0 );
4020     if (!finished) {
4021       phi = phi_list.pop();
4022       idx = cur_input.pop();
4023       PhiNode *prev_result = get_map_phi(phi->_idx);
4024       prev_result->set_req(idx++, result);
4025       result = prev_result;
4026     }
4027   }
4028   return result;
4029 }
4030 
4031 //
4032 // The next methods are derived from methods in MemNode.
4033 //
4034 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
4035   Node *mem = mmem;
4036   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
4037   // means an array I have not precisely typed yet.  Do not do any
4038   // alias stuff with it any time soon.
4039   if (toop->base() != Type::AnyPtr &&
4040       !(toop->isa_instptr() &&
4041         toop->is_instptr()->instance_klass()->is_java_lang_Object() &&
4042         toop->offset() == Type::OffsetBot)) {
4043     mem = mmem->memory_at(alias_idx);
4044     // Update input if it is progress over what we have now
4045   }
4046   return mem;
4047 }
4048 
4049 //
4050 // Move memory users to their memory slices.
4051 //
4052 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
4053   Compile* C = _compile;
4054   PhaseGVN* igvn = _igvn;
4055   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
4056   assert(tp != nullptr, "ptr type");
4057   int alias_idx = C->get_alias_index(tp);
4058   int general_idx = C->get_general_index(alias_idx);
4059 
4060   // Move users first
4061   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4062     Node* use = n->fast_out(i);
4063     if (use->is_MergeMem()) {
4064       MergeMemNode* mmem = use->as_MergeMem();
4065       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
4066       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
4067         continue; // Nothing to do
4068       }
4069       // Replace previous general reference to mem node.
4070       uint orig_uniq = C->unique();
4071       Node* m = find_inst_mem(n, general_idx, orig_phis);
4072       assert(orig_uniq == C->unique(), "no new nodes");
4073       mmem->set_memory_at(general_idx, m);
4074       --imax;
4075       --i;
4076     } else if (use->is_MemBar()) {
4077       assert(!use->is_Initialize(), "initializing stores should not be moved");
4078       if (use->req() > MemBarNode::Precedent &&
4079           use->in(MemBarNode::Precedent) == n) {
4080         // Don't move related membars.
4081         record_for_optimizer(use);
4082         continue;
4083       }
4084       tp = use->as_MemBar()->adr_type()->isa_ptr();
4085       if ((tp != nullptr && C->get_alias_index(tp) == alias_idx) ||
4086           alias_idx == general_idx) {
4087         continue; // Nothing to do
4088       }
4089       // Move to general memory slice.
4090       uint orig_uniq = C->unique();
4091       Node* m = find_inst_mem(n, general_idx, orig_phis);
4092       assert(orig_uniq == C->unique(), "no new nodes");
4093       igvn->hash_delete(use);
4094       imax -= use->replace_edge(n, m, igvn);
4095       igvn->hash_insert(use);
4096       record_for_optimizer(use);
4097       --i;
4098 #ifdef ASSERT
4099     } else if (use->is_Mem()) {
4100       // Memory nodes should have new memory input.
4101       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
4102       assert(tp != nullptr, "ptr type");
4103       int idx = C->get_alias_index(tp);
4104       assert(get_map(use->_idx) != nullptr || idx == alias_idx,
4105              "Following memory nodes should have new memory input or be on the same memory slice");
4106     } else if (use->is_Phi()) {
4107       // Phi nodes should be split and moved already.
4108       tp = use->as_Phi()->adr_type()->isa_ptr();
4109       assert(tp != nullptr, "ptr type");
4110       int idx = C->get_alias_index(tp);
4111       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
4112     } else {
4113       use->dump();
4114       assert(false, "should not be here");
4115 #endif
4116     }
4117   }
4118 }
4119 
4120 //
4121 // Search memory chain of "mem" to find a MemNode whose address
4122 // is the specified alias index.
4123 //
4124 #define FIND_INST_MEM_RECURSION_DEPTH_LIMIT 1000
4125 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis, uint rec_depth) {
4126   if (rec_depth > FIND_INST_MEM_RECURSION_DEPTH_LIMIT) {
4127     _compile->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis());
4128     return nullptr;
4129   }
4130   if (orig_mem == nullptr) {
4131     return orig_mem;
4132   }
4133   Compile* C = _compile;
4134   PhaseGVN* igvn = _igvn;
4135   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
4136   bool is_instance = (toop != nullptr) && toop->is_known_instance();
4137   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
4138   Node *prev = nullptr;
4139   Node *result = orig_mem;
4140   while (prev != result) {
4141     prev = result;
4142     if (result == start_mem) {
4143       break;  // hit one of our sentinels
4144     }
4145     if (result->is_Mem()) {
4146       const Type *at = igvn->type(result->in(MemNode::Address));
4147       if (at == Type::TOP) {
4148         break; // Dead
4149       }
4150       assert (at->isa_ptr() != nullptr, "pointer type required.");
4151       int idx = C->get_alias_index(at->is_ptr());
4152       if (idx == alias_idx) {
4153         break; // Found
4154       }
4155       if (!is_instance && (at->isa_oopptr() == nullptr ||
4156                            !at->is_oopptr()->is_known_instance())) {
4157         break; // Do not skip store to general memory slice.
4158       }
4159       result = result->in(MemNode::Memory);
4160     }
4161     if (!is_instance) {
4162       continue;  // don't search further for non-instance types
4163     }
4164     // skip over a call which does not affect this memory slice
4165     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
4166       Node *proj_in = result->in(0);
4167       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
4168         break;  // hit one of our sentinels
4169       } else if (proj_in->is_Call()) {
4170         // ArrayCopy node processed here as well
4171         CallNode *call = proj_in->as_Call();
4172         if (!call->may_modify(toop, igvn)) {
4173           result = call->in(TypeFunc::Memory);
4174         }
4175       } else if (proj_in->is_Initialize()) {
4176         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
4177         // Stop if this is the initialization for the object instance which
4178         // which contains this memory slice, otherwise skip over it.
4179         if (alloc == nullptr || alloc->_idx != (uint)toop->instance_id()) {
4180           result = proj_in->in(TypeFunc::Memory);
4181         } else if (C->get_alias_index(result->adr_type()) != alias_idx) {
4182           assert(C->get_general_index(alias_idx) == C->get_alias_index(result->adr_type()), "should be projection for the same field/array element");
4183           result = get_map(result->_idx);
4184           assert(result != nullptr, "new projection should have been allocated");
4185           break;
4186         }
4187       } else if (proj_in->is_MemBar()) {
4188         // Check if there is an array copy for a clone
4189         // Step over GC barrier when ReduceInitialCardMarks is disabled
4190         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4191         Node* control_proj_ac = bs->step_over_gc_barrier(proj_in->in(0));
4192 
4193         if (control_proj_ac->is_Proj() && control_proj_ac->in(0)->is_ArrayCopy()) {
4194           // Stop if it is a clone
4195           ArrayCopyNode* ac = control_proj_ac->in(0)->as_ArrayCopy();
4196           if (ac->may_modify(toop, igvn)) {
4197             break;
4198           }
4199         }
4200         result = proj_in->in(TypeFunc::Memory);
4201       }
4202     } else if (result->is_MergeMem()) {
4203       MergeMemNode *mmem = result->as_MergeMem();
4204       result = step_through_mergemem(mmem, alias_idx, toop);
4205       if (result == mmem->base_memory()) {
4206         // Didn't find instance memory, search through general slice recursively.
4207         result = mmem->memory_at(C->get_general_index(alias_idx));
4208         result = find_inst_mem(result, alias_idx, orig_phis, rec_depth + 1);
4209         if (C->failing()) {
4210           return nullptr;
4211         }
4212         mmem->set_memory_at(alias_idx, result);
4213       }
4214     } else if (result->is_Phi() &&
4215                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
4216       Node *un = result->as_Phi()->unique_input(igvn);
4217       if (un != nullptr) {
4218         orig_phis.append_if_missing(result->as_Phi());
4219         result = un;
4220       } else {
4221         break;
4222       }
4223     } else if (result->is_ClearArray()) {
4224       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
4225         // Can not bypass initialization of the instance
4226         // we are looking for.
4227         break;
4228       }
4229       // Otherwise skip it (the call updated 'result' value).
4230     } else if (result->Opcode() == Op_SCMemProj) {
4231       Node* mem = result->in(0);
4232       Node* adr = nullptr;
4233       if (mem->is_LoadStore()) {
4234         adr = mem->in(MemNode::Address);
4235       } else {
4236         assert(mem->Opcode() == Op_EncodeISOArray ||
4237                mem->Opcode() == Op_StrCompressedCopy, "sanity");
4238         adr = mem->in(3); // Memory edge corresponds to destination array
4239       }
4240       const Type *at = igvn->type(adr);
4241       if (at != Type::TOP) {
4242         assert(at->isa_ptr() != nullptr, "pointer type required.");
4243         int idx = C->get_alias_index(at->is_ptr());
4244         if (idx == alias_idx) {
4245           // Assert in debug mode
4246           assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
4247           break; // In product mode return SCMemProj node
4248         }
4249       }
4250       result = mem->in(MemNode::Memory);
4251     } else if (result->Opcode() == Op_StrInflatedCopy) {
4252       Node* adr = result->in(3); // Memory edge corresponds to destination array
4253       const Type *at = igvn->type(adr);
4254       if (at != Type::TOP) {
4255         assert(at->isa_ptr() != nullptr, "pointer type required.");
4256         int idx = C->get_alias_index(at->is_ptr());
4257         if (idx == alias_idx) {
4258           // Assert in debug mode
4259           assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
4260           break; // In product mode return SCMemProj node
4261         }
4262       }
4263       result = result->in(MemNode::Memory);
4264     }
4265   }
4266   if (result->is_Phi()) {
4267     PhiNode *mphi = result->as_Phi();
4268     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
4269     const TypePtr *t = mphi->adr_type();
4270     if (!is_instance) {
4271       // Push all non-instance Phis on the orig_phis worklist to update inputs
4272       // during Phase 4 if needed.
4273       orig_phis.append_if_missing(mphi);
4274     } else if (C->get_alias_index(t) != alias_idx) {
4275       // Create a new Phi with the specified alias index type.
4276       result = split_memory_phi(mphi, alias_idx, orig_phis, rec_depth + 1);
4277     }
4278   }
4279   // the result is either MemNode, PhiNode, InitializeNode.
4280   return result;
4281 }
4282 
4283 //
4284 //  Convert the types of non-escaped object to instance types where possible,
4285 //  propagate the new type information through the graph, and update memory
4286 //  edges and MergeMem inputs to reflect the new type.
4287 //
4288 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
4289 //  The processing is done in 4 phases:
4290 //
4291 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
4292 //            types for the CheckCastPP for allocations where possible.
4293 //            Propagate the new types through users as follows:
4294 //               casts and Phi:  push users on alloc_worklist
4295 //               AddP:  cast Base and Address inputs to the instance type
4296 //                      push any AddP users on alloc_worklist and push any memnode
4297 //                      users onto memnode_worklist.
4298 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
4299 //            search the Memory chain for a store with the appropriate type
4300 //            address type.  If a Phi is found, create a new version with
4301 //            the appropriate memory slices from each of the Phi inputs.
4302 //            For stores, process the users as follows:
4303 //               MemNode:  push on memnode_worklist
4304 //               MergeMem: push on mergemem_worklist
4305 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
4306 //            moving the first node encountered of each  instance type to the
4307 //            the input corresponding to its alias index.
4308 //            appropriate memory slice.
4309 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
4310 //
4311 // In the following example, the CheckCastPP nodes are the cast of allocation
4312 // results and the allocation of node 29 is non-escaped and eligible to be an
4313 // instance type.
4314 //
4315 // We start with:
4316 //
4317 //     7 Parm #memory
4318 //    10  ConI  "12"
4319 //    19  CheckCastPP   "Foo"
4320 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
4321 //    29  CheckCastPP   "Foo"
4322 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
4323 //
4324 //    40  StoreP  25   7  20   ... alias_index=4
4325 //    50  StoreP  35  40  30   ... alias_index=4
4326 //    60  StoreP  45  50  20   ... alias_index=4
4327 //    70  LoadP    _  60  30   ... alias_index=4
4328 //    80  Phi     75  50  60   Memory alias_index=4
4329 //    90  LoadP    _  80  30   ... alias_index=4
4330 //   100  LoadP    _  80  20   ... alias_index=4
4331 //
4332 //
4333 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
4334 // and creating a new alias index for node 30.  This gives:
4335 //
4336 //     7 Parm #memory
4337 //    10  ConI  "12"
4338 //    19  CheckCastPP   "Foo"
4339 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
4340 //    29  CheckCastPP   "Foo"  iid=24
4341 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
4342 //
4343 //    40  StoreP  25   7  20   ... alias_index=4
4344 //    50  StoreP  35  40  30   ... alias_index=6
4345 //    60  StoreP  45  50  20   ... alias_index=4
4346 //    70  LoadP    _  60  30   ... alias_index=6
4347 //    80  Phi     75  50  60   Memory alias_index=4
4348 //    90  LoadP    _  80  30   ... alias_index=6
4349 //   100  LoadP    _  80  20   ... alias_index=4
4350 //
4351 // In phase 2, new memory inputs are computed for the loads and stores,
4352 // And a new version of the phi is created.  In phase 4, the inputs to
4353 // node 80 are updated and then the memory nodes are updated with the
4354 // values computed in phase 2.  This results in:
4355 //
4356 //     7 Parm #memory
4357 //    10  ConI  "12"
4358 //    19  CheckCastPP   "Foo"
4359 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
4360 //    29  CheckCastPP   "Foo"  iid=24
4361 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
4362 //
4363 //    40  StoreP  25  7   20   ... alias_index=4
4364 //    50  StoreP  35  7   30   ... alias_index=6
4365 //    60  StoreP  45  40  20   ... alias_index=4
4366 //    70  LoadP    _  50  30   ... alias_index=6
4367 //    80  Phi     75  40  60   Memory alias_index=4
4368 //   120  Phi     75  50  50   Memory alias_index=6
4369 //    90  LoadP    _ 120  30   ... alias_index=6
4370 //   100  LoadP    _  80  20   ... alias_index=4
4371 //
4372 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist,
4373                                          GrowableArray<ArrayCopyNode*> &arraycopy_worklist,
4374                                          GrowableArray<MergeMemNode*> &mergemem_worklist,
4375                                          Unique_Node_List &reducible_merges) {
4376   DEBUG_ONLY(Unique_Node_List reduced_merges;)
4377   GrowableArray<Node *>  memnode_worklist;
4378   GrowableArray<PhiNode *>  orig_phis;
4379   PhaseIterGVN  *igvn = _igvn;
4380   uint new_index_start = (uint) _compile->num_alias_types();
4381   VectorSet visited;
4382   ideal_nodes.clear(); // Reset for use with set_map/get_map.
4383   uint unique_old = _compile->unique();
4384 
4385   //  Phase 1:  Process possible allocations from alloc_worklist.
4386   //  Create instance types for the CheckCastPP for allocations where possible.
4387   //
4388   // (Note: don't forget to change the order of the second AddP node on
4389   //  the alloc_worklist if the order of the worklist processing is changed,
4390   //  see the comment in find_second_addp().)
4391   //
4392   while (alloc_worklist.length() != 0) {
4393     Node *n = alloc_worklist.pop();
4394     uint ni = n->_idx;
4395     if (n->is_Call()) {
4396       CallNode *alloc = n->as_Call();
4397       // copy escape information to call node
4398       PointsToNode* ptn = ptnode_adr(alloc->_idx);
4399       PointsToNode::EscapeState es = ptn->escape_state();
4400       // We have an allocation or call which returns a Java object,
4401       // see if it is non-escaped.
4402       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable()) {
4403         continue;
4404       }
4405       // Find CheckCastPP for the allocate or for the return value of a call
4406       n = alloc->result_cast();
4407       if (n == nullptr) {            // No uses except Initialize node
4408         if (alloc->is_Allocate()) {
4409           // Set the scalar_replaceable flag for allocation
4410           // so it could be eliminated if it has no uses.
4411           alloc->as_Allocate()->_is_scalar_replaceable = true;
4412         }
4413         continue;
4414       }
4415       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
4416         // we could reach here for allocate case if one init is associated with many allocs.
4417         if (alloc->is_Allocate()) {
4418           alloc->as_Allocate()->_is_scalar_replaceable = false;
4419         }
4420         continue;
4421       }
4422 
4423       // The inline code for Object.clone() casts the allocation result to
4424       // java.lang.Object and then to the actual type of the allocated
4425       // object. Detect this case and use the second cast.
4426       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
4427       // the allocation result is cast to java.lang.Object and then
4428       // to the actual Array type.
4429       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
4430           && (alloc->is_AllocateArray() ||
4431               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeInstKlassPtr::OBJECT)) {
4432         Node *cast2 = nullptr;
4433         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4434           Node *use = n->fast_out(i);
4435           if (use->is_CheckCastPP()) {
4436             cast2 = use;
4437             break;
4438           }
4439         }
4440         if (cast2 != nullptr) {
4441           n = cast2;
4442         } else {
4443           // Non-scalar replaceable if the allocation type is unknown statically
4444           // (reflection allocation), the object can't be restored during
4445           // deoptimization without precise type.
4446           continue;
4447         }
4448       }
4449 
4450       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
4451       if (t == nullptr) {
4452         continue;  // not a TypeOopPtr
4453       }
4454       if (!t->klass_is_exact()) {
4455         continue; // not an unique type
4456       }
4457       if (alloc->is_Allocate()) {
4458         // Set the scalar_replaceable flag for allocation
4459         // so it could be eliminated.
4460         alloc->as_Allocate()->_is_scalar_replaceable = true;
4461       }
4462       set_escape_state(ptnode_adr(n->_idx), es NOT_PRODUCT(COMMA trace_propagate_message(ptn))); // CheckCastPP escape state
4463       // in order for an object to be scalar-replaceable, it must be:
4464       //   - a direct allocation (not a call returning an object)
4465       //   - non-escaping
4466       //   - eligible to be a unique type
4467       //   - not determined to be ineligible by escape analysis
4468       set_map(alloc, n);
4469       set_map(n, alloc);
4470       const TypeOopPtr* tinst = t->cast_to_instance_id(ni);
4471       igvn->hash_delete(n);
4472       igvn->set_type(n,  tinst);
4473       n->raise_bottom_type(tinst);
4474       igvn->hash_insert(n);
4475       record_for_optimizer(n);
4476       // Allocate an alias index for the header fields. Accesses to
4477       // the header emitted during macro expansion wouldn't have
4478       // correct memory state otherwise.
4479       _compile->get_alias_index(tinst->add_offset(oopDesc::mark_offset_in_bytes()));
4480       _compile->get_alias_index(tinst->add_offset(oopDesc::klass_offset_in_bytes()));
4481       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
4482         // Add a new NarrowMem projection for each existing NarrowMem projection with new adr type
4483         InitializeNode* init = alloc->as_Allocate()->initialization();
4484         assert(init != nullptr, "can't find Initialization node for this Allocate node");
4485         auto process_narrow_proj = [&](NarrowMemProjNode* proj) {
4486           const TypePtr* adr_type = proj->adr_type();
4487           const TypePtr* new_adr_type = tinst->add_offset(adr_type->offset());
4488           if (adr_type != new_adr_type && !init->already_has_narrow_mem_proj_with_adr_type(new_adr_type)) {
4489             DEBUG_ONLY( uint alias_idx = _compile->get_alias_index(new_adr_type); )
4490             assert(_compile->get_general_index(alias_idx) == _compile->get_alias_index(adr_type), "new adr type should be narrowed down from existing adr type");
4491             NarrowMemProjNode* new_proj = new NarrowMemProjNode(init, new_adr_type);
4492             igvn->set_type(new_proj, new_proj->bottom_type());
4493             record_for_optimizer(new_proj);
4494             set_map(proj, new_proj); // record it so ConnectionGraph::find_inst_mem() can find it
4495           }
4496         };
4497         init->for_each_narrow_mem_proj_with_new_uses(process_narrow_proj);
4498 
4499         // First, put on the worklist all Field edges from Connection Graph
4500         // which is more accurate than putting immediate users from Ideal Graph.
4501         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
4502           PointsToNode* tgt = e.get();
4503           if (tgt->is_Arraycopy()) {
4504             continue;
4505           }
4506           Node* use = tgt->ideal_node();
4507           assert(tgt->is_Field() && use->is_AddP(),
4508                  "only AddP nodes are Field edges in CG");
4509           if (use->outcnt() > 0) { // Don't process dead nodes
4510             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
4511             if (addp2 != nullptr) {
4512               assert(alloc->is_AllocateArray(),"array allocation was expected");
4513               alloc_worklist.append_if_missing(addp2);
4514             }
4515             alloc_worklist.append_if_missing(use);
4516           }
4517         }
4518 
4519         // An allocation may have an Initialize which has raw stores. Scan
4520         // the users of the raw allocation result and push AddP users
4521         // on alloc_worklist.
4522         Node *raw_result = alloc->proj_out_or_null(TypeFunc::Parms);
4523         assert (raw_result != nullptr, "must have an allocation result");
4524         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
4525           Node *use = raw_result->fast_out(i);
4526           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
4527             Node* addp2 = find_second_addp(use, raw_result);
4528             if (addp2 != nullptr) {
4529               assert(alloc->is_AllocateArray(),"array allocation was expected");
4530               alloc_worklist.append_if_missing(addp2);
4531             }
4532             alloc_worklist.append_if_missing(use);
4533           } else if (use->is_MemBar()) {
4534             memnode_worklist.append_if_missing(use);
4535           }
4536         }
4537       }
4538     } else if (n->is_AddP()) {
4539       if (has_reducible_merge_base(n->as_AddP(), reducible_merges)) {
4540         // This AddP will go away when we reduce the Phi
4541         continue;
4542       }
4543       Node* addp_base = get_addp_base(n);
4544       JavaObjectNode* jobj = unique_java_object(addp_base);
4545       if (jobj == nullptr || jobj == phantom_obj) {
4546 #ifdef ASSERT
4547         ptnode_adr(get_addp_base(n)->_idx)->dump();
4548         ptnode_adr(n->_idx)->dump();
4549         assert(jobj != nullptr && jobj != phantom_obj, "escaped allocation");
4550 #endif
4551         _compile->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis());
4552         return;
4553       }
4554       Node *base = get_map(jobj->idx());  // CheckCastPP node
4555       if (!split_AddP(n, base)) continue; // wrong type from dead path
4556     } else if (n->is_Phi() ||
4557                n->is_CheckCastPP() ||
4558                n->is_EncodeP() ||
4559                n->is_DecodeN() ||
4560                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
4561       if (visited.test_set(n->_idx)) {
4562         assert(n->is_Phi(), "loops only through Phi's");
4563         continue;  // already processed
4564       }
4565       // Reducible Phi's will be removed from the graph after split_unique_types
4566       // finishes. For now we just try to split out the SR inputs of the merge.
4567       Node* parent = n->in(1);
4568       if (reducible_merges.member(n)) {
4569         reduce_phi(n->as_Phi(), alloc_worklist);
4570 #ifdef ASSERT
4571         if (VerifyReduceAllocationMerges) {
4572           reduced_merges.push(n);
4573         }
4574 #endif
4575         continue;
4576       } else if (reducible_merges.member(parent)) {
4577         // 'n' is an user of a reducible merge (a Phi). It will be simplified as
4578         // part of reduce_merge.
4579         continue;
4580       }
4581       JavaObjectNode* jobj = unique_java_object(n);
4582       if (jobj == nullptr || jobj == phantom_obj) {
4583 #ifdef ASSERT
4584         ptnode_adr(n->_idx)->dump();
4585         assert(jobj != nullptr && jobj != phantom_obj, "escaped allocation");
4586 #endif
4587         _compile->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis());
4588         return;
4589       } else {
4590         Node *val = get_map(jobj->idx());   // CheckCastPP node
4591         TypeNode *tn = n->as_Type();
4592         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
4593         assert(tinst != nullptr && tinst->is_known_instance() &&
4594                tinst->instance_id() == jobj->idx() , "instance type expected.");
4595 
4596         const Type *tn_type = igvn->type(tn);
4597         const TypeOopPtr *tn_t;
4598         if (tn_type->isa_narrowoop()) {
4599           tn_t = tn_type->make_ptr()->isa_oopptr();
4600         } else {
4601           tn_t = tn_type->isa_oopptr();
4602         }
4603         if (tn_t != nullptr && tinst->maybe_java_subtype_of(tn_t)) {
4604           if (tn_type->isa_narrowoop()) {
4605             tn_type = tinst->make_narrowoop();
4606           } else {
4607             tn_type = tinst;
4608           }
4609           igvn->hash_delete(tn);
4610           igvn->set_type(tn, tn_type);
4611           tn->set_type(tn_type);
4612           igvn->hash_insert(tn);
4613           record_for_optimizer(n);
4614         } else {
4615           assert(tn_type == TypePtr::NULL_PTR ||
4616                  (tn_t != nullptr && !tinst->maybe_java_subtype_of(tn_t)),
4617                  "unexpected type");
4618           continue; // Skip dead path with different type
4619         }
4620       }
4621     } else {
4622       DEBUG_ONLY(n->dump();)
4623       assert(false, "EA: unexpected node");
4624       continue;
4625     }
4626     // push allocation's users on appropriate worklist
4627     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4628       Node *use = n->fast_out(i);
4629       if(use->is_Mem() && use->in(MemNode::Address) == n) {
4630         // Load/store to instance's field
4631         memnode_worklist.append_if_missing(use);
4632       } else if (use->is_MemBar()) {
4633         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
4634           memnode_worklist.append_if_missing(use);
4635         }
4636       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
4637         Node* addp2 = find_second_addp(use, n);
4638         if (addp2 != nullptr) {
4639           alloc_worklist.append_if_missing(addp2);
4640         }
4641         alloc_worklist.append_if_missing(use);
4642       } else if (use->is_Phi() ||
4643                  use->is_CheckCastPP() ||
4644                  use->is_EncodeNarrowPtr() ||
4645                  use->is_DecodeNarrowPtr() ||
4646                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
4647         alloc_worklist.append_if_missing(use);
4648 #ifdef ASSERT
4649       } else if (use->is_Mem()) {
4650         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
4651       } else if (use->is_MergeMem()) {
4652         assert(mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
4653       } else if (use->is_SafePoint()) {
4654         // Look for MergeMem nodes for calls which reference unique allocation
4655         // (through CheckCastPP nodes) even for debug info.
4656         Node* m = use->in(TypeFunc::Memory);
4657         if (m->is_MergeMem()) {
4658           assert(mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
4659         }
4660       } else if (use->Opcode() == Op_EncodeISOArray) {
4661         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
4662           // EncodeISOArray overwrites destination array
4663           memnode_worklist.append_if_missing(use);
4664         }
4665       } else {
4666         uint op = use->Opcode();
4667         if ((op == Op_StrCompressedCopy || op == Op_StrInflatedCopy) &&
4668             (use->in(MemNode::Memory) == n)) {
4669           // They overwrite memory edge corresponding to destination array,
4670           memnode_worklist.append_if_missing(use);
4671         } else if (!(op == Op_CmpP || op == Op_Conv2B ||
4672               op == Op_CastP2X ||
4673               op == Op_FastLock || op == Op_AryEq ||
4674               op == Op_StrComp || op == Op_CountPositives ||
4675               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
4676               op == Op_StrEquals || op == Op_VectorizedHashCode ||
4677               op == Op_StrIndexOf || op == Op_StrIndexOfChar ||
4678               op == Op_SubTypeCheck ||
4679               op == Op_ReinterpretS2HF ||
4680               BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use))) {
4681           n->dump();
4682           use->dump();
4683           assert(false, "EA: missing allocation reference path");
4684         }
4685 #endif
4686       }
4687     }
4688 
4689   }
4690 
4691 #ifdef ASSERT
4692   if (VerifyReduceAllocationMerges) {
4693     for (uint i = 0; i < reducible_merges.size(); i++) {
4694       Node* phi = reducible_merges.at(i);
4695 
4696       if (!reduced_merges.member(phi)) {
4697         phi->dump(2);
4698         phi->dump(-2);
4699         assert(false, "This reducible merge wasn't reduced.");
4700       }
4701 
4702       // At this point reducible Phis shouldn't have AddP users anymore; only SafePoints or Casts.
4703       for (DUIterator_Fast jmax, j = phi->fast_outs(jmax); j < jmax; j++) {
4704         Node* use = phi->fast_out(j);
4705         if (!use->is_SafePoint() && !use->is_CastPP()) {
4706           phi->dump(2);
4707           phi->dump(-2);
4708           assert(false, "Unexpected user of reducible Phi -> %d:%s:%d", use->_idx, use->Name(), use->outcnt());
4709         }
4710       }
4711     }
4712   }
4713 #endif
4714 
4715   // Go over all ArrayCopy nodes and if one of the inputs has a unique
4716   // type, record it in the ArrayCopy node so we know what memory this
4717   // node uses/modified.
4718   for (int next = 0; next < arraycopy_worklist.length(); next++) {
4719     ArrayCopyNode* ac = arraycopy_worklist.at(next);
4720     Node* dest = ac->in(ArrayCopyNode::Dest);
4721     if (dest->is_AddP()) {
4722       dest = get_addp_base(dest);
4723     }
4724     JavaObjectNode* jobj = unique_java_object(dest);
4725     if (jobj != nullptr) {
4726       Node *base = get_map(jobj->idx());
4727       if (base != nullptr) {
4728         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
4729         ac->_dest_type = base_t;
4730       }
4731     }
4732     Node* src = ac->in(ArrayCopyNode::Src);
4733     if (src->is_AddP()) {
4734       src = get_addp_base(src);
4735     }
4736     jobj = unique_java_object(src);
4737     if (jobj != nullptr) {
4738       Node* base = get_map(jobj->idx());
4739       if (base != nullptr) {
4740         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
4741         ac->_src_type = base_t;
4742       }
4743     }
4744   }
4745 
4746   // New alias types were created in split_AddP().
4747   uint new_index_end = (uint) _compile->num_alias_types();
4748 
4749   _compile->print_method(PHASE_EA_AFTER_SPLIT_UNIQUE_TYPES_1, 5);
4750 
4751   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
4752   //            compute new values for Memory inputs  (the Memory inputs are not
4753   //            actually updated until phase 4.)
4754   if (memnode_worklist.length() == 0)
4755     return;  // nothing to do
4756   while (memnode_worklist.length() != 0) {
4757     Node *n = memnode_worklist.pop();
4758     if (visited.test_set(n->_idx)) {
4759       continue;
4760     }
4761     if (n->is_Phi() || n->is_ClearArray()) {
4762       // we don't need to do anything, but the users must be pushed
4763     } else if (n->is_MemBar()) { // MemBar nodes
4764       if (!n->is_Initialize()) { // memory projections for Initialize pushed below (so we get to all their uses)
4765         // we don't need to do anything, but the users must be pushed
4766         n = n->as_MemBar()->proj_out_or_null(TypeFunc::Memory);
4767         if (n == nullptr) {
4768           continue;
4769         }
4770       }
4771     } else if (n->is_CallLeaf()) {
4772       // Runtime calls with narrow memory input (no MergeMem node)
4773       // get the memory projection
4774       n = n->as_Call()->proj_out_or_null(TypeFunc::Memory);
4775       if (n == nullptr) {
4776         continue;
4777       }
4778     } else if (n->Opcode() == Op_StrInflatedCopy) {
4779       // Check direct uses of StrInflatedCopy.
4780       // It is memory type Node - no special SCMemProj node.
4781     } else if (n->Opcode() == Op_StrCompressedCopy ||
4782                n->Opcode() == Op_EncodeISOArray) {
4783       // get the memory projection
4784       n = n->find_out_with(Op_SCMemProj);
4785       assert(n != nullptr && n->Opcode() == Op_SCMemProj, "memory projection required");
4786     } else if (n->is_Proj()) {
4787       assert(n->in(0)->is_Initialize(), "we only push memory projections for Initialize");
4788     } else {
4789 #ifdef ASSERT
4790       if (!n->is_Mem()) {
4791         n->dump();
4792       }
4793       assert(n->is_Mem(), "memory node required.");
4794 #endif
4795       Node *addr = n->in(MemNode::Address);
4796       const Type *addr_t = igvn->type(addr);
4797       if (addr_t == Type::TOP) {
4798         continue;
4799       }
4800       assert (addr_t->isa_ptr() != nullptr, "pointer type required.");
4801       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
4802       assert ((uint)alias_idx < new_index_end, "wrong alias index");
4803       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
4804       if (_compile->failing()) {
4805         return;
4806       }
4807       if (mem != n->in(MemNode::Memory)) {
4808         // We delay the memory edge update since we need old one in
4809         // MergeMem code below when instances memory slices are separated.
4810         set_map(n, mem);
4811       }
4812       if (n->is_Load()) {
4813         continue;  // don't push users
4814       } else if (n->is_LoadStore()) {
4815         // get the memory projection
4816         n = n->find_out_with(Op_SCMemProj);
4817         assert(n != nullptr && n->Opcode() == Op_SCMemProj, "memory projection required");
4818       }
4819     }
4820     // push user on appropriate worklist
4821     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4822       Node *use = n->fast_out(i);
4823       if (use->is_Phi() || use->is_ClearArray()) {
4824         memnode_worklist.append_if_missing(use);
4825       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
4826         memnode_worklist.append_if_missing(use);
4827       } else if (use->is_MemBar() || use->is_CallLeaf()) {
4828         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
4829           memnode_worklist.append_if_missing(use);
4830         }
4831       } else if (use->is_Proj()) {
4832         assert(n->is_Initialize(), "We only push projections of Initialize");
4833         if (use->as_Proj()->_con == TypeFunc::Memory) { // Ignore precedent edge
4834           memnode_worklist.append_if_missing(use);
4835         }
4836 #ifdef ASSERT
4837       } else if(use->is_Mem()) {
4838         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
4839       } else if (use->is_MergeMem()) {
4840         assert(mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
4841       } else if (use->Opcode() == Op_EncodeISOArray) {
4842         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
4843           // EncodeISOArray overwrites destination array
4844           memnode_worklist.append_if_missing(use);
4845         }
4846       } else {
4847         uint op = use->Opcode();
4848         if ((use->in(MemNode::Memory) == n) &&
4849             (op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) {
4850           // They overwrite memory edge corresponding to destination array,
4851           memnode_worklist.append_if_missing(use);
4852         } else if (!(BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use) ||
4853               op == Op_AryEq || op == Op_StrComp || op == Op_CountPositives ||
4854               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy || op == Op_VectorizedHashCode ||
4855               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar)) {
4856           n->dump();
4857           use->dump();
4858           assert(false, "EA: missing memory path");
4859         }
4860 #endif
4861       }
4862     }
4863   }
4864 
4865   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
4866   //            Walk each memory slice moving the first node encountered of each
4867   //            instance type to the input corresponding to its alias index.
4868   uint length = mergemem_worklist.length();
4869   for( uint next = 0; next < length; ++next ) {
4870     MergeMemNode* nmm = mergemem_worklist.at(next);
4871     assert(!visited.test_set(nmm->_idx), "should not be visited before");
4872     // Note: we don't want to use MergeMemStream here because we only want to
4873     // scan inputs which exist at the start, not ones we add during processing.
4874     // Note 2: MergeMem may already contains instance memory slices added
4875     // during find_inst_mem() call when memory nodes were processed above.
4876     igvn->hash_delete(nmm);
4877     uint nslices = MIN2(nmm->req(), new_index_start);
4878     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
4879       Node* mem = nmm->in(i);
4880       Node* cur = nullptr;
4881       if (mem == nullptr || mem->is_top()) {
4882         continue;
4883       }
4884       // First, update mergemem by moving memory nodes to corresponding slices
4885       // if their type became more precise since this mergemem was created.
4886       while (mem->is_Mem()) {
4887         const Type* at = igvn->type(mem->in(MemNode::Address));
4888         if (at != Type::TOP) {
4889           assert (at->isa_ptr() != nullptr, "pointer type required.");
4890           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
4891           if (idx == i) {
4892             if (cur == nullptr) {
4893               cur = mem;
4894             }
4895           } else {
4896             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
4897               nmm->set_memory_at(idx, mem);
4898             }
4899           }
4900         }
4901         mem = mem->in(MemNode::Memory);
4902       }
4903       nmm->set_memory_at(i, (cur != nullptr) ? cur : mem);
4904       // Find any instance of the current type if we haven't encountered
4905       // already a memory slice of the instance along the memory chain.
4906       for (uint ni = new_index_start; ni < new_index_end; ni++) {
4907         if((uint)_compile->get_general_index(ni) == i) {
4908           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
4909           if (nmm->is_empty_memory(m)) {
4910             Node* result = find_inst_mem(mem, ni, orig_phis);
4911             if (_compile->failing()) {
4912               return;
4913             }
4914             nmm->set_memory_at(ni, result);
4915           }
4916         }
4917       }
4918     }
4919     // Find the rest of instances values
4920     for (uint ni = new_index_start; ni < new_index_end; ni++) {
4921       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
4922       Node* result = step_through_mergemem(nmm, ni, tinst);
4923       if (result == nmm->base_memory()) {
4924         // Didn't find instance memory, search through general slice recursively.
4925         result = nmm->memory_at(_compile->get_general_index(ni));
4926         result = find_inst_mem(result, ni, orig_phis);
4927         if (_compile->failing()) {
4928           return;
4929         }
4930         nmm->set_memory_at(ni, result);
4931       }
4932     }
4933 
4934     // If we have crossed the 3/4 point of max node limit it's too risky
4935     // to continue with EA/SR because we might hit the max node limit.
4936     if (_compile->live_nodes() >= _compile->max_node_limit() * 0.75) {
4937       if (_compile->do_reduce_allocation_merges()) {
4938         _compile->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
4939       } else if (_invocation > 0) {
4940         _compile->record_failure(C2Compiler::retry_no_iterative_escape_analysis());
4941       } else {
4942         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
4943       }
4944       return;
4945     }
4946 
4947     igvn->hash_insert(nmm);
4948     record_for_optimizer(nmm);
4949   }
4950 
4951   _compile->print_method(PHASE_EA_AFTER_SPLIT_UNIQUE_TYPES_3, 5);
4952 
4953   //  Phase 4:  Update the inputs of non-instance memory Phis and
4954   //            the Memory input of memnodes
4955   // First update the inputs of any non-instance Phi's from
4956   // which we split out an instance Phi.  Note we don't have
4957   // to recursively process Phi's encountered on the input memory
4958   // chains as is done in split_memory_phi() since they  will
4959   // also be processed here.
4960   for (int j = 0; j < orig_phis.length(); j++) {
4961     PhiNode *phi = orig_phis.at(j);
4962     int alias_idx = _compile->get_alias_index(phi->adr_type());
4963     igvn->hash_delete(phi);
4964     for (uint i = 1; i < phi->req(); i++) {
4965       Node *mem = phi->in(i);
4966       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
4967       if (_compile->failing()) {
4968         return;
4969       }
4970       if (mem != new_mem) {
4971         phi->set_req(i, new_mem);
4972       }
4973     }
4974     igvn->hash_insert(phi);
4975     record_for_optimizer(phi);
4976   }
4977 
4978   // Update the memory inputs of MemNodes with the value we computed
4979   // in Phase 2 and move stores memory users to corresponding memory slices.
4980   // Disable memory split verification code until the fix for 6984348.
4981   // Currently it produces false negative results since it does not cover all cases.
4982 #if 0 // ifdef ASSERT
4983   visited.Reset();
4984   Node_Stack old_mems(arena, _compile->unique() >> 2);
4985 #endif
4986   for (uint i = 0; i < ideal_nodes.size(); i++) {
4987     Node*    n = ideal_nodes.at(i);
4988     Node* nmem = get_map(n->_idx);
4989     assert(nmem != nullptr, "sanity");
4990     if (n->is_Mem()) {
4991 #if 0 // ifdef ASSERT
4992       Node* old_mem = n->in(MemNode::Memory);
4993       if (!visited.test_set(old_mem->_idx)) {
4994         old_mems.push(old_mem, old_mem->outcnt());
4995       }
4996 #endif
4997       assert(n->in(MemNode::Memory) != nmem, "sanity");
4998       if (!n->is_Load()) {
4999         // Move memory users of a store first.
5000         move_inst_mem(n, orig_phis);
5001       }
5002       // Now update memory input
5003       igvn->hash_delete(n);
5004       n->set_req(MemNode::Memory, nmem);
5005       igvn->hash_insert(n);
5006       record_for_optimizer(n);
5007     } else {
5008       assert(n->is_Allocate() || n->is_CheckCastPP() ||
5009              n->is_AddP() || n->is_Phi() || n->is_NarrowMemProj(), "unknown node used for set_map()");
5010     }
5011   }
5012 #if 0 // ifdef ASSERT
5013   // Verify that memory was split correctly
5014   while (old_mems.is_nonempty()) {
5015     Node* old_mem = old_mems.node();
5016     uint  old_cnt = old_mems.index();
5017     old_mems.pop();
5018     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
5019   }
5020 #endif
5021   _compile->print_method(PHASE_EA_AFTER_SPLIT_UNIQUE_TYPES_4, 5);
5022 }
5023 
5024 #ifndef PRODUCT
5025 int ConnectionGraph::_no_escape_counter = 0;
5026 int ConnectionGraph::_arg_escape_counter = 0;
5027 int ConnectionGraph::_global_escape_counter = 0;
5028 
5029 static const char *node_type_names[] = {
5030   "UnknownType",
5031   "JavaObject",
5032   "LocalVar",
5033   "Field",
5034   "Arraycopy"
5035 };
5036 
5037 static const char *esc_names[] = {
5038   "UnknownEscape",
5039   "NoEscape",
5040   "ArgEscape",
5041   "GlobalEscape"
5042 };
5043 
5044 const char* PointsToNode::esc_name() const {
5045   return esc_names[(int)escape_state()];
5046 }
5047 
5048 void PointsToNode::dump_header(bool print_state, outputStream* out) const {
5049   NodeType nt = node_type();
5050   out->print("%s(%d) ", node_type_names[(int) nt], _pidx);
5051   if (print_state) {
5052     EscapeState es = escape_state();
5053     EscapeState fields_es = fields_escape_state();
5054     out->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
5055     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable()) {
5056       out->print("NSR ");
5057     }
5058   }
5059 }
5060 
5061 void PointsToNode::dump(bool print_state, outputStream* out, bool newline) const {
5062   dump_header(print_state, out);
5063   if (is_Field()) {
5064     FieldNode* f = (FieldNode*)this;
5065     if (f->is_oop()) {
5066       out->print("oop ");
5067     }
5068     if (f->offset() > 0) {
5069       out->print("+%d ", f->offset());
5070     }
5071     out->print("(");
5072     for (BaseIterator i(f); i.has_next(); i.next()) {
5073       PointsToNode* b = i.get();
5074       out->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
5075     }
5076     out->print(" )");
5077   }
5078   out->print("[");
5079   for (EdgeIterator i(this); i.has_next(); i.next()) {
5080     PointsToNode* e = i.get();
5081     out->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
5082   }
5083   out->print(" [");
5084   for (UseIterator i(this); i.has_next(); i.next()) {
5085     PointsToNode* u = i.get();
5086     bool is_base = false;
5087     if (PointsToNode::is_base_use(u)) {
5088       is_base = true;
5089       u = PointsToNode::get_use_node(u)->as_Field();
5090     }
5091     out->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
5092   }
5093   out->print(" ]]  ");
5094   if (_node == nullptr) {
5095     out->print("<null>%s", newline ? "\n" : "");
5096   } else {
5097     _node->dump(newline ? "\n" : "", false, out);
5098   }
5099 }
5100 
5101 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
5102   bool first = true;
5103   int ptnodes_length = ptnodes_worklist.length();
5104   for (int i = 0; i < ptnodes_length; i++) {
5105     PointsToNode *ptn = ptnodes_worklist.at(i);
5106     if (ptn == nullptr || !ptn->is_JavaObject()) {
5107       continue;
5108     }
5109     PointsToNode::EscapeState es = ptn->escape_state();
5110     if ((es != PointsToNode::NoEscape) && !Verbose) {
5111       continue;
5112     }
5113     Node* n = ptn->ideal_node();
5114     if (n->is_Allocate() || (n->is_CallStaticJava() &&
5115                              n->as_CallStaticJava()->is_boxing_method())) {
5116       if (first) {
5117         tty->cr();
5118         tty->print("======== Connection graph for ");
5119         _compile->method()->print_short_name();
5120         tty->cr();
5121         tty->print_cr("invocation #%d: %d iterations and %f sec to build connection graph with %d nodes and worklist size %d",
5122                       _invocation, _build_iterations, _build_time, nodes_size(), ptnodes_worklist.length());
5123         tty->cr();
5124         first = false;
5125       }
5126       ptn->dump();
5127       // Print all locals and fields which reference this allocation
5128       for (UseIterator j(ptn); j.has_next(); j.next()) {
5129         PointsToNode* use = j.get();
5130         if (use->is_LocalVar()) {
5131           use->dump(Verbose);
5132         } else if (Verbose) {
5133           use->dump();
5134         }
5135       }
5136       tty->cr();
5137     }
5138   }
5139 }
5140 
5141 void ConnectionGraph::print_statistics() {
5142   tty->print_cr("No escape = %d, Arg escape = %d, Global escape = %d", AtomicAccess::load(&_no_escape_counter), AtomicAccess::load(&_arg_escape_counter), AtomicAccess::load(&_global_escape_counter));
5143 }
5144 
5145 void ConnectionGraph::escape_state_statistics(GrowableArray<JavaObjectNode*>& java_objects_worklist) {
5146   if (!PrintOptoStatistics || (_invocation > 0)) { // Collect data only for the first invocation
5147     return;
5148   }
5149   for (int next = 0; next < java_objects_worklist.length(); ++next) {
5150     JavaObjectNode* ptn = java_objects_worklist.at(next);
5151     if (ptn->ideal_node()->is_Allocate()) {
5152       if (ptn->escape_state() == PointsToNode::NoEscape) {
5153         AtomicAccess::inc(&ConnectionGraph::_no_escape_counter);
5154       } else if (ptn->escape_state() == PointsToNode::ArgEscape) {
5155         AtomicAccess::inc(&ConnectionGraph::_arg_escape_counter);
5156       } else if (ptn->escape_state() == PointsToNode::GlobalEscape) {
5157         AtomicAccess::inc(&ConnectionGraph::_global_escape_counter);
5158       } else {
5159         assert(false, "Unexpected Escape State");
5160       }
5161     }
5162   }
5163 }
5164 
5165 void ConnectionGraph::trace_es_update_helper(PointsToNode* ptn, PointsToNode::EscapeState es, bool fields, const char* reason) const {
5166   if (_compile->directive()->TraceEscapeAnalysisOption) {
5167     assert(ptn != nullptr, "should not be null");
5168     assert(reason != nullptr, "should not be null");
5169     ptn->dump_header(true);
5170     PointsToNode::EscapeState new_es = fields ? ptn->escape_state() : es;
5171     PointsToNode::EscapeState new_fields_es = fields ? es : ptn->fields_escape_state();
5172     tty->print_cr("-> %s(%s) %s", esc_names[(int)new_es], esc_names[(int)new_fields_es], reason);
5173   }
5174 }
5175 
5176 const char* ConnectionGraph::trace_propagate_message(PointsToNode* from) const {
5177   if (_compile->directive()->TraceEscapeAnalysisOption) {
5178     stringStream ss;
5179     ss.print("propagated from: ");
5180     from->dump(true, &ss, false);
5181     return ss.as_string();
5182   } else {
5183     return nullptr;
5184   }
5185 }
5186 
5187 const char* ConnectionGraph::trace_arg_escape_message(CallNode* call) const {
5188   if (_compile->directive()->TraceEscapeAnalysisOption) {
5189     stringStream ss;
5190     ss.print("escapes as arg to:");
5191     call->dump("", false, &ss);
5192     return ss.as_string();
5193   } else {
5194     return nullptr;
5195   }
5196 }
5197 
5198 const char* ConnectionGraph::trace_merged_message(PointsToNode* other) const {
5199   if (_compile->directive()->TraceEscapeAnalysisOption) {
5200     stringStream ss;
5201     ss.print("is merged with other object: ");
5202     other->dump_header(true, &ss);
5203     return ss.as_string();
5204   } else {
5205     return nullptr;
5206   }
5207 }
5208 
5209 #endif
5210 
5211 void ConnectionGraph::record_for_optimizer(Node *n) {
5212   _igvn->_worklist.push(n);
5213   _igvn->add_users_to_worklist(n);
5214 }