1 /*
   2  * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/bcEscapeAnalyzer.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "gc/shared/barrierSet.hpp"
  28 #include "gc/shared/c2/barrierSetC2.hpp"
  29 #include "libadt/vectset.hpp"
  30 #include "memory/allocation.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "opto/arraycopynode.hpp"
  33 #include "opto/c2compiler.hpp"
  34 #include "opto/callnode.hpp"
  35 #include "opto/castnode.hpp"
  36 #include "opto/cfgnode.hpp"
  37 #include "opto/compile.hpp"
  38 #include "opto/escape.hpp"
  39 #include "opto/locknode.hpp"
  40 #include "opto/macro.hpp"
  41 #include "opto/movenode.hpp"
  42 #include "opto/narrowptrnode.hpp"
  43 #include "opto/phaseX.hpp"
  44 #include "opto/rootnode.hpp"
  45 #include "utilities/macros.hpp"
  46 
  47 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn, int invocation) :
  48   // If ReduceAllocationMerges is enabled we might call split_through_phi during
  49   // split_unique_types and that will create additional nodes that need to be
  50   // pushed to the ConnectionGraph. The code below bumps the initial capacity of
  51   // _nodes by 10% to account for these additional nodes. If capacity is exceeded
  52   // the array will be reallocated.
  53   _nodes(C->comp_arena(), C->do_reduce_allocation_merges() ? C->unique()*1.10 : C->unique(), C->unique(), nullptr),
  54   _in_worklist(C->comp_arena()),
  55   _next_pidx(0),
  56   _collecting(true),
  57   _verify(false),
  58   _compile(C),
  59   _igvn(igvn),
  60   _invocation(invocation),
  61   _build_iterations(0),
  62   _build_time(0.),
  63   _node_map(C->comp_arena()) {
  64   // Add unknown java object.
  65   add_java_object(C->top(), PointsToNode::GlobalEscape);
  66   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
  67   set_not_scalar_replaceable(phantom_obj NOT_PRODUCT(COMMA "Phantom object"));
  68   // Add ConP and ConN null oop nodes
  69   Node* oop_null = igvn->zerocon(T_OBJECT);
  70   assert(oop_null->_idx < nodes_size(), "should be created already");
  71   add_java_object(oop_null, PointsToNode::NoEscape);
  72   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
  73   set_not_scalar_replaceable(null_obj NOT_PRODUCT(COMMA "Null object"));
  74   if (UseCompressedOops) {
  75     Node* noop_null = igvn->zerocon(T_NARROWOOP);
  76     assert(noop_null->_idx < nodes_size(), "should be created already");
  77     map_ideal_node(noop_null, null_obj);
  78   }
  79 }
  80 
  81 bool ConnectionGraph::has_candidates(Compile *C) {
  82   // EA brings benefits only when the code has allocations and/or locks which
  83   // are represented by ideal Macro nodes.
  84   int cnt = C->macro_count();
  85   for (int i = 0; i < cnt; i++) {
  86     Node *n = C->macro_node(i);
  87     if (n->is_Allocate()) {
  88       return true;
  89     }
  90     if (n->is_Lock()) {
  91       Node* obj = n->as_Lock()->obj_node()->uncast();
  92       if (!(obj->is_Parm() || obj->is_Con())) {
  93         return true;
  94       }
  95     }
  96     if (n->is_CallStaticJava() &&
  97         n->as_CallStaticJava()->is_boxing_method()) {
  98       return true;
  99     }
 100   }
 101   return false;
 102 }
 103 
 104 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
 105   Compile::TracePhase tp(Phase::_t_escapeAnalysis);
 106   ResourceMark rm;
 107 
 108   // Add ConP and ConN null oop nodes before ConnectionGraph construction
 109   // to create space for them in ConnectionGraph::_nodes[].
 110   Node* oop_null = igvn->zerocon(T_OBJECT);
 111   Node* noop_null = igvn->zerocon(T_NARROWOOP);
 112   int invocation = 0;
 113   if (C->congraph() != nullptr) {
 114     invocation = C->congraph()->_invocation + 1;
 115   }
 116   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn, invocation);
 117   NOT_PRODUCT(if (C->should_print_igv(/* Any level */ 1)) C->igv_printer()->set_congraph(congraph);)
 118   // Perform escape analysis
 119   if (congraph->compute_escape()) {
 120     // There are non escaping objects.
 121     C->set_congraph(congraph);
 122   }
 123   NOT_PRODUCT(if (C->should_print_igv(/* Any level */ 1)) C->igv_printer()->set_congraph(nullptr);)
 124   // Cleanup.
 125   if (oop_null->outcnt() == 0) {
 126     igvn->hash_delete(oop_null);
 127   }
 128   if (noop_null->outcnt() == 0) {
 129     igvn->hash_delete(noop_null);
 130   }
 131 
 132   C->print_method(PHASE_AFTER_EA, 2);
 133 }
 134 
 135 bool ConnectionGraph::compute_escape() {
 136   Compile* C = _compile;
 137   PhaseGVN* igvn = _igvn;
 138 
 139   // Worklists used by EA.
 140   Unique_Node_List delayed_worklist;
 141   Unique_Node_List reducible_merges;
 142   GrowableArray<Node*> alloc_worklist;
 143   GrowableArray<Node*> ptr_cmp_worklist;
 144   GrowableArray<MemBarStoreStoreNode*> storestore_worklist;
 145   GrowableArray<ArrayCopyNode*>  arraycopy_worklist;
 146   GrowableArray<PointsToNode*>   ptnodes_worklist;
 147   GrowableArray<JavaObjectNode*> java_objects_worklist;
 148   GrowableArray<JavaObjectNode*> non_escaped_allocs_worklist;
 149   GrowableArray<FieldNode*>      oop_fields_worklist;
 150   GrowableArray<SafePointNode*>  sfn_worklist;
 151   GrowableArray<MergeMemNode*>   mergemem_worklist;
 152   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 153 
 154   { Compile::TracePhase tp(Phase::_t_connectionGraph);
 155 
 156   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 157   ideal_nodes.map(C->live_nodes(), nullptr);  // preallocate space
 158   // Initialize worklist
 159   if (C->root() != nullptr) {
 160     ideal_nodes.push(C->root());
 161   }
 162   // Processed ideal nodes are unique on ideal_nodes list
 163   // but several ideal nodes are mapped to the phantom_obj.
 164   // To avoid duplicated entries on the following worklists
 165   // add the phantom_obj only once to them.
 166   ptnodes_worklist.append(phantom_obj);
 167   java_objects_worklist.append(phantom_obj);
 168   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 169     Node* n = ideal_nodes.at(next);
 170     // Create PointsTo nodes and add them to Connection Graph. Called
 171     // only once per ideal node since ideal_nodes is Unique_Node list.
 172     add_node_to_connection_graph(n, &delayed_worklist);
 173     PointsToNode* ptn = ptnode_adr(n->_idx);
 174     if (ptn != nullptr && ptn != phantom_obj) {
 175       ptnodes_worklist.append(ptn);
 176       if (ptn->is_JavaObject()) {
 177         java_objects_worklist.append(ptn->as_JavaObject());
 178         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 179             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 180           // Only allocations and java static calls results are interesting.
 181           non_escaped_allocs_worklist.append(ptn->as_JavaObject());
 182         }
 183       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 184         oop_fields_worklist.append(ptn->as_Field());
 185       }
 186     }
 187     // Collect some interesting nodes for further use.
 188     switch (n->Opcode()) {
 189       case Op_MergeMem:
 190         // Collect all MergeMem nodes to add memory slices for
 191         // scalar replaceable objects in split_unique_types().
 192         mergemem_worklist.append(n->as_MergeMem());
 193         break;
 194       case Op_CmpP:
 195       case Op_CmpN:
 196         // Collect compare pointers nodes.
 197         if (OptimizePtrCompare) {
 198           ptr_cmp_worklist.append(n);
 199         }
 200         break;
 201       case Op_MemBarStoreStore:
 202         // Collect all MemBarStoreStore nodes so that depending on the
 203         // escape status of the associated Allocate node some of them
 204         // may be eliminated.
 205         if (!UseStoreStoreForCtor || n->req() > MemBarNode::Precedent) {
 206           storestore_worklist.append(n->as_MemBarStoreStore());
 207         }
 208         // If MemBarStoreStore has a precedent edge add it to the worklist (like MemBarRelease)
 209       case Op_MemBarRelease:
 210         if (n->req() > MemBarNode::Precedent) {
 211           record_for_optimizer(n);
 212         }
 213         break;
 214 #ifdef ASSERT
 215       case Op_AddP:
 216         // Collect address nodes for graph verification.
 217         addp_worklist.append(n);
 218         break;
 219 #endif
 220       case Op_ArrayCopy:
 221         // Keep a list of ArrayCopy nodes so if one of its input is non
 222         // escaping, we can record a unique type
 223         arraycopy_worklist.append(n->as_ArrayCopy());
 224         break;
 225       default:
 226         // not interested now, ignore...
 227         break;
 228     }
 229     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 230       Node* m = n->fast_out(i);   // Get user
 231       ideal_nodes.push(m);
 232     }
 233     if (n->is_SafePoint()) {
 234       sfn_worklist.append(n->as_SafePoint());
 235     }
 236   }
 237 
 238 #ifndef PRODUCT
 239   if (_compile->directive()->TraceEscapeAnalysisOption) {
 240     tty->print("+++++ Initial worklist for ");
 241     _compile->method()->print_name();
 242     tty->print_cr(" (ea_inv=%d)", _invocation);
 243     for (int i = 0; i < ptnodes_worklist.length(); i++) {
 244       PointsToNode* ptn = ptnodes_worklist.at(i);
 245       ptn->dump();
 246     }
 247     tty->print_cr("+++++ Calculating escape states and scalar replaceability");
 248   }
 249 #endif
 250 
 251   if (non_escaped_allocs_worklist.length() == 0) {
 252     _collecting = false;
 253     NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 254     return false; // Nothing to do.
 255   }
 256   // Add final simple edges to graph.
 257   while(delayed_worklist.size() > 0) {
 258     Node* n = delayed_worklist.pop();
 259     add_final_edges(n);
 260   }
 261 
 262 #ifdef ASSERT
 263   if (VerifyConnectionGraph) {
 264     // Verify that no new simple edges could be created and all
 265     // local vars has edges.
 266     _verify = true;
 267     int ptnodes_length = ptnodes_worklist.length();
 268     for (int next = 0; next < ptnodes_length; ++next) {
 269       PointsToNode* ptn = ptnodes_worklist.at(next);
 270       add_final_edges(ptn->ideal_node());
 271       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
 272         ptn->dump();
 273         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
 274       }
 275     }
 276     _verify = false;
 277   }
 278 #endif
 279   // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes
 280   // processing, calls to CI to resolve symbols (types, fields, methods)
 281   // referenced in bytecode. During symbol resolution VM may throw
 282   // an exception which CI cleans and converts to compilation failure.
 283   if (C->failing()) {
 284     NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 285     return false;
 286   }
 287 
 288   _compile->print_method(PHASE_EA_AFTER_INITIAL_CONGRAPH, 4);
 289 
 290   // 2. Finish Graph construction by propagating references to all
 291   //    java objects through graph.
 292   if (!complete_connection_graph(ptnodes_worklist, non_escaped_allocs_worklist,
 293                                  java_objects_worklist, oop_fields_worklist)) {
 294     // All objects escaped or hit time or iterations limits.
 295     _collecting = false;
 296     NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 297     return false;
 298   }
 299 
 300   _compile->print_method(PHASE_EA_AFTER_COMPLETE_CONGRAPH, 4);
 301 
 302   // 3. Adjust scalar_replaceable state of nonescaping objects and push
 303   //    scalar replaceable allocations on alloc_worklist for processing
 304   //    in split_unique_types().
 305   GrowableArray<JavaObjectNode*> jobj_worklist;
 306   int non_escaped_length = non_escaped_allocs_worklist.length();
 307   bool found_nsr_alloc = false;
 308   for (int next = 0; next < non_escaped_length; next++) {
 309     JavaObjectNode* ptn = non_escaped_allocs_worklist.at(next);
 310     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
 311     Node* n = ptn->ideal_node();
 312     if (n->is_Allocate()) {
 313       n->as_Allocate()->_is_non_escaping = noescape;
 314     }
 315     if (noescape && ptn->scalar_replaceable()) {
 316       adjust_scalar_replaceable_state(ptn, reducible_merges);
 317       if (ptn->scalar_replaceable()) {
 318         jobj_worklist.push(ptn);
 319       } else {
 320         found_nsr_alloc = true;
 321       }
 322     }
 323     _compile->print_method(PHASE_EA_ADJUST_SCALAR_REPLACEABLE_ITER, 6, n);
 324   }
 325 
 326   // Propagate NSR (Not Scalar Replaceable) state.
 327   if (found_nsr_alloc) {
 328     find_scalar_replaceable_allocs(jobj_worklist, reducible_merges);
 329   }
 330 
 331   // alloc_worklist will be processed in reverse push order.
 332   // Therefore the reducible Phis will be processed for last and that's what we
 333   // want because by then the scalarizable inputs of the merge will already have
 334   // an unique instance type.
 335   for (uint i = 0; i < reducible_merges.size(); i++ ) {
 336     Node* n = reducible_merges.at(i);
 337     alloc_worklist.append(n);
 338   }
 339 
 340   for (int next = 0; next < jobj_worklist.length(); ++next) {
 341     JavaObjectNode* jobj = jobj_worklist.at(next);
 342     if (jobj->scalar_replaceable()) {
 343       alloc_worklist.append(jobj->ideal_node());
 344     }
 345   }
 346 
 347 #ifdef ASSERT
 348   if (VerifyConnectionGraph) {
 349     // Verify that graph is complete - no new edges could be added or needed.
 350     verify_connection_graph(ptnodes_worklist, non_escaped_allocs_worklist,
 351                             java_objects_worklist, addp_worklist);
 352   }
 353   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
 354   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
 355          null_obj->edge_count() == 0 &&
 356          !null_obj->arraycopy_src() &&
 357          !null_obj->arraycopy_dst(), "sanity");
 358 #endif
 359 
 360   _collecting = false;
 361 
 362   _compile->print_method(PHASE_EA_AFTER_PROPAGATE_NSR, 4);
 363   } // TracePhase t3("connectionGraph")
 364 
 365   // 4. Optimize ideal graph based on EA information.
 366   bool has_non_escaping_obj = (non_escaped_allocs_worklist.length() > 0);
 367   if (has_non_escaping_obj) {
 368     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
 369   }
 370 
 371 #ifndef PRODUCT
 372   if (PrintEscapeAnalysis) {
 373     dump(ptnodes_worklist); // Dump ConnectionGraph
 374   }
 375 #endif
 376 
 377 #ifdef ASSERT
 378   if (VerifyConnectionGraph) {
 379     int alloc_length = alloc_worklist.length();
 380     for (int next = 0; next < alloc_length; ++next) {
 381       Node* n = alloc_worklist.at(next);
 382       PointsToNode* ptn = ptnode_adr(n->_idx);
 383       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
 384     }
 385   }
 386 
 387   if (VerifyReduceAllocationMerges) {
 388     for (uint i = 0; i < reducible_merges.size(); i++ ) {
 389       Node* n = reducible_merges.at(i);
 390       if (!can_reduce_phi(n->as_Phi())) {
 391         TraceReduceAllocationMerges = true;
 392         n->dump(2);
 393         n->dump(-2);
 394         assert(can_reduce_phi(n->as_Phi()), "Sanity: previous reducible Phi is no longer reducible before SUT.");
 395       }
 396     }
 397   }
 398 #endif
 399 
 400   _compile->print_method(PHASE_EA_AFTER_GRAPH_OPTIMIZATION, 4);
 401 
 402   // 5. Separate memory graph for scalar replaceable allcations.
 403   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
 404   if (has_scalar_replaceable_candidates && EliminateAllocations) {
 405     assert(C->do_aliasing(), "Aliasing should be enabled");
 406     // Now use the escape information to create unique types for
 407     // scalar replaceable objects.
 408     split_unique_types(alloc_worklist, arraycopy_worklist, mergemem_worklist, reducible_merges);
 409     if (C->failing()) {
 410       NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 411       return false;
 412     }
 413 
 414 #ifdef ASSERT
 415   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
 416     tty->print("=== No allocations eliminated for ");
 417     C->method()->print_short_name();
 418     if (!EliminateAllocations) {
 419       tty->print(" since EliminateAllocations is off ===");
 420     } else if(!has_scalar_replaceable_candidates) {
 421       tty->print(" since there are no scalar replaceable candidates ===");
 422     }
 423     tty->cr();
 424 #endif
 425   }
 426 
 427   _compile->print_method(PHASE_EA_AFTER_SPLIT_UNIQUE_TYPES, 4);
 428 
 429   // 6. Reduce allocation merges used as debug information. This is done after
 430   // split_unique_types because the methods used to create SafePointScalarObject
 431   // need to traverse the memory graph to find values for object fields. We also
 432   // set to null the scalarized inputs of reducible Phis so that the Allocate
 433   // that they point can be later scalar replaced.
 434   bool delay = _igvn->delay_transform();
 435   _igvn->set_delay_transform(true);
 436   for (uint i = 0; i < reducible_merges.size(); i++) {
 437     Node* n = reducible_merges.at(i);
 438     if (n->outcnt() > 0) {
 439       if (!reduce_phi_on_safepoints(n->as_Phi())) {
 440         NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 441         C->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
 442         return false;
 443       }
 444 
 445       // Now we set the scalar replaceable inputs of ophi to null, which is
 446       // the last piece that would prevent it from being scalar replaceable.
 447       reset_scalar_replaceable_entries(n->as_Phi());
 448     }
 449   }
 450   _igvn->set_delay_transform(delay);
 451 
 452   // Annotate at safepoints if they have <= ArgEscape objects in their scope and at
 453   // java calls if they pass ArgEscape objects as parameters.
 454   if (has_non_escaping_obj &&
 455       (C->env()->should_retain_local_variables() ||
 456        C->env()->jvmti_can_get_owned_monitor_info() ||
 457        C->env()->jvmti_can_walk_any_space() ||
 458        DeoptimizeObjectsALot)) {
 459     int sfn_length = sfn_worklist.length();
 460     for (int next = 0; next < sfn_length; next++) {
 461       SafePointNode* sfn = sfn_worklist.at(next);
 462       sfn->set_has_ea_local_in_scope(has_ea_local_in_scope(sfn));
 463       if (sfn->is_CallJava()) {
 464         CallJavaNode* call = sfn->as_CallJava();
 465         call->set_arg_escape(has_arg_escape(call));
 466       }
 467     }
 468   }
 469 
 470   _compile->print_method(PHASE_EA_AFTER_REDUCE_PHI_ON_SAFEPOINTS, 4);
 471 
 472   NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 473   return has_non_escaping_obj;
 474 }
 475 
 476 // Check if it's profitable to reduce the Phi passed as parameter.  Returns true
 477 // if at least one scalar replaceable allocation participates in the merge.
 478 bool ConnectionGraph::can_reduce_phi_check_inputs(PhiNode* ophi) const {
 479   bool found_sr_allocate = false;
 480 
 481   for (uint i = 1; i < ophi->req(); i++) {
 482     JavaObjectNode* ptn = unique_java_object(ophi->in(i));
 483     if (ptn != nullptr && ptn->scalar_replaceable()) {
 484       AllocateNode* alloc = ptn->ideal_node()->as_Allocate();
 485 
 486       // Don't handle arrays.
 487       if (alloc->Opcode() != Op_Allocate) {
 488         assert(alloc->Opcode() == Op_AllocateArray, "Unexpected type of allocation.");
 489         continue;
 490       }
 491 
 492       if (PhaseMacroExpand::can_eliminate_allocation(_igvn, alloc, nullptr)) {
 493         found_sr_allocate = true;
 494       } else {
 495         NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("%dth input of Phi %d is SR but can't be eliminated.", i, ophi->_idx);)
 496         ptn->set_scalar_replaceable(false);
 497       }
 498     }
 499   }
 500 
 501   NOT_PRODUCT(if (TraceReduceAllocationMerges && !found_sr_allocate) tty->print_cr("Can NOT reduce Phi %d on invocation %d. No SR Allocate as input.", ophi->_idx, _invocation);)
 502   return found_sr_allocate;
 503 }
 504 
 505 // We can reduce the Cmp if it's a comparison between the Phi and a constant.
 506 // I require the 'other' input to be a constant so that I can move the Cmp
 507 // around safely.
 508 bool ConnectionGraph::can_reduce_cmp(Node* n, Node* cmp) const {
 509   assert(cmp->Opcode() == Op_CmpP || cmp->Opcode() == Op_CmpN, "not expected node: %s", cmp->Name());
 510   Node* left = cmp->in(1);
 511   Node* right = cmp->in(2);
 512 
 513   return (left == n || right == n) &&
 514          (left->is_Con() || right->is_Con()) &&
 515          cmp->outcnt() == 1;
 516 }
 517 
 518 // We are going to check if any of the SafePointScalarMerge entries
 519 // in the SafePoint reference the Phi that we are checking.
 520 bool ConnectionGraph::has_been_reduced(PhiNode* n, SafePointNode* sfpt) const {
 521   JVMState *jvms = sfpt->jvms();
 522 
 523   for (uint i = jvms->debug_start(); i < jvms->debug_end(); i++) {
 524     Node* sfpt_in = sfpt->in(i);
 525     if (sfpt_in->is_SafePointScalarMerge()) {
 526       SafePointScalarMergeNode* smerge = sfpt_in->as_SafePointScalarMerge();
 527       Node* nsr_ptr = sfpt->in(smerge->merge_pointer_idx(jvms));
 528       if (nsr_ptr == n) {
 529         return true;
 530       }
 531     }
 532   }
 533 
 534   return false;
 535 }
 536 
 537 // Check if we are able to untangle the merge. The following patterns are
 538 // supported:
 539 //  - Phi -> SafePoints
 540 //  - Phi -> CmpP/N
 541 //  - Phi -> AddP -> Load
 542 //  - Phi -> CastPP -> SafePoints
 543 //  - Phi -> CastPP -> AddP -> Load
 544 bool ConnectionGraph::can_reduce_check_users(Node* n, uint nesting) const {
 545   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 546     Node* use = n->fast_out(i);
 547 
 548     if (use->is_SafePoint()) {
 549       if (use->is_Call() && use->as_Call()->has_non_debug_use(n)) {
 550         NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. Call has non_debug_use().", n->_idx, _invocation);)
 551         return false;
 552       } else if (has_been_reduced(n->is_Phi() ? n->as_Phi() : n->as_CastPP()->in(1)->as_Phi(), use->as_SafePoint())) {
 553         NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. It has already been reduced.", n->_idx, _invocation);)
 554         return false;
 555       }
 556     } else if (use->is_AddP()) {
 557       Node* addp = use;
 558       for (DUIterator_Fast jmax, j = addp->fast_outs(jmax); j < jmax; j++) {
 559         Node* use_use = addp->fast_out(j);
 560         const Type* load_type = _igvn->type(use_use);
 561 
 562         if (!use_use->is_Load() || !use_use->as_Load()->can_split_through_phi_base(_igvn)) {
 563           NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. AddP user isn't a [splittable] Load(): %s", n->_idx, _invocation, use_use->Name());)
 564           return false;
 565         } else if (load_type->isa_narrowklass() || load_type->isa_klassptr()) {
 566           NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. [Narrow] Klass Load: %s", n->_idx, _invocation, use_use->Name());)
 567           return false;
 568         }
 569       }
 570     } else if (nesting > 0) {
 571       NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. Unsupported user %s at nesting level %d.", n->_idx, _invocation, use->Name(), nesting);)
 572       return false;
 573     } else if (use->is_CastPP()) {
 574       const Type* cast_t = _igvn->type(use);
 575       if (cast_t == nullptr || cast_t->make_ptr()->isa_instptr() == nullptr) {
 576 #ifndef PRODUCT
 577         if (TraceReduceAllocationMerges) {
 578           tty->print_cr("Can NOT reduce Phi %d on invocation %d. CastPP is not to an instance.", n->_idx, _invocation);
 579           use->dump();
 580         }
 581 #endif
 582         return false;
 583       }
 584 
 585       bool is_trivial_control = use->in(0) == nullptr || use->in(0) == n->in(0);
 586       if (!is_trivial_control) {
 587         // If it's not a trivial control then we check if we can reduce the
 588         // CmpP/N used by the If controlling the cast.
 589         if (use->in(0)->is_IfTrue() || use->in(0)->is_IfFalse()) {
 590           Node* iff = use->in(0)->in(0);
 591           // We may have an OpaqueNotNull node between If and Bool nodes. But we could also have a sub class of IfNode,
 592           // for example, an OuterStripMinedLoopEnd or a Parse Predicate. Bail out in all these cases.
 593           bool can_reduce = (iff->Opcode() == Op_If) && iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp();
 594           if (can_reduce) {
 595             Node* iff_cmp = iff->in(1)->in(1);
 596             int opc = iff_cmp->Opcode();
 597             can_reduce = (opc == Op_CmpP || opc == Op_CmpN) && can_reduce_cmp(n, iff_cmp);
 598           }
 599           if (!can_reduce) {
 600 #ifndef PRODUCT
 601             if (TraceReduceAllocationMerges) {
 602               tty->print_cr("Can NOT reduce Phi %d on invocation %d. CastPP %d doesn't have simple control.", n->_idx, _invocation, use->_idx);
 603               n->dump(5);
 604             }
 605 #endif
 606             return false;
 607           }
 608         }
 609       }
 610 
 611       if (!can_reduce_check_users(use, nesting+1)) {
 612         return false;
 613       }
 614     } else if (use->Opcode() == Op_CmpP || use->Opcode() == Op_CmpN) {
 615       if (!can_reduce_cmp(n, use)) {
 616         NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. CmpP/N %d isn't reducible.", n->_idx, _invocation, use->_idx);)
 617         return false;
 618       }
 619     } else {
 620       NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. One of the uses is: %d %s", n->_idx, _invocation, use->_idx, use->Name());)
 621       return false;
 622     }
 623   }
 624 
 625   return true;
 626 }
 627 
 628 // Returns true if: 1) It's profitable to reduce the merge, and 2) The Phi is
 629 // only used in some certain code shapes. Check comments in
 630 // 'can_reduce_phi_inputs' and 'can_reduce_phi_users' for more
 631 // details.
 632 bool ConnectionGraph::can_reduce_phi(PhiNode* ophi) const {
 633   // If there was an error attempting to reduce allocation merges for this
 634   // method we might have disabled the compilation and be retrying with RAM
 635   // disabled.
 636   if (!_compile->do_reduce_allocation_merges() || ophi->region()->Opcode() != Op_Region) {
 637     return false;
 638   }
 639 
 640   const Type* phi_t = _igvn->type(ophi);
 641   if (phi_t == nullptr ||
 642       phi_t->make_ptr() == nullptr ||
 643       phi_t->make_ptr()->isa_aryptr() != nullptr) {
 644     return false;
 645   }
 646 
 647   if (!can_reduce_phi_check_inputs(ophi) || !can_reduce_check_users(ophi, /* nesting: */ 0)) {
 648     return false;
 649   }
 650 
 651   NOT_PRODUCT(if (TraceReduceAllocationMerges) { tty->print_cr("Can reduce Phi %d during invocation %d: ", ophi->_idx, _invocation); })
 652   return true;
 653 }
 654 
 655 // This method will return a CmpP/N that we need to use on the If controlling a
 656 // CastPP after it was split. This method is only called on bases that are
 657 // nullable therefore we always need a controlling if for the splitted CastPP.
 658 //
 659 // 'curr_ctrl' is the control of the CastPP that we want to split through phi.
 660 // If the CastPP currently doesn't have a control then the CmpP/N will be
 661 // against the null constant, otherwise it will be against the constant input of
 662 // the existing CmpP/N. It's guaranteed that there will be a CmpP/N in the later
 663 // case because we have constraints on it and because the CastPP has a control
 664 // input.
 665 Node* ConnectionGraph::specialize_cmp(Node* base, Node* curr_ctrl) {
 666   const Type* t = base->bottom_type();
 667   Node* con = nullptr;
 668 
 669   if (curr_ctrl == nullptr || curr_ctrl->is_Region()) {
 670     con = _igvn->zerocon(t->basic_type());
 671   } else {
 672     // can_reduce_check_users() verified graph: true/false -> if -> bool -> cmp
 673     assert(curr_ctrl->in(0)->Opcode() == Op_If, "unexpected node %s", curr_ctrl->in(0)->Name());
 674     Node* bol = curr_ctrl->in(0)->in(1);
 675     assert(bol->is_Bool(), "unexpected node %s", bol->Name());
 676     Node* curr_cmp = bol->in(1);
 677     assert(curr_cmp->Opcode() == Op_CmpP || curr_cmp->Opcode() == Op_CmpN, "unexpected node %s", curr_cmp->Name());
 678     con = curr_cmp->in(1)->is_Con() ? curr_cmp->in(1) : curr_cmp->in(2);
 679   }
 680 
 681   return CmpNode::make(base, con, t->basic_type());
 682 }
 683 
 684 // This method 'specializes' the CastPP passed as parameter to the base passed
 685 // as parameter. Note that the existing CastPP input is a Phi. "Specialize"
 686 // means that the CastPP now will be specific for a given base instead of a Phi.
 687 // An If-Then-Else-Region block is inserted to control the CastPP. The control
 688 // of the CastPP is a copy of the current one (if there is one) or a check
 689 // against null.
 690 //
 691 // Before:
 692 //
 693 //    C1     C2  ... Cn
 694 //     \      |      /
 695 //      \     |     /
 696 //       \    |    /
 697 //        \   |   /
 698 //         \  |  /
 699 //          \ | /
 700 //           \|/
 701 //          Region     B1      B2  ... Bn
 702 //            |          \      |      /
 703 //            |           \     |     /
 704 //            |            \    |    /
 705 //            |             \   |   /
 706 //            |              \  |  /
 707 //            |               \ | /
 708 //            ---------------> Phi
 709 //                              |
 710 //                      X       |
 711 //                      |       |
 712 //                      |       |
 713 //                      ------> CastPP
 714 //
 715 // After (only partial illustration; base = B2, current_control = C2):
 716 //
 717 //                      C2
 718 //                      |
 719 //                      If
 720 //                     / \
 721 //                    /   \
 722 //                   T     F
 723 //                  /\     /
 724 //                 /  \   /
 725 //                /    \ /
 726 //      C1    CastPP   Reg        Cn
 727 //       |              |          |
 728 //       |              |          |
 729 //       |              |          |
 730 //       -------------- | ----------
 731 //                    | | |
 732 //                    Region
 733 //
 734 Node* ConnectionGraph::specialize_castpp(Node* castpp, Node* base, Node* current_control) {
 735   Node* control_successor  = current_control->unique_ctrl_out();
 736   Node* cmp                = _igvn->transform(specialize_cmp(base, castpp->in(0)));
 737   Node* bol                = _igvn->transform(new BoolNode(cmp, BoolTest::ne));
 738   IfNode* if_ne            = _igvn->transform(new IfNode(current_control, bol, PROB_MIN, COUNT_UNKNOWN))->as_If();
 739   Node* not_eq_control     = _igvn->transform(new IfTrueNode(if_ne));
 740   Node* yes_eq_control     = _igvn->transform(new IfFalseNode(if_ne));
 741   Node* end_region         = _igvn->transform(new RegionNode(3));
 742 
 743   // Insert the new if-else-region block into the graph
 744   end_region->set_req(1, not_eq_control);
 745   end_region->set_req(2, yes_eq_control);
 746   control_successor->replace_edge(current_control, end_region, _igvn);
 747 
 748   _igvn->_worklist.push(current_control);
 749   _igvn->_worklist.push(control_successor);
 750 
 751   return _igvn->transform(ConstraintCastNode::make_cast_for_type(not_eq_control, base, _igvn->type(castpp), ConstraintCastNode::UnconditionalDependency, nullptr));
 752 }
 753 
 754 Node* ConnectionGraph::split_castpp_load_through_phi(Node* curr_addp, Node* curr_load, Node* region, GrowableArray<Node*>* bases_for_loads, GrowableArray<Node *>  &alloc_worklist) {
 755   const Type* load_type = _igvn->type(curr_load);
 756   Node* nsr_value = _igvn->zerocon(load_type->basic_type());
 757   Node* memory = curr_load->in(MemNode::Memory);
 758 
 759   // The data_phi merging the loads needs to be nullable if
 760   // we are loading pointers.
 761   if (load_type->make_ptr() != nullptr) {
 762     if (load_type->isa_narrowoop()) {
 763       load_type = load_type->meet(TypeNarrowOop::NULL_PTR);
 764     } else if (load_type->isa_ptr()) {
 765       load_type = load_type->meet(TypePtr::NULL_PTR);
 766     } else {
 767       assert(false, "Unexpected load ptr type.");
 768     }
 769   }
 770 
 771   Node* data_phi = PhiNode::make(region, nsr_value, load_type);
 772 
 773   for (int i = 1; i < bases_for_loads->length(); i++) {
 774     Node* base = bases_for_loads->at(i);
 775     Node* cmp_region = nullptr;
 776     if (base != nullptr) {
 777       if (base->is_CFG()) { // means that we added a CastPP as child of this CFG node
 778         cmp_region = base->unique_ctrl_out_or_null();
 779         assert(cmp_region != nullptr, "There should be.");
 780         base = base->find_out_with(Op_CastPP);
 781       }
 782 
 783       Node* addr = _igvn->transform(new AddPNode(base, base, curr_addp->in(AddPNode::Offset)));
 784       Node* mem = (memory->is_Phi() && (memory->in(0) == region)) ? memory->in(i) : memory;
 785       Node* load = curr_load->clone();
 786       load->set_req(0, nullptr);
 787       load->set_req(1, mem);
 788       load->set_req(2, addr);
 789 
 790       if (cmp_region != nullptr) { // see comment on previous if
 791         Node* intermediate_phi = PhiNode::make(cmp_region, nsr_value, load_type);
 792         intermediate_phi->set_req(1, _igvn->transform(load));
 793         load = intermediate_phi;
 794       }
 795 
 796       data_phi->set_req(i, _igvn->transform(load));
 797     } else {
 798       // Just use the default, which is already in phi
 799     }
 800   }
 801 
 802   // Takes care of updating CG and split_unique_types worklists due
 803   // to cloned AddP->Load.
 804   updates_after_load_split(data_phi, curr_load, alloc_worklist);
 805 
 806   return _igvn->transform(data_phi);
 807 }
 808 
 809 // This method only reduces CastPP fields loads; SafePoints are handled
 810 // separately. The idea here is basically to clone the CastPP and place copies
 811 // on each input of the Phi, including non-scalar replaceable inputs.
 812 // Experimentation shows that the resulting IR graph is simpler that way than if
 813 // we just split the cast through scalar-replaceable inputs.
 814 //
 815 // The reduction process requires that CastPP's control be one of:
 816 //  1) no control,
 817 //  2) the same region as Ophi, or
 818 //  3) an IfTrue/IfFalse coming from an CmpP/N between Ophi and a constant.
 819 //
 820 // After splitting the CastPP we'll put it under an If-Then-Else-Region control
 821 // flow. If the CastPP originally had an IfTrue/False control input then we'll
 822 // use a similar CmpP/N to control the new If-Then-Else-Region. Otherwise, we'll
 823 // juse use a CmpP/N against the null constant.
 824 //
 825 // The If-Then-Else-Region isn't always needed. For instance, if input to
 826 // splitted cast was not nullable (or if it was the null constant) then we don't
 827 // need (shouldn't) use a CastPP at all.
 828 //
 829 // After the casts are splitted we'll split the AddP->Loads through the Phi and
 830 // connect them to the just split CastPPs.
 831 //
 832 // Before (CastPP control is same as Phi):
 833 //
 834 //          Region     Allocate   Null    Call
 835 //            |             \      |      /
 836 //            |              \     |     /
 837 //            |               \    |    /
 838 //            |                \   |   /
 839 //            |                 \  |  /
 840 //            |                  \ | /
 841 //            ------------------> Phi            # Oop Phi
 842 //            |                    |
 843 //            |                    |
 844 //            |                    |
 845 //            |                    |
 846 //            ----------------> CastPP
 847 //                                 |
 848 //                               AddP
 849 //                                 |
 850 //                               Load
 851 //
 852 // After (Very much simplified):
 853 //
 854 //                         Call  Null
 855 //                            \  /
 856 //                            CmpP
 857 //                             |
 858 //                           Bool#NE
 859 //                             |
 860 //                             If
 861 //                            / \
 862 //                           T   F
 863 //                          / \ /
 864 //                         /   R
 865 //                     CastPP  |
 866 //                       |     |
 867 //                     AddP    |
 868 //                       |     |
 869 //                     Load    |
 870 //                         \   |   0
 871 //            Allocate      \  |  /
 872 //                \          \ | /
 873 //               AddP         Phi
 874 //                  \         /
 875 //                 Load      /
 876 //                    \  0  /
 877 //                     \ | /
 878 //                      \|/
 879 //                      Phi        # "Field" Phi
 880 //
 881 void ConnectionGraph::reduce_phi_on_castpp_field_load(Node* curr_castpp, GrowableArray<Node*> &alloc_worklist) {
 882   Node* ophi = curr_castpp->in(1);
 883   assert(ophi->is_Phi(), "Expected this to be a Phi node.");
 884 
 885   // Identify which base should be used for AddP->Load later when spliting the
 886   // CastPP->Loads through ophi. Three kind of values may be stored in this
 887   // array, depending on the nullability status of the corresponding input in
 888   // ophi.
 889   //
 890   //  - nullptr:    Meaning that the base is actually the null constant and therefore
 891   //                we won't try to load from it.
 892   //
 893   //  - CFG Node:   Meaning that the base is a CastPP that was specialized for
 894   //                this input of Ophi. I.e., we added an If->Then->Else-Region
 895   //                that will 'activate' the CastPp only when the input is not Null.
 896   //
 897   //  - Other Node: Meaning that the base is not nullable and therefore we'll try
 898   //                to load directly from it.
 899   GrowableArray<Node*> bases_for_loads(ophi->req(), ophi->req(), nullptr);
 900 
 901   for (uint i = 1; i < ophi->req(); i++) {
 902     Node* base = ophi->in(i);
 903     const Type* base_t = _igvn->type(base);
 904 
 905     if (base_t->maybe_null()) {
 906       if (base->is_Con()) {
 907         // Nothing todo as bases_for_loads[i] is already null
 908       } else {
 909         Node* new_castpp = specialize_castpp(curr_castpp, base, ophi->in(0)->in(i));
 910         bases_for_loads.at_put(i, new_castpp->in(0)); // Use the ctrl of the new node just as a flag
 911       }
 912     } else {
 913       bases_for_loads.at_put(i, base);
 914     }
 915   }
 916 
 917   // Now let's split the CastPP->Loads through the Phi
 918   for (int i = curr_castpp->outcnt()-1; i >= 0;) {
 919     Node* use = curr_castpp->raw_out(i);
 920     if (use->is_AddP()) {
 921       for (int j = use->outcnt()-1; j >= 0;) {
 922         Node* use_use = use->raw_out(j);
 923         assert(use_use->is_Load(), "Expected this to be a Load node.");
 924 
 925         // We can't make an unconditional load from a nullable input. The
 926         // 'split_castpp_load_through_phi` method will add an
 927         // 'If-Then-Else-Region` around nullable bases and only load from them
 928         // when the input is not null.
 929         Node* phi = split_castpp_load_through_phi(use, use_use, ophi->in(0), &bases_for_loads, alloc_worklist);
 930         _igvn->replace_node(use_use, phi);
 931 
 932         --j;
 933         j = MIN2(j, (int)use->outcnt()-1);
 934       }
 935 
 936       _igvn->remove_dead_node(use);
 937     }
 938     --i;
 939     i = MIN2(i, (int)curr_castpp->outcnt()-1);
 940   }
 941 }
 942 
 943 // This method split a given CmpP/N through the Phi used in one of its inputs.
 944 // As a result we convert a comparison with a pointer to a comparison with an
 945 // integer.
 946 // The only requirement is that one of the inputs of the CmpP/N must be a Phi
 947 // while the other must be a constant.
 948 // The splitting process is basically just cloning the CmpP/N above the input
 949 // Phi.  However, some (most) of the cloned CmpP/Ns won't be requred because we
 950 // can prove at compile time the result of the comparison.
 951 //
 952 // Before:
 953 //
 954 //             in1    in2 ... inN
 955 //              \      |      /
 956 //               \     |     /
 957 //                \    |    /
 958 //                 \   |   /
 959 //                  \  |  /
 960 //                   \ | /
 961 //                    Phi
 962 //                     |   Other
 963 //                     |    /
 964 //                     |   /
 965 //                     |  /
 966 //                    CmpP/N
 967 //
 968 // After:
 969 //
 970 //        in1  Other   in2 Other  inN  Other
 971 //         |    |      |   |      |    |
 972 //         \    |      |   |      |    |
 973 //          \  /       |   /      |    /
 974 //          CmpP/N    CmpP/N     CmpP/N
 975 //          Bool      Bool       Bool
 976 //            \        |        /
 977 //             \       |       /
 978 //              \      |      /
 979 //               \     |     /
 980 //                \    |    /
 981 //                 \   |   /
 982 //                  \  |  /
 983 //                   \ | /
 984 //                    Phi
 985 //                     |
 986 //                     |   Zero
 987 //                     |    /
 988 //                     |   /
 989 //                     |  /
 990 //                     CmpI
 991 //
 992 //
 993 void ConnectionGraph::reduce_phi_on_cmp(Node* cmp) {
 994   Node* ophi = cmp->in(1)->is_Con() ? cmp->in(2) : cmp->in(1);
 995   assert(ophi->is_Phi(), "Expected this to be a Phi node.");
 996 
 997   Node* other = cmp->in(1)->is_Con() ? cmp->in(1) : cmp->in(2);
 998   Node* zero = _igvn->intcon(0);
 999   Node* one = _igvn->intcon(1);
1000   BoolTest::mask mask = cmp->unique_out()->as_Bool()->_test._test;
1001 
1002   // This Phi will merge the result of the Cmps split through the Phi
1003   Node* res_phi = PhiNode::make(ophi->in(0), zero, TypeInt::INT);
1004 
1005   for (uint i=1; i<ophi->req(); i++) {
1006     Node* ophi_input = ophi->in(i);
1007     Node* res_phi_input = nullptr;
1008 
1009     const TypeInt* tcmp = optimize_ptr_compare(ophi_input, other);
1010     if (tcmp->singleton()) {
1011       if ((mask == BoolTest::mask::eq && tcmp == TypeInt::CC_EQ) ||
1012           (mask == BoolTest::mask::ne && tcmp == TypeInt::CC_GT)) {
1013         res_phi_input = one;
1014       } else {
1015         res_phi_input = zero;
1016       }
1017     } else {
1018       Node* ncmp = _igvn->transform(cmp->clone());
1019       ncmp->set_req(1, ophi_input);
1020       ncmp->set_req(2, other);
1021       Node* bol = _igvn->transform(new BoolNode(ncmp, mask));
1022       res_phi_input = bol->as_Bool()->as_int_value(_igvn);
1023     }
1024 
1025     res_phi->set_req(i, res_phi_input);
1026   }
1027 
1028   // This CMP always compares whether the output of "res_phi" is TRUE as far as the "mask".
1029   Node* new_cmp = _igvn->transform(new CmpINode(_igvn->transform(res_phi), (mask == BoolTest::mask::eq) ? one : zero));
1030   _igvn->replace_node(cmp, new_cmp);
1031 }
1032 
1033 // Push the newly created AddP on alloc_worklist and patch
1034 // the connection graph. Note that the changes in the CG below
1035 // won't affect the ES of objects since the new nodes have the
1036 // same status as the old ones.
1037 void ConnectionGraph::updates_after_load_split(Node* data_phi, Node* previous_load, GrowableArray<Node *>  &alloc_worklist) {
1038   assert(data_phi != nullptr, "Output of split_through_phi is null.");
1039   assert(data_phi != previous_load, "Output of split_through_phi is same as input.");
1040   assert(data_phi->is_Phi(), "Output of split_through_phi isn't a Phi.");
1041 
1042   if (data_phi == nullptr || !data_phi->is_Phi()) {
1043     // Make this a retry?
1044     return ;
1045   }
1046 
1047   Node* previous_addp = previous_load->in(MemNode::Address);
1048   FieldNode* fn = ptnode_adr(previous_addp->_idx)->as_Field();
1049   for (uint i = 1; i < data_phi->req(); i++) {
1050     Node* new_load = data_phi->in(i);
1051 
1052     if (new_load->is_Phi()) {
1053       // new_load is currently the "intermediate_phi" from an specialized
1054       // CastPP.
1055       new_load = new_load->in(1);
1056     }
1057 
1058     // "new_load" might actually be a constant, parameter, etc.
1059     if (new_load->is_Load()) {
1060       Node* new_addp = new_load->in(MemNode::Address);
1061       Node* base = get_addp_base(new_addp);
1062 
1063       // The base might not be something that we can create an unique
1064       // type for. If that's the case we are done with that input.
1065       PointsToNode* jobj_ptn = unique_java_object(base);
1066       if (jobj_ptn == nullptr || !jobj_ptn->scalar_replaceable()) {
1067         continue;
1068       }
1069 
1070       // Push to alloc_worklist since the base has an unique_type
1071       alloc_worklist.append_if_missing(new_addp);
1072 
1073       // Now let's add the node to the connection graph
1074       _nodes.at_grow(new_addp->_idx, nullptr);
1075       add_field(new_addp, fn->escape_state(), fn->offset());
1076       add_base(ptnode_adr(new_addp->_idx)->as_Field(), ptnode_adr(base->_idx));
1077 
1078       // If the load doesn't load an object then it won't be
1079       // part of the connection graph
1080       PointsToNode* curr_load_ptn = ptnode_adr(previous_load->_idx);
1081       if (curr_load_ptn != nullptr) {
1082         _nodes.at_grow(new_load->_idx, nullptr);
1083         add_local_var(new_load, curr_load_ptn->escape_state());
1084         add_edge(ptnode_adr(new_load->_idx), ptnode_adr(new_addp->_idx)->as_Field());
1085       }
1086     }
1087   }
1088 }
1089 
1090 void ConnectionGraph::reduce_phi_on_field_access(Node* previous_addp, GrowableArray<Node *>  &alloc_worklist) {
1091   // We'll pass this to 'split_through_phi' so that it'll do the split even
1092   // though the load doesn't have an unique instance type.
1093   bool ignore_missing_instance_id = true;
1094 
1095   // All AddPs are present in the connection graph
1096   FieldNode* fn = ptnode_adr(previous_addp->_idx)->as_Field();
1097 
1098   // Iterate over AddP looking for a Load
1099   for (int k = previous_addp->outcnt()-1; k >= 0;) {
1100     Node* previous_load = previous_addp->raw_out(k);
1101     if (previous_load->is_Load()) {
1102       Node* data_phi = previous_load->as_Load()->split_through_phi(_igvn, ignore_missing_instance_id);
1103 
1104       // Takes care of updating CG and split_unique_types worklists due to cloned
1105       // AddP->Load.
1106       updates_after_load_split(data_phi, previous_load, alloc_worklist);
1107 
1108       _igvn->replace_node(previous_load, data_phi);
1109     }
1110     --k;
1111     k = MIN2(k, (int)previous_addp->outcnt()-1);
1112   }
1113 
1114   // Remove the old AddP from the processing list because it's dead now
1115   assert(previous_addp->outcnt() == 0, "AddP should be dead now.");
1116   alloc_worklist.remove_if_existing(previous_addp);
1117 }
1118 
1119 // Create a 'selector' Phi based on the inputs of 'ophi'. If index 'i' of the
1120 // selector is:
1121 //    -> a '-1' constant, the i'th input of the original Phi is NSR.
1122 //    -> a 'x' constant >=0, the i'th input of of original Phi will be SR and
1123 //       the info about the scalarized object will be at index x of ObjectMergeValue::possible_objects
1124 PhiNode* ConnectionGraph::create_selector(PhiNode* ophi) const {
1125   Node* minus_one = _igvn->register_new_node_with_optimizer(ConINode::make(-1));
1126   Node* selector  = _igvn->register_new_node_with_optimizer(PhiNode::make(ophi->region(), minus_one, TypeInt::INT));
1127   uint number_of_sr_objects = 0;
1128   for (uint i = 1; i < ophi->req(); i++) {
1129     Node* base = ophi->in(i);
1130     JavaObjectNode* ptn = unique_java_object(base);
1131 
1132     if (ptn != nullptr && ptn->scalar_replaceable()) {
1133       Node* sr_obj_idx = _igvn->register_new_node_with_optimizer(ConINode::make(number_of_sr_objects));
1134       selector->set_req(i, sr_obj_idx);
1135       number_of_sr_objects++;
1136     }
1137   }
1138 
1139   return selector->as_Phi();
1140 }
1141 
1142 // Returns true if the AddP node 'n' has at least one base that is a reducible
1143 // merge. If the base is a CastPP/CheckCastPP then the input of the cast is
1144 // checked instead.
1145 bool ConnectionGraph::has_reducible_merge_base(AddPNode* n, Unique_Node_List &reducible_merges) {
1146   PointsToNode* ptn = ptnode_adr(n->_idx);
1147   if (ptn == nullptr || !ptn->is_Field() || ptn->as_Field()->base_count() < 2) {
1148     return false;
1149   }
1150 
1151   for (BaseIterator i(ptn->as_Field()); i.has_next(); i.next()) {
1152     Node* base = i.get()->ideal_node();
1153 
1154     if (reducible_merges.member(base)) {
1155       return true;
1156     }
1157 
1158     if (base->is_CastPP() || base->is_CheckCastPP()) {
1159       base = base->in(1);
1160       if (reducible_merges.member(base)) {
1161         return true;
1162       }
1163     }
1164   }
1165 
1166   return false;
1167 }
1168 
1169 // This method will call its helper method to reduce SafePoint nodes that use
1170 // 'ophi' or a casted version of 'ophi'. All SafePoint nodes using the same
1171 // "version" of Phi use the same debug information (regarding the Phi).
1172 // Therefore, I collect all safepoints and patch them all at once.
1173 //
1174 // The safepoints using the Phi node have to be processed before safepoints of
1175 // CastPP nodes. The reason is, when reducing a CastPP we add a reference (the
1176 // NSR merge pointer) to the input of the CastPP (i.e., the Phi) in the
1177 // safepoint. If we process CastPP's safepoints before Phi's safepoints the
1178 // algorithm that process Phi's safepoints will think that the added Phi
1179 // reference is a regular reference.
1180 bool ConnectionGraph::reduce_phi_on_safepoints(PhiNode* ophi) {
1181   PhiNode* selector = create_selector(ophi);
1182   Unique_Node_List safepoints;
1183   Unique_Node_List casts;
1184 
1185   // Just collect the users of the Phis for later processing
1186   // in the needed order.
1187   for (uint i = 0; i < ophi->outcnt(); i++) {
1188     Node* use = ophi->raw_out(i);
1189     if (use->is_SafePoint()) {
1190       safepoints.push(use);
1191     } else if (use->is_CastPP()) {
1192       casts.push(use);
1193     } else {
1194       assert(use->outcnt() == 0, "Only CastPP & SafePoint users should be left.");
1195     }
1196   }
1197 
1198   // Need to process safepoints using the Phi first
1199   if (!reduce_phi_on_safepoints_helper(ophi, nullptr, selector, safepoints)) {
1200     return false;
1201   }
1202 
1203   // Now process CastPP->safepoints
1204   for (uint i = 0; i < casts.size(); i++) {
1205     Node* cast = casts.at(i);
1206     Unique_Node_List cast_sfpts;
1207 
1208     for (DUIterator_Fast jmax, j = cast->fast_outs(jmax); j < jmax; j++) {
1209       Node* use_use = cast->fast_out(j);
1210       if (use_use->is_SafePoint()) {
1211         cast_sfpts.push(use_use);
1212       } else {
1213         assert(use_use->outcnt() == 0, "Only SafePoint users should be left.");
1214       }
1215     }
1216 
1217     if (!reduce_phi_on_safepoints_helper(ophi, cast, selector, cast_sfpts)) {
1218       return false;
1219     }
1220   }
1221 
1222   return true;
1223 }
1224 
1225 // This method will create a SafePointScalarMERGEnode for each SafePoint in
1226 // 'safepoints'. It then will iterate on the inputs of 'ophi' and create a
1227 // SafePointScalarObjectNode for each scalar replaceable input. Each
1228 // SafePointScalarMergeNode may describe multiple scalar replaced objects -
1229 // check detailed description in SafePointScalarMergeNode class header.
1230 bool ConnectionGraph::reduce_phi_on_safepoints_helper(Node* ophi, Node* cast, Node* selector, Unique_Node_List& safepoints) {
1231   PhaseMacroExpand mexp(*_igvn);
1232   Node* original_sfpt_parent =  cast != nullptr ? cast : ophi;
1233   const TypeOopPtr* merge_t = _igvn->type(original_sfpt_parent)->make_oopptr();
1234 
1235   Node* nsr_merge_pointer = ophi;
1236   if (cast != nullptr) {
1237     const Type* new_t = merge_t->meet(TypePtr::NULL_PTR);
1238     nsr_merge_pointer = _igvn->transform(ConstraintCastNode::make_cast_for_type(cast->in(0), cast->in(1), new_t, ConstraintCastNode::RegularDependency, nullptr));
1239   }
1240 
1241   for (uint spi = 0; spi < safepoints.size(); spi++) {
1242     SafePointNode* sfpt = safepoints.at(spi)->as_SafePoint();
1243     JVMState *jvms      = sfpt->jvms();
1244     uint merge_idx      = (sfpt->req() - jvms->scloff());
1245     int debug_start     = jvms->debug_start();
1246 
1247     SafePointScalarMergeNode* smerge = new SafePointScalarMergeNode(merge_t, merge_idx);
1248     smerge->init_req(0, _compile->root());
1249     _igvn->register_new_node_with_optimizer(smerge);
1250 
1251     // The next two inputs are:
1252     //  (1) A copy of the original pointer to NSR objects.
1253     //  (2) A selector, used to decide if we need to rematerialize an object
1254     //      or use the pointer to a NSR object.
1255     // See more details of these fields in the declaration of SafePointScalarMergeNode
1256     sfpt->add_req(nsr_merge_pointer);
1257     sfpt->add_req(selector);
1258 
1259     for (uint i = 1; i < ophi->req(); i++) {
1260       Node* base = ophi->in(i);
1261       JavaObjectNode* ptn = unique_java_object(base);
1262 
1263       // If the base is not scalar replaceable we don't need to register information about
1264       // it at this time.
1265       if (ptn == nullptr || !ptn->scalar_replaceable()) {
1266         continue;
1267       }
1268 
1269       AllocateNode* alloc = ptn->ideal_node()->as_Allocate();
1270       SafePointScalarObjectNode* sobj = mexp.create_scalarized_object_description(alloc, sfpt);
1271       if (sobj == nullptr) {
1272         return false;
1273       }
1274 
1275       // Now make a pass over the debug information replacing any references
1276       // to the allocated object with "sobj"
1277       Node* ccpp = alloc->result_cast();
1278       sfpt->replace_edges_in_range(ccpp, sobj, debug_start, jvms->debug_end(), _igvn);
1279 
1280       // Register the scalarized object as a candidate for reallocation
1281       smerge->add_req(sobj);
1282     }
1283 
1284     // Replaces debug information references to "original_sfpt_parent" in "sfpt" with references to "smerge"
1285     sfpt->replace_edges_in_range(original_sfpt_parent, smerge, debug_start, jvms->debug_end(), _igvn);
1286 
1287     // The call to 'replace_edges_in_range' above might have removed the
1288     // reference to ophi that we need at _merge_pointer_idx. The line below make
1289     // sure the reference is maintained.
1290     sfpt->set_req(smerge->merge_pointer_idx(jvms), nsr_merge_pointer);
1291     _igvn->_worklist.push(sfpt);
1292   }
1293 
1294   return true;
1295 }
1296 
1297 void ConnectionGraph::reduce_phi(PhiNode* ophi, GrowableArray<Node*> &alloc_worklist) {
1298   bool delay = _igvn->delay_transform();
1299   _igvn->set_delay_transform(true);
1300   _igvn->hash_delete(ophi);
1301 
1302   // Copying all users first because some will be removed and others won't.
1303   // Ophi also may acquire some new users as part of Cast reduction.
1304   // CastPPs also need to be processed before CmpPs.
1305   Unique_Node_List castpps;
1306   Unique_Node_List others;
1307   for (DUIterator_Fast imax, i = ophi->fast_outs(imax); i < imax; i++) {
1308     Node* use = ophi->fast_out(i);
1309 
1310     if (use->is_CastPP()) {
1311       castpps.push(use);
1312     } else if (use->is_AddP() || use->is_Cmp()) {
1313       others.push(use);
1314     } else {
1315       // Safepoints to be processed later; other users aren't expected here
1316       assert(use->is_SafePoint(), "Unexpected user of reducible Phi %d -> %d:%s:%d", ophi->_idx, use->_idx, use->Name(), use->outcnt());
1317     }
1318   }
1319 
1320   _compile->print_method(PHASE_EA_BEFORE_PHI_REDUCTION, 5, ophi);
1321 
1322   // CastPPs need to be processed before Cmps because during the process of
1323   // splitting CastPPs we make reference to the inputs of the Cmp that is used
1324   // by the If controlling the CastPP.
1325   for (uint i = 0; i < castpps.size(); i++) {
1326     reduce_phi_on_castpp_field_load(castpps.at(i), alloc_worklist);
1327     _compile->print_method(PHASE_EA_AFTER_PHI_CASTPP_REDUCTION, 6, castpps.at(i));
1328   }
1329 
1330   for (uint i = 0; i < others.size(); i++) {
1331     Node* use = others.at(i);
1332 
1333     if (use->is_AddP()) {
1334       reduce_phi_on_field_access(use, alloc_worklist);
1335       _compile->print_method(PHASE_EA_AFTER_PHI_ADDP_REDUCTION, 6, use);
1336     } else if(use->is_Cmp()) {
1337       reduce_phi_on_cmp(use);
1338       _compile->print_method(PHASE_EA_AFTER_PHI_CMP_REDUCTION, 6, use);
1339     }
1340   }
1341 
1342   _igvn->set_delay_transform(delay);
1343 }
1344 
1345 void ConnectionGraph::reset_scalar_replaceable_entries(PhiNode* ophi) {
1346   Node* null_ptr            = _igvn->makecon(TypePtr::NULL_PTR);
1347   const TypeOopPtr* merge_t = _igvn->type(ophi)->make_oopptr();
1348   const Type* new_t         = merge_t->meet(TypePtr::NULL_PTR);
1349   Node* new_phi             = _igvn->register_new_node_with_optimizer(PhiNode::make(ophi->region(), null_ptr, new_t));
1350 
1351   for (uint i = 1; i < ophi->req(); i++) {
1352     Node* base          = ophi->in(i);
1353     JavaObjectNode* ptn = unique_java_object(base);
1354 
1355     if (ptn != nullptr && ptn->scalar_replaceable()) {
1356       new_phi->set_req(i, null_ptr);
1357     } else {
1358       new_phi->set_req(i, ophi->in(i));
1359     }
1360   }
1361 
1362   for (int i = ophi->outcnt()-1; i >= 0;) {
1363     Node* out = ophi->raw_out(i);
1364 
1365     if (out->is_ConstraintCast()) {
1366       const Type* out_t = _igvn->type(out)->make_ptr();
1367       const Type* out_new_t = out_t->meet(TypePtr::NULL_PTR);
1368       bool change = out_new_t != out_t;
1369 
1370       for (int j = out->outcnt()-1; change && j >= 0; --j) {
1371         Node* out2 = out->raw_out(j);
1372         if (!out2->is_SafePoint()) {
1373           change = false;
1374           break;
1375         }
1376       }
1377 
1378       if (change) {
1379         Node* new_cast = ConstraintCastNode::make_cast_for_type(out->in(0), out->in(1), out_new_t, ConstraintCastNode::StrongDependency, nullptr);
1380         _igvn->replace_node(out, new_cast);
1381         _igvn->register_new_node_with_optimizer(new_cast);
1382       }
1383     }
1384 
1385     --i;
1386     i = MIN2(i, (int)ophi->outcnt()-1);
1387   }
1388 
1389   _igvn->replace_node(ophi, new_phi);
1390 }
1391 
1392 void ConnectionGraph::verify_ram_nodes(Compile* C, Node* root) {
1393   if (!C->do_reduce_allocation_merges()) return;
1394 
1395   Unique_Node_List ideal_nodes;
1396   ideal_nodes.map(C->live_nodes(), nullptr);  // preallocate space
1397   ideal_nodes.push(root);
1398 
1399   for (uint next = 0; next < ideal_nodes.size(); ++next) {
1400     Node* n = ideal_nodes.at(next);
1401 
1402     if (n->is_SafePointScalarMerge()) {
1403       SafePointScalarMergeNode* merge = n->as_SafePointScalarMerge();
1404 
1405       // Validate inputs of merge
1406       for (uint i = 1; i < merge->req(); i++) {
1407         if (merge->in(i) != nullptr && !merge->in(i)->is_top() && !merge->in(i)->is_SafePointScalarObject()) {
1408           assert(false, "SafePointScalarMerge inputs should be null/top or SafePointScalarObject.");
1409           C->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
1410         }
1411       }
1412 
1413       // Validate users of merge
1414       for (DUIterator_Fast imax, i = merge->fast_outs(imax); i < imax; i++) {
1415         Node* sfpt = merge->fast_out(i);
1416         if (sfpt->is_SafePoint()) {
1417           int merge_idx = merge->merge_pointer_idx(sfpt->as_SafePoint()->jvms());
1418 
1419           if (sfpt->in(merge_idx) != nullptr && sfpt->in(merge_idx)->is_SafePointScalarMerge()) {
1420             assert(false, "SafePointScalarMerge nodes can't be nested.");
1421             C->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
1422           }
1423         } else {
1424           assert(false, "Only safepoints can use SafePointScalarMerge nodes.");
1425           C->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
1426         }
1427       }
1428     }
1429 
1430     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1431       Node* m = n->fast_out(i);
1432       ideal_nodes.push(m);
1433     }
1434   }
1435 }
1436 
1437 // Returns true if there is an object in the scope of sfn that does not escape globally.
1438 bool ConnectionGraph::has_ea_local_in_scope(SafePointNode* sfn) {
1439   Compile* C = _compile;
1440   for (JVMState* jvms = sfn->jvms(); jvms != nullptr; jvms = jvms->caller()) {
1441     if (C->env()->should_retain_local_variables() || C->env()->jvmti_can_walk_any_space() ||
1442         DeoptimizeObjectsALot) {
1443       // Jvmti agents can access locals. Must provide info about local objects at runtime.
1444       int num_locs = jvms->loc_size();
1445       for (int idx = 0; idx < num_locs; idx++) {
1446         Node* l = sfn->local(jvms, idx);
1447         if (not_global_escape(l)) {
1448           return true;
1449         }
1450       }
1451     }
1452     if (C->env()->jvmti_can_get_owned_monitor_info() ||
1453         C->env()->jvmti_can_walk_any_space() || DeoptimizeObjectsALot) {
1454       // Jvmti agents can read monitors. Must provide info about locked objects at runtime.
1455       int num_mon = jvms->nof_monitors();
1456       for (int idx = 0; idx < num_mon; idx++) {
1457         Node* m = sfn->monitor_obj(jvms, idx);
1458         if (m != nullptr && not_global_escape(m)) {
1459           return true;
1460         }
1461       }
1462     }
1463   }
1464   return false;
1465 }
1466 
1467 // Returns true if at least one of the arguments to the call is an object
1468 // that does not escape globally.
1469 bool ConnectionGraph::has_arg_escape(CallJavaNode* call) {
1470   if (call->method() != nullptr) {
1471     uint max_idx = TypeFunc::Parms + call->method()->arg_size();
1472     for (uint idx = TypeFunc::Parms; idx < max_idx; idx++) {
1473       Node* p = call->in(idx);
1474       if (not_global_escape(p)) {
1475         return true;
1476       }
1477     }
1478   } else {
1479     const char* name = call->as_CallStaticJava()->_name;
1480     assert(name != nullptr, "no name");
1481     // no arg escapes through uncommon traps
1482     if (strcmp(name, "uncommon_trap") != 0) {
1483       // process_call_arguments() assumes that all arguments escape globally
1484       const TypeTuple* d = call->tf()->domain();
1485       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1486         const Type* at = d->field_at(i);
1487         if (at->isa_oopptr() != nullptr) {
1488           return true;
1489         }
1490       }
1491     }
1492   }
1493   return false;
1494 }
1495 
1496 
1497 
1498 // Utility function for nodes that load an object
1499 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
1500   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1501   // ThreadLocal has RawPtr type.
1502   const Type* t = _igvn->type(n);
1503   if (t->make_ptr() != nullptr) {
1504     Node* adr = n->in(MemNode::Address);
1505 #ifdef ASSERT
1506     if (!adr->is_AddP()) {
1507       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
1508     } else {
1509       assert((ptnode_adr(adr->_idx) == nullptr ||
1510               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
1511     }
1512 #endif
1513     add_local_var_and_edge(n, PointsToNode::NoEscape,
1514                            adr, delayed_worklist);
1515   }
1516 }
1517 
1518 // Populate Connection Graph with PointsTo nodes and create simple
1519 // connection graph edges.
1520 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
1521   assert(!_verify, "this method should not be called for verification");
1522   PhaseGVN* igvn = _igvn;
1523   uint n_idx = n->_idx;
1524   PointsToNode* n_ptn = ptnode_adr(n_idx);
1525   if (n_ptn != nullptr) {
1526     return; // No need to redefine PointsTo node during first iteration.
1527   }
1528   int opcode = n->Opcode();
1529   if (n->is_Call()) {
1530     // Arguments to allocation and locking don't escape.
1531     if (n->is_AbstractLock()) {
1532       // Put Lock and Unlock nodes on IGVN worklist to process them during
1533       // first IGVN optimization when escape information is still available.
1534       record_for_optimizer(n);
1535     } else if (n->is_Allocate()) {
1536       add_call_node(n->as_Call());
1537       record_for_optimizer(n);
1538     } else {
1539       if (n->is_CallStaticJava()) {
1540         const char* name = n->as_CallStaticJava()->_name;
1541         if (name != nullptr && strcmp(name, "uncommon_trap") == 0) {
1542           return; // Skip uncommon traps
1543         }
1544       }
1545       // Don't mark as processed since call's arguments have to be processed.
1546       delayed_worklist->push(n);
1547       // Check if a call returns an object.
1548       if ((n->as_Call()->returns_pointer() &&
1549            n->as_Call()->proj_out_or_null(TypeFunc::Parms) != nullptr) ||
1550           (n->is_CallStaticJava() &&
1551            n->as_CallStaticJava()->is_boxing_method())) {
1552         add_call_node(n->as_Call());
1553       }
1554     }
1555     return;
1556   }
1557   // Put this check here to process call arguments since some call nodes
1558   // point to phantom_obj.
1559   if (n_ptn == phantom_obj || n_ptn == null_obj) {
1560     return; // Skip predefined nodes.
1561   }
1562   switch (opcode) {
1563     case Op_AddP: {
1564       Node* base = get_addp_base(n);
1565       PointsToNode* ptn_base = ptnode_adr(base->_idx);
1566       // Field nodes are created for all field types. They are used in
1567       // adjust_scalar_replaceable_state() and split_unique_types().
1568       // Note, non-oop fields will have only base edges in Connection
1569       // Graph because such fields are not used for oop loads and stores.
1570       int offset = address_offset(n, igvn);
1571       add_field(n, PointsToNode::NoEscape, offset);
1572       if (ptn_base == nullptr) {
1573         delayed_worklist->push(n); // Process it later.
1574       } else {
1575         n_ptn = ptnode_adr(n_idx);
1576         add_base(n_ptn->as_Field(), ptn_base);
1577       }
1578       break;
1579     }
1580     case Op_CastX2P: {
1581       map_ideal_node(n, phantom_obj);
1582       break;
1583     }
1584     case Op_CastPP:
1585     case Op_CheckCastPP:
1586     case Op_EncodeP:
1587     case Op_DecodeN:
1588     case Op_EncodePKlass:
1589     case Op_DecodeNKlass: {
1590       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), delayed_worklist);
1591       break;
1592     }
1593     case Op_CMoveP: {
1594       add_local_var(n, PointsToNode::NoEscape);
1595       // Do not add edges during first iteration because some could be
1596       // not defined yet.
1597       delayed_worklist->push(n);
1598       break;
1599     }
1600     case Op_ConP:
1601     case Op_ConN:
1602     case Op_ConNKlass: {
1603       // assume all oop constants globally escape except for null
1604       PointsToNode::EscapeState es;
1605       const Type* t = igvn->type(n);
1606       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
1607         es = PointsToNode::NoEscape;
1608       } else {
1609         es = PointsToNode::GlobalEscape;
1610       }
1611       PointsToNode* ptn_con = add_java_object(n, es);
1612       set_not_scalar_replaceable(ptn_con NOT_PRODUCT(COMMA "Constant pointer"));
1613       break;
1614     }
1615     case Op_CreateEx: {
1616       // assume that all exception objects globally escape
1617       map_ideal_node(n, phantom_obj);
1618       break;
1619     }
1620     case Op_LoadKlass:
1621     case Op_LoadNKlass: {
1622       // Unknown class is loaded
1623       map_ideal_node(n, phantom_obj);
1624       break;
1625     }
1626     case Op_LoadP:
1627     case Op_LoadN: {
1628       add_objload_to_connection_graph(n, delayed_worklist);
1629       break;
1630     }
1631     case Op_Parm: {
1632       map_ideal_node(n, phantom_obj);
1633       break;
1634     }
1635     case Op_PartialSubtypeCheck: {
1636       // Produces Null or notNull and is used in only in CmpP so
1637       // phantom_obj could be used.
1638       map_ideal_node(n, phantom_obj); // Result is unknown
1639       break;
1640     }
1641     case Op_Phi: {
1642       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1643       // ThreadLocal has RawPtr type.
1644       const Type* t = n->as_Phi()->type();
1645       if (t->make_ptr() != nullptr) {
1646         add_local_var(n, PointsToNode::NoEscape);
1647         // Do not add edges during first iteration because some could be
1648         // not defined yet.
1649         delayed_worklist->push(n);
1650       }
1651       break;
1652     }
1653     case Op_Proj: {
1654       // we are only interested in the oop result projection from a call
1655       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
1656           n->in(0)->as_Call()->returns_pointer()) {
1657         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), delayed_worklist);
1658       }
1659       break;
1660     }
1661     case Op_Rethrow: // Exception object escapes
1662     case Op_Return: {
1663       if (n->req() > TypeFunc::Parms &&
1664           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
1665         // Treat Return value as LocalVar with GlobalEscape escape state.
1666         add_local_var_and_edge(n, PointsToNode::GlobalEscape, n->in(TypeFunc::Parms), delayed_worklist);
1667       }
1668       break;
1669     }
1670     case Op_CompareAndExchangeP:
1671     case Op_CompareAndExchangeN:
1672     case Op_GetAndSetP:
1673     case Op_GetAndSetN: {
1674       add_objload_to_connection_graph(n, delayed_worklist);
1675       // fall-through
1676     }
1677     case Op_StoreP:
1678     case Op_StoreN:
1679     case Op_StoreNKlass:
1680     case Op_WeakCompareAndSwapP:
1681     case Op_WeakCompareAndSwapN:
1682     case Op_CompareAndSwapP:
1683     case Op_CompareAndSwapN: {
1684       add_to_congraph_unsafe_access(n, opcode, delayed_worklist);
1685       break;
1686     }
1687     case Op_AryEq:
1688     case Op_CountPositives:
1689     case Op_StrComp:
1690     case Op_StrEquals:
1691     case Op_StrIndexOf:
1692     case Op_StrIndexOfChar:
1693     case Op_StrInflatedCopy:
1694     case Op_StrCompressedCopy:
1695     case Op_VectorizedHashCode:
1696     case Op_EncodeISOArray: {
1697       add_local_var(n, PointsToNode::ArgEscape);
1698       delayed_worklist->push(n); // Process it later.
1699       break;
1700     }
1701     case Op_ThreadLocal: {
1702       PointsToNode* ptn_thr = add_java_object(n, PointsToNode::ArgEscape);
1703       set_not_scalar_replaceable(ptn_thr NOT_PRODUCT(COMMA "Constant pointer"));
1704       break;
1705     }
1706     case Op_Blackhole: {
1707       // All blackhole pointer arguments are globally escaping.
1708       // Only do this if there is at least one pointer argument.
1709       // Do not add edges during first iteration because some could be
1710       // not defined yet, defer to final step.
1711       for (uint i = 0; i < n->req(); i++) {
1712         Node* in = n->in(i);
1713         if (in != nullptr) {
1714           const Type* at = _igvn->type(in);
1715           if (!at->isa_ptr()) continue;
1716 
1717           add_local_var(n, PointsToNode::GlobalEscape);
1718           delayed_worklist->push(n);
1719           break;
1720         }
1721       }
1722       break;
1723     }
1724     default:
1725       ; // Do nothing for nodes not related to EA.
1726   }
1727   return;
1728 }
1729 
1730 // Add final simple edges to graph.
1731 void ConnectionGraph::add_final_edges(Node *n) {
1732   PointsToNode* n_ptn = ptnode_adr(n->_idx);
1733 #ifdef ASSERT
1734   if (_verify && n_ptn->is_JavaObject())
1735     return; // This method does not change graph for JavaObject.
1736 #endif
1737 
1738   if (n->is_Call()) {
1739     process_call_arguments(n->as_Call());
1740     return;
1741   }
1742   assert(n->is_Store() || n->is_LoadStore() ||
1743          ((n_ptn != nullptr) && (n_ptn->ideal_node() != nullptr)),
1744          "node should be registered already");
1745   int opcode = n->Opcode();
1746   switch (opcode) {
1747     case Op_AddP: {
1748       Node* base = get_addp_base(n);
1749       PointsToNode* ptn_base = ptnode_adr(base->_idx);
1750       assert(ptn_base != nullptr, "field's base should be registered");
1751       add_base(n_ptn->as_Field(), ptn_base);
1752       break;
1753     }
1754     case Op_CastPP:
1755     case Op_CheckCastPP:
1756     case Op_EncodeP:
1757     case Op_DecodeN:
1758     case Op_EncodePKlass:
1759     case Op_DecodeNKlass: {
1760       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), nullptr);
1761       break;
1762     }
1763     case Op_CMoveP: {
1764       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
1765         Node* in = n->in(i);
1766         if (in == nullptr) {
1767           continue;  // ignore null
1768         }
1769         Node* uncast_in = in->uncast();
1770         if (uncast_in->is_top() || uncast_in == n) {
1771           continue;  // ignore top or inputs which go back this node
1772         }
1773         PointsToNode* ptn = ptnode_adr(in->_idx);
1774         assert(ptn != nullptr, "node should be registered");
1775         add_edge(n_ptn, ptn);
1776       }
1777       break;
1778     }
1779     case Op_LoadP:
1780     case Op_LoadN: {
1781       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1782       // ThreadLocal has RawPtr type.
1783       assert(_igvn->type(n)->make_ptr() != nullptr, "Unexpected node type");
1784       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(MemNode::Address), nullptr);
1785       break;
1786     }
1787     case Op_Phi: {
1788       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1789       // ThreadLocal has RawPtr type.
1790       assert(n->as_Phi()->type()->make_ptr() != nullptr, "Unexpected node type");
1791       for (uint i = 1; i < n->req(); i++) {
1792         Node* in = n->in(i);
1793         if (in == nullptr) {
1794           continue;  // ignore null
1795         }
1796         Node* uncast_in = in->uncast();
1797         if (uncast_in->is_top() || uncast_in == n) {
1798           continue;  // ignore top or inputs which go back this node
1799         }
1800         PointsToNode* ptn = ptnode_adr(in->_idx);
1801         assert(ptn != nullptr, "node should be registered");
1802         add_edge(n_ptn, ptn);
1803       }
1804       break;
1805     }
1806     case Op_Proj: {
1807       // we are only interested in the oop result projection from a call
1808       assert(n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
1809              n->in(0)->as_Call()->returns_pointer(), "Unexpected node type");
1810       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), nullptr);
1811       break;
1812     }
1813     case Op_Rethrow: // Exception object escapes
1814     case Op_Return: {
1815       assert(n->req() > TypeFunc::Parms && _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr(),
1816              "Unexpected node type");
1817       // Treat Return value as LocalVar with GlobalEscape escape state.
1818       add_local_var_and_edge(n, PointsToNode::GlobalEscape, n->in(TypeFunc::Parms), nullptr);
1819       break;
1820     }
1821     case Op_CompareAndExchangeP:
1822     case Op_CompareAndExchangeN:
1823     case Op_GetAndSetP:
1824     case Op_GetAndSetN:{
1825       assert(_igvn->type(n)->make_ptr() != nullptr, "Unexpected node type");
1826       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(MemNode::Address), nullptr);
1827       // fall-through
1828     }
1829     case Op_CompareAndSwapP:
1830     case Op_CompareAndSwapN:
1831     case Op_WeakCompareAndSwapP:
1832     case Op_WeakCompareAndSwapN:
1833     case Op_StoreP:
1834     case Op_StoreN:
1835     case Op_StoreNKlass:{
1836       add_final_edges_unsafe_access(n, opcode);
1837       break;
1838     }
1839     case Op_VectorizedHashCode:
1840     case Op_AryEq:
1841     case Op_CountPositives:
1842     case Op_StrComp:
1843     case Op_StrEquals:
1844     case Op_StrIndexOf:
1845     case Op_StrIndexOfChar:
1846     case Op_StrInflatedCopy:
1847     case Op_StrCompressedCopy:
1848     case Op_EncodeISOArray: {
1849       // char[]/byte[] arrays passed to string intrinsic do not escape but
1850       // they are not scalar replaceable. Adjust escape state for them.
1851       // Start from in(2) edge since in(1) is memory edge.
1852       for (uint i = 2; i < n->req(); i++) {
1853         Node* adr = n->in(i);
1854         const Type* at = _igvn->type(adr);
1855         if (!adr->is_top() && at->isa_ptr()) {
1856           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
1857                  at->isa_ptr() != nullptr, "expecting a pointer");
1858           if (adr->is_AddP()) {
1859             adr = get_addp_base(adr);
1860           }
1861           PointsToNode* ptn = ptnode_adr(adr->_idx);
1862           assert(ptn != nullptr, "node should be registered");
1863           add_edge(n_ptn, ptn);
1864         }
1865       }
1866       break;
1867     }
1868     case Op_Blackhole: {
1869       // All blackhole pointer arguments are globally escaping.
1870       for (uint i = 0; i < n->req(); i++) {
1871         Node* in = n->in(i);
1872         if (in != nullptr) {
1873           const Type* at = _igvn->type(in);
1874           if (!at->isa_ptr()) continue;
1875 
1876           if (in->is_AddP()) {
1877             in = get_addp_base(in);
1878           }
1879 
1880           PointsToNode* ptn = ptnode_adr(in->_idx);
1881           assert(ptn != nullptr, "should be defined already");
1882           set_escape_state(ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA "blackhole"));
1883           add_edge(n_ptn, ptn);
1884         }
1885       }
1886       break;
1887     }
1888     default: {
1889       // This method should be called only for EA specific nodes which may
1890       // miss some edges when they were created.
1891 #ifdef ASSERT
1892       n->dump(1);
1893 #endif
1894       guarantee(false, "unknown node");
1895     }
1896   }
1897   return;
1898 }
1899 
1900 void ConnectionGraph::add_to_congraph_unsafe_access(Node* n, uint opcode, Unique_Node_List* delayed_worklist) {
1901   Node* adr = n->in(MemNode::Address);
1902   const Type* adr_type = _igvn->type(adr);
1903   adr_type = adr_type->make_ptr();
1904   if (adr_type == nullptr) {
1905     return; // skip dead nodes
1906   }
1907   if (adr_type->isa_oopptr()
1908       || ((opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass)
1909           && adr_type == TypeRawPtr::NOTNULL
1910           && is_captured_store_address(adr))) {
1911     delayed_worklist->push(n); // Process it later.
1912 #ifdef ASSERT
1913     assert (adr->is_AddP(), "expecting an AddP");
1914     if (adr_type == TypeRawPtr::NOTNULL) {
1915       // Verify a raw address for a store captured by Initialize node.
1916       int offs = (int) _igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
1917       assert(offs != Type::OffsetBot, "offset must be a constant");
1918     }
1919 #endif
1920   } else {
1921     // Ignore copy the displaced header to the BoxNode (OSR compilation).
1922     if (adr->is_BoxLock()) {
1923       return;
1924     }
1925     // Stored value escapes in unsafe access.
1926     if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
1927       delayed_worklist->push(n); // Process unsafe access later.
1928       return;
1929     }
1930 #ifdef ASSERT
1931     n->dump(1);
1932     assert(false, "not unsafe");
1933 #endif
1934   }
1935 }
1936 
1937 bool ConnectionGraph::add_final_edges_unsafe_access(Node* n, uint opcode) {
1938   Node* adr = n->in(MemNode::Address);
1939   const Type *adr_type = _igvn->type(adr);
1940   adr_type = adr_type->make_ptr();
1941 #ifdef ASSERT
1942   if (adr_type == nullptr) {
1943     n->dump(1);
1944     assert(adr_type != nullptr, "dead node should not be on list");
1945     return true;
1946   }
1947 #endif
1948 
1949   if (adr_type->isa_oopptr()
1950       || ((opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass)
1951            && adr_type == TypeRawPtr::NOTNULL
1952            && is_captured_store_address(adr))) {
1953     // Point Address to Value
1954     PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
1955     assert(adr_ptn != nullptr &&
1956            adr_ptn->as_Field()->is_oop(), "node should be registered");
1957     Node* val = n->in(MemNode::ValueIn);
1958     PointsToNode* ptn = ptnode_adr(val->_idx);
1959     assert(ptn != nullptr, "node should be registered");
1960     add_edge(adr_ptn, ptn);
1961     return true;
1962   } else if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
1963     // Stored value escapes in unsafe access.
1964     Node* val = n->in(MemNode::ValueIn);
1965     PointsToNode* ptn = ptnode_adr(val->_idx);
1966     assert(ptn != nullptr, "node should be registered");
1967     set_escape_state(ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA "stored at raw address"));
1968     // Add edge to object for unsafe access with offset.
1969     PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
1970     assert(adr_ptn != nullptr, "node should be registered");
1971     if (adr_ptn->is_Field()) {
1972       assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
1973       add_edge(adr_ptn, ptn);
1974     }
1975     return true;
1976   }
1977 #ifdef ASSERT
1978   n->dump(1);
1979   assert(false, "not unsafe");
1980 #endif
1981   return false;
1982 }
1983 
1984 void ConnectionGraph::add_call_node(CallNode* call) {
1985   assert(call->returns_pointer(), "only for call which returns pointer");
1986   uint call_idx = call->_idx;
1987   if (call->is_Allocate()) {
1988     Node* k = call->in(AllocateNode::KlassNode);
1989     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
1990     assert(kt != nullptr, "TypeKlassPtr  required.");
1991     PointsToNode::EscapeState es = PointsToNode::NoEscape;
1992     bool scalar_replaceable = true;
1993     NOT_PRODUCT(const char* nsr_reason = "");
1994     if (call->is_AllocateArray()) {
1995       if (!kt->isa_aryklassptr()) { // StressReflectiveCode
1996         es = PointsToNode::GlobalEscape;
1997       } else {
1998         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
1999         if (length < 0) {
2000           // Not scalar replaceable if the length is not constant.
2001           scalar_replaceable = false;
2002           NOT_PRODUCT(nsr_reason = "has a non-constant length");
2003         } else if (length > EliminateAllocationArraySizeLimit) {
2004           // Not scalar replaceable if the length is too big.
2005           scalar_replaceable = false;
2006           NOT_PRODUCT(nsr_reason = "has a length that is too big");
2007         }
2008       }
2009     } else {  // Allocate instance
2010       if (!kt->isa_instklassptr()) { // StressReflectiveCode
2011         es = PointsToNode::GlobalEscape;
2012       } else {
2013         const TypeInstKlassPtr* ikt = kt->is_instklassptr();
2014         ciInstanceKlass* ik = ikt->klass_is_exact() ? ikt->exact_klass()->as_instance_klass() : ikt->instance_klass();
2015         if (ik->is_subclass_of(_compile->env()->Thread_klass()) ||
2016             ik->is_subclass_of(_compile->env()->Reference_klass()) ||
2017             !ik->can_be_instantiated() ||
2018             ik->has_finalizer()) {
2019           es = PointsToNode::GlobalEscape;
2020         } else {
2021           int nfields = ik->as_instance_klass()->nof_nonstatic_fields();
2022           if (nfields > EliminateAllocationFieldsLimit) {
2023             // Not scalar replaceable if there are too many fields.
2024             scalar_replaceable = false;
2025             NOT_PRODUCT(nsr_reason = "has too many fields");
2026           }
2027         }
2028       }
2029     }
2030     add_java_object(call, es);
2031     PointsToNode* ptn = ptnode_adr(call_idx);
2032     if (!scalar_replaceable && ptn->scalar_replaceable()) {
2033       set_not_scalar_replaceable(ptn NOT_PRODUCT(COMMA nsr_reason));
2034     }
2035   } else if (call->is_CallStaticJava()) {
2036     // Call nodes could be different types:
2037     //
2038     // 1. CallDynamicJavaNode (what happened during call is unknown):
2039     //
2040     //    - mapped to GlobalEscape JavaObject node if oop is returned;
2041     //
2042     //    - all oop arguments are escaping globally;
2043     //
2044     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
2045     //
2046     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
2047     //
2048     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
2049     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
2050     //      during call is returned;
2051     //    - mapped to ArgEscape LocalVar node pointed to object arguments
2052     //      which are returned and does not escape during call;
2053     //
2054     //    - oop arguments escaping status is defined by bytecode analysis;
2055     //
2056     // For a static call, we know exactly what method is being called.
2057     // Use bytecode estimator to record whether the call's return value escapes.
2058     ciMethod* meth = call->as_CallJava()->method();
2059     if (meth == nullptr) {
2060       const char* name = call->as_CallStaticJava()->_name;
2061       assert(strncmp(name, "C2 Runtime multianewarray", 25) == 0, "TODO: add failed case check");
2062       // Returns a newly allocated non-escaped object.
2063       add_java_object(call, PointsToNode::NoEscape);
2064       set_not_scalar_replaceable(ptnode_adr(call_idx) NOT_PRODUCT(COMMA "is result of multinewarray"));
2065     } else if (meth->is_boxing_method()) {
2066       // Returns boxing object
2067       PointsToNode::EscapeState es;
2068       vmIntrinsics::ID intr = meth->intrinsic_id();
2069       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
2070         // It does not escape if object is always allocated.
2071         es = PointsToNode::NoEscape;
2072       } else {
2073         // It escapes globally if object could be loaded from cache.
2074         es = PointsToNode::GlobalEscape;
2075       }
2076       add_java_object(call, es);
2077       if (es == PointsToNode::GlobalEscape) {
2078         set_not_scalar_replaceable(ptnode_adr(call->_idx) NOT_PRODUCT(COMMA "object can be loaded from boxing cache"));
2079       }
2080     } else {
2081       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
2082       call_analyzer->copy_dependencies(_compile->dependencies());
2083       if (call_analyzer->is_return_allocated()) {
2084         // Returns a newly allocated non-escaped object, simply
2085         // update dependency information.
2086         // Mark it as NoEscape so that objects referenced by
2087         // it's fields will be marked as NoEscape at least.
2088         add_java_object(call, PointsToNode::NoEscape);
2089         set_not_scalar_replaceable(ptnode_adr(call_idx) NOT_PRODUCT(COMMA "is result of call"));
2090       } else {
2091         // Determine whether any arguments are returned.
2092         const TypeTuple* d = call->tf()->domain();
2093         bool ret_arg = false;
2094         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2095           if (d->field_at(i)->isa_ptr() != nullptr &&
2096               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
2097             ret_arg = true;
2098             break;
2099           }
2100         }
2101         if (ret_arg) {
2102           add_local_var(call, PointsToNode::ArgEscape);
2103         } else {
2104           // Returns unknown object.
2105           map_ideal_node(call, phantom_obj);
2106         }
2107       }
2108     }
2109   } else {
2110     // An other type of call, assume the worst case:
2111     // returned value is unknown and globally escapes.
2112     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
2113     map_ideal_node(call, phantom_obj);
2114   }
2115 }
2116 
2117 void ConnectionGraph::process_call_arguments(CallNode *call) {
2118     bool is_arraycopy = false;
2119     switch (call->Opcode()) {
2120 #ifdef ASSERT
2121     case Op_Allocate:
2122     case Op_AllocateArray:
2123     case Op_Lock:
2124     case Op_Unlock:
2125       assert(false, "should be done already");
2126       break;
2127 #endif
2128     case Op_ArrayCopy:
2129     case Op_CallLeafNoFP:
2130       // Most array copies are ArrayCopy nodes at this point but there
2131       // are still a few direct calls to the copy subroutines (See
2132       // PhaseStringOpts::copy_string())
2133       is_arraycopy = (call->Opcode() == Op_ArrayCopy) ||
2134         call->as_CallLeaf()->is_call_to_arraycopystub();
2135       // fall through
2136     case Op_CallLeafVector:
2137     case Op_CallLeaf: {
2138       // Stub calls, objects do not escape but they are not scale replaceable.
2139       // Adjust escape state for outgoing arguments.
2140       const TypeTuple * d = call->tf()->domain();
2141       bool src_has_oops = false;
2142       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2143         const Type* at = d->field_at(i);
2144         Node *arg = call->in(i);
2145         if (arg == nullptr) {
2146           continue;
2147         }
2148         const Type *aat = _igvn->type(arg);
2149         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr()) {
2150           continue;
2151         }
2152         if (arg->is_AddP()) {
2153           //
2154           // The inline_native_clone() case when the arraycopy stub is called
2155           // after the allocation before Initialize and CheckCastPP nodes.
2156           // Or normal arraycopy for object arrays case.
2157           //
2158           // Set AddP's base (Allocate) as not scalar replaceable since
2159           // pointer to the base (with offset) is passed as argument.
2160           //
2161           arg = get_addp_base(arg);
2162         }
2163         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
2164         assert(arg_ptn != nullptr, "should be registered");
2165         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
2166         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
2167           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
2168                  aat->isa_ptr() != nullptr, "expecting an Ptr");
2169           bool arg_has_oops = aat->isa_oopptr() &&
2170                               (aat->isa_instptr() ||
2171                                (aat->isa_aryptr() && (aat->isa_aryptr()->elem() == Type::BOTTOM || aat->isa_aryptr()->elem()->make_oopptr() != nullptr)));
2172           if (i == TypeFunc::Parms) {
2173             src_has_oops = arg_has_oops;
2174           }
2175           //
2176           // src or dst could be j.l.Object when other is basic type array:
2177           //
2178           //   arraycopy(char[],0,Object*,0,size);
2179           //   arraycopy(Object*,0,char[],0,size);
2180           //
2181           // Don't add edges in such cases.
2182           //
2183           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
2184                                        arg_has_oops && (i > TypeFunc::Parms);
2185 #ifdef ASSERT
2186           if (!(is_arraycopy ||
2187                 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(call) ||
2188                 (call->as_CallLeaf()->_name != nullptr &&
2189                  (strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
2190                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 ||
2191                   strcmp(call->as_CallLeaf()->_name, "updateBytesAdler32") == 0 ||
2192                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
2193                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
2194                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
2195                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
2196                   strcmp(call->as_CallLeaf()->_name, "electronicCodeBook_encryptAESCrypt") == 0 ||
2197                   strcmp(call->as_CallLeaf()->_name, "electronicCodeBook_decryptAESCrypt") == 0 ||
2198                   strcmp(call->as_CallLeaf()->_name, "counterMode_AESCrypt") == 0 ||
2199                   strcmp(call->as_CallLeaf()->_name, "galoisCounterMode_AESCrypt") == 0 ||
2200                   strcmp(call->as_CallLeaf()->_name, "poly1305_processBlocks") == 0 ||
2201                   strcmp(call->as_CallLeaf()->_name, "intpoly_montgomeryMult_P256") == 0 ||
2202                   strcmp(call->as_CallLeaf()->_name, "intpoly_assign") == 0 ||
2203                   strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 ||
2204                   strcmp(call->as_CallLeaf()->_name, "chacha20Block") == 0 ||
2205                   strcmp(call->as_CallLeaf()->_name, "kyberNtt") == 0 ||
2206                   strcmp(call->as_CallLeaf()->_name, "kyberInverseNtt") == 0 ||
2207                   strcmp(call->as_CallLeaf()->_name, "kyberNttMult") == 0 ||
2208                   strcmp(call->as_CallLeaf()->_name, "kyberAddPoly_2") == 0 ||
2209                   strcmp(call->as_CallLeaf()->_name, "kyberAddPoly_3") == 0 ||
2210                   strcmp(call->as_CallLeaf()->_name, "kyber12To16") == 0 ||
2211                   strcmp(call->as_CallLeaf()->_name, "kyberBarrettReduce") == 0 ||
2212                   strcmp(call->as_CallLeaf()->_name, "dilithiumAlmostNtt") == 0 ||
2213                   strcmp(call->as_CallLeaf()->_name, "dilithiumAlmostInverseNtt") == 0 ||
2214                   strcmp(call->as_CallLeaf()->_name, "dilithiumNttMult") == 0 ||
2215                   strcmp(call->as_CallLeaf()->_name, "dilithiumMontMulByConstant") == 0 ||
2216                   strcmp(call->as_CallLeaf()->_name, "dilithiumDecomposePoly") == 0 ||
2217                   strcmp(call->as_CallLeaf()->_name, "encodeBlock") == 0 ||
2218                   strcmp(call->as_CallLeaf()->_name, "decodeBlock") == 0 ||
2219                   strcmp(call->as_CallLeaf()->_name, "md5_implCompress") == 0 ||
2220                   strcmp(call->as_CallLeaf()->_name, "md5_implCompressMB") == 0 ||
2221                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
2222                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
2223                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
2224                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
2225                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
2226                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
2227                   strcmp(call->as_CallLeaf()->_name, "sha3_implCompress") == 0 ||
2228                   strcmp(call->as_CallLeaf()->_name, "double_keccak") == 0 ||
2229                   strcmp(call->as_CallLeaf()->_name, "sha3_implCompressMB") == 0 ||
2230                   strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
2231                   strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
2232                   strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 ||
2233                   strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 ||
2234                   strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0 ||
2235                   strcmp(call->as_CallLeaf()->_name, "bigIntegerRightShiftWorker") == 0 ||
2236                   strcmp(call->as_CallLeaf()->_name, "bigIntegerLeftShiftWorker") == 0 ||
2237                   strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0 ||
2238                   strcmp(call->as_CallLeaf()->_name, "stringIndexOf") == 0 ||
2239                   strcmp(call->as_CallLeaf()->_name, "arraysort_stub") == 0 ||
2240                   strcmp(call->as_CallLeaf()->_name, "array_partition_stub") == 0 ||
2241                   strcmp(call->as_CallLeaf()->_name, "get_class_id_intrinsic") == 0 ||
2242                   strcmp(call->as_CallLeaf()->_name, "unsafe_setmemory") == 0)
2243                  ))) {
2244             call->dump();
2245             fatal("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name);
2246           }
2247 #endif
2248           // Always process arraycopy's destination object since
2249           // we need to add all possible edges to references in
2250           // source object.
2251           if (arg_esc >= PointsToNode::ArgEscape &&
2252               !arg_is_arraycopy_dest) {
2253             continue;
2254           }
2255           PointsToNode::EscapeState es = PointsToNode::ArgEscape;
2256           if (call->is_ArrayCopy()) {
2257             ArrayCopyNode* ac = call->as_ArrayCopy();
2258             if (ac->is_clonebasic() ||
2259                 ac->is_arraycopy_validated() ||
2260                 ac->is_copyof_validated() ||
2261                 ac->is_copyofrange_validated()) {
2262               es = PointsToNode::NoEscape;
2263             }
2264           }
2265           set_escape_state(arg_ptn, es NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2266           if (arg_is_arraycopy_dest) {
2267             Node* src = call->in(TypeFunc::Parms);
2268             if (src->is_AddP()) {
2269               src = get_addp_base(src);
2270             }
2271             PointsToNode* src_ptn = ptnode_adr(src->_idx);
2272             assert(src_ptn != nullptr, "should be registered");
2273             // Special arraycopy edge:
2274             // Only escape state of destination object's fields affects
2275             // escape state of fields in source object.
2276             add_arraycopy(call, es, src_ptn, arg_ptn);
2277           }
2278         }
2279       }
2280       break;
2281     }
2282     case Op_CallStaticJava: {
2283       // For a static call, we know exactly what method is being called.
2284       // Use bytecode estimator to record the call's escape affects
2285 #ifdef ASSERT
2286       const char* name = call->as_CallStaticJava()->_name;
2287       assert((name == nullptr || strcmp(name, "uncommon_trap") != 0), "normal calls only");
2288 #endif
2289       ciMethod* meth = call->as_CallJava()->method();
2290       if ((meth != nullptr) && meth->is_boxing_method()) {
2291         break; // Boxing methods do not modify any oops.
2292       }
2293       BCEscapeAnalyzer* call_analyzer = (meth !=nullptr) ? meth->get_bcea() : nullptr;
2294       // fall-through if not a Java method or no analyzer information
2295       if (call_analyzer != nullptr) {
2296         PointsToNode* call_ptn = ptnode_adr(call->_idx);
2297         const TypeTuple* d = call->tf()->domain();
2298         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2299           const Type* at = d->field_at(i);
2300           int k = i - TypeFunc::Parms;
2301           Node* arg = call->in(i);
2302           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
2303           if (at->isa_ptr() != nullptr &&
2304               call_analyzer->is_arg_returned(k)) {
2305             // The call returns arguments.
2306             if (call_ptn != nullptr) { // Is call's result used?
2307               assert(call_ptn->is_LocalVar(), "node should be registered");
2308               assert(arg_ptn != nullptr, "node should be registered");
2309               add_edge(call_ptn, arg_ptn);
2310             }
2311           }
2312           if (at->isa_oopptr() != nullptr &&
2313               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
2314             if (!call_analyzer->is_arg_stack(k)) {
2315               // The argument global escapes
2316               set_escape_state(arg_ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2317             } else {
2318               set_escape_state(arg_ptn, PointsToNode::ArgEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2319               if (!call_analyzer->is_arg_local(k)) {
2320                 // The argument itself doesn't escape, but any fields might
2321                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2322               }
2323             }
2324           }
2325         }
2326         if (call_ptn != nullptr && call_ptn->is_LocalVar()) {
2327           // The call returns arguments.
2328           assert(call_ptn->edge_count() > 0, "sanity");
2329           if (!call_analyzer->is_return_local()) {
2330             // Returns also unknown object.
2331             add_edge(call_ptn, phantom_obj);
2332           }
2333         }
2334         break;
2335       }
2336     }
2337     default: {
2338       // Fall-through here if not a Java method or no analyzer information
2339       // or some other type of call, assume the worst case: all arguments
2340       // globally escape.
2341       const TypeTuple* d = call->tf()->domain();
2342       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2343         const Type* at = d->field_at(i);
2344         if (at->isa_oopptr() != nullptr) {
2345           Node* arg = call->in(i);
2346           if (arg->is_AddP()) {
2347             arg = get_addp_base(arg);
2348           }
2349           assert(ptnode_adr(arg->_idx) != nullptr, "should be defined already");
2350           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2351         }
2352       }
2353     }
2354   }
2355 }
2356 
2357 
2358 // Finish Graph construction.
2359 bool ConnectionGraph::complete_connection_graph(
2360                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
2361                          GrowableArray<JavaObjectNode*>& non_escaped_allocs_worklist,
2362                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
2363                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
2364   // Normally only 1-3 passes needed to build Connection Graph depending
2365   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
2366   // Set limit to 20 to catch situation when something did go wrong and
2367   // bailout Escape Analysis.
2368   // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag.
2369 #define GRAPH_BUILD_ITER_LIMIT 20
2370 
2371   // Propagate GlobalEscape and ArgEscape escape states and check that
2372   // we still have non-escaping objects. The method pushs on _worklist
2373   // Field nodes which reference phantom_object.
2374   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_allocs_worklist)) {
2375     return false; // Nothing to do.
2376   }
2377   // Now propagate references to all JavaObject nodes.
2378   int java_objects_length = java_objects_worklist.length();
2379   elapsedTimer build_time;
2380   build_time.start();
2381   elapsedTimer time;
2382   bool timeout = false;
2383   int new_edges = 1;
2384   int iterations = 0;
2385   do {
2386     while ((new_edges > 0) &&
2387            (iterations++ < GRAPH_BUILD_ITER_LIMIT)) {
2388       double start_time = time.seconds();
2389       time.start();
2390       new_edges = 0;
2391       // Propagate references to phantom_object for nodes pushed on _worklist
2392       // by find_non_escaped_objects() and find_field_value().
2393       new_edges += add_java_object_edges(phantom_obj, false);
2394       for (int next = 0; next < java_objects_length; ++next) {
2395         JavaObjectNode* ptn = java_objects_worklist.at(next);
2396         new_edges += add_java_object_edges(ptn, true);
2397 
2398 #define SAMPLE_SIZE 4
2399         if ((next % SAMPLE_SIZE) == 0) {
2400           // Each 4 iterations calculate how much time it will take
2401           // to complete graph construction.
2402           time.stop();
2403           // Poll for requests from shutdown mechanism to quiesce compiler
2404           // because Connection graph construction may take long time.
2405           CompileBroker::maybe_block();
2406           double stop_time = time.seconds();
2407           double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE;
2408           double time_until_end = time_per_iter * (double)(java_objects_length - next);
2409           if ((start_time + time_until_end) >= EscapeAnalysisTimeout) {
2410             timeout = true;
2411             break; // Timeout
2412           }
2413           start_time = stop_time;
2414           time.start();
2415         }
2416 #undef SAMPLE_SIZE
2417 
2418       }
2419       if (timeout) break;
2420       if (new_edges > 0) {
2421         // Update escape states on each iteration if graph was updated.
2422         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_allocs_worklist)) {
2423           return false; // Nothing to do.
2424         }
2425       }
2426       time.stop();
2427       if (time.seconds() >= EscapeAnalysisTimeout) {
2428         timeout = true;
2429         break;
2430       }
2431       _compile->print_method(PHASE_EA_COMPLETE_CONNECTION_GRAPH_ITER, 5);
2432     }
2433     if ((iterations < GRAPH_BUILD_ITER_LIMIT) && !timeout) {
2434       time.start();
2435       // Find fields which have unknown value.
2436       int fields_length = oop_fields_worklist.length();
2437       for (int next = 0; next < fields_length; next++) {
2438         FieldNode* field = oop_fields_worklist.at(next);
2439         if (field->edge_count() == 0) {
2440           new_edges += find_field_value(field);
2441           // This code may added new edges to phantom_object.
2442           // Need an other cycle to propagate references to phantom_object.
2443         }
2444       }
2445       time.stop();
2446       if (time.seconds() >= EscapeAnalysisTimeout) {
2447         timeout = true;
2448         break;
2449       }
2450     } else {
2451       new_edges = 0; // Bailout
2452     }
2453   } while (new_edges > 0);
2454 
2455   build_time.stop();
2456   _build_time = build_time.seconds();
2457   _build_iterations = iterations;
2458 
2459   // Bailout if passed limits.
2460   if ((iterations >= GRAPH_BUILD_ITER_LIMIT) || timeout) {
2461     Compile* C = _compile;
2462     if (C->log() != nullptr) {
2463       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
2464       C->log()->text("%s", timeout ? "time" : "iterations");
2465       C->log()->end_elem(" limit'");
2466     }
2467     assert(ExitEscapeAnalysisOnTimeout, "infinite EA connection graph build during invocation %d (%f sec, %d iterations) with %d nodes and worklist size %d",
2468            _invocation, _build_time, _build_iterations, nodes_size(), ptnodes_worklist.length());
2469     // Possible infinite build_connection_graph loop,
2470     // bailout (no changes to ideal graph were made).
2471     return false;
2472   }
2473 
2474 #undef GRAPH_BUILD_ITER_LIMIT
2475 
2476   // Find fields initialized by null for non-escaping Allocations.
2477   int non_escaped_length = non_escaped_allocs_worklist.length();
2478   for (int next = 0; next < non_escaped_length; next++) {
2479     JavaObjectNode* ptn = non_escaped_allocs_worklist.at(next);
2480     PointsToNode::EscapeState es = ptn->escape_state();
2481     assert(es <= PointsToNode::ArgEscape, "sanity");
2482     if (es == PointsToNode::NoEscape) {
2483       if (find_init_values_null(ptn, _igvn) > 0) {
2484         // Adding references to null object does not change escape states
2485         // since it does not escape. Also no fields are added to null object.
2486         add_java_object_edges(null_obj, false);
2487       }
2488     }
2489     Node* n = ptn->ideal_node();
2490     if (n->is_Allocate()) {
2491       // The object allocated by this Allocate node will never be
2492       // seen by an other thread. Mark it so that when it is
2493       // expanded no MemBarStoreStore is added.
2494       InitializeNode* ini = n->as_Allocate()->initialization();
2495       if (ini != nullptr)
2496         ini->set_does_not_escape();
2497     }
2498   }
2499   return true; // Finished graph construction.
2500 }
2501 
2502 // Propagate GlobalEscape and ArgEscape escape states to all nodes
2503 // and check that we still have non-escaping java objects.
2504 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
2505                                                GrowableArray<JavaObjectNode*>& non_escaped_allocs_worklist,
2506                                                bool print_method) {
2507   GrowableArray<PointsToNode*> escape_worklist;
2508   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
2509   int ptnodes_length = ptnodes_worklist.length();
2510   for (int next = 0; next < ptnodes_length; ++next) {
2511     PointsToNode* ptn = ptnodes_worklist.at(next);
2512     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
2513         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
2514       escape_worklist.push(ptn);
2515     }
2516   }
2517   // Set escape states to referenced nodes (edges list).
2518   while (escape_worklist.length() > 0) {
2519     PointsToNode* ptn = escape_worklist.pop();
2520     PointsToNode::EscapeState es  = ptn->escape_state();
2521     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
2522     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
2523         es >= PointsToNode::ArgEscape) {
2524       // GlobalEscape or ArgEscape state of field means it has unknown value.
2525       if (add_edge(ptn, phantom_obj)) {
2526         // New edge was added
2527         add_field_uses_to_worklist(ptn->as_Field());
2528       }
2529     }
2530     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2531       PointsToNode* e = i.get();
2532       if (e->is_Arraycopy()) {
2533         assert(ptn->arraycopy_dst(), "sanity");
2534         // Propagate only fields escape state through arraycopy edge.
2535         if (e->fields_escape_state() < field_es) {
2536           set_fields_escape_state(e, field_es NOT_PRODUCT(COMMA trace_propagate_message(ptn)));
2537           escape_worklist.push(e);
2538         }
2539       } else if (es >= field_es) {
2540         // fields_escape_state is also set to 'es' if it is less than 'es'.
2541         if (e->escape_state() < es) {
2542           set_escape_state(e, es NOT_PRODUCT(COMMA trace_propagate_message(ptn)));
2543           escape_worklist.push(e);
2544         }
2545       } else {
2546         // Propagate field escape state.
2547         bool es_changed = false;
2548         if (e->fields_escape_state() < field_es) {
2549           set_fields_escape_state(e, field_es NOT_PRODUCT(COMMA trace_propagate_message(ptn)));
2550           es_changed = true;
2551         }
2552         if ((e->escape_state() < field_es) &&
2553             e->is_Field() && ptn->is_JavaObject() &&
2554             e->as_Field()->is_oop()) {
2555           // Change escape state of referenced fields.
2556           set_escape_state(e, field_es NOT_PRODUCT(COMMA trace_propagate_message(ptn)));
2557           es_changed = true;
2558         } else if (e->escape_state() < es) {
2559           set_escape_state(e, es NOT_PRODUCT(COMMA trace_propagate_message(ptn)));
2560           es_changed = true;
2561         }
2562         if (es_changed) {
2563           escape_worklist.push(e);
2564         }
2565       }
2566       if (print_method) {
2567         _compile->print_method(PHASE_EA_CONNECTION_GRAPH_PROPAGATE_ITER, 6, e->ideal_node());
2568       }
2569     }
2570   }
2571   // Remove escaped objects from non_escaped list.
2572   for (int next = non_escaped_allocs_worklist.length()-1; next >= 0 ; --next) {
2573     JavaObjectNode* ptn = non_escaped_allocs_worklist.at(next);
2574     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
2575       non_escaped_allocs_worklist.delete_at(next);
2576     }
2577     if (ptn->escape_state() == PointsToNode::NoEscape) {
2578       // Find fields in non-escaped allocations which have unknown value.
2579       find_init_values_phantom(ptn);
2580     }
2581   }
2582   return (non_escaped_allocs_worklist.length() > 0);
2583 }
2584 
2585 // Add all references to JavaObject node by walking over all uses.
2586 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
2587   int new_edges = 0;
2588   if (populate_worklist) {
2589     // Populate _worklist by uses of jobj's uses.
2590     for (UseIterator i(jobj); i.has_next(); i.next()) {
2591       PointsToNode* use = i.get();
2592       if (use->is_Arraycopy()) {
2593         continue;
2594       }
2595       add_uses_to_worklist(use);
2596       if (use->is_Field() && use->as_Field()->is_oop()) {
2597         // Put on worklist all field's uses (loads) and
2598         // related field nodes (same base and offset).
2599         add_field_uses_to_worklist(use->as_Field());
2600       }
2601     }
2602   }
2603   for (int l = 0; l < _worklist.length(); l++) {
2604     PointsToNode* use = _worklist.at(l);
2605     if (PointsToNode::is_base_use(use)) {
2606       // Add reference from jobj to field and from field to jobj (field's base).
2607       use = PointsToNode::get_use_node(use)->as_Field();
2608       if (add_base(use->as_Field(), jobj)) {
2609         new_edges++;
2610       }
2611       continue;
2612     }
2613     assert(!use->is_JavaObject(), "sanity");
2614     if (use->is_Arraycopy()) {
2615       if (jobj == null_obj) { // null object does not have field edges
2616         continue;
2617       }
2618       // Added edge from Arraycopy node to arraycopy's source java object
2619       if (add_edge(use, jobj)) {
2620         jobj->set_arraycopy_src();
2621         new_edges++;
2622       }
2623       // and stop here.
2624       continue;
2625     }
2626     if (!add_edge(use, jobj)) {
2627       continue; // No new edge added, there was such edge already.
2628     }
2629     new_edges++;
2630     if (use->is_LocalVar()) {
2631       add_uses_to_worklist(use);
2632       if (use->arraycopy_dst()) {
2633         for (EdgeIterator i(use); i.has_next(); i.next()) {
2634           PointsToNode* e = i.get();
2635           if (e->is_Arraycopy()) {
2636             if (jobj == null_obj) { // null object does not have field edges
2637               continue;
2638             }
2639             // Add edge from arraycopy's destination java object to Arraycopy node.
2640             if (add_edge(jobj, e)) {
2641               new_edges++;
2642               jobj->set_arraycopy_dst();
2643             }
2644           }
2645         }
2646       }
2647     } else {
2648       // Added new edge to stored in field values.
2649       // Put on worklist all field's uses (loads) and
2650       // related field nodes (same base and offset).
2651       add_field_uses_to_worklist(use->as_Field());
2652     }
2653   }
2654   _worklist.clear();
2655   _in_worklist.reset();
2656   return new_edges;
2657 }
2658 
2659 // Put on worklist all related field nodes.
2660 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
2661   assert(field->is_oop(), "sanity");
2662   int offset = field->offset();
2663   add_uses_to_worklist(field);
2664   // Loop over all bases of this field and push on worklist Field nodes
2665   // with the same offset and base (since they may reference the same field).
2666   for (BaseIterator i(field); i.has_next(); i.next()) {
2667     PointsToNode* base = i.get();
2668     add_fields_to_worklist(field, base);
2669     // Check if the base was source object of arraycopy and go over arraycopy's
2670     // destination objects since values stored to a field of source object are
2671     // accessible by uses (loads) of fields of destination objects.
2672     if (base->arraycopy_src()) {
2673       for (UseIterator j(base); j.has_next(); j.next()) {
2674         PointsToNode* arycp = j.get();
2675         if (arycp->is_Arraycopy()) {
2676           for (UseIterator k(arycp); k.has_next(); k.next()) {
2677             PointsToNode* abase = k.get();
2678             if (abase->arraycopy_dst() && abase != base) {
2679               // Look for the same arraycopy reference.
2680               add_fields_to_worklist(field, abase);
2681             }
2682           }
2683         }
2684       }
2685     }
2686   }
2687 }
2688 
2689 // Put on worklist all related field nodes.
2690 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
2691   int offset = field->offset();
2692   if (base->is_LocalVar()) {
2693     for (UseIterator j(base); j.has_next(); j.next()) {
2694       PointsToNode* f = j.get();
2695       if (PointsToNode::is_base_use(f)) { // Field
2696         f = PointsToNode::get_use_node(f);
2697         if (f == field || !f->as_Field()->is_oop()) {
2698           continue;
2699         }
2700         int offs = f->as_Field()->offset();
2701         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
2702           add_to_worklist(f);
2703         }
2704       }
2705     }
2706   } else {
2707     assert(base->is_JavaObject(), "sanity");
2708     if (// Skip phantom_object since it is only used to indicate that
2709         // this field's content globally escapes.
2710         (base != phantom_obj) &&
2711         // null object node does not have fields.
2712         (base != null_obj)) {
2713       for (EdgeIterator i(base); i.has_next(); i.next()) {
2714         PointsToNode* f = i.get();
2715         // Skip arraycopy edge since store to destination object field
2716         // does not update value in source object field.
2717         if (f->is_Arraycopy()) {
2718           assert(base->arraycopy_dst(), "sanity");
2719           continue;
2720         }
2721         if (f == field || !f->as_Field()->is_oop()) {
2722           continue;
2723         }
2724         int offs = f->as_Field()->offset();
2725         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
2726           add_to_worklist(f);
2727         }
2728       }
2729     }
2730   }
2731 }
2732 
2733 // Find fields which have unknown value.
2734 int ConnectionGraph::find_field_value(FieldNode* field) {
2735   // Escaped fields should have init value already.
2736   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
2737   int new_edges = 0;
2738   for (BaseIterator i(field); i.has_next(); i.next()) {
2739     PointsToNode* base = i.get();
2740     if (base->is_JavaObject()) {
2741       // Skip Allocate's fields which will be processed later.
2742       if (base->ideal_node()->is_Allocate()) {
2743         return 0;
2744       }
2745       assert(base == null_obj, "only null ptr base expected here");
2746     }
2747   }
2748   if (add_edge(field, phantom_obj)) {
2749     // New edge was added
2750     new_edges++;
2751     add_field_uses_to_worklist(field);
2752   }
2753   return new_edges;
2754 }
2755 
2756 // Find fields initializing values for allocations.
2757 int ConnectionGraph::find_init_values_phantom(JavaObjectNode* pta) {
2758   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
2759   Node* alloc = pta->ideal_node();
2760 
2761   // Do nothing for Allocate nodes since its fields values are
2762   // "known" unless they are initialized by arraycopy/clone.
2763   if (alloc->is_Allocate() && !pta->arraycopy_dst()) {
2764     return 0;
2765   }
2766   assert(pta->arraycopy_dst() || alloc->as_CallStaticJava(), "sanity");
2767 #ifdef ASSERT
2768   if (!pta->arraycopy_dst() && alloc->as_CallStaticJava()->method() == nullptr) {
2769     const char* name = alloc->as_CallStaticJava()->_name;
2770     assert(strncmp(name, "C2 Runtime multianewarray", 25) == 0, "sanity");
2771   }
2772 #endif
2773   // Non-escaped allocation returned from Java or runtime call have unknown values in fields.
2774   int new_edges = 0;
2775   for (EdgeIterator i(pta); i.has_next(); i.next()) {
2776     PointsToNode* field = i.get();
2777     if (field->is_Field() && field->as_Field()->is_oop()) {
2778       if (add_edge(field, phantom_obj)) {
2779         // New edge was added
2780         new_edges++;
2781         add_field_uses_to_worklist(field->as_Field());
2782       }
2783     }
2784   }
2785   return new_edges;
2786 }
2787 
2788 // Find fields initializing values for allocations.
2789 int ConnectionGraph::find_init_values_null(JavaObjectNode* pta, PhaseValues* phase) {
2790   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
2791   Node* alloc = pta->ideal_node();
2792   // Do nothing for Call nodes since its fields values are unknown.
2793   if (!alloc->is_Allocate()) {
2794     return 0;
2795   }
2796   InitializeNode* ini = alloc->as_Allocate()->initialization();
2797   bool visited_bottom_offset = false;
2798   GrowableArray<int> offsets_worklist;
2799   int new_edges = 0;
2800 
2801   // Check if an oop field's initializing value is recorded and add
2802   // a corresponding null if field's value if it is not recorded.
2803   // Connection Graph does not record a default initialization by null
2804   // captured by Initialize node.
2805   //
2806   for (EdgeIterator i(pta); i.has_next(); i.next()) {
2807     PointsToNode* field = i.get(); // Field (AddP)
2808     if (!field->is_Field() || !field->as_Field()->is_oop()) {
2809       continue; // Not oop field
2810     }
2811     int offset = field->as_Field()->offset();
2812     if (offset == Type::OffsetBot) {
2813       if (!visited_bottom_offset) {
2814         // OffsetBot is used to reference array's element,
2815         // always add reference to null to all Field nodes since we don't
2816         // known which element is referenced.
2817         if (add_edge(field, null_obj)) {
2818           // New edge was added
2819           new_edges++;
2820           add_field_uses_to_worklist(field->as_Field());
2821           visited_bottom_offset = true;
2822         }
2823       }
2824     } else {
2825       // Check only oop fields.
2826       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
2827       if (adr_type->isa_rawptr()) {
2828 #ifdef ASSERT
2829         // Raw pointers are used for initializing stores so skip it
2830         // since it should be recorded already
2831         Node* base = get_addp_base(field->ideal_node());
2832         assert(adr_type->isa_rawptr() && is_captured_store_address(field->ideal_node()), "unexpected pointer type");
2833 #endif
2834         continue;
2835       }
2836       if (!offsets_worklist.contains(offset)) {
2837         offsets_worklist.append(offset);
2838         Node* value = nullptr;
2839         if (ini != nullptr) {
2840           // StoreP::value_basic_type() == T_ADDRESS
2841           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
2842           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
2843           // Make sure initializing store has the same type as this AddP.
2844           // This AddP may reference non existing field because it is on a
2845           // dead branch of bimorphic call which is not eliminated yet.
2846           if (store != nullptr && store->is_Store() &&
2847               store->as_Store()->value_basic_type() == ft) {
2848             value = store->in(MemNode::ValueIn);
2849 #ifdef ASSERT
2850             if (VerifyConnectionGraph) {
2851               // Verify that AddP already points to all objects the value points to.
2852               PointsToNode* val = ptnode_adr(value->_idx);
2853               assert((val != nullptr), "should be processed already");
2854               PointsToNode* missed_obj = nullptr;
2855               if (val->is_JavaObject()) {
2856                 if (!field->points_to(val->as_JavaObject())) {
2857                   missed_obj = val;
2858                 }
2859               } else {
2860                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
2861                   tty->print_cr("----------init store has invalid value -----");
2862                   store->dump();
2863                   val->dump();
2864                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
2865                 }
2866                 for (EdgeIterator j(val); j.has_next(); j.next()) {
2867                   PointsToNode* obj = j.get();
2868                   if (obj->is_JavaObject()) {
2869                     if (!field->points_to(obj->as_JavaObject())) {
2870                       missed_obj = obj;
2871                       break;
2872                     }
2873                   }
2874                 }
2875               }
2876               if (missed_obj != nullptr) {
2877                 tty->print_cr("----------field---------------------------------");
2878                 field->dump();
2879                 tty->print_cr("----------missed referernce to object-----------");
2880                 missed_obj->dump();
2881                 tty->print_cr("----------object referernced by init store -----");
2882                 store->dump();
2883                 val->dump();
2884                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
2885               }
2886             }
2887 #endif
2888           } else {
2889             // There could be initializing stores which follow allocation.
2890             // For example, a volatile field store is not collected
2891             // by Initialize node.
2892             //
2893             // Need to check for dependent loads to separate such stores from
2894             // stores which follow loads. For now, add initial value null so
2895             // that compare pointers optimization works correctly.
2896           }
2897         }
2898         if (value == nullptr) {
2899           // A field's initializing value was not recorded. Add null.
2900           if (add_edge(field, null_obj)) {
2901             // New edge was added
2902             new_edges++;
2903             add_field_uses_to_worklist(field->as_Field());
2904           }
2905         }
2906       }
2907     }
2908   }
2909   return new_edges;
2910 }
2911 
2912 // Adjust scalar_replaceable state after Connection Graph is built.
2913 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj, Unique_Node_List &reducible_merges) {
2914   // A Phi 'x' is a _candidate_ to be reducible if 'can_reduce_phi(x)'
2915   // returns true. If one of the constraints in this method set 'jobj' to NSR
2916   // then the candidate Phi is discarded. If the Phi has another SR 'jobj' as
2917   // input, 'adjust_scalar_replaceable_state' will eventually be called with
2918   // that other object and the Phi will become a reducible Phi.
2919   // There could be multiple merges involving the same jobj.
2920   Unique_Node_List candidates;
2921 
2922   // Search for non-escaping objects which are not scalar replaceable
2923   // and mark them to propagate the state to referenced objects.
2924 
2925   for (UseIterator i(jobj); i.has_next(); i.next()) {
2926     PointsToNode* use = i.get();
2927     if (use->is_Arraycopy()) {
2928       continue;
2929     }
2930     if (use->is_Field()) {
2931       FieldNode* field = use->as_Field();
2932       assert(field->is_oop() && field->scalar_replaceable(), "sanity");
2933       // 1. An object is not scalar replaceable if the field into which it is
2934       // stored has unknown offset (stored into unknown element of an array).
2935       if (field->offset() == Type::OffsetBot) {
2936         set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is stored at unknown offset"));
2937         return;
2938       }
2939       for (BaseIterator i(field); i.has_next(); i.next()) {
2940         PointsToNode* base = i.get();
2941         // 2. An object is not scalar replaceable if the field into which it is
2942         // stored has multiple bases one of which is null.
2943         if ((base == null_obj) && (field->base_count() > 1)) {
2944           set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is stored into field with potentially null base"));
2945           return;
2946         }
2947         // 2.5. An object is not scalar replaceable if the field into which it is
2948         // stored has NSR base.
2949         if (!base->scalar_replaceable()) {
2950           set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is stored into field with NSR base"));
2951           return;
2952         }
2953       }
2954     }
2955     assert(use->is_Field() || use->is_LocalVar(), "sanity");
2956     // 3. An object is not scalar replaceable if it is merged with other objects
2957     // and we can't remove the merge
2958     for (EdgeIterator j(use); j.has_next(); j.next()) {
2959       PointsToNode* ptn = j.get();
2960       if (ptn->is_JavaObject() && ptn != jobj) {
2961         Node* use_n = use->ideal_node();
2962 
2963         // These other local vars may point to multiple objects through a Phi
2964         // In this case we skip them and see if we can reduce the Phi.
2965         if (use_n->is_CastPP() || use_n->is_CheckCastPP()) {
2966           use_n = use_n->in(1);
2967         }
2968 
2969         // If it's already a candidate or confirmed reducible merge we can skip verification
2970         if (candidates.member(use_n) || reducible_merges.member(use_n)) {
2971           continue;
2972         }
2973 
2974         if (use_n->is_Phi() && can_reduce_phi(use_n->as_Phi())) {
2975           candidates.push(use_n);
2976         } else {
2977           // Mark all objects as NSR if we can't remove the merge
2978           set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA trace_merged_message(ptn)));
2979           set_not_scalar_replaceable(ptn NOT_PRODUCT(COMMA trace_merged_message(jobj)));
2980         }
2981       }
2982     }
2983     if (!jobj->scalar_replaceable()) {
2984       return;
2985     }
2986   }
2987 
2988   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
2989     if (j.get()->is_Arraycopy()) {
2990       continue;
2991     }
2992 
2993     // Non-escaping object node should point only to field nodes.
2994     FieldNode* field = j.get()->as_Field();
2995     int offset = field->as_Field()->offset();
2996 
2997     // 4. An object is not scalar replaceable if it has a field with unknown
2998     // offset (array's element is accessed in loop).
2999     if (offset == Type::OffsetBot) {
3000       set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "has field with unknown offset"));
3001       return;
3002     }
3003     // 5. Currently an object is not scalar replaceable if a LoadStore node
3004     // access its field since the field value is unknown after it.
3005     //
3006     Node* n = field->ideal_node();
3007 
3008     // Test for an unsafe access that was parsed as maybe off heap
3009     // (with a CheckCastPP to raw memory).
3010     assert(n->is_AddP(), "expect an address computation");
3011     if (n->in(AddPNode::Base)->is_top() &&
3012         n->in(AddPNode::Address)->Opcode() == Op_CheckCastPP) {
3013       assert(n->in(AddPNode::Address)->bottom_type()->isa_rawptr(), "raw address so raw cast expected");
3014       assert(_igvn->type(n->in(AddPNode::Address)->in(1))->isa_oopptr(), "cast pattern at unsafe access expected");
3015       set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is used as base of mixed unsafe access"));
3016       return;
3017     }
3018 
3019     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3020       Node* u = n->fast_out(i);
3021       if (u->is_LoadStore() || (u->is_Mem() && u->as_Mem()->is_mismatched_access())) {
3022         set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is used in LoadStore or mismatched access"));
3023         return;
3024       }
3025     }
3026 
3027     // 6. Or the address may point to more then one object. This may produce
3028     // the false positive result (set not scalar replaceable)
3029     // since the flow-insensitive escape analysis can't separate
3030     // the case when stores overwrite the field's value from the case
3031     // when stores happened on different control branches.
3032     //
3033     // Note: it will disable scalar replacement in some cases:
3034     //
3035     //    Point p[] = new Point[1];
3036     //    p[0] = new Point(); // Will be not scalar replaced
3037     //
3038     // but it will save us from incorrect optimizations in next cases:
3039     //
3040     //    Point p[] = new Point[1];
3041     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
3042     //
3043     if (field->base_count() > 1 && candidates.size() == 0) {
3044       if (has_non_reducible_merge(field, reducible_merges)) {
3045         for (BaseIterator i(field); i.has_next(); i.next()) {
3046           PointsToNode* base = i.get();
3047           // Don't take into account LocalVar nodes which
3048           // may point to only one object which should be also
3049           // this field's base by now.
3050           if (base->is_JavaObject() && base != jobj) {
3051             // Mark all bases.
3052             set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "may point to more than one object"));
3053             set_not_scalar_replaceable(base NOT_PRODUCT(COMMA "may point to more than one object"));
3054           }
3055         }
3056 
3057         if (!jobj->scalar_replaceable()) {
3058           return;
3059         }
3060       }
3061     }
3062   }
3063 
3064   // The candidate is truly a reducible merge only if none of the other
3065   // constraints ruled it as NSR. There could be multiple merges involving the
3066   // same jobj.
3067   assert(jobj->scalar_replaceable(), "sanity");
3068   for (uint i = 0; i < candidates.size(); i++ ) {
3069     Node* candidate = candidates.at(i);
3070     reducible_merges.push(candidate);
3071   }
3072 }
3073 
3074 bool ConnectionGraph::has_non_reducible_merge(FieldNode* field, Unique_Node_List& reducible_merges) {
3075   for (BaseIterator i(field); i.has_next(); i.next()) {
3076     Node* base = i.get()->ideal_node();
3077     if (base->is_Phi() && !reducible_merges.member(base)) {
3078       return true;
3079     }
3080   }
3081   return false;
3082 }
3083 
3084 void ConnectionGraph::revisit_reducible_phi_status(JavaObjectNode* jobj, Unique_Node_List& reducible_merges) {
3085   assert(jobj != nullptr && !jobj->scalar_replaceable(), "jobj should be set as NSR before calling this function.");
3086 
3087   // Look for 'phis' that refer to 'jobj' as the last
3088   // remaining scalar replaceable input.
3089   uint reducible_merges_cnt = reducible_merges.size();
3090   for (uint i = 0; i < reducible_merges_cnt; i++) {
3091     Node* phi = reducible_merges.at(i);
3092 
3093     // This 'Phi' will be a 'good' if it still points to
3094     // at least one scalar replaceable object. Note that 'obj'
3095     // was/should be marked as NSR before calling this function.
3096     bool good_phi = false;
3097 
3098     for (uint j = 1; j < phi->req(); j++) {
3099       JavaObjectNode* phi_in_obj = unique_java_object(phi->in(j));
3100       if (phi_in_obj != nullptr && phi_in_obj->scalar_replaceable()) {
3101         good_phi = true;
3102         break;
3103       }
3104     }
3105 
3106     if (!good_phi) {
3107       NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Phi %d became non-reducible after node %d became NSR.", phi->_idx, jobj->ideal_node()->_idx);)
3108       reducible_merges.remove(i);
3109 
3110       // Decrement the index because the 'remove' call above actually
3111       // moves the last entry of the list to position 'i'.
3112       i--;
3113 
3114       reducible_merges_cnt--;
3115     }
3116   }
3117 }
3118 
3119 // Propagate NSR (Not scalar replaceable) state.
3120 void ConnectionGraph::find_scalar_replaceable_allocs(GrowableArray<JavaObjectNode*>& jobj_worklist, Unique_Node_List &reducible_merges) {
3121   int jobj_length = jobj_worklist.length();
3122   bool found_nsr_alloc = true;
3123   while (found_nsr_alloc) {
3124     found_nsr_alloc = false;
3125     for (int next = 0; next < jobj_length; ++next) {
3126       JavaObjectNode* jobj = jobj_worklist.at(next);
3127       for (UseIterator i(jobj); (jobj->scalar_replaceable() && i.has_next()); i.next()) {
3128         PointsToNode* use = i.get();
3129         if (use->is_Field()) {
3130           FieldNode* field = use->as_Field();
3131           assert(field->is_oop() && field->scalar_replaceable(), "sanity");
3132           assert(field->offset() != Type::OffsetBot, "sanity");
3133           for (BaseIterator i(field); i.has_next(); i.next()) {
3134             PointsToNode* base = i.get();
3135             // An object is not scalar replaceable if the field into which
3136             // it is stored has NSR base.
3137             if ((base != null_obj) && !base->scalar_replaceable()) {
3138               set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is stored into field with NSR base"));
3139               // Any merge that had only 'jobj' as scalar-replaceable will now be non-reducible,
3140               // because there is no point in reducing a Phi that won't improve the number of SR
3141               // objects.
3142               revisit_reducible_phi_status(jobj, reducible_merges);
3143               found_nsr_alloc = true;
3144               break;
3145             }
3146           }
3147         } else if (use->is_LocalVar()) {
3148           Node* phi = use->ideal_node();
3149           if (phi->Opcode() == Op_Phi && reducible_merges.member(phi) && !can_reduce_phi(phi->as_Phi())) {
3150             set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is merged in a non-reducible phi"));
3151             reducible_merges.yank(phi);
3152             found_nsr_alloc = true;
3153             break;
3154           }
3155         }
3156         _compile->print_method(PHASE_EA_PROPAGATE_NSR_ITER, 5, jobj->ideal_node());
3157       }
3158     }
3159   }
3160 }
3161 
3162 #ifdef ASSERT
3163 void ConnectionGraph::verify_connection_graph(
3164                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
3165                          GrowableArray<JavaObjectNode*>& non_escaped_allocs_worklist,
3166                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
3167                          GrowableArray<Node*>& addp_worklist) {
3168   // Verify that graph is complete - no new edges could be added.
3169   int java_objects_length = java_objects_worklist.length();
3170   int non_escaped_length  = non_escaped_allocs_worklist.length();
3171   int new_edges = 0;
3172   for (int next = 0; next < java_objects_length; ++next) {
3173     JavaObjectNode* ptn = java_objects_worklist.at(next);
3174     new_edges += add_java_object_edges(ptn, true);
3175   }
3176   assert(new_edges == 0, "graph was not complete");
3177   // Verify that escape state is final.
3178   int length = non_escaped_allocs_worklist.length();
3179   find_non_escaped_objects(ptnodes_worklist, non_escaped_allocs_worklist, /*print_method=*/ false);
3180   assert((non_escaped_length == non_escaped_allocs_worklist.length()) &&
3181          (non_escaped_length == length) &&
3182          (_worklist.length() == 0), "escape state was not final");
3183 
3184   // Verify fields information.
3185   int addp_length = addp_worklist.length();
3186   for (int next = 0; next < addp_length; ++next ) {
3187     Node* n = addp_worklist.at(next);
3188     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
3189     if (field->is_oop()) {
3190       // Verify that field has all bases
3191       Node* base = get_addp_base(n);
3192       PointsToNode* ptn = ptnode_adr(base->_idx);
3193       if (ptn->is_JavaObject()) {
3194         assert(field->has_base(ptn->as_JavaObject()), "sanity");
3195       } else {
3196         assert(ptn->is_LocalVar(), "sanity");
3197         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
3198           PointsToNode* e = i.get();
3199           if (e->is_JavaObject()) {
3200             assert(field->has_base(e->as_JavaObject()), "sanity");
3201           }
3202         }
3203       }
3204       // Verify that all fields have initializing values.
3205       if (field->edge_count() == 0) {
3206         tty->print_cr("----------field does not have references----------");
3207         field->dump();
3208         for (BaseIterator i(field); i.has_next(); i.next()) {
3209           PointsToNode* base = i.get();
3210           tty->print_cr("----------field has next base---------------------");
3211           base->dump();
3212           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
3213             tty->print_cr("----------base has fields-------------------------");
3214             for (EdgeIterator j(base); j.has_next(); j.next()) {
3215               j.get()->dump();
3216             }
3217             tty->print_cr("----------base has references---------------------");
3218             for (UseIterator j(base); j.has_next(); j.next()) {
3219               j.get()->dump();
3220             }
3221           }
3222         }
3223         for (UseIterator i(field); i.has_next(); i.next()) {
3224           i.get()->dump();
3225         }
3226         assert(field->edge_count() > 0, "sanity");
3227       }
3228     }
3229   }
3230 }
3231 #endif
3232 
3233 // Optimize ideal graph.
3234 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
3235                                            GrowableArray<MemBarStoreStoreNode*>& storestore_worklist) {
3236   Compile* C = _compile;
3237   PhaseIterGVN* igvn = _igvn;
3238   if (EliminateLocks) {
3239     // Mark locks before changing ideal graph.
3240     int cnt = C->macro_count();
3241     for (int i = 0; i < cnt; i++) {
3242       Node *n = C->macro_node(i);
3243       if (n->is_AbstractLock()) { // Lock and Unlock nodes
3244         AbstractLockNode* alock = n->as_AbstractLock();
3245         if (!alock->is_non_esc_obj()) {
3246           if (can_eliminate_lock(alock)) {
3247             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
3248             // The lock could be marked eliminated by lock coarsening
3249             // code during first IGVN before EA. Replace coarsened flag
3250             // to eliminate all associated locks/unlocks.
3251 #ifdef ASSERT
3252             alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
3253 #endif
3254             alock->set_non_esc_obj();
3255           }
3256         }
3257       }
3258     }
3259   }
3260 
3261   if (OptimizePtrCompare) {
3262     for (int i = 0; i < ptr_cmp_worklist.length(); i++) {
3263       Node *n = ptr_cmp_worklist.at(i);
3264       assert(n->Opcode() == Op_CmpN || n->Opcode() == Op_CmpP, "must be");
3265       const TypeInt* tcmp = optimize_ptr_compare(n->in(1), n->in(2));
3266       if (tcmp->singleton()) {
3267         Node* cmp = igvn->makecon(tcmp);
3268 #ifndef PRODUCT
3269         if (PrintOptimizePtrCompare) {
3270           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (tcmp == TypeInt::CC_EQ ? "EQ" : "NotEQ"));
3271           if (Verbose) {
3272             n->dump(1);
3273           }
3274         }
3275 #endif
3276         igvn->replace_node(n, cmp);
3277       }
3278     }
3279   }
3280 
3281   // For MemBarStoreStore nodes added in library_call.cpp, check
3282   // escape status of associated AllocateNode and optimize out
3283   // MemBarStoreStore node if the allocated object never escapes.
3284   for (int i = 0; i < storestore_worklist.length(); i++) {
3285     Node* storestore = storestore_worklist.at(i);
3286     Node* alloc = storestore->in(MemBarNode::Precedent)->in(0);
3287     if (alloc->is_Allocate() && not_global_escape(alloc)) {
3288       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
3289       mb->init_req(TypeFunc::Memory,  storestore->in(TypeFunc::Memory));
3290       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
3291       igvn->register_new_node_with_optimizer(mb);
3292       igvn->replace_node(storestore, mb);
3293     }
3294   }
3295 }
3296 
3297 // Optimize objects compare.
3298 const TypeInt* ConnectionGraph::optimize_ptr_compare(Node* left, Node* right) {
3299   const TypeInt* UNKNOWN = TypeInt::CC;    // [-1, 0,1]
3300   if (!OptimizePtrCompare) {
3301     return UNKNOWN;
3302   }
3303   const TypeInt* EQ = TypeInt::CC_EQ; // [0] == ZERO
3304   const TypeInt* NE = TypeInt::CC_GT; // [1] == ONE
3305 
3306   PointsToNode* ptn1 = ptnode_adr(left->_idx);
3307   PointsToNode* ptn2 = ptnode_adr(right->_idx);
3308   JavaObjectNode* jobj1 = unique_java_object(left);
3309   JavaObjectNode* jobj2 = unique_java_object(right);
3310 
3311   // The use of this method during allocation merge reduction may cause 'left'
3312   // or 'right' be something (e.g., a Phi) that isn't in the connection graph or
3313   // that doesn't reference an unique java object.
3314   if (ptn1 == nullptr || ptn2 == nullptr ||
3315       jobj1 == nullptr || jobj2 == nullptr) {
3316     return UNKNOWN;
3317   }
3318 
3319   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
3320   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
3321 
3322   // Check simple cases first.
3323   if (jobj1 != nullptr) {
3324     if (jobj1->escape_state() == PointsToNode::NoEscape) {
3325       if (jobj1 == jobj2) {
3326         // Comparing the same not escaping object.
3327         return EQ;
3328       }
3329       Node* obj = jobj1->ideal_node();
3330       // Comparing not escaping allocation.
3331       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
3332           !ptn2->points_to(jobj1)) {
3333         return NE; // This includes nullness check.
3334       }
3335     }
3336   }
3337   if (jobj2 != nullptr) {
3338     if (jobj2->escape_state() == PointsToNode::NoEscape) {
3339       Node* obj = jobj2->ideal_node();
3340       // Comparing not escaping allocation.
3341       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
3342           !ptn1->points_to(jobj2)) {
3343         return NE; // This includes nullness check.
3344       }
3345     }
3346   }
3347   if (jobj1 != nullptr && jobj1 != phantom_obj &&
3348       jobj2 != nullptr && jobj2 != phantom_obj &&
3349       jobj1->ideal_node()->is_Con() &&
3350       jobj2->ideal_node()->is_Con()) {
3351     // Klass or String constants compare. Need to be careful with
3352     // compressed pointers - compare types of ConN and ConP instead of nodes.
3353     const Type* t1 = jobj1->ideal_node()->get_ptr_type();
3354     const Type* t2 = jobj2->ideal_node()->get_ptr_type();
3355     if (t1->make_ptr() == t2->make_ptr()) {
3356       return EQ;
3357     } else {
3358       return NE;
3359     }
3360   }
3361   if (ptn1->meet(ptn2)) {
3362     return UNKNOWN; // Sets are not disjoint
3363   }
3364 
3365   // Sets are disjoint.
3366   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
3367   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
3368   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
3369   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
3370   if ((set1_has_unknown_ptr && set2_has_null_ptr) ||
3371       (set2_has_unknown_ptr && set1_has_null_ptr)) {
3372     // Check nullness of unknown object.
3373     return UNKNOWN;
3374   }
3375 
3376   // Disjointness by itself is not sufficient since
3377   // alias analysis is not complete for escaped objects.
3378   // Disjoint sets are definitely unrelated only when
3379   // at least one set has only not escaping allocations.
3380   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
3381     if (ptn1->non_escaping_allocation()) {
3382       return NE;
3383     }
3384   }
3385   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
3386     if (ptn2->non_escaping_allocation()) {
3387       return NE;
3388     }
3389   }
3390   return UNKNOWN;
3391 }
3392 
3393 // Connection Graph construction functions.
3394 
3395 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
3396   PointsToNode* ptadr = _nodes.at(n->_idx);
3397   if (ptadr != nullptr) {
3398     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
3399     return;
3400   }
3401   Compile* C = _compile;
3402   ptadr = new (C->comp_arena()) LocalVarNode(this, n, es);
3403   map_ideal_node(n, ptadr);
3404 }
3405 
3406 PointsToNode* ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
3407   PointsToNode* ptadr = _nodes.at(n->_idx);
3408   if (ptadr != nullptr) {
3409     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
3410     return ptadr;
3411   }
3412   Compile* C = _compile;
3413   ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es);
3414   map_ideal_node(n, ptadr);
3415   return ptadr;
3416 }
3417 
3418 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
3419   PointsToNode* ptadr = _nodes.at(n->_idx);
3420   if (ptadr != nullptr) {
3421     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
3422     return;
3423   }
3424   bool unsafe = false;
3425   bool is_oop = is_oop_field(n, offset, &unsafe);
3426   if (unsafe) {
3427     es = PointsToNode::GlobalEscape;
3428   }
3429   Compile* C = _compile;
3430   FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop);
3431   map_ideal_node(n, field);
3432 }
3433 
3434 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
3435                                     PointsToNode* src, PointsToNode* dst) {
3436   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
3437   assert((src != null_obj) && (dst != null_obj), "not for ConP null");
3438   PointsToNode* ptadr = _nodes.at(n->_idx);
3439   if (ptadr != nullptr) {
3440     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
3441     return;
3442   }
3443   Compile* C = _compile;
3444   ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
3445   map_ideal_node(n, ptadr);
3446   // Add edge from arraycopy node to source object.
3447   (void)add_edge(ptadr, src);
3448   src->set_arraycopy_src();
3449   // Add edge from destination object to arraycopy node.
3450   (void)add_edge(dst, ptadr);
3451   dst->set_arraycopy_dst();
3452 }
3453 
3454 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
3455   const Type* adr_type = n->as_AddP()->bottom_type();
3456   BasicType bt = T_INT;
3457   if (offset == Type::OffsetBot) {
3458     // Check only oop fields.
3459     if (!adr_type->isa_aryptr() ||
3460         adr_type->isa_aryptr()->elem() == Type::BOTTOM ||
3461         adr_type->isa_aryptr()->elem()->make_oopptr() != nullptr) {
3462       // OffsetBot is used to reference array's element. Ignore first AddP.
3463       if (find_second_addp(n, n->in(AddPNode::Base)) == nullptr) {
3464         bt = T_OBJECT;
3465       }
3466     }
3467   } else if (offset != oopDesc::klass_offset_in_bytes()) {
3468     if (adr_type->isa_instptr()) {
3469       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
3470       if (field != nullptr) {
3471         bt = field->layout_type();
3472       } else {
3473         // Check for unsafe oop field access
3474         if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
3475             n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
3476             n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN)) {
3477           bt = T_OBJECT;
3478           (*unsafe) = true;
3479         }
3480       }
3481     } else if (adr_type->isa_aryptr()) {
3482       if (offset == arrayOopDesc::length_offset_in_bytes()) {
3483         // Ignore array length load.
3484       } else if (find_second_addp(n, n->in(AddPNode::Base)) != nullptr) {
3485         // Ignore first AddP.
3486       } else {
3487         const Type* elemtype = adr_type->isa_aryptr()->elem();
3488         bt = elemtype->array_element_basic_type();
3489       }
3490     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
3491       // Allocation initialization, ThreadLocal field access, unsafe access
3492       if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
3493           n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
3494           n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN)) {
3495         bt = T_OBJECT;
3496       }
3497     }
3498   }
3499   // Note: T_NARROWOOP is not classed as a real reference type
3500   return (is_reference_type(bt) || bt == T_NARROWOOP);
3501 }
3502 
3503 // Returns unique pointed java object or null.
3504 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) const {
3505   // If the node was created after the escape computation we can't answer.
3506   uint idx = n->_idx;
3507   if (idx >= nodes_size()) {
3508     return nullptr;
3509   }
3510   PointsToNode* ptn = ptnode_adr(idx);
3511   if (ptn == nullptr) {
3512     return nullptr;
3513   }
3514   if (ptn->is_JavaObject()) {
3515     return ptn->as_JavaObject();
3516   }
3517   assert(ptn->is_LocalVar(), "sanity");
3518   // Check all java objects it points to.
3519   JavaObjectNode* jobj = nullptr;
3520   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
3521     PointsToNode* e = i.get();
3522     if (e->is_JavaObject()) {
3523       if (jobj == nullptr) {
3524         jobj = e->as_JavaObject();
3525       } else if (jobj != e) {
3526         return nullptr;
3527       }
3528     }
3529   }
3530   return jobj;
3531 }
3532 
3533 // Return true if this node points only to non-escaping allocations.
3534 bool PointsToNode::non_escaping_allocation() {
3535   if (is_JavaObject()) {
3536     Node* n = ideal_node();
3537     if (n->is_Allocate() || n->is_CallStaticJava()) {
3538       return (escape_state() == PointsToNode::NoEscape);
3539     } else {
3540       return false;
3541     }
3542   }
3543   assert(is_LocalVar(), "sanity");
3544   // Check all java objects it points to.
3545   for (EdgeIterator i(this); i.has_next(); i.next()) {
3546     PointsToNode* e = i.get();
3547     if (e->is_JavaObject()) {
3548       Node* n = e->ideal_node();
3549       if ((e->escape_state() != PointsToNode::NoEscape) ||
3550           !(n->is_Allocate() || n->is_CallStaticJava())) {
3551         return false;
3552       }
3553     }
3554   }
3555   return true;
3556 }
3557 
3558 // Return true if we know the node does not escape globally.
3559 bool ConnectionGraph::not_global_escape(Node *n) {
3560   assert(!_collecting, "should not call during graph construction");
3561   // If the node was created after the escape computation we can't answer.
3562   uint idx = n->_idx;
3563   if (idx >= nodes_size()) {
3564     return false;
3565   }
3566   PointsToNode* ptn = ptnode_adr(idx);
3567   if (ptn == nullptr) {
3568     return false; // not in congraph (e.g. ConI)
3569   }
3570   PointsToNode::EscapeState es = ptn->escape_state();
3571   // If we have already computed a value, return it.
3572   if (es >= PointsToNode::GlobalEscape) {
3573     return false;
3574   }
3575   if (ptn->is_JavaObject()) {
3576     return true; // (es < PointsToNode::GlobalEscape);
3577   }
3578   assert(ptn->is_LocalVar(), "sanity");
3579   // Check all java objects it points to.
3580   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
3581     if (i.get()->escape_state() >= PointsToNode::GlobalEscape) {
3582       return false;
3583     }
3584   }
3585   return true;
3586 }
3587 
3588 // Return true if locked object does not escape globally
3589 // and locked code region (identified by BoxLockNode) is balanced:
3590 // all compiled code paths have corresponding Lock/Unlock pairs.
3591 bool ConnectionGraph::can_eliminate_lock(AbstractLockNode* alock) {
3592   if (alock->is_balanced() && not_global_escape(alock->obj_node())) {
3593     if (EliminateNestedLocks) {
3594       // We can mark whole locking region as Local only when only
3595       // one object is used for locking.
3596       alock->box_node()->as_BoxLock()->set_local();
3597     }
3598     return true;
3599   }
3600   return false;
3601 }
3602 
3603 // Helper functions
3604 
3605 // Return true if this node points to specified node or nodes it points to.
3606 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
3607   if (is_JavaObject()) {
3608     return (this == ptn);
3609   }
3610   assert(is_LocalVar() || is_Field(), "sanity");
3611   for (EdgeIterator i(this); i.has_next(); i.next()) {
3612     if (i.get() == ptn) {
3613       return true;
3614     }
3615   }
3616   return false;
3617 }
3618 
3619 // Return true if one node points to an other.
3620 bool PointsToNode::meet(PointsToNode* ptn) {
3621   if (this == ptn) {
3622     return true;
3623   } else if (ptn->is_JavaObject()) {
3624     return this->points_to(ptn->as_JavaObject());
3625   } else if (this->is_JavaObject()) {
3626     return ptn->points_to(this->as_JavaObject());
3627   }
3628   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
3629   int ptn_count =  ptn->edge_count();
3630   for (EdgeIterator i(this); i.has_next(); i.next()) {
3631     PointsToNode* this_e = i.get();
3632     for (int j = 0; j < ptn_count; j++) {
3633       if (this_e == ptn->edge(j)) {
3634         return true;
3635       }
3636     }
3637   }
3638   return false;
3639 }
3640 
3641 #ifdef ASSERT
3642 // Return true if bases point to this java object.
3643 bool FieldNode::has_base(JavaObjectNode* jobj) const {
3644   for (BaseIterator i(this); i.has_next(); i.next()) {
3645     if (i.get() == jobj) {
3646       return true;
3647     }
3648   }
3649   return false;
3650 }
3651 #endif
3652 
3653 bool ConnectionGraph::is_captured_store_address(Node* addp) {
3654   // Handle simple case first.
3655   assert(_igvn->type(addp)->isa_oopptr() == nullptr, "should be raw access");
3656   if (addp->in(AddPNode::Address)->is_Proj() && addp->in(AddPNode::Address)->in(0)->is_Allocate()) {
3657     return true;
3658   } else if (addp->in(AddPNode::Address)->is_Phi()) {
3659     for (DUIterator_Fast imax, i = addp->fast_outs(imax); i < imax; i++) {
3660       Node* addp_use = addp->fast_out(i);
3661       if (addp_use->is_Store()) {
3662         for (DUIterator_Fast jmax, j = addp_use->fast_outs(jmax); j < jmax; j++) {
3663           if (addp_use->fast_out(j)->is_Initialize()) {
3664             return true;
3665           }
3666         }
3667       }
3668     }
3669   }
3670   return false;
3671 }
3672 
3673 int ConnectionGraph::address_offset(Node* adr, PhaseValues* phase) {
3674   const Type *adr_type = phase->type(adr);
3675   if (adr->is_AddP() && adr_type->isa_oopptr() == nullptr && is_captured_store_address(adr)) {
3676     // We are computing a raw address for a store captured by an Initialize
3677     // compute an appropriate address type. AddP cases #3 and #5 (see below).
3678     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
3679     assert(offs != Type::OffsetBot ||
3680            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
3681            "offset must be a constant or it is initialization of array");
3682     return offs;
3683   }
3684   const TypePtr *t_ptr = adr_type->isa_ptr();
3685   assert(t_ptr != nullptr, "must be a pointer type");
3686   return t_ptr->offset();
3687 }
3688 
3689 Node* ConnectionGraph::get_addp_base(Node *addp) {
3690   assert(addp->is_AddP(), "must be AddP");
3691   //
3692   // AddP cases for Base and Address inputs:
3693   // case #1. Direct object's field reference:
3694   //     Allocate
3695   //       |
3696   //     Proj #5 ( oop result )
3697   //       |
3698   //     CheckCastPP (cast to instance type)
3699   //      | |
3700   //     AddP  ( base == address )
3701   //
3702   // case #2. Indirect object's field reference:
3703   //      Phi
3704   //       |
3705   //     CastPP (cast to instance type)
3706   //      | |
3707   //     AddP  ( base == address )
3708   //
3709   // case #3. Raw object's field reference for Initialize node:
3710   //      Allocate
3711   //        |
3712   //      Proj #5 ( oop result )
3713   //  top   |
3714   //     \  |
3715   //     AddP  ( base == top )
3716   //
3717   // case #4. Array's element reference:
3718   //   {CheckCastPP | CastPP}
3719   //     |  | |
3720   //     |  AddP ( array's element offset )
3721   //     |  |
3722   //     AddP ( array's offset )
3723   //
3724   // case #5. Raw object's field reference for arraycopy stub call:
3725   //          The inline_native_clone() case when the arraycopy stub is called
3726   //          after the allocation before Initialize and CheckCastPP nodes.
3727   //      Allocate
3728   //        |
3729   //      Proj #5 ( oop result )
3730   //       | |
3731   //       AddP  ( base == address )
3732   //
3733   // case #6. Constant Pool, ThreadLocal, CastX2P or
3734   //          Raw object's field reference:
3735   //      {ConP, ThreadLocal, CastX2P, raw Load}
3736   //  top   |
3737   //     \  |
3738   //     AddP  ( base == top )
3739   //
3740   // case #7. Klass's field reference.
3741   //      LoadKlass
3742   //       | |
3743   //       AddP  ( base == address )
3744   //
3745   // case #8. narrow Klass's field reference.
3746   //      LoadNKlass
3747   //       |
3748   //      DecodeN
3749   //       | |
3750   //       AddP  ( base == address )
3751   //
3752   // case #9. Mixed unsafe access
3753   //    {instance}
3754   //        |
3755   //      CheckCastPP (raw)
3756   //  top   |
3757   //     \  |
3758   //     AddP  ( base == top )
3759   //
3760   Node *base = addp->in(AddPNode::Base);
3761   if (base->uncast()->is_top()) { // The AddP case #3 and #6 and #9.
3762     base = addp->in(AddPNode::Address);
3763     while (base->is_AddP()) {
3764       // Case #6 (unsafe access) may have several chained AddP nodes.
3765       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
3766       base = base->in(AddPNode::Address);
3767     }
3768     if (base->Opcode() == Op_CheckCastPP &&
3769         base->bottom_type()->isa_rawptr() &&
3770         _igvn->type(base->in(1))->isa_oopptr()) {
3771       base = base->in(1); // Case #9
3772     } else {
3773       Node* uncast_base = base->uncast();
3774       int opcode = uncast_base->Opcode();
3775       assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
3776              opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
3777              (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != nullptr)) ||
3778              is_captured_store_address(addp), "sanity");
3779     }
3780   }
3781   return base;
3782 }
3783 
3784 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
3785   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
3786   Node* addp2 = addp->raw_out(0);
3787   if (addp->outcnt() == 1 && addp2->is_AddP() &&
3788       addp2->in(AddPNode::Base) == n &&
3789       addp2->in(AddPNode::Address) == addp) {
3790     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
3791     //
3792     // Find array's offset to push it on worklist first and
3793     // as result process an array's element offset first (pushed second)
3794     // to avoid CastPP for the array's offset.
3795     // Otherwise the inserted CastPP (LocalVar) will point to what
3796     // the AddP (Field) points to. Which would be wrong since
3797     // the algorithm expects the CastPP has the same point as
3798     // as AddP's base CheckCastPP (LocalVar).
3799     //
3800     //    ArrayAllocation
3801     //     |
3802     //    CheckCastPP
3803     //     |
3804     //    memProj (from ArrayAllocation CheckCastPP)
3805     //     |  ||
3806     //     |  ||   Int (element index)
3807     //     |  ||    |   ConI (log(element size))
3808     //     |  ||    |   /
3809     //     |  ||   LShift
3810     //     |  ||  /
3811     //     |  AddP (array's element offset)
3812     //     |  |
3813     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
3814     //     | / /
3815     //     AddP (array's offset)
3816     //      |
3817     //     Load/Store (memory operation on array's element)
3818     //
3819     return addp2;
3820   }
3821   return nullptr;
3822 }
3823 
3824 //
3825 // Adjust the type and inputs of an AddP which computes the
3826 // address of a field of an instance
3827 //
3828 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
3829   PhaseGVN* igvn = _igvn;
3830   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
3831   assert(base_t != nullptr && base_t->is_known_instance(), "expecting instance oopptr");
3832   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
3833   if (t == nullptr) {
3834     // We are computing a raw address for a store captured by an Initialize
3835     // compute an appropriate address type (cases #3 and #5).
3836     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
3837     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
3838     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
3839     assert(offs != Type::OffsetBot, "offset must be a constant");
3840     t = base_t->add_offset(offs)->is_oopptr();
3841   }
3842   int inst_id =  base_t->instance_id();
3843   assert(!t->is_known_instance() || t->instance_id() == inst_id,
3844                              "old type must be non-instance or match new type");
3845 
3846   // The type 't' could be subclass of 'base_t'.
3847   // As result t->offset() could be large then base_t's size and it will
3848   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
3849   // constructor verifies correctness of the offset.
3850   //
3851   // It could happened on subclass's branch (from the type profiling
3852   // inlining) which was not eliminated during parsing since the exactness
3853   // of the allocation type was not propagated to the subclass type check.
3854   //
3855   // Or the type 't' could be not related to 'base_t' at all.
3856   // It could happened when CHA type is different from MDO type on a dead path
3857   // (for example, from instanceof check) which is not collapsed during parsing.
3858   //
3859   // Do nothing for such AddP node and don't process its users since
3860   // this code branch will go away.
3861   //
3862   if (!t->is_known_instance() &&
3863       !base_t->maybe_java_subtype_of(t)) {
3864      return false; // bail out
3865   }
3866   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
3867   // Do NOT remove the next line: ensure a new alias index is allocated
3868   // for the instance type. Note: C++ will not remove it since the call
3869   // has side effect.
3870   int alias_idx = _compile->get_alias_index(tinst);
3871   igvn->set_type(addp, tinst);
3872   // record the allocation in the node map
3873   set_map(addp, get_map(base->_idx));
3874   // Set addp's Base and Address to 'base'.
3875   Node *abase = addp->in(AddPNode::Base);
3876   Node *adr   = addp->in(AddPNode::Address);
3877   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
3878       adr->in(0)->_idx == (uint)inst_id) {
3879     // Skip AddP cases #3 and #5.
3880   } else {
3881     assert(!abase->is_top(), "sanity"); // AddP case #3
3882     if (abase != base) {
3883       igvn->hash_delete(addp);
3884       addp->set_req(AddPNode::Base, base);
3885       if (abase == adr) {
3886         addp->set_req(AddPNode::Address, base);
3887       } else {
3888         // AddP case #4 (adr is array's element offset AddP node)
3889 #ifdef ASSERT
3890         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
3891         assert(adr->is_AddP() && atype != nullptr &&
3892                atype->instance_id() == inst_id, "array's element offset should be processed first");
3893 #endif
3894       }
3895       igvn->hash_insert(addp);
3896     }
3897   }
3898   // Put on IGVN worklist since at least addp's type was changed above.
3899   record_for_optimizer(addp);
3900   return true;
3901 }
3902 
3903 //
3904 // Create a new version of orig_phi if necessary. Returns either the newly
3905 // created phi or an existing phi.  Sets create_new to indicate whether a new
3906 // phi was created.  Cache the last newly created phi in the node map.
3907 //
3908 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
3909   Compile *C = _compile;
3910   PhaseGVN* igvn = _igvn;
3911   new_created = false;
3912   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
3913   // nothing to do if orig_phi is bottom memory or matches alias_idx
3914   if (phi_alias_idx == alias_idx) {
3915     return orig_phi;
3916   }
3917   // Have we recently created a Phi for this alias index?
3918   PhiNode *result = get_map_phi(orig_phi->_idx);
3919   if (result != nullptr && C->get_alias_index(result->adr_type()) == alias_idx) {
3920     return result;
3921   }
3922   // Previous check may fail when the same wide memory Phi was split into Phis
3923   // for different memory slices. Search all Phis for this region.
3924   if (result != nullptr) {
3925     Node* region = orig_phi->in(0);
3926     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
3927       Node* phi = region->fast_out(i);
3928       if (phi->is_Phi() &&
3929           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
3930         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
3931         return phi->as_Phi();
3932       }
3933     }
3934   }
3935   if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) {
3936     if (C->do_escape_analysis() == true && !C->failing()) {
3937       // Retry compilation without escape analysis.
3938       // If this is the first failure, the sentinel string will "stick"
3939       // to the Compile object, and the C2Compiler will see it and retry.
3940       C->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis());
3941     }
3942     return nullptr;
3943   }
3944   orig_phi_worklist.append_if_missing(orig_phi);
3945   const TypePtr *atype = C->get_adr_type(alias_idx);
3946   result = PhiNode::make(orig_phi->in(0), nullptr, Type::MEMORY, atype);
3947   C->copy_node_notes_to(result, orig_phi);
3948   igvn->set_type(result, result->bottom_type());
3949   record_for_optimizer(result);
3950   set_map(orig_phi, result);
3951   new_created = true;
3952   return result;
3953 }
3954 
3955 //
3956 // Return a new version of Memory Phi "orig_phi" with the inputs having the
3957 // specified alias index.
3958 //
3959 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, uint rec_depth) {
3960   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
3961   Compile *C = _compile;
3962   PhaseGVN* igvn = _igvn;
3963   bool new_phi_created;
3964   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
3965   if (!new_phi_created) {
3966     return result;
3967   }
3968   GrowableArray<PhiNode *>  phi_list;
3969   GrowableArray<uint>  cur_input;
3970   PhiNode *phi = orig_phi;
3971   uint idx = 1;
3972   bool finished = false;
3973   while(!finished) {
3974     while (idx < phi->req()) {
3975       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, rec_depth + 1);
3976       if (mem != nullptr && mem->is_Phi()) {
3977         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
3978         if (new_phi_created) {
3979           // found an phi for which we created a new split, push current one on worklist and begin
3980           // processing new one
3981           phi_list.push(phi);
3982           cur_input.push(idx);
3983           phi = mem->as_Phi();
3984           result = newphi;
3985           idx = 1;
3986           continue;
3987         } else {
3988           mem = newphi;
3989         }
3990       }
3991       if (C->failing()) {
3992         return nullptr;
3993       }
3994       result->set_req(idx++, mem);
3995     }
3996 #ifdef ASSERT
3997     // verify that the new Phi has an input for each input of the original
3998     assert( phi->req() == result->req(), "must have same number of inputs.");
3999     assert( result->in(0) != nullptr && result->in(0) == phi->in(0), "regions must match");
4000 #endif
4001     // Check if all new phi's inputs have specified alias index.
4002     // Otherwise use old phi.
4003     for (uint i = 1; i < phi->req(); i++) {
4004       Node* in = result->in(i);
4005       assert((phi->in(i) == nullptr) == (in == nullptr), "inputs must correspond.");
4006     }
4007     // we have finished processing a Phi, see if there are any more to do
4008     finished = (phi_list.length() == 0 );
4009     if (!finished) {
4010       phi = phi_list.pop();
4011       idx = cur_input.pop();
4012       PhiNode *prev_result = get_map_phi(phi->_idx);
4013       prev_result->set_req(idx++, result);
4014       result = prev_result;
4015     }
4016   }
4017   return result;
4018 }
4019 
4020 //
4021 // The next methods are derived from methods in MemNode.
4022 //
4023 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
4024   Node *mem = mmem;
4025   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
4026   // means an array I have not precisely typed yet.  Do not do any
4027   // alias stuff with it any time soon.
4028   if (toop->base() != Type::AnyPtr &&
4029       !(toop->isa_instptr() &&
4030         toop->is_instptr()->instance_klass()->is_java_lang_Object() &&
4031         toop->offset() == Type::OffsetBot)) {
4032     mem = mmem->memory_at(alias_idx);
4033     // Update input if it is progress over what we have now
4034   }
4035   return mem;
4036 }
4037 
4038 //
4039 // Move memory users to their memory slices.
4040 //
4041 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
4042   Compile* C = _compile;
4043   PhaseGVN* igvn = _igvn;
4044   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
4045   assert(tp != nullptr, "ptr type");
4046   int alias_idx = C->get_alias_index(tp);
4047   int general_idx = C->get_general_index(alias_idx);
4048 
4049   // Move users first
4050   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4051     Node* use = n->fast_out(i);
4052     if (use->is_MergeMem()) {
4053       MergeMemNode* mmem = use->as_MergeMem();
4054       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
4055       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
4056         continue; // Nothing to do
4057       }
4058       // Replace previous general reference to mem node.
4059       uint orig_uniq = C->unique();
4060       Node* m = find_inst_mem(n, general_idx, orig_phis);
4061       assert(orig_uniq == C->unique(), "no new nodes");
4062       mmem->set_memory_at(general_idx, m);
4063       --imax;
4064       --i;
4065     } else if (use->is_MemBar()) {
4066       assert(!use->is_Initialize(), "initializing stores should not be moved");
4067       if (use->req() > MemBarNode::Precedent &&
4068           use->in(MemBarNode::Precedent) == n) {
4069         // Don't move related membars.
4070         record_for_optimizer(use);
4071         continue;
4072       }
4073       tp = use->as_MemBar()->adr_type()->isa_ptr();
4074       if ((tp != nullptr && C->get_alias_index(tp) == alias_idx) ||
4075           alias_idx == general_idx) {
4076         continue; // Nothing to do
4077       }
4078       // Move to general memory slice.
4079       uint orig_uniq = C->unique();
4080       Node* m = find_inst_mem(n, general_idx, orig_phis);
4081       assert(orig_uniq == C->unique(), "no new nodes");
4082       igvn->hash_delete(use);
4083       imax -= use->replace_edge(n, m, igvn);
4084       igvn->hash_insert(use);
4085       record_for_optimizer(use);
4086       --i;
4087 #ifdef ASSERT
4088     } else if (use->is_Mem()) {
4089       // Memory nodes should have new memory input.
4090       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
4091       assert(tp != nullptr, "ptr type");
4092       int idx = C->get_alias_index(tp);
4093       assert(get_map(use->_idx) != nullptr || idx == alias_idx,
4094              "Following memory nodes should have new memory input or be on the same memory slice");
4095     } else if (use->is_Phi()) {
4096       // Phi nodes should be split and moved already.
4097       tp = use->as_Phi()->adr_type()->isa_ptr();
4098       assert(tp != nullptr, "ptr type");
4099       int idx = C->get_alias_index(tp);
4100       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
4101     } else {
4102       use->dump();
4103       assert(false, "should not be here");
4104 #endif
4105     }
4106   }
4107 }
4108 
4109 //
4110 // Search memory chain of "mem" to find a MemNode whose address
4111 // is the specified alias index.
4112 //
4113 #define FIND_INST_MEM_RECURSION_DEPTH_LIMIT 1000
4114 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis, uint rec_depth) {
4115   if (rec_depth > FIND_INST_MEM_RECURSION_DEPTH_LIMIT) {
4116     _compile->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis());
4117     return nullptr;
4118   }
4119   if (orig_mem == nullptr) {
4120     return orig_mem;
4121   }
4122   Compile* C = _compile;
4123   PhaseGVN* igvn = _igvn;
4124   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
4125   bool is_instance = (toop != nullptr) && toop->is_known_instance();
4126   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
4127   Node *prev = nullptr;
4128   Node *result = orig_mem;
4129   while (prev != result) {
4130     prev = result;
4131     if (result == start_mem) {
4132       break;  // hit one of our sentinels
4133     }
4134     if (result->is_Mem()) {
4135       const Type *at = igvn->type(result->in(MemNode::Address));
4136       if (at == Type::TOP) {
4137         break; // Dead
4138       }
4139       assert (at->isa_ptr() != nullptr, "pointer type required.");
4140       int idx = C->get_alias_index(at->is_ptr());
4141       if (idx == alias_idx) {
4142         break; // Found
4143       }
4144       if (!is_instance && (at->isa_oopptr() == nullptr ||
4145                            !at->is_oopptr()->is_known_instance())) {
4146         break; // Do not skip store to general memory slice.
4147       }
4148       result = result->in(MemNode::Memory);
4149     }
4150     if (!is_instance) {
4151       continue;  // don't search further for non-instance types
4152     }
4153     // skip over a call which does not affect this memory slice
4154     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
4155       Node *proj_in = result->in(0);
4156       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
4157         break;  // hit one of our sentinels
4158       } else if (proj_in->is_Call()) {
4159         // ArrayCopy node processed here as well
4160         CallNode *call = proj_in->as_Call();
4161         if (!call->may_modify(toop, igvn)) {
4162           result = call->in(TypeFunc::Memory);
4163         }
4164       } else if (proj_in->is_Initialize()) {
4165         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
4166         // Stop if this is the initialization for the object instance which
4167         // which contains this memory slice, otherwise skip over it.
4168         if (alloc == nullptr || alloc->_idx != (uint)toop->instance_id()) {
4169           result = proj_in->in(TypeFunc::Memory);
4170         } else if (C->get_alias_index(result->adr_type()) != alias_idx) {
4171           assert(C->get_general_index(alias_idx) == C->get_alias_index(result->adr_type()), "should be projection for the same field/array element");
4172           result = get_map(result->_idx);
4173           assert(result != nullptr, "new projection should have been allocated");
4174           break;
4175         }
4176       } else if (proj_in->is_MemBar()) {
4177         // Check if there is an array copy for a clone
4178         Node* control_proj_ac = proj_in->in(0);
4179 
4180         if (control_proj_ac->is_Proj() && control_proj_ac->in(0)->is_ArrayCopy()) {
4181           // Stop if it is a clone
4182           ArrayCopyNode* ac = control_proj_ac->in(0)->as_ArrayCopy();
4183           if (ac->may_modify(toop, igvn)) {
4184             break;
4185           }
4186         }
4187         result = proj_in->in(TypeFunc::Memory);
4188       }
4189     } else if (result->is_MergeMem()) {
4190       MergeMemNode *mmem = result->as_MergeMem();
4191       result = step_through_mergemem(mmem, alias_idx, toop);
4192       if (result == mmem->base_memory()) {
4193         // Didn't find instance memory, search through general slice recursively.
4194         result = mmem->memory_at(C->get_general_index(alias_idx));
4195         result = find_inst_mem(result, alias_idx, orig_phis, rec_depth + 1);
4196         if (C->failing()) {
4197           return nullptr;
4198         }
4199         mmem->set_memory_at(alias_idx, result);
4200       }
4201     } else if (result->is_Phi() &&
4202                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
4203       Node *un = result->as_Phi()->unique_input(igvn);
4204       if (un != nullptr) {
4205         orig_phis.append_if_missing(result->as_Phi());
4206         result = un;
4207       } else {
4208         break;
4209       }
4210     } else if (result->is_ClearArray()) {
4211       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
4212         // Can not bypass initialization of the instance
4213         // we are looking for.
4214         break;
4215       }
4216       // Otherwise skip it (the call updated 'result' value).
4217     } else if (result->Opcode() == Op_SCMemProj) {
4218       Node* mem = result->in(0);
4219       Node* adr = nullptr;
4220       if (mem->is_LoadStore()) {
4221         adr = mem->in(MemNode::Address);
4222       } else {
4223         assert(mem->Opcode() == Op_EncodeISOArray ||
4224                mem->Opcode() == Op_StrCompressedCopy, "sanity");
4225         adr = mem->in(3); // Memory edge corresponds to destination array
4226       }
4227       const Type *at = igvn->type(adr);
4228       if (at != Type::TOP) {
4229         assert(at->isa_ptr() != nullptr, "pointer type required.");
4230         int idx = C->get_alias_index(at->is_ptr());
4231         if (idx == alias_idx) {
4232           // Assert in debug mode
4233           assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
4234           break; // In product mode return SCMemProj node
4235         }
4236       }
4237       result = mem->in(MemNode::Memory);
4238     } else if (result->Opcode() == Op_StrInflatedCopy) {
4239       Node* adr = result->in(3); // Memory edge corresponds to destination array
4240       const Type *at = igvn->type(adr);
4241       if (at != Type::TOP) {
4242         assert(at->isa_ptr() != nullptr, "pointer type required.");
4243         int idx = C->get_alias_index(at->is_ptr());
4244         if (idx == alias_idx) {
4245           // Assert in debug mode
4246           assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
4247           break; // In product mode return SCMemProj node
4248         }
4249       }
4250       result = result->in(MemNode::Memory);
4251     }
4252   }
4253   if (result->is_Phi()) {
4254     PhiNode *mphi = result->as_Phi();
4255     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
4256     const TypePtr *t = mphi->adr_type();
4257     if (!is_instance) {
4258       // Push all non-instance Phis on the orig_phis worklist to update inputs
4259       // during Phase 4 if needed.
4260       orig_phis.append_if_missing(mphi);
4261     } else if (C->get_alias_index(t) != alias_idx) {
4262       // Create a new Phi with the specified alias index type.
4263       result = split_memory_phi(mphi, alias_idx, orig_phis, rec_depth + 1);
4264     }
4265   }
4266   // the result is either MemNode, PhiNode, InitializeNode.
4267   return result;
4268 }
4269 
4270 //
4271 //  Convert the types of non-escaped object to instance types where possible,
4272 //  propagate the new type information through the graph, and update memory
4273 //  edges and MergeMem inputs to reflect the new type.
4274 //
4275 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
4276 //  The processing is done in 4 phases:
4277 //
4278 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
4279 //            types for the CheckCastPP for allocations where possible.
4280 //            Propagate the new types through users as follows:
4281 //               casts and Phi:  push users on alloc_worklist
4282 //               AddP:  cast Base and Address inputs to the instance type
4283 //                      push any AddP users on alloc_worklist and push any memnode
4284 //                      users onto memnode_worklist.
4285 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
4286 //            search the Memory chain for a store with the appropriate type
4287 //            address type.  If a Phi is found, create a new version with
4288 //            the appropriate memory slices from each of the Phi inputs.
4289 //            For stores, process the users as follows:
4290 //               MemNode:  push on memnode_worklist
4291 //               MergeMem: push on mergemem_worklist
4292 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
4293 //            moving the first node encountered of each  instance type to the
4294 //            the input corresponding to its alias index.
4295 //            appropriate memory slice.
4296 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
4297 //
4298 // In the following example, the CheckCastPP nodes are the cast of allocation
4299 // results and the allocation of node 29 is non-escaped and eligible to be an
4300 // instance type.
4301 //
4302 // We start with:
4303 //
4304 //     7 Parm #memory
4305 //    10  ConI  "12"
4306 //    19  CheckCastPP   "Foo"
4307 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
4308 //    29  CheckCastPP   "Foo"
4309 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
4310 //
4311 //    40  StoreP  25   7  20   ... alias_index=4
4312 //    50  StoreP  35  40  30   ... alias_index=4
4313 //    60  StoreP  45  50  20   ... alias_index=4
4314 //    70  LoadP    _  60  30   ... alias_index=4
4315 //    80  Phi     75  50  60   Memory alias_index=4
4316 //    90  LoadP    _  80  30   ... alias_index=4
4317 //   100  LoadP    _  80  20   ... alias_index=4
4318 //
4319 //
4320 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
4321 // and creating a new alias index for node 30.  This gives:
4322 //
4323 //     7 Parm #memory
4324 //    10  ConI  "12"
4325 //    19  CheckCastPP   "Foo"
4326 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
4327 //    29  CheckCastPP   "Foo"  iid=24
4328 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
4329 //
4330 //    40  StoreP  25   7  20   ... alias_index=4
4331 //    50  StoreP  35  40  30   ... alias_index=6
4332 //    60  StoreP  45  50  20   ... alias_index=4
4333 //    70  LoadP    _  60  30   ... alias_index=6
4334 //    80  Phi     75  50  60   Memory alias_index=4
4335 //    90  LoadP    _  80  30   ... alias_index=6
4336 //   100  LoadP    _  80  20   ... alias_index=4
4337 //
4338 // In phase 2, new memory inputs are computed for the loads and stores,
4339 // And a new version of the phi is created.  In phase 4, the inputs to
4340 // node 80 are updated and then the memory nodes are updated with the
4341 // values computed in phase 2.  This results in:
4342 //
4343 //     7 Parm #memory
4344 //    10  ConI  "12"
4345 //    19  CheckCastPP   "Foo"
4346 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
4347 //    29  CheckCastPP   "Foo"  iid=24
4348 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
4349 //
4350 //    40  StoreP  25  7   20   ... alias_index=4
4351 //    50  StoreP  35  7   30   ... alias_index=6
4352 //    60  StoreP  45  40  20   ... alias_index=4
4353 //    70  LoadP    _  50  30   ... alias_index=6
4354 //    80  Phi     75  40  60   Memory alias_index=4
4355 //   120  Phi     75  50  50   Memory alias_index=6
4356 //    90  LoadP    _ 120  30   ... alias_index=6
4357 //   100  LoadP    _  80  20   ... alias_index=4
4358 //
4359 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist,
4360                                          GrowableArray<ArrayCopyNode*> &arraycopy_worklist,
4361                                          GrowableArray<MergeMemNode*> &mergemem_worklist,
4362                                          Unique_Node_List &reducible_merges) {
4363   DEBUG_ONLY(Unique_Node_List reduced_merges;)
4364   GrowableArray<Node *>  memnode_worklist;
4365   GrowableArray<PhiNode *>  orig_phis;
4366   PhaseIterGVN  *igvn = _igvn;
4367   uint new_index_start = (uint) _compile->num_alias_types();
4368   VectorSet visited;
4369   ideal_nodes.clear(); // Reset for use with set_map/get_map.
4370   uint unique_old = _compile->unique();
4371 
4372   //  Phase 1:  Process possible allocations from alloc_worklist.
4373   //  Create instance types for the CheckCastPP for allocations where possible.
4374   //
4375   // (Note: don't forget to change the order of the second AddP node on
4376   //  the alloc_worklist if the order of the worklist processing is changed,
4377   //  see the comment in find_second_addp().)
4378   //
4379   while (alloc_worklist.length() != 0) {
4380     Node *n = alloc_worklist.pop();
4381     uint ni = n->_idx;
4382     if (n->is_Call()) {
4383       CallNode *alloc = n->as_Call();
4384       // copy escape information to call node
4385       PointsToNode* ptn = ptnode_adr(alloc->_idx);
4386       PointsToNode::EscapeState es = ptn->escape_state();
4387       // We have an allocation or call which returns a Java object,
4388       // see if it is non-escaped.
4389       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable()) {
4390         continue;
4391       }
4392       // Find CheckCastPP for the allocate or for the return value of a call
4393       n = alloc->result_cast();
4394       if (n == nullptr) {            // No uses except Initialize node
4395         if (alloc->is_Allocate()) {
4396           // Set the scalar_replaceable flag for allocation
4397           // so it could be eliminated if it has no uses.
4398           alloc->as_Allocate()->_is_scalar_replaceable = true;
4399         }
4400         continue;
4401       }
4402       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
4403         // we could reach here for allocate case if one init is associated with many allocs.
4404         if (alloc->is_Allocate()) {
4405           alloc->as_Allocate()->_is_scalar_replaceable = false;
4406         }
4407         continue;
4408       }
4409 
4410       // The inline code for Object.clone() casts the allocation result to
4411       // java.lang.Object and then to the actual type of the allocated
4412       // object. Detect this case and use the second cast.
4413       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
4414       // the allocation result is cast to java.lang.Object and then
4415       // to the actual Array type.
4416       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
4417           && (alloc->is_AllocateArray() ||
4418               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeInstKlassPtr::OBJECT)) {
4419         Node *cast2 = nullptr;
4420         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4421           Node *use = n->fast_out(i);
4422           if (use->is_CheckCastPP()) {
4423             cast2 = use;
4424             break;
4425           }
4426         }
4427         if (cast2 != nullptr) {
4428           n = cast2;
4429         } else {
4430           // Non-scalar replaceable if the allocation type is unknown statically
4431           // (reflection allocation), the object can't be restored during
4432           // deoptimization without precise type.
4433           continue;
4434         }
4435       }
4436 
4437       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
4438       if (t == nullptr) {
4439         continue;  // not a TypeOopPtr
4440       }
4441       if (!t->klass_is_exact()) {
4442         continue; // not an unique type
4443       }
4444       if (alloc->is_Allocate()) {
4445         // Set the scalar_replaceable flag for allocation
4446         // so it could be eliminated.
4447         alloc->as_Allocate()->_is_scalar_replaceable = true;
4448       }
4449       set_escape_state(ptnode_adr(n->_idx), es NOT_PRODUCT(COMMA trace_propagate_message(ptn))); // CheckCastPP escape state
4450       // in order for an object to be scalar-replaceable, it must be:
4451       //   - a direct allocation (not a call returning an object)
4452       //   - non-escaping
4453       //   - eligible to be a unique type
4454       //   - not determined to be ineligible by escape analysis
4455       set_map(alloc, n);
4456       set_map(n, alloc);
4457       const TypeOopPtr* tinst = t->cast_to_instance_id(ni);
4458       igvn->hash_delete(n);
4459       igvn->set_type(n,  tinst);
4460       n->raise_bottom_type(tinst);
4461       igvn->hash_insert(n);
4462       record_for_optimizer(n);
4463       // Allocate an alias index for the header fields. Accesses to
4464       // the header emitted during macro expansion wouldn't have
4465       // correct memory state otherwise.
4466       _compile->get_alias_index(tinst->add_offset(oopDesc::mark_offset_in_bytes()));
4467       _compile->get_alias_index(tinst->add_offset(oopDesc::klass_offset_in_bytes()));
4468       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
4469         // Add a new NarrowMem projection for each existing NarrowMem projection with new adr type
4470         InitializeNode* init = alloc->as_Allocate()->initialization();
4471         assert(init != nullptr, "can't find Initialization node for this Allocate node");
4472         auto process_narrow_proj = [&](NarrowMemProjNode* proj) {
4473           const TypePtr* adr_type = proj->adr_type();
4474           const TypePtr* new_adr_type = tinst->add_offset(adr_type->offset());
4475           if (adr_type != new_adr_type && !init->already_has_narrow_mem_proj_with_adr_type(new_adr_type)) {
4476             DEBUG_ONLY( uint alias_idx = _compile->get_alias_index(new_adr_type); )
4477             assert(_compile->get_general_index(alias_idx) == _compile->get_alias_index(adr_type), "new adr type should be narrowed down from existing adr type");
4478             NarrowMemProjNode* new_proj = new NarrowMemProjNode(init, new_adr_type);
4479             igvn->set_type(new_proj, new_proj->bottom_type());
4480             record_for_optimizer(new_proj);
4481             set_map(proj, new_proj); // record it so ConnectionGraph::find_inst_mem() can find it
4482           }
4483         };
4484         init->for_each_narrow_mem_proj_with_new_uses(process_narrow_proj);
4485 
4486         // First, put on the worklist all Field edges from Connection Graph
4487         // which is more accurate than putting immediate users from Ideal Graph.
4488         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
4489           PointsToNode* tgt = e.get();
4490           if (tgt->is_Arraycopy()) {
4491             continue;
4492           }
4493           Node* use = tgt->ideal_node();
4494           assert(tgt->is_Field() && use->is_AddP(),
4495                  "only AddP nodes are Field edges in CG");
4496           if (use->outcnt() > 0) { // Don't process dead nodes
4497             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
4498             if (addp2 != nullptr) {
4499               assert(alloc->is_AllocateArray(),"array allocation was expected");
4500               alloc_worklist.append_if_missing(addp2);
4501             }
4502             alloc_worklist.append_if_missing(use);
4503           }
4504         }
4505 
4506         // An allocation may have an Initialize which has raw stores. Scan
4507         // the users of the raw allocation result and push AddP users
4508         // on alloc_worklist.
4509         Node *raw_result = alloc->proj_out_or_null(TypeFunc::Parms);
4510         assert (raw_result != nullptr, "must have an allocation result");
4511         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
4512           Node *use = raw_result->fast_out(i);
4513           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
4514             Node* addp2 = find_second_addp(use, raw_result);
4515             if (addp2 != nullptr) {
4516               assert(alloc->is_AllocateArray(),"array allocation was expected");
4517               alloc_worklist.append_if_missing(addp2);
4518             }
4519             alloc_worklist.append_if_missing(use);
4520           } else if (use->is_MemBar()) {
4521             memnode_worklist.append_if_missing(use);
4522           }
4523         }
4524       }
4525     } else if (n->is_AddP()) {
4526       if (has_reducible_merge_base(n->as_AddP(), reducible_merges)) {
4527         // This AddP will go away when we reduce the Phi
4528         continue;
4529       }
4530       Node* addp_base = get_addp_base(n);
4531       JavaObjectNode* jobj = unique_java_object(addp_base);
4532       if (jobj == nullptr || jobj == phantom_obj) {
4533 #ifdef ASSERT
4534         ptnode_adr(get_addp_base(n)->_idx)->dump();
4535         ptnode_adr(n->_idx)->dump();
4536         assert(jobj != nullptr && jobj != phantom_obj, "escaped allocation");
4537 #endif
4538         _compile->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis());
4539         return;
4540       }
4541       Node *base = get_map(jobj->idx());  // CheckCastPP node
4542       if (!split_AddP(n, base)) continue; // wrong type from dead path
4543     } else if (n->is_Phi() ||
4544                n->is_CheckCastPP() ||
4545                n->is_EncodeP() ||
4546                n->is_DecodeN() ||
4547                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
4548       if (visited.test_set(n->_idx)) {
4549         assert(n->is_Phi(), "loops only through Phi's");
4550         continue;  // already processed
4551       }
4552       // Reducible Phi's will be removed from the graph after split_unique_types
4553       // finishes. For now we just try to split out the SR inputs of the merge.
4554       Node* parent = n->in(1);
4555       if (reducible_merges.member(n)) {
4556         reduce_phi(n->as_Phi(), alloc_worklist);
4557 #ifdef ASSERT
4558         if (VerifyReduceAllocationMerges) {
4559           reduced_merges.push(n);
4560         }
4561 #endif
4562         continue;
4563       } else if (reducible_merges.member(parent)) {
4564         // 'n' is an user of a reducible merge (a Phi). It will be simplified as
4565         // part of reduce_merge.
4566         continue;
4567       }
4568       JavaObjectNode* jobj = unique_java_object(n);
4569       if (jobj == nullptr || jobj == phantom_obj) {
4570 #ifdef ASSERT
4571         ptnode_adr(n->_idx)->dump();
4572         assert(jobj != nullptr && jobj != phantom_obj, "escaped allocation");
4573 #endif
4574         _compile->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis());
4575         return;
4576       } else {
4577         Node *val = get_map(jobj->idx());   // CheckCastPP node
4578         TypeNode *tn = n->as_Type();
4579         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
4580         assert(tinst != nullptr && tinst->is_known_instance() &&
4581                tinst->instance_id() == jobj->idx() , "instance type expected.");
4582 
4583         const Type *tn_type = igvn->type(tn);
4584         const TypeOopPtr *tn_t;
4585         if (tn_type->isa_narrowoop()) {
4586           tn_t = tn_type->make_ptr()->isa_oopptr();
4587         } else {
4588           tn_t = tn_type->isa_oopptr();
4589         }
4590         if (tn_t != nullptr && tinst->maybe_java_subtype_of(tn_t)) {
4591           if (tn_type->isa_narrowoop()) {
4592             tn_type = tinst->make_narrowoop();
4593           } else {
4594             tn_type = tinst;
4595           }
4596           igvn->hash_delete(tn);
4597           igvn->set_type(tn, tn_type);
4598           tn->set_type(tn_type);
4599           igvn->hash_insert(tn);
4600           record_for_optimizer(n);
4601         } else {
4602           assert(tn_type == TypePtr::NULL_PTR ||
4603                  (tn_t != nullptr && !tinst->maybe_java_subtype_of(tn_t)),
4604                  "unexpected type");
4605           continue; // Skip dead path with different type
4606         }
4607       }
4608     } else {
4609       DEBUG_ONLY(n->dump();)
4610       assert(false, "EA: unexpected node");
4611       continue;
4612     }
4613     // push allocation's users on appropriate worklist
4614     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4615       Node *use = n->fast_out(i);
4616       if(use->is_Mem() && use->in(MemNode::Address) == n) {
4617         // Load/store to instance's field
4618         memnode_worklist.append_if_missing(use);
4619       } else if (use->is_MemBar()) {
4620         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
4621           memnode_worklist.append_if_missing(use);
4622         }
4623       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
4624         Node* addp2 = find_second_addp(use, n);
4625         if (addp2 != nullptr) {
4626           alloc_worklist.append_if_missing(addp2);
4627         }
4628         alloc_worklist.append_if_missing(use);
4629       } else if (use->is_Phi() ||
4630                  use->is_CheckCastPP() ||
4631                  use->is_EncodeNarrowPtr() ||
4632                  use->is_DecodeNarrowPtr() ||
4633                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
4634         alloc_worklist.append_if_missing(use);
4635 #ifdef ASSERT
4636       } else if (use->is_Mem()) {
4637         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
4638       } else if (use->is_MergeMem()) {
4639         assert(mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
4640       } else if (use->is_SafePoint()) {
4641         // Look for MergeMem nodes for calls which reference unique allocation
4642         // (through CheckCastPP nodes) even for debug info.
4643         Node* m = use->in(TypeFunc::Memory);
4644         if (m->is_MergeMem()) {
4645           assert(mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
4646         }
4647       } else if (use->Opcode() == Op_EncodeISOArray) {
4648         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
4649           // EncodeISOArray overwrites destination array
4650           memnode_worklist.append_if_missing(use);
4651         }
4652       } else {
4653         uint op = use->Opcode();
4654         if ((op == Op_StrCompressedCopy || op == Op_StrInflatedCopy) &&
4655             (use->in(MemNode::Memory) == n)) {
4656           // They overwrite memory edge corresponding to destination array,
4657           memnode_worklist.append_if_missing(use);
4658         } else if (!(op == Op_CmpP || op == Op_Conv2B ||
4659               op == Op_CastP2X ||
4660               op == Op_FastLock || op == Op_AryEq ||
4661               op == Op_StrComp || op == Op_CountPositives ||
4662               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
4663               op == Op_StrEquals || op == Op_VectorizedHashCode ||
4664               op == Op_StrIndexOf || op == Op_StrIndexOfChar ||
4665               op == Op_SubTypeCheck ||
4666               op == Op_ReinterpretS2HF ||
4667               BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use))) {
4668           n->dump();
4669           use->dump();
4670           assert(false, "EA: missing allocation reference path");
4671         }
4672 #endif
4673       }
4674     }
4675 
4676   }
4677 
4678 #ifdef ASSERT
4679   if (VerifyReduceAllocationMerges) {
4680     for (uint i = 0; i < reducible_merges.size(); i++) {
4681       Node* phi = reducible_merges.at(i);
4682 
4683       if (!reduced_merges.member(phi)) {
4684         phi->dump(2);
4685         phi->dump(-2);
4686         assert(false, "This reducible merge wasn't reduced.");
4687       }
4688 
4689       // At this point reducible Phis shouldn't have AddP users anymore; only SafePoints or Casts.
4690       for (DUIterator_Fast jmax, j = phi->fast_outs(jmax); j < jmax; j++) {
4691         Node* use = phi->fast_out(j);
4692         if (!use->is_SafePoint() && !use->is_CastPP()) {
4693           phi->dump(2);
4694           phi->dump(-2);
4695           assert(false, "Unexpected user of reducible Phi -> %d:%s:%d", use->_idx, use->Name(), use->outcnt());
4696         }
4697       }
4698     }
4699   }
4700 #endif
4701 
4702   // Go over all ArrayCopy nodes and if one of the inputs has a unique
4703   // type, record it in the ArrayCopy node so we know what memory this
4704   // node uses/modified.
4705   for (int next = 0; next < arraycopy_worklist.length(); next++) {
4706     ArrayCopyNode* ac = arraycopy_worklist.at(next);
4707     Node* dest = ac->in(ArrayCopyNode::Dest);
4708     if (dest->is_AddP()) {
4709       dest = get_addp_base(dest);
4710     }
4711     JavaObjectNode* jobj = unique_java_object(dest);
4712     if (jobj != nullptr) {
4713       Node *base = get_map(jobj->idx());
4714       if (base != nullptr) {
4715         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
4716         ac->_dest_type = base_t;
4717       }
4718     }
4719     Node* src = ac->in(ArrayCopyNode::Src);
4720     if (src->is_AddP()) {
4721       src = get_addp_base(src);
4722     }
4723     jobj = unique_java_object(src);
4724     if (jobj != nullptr) {
4725       Node* base = get_map(jobj->idx());
4726       if (base != nullptr) {
4727         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
4728         ac->_src_type = base_t;
4729       }
4730     }
4731   }
4732 
4733   // New alias types were created in split_AddP().
4734   uint new_index_end = (uint) _compile->num_alias_types();
4735 
4736   _compile->print_method(PHASE_EA_AFTER_SPLIT_UNIQUE_TYPES_1, 5);
4737 
4738   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
4739   //            compute new values for Memory inputs  (the Memory inputs are not
4740   //            actually updated until phase 4.)
4741   if (memnode_worklist.length() == 0)
4742     return;  // nothing to do
4743   while (memnode_worklist.length() != 0) {
4744     Node *n = memnode_worklist.pop();
4745     if (visited.test_set(n->_idx)) {
4746       continue;
4747     }
4748     if (n->is_Phi() || n->is_ClearArray()) {
4749       // we don't need to do anything, but the users must be pushed
4750     } else if (n->is_MemBar()) { // MemBar nodes
4751       if (!n->is_Initialize()) { // memory projections for Initialize pushed below (so we get to all their uses)
4752         // we don't need to do anything, but the users must be pushed
4753         n = n->as_MemBar()->proj_out_or_null(TypeFunc::Memory);
4754         if (n == nullptr) {
4755           continue;
4756         }
4757       }
4758     } else if (n->is_CallLeaf()) {
4759       // Runtime calls with narrow memory input (no MergeMem node)
4760       // get the memory projection
4761       n = n->as_Call()->proj_out_or_null(TypeFunc::Memory);
4762       if (n == nullptr) {
4763         continue;
4764       }
4765     } else if (n->Opcode() == Op_StrInflatedCopy) {
4766       // Check direct uses of StrInflatedCopy.
4767       // It is memory type Node - no special SCMemProj node.
4768     } else if (n->Opcode() == Op_StrCompressedCopy ||
4769                n->Opcode() == Op_EncodeISOArray) {
4770       // get the memory projection
4771       n = n->find_out_with(Op_SCMemProj);
4772       assert(n != nullptr && n->Opcode() == Op_SCMemProj, "memory projection required");
4773     } else if (n->is_Proj()) {
4774       assert(n->in(0)->is_Initialize(), "we only push memory projections for Initialize");
4775     } else {
4776 #ifdef ASSERT
4777       if (!n->is_Mem()) {
4778         n->dump();
4779       }
4780       assert(n->is_Mem(), "memory node required.");
4781 #endif
4782       Node *addr = n->in(MemNode::Address);
4783       const Type *addr_t = igvn->type(addr);
4784       if (addr_t == Type::TOP) {
4785         continue;
4786       }
4787       assert (addr_t->isa_ptr() != nullptr, "pointer type required.");
4788       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
4789       assert ((uint)alias_idx < new_index_end, "wrong alias index");
4790       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
4791       if (_compile->failing()) {
4792         return;
4793       }
4794       if (mem != n->in(MemNode::Memory)) {
4795         // We delay the memory edge update since we need old one in
4796         // MergeMem code below when instances memory slices are separated.
4797         set_map(n, mem);
4798       }
4799       if (n->is_Load()) {
4800         continue;  // don't push users
4801       } else if (n->is_LoadStore()) {
4802         // get the memory projection
4803         n = n->find_out_with(Op_SCMemProj);
4804         assert(n != nullptr && n->Opcode() == Op_SCMemProj, "memory projection required");
4805       }
4806     }
4807     // push user on appropriate worklist
4808     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4809       Node *use = n->fast_out(i);
4810       if (use->is_Phi() || use->is_ClearArray()) {
4811         memnode_worklist.append_if_missing(use);
4812       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
4813         memnode_worklist.append_if_missing(use);
4814       } else if (use->is_MemBar() || use->is_CallLeaf()) {
4815         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
4816           memnode_worklist.append_if_missing(use);
4817         }
4818       } else if (use->is_Proj()) {
4819         assert(n->is_Initialize(), "We only push projections of Initialize");
4820         if (use->as_Proj()->_con == TypeFunc::Memory) { // Ignore precedent edge
4821           memnode_worklist.append_if_missing(use);
4822         }
4823 #ifdef ASSERT
4824       } else if(use->is_Mem()) {
4825         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
4826       } else if (use->is_MergeMem()) {
4827         assert(mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
4828       } else if (use->Opcode() == Op_EncodeISOArray) {
4829         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
4830           // EncodeISOArray overwrites destination array
4831           memnode_worklist.append_if_missing(use);
4832         }
4833       } else {
4834         uint op = use->Opcode();
4835         if ((use->in(MemNode::Memory) == n) &&
4836             (op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) {
4837           // They overwrite memory edge corresponding to destination array,
4838           memnode_worklist.append_if_missing(use);
4839         } else if (!(BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use) ||
4840               op == Op_AryEq || op == Op_StrComp || op == Op_CountPositives ||
4841               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy || op == Op_VectorizedHashCode ||
4842               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar)) {
4843           n->dump();
4844           use->dump();
4845           assert(false, "EA: missing memory path");
4846         }
4847 #endif
4848       }
4849     }
4850   }
4851 
4852   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
4853   //            Walk each memory slice moving the first node encountered of each
4854   //            instance type to the input corresponding to its alias index.
4855   uint length = mergemem_worklist.length();
4856   for( uint next = 0; next < length; ++next ) {
4857     MergeMemNode* nmm = mergemem_worklist.at(next);
4858     assert(!visited.test_set(nmm->_idx), "should not be visited before");
4859     // Note: we don't want to use MergeMemStream here because we only want to
4860     // scan inputs which exist at the start, not ones we add during processing.
4861     // Note 2: MergeMem may already contains instance memory slices added
4862     // during find_inst_mem() call when memory nodes were processed above.
4863     igvn->hash_delete(nmm);
4864     uint nslices = MIN2(nmm->req(), new_index_start);
4865     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
4866       Node* mem = nmm->in(i);
4867       Node* cur = nullptr;
4868       if (mem == nullptr || mem->is_top()) {
4869         continue;
4870       }
4871       // First, update mergemem by moving memory nodes to corresponding slices
4872       // if their type became more precise since this mergemem was created.
4873       while (mem->is_Mem()) {
4874         const Type* at = igvn->type(mem->in(MemNode::Address));
4875         if (at != Type::TOP) {
4876           assert (at->isa_ptr() != nullptr, "pointer type required.");
4877           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
4878           if (idx == i) {
4879             if (cur == nullptr) {
4880               cur = mem;
4881             }
4882           } else {
4883             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
4884               nmm->set_memory_at(idx, mem);
4885             }
4886           }
4887         }
4888         mem = mem->in(MemNode::Memory);
4889       }
4890       nmm->set_memory_at(i, (cur != nullptr) ? cur : mem);
4891       // Find any instance of the current type if we haven't encountered
4892       // already a memory slice of the instance along the memory chain.
4893       for (uint ni = new_index_start; ni < new_index_end; ni++) {
4894         if((uint)_compile->get_general_index(ni) == i) {
4895           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
4896           if (nmm->is_empty_memory(m)) {
4897             Node* result = find_inst_mem(mem, ni, orig_phis);
4898             if (_compile->failing()) {
4899               return;
4900             }
4901             nmm->set_memory_at(ni, result);
4902           }
4903         }
4904       }
4905     }
4906     // Find the rest of instances values
4907     for (uint ni = new_index_start; ni < new_index_end; ni++) {
4908       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
4909       Node* result = step_through_mergemem(nmm, ni, tinst);
4910       if (result == nmm->base_memory()) {
4911         // Didn't find instance memory, search through general slice recursively.
4912         result = nmm->memory_at(_compile->get_general_index(ni));
4913         result = find_inst_mem(result, ni, orig_phis);
4914         if (_compile->failing()) {
4915           return;
4916         }
4917         nmm->set_memory_at(ni, result);
4918       }
4919     }
4920 
4921     // If we have crossed the 3/4 point of max node limit it's too risky
4922     // to continue with EA/SR because we might hit the max node limit.
4923     if (_compile->live_nodes() >= _compile->max_node_limit() * 0.75) {
4924       if (_compile->do_reduce_allocation_merges()) {
4925         _compile->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
4926       } else if (_invocation > 0) {
4927         _compile->record_failure(C2Compiler::retry_no_iterative_escape_analysis());
4928       } else {
4929         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
4930       }
4931       return;
4932     }
4933 
4934     igvn->hash_insert(nmm);
4935     record_for_optimizer(nmm);
4936   }
4937 
4938   _compile->print_method(PHASE_EA_AFTER_SPLIT_UNIQUE_TYPES_3, 5);
4939 
4940   //  Phase 4:  Update the inputs of non-instance memory Phis and
4941   //            the Memory input of memnodes
4942   // First update the inputs of any non-instance Phi's from
4943   // which we split out an instance Phi.  Note we don't have
4944   // to recursively process Phi's encountered on the input memory
4945   // chains as is done in split_memory_phi() since they  will
4946   // also be processed here.
4947   for (int j = 0; j < orig_phis.length(); j++) {
4948     PhiNode *phi = orig_phis.at(j);
4949     int alias_idx = _compile->get_alias_index(phi->adr_type());
4950     igvn->hash_delete(phi);
4951     for (uint i = 1; i < phi->req(); i++) {
4952       Node *mem = phi->in(i);
4953       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
4954       if (_compile->failing()) {
4955         return;
4956       }
4957       if (mem != new_mem) {
4958         phi->set_req(i, new_mem);
4959       }
4960     }
4961     igvn->hash_insert(phi);
4962     record_for_optimizer(phi);
4963   }
4964 
4965   // Update the memory inputs of MemNodes with the value we computed
4966   // in Phase 2 and move stores memory users to corresponding memory slices.
4967   // Disable memory split verification code until the fix for 6984348.
4968   // Currently it produces false negative results since it does not cover all cases.
4969 #if 0 // ifdef ASSERT
4970   visited.Reset();
4971   Node_Stack old_mems(arena, _compile->unique() >> 2);
4972 #endif
4973   for (uint i = 0; i < ideal_nodes.size(); i++) {
4974     Node*    n = ideal_nodes.at(i);
4975     Node* nmem = get_map(n->_idx);
4976     assert(nmem != nullptr, "sanity");
4977     if (n->is_Mem()) {
4978 #if 0 // ifdef ASSERT
4979       Node* old_mem = n->in(MemNode::Memory);
4980       if (!visited.test_set(old_mem->_idx)) {
4981         old_mems.push(old_mem, old_mem->outcnt());
4982       }
4983 #endif
4984       assert(n->in(MemNode::Memory) != nmem, "sanity");
4985       if (!n->is_Load()) {
4986         // Move memory users of a store first.
4987         move_inst_mem(n, orig_phis);
4988       }
4989       // Now update memory input
4990       igvn->hash_delete(n);
4991       n->set_req(MemNode::Memory, nmem);
4992       igvn->hash_insert(n);
4993       record_for_optimizer(n);
4994     } else {
4995       assert(n->is_Allocate() || n->is_CheckCastPP() ||
4996              n->is_AddP() || n->is_Phi() || n->is_NarrowMemProj(), "unknown node used for set_map()");
4997     }
4998   }
4999 #if 0 // ifdef ASSERT
5000   // Verify that memory was split correctly
5001   while (old_mems.is_nonempty()) {
5002     Node* old_mem = old_mems.node();
5003     uint  old_cnt = old_mems.index();
5004     old_mems.pop();
5005     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
5006   }
5007 #endif
5008   _compile->print_method(PHASE_EA_AFTER_SPLIT_UNIQUE_TYPES_4, 5);
5009 }
5010 
5011 #ifndef PRODUCT
5012 int ConnectionGraph::_no_escape_counter = 0;
5013 int ConnectionGraph::_arg_escape_counter = 0;
5014 int ConnectionGraph::_global_escape_counter = 0;
5015 
5016 static const char *node_type_names[] = {
5017   "UnknownType",
5018   "JavaObject",
5019   "LocalVar",
5020   "Field",
5021   "Arraycopy"
5022 };
5023 
5024 static const char *esc_names[] = {
5025   "UnknownEscape",
5026   "NoEscape",
5027   "ArgEscape",
5028   "GlobalEscape"
5029 };
5030 
5031 const char* PointsToNode::esc_name() const {
5032   return esc_names[(int)escape_state()];
5033 }
5034 
5035 void PointsToNode::dump_header(bool print_state, outputStream* out) const {
5036   NodeType nt = node_type();
5037   out->print("%s(%d) ", node_type_names[(int) nt], _pidx);
5038   if (print_state) {
5039     EscapeState es = escape_state();
5040     EscapeState fields_es = fields_escape_state();
5041     out->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
5042     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable()) {
5043       out->print("NSR ");
5044     }
5045   }
5046 }
5047 
5048 void PointsToNode::dump(bool print_state, outputStream* out, bool newline) const {
5049   dump_header(print_state, out);
5050   if (is_Field()) {
5051     FieldNode* f = (FieldNode*)this;
5052     if (f->is_oop()) {
5053       out->print("oop ");
5054     }
5055     if (f->offset() > 0) {
5056       out->print("+%d ", f->offset());
5057     }
5058     out->print("(");
5059     for (BaseIterator i(f); i.has_next(); i.next()) {
5060       PointsToNode* b = i.get();
5061       out->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
5062     }
5063     out->print(" )");
5064   }
5065   out->print("[");
5066   for (EdgeIterator i(this); i.has_next(); i.next()) {
5067     PointsToNode* e = i.get();
5068     out->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
5069   }
5070   out->print(" [");
5071   for (UseIterator i(this); i.has_next(); i.next()) {
5072     PointsToNode* u = i.get();
5073     bool is_base = false;
5074     if (PointsToNode::is_base_use(u)) {
5075       is_base = true;
5076       u = PointsToNode::get_use_node(u)->as_Field();
5077     }
5078     out->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
5079   }
5080   out->print(" ]]  ");
5081   if (_node == nullptr) {
5082     out->print("<null>%s", newline ? "\n" : "");
5083   } else {
5084     _node->dump(newline ? "\n" : "", false, out);
5085   }
5086 }
5087 
5088 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
5089   bool first = true;
5090   int ptnodes_length = ptnodes_worklist.length();
5091   for (int i = 0; i < ptnodes_length; i++) {
5092     PointsToNode *ptn = ptnodes_worklist.at(i);
5093     if (ptn == nullptr || !ptn->is_JavaObject()) {
5094       continue;
5095     }
5096     PointsToNode::EscapeState es = ptn->escape_state();
5097     if ((es != PointsToNode::NoEscape) && !Verbose) {
5098       continue;
5099     }
5100     Node* n = ptn->ideal_node();
5101     if (n->is_Allocate() || (n->is_CallStaticJava() &&
5102                              n->as_CallStaticJava()->is_boxing_method())) {
5103       if (first) {
5104         tty->cr();
5105         tty->print("======== Connection graph for ");
5106         _compile->method()->print_short_name();
5107         tty->cr();
5108         tty->print_cr("invocation #%d: %d iterations and %f sec to build connection graph with %d nodes and worklist size %d",
5109                       _invocation, _build_iterations, _build_time, nodes_size(), ptnodes_worklist.length());
5110         tty->cr();
5111         first = false;
5112       }
5113       ptn->dump();
5114       // Print all locals and fields which reference this allocation
5115       for (UseIterator j(ptn); j.has_next(); j.next()) {
5116         PointsToNode* use = j.get();
5117         if (use->is_LocalVar()) {
5118           use->dump(Verbose);
5119         } else if (Verbose) {
5120           use->dump();
5121         }
5122       }
5123       tty->cr();
5124     }
5125   }
5126 }
5127 
5128 void ConnectionGraph::print_statistics() {
5129   tty->print_cr("No escape = %d, Arg escape = %d, Global escape = %d", AtomicAccess::load(&_no_escape_counter), AtomicAccess::load(&_arg_escape_counter), AtomicAccess::load(&_global_escape_counter));
5130 }
5131 
5132 void ConnectionGraph::escape_state_statistics(GrowableArray<JavaObjectNode*>& java_objects_worklist) {
5133   if (!PrintOptoStatistics || (_invocation > 0)) { // Collect data only for the first invocation
5134     return;
5135   }
5136   for (int next = 0; next < java_objects_worklist.length(); ++next) {
5137     JavaObjectNode* ptn = java_objects_worklist.at(next);
5138     if (ptn->ideal_node()->is_Allocate()) {
5139       if (ptn->escape_state() == PointsToNode::NoEscape) {
5140         AtomicAccess::inc(&ConnectionGraph::_no_escape_counter);
5141       } else if (ptn->escape_state() == PointsToNode::ArgEscape) {
5142         AtomicAccess::inc(&ConnectionGraph::_arg_escape_counter);
5143       } else if (ptn->escape_state() == PointsToNode::GlobalEscape) {
5144         AtomicAccess::inc(&ConnectionGraph::_global_escape_counter);
5145       } else {
5146         assert(false, "Unexpected Escape State");
5147       }
5148     }
5149   }
5150 }
5151 
5152 void ConnectionGraph::trace_es_update_helper(PointsToNode* ptn, PointsToNode::EscapeState es, bool fields, const char* reason) const {
5153   if (_compile->directive()->TraceEscapeAnalysisOption) {
5154     assert(ptn != nullptr, "should not be null");
5155     assert(reason != nullptr, "should not be null");
5156     ptn->dump_header(true);
5157     PointsToNode::EscapeState new_es = fields ? ptn->escape_state() : es;
5158     PointsToNode::EscapeState new_fields_es = fields ? es : ptn->fields_escape_state();
5159     tty->print_cr("-> %s(%s) %s", esc_names[(int)new_es], esc_names[(int)new_fields_es], reason);
5160   }
5161 }
5162 
5163 const char* ConnectionGraph::trace_propagate_message(PointsToNode* from) const {
5164   if (_compile->directive()->TraceEscapeAnalysisOption) {
5165     stringStream ss;
5166     ss.print("propagated from: ");
5167     from->dump(true, &ss, false);
5168     return ss.as_string();
5169   } else {
5170     return nullptr;
5171   }
5172 }
5173 
5174 const char* ConnectionGraph::trace_arg_escape_message(CallNode* call) const {
5175   if (_compile->directive()->TraceEscapeAnalysisOption) {
5176     stringStream ss;
5177     ss.print("escapes as arg to:");
5178     call->dump("", false, &ss);
5179     return ss.as_string();
5180   } else {
5181     return nullptr;
5182   }
5183 }
5184 
5185 const char* ConnectionGraph::trace_merged_message(PointsToNode* other) const {
5186   if (_compile->directive()->TraceEscapeAnalysisOption) {
5187     stringStream ss;
5188     ss.print("is merged with other object: ");
5189     other->dump_header(true, &ss);
5190     return ss.as_string();
5191   } else {
5192     return nullptr;
5193   }
5194 }
5195 
5196 #endif
5197 
5198 void ConnectionGraph::record_for_optimizer(Node *n) {
5199   _igvn->_worklist.push(n);
5200   _igvn->add_users_to_worklist(n);
5201 }