1 /*
   2  * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/bcEscapeAnalyzer.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "gc/shared/barrierSet.hpp"
  28 #include "gc/shared/c2/barrierSetC2.hpp"
  29 #include "libadt/vectset.hpp"
  30 #include "memory/allocation.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "opto/arraycopynode.hpp"
  33 #include "opto/c2compiler.hpp"
  34 #include "opto/callnode.hpp"
  35 #include "opto/castnode.hpp"
  36 #include "opto/cfgnode.hpp"
  37 #include "opto/compile.hpp"
  38 #include "opto/escape.hpp"
  39 #include "opto/locknode.hpp"
  40 #include "opto/macro.hpp"
  41 #include "opto/movenode.hpp"
  42 #include "opto/narrowptrnode.hpp"
  43 #include "opto/phaseX.hpp"
  44 #include "opto/rootnode.hpp"
  45 #include "utilities/macros.hpp"
  46 
  47 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn, int invocation) :
  48   // If ReduceAllocationMerges is enabled we might call split_through_phi during
  49   // split_unique_types and that will create additional nodes that need to be
  50   // pushed to the ConnectionGraph. The code below bumps the initial capacity of
  51   // _nodes by 10% to account for these additional nodes. If capacity is exceeded
  52   // the array will be reallocated.
  53   _nodes(C->comp_arena(), C->do_reduce_allocation_merges() ? C->unique()*1.10 : C->unique(), C->unique(), nullptr),
  54   _in_worklist(C->comp_arena()),
  55   _next_pidx(0),
  56   _collecting(true),
  57   _verify(false),
  58   _compile(C),
  59   _igvn(igvn),
  60   _invocation(invocation),
  61   _build_iterations(0),
  62   _build_time(0.),
  63   _node_map(C->comp_arena()) {
  64   // Add unknown java object.
  65   add_java_object(C->top(), PointsToNode::GlobalEscape);
  66   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
  67   set_not_scalar_replaceable(phantom_obj NOT_PRODUCT(COMMA "Phantom object"));
  68   // Add ConP and ConN null oop nodes
  69   Node* oop_null = igvn->zerocon(T_OBJECT);
  70   assert(oop_null->_idx < nodes_size(), "should be created already");
  71   add_java_object(oop_null, PointsToNode::NoEscape);
  72   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
  73   set_not_scalar_replaceable(null_obj NOT_PRODUCT(COMMA "Null object"));
  74   if (UseCompressedOops) {
  75     Node* noop_null = igvn->zerocon(T_NARROWOOP);
  76     assert(noop_null->_idx < nodes_size(), "should be created already");
  77     map_ideal_node(noop_null, null_obj);
  78   }
  79 }
  80 
  81 bool ConnectionGraph::has_candidates(Compile *C) {
  82   // EA brings benefits only when the code has allocations and/or locks which
  83   // are represented by ideal Macro nodes.
  84   int cnt = C->macro_count();
  85   for (int i = 0; i < cnt; i++) {
  86     Node *n = C->macro_node(i);
  87     if (n->is_Allocate()) {
  88       return true;
  89     }
  90     if (n->is_Lock()) {
  91       Node* obj = n->as_Lock()->obj_node()->uncast();
  92       if (!(obj->is_Parm() || obj->is_Con())) {
  93         return true;
  94       }
  95     }
  96     if (n->is_CallStaticJava() &&
  97         n->as_CallStaticJava()->is_boxing_method()) {
  98       return true;
  99     }
 100   }
 101   return false;
 102 }
 103 
 104 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
 105   Compile::TracePhase tp(Phase::_t_escapeAnalysis);
 106   ResourceMark rm;
 107 
 108   // Add ConP and ConN null oop nodes before ConnectionGraph construction
 109   // to create space for them in ConnectionGraph::_nodes[].
 110   Node* oop_null = igvn->zerocon(T_OBJECT);
 111   Node* noop_null = igvn->zerocon(T_NARROWOOP);
 112   int invocation = 0;
 113   if (C->congraph() != nullptr) {
 114     invocation = C->congraph()->_invocation + 1;
 115   }
 116   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn, invocation);
 117   // Perform escape analysis
 118   if (congraph->compute_escape()) {
 119     // There are non escaping objects.
 120     C->set_congraph(congraph);
 121   }
 122   // Cleanup.
 123   if (oop_null->outcnt() == 0) {
 124     igvn->hash_delete(oop_null);
 125   }
 126   if (noop_null->outcnt() == 0) {
 127     igvn->hash_delete(noop_null);
 128   }
 129 }
 130 
 131 bool ConnectionGraph::compute_escape() {
 132   Compile* C = _compile;
 133   PhaseGVN* igvn = _igvn;
 134 
 135   // Worklists used by EA.
 136   Unique_Node_List delayed_worklist;
 137   Unique_Node_List reducible_merges;
 138   GrowableArray<Node*> alloc_worklist;
 139   GrowableArray<Node*> ptr_cmp_worklist;
 140   GrowableArray<MemBarStoreStoreNode*> storestore_worklist;
 141   GrowableArray<ArrayCopyNode*>  arraycopy_worklist;
 142   GrowableArray<PointsToNode*>   ptnodes_worklist;
 143   GrowableArray<JavaObjectNode*> java_objects_worklist;
 144   GrowableArray<JavaObjectNode*> non_escaped_allocs_worklist;
 145   GrowableArray<FieldNode*>      oop_fields_worklist;
 146   GrowableArray<SafePointNode*>  sfn_worklist;
 147   GrowableArray<MergeMemNode*>   mergemem_worklist;
 148   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 149 
 150   { Compile::TracePhase tp(Phase::_t_connectionGraph);
 151 
 152   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 153   ideal_nodes.map(C->live_nodes(), nullptr);  // preallocate space
 154   // Initialize worklist
 155   if (C->root() != nullptr) {
 156     ideal_nodes.push(C->root());
 157   }
 158   // Processed ideal nodes are unique on ideal_nodes list
 159   // but several ideal nodes are mapped to the phantom_obj.
 160   // To avoid duplicated entries on the following worklists
 161   // add the phantom_obj only once to them.
 162   ptnodes_worklist.append(phantom_obj);
 163   java_objects_worklist.append(phantom_obj);
 164   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 165     Node* n = ideal_nodes.at(next);
 166     // Create PointsTo nodes and add them to Connection Graph. Called
 167     // only once per ideal node since ideal_nodes is Unique_Node list.
 168     add_node_to_connection_graph(n, &delayed_worklist);
 169     PointsToNode* ptn = ptnode_adr(n->_idx);
 170     if (ptn != nullptr && ptn != phantom_obj) {
 171       ptnodes_worklist.append(ptn);
 172       if (ptn->is_JavaObject()) {
 173         java_objects_worklist.append(ptn->as_JavaObject());
 174         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 175             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 176           // Only allocations and java static calls results are interesting.
 177           non_escaped_allocs_worklist.append(ptn->as_JavaObject());
 178         }
 179       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 180         oop_fields_worklist.append(ptn->as_Field());
 181       }
 182     }
 183     // Collect some interesting nodes for further use.
 184     switch (n->Opcode()) {
 185       case Op_MergeMem:
 186         // Collect all MergeMem nodes to add memory slices for
 187         // scalar replaceable objects in split_unique_types().
 188         mergemem_worklist.append(n->as_MergeMem());
 189         break;
 190       case Op_CmpP:
 191       case Op_CmpN:
 192         // Collect compare pointers nodes.
 193         if (OptimizePtrCompare) {
 194           ptr_cmp_worklist.append(n);
 195         }
 196         break;
 197       case Op_MemBarStoreStore:
 198         // Collect all MemBarStoreStore nodes so that depending on the
 199         // escape status of the associated Allocate node some of them
 200         // may be eliminated.
 201         if (!UseStoreStoreForCtor || n->req() > MemBarNode::Precedent) {
 202           storestore_worklist.append(n->as_MemBarStoreStore());
 203         }
 204         // If MemBarStoreStore has a precedent edge add it to the worklist (like MemBarRelease)
 205       case Op_MemBarRelease:
 206         if (n->req() > MemBarNode::Precedent) {
 207           record_for_optimizer(n);
 208         }
 209         break;
 210 #ifdef ASSERT
 211       case Op_AddP:
 212         // Collect address nodes for graph verification.
 213         addp_worklist.append(n);
 214         break;
 215 #endif
 216       case Op_ArrayCopy:
 217         // Keep a list of ArrayCopy nodes so if one of its input is non
 218         // escaping, we can record a unique type
 219         arraycopy_worklist.append(n->as_ArrayCopy());
 220         break;
 221       default:
 222         // not interested now, ignore...
 223         break;
 224     }
 225     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 226       Node* m = n->fast_out(i);   // Get user
 227       ideal_nodes.push(m);
 228     }
 229     if (n->is_SafePoint()) {
 230       sfn_worklist.append(n->as_SafePoint());
 231     }
 232   }
 233 
 234 #ifndef PRODUCT
 235   if (_compile->directive()->TraceEscapeAnalysisOption) {
 236     tty->print("+++++ Initial worklist for ");
 237     _compile->method()->print_name();
 238     tty->print_cr(" (ea_inv=%d)", _invocation);
 239     for (int i = 0; i < ptnodes_worklist.length(); i++) {
 240       PointsToNode* ptn = ptnodes_worklist.at(i);
 241       ptn->dump();
 242     }
 243     tty->print_cr("+++++ Calculating escape states and scalar replaceability");
 244   }
 245 #endif
 246 
 247   if (non_escaped_allocs_worklist.length() == 0) {
 248     _collecting = false;
 249     NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 250     return false; // Nothing to do.
 251   }
 252   // Add final simple edges to graph.
 253   while(delayed_worklist.size() > 0) {
 254     Node* n = delayed_worklist.pop();
 255     add_final_edges(n);
 256   }
 257 
 258 #ifdef ASSERT
 259   if (VerifyConnectionGraph) {
 260     // Verify that no new simple edges could be created and all
 261     // local vars has edges.
 262     _verify = true;
 263     int ptnodes_length = ptnodes_worklist.length();
 264     for (int next = 0; next < ptnodes_length; ++next) {
 265       PointsToNode* ptn = ptnodes_worklist.at(next);
 266       add_final_edges(ptn->ideal_node());
 267       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
 268         ptn->dump();
 269         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
 270       }
 271     }
 272     _verify = false;
 273   }
 274 #endif
 275   // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes
 276   // processing, calls to CI to resolve symbols (types, fields, methods)
 277   // referenced in bytecode. During symbol resolution VM may throw
 278   // an exception which CI cleans and converts to compilation failure.
 279   if (C->failing()) {
 280     NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 281     return false;
 282   }
 283 
 284   // 2. Finish Graph construction by propagating references to all
 285   //    java objects through graph.
 286   if (!complete_connection_graph(ptnodes_worklist, non_escaped_allocs_worklist,
 287                                  java_objects_worklist, oop_fields_worklist)) {
 288     // All objects escaped or hit time or iterations limits.
 289     _collecting = false;
 290     NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 291     return false;
 292   }
 293 
 294   // 3. Adjust scalar_replaceable state of nonescaping objects and push
 295   //    scalar replaceable allocations on alloc_worklist for processing
 296   //    in split_unique_types().
 297   GrowableArray<JavaObjectNode*> jobj_worklist;
 298   int non_escaped_length = non_escaped_allocs_worklist.length();
 299   bool found_nsr_alloc = false;
 300   for (int next = 0; next < non_escaped_length; next++) {
 301     JavaObjectNode* ptn = non_escaped_allocs_worklist.at(next);
 302     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
 303     Node* n = ptn->ideal_node();
 304     if (n->is_Allocate()) {
 305       n->as_Allocate()->_is_non_escaping = noescape;
 306     }
 307     if (noescape && ptn->scalar_replaceable()) {
 308       adjust_scalar_replaceable_state(ptn, reducible_merges);
 309       if (ptn->scalar_replaceable()) {
 310         jobj_worklist.push(ptn);
 311       } else {
 312         found_nsr_alloc = true;
 313       }
 314     }
 315   }
 316 
 317   // Propagate NSR (Not Scalar Replaceable) state.
 318   if (found_nsr_alloc) {
 319     find_scalar_replaceable_allocs(jobj_worklist, reducible_merges);
 320   }
 321 
 322   // alloc_worklist will be processed in reverse push order.
 323   // Therefore the reducible Phis will be processed for last and that's what we
 324   // want because by then the scalarizable inputs of the merge will already have
 325   // an unique instance type.
 326   for (uint i = 0; i < reducible_merges.size(); i++ ) {
 327     Node* n = reducible_merges.at(i);
 328     alloc_worklist.append(n);
 329   }
 330 
 331   for (int next = 0; next < jobj_worklist.length(); ++next) {
 332     JavaObjectNode* jobj = jobj_worklist.at(next);
 333     if (jobj->scalar_replaceable()) {
 334       alloc_worklist.append(jobj->ideal_node());
 335     }
 336   }
 337 
 338 #ifdef ASSERT
 339   if (VerifyConnectionGraph) {
 340     // Verify that graph is complete - no new edges could be added or needed.
 341     verify_connection_graph(ptnodes_worklist, non_escaped_allocs_worklist,
 342                             java_objects_worklist, addp_worklist);
 343   }
 344   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
 345   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
 346          null_obj->edge_count() == 0 &&
 347          !null_obj->arraycopy_src() &&
 348          !null_obj->arraycopy_dst(), "sanity");
 349 #endif
 350 
 351   _collecting = false;
 352 
 353   } // TracePhase t3("connectionGraph")
 354 
 355   // 4. Optimize ideal graph based on EA information.
 356   bool has_non_escaping_obj = (non_escaped_allocs_worklist.length() > 0);
 357   if (has_non_escaping_obj) {
 358     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
 359   }
 360 
 361 #ifndef PRODUCT
 362   if (PrintEscapeAnalysis) {
 363     dump(ptnodes_worklist); // Dump ConnectionGraph
 364   }
 365 #endif
 366 
 367 #ifdef ASSERT
 368   if (VerifyConnectionGraph) {
 369     int alloc_length = alloc_worklist.length();
 370     for (int next = 0; next < alloc_length; ++next) {
 371       Node* n = alloc_worklist.at(next);
 372       PointsToNode* ptn = ptnode_adr(n->_idx);
 373       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
 374     }
 375   }
 376 
 377   if (VerifyReduceAllocationMerges) {
 378     for (uint i = 0; i < reducible_merges.size(); i++ ) {
 379       Node* n = reducible_merges.at(i);
 380       if (!can_reduce_phi(n->as_Phi())) {
 381         TraceReduceAllocationMerges = true;
 382         n->dump(2);
 383         n->dump(-2);
 384         assert(can_reduce_phi(n->as_Phi()), "Sanity: previous reducible Phi is no longer reducible before SUT.");
 385       }
 386     }
 387   }
 388 #endif
 389 
 390   // 5. Separate memory graph for scalar replaceable allcations.
 391   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
 392   if (has_scalar_replaceable_candidates && EliminateAllocations) {
 393     assert(C->do_aliasing(), "Aliasing should be enabled");
 394     // Now use the escape information to create unique types for
 395     // scalar replaceable objects.
 396     split_unique_types(alloc_worklist, arraycopy_worklist, mergemem_worklist, reducible_merges);
 397     if (C->failing()) {
 398       NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 399       return false;
 400     }
 401     C->print_method(PHASE_AFTER_EA, 2);
 402 
 403 #ifdef ASSERT
 404   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
 405     tty->print("=== No allocations eliminated for ");
 406     C->method()->print_short_name();
 407     if (!EliminateAllocations) {
 408       tty->print(" since EliminateAllocations is off ===");
 409     } else if(!has_scalar_replaceable_candidates) {
 410       tty->print(" since there are no scalar replaceable candidates ===");
 411     }
 412     tty->cr();
 413 #endif
 414   }
 415 
 416   // 6. Reduce allocation merges used as debug information. This is done after
 417   // split_unique_types because the methods used to create SafePointScalarObject
 418   // need to traverse the memory graph to find values for object fields. We also
 419   // set to null the scalarized inputs of reducible Phis so that the Allocate
 420   // that they point can be later scalar replaced.
 421   bool delay = _igvn->delay_transform();
 422   _igvn->set_delay_transform(true);
 423   for (uint i = 0; i < reducible_merges.size(); i++) {
 424     Node* n = reducible_merges.at(i);
 425     if (n->outcnt() > 0) {
 426       if (!reduce_phi_on_safepoints(n->as_Phi())) {
 427         NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 428         C->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
 429         return false;
 430       }
 431 
 432       // Now we set the scalar replaceable inputs of ophi to null, which is
 433       // the last piece that would prevent it from being scalar replaceable.
 434       reset_scalar_replaceable_entries(n->as_Phi());
 435     }
 436   }
 437   _igvn->set_delay_transform(delay);
 438 
 439   // Annotate at safepoints if they have <= ArgEscape objects in their scope and at
 440   // java calls if they pass ArgEscape objects as parameters.
 441   if (has_non_escaping_obj &&
 442       (C->env()->should_retain_local_variables() ||
 443        C->env()->jvmti_can_get_owned_monitor_info() ||
 444        C->env()->jvmti_can_walk_any_space() ||
 445        DeoptimizeObjectsALot)) {
 446     int sfn_length = sfn_worklist.length();
 447     for (int next = 0; next < sfn_length; next++) {
 448       SafePointNode* sfn = sfn_worklist.at(next);
 449       sfn->set_has_ea_local_in_scope(has_ea_local_in_scope(sfn));
 450       if (sfn->is_CallJava()) {
 451         CallJavaNode* call = sfn->as_CallJava();
 452         call->set_arg_escape(has_arg_escape(call));
 453       }
 454     }
 455   }
 456 
 457   NOT_PRODUCT(escape_state_statistics(java_objects_worklist);)
 458   return has_non_escaping_obj;
 459 }
 460 
 461 // Check if it's profitable to reduce the Phi passed as parameter.  Returns true
 462 // if at least one scalar replaceable allocation participates in the merge.
 463 bool ConnectionGraph::can_reduce_phi_check_inputs(PhiNode* ophi) const {
 464   bool found_sr_allocate = false;
 465 
 466   for (uint i = 1; i < ophi->req(); i++) {
 467     JavaObjectNode* ptn = unique_java_object(ophi->in(i));
 468     if (ptn != nullptr && ptn->scalar_replaceable()) {
 469       AllocateNode* alloc = ptn->ideal_node()->as_Allocate();
 470 
 471       // Don't handle arrays.
 472       if (alloc->Opcode() != Op_Allocate) {
 473         assert(alloc->Opcode() == Op_AllocateArray, "Unexpected type of allocation.");
 474         continue;
 475       }
 476 
 477       if (PhaseMacroExpand::can_eliminate_allocation(_igvn, alloc, nullptr)) {
 478         found_sr_allocate = true;
 479       } else {
 480         NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("%dth input of Phi %d is SR but can't be eliminated.", i, ophi->_idx);)
 481         ptn->set_scalar_replaceable(false);
 482       }
 483     }
 484   }
 485 
 486   NOT_PRODUCT(if (TraceReduceAllocationMerges && !found_sr_allocate) tty->print_cr("Can NOT reduce Phi %d on invocation %d. No SR Allocate as input.", ophi->_idx, _invocation);)
 487   return found_sr_allocate;
 488 }
 489 
 490 // We can reduce the Cmp if it's a comparison between the Phi and a constant.
 491 // I require the 'other' input to be a constant so that I can move the Cmp
 492 // around safely.
 493 bool ConnectionGraph::can_reduce_cmp(Node* n, Node* cmp) const {
 494   assert(cmp->Opcode() == Op_CmpP || cmp->Opcode() == Op_CmpN, "not expected node: %s", cmp->Name());
 495   Node* left = cmp->in(1);
 496   Node* right = cmp->in(2);
 497 
 498   return (left == n || right == n) &&
 499          (left->is_Con() || right->is_Con()) &&
 500          cmp->outcnt() == 1;
 501 }
 502 
 503 // We are going to check if any of the SafePointScalarMerge entries
 504 // in the SafePoint reference the Phi that we are checking.
 505 bool ConnectionGraph::has_been_reduced(PhiNode* n, SafePointNode* sfpt) const {
 506   JVMState *jvms = sfpt->jvms();
 507 
 508   for (uint i = jvms->debug_start(); i < jvms->debug_end(); i++) {
 509     Node* sfpt_in = sfpt->in(i);
 510     if (sfpt_in->is_SafePointScalarMerge()) {
 511       SafePointScalarMergeNode* smerge = sfpt_in->as_SafePointScalarMerge();
 512       Node* nsr_ptr = sfpt->in(smerge->merge_pointer_idx(jvms));
 513       if (nsr_ptr == n) {
 514         return true;
 515       }
 516     }
 517   }
 518 
 519   return false;
 520 }
 521 
 522 // Check if we are able to untangle the merge. The following patterns are
 523 // supported:
 524 //  - Phi -> SafePoints
 525 //  - Phi -> CmpP/N
 526 //  - Phi -> AddP -> Load
 527 //  - Phi -> CastPP -> SafePoints
 528 //  - Phi -> CastPP -> AddP -> Load
 529 bool ConnectionGraph::can_reduce_check_users(Node* n, uint nesting) const {
 530   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 531     Node* use = n->fast_out(i);
 532 
 533     if (use->is_SafePoint()) {
 534       if (use->is_Call() && use->as_Call()->has_non_debug_use(n)) {
 535         NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. Call has non_debug_use().", n->_idx, _invocation);)
 536         return false;
 537       } else if (has_been_reduced(n->is_Phi() ? n->as_Phi() : n->as_CastPP()->in(1)->as_Phi(), use->as_SafePoint())) {
 538         NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. It has already been reduced.", n->_idx, _invocation);)
 539         return false;
 540       }
 541     } else if (use->is_AddP()) {
 542       Node* addp = use;
 543       for (DUIterator_Fast jmax, j = addp->fast_outs(jmax); j < jmax; j++) {
 544         Node* use_use = addp->fast_out(j);
 545         const Type* load_type = _igvn->type(use_use);
 546 
 547         if (!use_use->is_Load() || !use_use->as_Load()->can_split_through_phi_base(_igvn)) {
 548           NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. AddP user isn't a [splittable] Load(): %s", n->_idx, _invocation, use_use->Name());)
 549           return false;
 550         } else if (load_type->isa_narrowklass() || load_type->isa_klassptr()) {
 551           NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. [Narrow] Klass Load: %s", n->_idx, _invocation, use_use->Name());)
 552           return false;
 553         }
 554       }
 555     } else if (nesting > 0) {
 556       NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. Unsupported user %s at nesting level %d.", n->_idx, _invocation, use->Name(), nesting);)
 557       return false;
 558     } else if (use->is_CastPP()) {
 559       const Type* cast_t = _igvn->type(use);
 560       if (cast_t == nullptr || cast_t->make_ptr()->isa_instptr() == nullptr) {
 561 #ifndef PRODUCT
 562         if (TraceReduceAllocationMerges) {
 563           tty->print_cr("Can NOT reduce Phi %d on invocation %d. CastPP is not to an instance.", n->_idx, _invocation);
 564           use->dump();
 565         }
 566 #endif
 567         return false;
 568       }
 569 
 570       bool is_trivial_control = use->in(0) == nullptr || use->in(0) == n->in(0);
 571       if (!is_trivial_control) {
 572         // If it's not a trivial control then we check if we can reduce the
 573         // CmpP/N used by the If controlling the cast.
 574         if (use->in(0)->is_IfTrue() || use->in(0)->is_IfFalse()) {
 575           Node* iff = use->in(0)->in(0);
 576           // We may have an OpaqueNotNull node between If and Bool nodes. But we could also have a sub class of IfNode,
 577           // for example, an OuterStripMinedLoopEnd or a Parse Predicate. Bail out in all these cases.
 578           bool can_reduce = (iff->Opcode() == Op_If) && iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp();
 579           if (can_reduce) {
 580             Node* iff_cmp = iff->in(1)->in(1);
 581             int opc = iff_cmp->Opcode();
 582             can_reduce = (opc == Op_CmpP || opc == Op_CmpN) && can_reduce_cmp(n, iff_cmp);
 583           }
 584           if (!can_reduce) {
 585 #ifndef PRODUCT
 586             if (TraceReduceAllocationMerges) {
 587               tty->print_cr("Can NOT reduce Phi %d on invocation %d. CastPP %d doesn't have simple control.", n->_idx, _invocation, use->_idx);
 588               n->dump(5);
 589             }
 590 #endif
 591             return false;
 592           }
 593         }
 594       }
 595 
 596       if (!can_reduce_check_users(use, nesting+1)) {
 597         return false;
 598       }
 599     } else if (use->Opcode() == Op_CmpP || use->Opcode() == Op_CmpN) {
 600       if (!can_reduce_cmp(n, use)) {
 601         NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. CmpP/N %d isn't reducible.", n->_idx, _invocation, use->_idx);)
 602         return false;
 603       }
 604     } else {
 605       NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Can NOT reduce Phi %d on invocation %d. One of the uses is: %d %s", n->_idx, _invocation, use->_idx, use->Name());)
 606       return false;
 607     }
 608   }
 609 
 610   return true;
 611 }
 612 
 613 // Returns true if: 1) It's profitable to reduce the merge, and 2) The Phi is
 614 // only used in some certain code shapes. Check comments in
 615 // 'can_reduce_phi_inputs' and 'can_reduce_phi_users' for more
 616 // details.
 617 bool ConnectionGraph::can_reduce_phi(PhiNode* ophi) const {
 618   // If there was an error attempting to reduce allocation merges for this
 619   // method we might have disabled the compilation and be retrying with RAM
 620   // disabled.
 621   if (!_compile->do_reduce_allocation_merges() || ophi->region()->Opcode() != Op_Region) {
 622     return false;
 623   }
 624 
 625   const Type* phi_t = _igvn->type(ophi);
 626   if (phi_t == nullptr ||
 627       phi_t->make_ptr() == nullptr ||
 628       phi_t->make_ptr()->isa_aryptr() != nullptr) {
 629     return false;
 630   }
 631 
 632   if (!can_reduce_phi_check_inputs(ophi) || !can_reduce_check_users(ophi, /* nesting: */ 0)) {
 633     return false;
 634   }
 635 
 636   NOT_PRODUCT(if (TraceReduceAllocationMerges) { tty->print_cr("Can reduce Phi %d during invocation %d: ", ophi->_idx, _invocation); })
 637   return true;
 638 }
 639 
 640 // This method will return a CmpP/N that we need to use on the If controlling a
 641 // CastPP after it was split. This method is only called on bases that are
 642 // nullable therefore we always need a controlling if for the splitted CastPP.
 643 //
 644 // 'curr_ctrl' is the control of the CastPP that we want to split through phi.
 645 // If the CastPP currently doesn't have a control then the CmpP/N will be
 646 // against the null constant, otherwise it will be against the constant input of
 647 // the existing CmpP/N. It's guaranteed that there will be a CmpP/N in the later
 648 // case because we have constraints on it and because the CastPP has a control
 649 // input.
 650 Node* ConnectionGraph::specialize_cmp(Node* base, Node* curr_ctrl) {
 651   const Type* t = base->bottom_type();
 652   Node* con = nullptr;
 653 
 654   if (curr_ctrl == nullptr || curr_ctrl->is_Region()) {
 655     con = _igvn->zerocon(t->basic_type());
 656   } else {
 657     // can_reduce_check_users() verified graph: true/false -> if -> bool -> cmp
 658     assert(curr_ctrl->in(0)->Opcode() == Op_If, "unexpected node %s", curr_ctrl->in(0)->Name());
 659     Node* bol = curr_ctrl->in(0)->in(1);
 660     assert(bol->is_Bool(), "unexpected node %s", bol->Name());
 661     Node* curr_cmp = bol->in(1);
 662     assert(curr_cmp->Opcode() == Op_CmpP || curr_cmp->Opcode() == Op_CmpN, "unexpected node %s", curr_cmp->Name());
 663     con = curr_cmp->in(1)->is_Con() ? curr_cmp->in(1) : curr_cmp->in(2);
 664   }
 665 
 666   return CmpNode::make(base, con, t->basic_type());
 667 }
 668 
 669 // This method 'specializes' the CastPP passed as parameter to the base passed
 670 // as parameter. Note that the existing CastPP input is a Phi. "Specialize"
 671 // means that the CastPP now will be specific for a given base instead of a Phi.
 672 // An If-Then-Else-Region block is inserted to control the CastPP. The control
 673 // of the CastPP is a copy of the current one (if there is one) or a check
 674 // against null.
 675 //
 676 // Before:
 677 //
 678 //    C1     C2  ... Cn
 679 //     \      |      /
 680 //      \     |     /
 681 //       \    |    /
 682 //        \   |   /
 683 //         \  |  /
 684 //          \ | /
 685 //           \|/
 686 //          Region     B1      B2  ... Bn
 687 //            |          \      |      /
 688 //            |           \     |     /
 689 //            |            \    |    /
 690 //            |             \   |   /
 691 //            |              \  |  /
 692 //            |               \ | /
 693 //            ---------------> Phi
 694 //                              |
 695 //                      X       |
 696 //                      |       |
 697 //                      |       |
 698 //                      ------> CastPP
 699 //
 700 // After (only partial illustration; base = B2, current_control = C2):
 701 //
 702 //                      C2
 703 //                      |
 704 //                      If
 705 //                     / \
 706 //                    /   \
 707 //                   T     F
 708 //                  /\     /
 709 //                 /  \   /
 710 //                /    \ /
 711 //      C1    CastPP   Reg        Cn
 712 //       |              |          |
 713 //       |              |          |
 714 //       |              |          |
 715 //       -------------- | ----------
 716 //                    | | |
 717 //                    Region
 718 //
 719 Node* ConnectionGraph::specialize_castpp(Node* castpp, Node* base, Node* current_control) {
 720   Node* control_successor  = current_control->unique_ctrl_out();
 721   Node* cmp                = _igvn->transform(specialize_cmp(base, castpp->in(0)));
 722   Node* bol                = _igvn->transform(new BoolNode(cmp, BoolTest::ne));
 723   IfNode* if_ne            = _igvn->transform(new IfNode(current_control, bol, PROB_MIN, COUNT_UNKNOWN))->as_If();
 724   Node* not_eq_control     = _igvn->transform(new IfTrueNode(if_ne));
 725   Node* yes_eq_control     = _igvn->transform(new IfFalseNode(if_ne));
 726   Node* end_region         = _igvn->transform(new RegionNode(3));
 727 
 728   // Insert the new if-else-region block into the graph
 729   end_region->set_req(1, not_eq_control);
 730   end_region->set_req(2, yes_eq_control);
 731   control_successor->replace_edge(current_control, end_region, _igvn);
 732 
 733   _igvn->_worklist.push(current_control);
 734   _igvn->_worklist.push(control_successor);
 735 
 736   return _igvn->transform(ConstraintCastNode::make_cast_for_type(not_eq_control, base, _igvn->type(castpp), ConstraintCastNode::UnconditionalDependency, nullptr));
 737 }
 738 
 739 Node* ConnectionGraph::split_castpp_load_through_phi(Node* curr_addp, Node* curr_load, Node* region, GrowableArray<Node*>* bases_for_loads, GrowableArray<Node *>  &alloc_worklist) {
 740   const Type* load_type = _igvn->type(curr_load);
 741   Node* nsr_value = _igvn->zerocon(load_type->basic_type());
 742   Node* memory = curr_load->in(MemNode::Memory);
 743 
 744   // The data_phi merging the loads needs to be nullable if
 745   // we are loading pointers.
 746   if (load_type->make_ptr() != nullptr) {
 747     if (load_type->isa_narrowoop()) {
 748       load_type = load_type->meet(TypeNarrowOop::NULL_PTR);
 749     } else if (load_type->isa_ptr()) {
 750       load_type = load_type->meet(TypePtr::NULL_PTR);
 751     } else {
 752       assert(false, "Unexpected load ptr type.");
 753     }
 754   }
 755 
 756   Node* data_phi = PhiNode::make(region, nsr_value, load_type);
 757 
 758   for (int i = 1; i < bases_for_loads->length(); i++) {
 759     Node* base = bases_for_loads->at(i);
 760     Node* cmp_region = nullptr;
 761     if (base != nullptr) {
 762       if (base->is_CFG()) { // means that we added a CastPP as child of this CFG node
 763         cmp_region = base->unique_ctrl_out_or_null();
 764         assert(cmp_region != nullptr, "There should be.");
 765         base = base->find_out_with(Op_CastPP);
 766       }
 767 
 768       Node* addr = _igvn->transform(new AddPNode(base, base, curr_addp->in(AddPNode::Offset)));
 769       Node* mem = (memory->is_Phi() && (memory->in(0) == region)) ? memory->in(i) : memory;
 770       Node* load = curr_load->clone();
 771       load->set_req(0, nullptr);
 772       load->set_req(1, mem);
 773       load->set_req(2, addr);
 774 
 775       if (cmp_region != nullptr) { // see comment on previous if
 776         Node* intermediate_phi = PhiNode::make(cmp_region, nsr_value, load_type);
 777         intermediate_phi->set_req(1, _igvn->transform(load));
 778         load = intermediate_phi;
 779       }
 780 
 781       data_phi->set_req(i, _igvn->transform(load));
 782     } else {
 783       // Just use the default, which is already in phi
 784     }
 785   }
 786 
 787   // Takes care of updating CG and split_unique_types worklists due
 788   // to cloned AddP->Load.
 789   updates_after_load_split(data_phi, curr_load, alloc_worklist);
 790 
 791   return _igvn->transform(data_phi);
 792 }
 793 
 794 // This method only reduces CastPP fields loads; SafePoints are handled
 795 // separately. The idea here is basically to clone the CastPP and place copies
 796 // on each input of the Phi, including non-scalar replaceable inputs.
 797 // Experimentation shows that the resulting IR graph is simpler that way than if
 798 // we just split the cast through scalar-replaceable inputs.
 799 //
 800 // The reduction process requires that CastPP's control be one of:
 801 //  1) no control,
 802 //  2) the same region as Ophi, or
 803 //  3) an IfTrue/IfFalse coming from an CmpP/N between Ophi and a constant.
 804 //
 805 // After splitting the CastPP we'll put it under an If-Then-Else-Region control
 806 // flow. If the CastPP originally had an IfTrue/False control input then we'll
 807 // use a similar CmpP/N to control the new If-Then-Else-Region. Otherwise, we'll
 808 // juse use a CmpP/N against the null constant.
 809 //
 810 // The If-Then-Else-Region isn't always needed. For instance, if input to
 811 // splitted cast was not nullable (or if it was the null constant) then we don't
 812 // need (shouldn't) use a CastPP at all.
 813 //
 814 // After the casts are splitted we'll split the AddP->Loads through the Phi and
 815 // connect them to the just split CastPPs.
 816 //
 817 // Before (CastPP control is same as Phi):
 818 //
 819 //          Region     Allocate   Null    Call
 820 //            |             \      |      /
 821 //            |              \     |     /
 822 //            |               \    |    /
 823 //            |                \   |   /
 824 //            |                 \  |  /
 825 //            |                  \ | /
 826 //            ------------------> Phi            # Oop Phi
 827 //            |                    |
 828 //            |                    |
 829 //            |                    |
 830 //            |                    |
 831 //            ----------------> CastPP
 832 //                                 |
 833 //                               AddP
 834 //                                 |
 835 //                               Load
 836 //
 837 // After (Very much simplified):
 838 //
 839 //                         Call  Null
 840 //                            \  /
 841 //                            CmpP
 842 //                             |
 843 //                           Bool#NE
 844 //                             |
 845 //                             If
 846 //                            / \
 847 //                           T   F
 848 //                          / \ /
 849 //                         /   R
 850 //                     CastPP  |
 851 //                       |     |
 852 //                     AddP    |
 853 //                       |     |
 854 //                     Load    |
 855 //                         \   |   0
 856 //            Allocate      \  |  /
 857 //                \          \ | /
 858 //               AddP         Phi
 859 //                  \         /
 860 //                 Load      /
 861 //                    \  0  /
 862 //                     \ | /
 863 //                      \|/
 864 //                      Phi        # "Field" Phi
 865 //
 866 void ConnectionGraph::reduce_phi_on_castpp_field_load(Node* curr_castpp, GrowableArray<Node *>  &alloc_worklist, GrowableArray<Node *>  &memnode_worklist) {
 867   Node* ophi = curr_castpp->in(1);
 868   assert(ophi->is_Phi(), "Expected this to be a Phi node.");
 869 
 870   // Identify which base should be used for AddP->Load later when spliting the
 871   // CastPP->Loads through ophi. Three kind of values may be stored in this
 872   // array, depending on the nullability status of the corresponding input in
 873   // ophi.
 874   //
 875   //  - nullptr:    Meaning that the base is actually the null constant and therefore
 876   //                we won't try to load from it.
 877   //
 878   //  - CFG Node:   Meaning that the base is a CastPP that was specialized for
 879   //                this input of Ophi. I.e., we added an If->Then->Else-Region
 880   //                that will 'activate' the CastPp only when the input is not Null.
 881   //
 882   //  - Other Node: Meaning that the base is not nullable and therefore we'll try
 883   //                to load directly from it.
 884   GrowableArray<Node*> bases_for_loads(ophi->req(), ophi->req(), nullptr);
 885 
 886   for (uint i = 1; i < ophi->req(); i++) {
 887     Node* base = ophi->in(i);
 888     const Type* base_t = _igvn->type(base);
 889 
 890     if (base_t->maybe_null()) {
 891       if (base->is_Con()) {
 892         // Nothing todo as bases_for_loads[i] is already null
 893       } else {
 894         Node* new_castpp = specialize_castpp(curr_castpp, base, ophi->in(0)->in(i));
 895         bases_for_loads.at_put(i, new_castpp->in(0)); // Use the ctrl of the new node just as a flag
 896       }
 897     } else {
 898       bases_for_loads.at_put(i, base);
 899     }
 900   }
 901 
 902   // Now let's split the CastPP->Loads through the Phi
 903   for (int i = curr_castpp->outcnt()-1; i >= 0;) {
 904     Node* use = curr_castpp->raw_out(i);
 905     if (use->is_AddP()) {
 906       for (int j = use->outcnt()-1; j >= 0;) {
 907         Node* use_use = use->raw_out(j);
 908         assert(use_use->is_Load(), "Expected this to be a Load node.");
 909 
 910         // We can't make an unconditional load from a nullable input. The
 911         // 'split_castpp_load_through_phi` method will add an
 912         // 'If-Then-Else-Region` around nullable bases and only load from them
 913         // when the input is not null.
 914         Node* phi = split_castpp_load_through_phi(use, use_use, ophi->in(0), &bases_for_loads, alloc_worklist);
 915         _igvn->replace_node(use_use, phi);
 916 
 917         --j;
 918         j = MIN2(j, (int)use->outcnt()-1);
 919       }
 920 
 921       _igvn->remove_dead_node(use);
 922     }
 923     --i;
 924     i = MIN2(i, (int)curr_castpp->outcnt()-1);
 925   }
 926 }
 927 
 928 // This method split a given CmpP/N through the Phi used in one of its inputs.
 929 // As a result we convert a comparison with a pointer to a comparison with an
 930 // integer.
 931 // The only requirement is that one of the inputs of the CmpP/N must be a Phi
 932 // while the other must be a constant.
 933 // The splitting process is basically just cloning the CmpP/N above the input
 934 // Phi.  However, some (most) of the cloned CmpP/Ns won't be requred because we
 935 // can prove at compile time the result of the comparison.
 936 //
 937 // Before:
 938 //
 939 //             in1    in2 ... inN
 940 //              \      |      /
 941 //               \     |     /
 942 //                \    |    /
 943 //                 \   |   /
 944 //                  \  |  /
 945 //                   \ | /
 946 //                    Phi
 947 //                     |   Other
 948 //                     |    /
 949 //                     |   /
 950 //                     |  /
 951 //                    CmpP/N
 952 //
 953 // After:
 954 //
 955 //        in1  Other   in2 Other  inN  Other
 956 //         |    |      |   |      |    |
 957 //         \    |      |   |      |    |
 958 //          \  /       |   /      |    /
 959 //          CmpP/N    CmpP/N     CmpP/N
 960 //          Bool      Bool       Bool
 961 //            \        |        /
 962 //             \       |       /
 963 //              \      |      /
 964 //               \     |     /
 965 //                \    |    /
 966 //                 \   |   /
 967 //                  \  |  /
 968 //                   \ | /
 969 //                    Phi
 970 //                     |
 971 //                     |   Zero
 972 //                     |    /
 973 //                     |   /
 974 //                     |  /
 975 //                     CmpI
 976 //
 977 //
 978 void ConnectionGraph::reduce_phi_on_cmp(Node* cmp) {
 979   Node* ophi = cmp->in(1)->is_Con() ? cmp->in(2) : cmp->in(1);
 980   assert(ophi->is_Phi(), "Expected this to be a Phi node.");
 981 
 982   Node* other = cmp->in(1)->is_Con() ? cmp->in(1) : cmp->in(2);
 983   Node* zero = _igvn->intcon(0);
 984   Node* one = _igvn->intcon(1);
 985   BoolTest::mask mask = cmp->unique_out()->as_Bool()->_test._test;
 986 
 987   // This Phi will merge the result of the Cmps split through the Phi
 988   Node* res_phi = PhiNode::make(ophi->in(0), zero, TypeInt::INT);
 989 
 990   for (uint i=1; i<ophi->req(); i++) {
 991     Node* ophi_input = ophi->in(i);
 992     Node* res_phi_input = nullptr;
 993 
 994     const TypeInt* tcmp = optimize_ptr_compare(ophi_input, other);
 995     if (tcmp->singleton()) {
 996       if ((mask == BoolTest::mask::eq && tcmp == TypeInt::CC_EQ) ||
 997           (mask == BoolTest::mask::ne && tcmp == TypeInt::CC_GT)) {
 998         res_phi_input = one;
 999       } else {
1000         res_phi_input = zero;
1001       }
1002     } else {
1003       Node* ncmp = _igvn->transform(cmp->clone());
1004       ncmp->set_req(1, ophi_input);
1005       ncmp->set_req(2, other);
1006       Node* bol = _igvn->transform(new BoolNode(ncmp, mask));
1007       res_phi_input = bol->as_Bool()->as_int_value(_igvn);
1008     }
1009 
1010     res_phi->set_req(i, res_phi_input);
1011   }
1012 
1013   // This CMP always compares whether the output of "res_phi" is TRUE as far as the "mask".
1014   Node* new_cmp = _igvn->transform(new CmpINode(_igvn->transform(res_phi), (mask == BoolTest::mask::eq) ? one : zero));
1015   _igvn->replace_node(cmp, new_cmp);
1016 }
1017 
1018 // Push the newly created AddP on alloc_worklist and patch
1019 // the connection graph. Note that the changes in the CG below
1020 // won't affect the ES of objects since the new nodes have the
1021 // same status as the old ones.
1022 void ConnectionGraph::updates_after_load_split(Node* data_phi, Node* previous_load, GrowableArray<Node *>  &alloc_worklist) {
1023   assert(data_phi != nullptr, "Output of split_through_phi is null.");
1024   assert(data_phi != previous_load, "Output of split_through_phi is same as input.");
1025   assert(data_phi->is_Phi(), "Output of split_through_phi isn't a Phi.");
1026 
1027   if (data_phi == nullptr || !data_phi->is_Phi()) {
1028     // Make this a retry?
1029     return ;
1030   }
1031 
1032   Node* previous_addp = previous_load->in(MemNode::Address);
1033   FieldNode* fn = ptnode_adr(previous_addp->_idx)->as_Field();
1034   for (uint i = 1; i < data_phi->req(); i++) {
1035     Node* new_load = data_phi->in(i);
1036 
1037     if (new_load->is_Phi()) {
1038       // new_load is currently the "intermediate_phi" from an specialized
1039       // CastPP.
1040       new_load = new_load->in(1);
1041     }
1042 
1043     // "new_load" might actually be a constant, parameter, etc.
1044     if (new_load->is_Load()) {
1045       Node* new_addp = new_load->in(MemNode::Address);
1046       Node* base = get_addp_base(new_addp);
1047 
1048       // The base might not be something that we can create an unique
1049       // type for. If that's the case we are done with that input.
1050       PointsToNode* jobj_ptn = unique_java_object(base);
1051       if (jobj_ptn == nullptr || !jobj_ptn->scalar_replaceable()) {
1052         continue;
1053       }
1054 
1055       // Push to alloc_worklist since the base has an unique_type
1056       alloc_worklist.append_if_missing(new_addp);
1057 
1058       // Now let's add the node to the connection graph
1059       _nodes.at_grow(new_addp->_idx, nullptr);
1060       add_field(new_addp, fn->escape_state(), fn->offset());
1061       add_base(ptnode_adr(new_addp->_idx)->as_Field(), ptnode_adr(base->_idx));
1062 
1063       // If the load doesn't load an object then it won't be
1064       // part of the connection graph
1065       PointsToNode* curr_load_ptn = ptnode_adr(previous_load->_idx);
1066       if (curr_load_ptn != nullptr) {
1067         _nodes.at_grow(new_load->_idx, nullptr);
1068         add_local_var(new_load, curr_load_ptn->escape_state());
1069         add_edge(ptnode_adr(new_load->_idx), ptnode_adr(new_addp->_idx)->as_Field());
1070       }
1071     }
1072   }
1073 }
1074 
1075 void ConnectionGraph::reduce_phi_on_field_access(Node* previous_addp, GrowableArray<Node *>  &alloc_worklist) {
1076   // We'll pass this to 'split_through_phi' so that it'll do the split even
1077   // though the load doesn't have an unique instance type.
1078   bool ignore_missing_instance_id = true;
1079 
1080   // All AddPs are present in the connection graph
1081   FieldNode* fn = ptnode_adr(previous_addp->_idx)->as_Field();
1082 
1083   // Iterate over AddP looking for a Load
1084   for (int k = previous_addp->outcnt()-1; k >= 0;) {
1085     Node* previous_load = previous_addp->raw_out(k);
1086     if (previous_load->is_Load()) {
1087       Node* data_phi = previous_load->as_Load()->split_through_phi(_igvn, ignore_missing_instance_id);
1088 
1089       // Takes care of updating CG and split_unique_types worklists due to cloned
1090       // AddP->Load.
1091       updates_after_load_split(data_phi, previous_load, alloc_worklist);
1092 
1093       _igvn->replace_node(previous_load, data_phi);
1094     }
1095     --k;
1096     k = MIN2(k, (int)previous_addp->outcnt()-1);
1097   }
1098 
1099   // Remove the old AddP from the processing list because it's dead now
1100   assert(previous_addp->outcnt() == 0, "AddP should be dead now.");
1101   alloc_worklist.remove_if_existing(previous_addp);
1102 }
1103 
1104 // Create a 'selector' Phi based on the inputs of 'ophi'. If index 'i' of the
1105 // selector is:
1106 //    -> a '-1' constant, the i'th input of the original Phi is NSR.
1107 //    -> a 'x' constant >=0, the i'th input of of original Phi will be SR and
1108 //       the info about the scalarized object will be at index x of ObjectMergeValue::possible_objects
1109 PhiNode* ConnectionGraph::create_selector(PhiNode* ophi) const {
1110   Node* minus_one = _igvn->register_new_node_with_optimizer(ConINode::make(-1));
1111   Node* selector  = _igvn->register_new_node_with_optimizer(PhiNode::make(ophi->region(), minus_one, TypeInt::INT));
1112   uint number_of_sr_objects = 0;
1113   for (uint i = 1; i < ophi->req(); i++) {
1114     Node* base = ophi->in(i);
1115     JavaObjectNode* ptn = unique_java_object(base);
1116 
1117     if (ptn != nullptr && ptn->scalar_replaceable()) {
1118       Node* sr_obj_idx = _igvn->register_new_node_with_optimizer(ConINode::make(number_of_sr_objects));
1119       selector->set_req(i, sr_obj_idx);
1120       number_of_sr_objects++;
1121     }
1122   }
1123 
1124   return selector->as_Phi();
1125 }
1126 
1127 // Returns true if the AddP node 'n' has at least one base that is a reducible
1128 // merge. If the base is a CastPP/CheckCastPP then the input of the cast is
1129 // checked instead.
1130 bool ConnectionGraph::has_reducible_merge_base(AddPNode* n, Unique_Node_List &reducible_merges) {
1131   PointsToNode* ptn = ptnode_adr(n->_idx);
1132   if (ptn == nullptr || !ptn->is_Field() || ptn->as_Field()->base_count() < 2) {
1133     return false;
1134   }
1135 
1136   for (BaseIterator i(ptn->as_Field()); i.has_next(); i.next()) {
1137     Node* base = i.get()->ideal_node();
1138 
1139     if (reducible_merges.member(base)) {
1140       return true;
1141     }
1142 
1143     if (base->is_CastPP() || base->is_CheckCastPP()) {
1144       base = base->in(1);
1145       if (reducible_merges.member(base)) {
1146         return true;
1147       }
1148     }
1149   }
1150 
1151   return false;
1152 }
1153 
1154 // This method will call its helper method to reduce SafePoint nodes that use
1155 // 'ophi' or a casted version of 'ophi'. All SafePoint nodes using the same
1156 // "version" of Phi use the same debug information (regarding the Phi).
1157 // Therefore, I collect all safepoints and patch them all at once.
1158 //
1159 // The safepoints using the Phi node have to be processed before safepoints of
1160 // CastPP nodes. The reason is, when reducing a CastPP we add a reference (the
1161 // NSR merge pointer) to the input of the CastPP (i.e., the Phi) in the
1162 // safepoint. If we process CastPP's safepoints before Phi's safepoints the
1163 // algorithm that process Phi's safepoints will think that the added Phi
1164 // reference is a regular reference.
1165 bool ConnectionGraph::reduce_phi_on_safepoints(PhiNode* ophi) {
1166   PhiNode* selector = create_selector(ophi);
1167   Unique_Node_List safepoints;
1168   Unique_Node_List casts;
1169 
1170   // Just collect the users of the Phis for later processing
1171   // in the needed order.
1172   for (uint i = 0; i < ophi->outcnt(); i++) {
1173     Node* use = ophi->raw_out(i);
1174     if (use->is_SafePoint()) {
1175       safepoints.push(use);
1176     } else if (use->is_CastPP()) {
1177       casts.push(use);
1178     } else {
1179       assert(use->outcnt() == 0, "Only CastPP & SafePoint users should be left.");
1180     }
1181   }
1182 
1183   // Need to process safepoints using the Phi first
1184   if (!reduce_phi_on_safepoints_helper(ophi, nullptr, selector, safepoints)) {
1185     return false;
1186   }
1187 
1188   // Now process CastPP->safepoints
1189   for (uint i = 0; i < casts.size(); i++) {
1190     Node* cast = casts.at(i);
1191     Unique_Node_List cast_sfpts;
1192 
1193     for (DUIterator_Fast jmax, j = cast->fast_outs(jmax); j < jmax; j++) {
1194       Node* use_use = cast->fast_out(j);
1195       if (use_use->is_SafePoint()) {
1196         cast_sfpts.push(use_use);
1197       } else {
1198         assert(use_use->outcnt() == 0, "Only SafePoint users should be left.");
1199       }
1200     }
1201 
1202     if (!reduce_phi_on_safepoints_helper(ophi, cast, selector, cast_sfpts)) {
1203       return false;
1204     }
1205   }
1206 
1207   return true;
1208 }
1209 
1210 // This method will create a SafePointScalarMERGEnode for each SafePoint in
1211 // 'safepoints'. It then will iterate on the inputs of 'ophi' and create a
1212 // SafePointScalarObjectNode for each scalar replaceable input. Each
1213 // SafePointScalarMergeNode may describe multiple scalar replaced objects -
1214 // check detailed description in SafePointScalarMergeNode class header.
1215 bool ConnectionGraph::reduce_phi_on_safepoints_helper(Node* ophi, Node* cast, Node* selector, Unique_Node_List& safepoints) {
1216   PhaseMacroExpand mexp(*_igvn);
1217   Node* original_sfpt_parent =  cast != nullptr ? cast : ophi;
1218   const TypeOopPtr* merge_t = _igvn->type(original_sfpt_parent)->make_oopptr();
1219 
1220   Node* nsr_merge_pointer = ophi;
1221   if (cast != nullptr) {
1222     const Type* new_t = merge_t->meet(TypePtr::NULL_PTR);
1223     nsr_merge_pointer = _igvn->transform(ConstraintCastNode::make_cast_for_type(cast->in(0), cast->in(1), new_t, ConstraintCastNode::RegularDependency, nullptr));
1224   }
1225 
1226   for (uint spi = 0; spi < safepoints.size(); spi++) {
1227     SafePointNode* sfpt = safepoints.at(spi)->as_SafePoint();
1228     JVMState *jvms      = sfpt->jvms();
1229     uint merge_idx      = (sfpt->req() - jvms->scloff());
1230     int debug_start     = jvms->debug_start();
1231 
1232     SafePointScalarMergeNode* smerge = new SafePointScalarMergeNode(merge_t, merge_idx);
1233     smerge->init_req(0, _compile->root());
1234     _igvn->register_new_node_with_optimizer(smerge);
1235 
1236     // The next two inputs are:
1237     //  (1) A copy of the original pointer to NSR objects.
1238     //  (2) A selector, used to decide if we need to rematerialize an object
1239     //      or use the pointer to a NSR object.
1240     // See more details of these fields in the declaration of SafePointScalarMergeNode
1241     sfpt->add_req(nsr_merge_pointer);
1242     sfpt->add_req(selector);
1243 
1244     for (uint i = 1; i < ophi->req(); i++) {
1245       Node* base = ophi->in(i);
1246       JavaObjectNode* ptn = unique_java_object(base);
1247 
1248       // If the base is not scalar replaceable we don't need to register information about
1249       // it at this time.
1250       if (ptn == nullptr || !ptn->scalar_replaceable()) {
1251         continue;
1252       }
1253 
1254       AllocateNode* alloc = ptn->ideal_node()->as_Allocate();
1255       SafePointScalarObjectNode* sobj = mexp.create_scalarized_object_description(alloc, sfpt);
1256       if (sobj == nullptr) {
1257         return false;
1258       }
1259 
1260       // Now make a pass over the debug information replacing any references
1261       // to the allocated object with "sobj"
1262       Node* ccpp = alloc->result_cast();
1263       sfpt->replace_edges_in_range(ccpp, sobj, debug_start, jvms->debug_end(), _igvn);
1264 
1265       // Register the scalarized object as a candidate for reallocation
1266       smerge->add_req(sobj);
1267     }
1268 
1269     // Replaces debug information references to "original_sfpt_parent" in "sfpt" with references to "smerge"
1270     sfpt->replace_edges_in_range(original_sfpt_parent, smerge, debug_start, jvms->debug_end(), _igvn);
1271 
1272     // The call to 'replace_edges_in_range' above might have removed the
1273     // reference to ophi that we need at _merge_pointer_idx. The line below make
1274     // sure the reference is maintained.
1275     sfpt->set_req(smerge->merge_pointer_idx(jvms), nsr_merge_pointer);
1276     _igvn->_worklist.push(sfpt);
1277   }
1278 
1279   return true;
1280 }
1281 
1282 void ConnectionGraph::reduce_phi(PhiNode* ophi, GrowableArray<Node *>  &alloc_worklist, GrowableArray<Node *>  &memnode_worklist) {
1283   bool delay = _igvn->delay_transform();
1284   _igvn->set_delay_transform(true);
1285   _igvn->hash_delete(ophi);
1286 
1287   // Copying all users first because some will be removed and others won't.
1288   // Ophi also may acquire some new users as part of Cast reduction.
1289   // CastPPs also need to be processed before CmpPs.
1290   Unique_Node_List castpps;
1291   Unique_Node_List others;
1292   for (DUIterator_Fast imax, i = ophi->fast_outs(imax); i < imax; i++) {
1293     Node* use = ophi->fast_out(i);
1294 
1295     if (use->is_CastPP()) {
1296       castpps.push(use);
1297     } else if (use->is_AddP() || use->is_Cmp()) {
1298       others.push(use);
1299     } else {
1300       // Safepoints to be processed later; other users aren't expected here
1301       assert(use->is_SafePoint(), "Unexpected user of reducible Phi %d -> %d:%s:%d", ophi->_idx, use->_idx, use->Name(), use->outcnt());
1302     }
1303   }
1304 
1305   // CastPPs need to be processed before Cmps because during the process of
1306   // splitting CastPPs we make reference to the inputs of the Cmp that is used
1307   // by the If controlling the CastPP.
1308   for (uint i = 0; i < castpps.size(); i++) {
1309     reduce_phi_on_castpp_field_load(castpps.at(i), alloc_worklist, memnode_worklist);
1310   }
1311 
1312   for (uint i = 0; i < others.size(); i++) {
1313     Node* use = others.at(i);
1314 
1315     if (use->is_AddP()) {
1316       reduce_phi_on_field_access(use, alloc_worklist);
1317     } else if(use->is_Cmp()) {
1318       reduce_phi_on_cmp(use);
1319     }
1320   }
1321 
1322   _igvn->set_delay_transform(delay);
1323 }
1324 
1325 void ConnectionGraph::reset_scalar_replaceable_entries(PhiNode* ophi) {
1326   Node* null_ptr            = _igvn->makecon(TypePtr::NULL_PTR);
1327   const TypeOopPtr* merge_t = _igvn->type(ophi)->make_oopptr();
1328   const Type* new_t         = merge_t->meet(TypePtr::NULL_PTR);
1329   Node* new_phi             = _igvn->register_new_node_with_optimizer(PhiNode::make(ophi->region(), null_ptr, new_t));
1330 
1331   for (uint i = 1; i < ophi->req(); i++) {
1332     Node* base          = ophi->in(i);
1333     JavaObjectNode* ptn = unique_java_object(base);
1334 
1335     if (ptn != nullptr && ptn->scalar_replaceable()) {
1336       new_phi->set_req(i, null_ptr);
1337     } else {
1338       new_phi->set_req(i, ophi->in(i));
1339     }
1340   }
1341 
1342   for (int i = ophi->outcnt()-1; i >= 0;) {
1343     Node* out = ophi->raw_out(i);
1344 
1345     if (out->is_ConstraintCast()) {
1346       const Type* out_t = _igvn->type(out)->make_ptr();
1347       const Type* out_new_t = out_t->meet(TypePtr::NULL_PTR);
1348       bool change = out_new_t != out_t;
1349 
1350       for (int j = out->outcnt()-1; change && j >= 0; --j) {
1351         Node* out2 = out->raw_out(j);
1352         if (!out2->is_SafePoint()) {
1353           change = false;
1354           break;
1355         }
1356       }
1357 
1358       if (change) {
1359         Node* new_cast = ConstraintCastNode::make_cast_for_type(out->in(0), out->in(1), out_new_t, ConstraintCastNode::StrongDependency, nullptr);
1360         _igvn->replace_node(out, new_cast);
1361         _igvn->register_new_node_with_optimizer(new_cast);
1362       }
1363     }
1364 
1365     --i;
1366     i = MIN2(i, (int)ophi->outcnt()-1);
1367   }
1368 
1369   _igvn->replace_node(ophi, new_phi);
1370 }
1371 
1372 void ConnectionGraph::verify_ram_nodes(Compile* C, Node* root) {
1373   if (!C->do_reduce_allocation_merges()) return;
1374 
1375   Unique_Node_List ideal_nodes;
1376   ideal_nodes.map(C->live_nodes(), nullptr);  // preallocate space
1377   ideal_nodes.push(root);
1378 
1379   for (uint next = 0; next < ideal_nodes.size(); ++next) {
1380     Node* n = ideal_nodes.at(next);
1381 
1382     if (n->is_SafePointScalarMerge()) {
1383       SafePointScalarMergeNode* merge = n->as_SafePointScalarMerge();
1384 
1385       // Validate inputs of merge
1386       for (uint i = 1; i < merge->req(); i++) {
1387         if (merge->in(i) != nullptr && !merge->in(i)->is_top() && !merge->in(i)->is_SafePointScalarObject()) {
1388           assert(false, "SafePointScalarMerge inputs should be null/top or SafePointScalarObject.");
1389           C->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
1390         }
1391       }
1392 
1393       // Validate users of merge
1394       for (DUIterator_Fast imax, i = merge->fast_outs(imax); i < imax; i++) {
1395         Node* sfpt = merge->fast_out(i);
1396         if (sfpt->is_SafePoint()) {
1397           int merge_idx = merge->merge_pointer_idx(sfpt->as_SafePoint()->jvms());
1398 
1399           if (sfpt->in(merge_idx) != nullptr && sfpt->in(merge_idx)->is_SafePointScalarMerge()) {
1400             assert(false, "SafePointScalarMerge nodes can't be nested.");
1401             C->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
1402           }
1403         } else {
1404           assert(false, "Only safepoints can use SafePointScalarMerge nodes.");
1405           C->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
1406         }
1407       }
1408     }
1409 
1410     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1411       Node* m = n->fast_out(i);
1412       ideal_nodes.push(m);
1413     }
1414   }
1415 }
1416 
1417 // Returns true if there is an object in the scope of sfn that does not escape globally.
1418 bool ConnectionGraph::has_ea_local_in_scope(SafePointNode* sfn) {
1419   Compile* C = _compile;
1420   for (JVMState* jvms = sfn->jvms(); jvms != nullptr; jvms = jvms->caller()) {
1421     if (C->env()->should_retain_local_variables() || C->env()->jvmti_can_walk_any_space() ||
1422         DeoptimizeObjectsALot) {
1423       // Jvmti agents can access locals. Must provide info about local objects at runtime.
1424       int num_locs = jvms->loc_size();
1425       for (int idx = 0; idx < num_locs; idx++) {
1426         Node* l = sfn->local(jvms, idx);
1427         if (not_global_escape(l)) {
1428           return true;
1429         }
1430       }
1431     }
1432     if (C->env()->jvmti_can_get_owned_monitor_info() ||
1433         C->env()->jvmti_can_walk_any_space() || DeoptimizeObjectsALot) {
1434       // Jvmti agents can read monitors. Must provide info about locked objects at runtime.
1435       int num_mon = jvms->nof_monitors();
1436       for (int idx = 0; idx < num_mon; idx++) {
1437         Node* m = sfn->monitor_obj(jvms, idx);
1438         if (m != nullptr && not_global_escape(m)) {
1439           return true;
1440         }
1441       }
1442     }
1443   }
1444   return false;
1445 }
1446 
1447 // Returns true if at least one of the arguments to the call is an object
1448 // that does not escape globally.
1449 bool ConnectionGraph::has_arg_escape(CallJavaNode* call) {
1450   if (call->method() != nullptr) {
1451     uint max_idx = TypeFunc::Parms + call->method()->arg_size();
1452     for (uint idx = TypeFunc::Parms; idx < max_idx; idx++) {
1453       Node* p = call->in(idx);
1454       if (not_global_escape(p)) {
1455         return true;
1456       }
1457     }
1458   } else {
1459     const char* name = call->as_CallStaticJava()->_name;
1460     assert(name != nullptr, "no name");
1461     // no arg escapes through uncommon traps
1462     if (strcmp(name, "uncommon_trap") != 0) {
1463       // process_call_arguments() assumes that all arguments escape globally
1464       const TypeTuple* d = call->tf()->domain();
1465       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1466         const Type* at = d->field_at(i);
1467         if (at->isa_oopptr() != nullptr) {
1468           return true;
1469         }
1470       }
1471     }
1472   }
1473   return false;
1474 }
1475 
1476 
1477 
1478 // Utility function for nodes that load an object
1479 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
1480   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1481   // ThreadLocal has RawPtr type.
1482   const Type* t = _igvn->type(n);
1483   if (t->make_ptr() != nullptr) {
1484     Node* adr = n->in(MemNode::Address);
1485 #ifdef ASSERT
1486     if (!adr->is_AddP()) {
1487       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
1488     } else {
1489       assert((ptnode_adr(adr->_idx) == nullptr ||
1490               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
1491     }
1492 #endif
1493     add_local_var_and_edge(n, PointsToNode::NoEscape,
1494                            adr, delayed_worklist);
1495   }
1496 }
1497 
1498 // Populate Connection Graph with PointsTo nodes and create simple
1499 // connection graph edges.
1500 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
1501   assert(!_verify, "this method should not be called for verification");
1502   PhaseGVN* igvn = _igvn;
1503   uint n_idx = n->_idx;
1504   PointsToNode* n_ptn = ptnode_adr(n_idx);
1505   if (n_ptn != nullptr) {
1506     return; // No need to redefine PointsTo node during first iteration.
1507   }
1508   int opcode = n->Opcode();
1509   if (n->is_Call()) {
1510     // Arguments to allocation and locking don't escape.
1511     if (n->is_AbstractLock()) {
1512       // Put Lock and Unlock nodes on IGVN worklist to process them during
1513       // first IGVN optimization when escape information is still available.
1514       record_for_optimizer(n);
1515     } else if (n->is_Allocate()) {
1516       add_call_node(n->as_Call());
1517       record_for_optimizer(n);
1518     } else {
1519       if (n->is_CallStaticJava()) {
1520         const char* name = n->as_CallStaticJava()->_name;
1521         if (name != nullptr && strcmp(name, "uncommon_trap") == 0) {
1522           return; // Skip uncommon traps
1523         }
1524       }
1525       // Don't mark as processed since call's arguments have to be processed.
1526       delayed_worklist->push(n);
1527       // Check if a call returns an object.
1528       if ((n->as_Call()->returns_pointer() &&
1529            n->as_Call()->proj_out_or_null(TypeFunc::Parms) != nullptr) ||
1530           (n->is_CallStaticJava() &&
1531            n->as_CallStaticJava()->is_boxing_method())) {
1532         add_call_node(n->as_Call());
1533       }
1534     }
1535     return;
1536   }
1537   // Put this check here to process call arguments since some call nodes
1538   // point to phantom_obj.
1539   if (n_ptn == phantom_obj || n_ptn == null_obj) {
1540     return; // Skip predefined nodes.
1541   }
1542   switch (opcode) {
1543     case Op_AddP: {
1544       Node* base = get_addp_base(n);
1545       PointsToNode* ptn_base = ptnode_adr(base->_idx);
1546       // Field nodes are created for all field types. They are used in
1547       // adjust_scalar_replaceable_state() and split_unique_types().
1548       // Note, non-oop fields will have only base edges in Connection
1549       // Graph because such fields are not used for oop loads and stores.
1550       int offset = address_offset(n, igvn);
1551       add_field(n, PointsToNode::NoEscape, offset);
1552       if (ptn_base == nullptr) {
1553         delayed_worklist->push(n); // Process it later.
1554       } else {
1555         n_ptn = ptnode_adr(n_idx);
1556         add_base(n_ptn->as_Field(), ptn_base);
1557       }
1558       break;
1559     }
1560     case Op_CastX2P: {
1561       map_ideal_node(n, phantom_obj);
1562       break;
1563     }
1564     case Op_CastPP:
1565     case Op_CheckCastPP:
1566     case Op_EncodeP:
1567     case Op_DecodeN:
1568     case Op_EncodePKlass:
1569     case Op_DecodeNKlass: {
1570       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), delayed_worklist);
1571       break;
1572     }
1573     case Op_CMoveP: {
1574       add_local_var(n, PointsToNode::NoEscape);
1575       // Do not add edges during first iteration because some could be
1576       // not defined yet.
1577       delayed_worklist->push(n);
1578       break;
1579     }
1580     case Op_ConP:
1581     case Op_ConN:
1582     case Op_ConNKlass: {
1583       // assume all oop constants globally escape except for null
1584       PointsToNode::EscapeState es;
1585       const Type* t = igvn->type(n);
1586       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
1587         es = PointsToNode::NoEscape;
1588       } else {
1589         es = PointsToNode::GlobalEscape;
1590       }
1591       PointsToNode* ptn_con = add_java_object(n, es);
1592       set_not_scalar_replaceable(ptn_con NOT_PRODUCT(COMMA "Constant pointer"));
1593       break;
1594     }
1595     case Op_CreateEx: {
1596       // assume that all exception objects globally escape
1597       map_ideal_node(n, phantom_obj);
1598       break;
1599     }
1600     case Op_LoadKlass:
1601     case Op_LoadNKlass: {
1602       // Unknown class is loaded
1603       map_ideal_node(n, phantom_obj);
1604       break;
1605     }
1606     case Op_LoadP:
1607     case Op_LoadN: {
1608       add_objload_to_connection_graph(n, delayed_worklist);
1609       break;
1610     }
1611     case Op_Parm: {
1612       map_ideal_node(n, phantom_obj);
1613       break;
1614     }
1615     case Op_PartialSubtypeCheck: {
1616       // Produces Null or notNull and is used in only in CmpP so
1617       // phantom_obj could be used.
1618       map_ideal_node(n, phantom_obj); // Result is unknown
1619       break;
1620     }
1621     case Op_Phi: {
1622       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1623       // ThreadLocal has RawPtr type.
1624       const Type* t = n->as_Phi()->type();
1625       if (t->make_ptr() != nullptr) {
1626         add_local_var(n, PointsToNode::NoEscape);
1627         // Do not add edges during first iteration because some could be
1628         // not defined yet.
1629         delayed_worklist->push(n);
1630       }
1631       break;
1632     }
1633     case Op_Proj: {
1634       // we are only interested in the oop result projection from a call
1635       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
1636           n->in(0)->as_Call()->returns_pointer()) {
1637         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), delayed_worklist);
1638       }
1639       break;
1640     }
1641     case Op_Rethrow: // Exception object escapes
1642     case Op_Return: {
1643       if (n->req() > TypeFunc::Parms &&
1644           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
1645         // Treat Return value as LocalVar with GlobalEscape escape state.
1646         add_local_var_and_edge(n, PointsToNode::GlobalEscape, n->in(TypeFunc::Parms), delayed_worklist);
1647       }
1648       break;
1649     }
1650     case Op_CompareAndExchangeP:
1651     case Op_CompareAndExchangeN:
1652     case Op_GetAndSetP:
1653     case Op_GetAndSetN: {
1654       add_objload_to_connection_graph(n, delayed_worklist);
1655       // fall-through
1656     }
1657     case Op_StoreP:
1658     case Op_StoreN:
1659     case Op_StoreNKlass:
1660     case Op_WeakCompareAndSwapP:
1661     case Op_WeakCompareAndSwapN:
1662     case Op_CompareAndSwapP:
1663     case Op_CompareAndSwapN: {
1664       add_to_congraph_unsafe_access(n, opcode, delayed_worklist);
1665       break;
1666     }
1667     case Op_AryEq:
1668     case Op_CountPositives:
1669     case Op_StrComp:
1670     case Op_StrEquals:
1671     case Op_StrIndexOf:
1672     case Op_StrIndexOfChar:
1673     case Op_StrInflatedCopy:
1674     case Op_StrCompressedCopy:
1675     case Op_VectorizedHashCode:
1676     case Op_EncodeISOArray: {
1677       add_local_var(n, PointsToNode::ArgEscape);
1678       delayed_worklist->push(n); // Process it later.
1679       break;
1680     }
1681     case Op_ThreadLocal: {
1682       PointsToNode* ptn_thr = add_java_object(n, PointsToNode::ArgEscape);
1683       set_not_scalar_replaceable(ptn_thr NOT_PRODUCT(COMMA "Constant pointer"));
1684       break;
1685     }
1686     case Op_Blackhole: {
1687       // All blackhole pointer arguments are globally escaping.
1688       // Only do this if there is at least one pointer argument.
1689       // Do not add edges during first iteration because some could be
1690       // not defined yet, defer to final step.
1691       for (uint i = 0; i < n->req(); i++) {
1692         Node* in = n->in(i);
1693         if (in != nullptr) {
1694           const Type* at = _igvn->type(in);
1695           if (!at->isa_ptr()) continue;
1696 
1697           add_local_var(n, PointsToNode::GlobalEscape);
1698           delayed_worklist->push(n);
1699           break;
1700         }
1701       }
1702       break;
1703     }
1704     default:
1705       ; // Do nothing for nodes not related to EA.
1706   }
1707   return;
1708 }
1709 
1710 // Add final simple edges to graph.
1711 void ConnectionGraph::add_final_edges(Node *n) {
1712   PointsToNode* n_ptn = ptnode_adr(n->_idx);
1713 #ifdef ASSERT
1714   if (_verify && n_ptn->is_JavaObject())
1715     return; // This method does not change graph for JavaObject.
1716 #endif
1717 
1718   if (n->is_Call()) {
1719     process_call_arguments(n->as_Call());
1720     return;
1721   }
1722   assert(n->is_Store() || n->is_LoadStore() ||
1723          ((n_ptn != nullptr) && (n_ptn->ideal_node() != nullptr)),
1724          "node should be registered already");
1725   int opcode = n->Opcode();
1726   switch (opcode) {
1727     case Op_AddP: {
1728       Node* base = get_addp_base(n);
1729       PointsToNode* ptn_base = ptnode_adr(base->_idx);
1730       assert(ptn_base != nullptr, "field's base should be registered");
1731       add_base(n_ptn->as_Field(), ptn_base);
1732       break;
1733     }
1734     case Op_CastPP:
1735     case Op_CheckCastPP:
1736     case Op_EncodeP:
1737     case Op_DecodeN:
1738     case Op_EncodePKlass:
1739     case Op_DecodeNKlass: {
1740       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), nullptr);
1741       break;
1742     }
1743     case Op_CMoveP: {
1744       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
1745         Node* in = n->in(i);
1746         if (in == nullptr) {
1747           continue;  // ignore null
1748         }
1749         Node* uncast_in = in->uncast();
1750         if (uncast_in->is_top() || uncast_in == n) {
1751           continue;  // ignore top or inputs which go back this node
1752         }
1753         PointsToNode* ptn = ptnode_adr(in->_idx);
1754         assert(ptn != nullptr, "node should be registered");
1755         add_edge(n_ptn, ptn);
1756       }
1757       break;
1758     }
1759     case Op_LoadP:
1760     case Op_LoadN: {
1761       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1762       // ThreadLocal has RawPtr type.
1763       assert(_igvn->type(n)->make_ptr() != nullptr, "Unexpected node type");
1764       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(MemNode::Address), nullptr);
1765       break;
1766     }
1767     case Op_Phi: {
1768       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1769       // ThreadLocal has RawPtr type.
1770       assert(n->as_Phi()->type()->make_ptr() != nullptr, "Unexpected node type");
1771       for (uint i = 1; i < n->req(); i++) {
1772         Node* in = n->in(i);
1773         if (in == nullptr) {
1774           continue;  // ignore null
1775         }
1776         Node* uncast_in = in->uncast();
1777         if (uncast_in->is_top() || uncast_in == n) {
1778           continue;  // ignore top or inputs which go back this node
1779         }
1780         PointsToNode* ptn = ptnode_adr(in->_idx);
1781         assert(ptn != nullptr, "node should be registered");
1782         add_edge(n_ptn, ptn);
1783       }
1784       break;
1785     }
1786     case Op_Proj: {
1787       // we are only interested in the oop result projection from a call
1788       assert(n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
1789              n->in(0)->as_Call()->returns_pointer(), "Unexpected node type");
1790       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), nullptr);
1791       break;
1792     }
1793     case Op_Rethrow: // Exception object escapes
1794     case Op_Return: {
1795       assert(n->req() > TypeFunc::Parms && _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr(),
1796              "Unexpected node type");
1797       // Treat Return value as LocalVar with GlobalEscape escape state.
1798       add_local_var_and_edge(n, PointsToNode::GlobalEscape, n->in(TypeFunc::Parms), nullptr);
1799       break;
1800     }
1801     case Op_CompareAndExchangeP:
1802     case Op_CompareAndExchangeN:
1803     case Op_GetAndSetP:
1804     case Op_GetAndSetN:{
1805       assert(_igvn->type(n)->make_ptr() != nullptr, "Unexpected node type");
1806       add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(MemNode::Address), nullptr);
1807       // fall-through
1808     }
1809     case Op_CompareAndSwapP:
1810     case Op_CompareAndSwapN:
1811     case Op_WeakCompareAndSwapP:
1812     case Op_WeakCompareAndSwapN:
1813     case Op_StoreP:
1814     case Op_StoreN:
1815     case Op_StoreNKlass:{
1816       add_final_edges_unsafe_access(n, opcode);
1817       break;
1818     }
1819     case Op_VectorizedHashCode:
1820     case Op_AryEq:
1821     case Op_CountPositives:
1822     case Op_StrComp:
1823     case Op_StrEquals:
1824     case Op_StrIndexOf:
1825     case Op_StrIndexOfChar:
1826     case Op_StrInflatedCopy:
1827     case Op_StrCompressedCopy:
1828     case Op_EncodeISOArray: {
1829       // char[]/byte[] arrays passed to string intrinsic do not escape but
1830       // they are not scalar replaceable. Adjust escape state for them.
1831       // Start from in(2) edge since in(1) is memory edge.
1832       for (uint i = 2; i < n->req(); i++) {
1833         Node* adr = n->in(i);
1834         const Type* at = _igvn->type(adr);
1835         if (!adr->is_top() && at->isa_ptr()) {
1836           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
1837                  at->isa_ptr() != nullptr, "expecting a pointer");
1838           if (adr->is_AddP()) {
1839             adr = get_addp_base(adr);
1840           }
1841           PointsToNode* ptn = ptnode_adr(adr->_idx);
1842           assert(ptn != nullptr, "node should be registered");
1843           add_edge(n_ptn, ptn);
1844         }
1845       }
1846       break;
1847     }
1848     case Op_Blackhole: {
1849       // All blackhole pointer arguments are globally escaping.
1850       for (uint i = 0; i < n->req(); i++) {
1851         Node* in = n->in(i);
1852         if (in != nullptr) {
1853           const Type* at = _igvn->type(in);
1854           if (!at->isa_ptr()) continue;
1855 
1856           if (in->is_AddP()) {
1857             in = get_addp_base(in);
1858           }
1859 
1860           PointsToNode* ptn = ptnode_adr(in->_idx);
1861           assert(ptn != nullptr, "should be defined already");
1862           set_escape_state(ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA "blackhole"));
1863           add_edge(n_ptn, ptn);
1864         }
1865       }
1866       break;
1867     }
1868     default: {
1869       // This method should be called only for EA specific nodes which may
1870       // miss some edges when they were created.
1871 #ifdef ASSERT
1872       n->dump(1);
1873 #endif
1874       guarantee(false, "unknown node");
1875     }
1876   }
1877   return;
1878 }
1879 
1880 void ConnectionGraph::add_to_congraph_unsafe_access(Node* n, uint opcode, Unique_Node_List* delayed_worklist) {
1881   Node* adr = n->in(MemNode::Address);
1882   const Type* adr_type = _igvn->type(adr);
1883   adr_type = adr_type->make_ptr();
1884   if (adr_type == nullptr) {
1885     return; // skip dead nodes
1886   }
1887   if (adr_type->isa_oopptr()
1888       || ((opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass)
1889           && adr_type == TypeRawPtr::NOTNULL
1890           && is_captured_store_address(adr))) {
1891     delayed_worklist->push(n); // Process it later.
1892 #ifdef ASSERT
1893     assert (adr->is_AddP(), "expecting an AddP");
1894     if (adr_type == TypeRawPtr::NOTNULL) {
1895       // Verify a raw address for a store captured by Initialize node.
1896       int offs = (int) _igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
1897       assert(offs != Type::OffsetBot, "offset must be a constant");
1898     }
1899 #endif
1900   } else {
1901     // Ignore copy the displaced header to the BoxNode (OSR compilation).
1902     if (adr->is_BoxLock()) {
1903       return;
1904     }
1905     // Stored value escapes in unsafe access.
1906     if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
1907       delayed_worklist->push(n); // Process unsafe access later.
1908       return;
1909     }
1910 #ifdef ASSERT
1911     n->dump(1);
1912     assert(false, "not unsafe");
1913 #endif
1914   }
1915 }
1916 
1917 bool ConnectionGraph::add_final_edges_unsafe_access(Node* n, uint opcode) {
1918   Node* adr = n->in(MemNode::Address);
1919   const Type *adr_type = _igvn->type(adr);
1920   adr_type = adr_type->make_ptr();
1921 #ifdef ASSERT
1922   if (adr_type == nullptr) {
1923     n->dump(1);
1924     assert(adr_type != nullptr, "dead node should not be on list");
1925     return true;
1926   }
1927 #endif
1928 
1929   if (adr_type->isa_oopptr()
1930       || ((opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass)
1931            && adr_type == TypeRawPtr::NOTNULL
1932            && is_captured_store_address(adr))) {
1933     // Point Address to Value
1934     PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
1935     assert(adr_ptn != nullptr &&
1936            adr_ptn->as_Field()->is_oop(), "node should be registered");
1937     Node* val = n->in(MemNode::ValueIn);
1938     PointsToNode* ptn = ptnode_adr(val->_idx);
1939     assert(ptn != nullptr, "node should be registered");
1940     add_edge(adr_ptn, ptn);
1941     return true;
1942   } else if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
1943     // Stored value escapes in unsafe access.
1944     Node* val = n->in(MemNode::ValueIn);
1945     PointsToNode* ptn = ptnode_adr(val->_idx);
1946     assert(ptn != nullptr, "node should be registered");
1947     set_escape_state(ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA "stored at raw address"));
1948     // Add edge to object for unsafe access with offset.
1949     PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
1950     assert(adr_ptn != nullptr, "node should be registered");
1951     if (adr_ptn->is_Field()) {
1952       assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
1953       add_edge(adr_ptn, ptn);
1954     }
1955     return true;
1956   }
1957 #ifdef ASSERT
1958   n->dump(1);
1959   assert(false, "not unsafe");
1960 #endif
1961   return false;
1962 }
1963 
1964 void ConnectionGraph::add_call_node(CallNode* call) {
1965   assert(call->returns_pointer(), "only for call which returns pointer");
1966   uint call_idx = call->_idx;
1967   if (call->is_Allocate()) {
1968     Node* k = call->in(AllocateNode::KlassNode);
1969     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
1970     assert(kt != nullptr, "TypeKlassPtr  required.");
1971     PointsToNode::EscapeState es = PointsToNode::NoEscape;
1972     bool scalar_replaceable = true;
1973     NOT_PRODUCT(const char* nsr_reason = "");
1974     if (call->is_AllocateArray()) {
1975       if (!kt->isa_aryklassptr()) { // StressReflectiveCode
1976         es = PointsToNode::GlobalEscape;
1977       } else {
1978         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
1979         if (length < 0) {
1980           // Not scalar replaceable if the length is not constant.
1981           scalar_replaceable = false;
1982           NOT_PRODUCT(nsr_reason = "has a non-constant length");
1983         } else if (length > EliminateAllocationArraySizeLimit) {
1984           // Not scalar replaceable if the length is too big.
1985           scalar_replaceable = false;
1986           NOT_PRODUCT(nsr_reason = "has a length that is too big");
1987         }
1988       }
1989     } else {  // Allocate instance
1990       if (!kt->isa_instklassptr()) { // StressReflectiveCode
1991         es = PointsToNode::GlobalEscape;
1992       } else {
1993         const TypeInstKlassPtr* ikt = kt->is_instklassptr();
1994         ciInstanceKlass* ik = ikt->klass_is_exact() ? ikt->exact_klass()->as_instance_klass() : ikt->instance_klass();
1995         if (ik->is_subclass_of(_compile->env()->Thread_klass()) ||
1996             ik->is_subclass_of(_compile->env()->Reference_klass()) ||
1997             !ik->can_be_instantiated() ||
1998             ik->has_finalizer()) {
1999           es = PointsToNode::GlobalEscape;
2000         } else {
2001           int nfields = ik->as_instance_klass()->nof_nonstatic_fields();
2002           if (nfields > EliminateAllocationFieldsLimit) {
2003             // Not scalar replaceable if there are too many fields.
2004             scalar_replaceable = false;
2005             NOT_PRODUCT(nsr_reason = "has too many fields");
2006           }
2007         }
2008       }
2009     }
2010     add_java_object(call, es);
2011     PointsToNode* ptn = ptnode_adr(call_idx);
2012     if (!scalar_replaceable && ptn->scalar_replaceable()) {
2013       set_not_scalar_replaceable(ptn NOT_PRODUCT(COMMA nsr_reason));
2014     }
2015   } else if (call->is_CallStaticJava()) {
2016     // Call nodes could be different types:
2017     //
2018     // 1. CallDynamicJavaNode (what happened during call is unknown):
2019     //
2020     //    - mapped to GlobalEscape JavaObject node if oop is returned;
2021     //
2022     //    - all oop arguments are escaping globally;
2023     //
2024     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
2025     //
2026     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
2027     //
2028     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
2029     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
2030     //      during call is returned;
2031     //    - mapped to ArgEscape LocalVar node pointed to object arguments
2032     //      which are returned and does not escape during call;
2033     //
2034     //    - oop arguments escaping status is defined by bytecode analysis;
2035     //
2036     // For a static call, we know exactly what method is being called.
2037     // Use bytecode estimator to record whether the call's return value escapes.
2038     ciMethod* meth = call->as_CallJava()->method();
2039     if (meth == nullptr) {
2040       const char* name = call->as_CallStaticJava()->_name;
2041       assert(strncmp(name, "C2 Runtime multianewarray", 25) == 0, "TODO: add failed case check");
2042       // Returns a newly allocated non-escaped object.
2043       add_java_object(call, PointsToNode::NoEscape);
2044       set_not_scalar_replaceable(ptnode_adr(call_idx) NOT_PRODUCT(COMMA "is result of multinewarray"));
2045     } else if (meth->is_boxing_method()) {
2046       // Returns boxing object
2047       PointsToNode::EscapeState es;
2048       vmIntrinsics::ID intr = meth->intrinsic_id();
2049       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
2050         // It does not escape if object is always allocated.
2051         es = PointsToNode::NoEscape;
2052       } else {
2053         // It escapes globally if object could be loaded from cache.
2054         es = PointsToNode::GlobalEscape;
2055       }
2056       add_java_object(call, es);
2057       if (es == PointsToNode::GlobalEscape) {
2058         set_not_scalar_replaceable(ptnode_adr(call->_idx) NOT_PRODUCT(COMMA "object can be loaded from boxing cache"));
2059       }
2060     } else {
2061       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
2062       call_analyzer->copy_dependencies(_compile->dependencies());
2063       if (call_analyzer->is_return_allocated()) {
2064         // Returns a newly allocated non-escaped object, simply
2065         // update dependency information.
2066         // Mark it as NoEscape so that objects referenced by
2067         // it's fields will be marked as NoEscape at least.
2068         add_java_object(call, PointsToNode::NoEscape);
2069         set_not_scalar_replaceable(ptnode_adr(call_idx) NOT_PRODUCT(COMMA "is result of call"));
2070       } else {
2071         // Determine whether any arguments are returned.
2072         const TypeTuple* d = call->tf()->domain();
2073         bool ret_arg = false;
2074         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2075           if (d->field_at(i)->isa_ptr() != nullptr &&
2076               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
2077             ret_arg = true;
2078             break;
2079           }
2080         }
2081         if (ret_arg) {
2082           add_local_var(call, PointsToNode::ArgEscape);
2083         } else {
2084           // Returns unknown object.
2085           map_ideal_node(call, phantom_obj);
2086         }
2087       }
2088     }
2089   } else {
2090     // An other type of call, assume the worst case:
2091     // returned value is unknown and globally escapes.
2092     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
2093     map_ideal_node(call, phantom_obj);
2094   }
2095 }
2096 
2097 void ConnectionGraph::process_call_arguments(CallNode *call) {
2098     bool is_arraycopy = false;
2099     switch (call->Opcode()) {
2100 #ifdef ASSERT
2101     case Op_Allocate:
2102     case Op_AllocateArray:
2103     case Op_Lock:
2104     case Op_Unlock:
2105       assert(false, "should be done already");
2106       break;
2107 #endif
2108     case Op_ArrayCopy:
2109     case Op_CallLeafNoFP:
2110       // Most array copies are ArrayCopy nodes at this point but there
2111       // are still a few direct calls to the copy subroutines (See
2112       // PhaseStringOpts::copy_string())
2113       is_arraycopy = (call->Opcode() == Op_ArrayCopy) ||
2114         call->as_CallLeaf()->is_call_to_arraycopystub();
2115       // fall through
2116     case Op_CallLeafVector:
2117     case Op_CallLeaf: {
2118       // Stub calls, objects do not escape but they are not scale replaceable.
2119       // Adjust escape state for outgoing arguments.
2120       const TypeTuple * d = call->tf()->domain();
2121       bool src_has_oops = false;
2122       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2123         const Type* at = d->field_at(i);
2124         Node *arg = call->in(i);
2125         if (arg == nullptr) {
2126           continue;
2127         }
2128         const Type *aat = _igvn->type(arg);
2129         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr()) {
2130           continue;
2131         }
2132         if (arg->is_AddP()) {
2133           //
2134           // The inline_native_clone() case when the arraycopy stub is called
2135           // after the allocation before Initialize and CheckCastPP nodes.
2136           // Or normal arraycopy for object arrays case.
2137           //
2138           // Set AddP's base (Allocate) as not scalar replaceable since
2139           // pointer to the base (with offset) is passed as argument.
2140           //
2141           arg = get_addp_base(arg);
2142         }
2143         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
2144         assert(arg_ptn != nullptr, "should be registered");
2145         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
2146         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
2147           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
2148                  aat->isa_ptr() != nullptr, "expecting an Ptr");
2149           bool arg_has_oops = aat->isa_oopptr() &&
2150                               (aat->isa_instptr() ||
2151                                (aat->isa_aryptr() && (aat->isa_aryptr()->elem() == Type::BOTTOM || aat->isa_aryptr()->elem()->make_oopptr() != nullptr)));
2152           if (i == TypeFunc::Parms) {
2153             src_has_oops = arg_has_oops;
2154           }
2155           //
2156           // src or dst could be j.l.Object when other is basic type array:
2157           //
2158           //   arraycopy(char[],0,Object*,0,size);
2159           //   arraycopy(Object*,0,char[],0,size);
2160           //
2161           // Don't add edges in such cases.
2162           //
2163           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
2164                                        arg_has_oops && (i > TypeFunc::Parms);
2165 #ifdef ASSERT
2166           if (!(is_arraycopy ||
2167                 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(call) ||
2168                 (call->as_CallLeaf()->_name != nullptr &&
2169                  (strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
2170                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 ||
2171                   strcmp(call->as_CallLeaf()->_name, "updateBytesAdler32") == 0 ||
2172                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
2173                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
2174                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
2175                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
2176                   strcmp(call->as_CallLeaf()->_name, "electronicCodeBook_encryptAESCrypt") == 0 ||
2177                   strcmp(call->as_CallLeaf()->_name, "electronicCodeBook_decryptAESCrypt") == 0 ||
2178                   strcmp(call->as_CallLeaf()->_name, "counterMode_AESCrypt") == 0 ||
2179                   strcmp(call->as_CallLeaf()->_name, "galoisCounterMode_AESCrypt") == 0 ||
2180                   strcmp(call->as_CallLeaf()->_name, "poly1305_processBlocks") == 0 ||
2181                   strcmp(call->as_CallLeaf()->_name, "intpoly_montgomeryMult_P256") == 0 ||
2182                   strcmp(call->as_CallLeaf()->_name, "intpoly_assign") == 0 ||
2183                   strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 ||
2184                   strcmp(call->as_CallLeaf()->_name, "chacha20Block") == 0 ||
2185                   strcmp(call->as_CallLeaf()->_name, "kyberNtt") == 0 ||
2186                   strcmp(call->as_CallLeaf()->_name, "kyberInverseNtt") == 0 ||
2187                   strcmp(call->as_CallLeaf()->_name, "kyberNttMult") == 0 ||
2188                   strcmp(call->as_CallLeaf()->_name, "kyberAddPoly_2") == 0 ||
2189                   strcmp(call->as_CallLeaf()->_name, "kyberAddPoly_3") == 0 ||
2190                   strcmp(call->as_CallLeaf()->_name, "kyber12To16") == 0 ||
2191                   strcmp(call->as_CallLeaf()->_name, "kyberBarrettReduce") == 0 ||
2192                   strcmp(call->as_CallLeaf()->_name, "dilithiumAlmostNtt") == 0 ||
2193                   strcmp(call->as_CallLeaf()->_name, "dilithiumAlmostInverseNtt") == 0 ||
2194                   strcmp(call->as_CallLeaf()->_name, "dilithiumNttMult") == 0 ||
2195                   strcmp(call->as_CallLeaf()->_name, "dilithiumMontMulByConstant") == 0 ||
2196                   strcmp(call->as_CallLeaf()->_name, "dilithiumDecomposePoly") == 0 ||
2197                   strcmp(call->as_CallLeaf()->_name, "encodeBlock") == 0 ||
2198                   strcmp(call->as_CallLeaf()->_name, "decodeBlock") == 0 ||
2199                   strcmp(call->as_CallLeaf()->_name, "md5_implCompress") == 0 ||
2200                   strcmp(call->as_CallLeaf()->_name, "md5_implCompressMB") == 0 ||
2201                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
2202                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
2203                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
2204                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
2205                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
2206                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
2207                   strcmp(call->as_CallLeaf()->_name, "sha3_implCompress") == 0 ||
2208                   strcmp(call->as_CallLeaf()->_name, "double_keccak") == 0 ||
2209                   strcmp(call->as_CallLeaf()->_name, "sha3_implCompressMB") == 0 ||
2210                   strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
2211                   strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
2212                   strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 ||
2213                   strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 ||
2214                   strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0 ||
2215                   strcmp(call->as_CallLeaf()->_name, "bigIntegerRightShiftWorker") == 0 ||
2216                   strcmp(call->as_CallLeaf()->_name, "bigIntegerLeftShiftWorker") == 0 ||
2217                   strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0 ||
2218                   strcmp(call->as_CallLeaf()->_name, "stringIndexOf") == 0 ||
2219                   strcmp(call->as_CallLeaf()->_name, "arraysort_stub") == 0 ||
2220                   strcmp(call->as_CallLeaf()->_name, "array_partition_stub") == 0 ||
2221                   strcmp(call->as_CallLeaf()->_name, "get_class_id_intrinsic") == 0 ||
2222                   strcmp(call->as_CallLeaf()->_name, "unsafe_setmemory") == 0)
2223                  ))) {
2224             call->dump();
2225             fatal("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name);
2226           }
2227 #endif
2228           // Always process arraycopy's destination object since
2229           // we need to add all possible edges to references in
2230           // source object.
2231           if (arg_esc >= PointsToNode::ArgEscape &&
2232               !arg_is_arraycopy_dest) {
2233             continue;
2234           }
2235           PointsToNode::EscapeState es = PointsToNode::ArgEscape;
2236           if (call->is_ArrayCopy()) {
2237             ArrayCopyNode* ac = call->as_ArrayCopy();
2238             if (ac->is_clonebasic() ||
2239                 ac->is_arraycopy_validated() ||
2240                 ac->is_copyof_validated() ||
2241                 ac->is_copyofrange_validated()) {
2242               es = PointsToNode::NoEscape;
2243             }
2244           }
2245           set_escape_state(arg_ptn, es NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2246           if (arg_is_arraycopy_dest) {
2247             Node* src = call->in(TypeFunc::Parms);
2248             if (src->is_AddP()) {
2249               src = get_addp_base(src);
2250             }
2251             PointsToNode* src_ptn = ptnode_adr(src->_idx);
2252             assert(src_ptn != nullptr, "should be registered");
2253             // Special arraycopy edge:
2254             // Only escape state of destination object's fields affects
2255             // escape state of fields in source object.
2256             add_arraycopy(call, es, src_ptn, arg_ptn);
2257           }
2258         }
2259       }
2260       break;
2261     }
2262     case Op_CallStaticJava: {
2263       // For a static call, we know exactly what method is being called.
2264       // Use bytecode estimator to record the call's escape affects
2265 #ifdef ASSERT
2266       const char* name = call->as_CallStaticJava()->_name;
2267       assert((name == nullptr || strcmp(name, "uncommon_trap") != 0), "normal calls only");
2268 #endif
2269       ciMethod* meth = call->as_CallJava()->method();
2270       if ((meth != nullptr) && meth->is_boxing_method()) {
2271         break; // Boxing methods do not modify any oops.
2272       }
2273       BCEscapeAnalyzer* call_analyzer = (meth !=nullptr) ? meth->get_bcea() : nullptr;
2274       // fall-through if not a Java method or no analyzer information
2275       if (call_analyzer != nullptr) {
2276         PointsToNode* call_ptn = ptnode_adr(call->_idx);
2277         const TypeTuple* d = call->tf()->domain();
2278         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2279           const Type* at = d->field_at(i);
2280           int k = i - TypeFunc::Parms;
2281           Node* arg = call->in(i);
2282           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
2283           if (at->isa_ptr() != nullptr &&
2284               call_analyzer->is_arg_returned(k)) {
2285             // The call returns arguments.
2286             if (call_ptn != nullptr) { // Is call's result used?
2287               assert(call_ptn->is_LocalVar(), "node should be registered");
2288               assert(arg_ptn != nullptr, "node should be registered");
2289               add_edge(call_ptn, arg_ptn);
2290             }
2291           }
2292           if (at->isa_oopptr() != nullptr &&
2293               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
2294             if (!call_analyzer->is_arg_stack(k)) {
2295               // The argument global escapes
2296               set_escape_state(arg_ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2297             } else {
2298               set_escape_state(arg_ptn, PointsToNode::ArgEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2299               if (!call_analyzer->is_arg_local(k)) {
2300                 // The argument itself doesn't escape, but any fields might
2301                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2302               }
2303             }
2304           }
2305         }
2306         if (call_ptn != nullptr && call_ptn->is_LocalVar()) {
2307           // The call returns arguments.
2308           assert(call_ptn->edge_count() > 0, "sanity");
2309           if (!call_analyzer->is_return_local()) {
2310             // Returns also unknown object.
2311             add_edge(call_ptn, phantom_obj);
2312           }
2313         }
2314         break;
2315       }
2316     }
2317     default: {
2318       // Fall-through here if not a Java method or no analyzer information
2319       // or some other type of call, assume the worst case: all arguments
2320       // globally escape.
2321       const TypeTuple* d = call->tf()->domain();
2322       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2323         const Type* at = d->field_at(i);
2324         if (at->isa_oopptr() != nullptr) {
2325           Node* arg = call->in(i);
2326           if (arg->is_AddP()) {
2327             arg = get_addp_base(arg);
2328           }
2329           assert(ptnode_adr(arg->_idx) != nullptr, "should be defined already");
2330           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape NOT_PRODUCT(COMMA trace_arg_escape_message(call)));
2331         }
2332       }
2333     }
2334   }
2335 }
2336 
2337 
2338 // Finish Graph construction.
2339 bool ConnectionGraph::complete_connection_graph(
2340                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
2341                          GrowableArray<JavaObjectNode*>& non_escaped_allocs_worklist,
2342                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
2343                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
2344   // Normally only 1-3 passes needed to build Connection Graph depending
2345   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
2346   // Set limit to 20 to catch situation when something did go wrong and
2347   // bailout Escape Analysis.
2348   // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag.
2349 #define GRAPH_BUILD_ITER_LIMIT 20
2350 
2351   // Propagate GlobalEscape and ArgEscape escape states and check that
2352   // we still have non-escaping objects. The method pushs on _worklist
2353   // Field nodes which reference phantom_object.
2354   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_allocs_worklist)) {
2355     return false; // Nothing to do.
2356   }
2357   // Now propagate references to all JavaObject nodes.
2358   int java_objects_length = java_objects_worklist.length();
2359   elapsedTimer build_time;
2360   build_time.start();
2361   elapsedTimer time;
2362   bool timeout = false;
2363   int new_edges = 1;
2364   int iterations = 0;
2365   do {
2366     while ((new_edges > 0) &&
2367            (iterations++ < GRAPH_BUILD_ITER_LIMIT)) {
2368       double start_time = time.seconds();
2369       time.start();
2370       new_edges = 0;
2371       // Propagate references to phantom_object for nodes pushed on _worklist
2372       // by find_non_escaped_objects() and find_field_value().
2373       new_edges += add_java_object_edges(phantom_obj, false);
2374       for (int next = 0; next < java_objects_length; ++next) {
2375         JavaObjectNode* ptn = java_objects_worklist.at(next);
2376         new_edges += add_java_object_edges(ptn, true);
2377 
2378 #define SAMPLE_SIZE 4
2379         if ((next % SAMPLE_SIZE) == 0) {
2380           // Each 4 iterations calculate how much time it will take
2381           // to complete graph construction.
2382           time.stop();
2383           // Poll for requests from shutdown mechanism to quiesce compiler
2384           // because Connection graph construction may take long time.
2385           CompileBroker::maybe_block();
2386           double stop_time = time.seconds();
2387           double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE;
2388           double time_until_end = time_per_iter * (double)(java_objects_length - next);
2389           if ((start_time + time_until_end) >= EscapeAnalysisTimeout) {
2390             timeout = true;
2391             break; // Timeout
2392           }
2393           start_time = stop_time;
2394           time.start();
2395         }
2396 #undef SAMPLE_SIZE
2397 
2398       }
2399       if (timeout) break;
2400       if (new_edges > 0) {
2401         // Update escape states on each iteration if graph was updated.
2402         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_allocs_worklist)) {
2403           return false; // Nothing to do.
2404         }
2405       }
2406       time.stop();
2407       if (time.seconds() >= EscapeAnalysisTimeout) {
2408         timeout = true;
2409         break;
2410       }
2411     }
2412     if ((iterations < GRAPH_BUILD_ITER_LIMIT) && !timeout) {
2413       time.start();
2414       // Find fields which have unknown value.
2415       int fields_length = oop_fields_worklist.length();
2416       for (int next = 0; next < fields_length; next++) {
2417         FieldNode* field = oop_fields_worklist.at(next);
2418         if (field->edge_count() == 0) {
2419           new_edges += find_field_value(field);
2420           // This code may added new edges to phantom_object.
2421           // Need an other cycle to propagate references to phantom_object.
2422         }
2423       }
2424       time.stop();
2425       if (time.seconds() >= EscapeAnalysisTimeout) {
2426         timeout = true;
2427         break;
2428       }
2429     } else {
2430       new_edges = 0; // Bailout
2431     }
2432   } while (new_edges > 0);
2433 
2434   build_time.stop();
2435   _build_time = build_time.seconds();
2436   _build_iterations = iterations;
2437 
2438   // Bailout if passed limits.
2439   if ((iterations >= GRAPH_BUILD_ITER_LIMIT) || timeout) {
2440     Compile* C = _compile;
2441     if (C->log() != nullptr) {
2442       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
2443       C->log()->text("%s", timeout ? "time" : "iterations");
2444       C->log()->end_elem(" limit'");
2445     }
2446     assert(ExitEscapeAnalysisOnTimeout, "infinite EA connection graph build during invocation %d (%f sec, %d iterations) with %d nodes and worklist size %d",
2447            _invocation, _build_time, _build_iterations, nodes_size(), ptnodes_worklist.length());
2448     // Possible infinite build_connection_graph loop,
2449     // bailout (no changes to ideal graph were made).
2450     return false;
2451   }
2452 
2453 #undef GRAPH_BUILD_ITER_LIMIT
2454 
2455   // Find fields initialized by null for non-escaping Allocations.
2456   int non_escaped_length = non_escaped_allocs_worklist.length();
2457   for (int next = 0; next < non_escaped_length; next++) {
2458     JavaObjectNode* ptn = non_escaped_allocs_worklist.at(next);
2459     PointsToNode::EscapeState es = ptn->escape_state();
2460     assert(es <= PointsToNode::ArgEscape, "sanity");
2461     if (es == PointsToNode::NoEscape) {
2462       if (find_init_values_null(ptn, _igvn) > 0) {
2463         // Adding references to null object does not change escape states
2464         // since it does not escape. Also no fields are added to null object.
2465         add_java_object_edges(null_obj, false);
2466       }
2467     }
2468     Node* n = ptn->ideal_node();
2469     if (n->is_Allocate()) {
2470       // The object allocated by this Allocate node will never be
2471       // seen by an other thread. Mark it so that when it is
2472       // expanded no MemBarStoreStore is added.
2473       InitializeNode* ini = n->as_Allocate()->initialization();
2474       if (ini != nullptr)
2475         ini->set_does_not_escape();
2476     }
2477   }
2478   return true; // Finished graph construction.
2479 }
2480 
2481 // Propagate GlobalEscape and ArgEscape escape states to all nodes
2482 // and check that we still have non-escaping java objects.
2483 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
2484                                                GrowableArray<JavaObjectNode*>& non_escaped_allocs_worklist) {
2485   GrowableArray<PointsToNode*> escape_worklist;
2486   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
2487   int ptnodes_length = ptnodes_worklist.length();
2488   for (int next = 0; next < ptnodes_length; ++next) {
2489     PointsToNode* ptn = ptnodes_worklist.at(next);
2490     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
2491         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
2492       escape_worklist.push(ptn);
2493     }
2494   }
2495   // Set escape states to referenced nodes (edges list).
2496   while (escape_worklist.length() > 0) {
2497     PointsToNode* ptn = escape_worklist.pop();
2498     PointsToNode::EscapeState es  = ptn->escape_state();
2499     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
2500     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
2501         es >= PointsToNode::ArgEscape) {
2502       // GlobalEscape or ArgEscape state of field means it has unknown value.
2503       if (add_edge(ptn, phantom_obj)) {
2504         // New edge was added
2505         add_field_uses_to_worklist(ptn->as_Field());
2506       }
2507     }
2508     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2509       PointsToNode* e = i.get();
2510       if (e->is_Arraycopy()) {
2511         assert(ptn->arraycopy_dst(), "sanity");
2512         // Propagate only fields escape state through arraycopy edge.
2513         if (e->fields_escape_state() < field_es) {
2514           set_fields_escape_state(e, field_es NOT_PRODUCT(COMMA trace_propagate_message(ptn)));
2515           escape_worklist.push(e);
2516         }
2517       } else if (es >= field_es) {
2518         // fields_escape_state is also set to 'es' if it is less than 'es'.
2519         if (e->escape_state() < es) {
2520           set_escape_state(e, es NOT_PRODUCT(COMMA trace_propagate_message(ptn)));
2521           escape_worklist.push(e);
2522         }
2523       } else {
2524         // Propagate field escape state.
2525         bool es_changed = false;
2526         if (e->fields_escape_state() < field_es) {
2527           set_fields_escape_state(e, field_es NOT_PRODUCT(COMMA trace_propagate_message(ptn)));
2528           es_changed = true;
2529         }
2530         if ((e->escape_state() < field_es) &&
2531             e->is_Field() && ptn->is_JavaObject() &&
2532             e->as_Field()->is_oop()) {
2533           // Change escape state of referenced fields.
2534           set_escape_state(e, field_es NOT_PRODUCT(COMMA trace_propagate_message(ptn)));
2535           es_changed = true;
2536         } else if (e->escape_state() < es) {
2537           set_escape_state(e, es NOT_PRODUCT(COMMA trace_propagate_message(ptn)));
2538           es_changed = true;
2539         }
2540         if (es_changed) {
2541           escape_worklist.push(e);
2542         }
2543       }
2544     }
2545   }
2546   // Remove escaped objects from non_escaped list.
2547   for (int next = non_escaped_allocs_worklist.length()-1; next >= 0 ; --next) {
2548     JavaObjectNode* ptn = non_escaped_allocs_worklist.at(next);
2549     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
2550       non_escaped_allocs_worklist.delete_at(next);
2551     }
2552     if (ptn->escape_state() == PointsToNode::NoEscape) {
2553       // Find fields in non-escaped allocations which have unknown value.
2554       find_init_values_phantom(ptn);
2555     }
2556   }
2557   return (non_escaped_allocs_worklist.length() > 0);
2558 }
2559 
2560 // Add all references to JavaObject node by walking over all uses.
2561 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
2562   int new_edges = 0;
2563   if (populate_worklist) {
2564     // Populate _worklist by uses of jobj's uses.
2565     for (UseIterator i(jobj); i.has_next(); i.next()) {
2566       PointsToNode* use = i.get();
2567       if (use->is_Arraycopy()) {
2568         continue;
2569       }
2570       add_uses_to_worklist(use);
2571       if (use->is_Field() && use->as_Field()->is_oop()) {
2572         // Put on worklist all field's uses (loads) and
2573         // related field nodes (same base and offset).
2574         add_field_uses_to_worklist(use->as_Field());
2575       }
2576     }
2577   }
2578   for (int l = 0; l < _worklist.length(); l++) {
2579     PointsToNode* use = _worklist.at(l);
2580     if (PointsToNode::is_base_use(use)) {
2581       // Add reference from jobj to field and from field to jobj (field's base).
2582       use = PointsToNode::get_use_node(use)->as_Field();
2583       if (add_base(use->as_Field(), jobj)) {
2584         new_edges++;
2585       }
2586       continue;
2587     }
2588     assert(!use->is_JavaObject(), "sanity");
2589     if (use->is_Arraycopy()) {
2590       if (jobj == null_obj) { // null object does not have field edges
2591         continue;
2592       }
2593       // Added edge from Arraycopy node to arraycopy's source java object
2594       if (add_edge(use, jobj)) {
2595         jobj->set_arraycopy_src();
2596         new_edges++;
2597       }
2598       // and stop here.
2599       continue;
2600     }
2601     if (!add_edge(use, jobj)) {
2602       continue; // No new edge added, there was such edge already.
2603     }
2604     new_edges++;
2605     if (use->is_LocalVar()) {
2606       add_uses_to_worklist(use);
2607       if (use->arraycopy_dst()) {
2608         for (EdgeIterator i(use); i.has_next(); i.next()) {
2609           PointsToNode* e = i.get();
2610           if (e->is_Arraycopy()) {
2611             if (jobj == null_obj) { // null object does not have field edges
2612               continue;
2613             }
2614             // Add edge from arraycopy's destination java object to Arraycopy node.
2615             if (add_edge(jobj, e)) {
2616               new_edges++;
2617               jobj->set_arraycopy_dst();
2618             }
2619           }
2620         }
2621       }
2622     } else {
2623       // Added new edge to stored in field values.
2624       // Put on worklist all field's uses (loads) and
2625       // related field nodes (same base and offset).
2626       add_field_uses_to_worklist(use->as_Field());
2627     }
2628   }
2629   _worklist.clear();
2630   _in_worklist.reset();
2631   return new_edges;
2632 }
2633 
2634 // Put on worklist all related field nodes.
2635 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
2636   assert(field->is_oop(), "sanity");
2637   int offset = field->offset();
2638   add_uses_to_worklist(field);
2639   // Loop over all bases of this field and push on worklist Field nodes
2640   // with the same offset and base (since they may reference the same field).
2641   for (BaseIterator i(field); i.has_next(); i.next()) {
2642     PointsToNode* base = i.get();
2643     add_fields_to_worklist(field, base);
2644     // Check if the base was source object of arraycopy and go over arraycopy's
2645     // destination objects since values stored to a field of source object are
2646     // accessible by uses (loads) of fields of destination objects.
2647     if (base->arraycopy_src()) {
2648       for (UseIterator j(base); j.has_next(); j.next()) {
2649         PointsToNode* arycp = j.get();
2650         if (arycp->is_Arraycopy()) {
2651           for (UseIterator k(arycp); k.has_next(); k.next()) {
2652             PointsToNode* abase = k.get();
2653             if (abase->arraycopy_dst() && abase != base) {
2654               // Look for the same arraycopy reference.
2655               add_fields_to_worklist(field, abase);
2656             }
2657           }
2658         }
2659       }
2660     }
2661   }
2662 }
2663 
2664 // Put on worklist all related field nodes.
2665 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
2666   int offset = field->offset();
2667   if (base->is_LocalVar()) {
2668     for (UseIterator j(base); j.has_next(); j.next()) {
2669       PointsToNode* f = j.get();
2670       if (PointsToNode::is_base_use(f)) { // Field
2671         f = PointsToNode::get_use_node(f);
2672         if (f == field || !f->as_Field()->is_oop()) {
2673           continue;
2674         }
2675         int offs = f->as_Field()->offset();
2676         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
2677           add_to_worklist(f);
2678         }
2679       }
2680     }
2681   } else {
2682     assert(base->is_JavaObject(), "sanity");
2683     if (// Skip phantom_object since it is only used to indicate that
2684         // this field's content globally escapes.
2685         (base != phantom_obj) &&
2686         // null object node does not have fields.
2687         (base != null_obj)) {
2688       for (EdgeIterator i(base); i.has_next(); i.next()) {
2689         PointsToNode* f = i.get();
2690         // Skip arraycopy edge since store to destination object field
2691         // does not update value in source object field.
2692         if (f->is_Arraycopy()) {
2693           assert(base->arraycopy_dst(), "sanity");
2694           continue;
2695         }
2696         if (f == field || !f->as_Field()->is_oop()) {
2697           continue;
2698         }
2699         int offs = f->as_Field()->offset();
2700         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
2701           add_to_worklist(f);
2702         }
2703       }
2704     }
2705   }
2706 }
2707 
2708 // Find fields which have unknown value.
2709 int ConnectionGraph::find_field_value(FieldNode* field) {
2710   // Escaped fields should have init value already.
2711   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
2712   int new_edges = 0;
2713   for (BaseIterator i(field); i.has_next(); i.next()) {
2714     PointsToNode* base = i.get();
2715     if (base->is_JavaObject()) {
2716       // Skip Allocate's fields which will be processed later.
2717       if (base->ideal_node()->is_Allocate()) {
2718         return 0;
2719       }
2720       assert(base == null_obj, "only null ptr base expected here");
2721     }
2722   }
2723   if (add_edge(field, phantom_obj)) {
2724     // New edge was added
2725     new_edges++;
2726     add_field_uses_to_worklist(field);
2727   }
2728   return new_edges;
2729 }
2730 
2731 // Find fields initializing values for allocations.
2732 int ConnectionGraph::find_init_values_phantom(JavaObjectNode* pta) {
2733   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
2734   Node* alloc = pta->ideal_node();
2735 
2736   // Do nothing for Allocate nodes since its fields values are
2737   // "known" unless they are initialized by arraycopy/clone.
2738   if (alloc->is_Allocate() && !pta->arraycopy_dst()) {
2739     return 0;
2740   }
2741   assert(pta->arraycopy_dst() || alloc->as_CallStaticJava(), "sanity");
2742 #ifdef ASSERT
2743   if (!pta->arraycopy_dst() && alloc->as_CallStaticJava()->method() == nullptr) {
2744     const char* name = alloc->as_CallStaticJava()->_name;
2745     assert(strncmp(name, "C2 Runtime multianewarray", 25) == 0, "sanity");
2746   }
2747 #endif
2748   // Non-escaped allocation returned from Java or runtime call have unknown values in fields.
2749   int new_edges = 0;
2750   for (EdgeIterator i(pta); i.has_next(); i.next()) {
2751     PointsToNode* field = i.get();
2752     if (field->is_Field() && field->as_Field()->is_oop()) {
2753       if (add_edge(field, phantom_obj)) {
2754         // New edge was added
2755         new_edges++;
2756         add_field_uses_to_worklist(field->as_Field());
2757       }
2758     }
2759   }
2760   return new_edges;
2761 }
2762 
2763 // Find fields initializing values for allocations.
2764 int ConnectionGraph::find_init_values_null(JavaObjectNode* pta, PhaseValues* phase) {
2765   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
2766   Node* alloc = pta->ideal_node();
2767   // Do nothing for Call nodes since its fields values are unknown.
2768   if (!alloc->is_Allocate()) {
2769     return 0;
2770   }
2771   InitializeNode* ini = alloc->as_Allocate()->initialization();
2772   bool visited_bottom_offset = false;
2773   GrowableArray<int> offsets_worklist;
2774   int new_edges = 0;
2775 
2776   // Check if an oop field's initializing value is recorded and add
2777   // a corresponding null if field's value if it is not recorded.
2778   // Connection Graph does not record a default initialization by null
2779   // captured by Initialize node.
2780   //
2781   for (EdgeIterator i(pta); i.has_next(); i.next()) {
2782     PointsToNode* field = i.get(); // Field (AddP)
2783     if (!field->is_Field() || !field->as_Field()->is_oop()) {
2784       continue; // Not oop field
2785     }
2786     int offset = field->as_Field()->offset();
2787     if (offset == Type::OffsetBot) {
2788       if (!visited_bottom_offset) {
2789         // OffsetBot is used to reference array's element,
2790         // always add reference to null to all Field nodes since we don't
2791         // known which element is referenced.
2792         if (add_edge(field, null_obj)) {
2793           // New edge was added
2794           new_edges++;
2795           add_field_uses_to_worklist(field->as_Field());
2796           visited_bottom_offset = true;
2797         }
2798       }
2799     } else {
2800       // Check only oop fields.
2801       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
2802       if (adr_type->isa_rawptr()) {
2803 #ifdef ASSERT
2804         // Raw pointers are used for initializing stores so skip it
2805         // since it should be recorded already
2806         Node* base = get_addp_base(field->ideal_node());
2807         assert(adr_type->isa_rawptr() && is_captured_store_address(field->ideal_node()), "unexpected pointer type");
2808 #endif
2809         continue;
2810       }
2811       if (!offsets_worklist.contains(offset)) {
2812         offsets_worklist.append(offset);
2813         Node* value = nullptr;
2814         if (ini != nullptr) {
2815           // StoreP::value_basic_type() == T_ADDRESS
2816           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
2817           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
2818           // Make sure initializing store has the same type as this AddP.
2819           // This AddP may reference non existing field because it is on a
2820           // dead branch of bimorphic call which is not eliminated yet.
2821           if (store != nullptr && store->is_Store() &&
2822               store->as_Store()->value_basic_type() == ft) {
2823             value = store->in(MemNode::ValueIn);
2824 #ifdef ASSERT
2825             if (VerifyConnectionGraph) {
2826               // Verify that AddP already points to all objects the value points to.
2827               PointsToNode* val = ptnode_adr(value->_idx);
2828               assert((val != nullptr), "should be processed already");
2829               PointsToNode* missed_obj = nullptr;
2830               if (val->is_JavaObject()) {
2831                 if (!field->points_to(val->as_JavaObject())) {
2832                   missed_obj = val;
2833                 }
2834               } else {
2835                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
2836                   tty->print_cr("----------init store has invalid value -----");
2837                   store->dump();
2838                   val->dump();
2839                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
2840                 }
2841                 for (EdgeIterator j(val); j.has_next(); j.next()) {
2842                   PointsToNode* obj = j.get();
2843                   if (obj->is_JavaObject()) {
2844                     if (!field->points_to(obj->as_JavaObject())) {
2845                       missed_obj = obj;
2846                       break;
2847                     }
2848                   }
2849                 }
2850               }
2851               if (missed_obj != nullptr) {
2852                 tty->print_cr("----------field---------------------------------");
2853                 field->dump();
2854                 tty->print_cr("----------missed referernce to object-----------");
2855                 missed_obj->dump();
2856                 tty->print_cr("----------object referernced by init store -----");
2857                 store->dump();
2858                 val->dump();
2859                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
2860               }
2861             }
2862 #endif
2863           } else {
2864             // There could be initializing stores which follow allocation.
2865             // For example, a volatile field store is not collected
2866             // by Initialize node.
2867             //
2868             // Need to check for dependent loads to separate such stores from
2869             // stores which follow loads. For now, add initial value null so
2870             // that compare pointers optimization works correctly.
2871           }
2872         }
2873         if (value == nullptr) {
2874           // A field's initializing value was not recorded. Add null.
2875           if (add_edge(field, null_obj)) {
2876             // New edge was added
2877             new_edges++;
2878             add_field_uses_to_worklist(field->as_Field());
2879           }
2880         }
2881       }
2882     }
2883   }
2884   return new_edges;
2885 }
2886 
2887 // Adjust scalar_replaceable state after Connection Graph is built.
2888 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj, Unique_Node_List &reducible_merges) {
2889   // A Phi 'x' is a _candidate_ to be reducible if 'can_reduce_phi(x)'
2890   // returns true. If one of the constraints in this method set 'jobj' to NSR
2891   // then the candidate Phi is discarded. If the Phi has another SR 'jobj' as
2892   // input, 'adjust_scalar_replaceable_state' will eventually be called with
2893   // that other object and the Phi will become a reducible Phi.
2894   // There could be multiple merges involving the same jobj.
2895   Unique_Node_List candidates;
2896 
2897   // Search for non-escaping objects which are not scalar replaceable
2898   // and mark them to propagate the state to referenced objects.
2899 
2900   for (UseIterator i(jobj); i.has_next(); i.next()) {
2901     PointsToNode* use = i.get();
2902     if (use->is_Arraycopy()) {
2903       continue;
2904     }
2905     if (use->is_Field()) {
2906       FieldNode* field = use->as_Field();
2907       assert(field->is_oop() && field->scalar_replaceable(), "sanity");
2908       // 1. An object is not scalar replaceable if the field into which it is
2909       // stored has unknown offset (stored into unknown element of an array).
2910       if (field->offset() == Type::OffsetBot) {
2911         set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is stored at unknown offset"));
2912         return;
2913       }
2914       for (BaseIterator i(field); i.has_next(); i.next()) {
2915         PointsToNode* base = i.get();
2916         // 2. An object is not scalar replaceable if the field into which it is
2917         // stored has multiple bases one of which is null.
2918         if ((base == null_obj) && (field->base_count() > 1)) {
2919           set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is stored into field with potentially null base"));
2920           return;
2921         }
2922         // 2.5. An object is not scalar replaceable if the field into which it is
2923         // stored has NSR base.
2924         if (!base->scalar_replaceable()) {
2925           set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is stored into field with NSR base"));
2926           return;
2927         }
2928       }
2929     }
2930     assert(use->is_Field() || use->is_LocalVar(), "sanity");
2931     // 3. An object is not scalar replaceable if it is merged with other objects
2932     // and we can't remove the merge
2933     for (EdgeIterator j(use); j.has_next(); j.next()) {
2934       PointsToNode* ptn = j.get();
2935       if (ptn->is_JavaObject() && ptn != jobj) {
2936         Node* use_n = use->ideal_node();
2937 
2938         // These other local vars may point to multiple objects through a Phi
2939         // In this case we skip them and see if we can reduce the Phi.
2940         if (use_n->is_CastPP() || use_n->is_CheckCastPP()) {
2941           use_n = use_n->in(1);
2942         }
2943 
2944         // If it's already a candidate or confirmed reducible merge we can skip verification
2945         if (candidates.member(use_n) || reducible_merges.member(use_n)) {
2946           continue;
2947         }
2948 
2949         if (use_n->is_Phi() && can_reduce_phi(use_n->as_Phi())) {
2950           candidates.push(use_n);
2951         } else {
2952           // Mark all objects as NSR if we can't remove the merge
2953           set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA trace_merged_message(ptn)));
2954           set_not_scalar_replaceable(ptn NOT_PRODUCT(COMMA trace_merged_message(jobj)));
2955         }
2956       }
2957     }
2958     if (!jobj->scalar_replaceable()) {
2959       return;
2960     }
2961   }
2962 
2963   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
2964     if (j.get()->is_Arraycopy()) {
2965       continue;
2966     }
2967 
2968     // Non-escaping object node should point only to field nodes.
2969     FieldNode* field = j.get()->as_Field();
2970     int offset = field->as_Field()->offset();
2971 
2972     // 4. An object is not scalar replaceable if it has a field with unknown
2973     // offset (array's element is accessed in loop).
2974     if (offset == Type::OffsetBot) {
2975       set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "has field with unknown offset"));
2976       return;
2977     }
2978     // 5. Currently an object is not scalar replaceable if a LoadStore node
2979     // access its field since the field value is unknown after it.
2980     //
2981     Node* n = field->ideal_node();
2982 
2983     // Test for an unsafe access that was parsed as maybe off heap
2984     // (with a CheckCastPP to raw memory).
2985     assert(n->is_AddP(), "expect an address computation");
2986     if (n->in(AddPNode::Base)->is_top() &&
2987         n->in(AddPNode::Address)->Opcode() == Op_CheckCastPP) {
2988       assert(n->in(AddPNode::Address)->bottom_type()->isa_rawptr(), "raw address so raw cast expected");
2989       assert(_igvn->type(n->in(AddPNode::Address)->in(1))->isa_oopptr(), "cast pattern at unsafe access expected");
2990       set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is used as base of mixed unsafe access"));
2991       return;
2992     }
2993 
2994     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2995       Node* u = n->fast_out(i);
2996       if (u->is_LoadStore() || (u->is_Mem() && u->as_Mem()->is_mismatched_access())) {
2997         set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is used in LoadStore or mismatched access"));
2998         return;
2999       }
3000     }
3001 
3002     // 6. Or the address may point to more then one object. This may produce
3003     // the false positive result (set not scalar replaceable)
3004     // since the flow-insensitive escape analysis can't separate
3005     // the case when stores overwrite the field's value from the case
3006     // when stores happened on different control branches.
3007     //
3008     // Note: it will disable scalar replacement in some cases:
3009     //
3010     //    Point p[] = new Point[1];
3011     //    p[0] = new Point(); // Will be not scalar replaced
3012     //
3013     // but it will save us from incorrect optimizations in next cases:
3014     //
3015     //    Point p[] = new Point[1];
3016     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
3017     //
3018     if (field->base_count() > 1 && candidates.size() == 0) {
3019       if (has_non_reducible_merge(field, reducible_merges)) {
3020         for (BaseIterator i(field); i.has_next(); i.next()) {
3021           PointsToNode* base = i.get();
3022           // Don't take into account LocalVar nodes which
3023           // may point to only one object which should be also
3024           // this field's base by now.
3025           if (base->is_JavaObject() && base != jobj) {
3026             // Mark all bases.
3027             set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "may point to more than one object"));
3028             set_not_scalar_replaceable(base NOT_PRODUCT(COMMA "may point to more than one object"));
3029           }
3030         }
3031 
3032         if (!jobj->scalar_replaceable()) {
3033           return;
3034         }
3035       }
3036     }
3037   }
3038 
3039   // The candidate is truly a reducible merge only if none of the other
3040   // constraints ruled it as NSR. There could be multiple merges involving the
3041   // same jobj.
3042   assert(jobj->scalar_replaceable(), "sanity");
3043   for (uint i = 0; i < candidates.size(); i++ ) {
3044     Node* candidate = candidates.at(i);
3045     reducible_merges.push(candidate);
3046   }
3047 }
3048 
3049 bool ConnectionGraph::has_non_reducible_merge(FieldNode* field, Unique_Node_List& reducible_merges) {
3050   for (BaseIterator i(field); i.has_next(); i.next()) {
3051     Node* base = i.get()->ideal_node();
3052     if (base->is_Phi() && !reducible_merges.member(base)) {
3053       return true;
3054     }
3055   }
3056   return false;
3057 }
3058 
3059 void ConnectionGraph::revisit_reducible_phi_status(JavaObjectNode* jobj, Unique_Node_List& reducible_merges) {
3060   assert(jobj != nullptr && !jobj->scalar_replaceable(), "jobj should be set as NSR before calling this function.");
3061 
3062   // Look for 'phis' that refer to 'jobj' as the last
3063   // remaining scalar replaceable input.
3064   uint reducible_merges_cnt = reducible_merges.size();
3065   for (uint i = 0; i < reducible_merges_cnt; i++) {
3066     Node* phi = reducible_merges.at(i);
3067 
3068     // This 'Phi' will be a 'good' if it still points to
3069     // at least one scalar replaceable object. Note that 'obj'
3070     // was/should be marked as NSR before calling this function.
3071     bool good_phi = false;
3072 
3073     for (uint j = 1; j < phi->req(); j++) {
3074       JavaObjectNode* phi_in_obj = unique_java_object(phi->in(j));
3075       if (phi_in_obj != nullptr && phi_in_obj->scalar_replaceable()) {
3076         good_phi = true;
3077         break;
3078       }
3079     }
3080 
3081     if (!good_phi) {
3082       NOT_PRODUCT(if (TraceReduceAllocationMerges) tty->print_cr("Phi %d became non-reducible after node %d became NSR.", phi->_idx, jobj->ideal_node()->_idx);)
3083       reducible_merges.remove(i);
3084 
3085       // Decrement the index because the 'remove' call above actually
3086       // moves the last entry of the list to position 'i'.
3087       i--;
3088 
3089       reducible_merges_cnt--;
3090     }
3091   }
3092 }
3093 
3094 // Propagate NSR (Not scalar replaceable) state.
3095 void ConnectionGraph::find_scalar_replaceable_allocs(GrowableArray<JavaObjectNode*>& jobj_worklist, Unique_Node_List &reducible_merges) {
3096   int jobj_length = jobj_worklist.length();
3097   bool found_nsr_alloc = true;
3098   while (found_nsr_alloc) {
3099     found_nsr_alloc = false;
3100     for (int next = 0; next < jobj_length; ++next) {
3101       JavaObjectNode* jobj = jobj_worklist.at(next);
3102       for (UseIterator i(jobj); (jobj->scalar_replaceable() && i.has_next()); i.next()) {
3103         PointsToNode* use = i.get();
3104         if (use->is_Field()) {
3105           FieldNode* field = use->as_Field();
3106           assert(field->is_oop() && field->scalar_replaceable(), "sanity");
3107           assert(field->offset() != Type::OffsetBot, "sanity");
3108           for (BaseIterator i(field); i.has_next(); i.next()) {
3109             PointsToNode* base = i.get();
3110             // An object is not scalar replaceable if the field into which
3111             // it is stored has NSR base.
3112             if ((base != null_obj) && !base->scalar_replaceable()) {
3113               set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is stored into field with NSR base"));
3114               // Any merge that had only 'jobj' as scalar-replaceable will now be non-reducible,
3115               // because there is no point in reducing a Phi that won't improve the number of SR
3116               // objects.
3117               revisit_reducible_phi_status(jobj, reducible_merges);
3118               found_nsr_alloc = true;
3119               break;
3120             }
3121           }
3122         } else if (use->is_LocalVar()) {
3123           Node* phi = use->ideal_node();
3124           if (phi->Opcode() == Op_Phi && reducible_merges.member(phi) && !can_reduce_phi(phi->as_Phi())) {
3125             set_not_scalar_replaceable(jobj NOT_PRODUCT(COMMA "is merged in a non-reducible phi"));
3126             reducible_merges.yank(phi);
3127             found_nsr_alloc = true;
3128             break;
3129           }
3130         }
3131       }
3132     }
3133   }
3134 }
3135 
3136 #ifdef ASSERT
3137 void ConnectionGraph::verify_connection_graph(
3138                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
3139                          GrowableArray<JavaObjectNode*>& non_escaped_allocs_worklist,
3140                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
3141                          GrowableArray<Node*>& addp_worklist) {
3142   // Verify that graph is complete - no new edges could be added.
3143   int java_objects_length = java_objects_worklist.length();
3144   int non_escaped_length  = non_escaped_allocs_worklist.length();
3145   int new_edges = 0;
3146   for (int next = 0; next < java_objects_length; ++next) {
3147     JavaObjectNode* ptn = java_objects_worklist.at(next);
3148     new_edges += add_java_object_edges(ptn, true);
3149   }
3150   assert(new_edges == 0, "graph was not complete");
3151   // Verify that escape state is final.
3152   int length = non_escaped_allocs_worklist.length();
3153   find_non_escaped_objects(ptnodes_worklist, non_escaped_allocs_worklist);
3154   assert((non_escaped_length == non_escaped_allocs_worklist.length()) &&
3155          (non_escaped_length == length) &&
3156          (_worklist.length() == 0), "escape state was not final");
3157 
3158   // Verify fields information.
3159   int addp_length = addp_worklist.length();
3160   for (int next = 0; next < addp_length; ++next ) {
3161     Node* n = addp_worklist.at(next);
3162     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
3163     if (field->is_oop()) {
3164       // Verify that field has all bases
3165       Node* base = get_addp_base(n);
3166       PointsToNode* ptn = ptnode_adr(base->_idx);
3167       if (ptn->is_JavaObject()) {
3168         assert(field->has_base(ptn->as_JavaObject()), "sanity");
3169       } else {
3170         assert(ptn->is_LocalVar(), "sanity");
3171         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
3172           PointsToNode* e = i.get();
3173           if (e->is_JavaObject()) {
3174             assert(field->has_base(e->as_JavaObject()), "sanity");
3175           }
3176         }
3177       }
3178       // Verify that all fields have initializing values.
3179       if (field->edge_count() == 0) {
3180         tty->print_cr("----------field does not have references----------");
3181         field->dump();
3182         for (BaseIterator i(field); i.has_next(); i.next()) {
3183           PointsToNode* base = i.get();
3184           tty->print_cr("----------field has next base---------------------");
3185           base->dump();
3186           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
3187             tty->print_cr("----------base has fields-------------------------");
3188             for (EdgeIterator j(base); j.has_next(); j.next()) {
3189               j.get()->dump();
3190             }
3191             tty->print_cr("----------base has references---------------------");
3192             for (UseIterator j(base); j.has_next(); j.next()) {
3193               j.get()->dump();
3194             }
3195           }
3196         }
3197         for (UseIterator i(field); i.has_next(); i.next()) {
3198           i.get()->dump();
3199         }
3200         assert(field->edge_count() > 0, "sanity");
3201       }
3202     }
3203   }
3204 }
3205 #endif
3206 
3207 // Optimize ideal graph.
3208 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
3209                                            GrowableArray<MemBarStoreStoreNode*>& storestore_worklist) {
3210   Compile* C = _compile;
3211   PhaseIterGVN* igvn = _igvn;
3212   if (EliminateLocks) {
3213     // Mark locks before changing ideal graph.
3214     int cnt = C->macro_count();
3215     for (int i = 0; i < cnt; i++) {
3216       Node *n = C->macro_node(i);
3217       if (n->is_AbstractLock()) { // Lock and Unlock nodes
3218         AbstractLockNode* alock = n->as_AbstractLock();
3219         if (!alock->is_non_esc_obj()) {
3220           if (can_eliminate_lock(alock)) {
3221             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
3222             // The lock could be marked eliminated by lock coarsening
3223             // code during first IGVN before EA. Replace coarsened flag
3224             // to eliminate all associated locks/unlocks.
3225 #ifdef ASSERT
3226             alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
3227 #endif
3228             alock->set_non_esc_obj();
3229           }
3230         }
3231       }
3232     }
3233   }
3234 
3235   if (OptimizePtrCompare) {
3236     for (int i = 0; i < ptr_cmp_worklist.length(); i++) {
3237       Node *n = ptr_cmp_worklist.at(i);
3238       assert(n->Opcode() == Op_CmpN || n->Opcode() == Op_CmpP, "must be");
3239       const TypeInt* tcmp = optimize_ptr_compare(n->in(1), n->in(2));
3240       if (tcmp->singleton()) {
3241         Node* cmp = igvn->makecon(tcmp);
3242 #ifndef PRODUCT
3243         if (PrintOptimizePtrCompare) {
3244           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (tcmp == TypeInt::CC_EQ ? "EQ" : "NotEQ"));
3245           if (Verbose) {
3246             n->dump(1);
3247           }
3248         }
3249 #endif
3250         igvn->replace_node(n, cmp);
3251       }
3252     }
3253   }
3254 
3255   // For MemBarStoreStore nodes added in library_call.cpp, check
3256   // escape status of associated AllocateNode and optimize out
3257   // MemBarStoreStore node if the allocated object never escapes.
3258   for (int i = 0; i < storestore_worklist.length(); i++) {
3259     Node* storestore = storestore_worklist.at(i);
3260     Node* alloc = storestore->in(MemBarNode::Precedent)->in(0);
3261     if (alloc->is_Allocate() && not_global_escape(alloc)) {
3262       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
3263       mb->init_req(TypeFunc::Memory,  storestore->in(TypeFunc::Memory));
3264       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
3265       igvn->register_new_node_with_optimizer(mb);
3266       igvn->replace_node(storestore, mb);
3267     }
3268   }
3269 }
3270 
3271 // Optimize objects compare.
3272 const TypeInt* ConnectionGraph::optimize_ptr_compare(Node* left, Node* right) {
3273   const TypeInt* UNKNOWN = TypeInt::CC;    // [-1, 0,1]
3274   if (!OptimizePtrCompare) {
3275     return UNKNOWN;
3276   }
3277   const TypeInt* EQ = TypeInt::CC_EQ; // [0] == ZERO
3278   const TypeInt* NE = TypeInt::CC_GT; // [1] == ONE
3279 
3280   PointsToNode* ptn1 = ptnode_adr(left->_idx);
3281   PointsToNode* ptn2 = ptnode_adr(right->_idx);
3282   JavaObjectNode* jobj1 = unique_java_object(left);
3283   JavaObjectNode* jobj2 = unique_java_object(right);
3284 
3285   // The use of this method during allocation merge reduction may cause 'left'
3286   // or 'right' be something (e.g., a Phi) that isn't in the connection graph or
3287   // that doesn't reference an unique java object.
3288   if (ptn1 == nullptr || ptn2 == nullptr ||
3289       jobj1 == nullptr || jobj2 == nullptr) {
3290     return UNKNOWN;
3291   }
3292 
3293   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
3294   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
3295 
3296   // Check simple cases first.
3297   if (jobj1 != nullptr) {
3298     if (jobj1->escape_state() == PointsToNode::NoEscape) {
3299       if (jobj1 == jobj2) {
3300         // Comparing the same not escaping object.
3301         return EQ;
3302       }
3303       Node* obj = jobj1->ideal_node();
3304       // Comparing not escaping allocation.
3305       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
3306           !ptn2->points_to(jobj1)) {
3307         return NE; // This includes nullness check.
3308       }
3309     }
3310   }
3311   if (jobj2 != nullptr) {
3312     if (jobj2->escape_state() == PointsToNode::NoEscape) {
3313       Node* obj = jobj2->ideal_node();
3314       // Comparing not escaping allocation.
3315       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
3316           !ptn1->points_to(jobj2)) {
3317         return NE; // This includes nullness check.
3318       }
3319     }
3320   }
3321   if (jobj1 != nullptr && jobj1 != phantom_obj &&
3322       jobj2 != nullptr && jobj2 != phantom_obj &&
3323       jobj1->ideal_node()->is_Con() &&
3324       jobj2->ideal_node()->is_Con()) {
3325     // Klass or String constants compare. Need to be careful with
3326     // compressed pointers - compare types of ConN and ConP instead of nodes.
3327     const Type* t1 = jobj1->ideal_node()->get_ptr_type();
3328     const Type* t2 = jobj2->ideal_node()->get_ptr_type();
3329     if (t1->make_ptr() == t2->make_ptr()) {
3330       return EQ;
3331     } else {
3332       return NE;
3333     }
3334   }
3335   if (ptn1->meet(ptn2)) {
3336     return UNKNOWN; // Sets are not disjoint
3337   }
3338 
3339   // Sets are disjoint.
3340   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
3341   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
3342   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
3343   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
3344   if ((set1_has_unknown_ptr && set2_has_null_ptr) ||
3345       (set2_has_unknown_ptr && set1_has_null_ptr)) {
3346     // Check nullness of unknown object.
3347     return UNKNOWN;
3348   }
3349 
3350   // Disjointness by itself is not sufficient since
3351   // alias analysis is not complete for escaped objects.
3352   // Disjoint sets are definitely unrelated only when
3353   // at least one set has only not escaping allocations.
3354   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
3355     if (ptn1->non_escaping_allocation()) {
3356       return NE;
3357     }
3358   }
3359   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
3360     if (ptn2->non_escaping_allocation()) {
3361       return NE;
3362     }
3363   }
3364   return UNKNOWN;
3365 }
3366 
3367 // Connection Graph construction functions.
3368 
3369 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
3370   PointsToNode* ptadr = _nodes.at(n->_idx);
3371   if (ptadr != nullptr) {
3372     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
3373     return;
3374   }
3375   Compile* C = _compile;
3376   ptadr = new (C->comp_arena()) LocalVarNode(this, n, es);
3377   map_ideal_node(n, ptadr);
3378 }
3379 
3380 PointsToNode* ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
3381   PointsToNode* ptadr = _nodes.at(n->_idx);
3382   if (ptadr != nullptr) {
3383     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
3384     return ptadr;
3385   }
3386   Compile* C = _compile;
3387   ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es);
3388   map_ideal_node(n, ptadr);
3389   return ptadr;
3390 }
3391 
3392 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
3393   PointsToNode* ptadr = _nodes.at(n->_idx);
3394   if (ptadr != nullptr) {
3395     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
3396     return;
3397   }
3398   bool unsafe = false;
3399   bool is_oop = is_oop_field(n, offset, &unsafe);
3400   if (unsafe) {
3401     es = PointsToNode::GlobalEscape;
3402   }
3403   Compile* C = _compile;
3404   FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop);
3405   map_ideal_node(n, field);
3406 }
3407 
3408 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
3409                                     PointsToNode* src, PointsToNode* dst) {
3410   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
3411   assert((src != null_obj) && (dst != null_obj), "not for ConP null");
3412   PointsToNode* ptadr = _nodes.at(n->_idx);
3413   if (ptadr != nullptr) {
3414     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
3415     return;
3416   }
3417   Compile* C = _compile;
3418   ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
3419   map_ideal_node(n, ptadr);
3420   // Add edge from arraycopy node to source object.
3421   (void)add_edge(ptadr, src);
3422   src->set_arraycopy_src();
3423   // Add edge from destination object to arraycopy node.
3424   (void)add_edge(dst, ptadr);
3425   dst->set_arraycopy_dst();
3426 }
3427 
3428 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
3429   const Type* adr_type = n->as_AddP()->bottom_type();
3430   BasicType bt = T_INT;
3431   if (offset == Type::OffsetBot) {
3432     // Check only oop fields.
3433     if (!adr_type->isa_aryptr() ||
3434         adr_type->isa_aryptr()->elem() == Type::BOTTOM ||
3435         adr_type->isa_aryptr()->elem()->make_oopptr() != nullptr) {
3436       // OffsetBot is used to reference array's element. Ignore first AddP.
3437       if (find_second_addp(n, n->in(AddPNode::Base)) == nullptr) {
3438         bt = T_OBJECT;
3439       }
3440     }
3441   } else if (offset != oopDesc::klass_offset_in_bytes()) {
3442     if (adr_type->isa_instptr()) {
3443       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
3444       if (field != nullptr) {
3445         bt = field->layout_type();
3446       } else {
3447         // Check for unsafe oop field access
3448         if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
3449             n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
3450             n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN)) {
3451           bt = T_OBJECT;
3452           (*unsafe) = true;
3453         }
3454       }
3455     } else if (adr_type->isa_aryptr()) {
3456       if (offset == arrayOopDesc::length_offset_in_bytes()) {
3457         // Ignore array length load.
3458       } else if (find_second_addp(n, n->in(AddPNode::Base)) != nullptr) {
3459         // Ignore first AddP.
3460       } else {
3461         const Type* elemtype = adr_type->isa_aryptr()->elem();
3462         bt = elemtype->array_element_basic_type();
3463       }
3464     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
3465       // Allocation initialization, ThreadLocal field access, unsafe access
3466       if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
3467           n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
3468           n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN)) {
3469         bt = T_OBJECT;
3470       }
3471     }
3472   }
3473   // Note: T_NARROWOOP is not classed as a real reference type
3474   return (is_reference_type(bt) || bt == T_NARROWOOP);
3475 }
3476 
3477 // Returns unique pointed java object or null.
3478 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) const {
3479   // If the node was created after the escape computation we can't answer.
3480   uint idx = n->_idx;
3481   if (idx >= nodes_size()) {
3482     return nullptr;
3483   }
3484   PointsToNode* ptn = ptnode_adr(idx);
3485   if (ptn == nullptr) {
3486     return nullptr;
3487   }
3488   if (ptn->is_JavaObject()) {
3489     return ptn->as_JavaObject();
3490   }
3491   assert(ptn->is_LocalVar(), "sanity");
3492   // Check all java objects it points to.
3493   JavaObjectNode* jobj = nullptr;
3494   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
3495     PointsToNode* e = i.get();
3496     if (e->is_JavaObject()) {
3497       if (jobj == nullptr) {
3498         jobj = e->as_JavaObject();
3499       } else if (jobj != e) {
3500         return nullptr;
3501       }
3502     }
3503   }
3504   return jobj;
3505 }
3506 
3507 // Return true if this node points only to non-escaping allocations.
3508 bool PointsToNode::non_escaping_allocation() {
3509   if (is_JavaObject()) {
3510     Node* n = ideal_node();
3511     if (n->is_Allocate() || n->is_CallStaticJava()) {
3512       return (escape_state() == PointsToNode::NoEscape);
3513     } else {
3514       return false;
3515     }
3516   }
3517   assert(is_LocalVar(), "sanity");
3518   // Check all java objects it points to.
3519   for (EdgeIterator i(this); i.has_next(); i.next()) {
3520     PointsToNode* e = i.get();
3521     if (e->is_JavaObject()) {
3522       Node* n = e->ideal_node();
3523       if ((e->escape_state() != PointsToNode::NoEscape) ||
3524           !(n->is_Allocate() || n->is_CallStaticJava())) {
3525         return false;
3526       }
3527     }
3528   }
3529   return true;
3530 }
3531 
3532 // Return true if we know the node does not escape globally.
3533 bool ConnectionGraph::not_global_escape(Node *n) {
3534   assert(!_collecting, "should not call during graph construction");
3535   // If the node was created after the escape computation we can't answer.
3536   uint idx = n->_idx;
3537   if (idx >= nodes_size()) {
3538     return false;
3539   }
3540   PointsToNode* ptn = ptnode_adr(idx);
3541   if (ptn == nullptr) {
3542     return false; // not in congraph (e.g. ConI)
3543   }
3544   PointsToNode::EscapeState es = ptn->escape_state();
3545   // If we have already computed a value, return it.
3546   if (es >= PointsToNode::GlobalEscape) {
3547     return false;
3548   }
3549   if (ptn->is_JavaObject()) {
3550     return true; // (es < PointsToNode::GlobalEscape);
3551   }
3552   assert(ptn->is_LocalVar(), "sanity");
3553   // Check all java objects it points to.
3554   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
3555     if (i.get()->escape_state() >= PointsToNode::GlobalEscape) {
3556       return false;
3557     }
3558   }
3559   return true;
3560 }
3561 
3562 // Return true if locked object does not escape globally
3563 // and locked code region (identified by BoxLockNode) is balanced:
3564 // all compiled code paths have corresponding Lock/Unlock pairs.
3565 bool ConnectionGraph::can_eliminate_lock(AbstractLockNode* alock) {
3566   if (alock->is_balanced() && not_global_escape(alock->obj_node())) {
3567     if (EliminateNestedLocks) {
3568       // We can mark whole locking region as Local only when only
3569       // one object is used for locking.
3570       alock->box_node()->as_BoxLock()->set_local();
3571     }
3572     return true;
3573   }
3574   return false;
3575 }
3576 
3577 // Helper functions
3578 
3579 // Return true if this node points to specified node or nodes it points to.
3580 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
3581   if (is_JavaObject()) {
3582     return (this == ptn);
3583   }
3584   assert(is_LocalVar() || is_Field(), "sanity");
3585   for (EdgeIterator i(this); i.has_next(); i.next()) {
3586     if (i.get() == ptn) {
3587       return true;
3588     }
3589   }
3590   return false;
3591 }
3592 
3593 // Return true if one node points to an other.
3594 bool PointsToNode::meet(PointsToNode* ptn) {
3595   if (this == ptn) {
3596     return true;
3597   } else if (ptn->is_JavaObject()) {
3598     return this->points_to(ptn->as_JavaObject());
3599   } else if (this->is_JavaObject()) {
3600     return ptn->points_to(this->as_JavaObject());
3601   }
3602   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
3603   int ptn_count =  ptn->edge_count();
3604   for (EdgeIterator i(this); i.has_next(); i.next()) {
3605     PointsToNode* this_e = i.get();
3606     for (int j = 0; j < ptn_count; j++) {
3607       if (this_e == ptn->edge(j)) {
3608         return true;
3609       }
3610     }
3611   }
3612   return false;
3613 }
3614 
3615 #ifdef ASSERT
3616 // Return true if bases point to this java object.
3617 bool FieldNode::has_base(JavaObjectNode* jobj) const {
3618   for (BaseIterator i(this); i.has_next(); i.next()) {
3619     if (i.get() == jobj) {
3620       return true;
3621     }
3622   }
3623   return false;
3624 }
3625 #endif
3626 
3627 bool ConnectionGraph::is_captured_store_address(Node* addp) {
3628   // Handle simple case first.
3629   assert(_igvn->type(addp)->isa_oopptr() == nullptr, "should be raw access");
3630   if (addp->in(AddPNode::Address)->is_Proj() && addp->in(AddPNode::Address)->in(0)->is_Allocate()) {
3631     return true;
3632   } else if (addp->in(AddPNode::Address)->is_Phi()) {
3633     for (DUIterator_Fast imax, i = addp->fast_outs(imax); i < imax; i++) {
3634       Node* addp_use = addp->fast_out(i);
3635       if (addp_use->is_Store()) {
3636         for (DUIterator_Fast jmax, j = addp_use->fast_outs(jmax); j < jmax; j++) {
3637           if (addp_use->fast_out(j)->is_Initialize()) {
3638             return true;
3639           }
3640         }
3641       }
3642     }
3643   }
3644   return false;
3645 }
3646 
3647 int ConnectionGraph::address_offset(Node* adr, PhaseValues* phase) {
3648   const Type *adr_type = phase->type(adr);
3649   if (adr->is_AddP() && adr_type->isa_oopptr() == nullptr && is_captured_store_address(adr)) {
3650     // We are computing a raw address for a store captured by an Initialize
3651     // compute an appropriate address type. AddP cases #3 and #5 (see below).
3652     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
3653     assert(offs != Type::OffsetBot ||
3654            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
3655            "offset must be a constant or it is initialization of array");
3656     return offs;
3657   }
3658   const TypePtr *t_ptr = adr_type->isa_ptr();
3659   assert(t_ptr != nullptr, "must be a pointer type");
3660   return t_ptr->offset();
3661 }
3662 
3663 Node* ConnectionGraph::get_addp_base(Node *addp) {
3664   assert(addp->is_AddP(), "must be AddP");
3665   //
3666   // AddP cases for Base and Address inputs:
3667   // case #1. Direct object's field reference:
3668   //     Allocate
3669   //       |
3670   //     Proj #5 ( oop result )
3671   //       |
3672   //     CheckCastPP (cast to instance type)
3673   //      | |
3674   //     AddP  ( base == address )
3675   //
3676   // case #2. Indirect object's field reference:
3677   //      Phi
3678   //       |
3679   //     CastPP (cast to instance type)
3680   //      | |
3681   //     AddP  ( base == address )
3682   //
3683   // case #3. Raw object's field reference for Initialize node:
3684   //      Allocate
3685   //        |
3686   //      Proj #5 ( oop result )
3687   //  top   |
3688   //     \  |
3689   //     AddP  ( base == top )
3690   //
3691   // case #4. Array's element reference:
3692   //   {CheckCastPP | CastPP}
3693   //     |  | |
3694   //     |  AddP ( array's element offset )
3695   //     |  |
3696   //     AddP ( array's offset )
3697   //
3698   // case #5. Raw object's field reference for arraycopy stub call:
3699   //          The inline_native_clone() case when the arraycopy stub is called
3700   //          after the allocation before Initialize and CheckCastPP nodes.
3701   //      Allocate
3702   //        |
3703   //      Proj #5 ( oop result )
3704   //       | |
3705   //       AddP  ( base == address )
3706   //
3707   // case #6. Constant Pool, ThreadLocal, CastX2P or
3708   //          Raw object's field reference:
3709   //      {ConP, ThreadLocal, CastX2P, raw Load}
3710   //  top   |
3711   //     \  |
3712   //     AddP  ( base == top )
3713   //
3714   // case #7. Klass's field reference.
3715   //      LoadKlass
3716   //       | |
3717   //       AddP  ( base == address )
3718   //
3719   // case #8. narrow Klass's field reference.
3720   //      LoadNKlass
3721   //       |
3722   //      DecodeN
3723   //       | |
3724   //       AddP  ( base == address )
3725   //
3726   // case #9. Mixed unsafe access
3727   //    {instance}
3728   //        |
3729   //      CheckCastPP (raw)
3730   //  top   |
3731   //     \  |
3732   //     AddP  ( base == top )
3733   //
3734   Node *base = addp->in(AddPNode::Base);
3735   if (base->uncast()->is_top()) { // The AddP case #3 and #6 and #9.
3736     base = addp->in(AddPNode::Address);
3737     while (base->is_AddP()) {
3738       // Case #6 (unsafe access) may have several chained AddP nodes.
3739       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
3740       base = base->in(AddPNode::Address);
3741     }
3742     if (base->Opcode() == Op_CheckCastPP &&
3743         base->bottom_type()->isa_rawptr() &&
3744         _igvn->type(base->in(1))->isa_oopptr()) {
3745       base = base->in(1); // Case #9
3746     } else {
3747       Node* uncast_base = base->uncast();
3748       int opcode = uncast_base->Opcode();
3749       assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
3750              opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
3751              (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != nullptr)) ||
3752              is_captured_store_address(addp), "sanity");
3753     }
3754   }
3755   return base;
3756 }
3757 
3758 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
3759   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
3760   Node* addp2 = addp->raw_out(0);
3761   if (addp->outcnt() == 1 && addp2->is_AddP() &&
3762       addp2->in(AddPNode::Base) == n &&
3763       addp2->in(AddPNode::Address) == addp) {
3764     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
3765     //
3766     // Find array's offset to push it on worklist first and
3767     // as result process an array's element offset first (pushed second)
3768     // to avoid CastPP for the array's offset.
3769     // Otherwise the inserted CastPP (LocalVar) will point to what
3770     // the AddP (Field) points to. Which would be wrong since
3771     // the algorithm expects the CastPP has the same point as
3772     // as AddP's base CheckCastPP (LocalVar).
3773     //
3774     //    ArrayAllocation
3775     //     |
3776     //    CheckCastPP
3777     //     |
3778     //    memProj (from ArrayAllocation CheckCastPP)
3779     //     |  ||
3780     //     |  ||   Int (element index)
3781     //     |  ||    |   ConI (log(element size))
3782     //     |  ||    |   /
3783     //     |  ||   LShift
3784     //     |  ||  /
3785     //     |  AddP (array's element offset)
3786     //     |  |
3787     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
3788     //     | / /
3789     //     AddP (array's offset)
3790     //      |
3791     //     Load/Store (memory operation on array's element)
3792     //
3793     return addp2;
3794   }
3795   return nullptr;
3796 }
3797 
3798 //
3799 // Adjust the type and inputs of an AddP which computes the
3800 // address of a field of an instance
3801 //
3802 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
3803   PhaseGVN* igvn = _igvn;
3804   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
3805   assert(base_t != nullptr && base_t->is_known_instance(), "expecting instance oopptr");
3806   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
3807   if (t == nullptr) {
3808     // We are computing a raw address for a store captured by an Initialize
3809     // compute an appropriate address type (cases #3 and #5).
3810     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
3811     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
3812     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
3813     assert(offs != Type::OffsetBot, "offset must be a constant");
3814     t = base_t->add_offset(offs)->is_oopptr();
3815   }
3816   int inst_id =  base_t->instance_id();
3817   assert(!t->is_known_instance() || t->instance_id() == inst_id,
3818                              "old type must be non-instance or match new type");
3819 
3820   // The type 't' could be subclass of 'base_t'.
3821   // As result t->offset() could be large then base_t's size and it will
3822   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
3823   // constructor verifies correctness of the offset.
3824   //
3825   // It could happened on subclass's branch (from the type profiling
3826   // inlining) which was not eliminated during parsing since the exactness
3827   // of the allocation type was not propagated to the subclass type check.
3828   //
3829   // Or the type 't' could be not related to 'base_t' at all.
3830   // It could happened when CHA type is different from MDO type on a dead path
3831   // (for example, from instanceof check) which is not collapsed during parsing.
3832   //
3833   // Do nothing for such AddP node and don't process its users since
3834   // this code branch will go away.
3835   //
3836   if (!t->is_known_instance() &&
3837       !base_t->maybe_java_subtype_of(t)) {
3838      return false; // bail out
3839   }
3840   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
3841   // Do NOT remove the next line: ensure a new alias index is allocated
3842   // for the instance type. Note: C++ will not remove it since the call
3843   // has side effect.
3844   int alias_idx = _compile->get_alias_index(tinst);
3845   igvn->set_type(addp, tinst);
3846   // record the allocation in the node map
3847   set_map(addp, get_map(base->_idx));
3848   // Set addp's Base and Address to 'base'.
3849   Node *abase = addp->in(AddPNode::Base);
3850   Node *adr   = addp->in(AddPNode::Address);
3851   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
3852       adr->in(0)->_idx == (uint)inst_id) {
3853     // Skip AddP cases #3 and #5.
3854   } else {
3855     assert(!abase->is_top(), "sanity"); // AddP case #3
3856     if (abase != base) {
3857       igvn->hash_delete(addp);
3858       addp->set_req(AddPNode::Base, base);
3859       if (abase == adr) {
3860         addp->set_req(AddPNode::Address, base);
3861       } else {
3862         // AddP case #4 (adr is array's element offset AddP node)
3863 #ifdef ASSERT
3864         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
3865         assert(adr->is_AddP() && atype != nullptr &&
3866                atype->instance_id() == inst_id, "array's element offset should be processed first");
3867 #endif
3868       }
3869       igvn->hash_insert(addp);
3870     }
3871   }
3872   // Put on IGVN worklist since at least addp's type was changed above.
3873   record_for_optimizer(addp);
3874   return true;
3875 }
3876 
3877 //
3878 // Create a new version of orig_phi if necessary. Returns either the newly
3879 // created phi or an existing phi.  Sets create_new to indicate whether a new
3880 // phi was created.  Cache the last newly created phi in the node map.
3881 //
3882 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
3883   Compile *C = _compile;
3884   PhaseGVN* igvn = _igvn;
3885   new_created = false;
3886   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
3887   // nothing to do if orig_phi is bottom memory or matches alias_idx
3888   if (phi_alias_idx == alias_idx) {
3889     return orig_phi;
3890   }
3891   // Have we recently created a Phi for this alias index?
3892   PhiNode *result = get_map_phi(orig_phi->_idx);
3893   if (result != nullptr && C->get_alias_index(result->adr_type()) == alias_idx) {
3894     return result;
3895   }
3896   // Previous check may fail when the same wide memory Phi was split into Phis
3897   // for different memory slices. Search all Phis for this region.
3898   if (result != nullptr) {
3899     Node* region = orig_phi->in(0);
3900     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
3901       Node* phi = region->fast_out(i);
3902       if (phi->is_Phi() &&
3903           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
3904         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
3905         return phi->as_Phi();
3906       }
3907     }
3908   }
3909   if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) {
3910     if (C->do_escape_analysis() == true && !C->failing()) {
3911       // Retry compilation without escape analysis.
3912       // If this is the first failure, the sentinel string will "stick"
3913       // to the Compile object, and the C2Compiler will see it and retry.
3914       C->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis());
3915     }
3916     return nullptr;
3917   }
3918   orig_phi_worklist.append_if_missing(orig_phi);
3919   const TypePtr *atype = C->get_adr_type(alias_idx);
3920   result = PhiNode::make(orig_phi->in(0), nullptr, Type::MEMORY, atype);
3921   C->copy_node_notes_to(result, orig_phi);
3922   igvn->set_type(result, result->bottom_type());
3923   record_for_optimizer(result);
3924   set_map(orig_phi, result);
3925   new_created = true;
3926   return result;
3927 }
3928 
3929 //
3930 // Return a new version of Memory Phi "orig_phi" with the inputs having the
3931 // specified alias index.
3932 //
3933 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, uint rec_depth) {
3934   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
3935   Compile *C = _compile;
3936   PhaseGVN* igvn = _igvn;
3937   bool new_phi_created;
3938   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
3939   if (!new_phi_created) {
3940     return result;
3941   }
3942   GrowableArray<PhiNode *>  phi_list;
3943   GrowableArray<uint>  cur_input;
3944   PhiNode *phi = orig_phi;
3945   uint idx = 1;
3946   bool finished = false;
3947   while(!finished) {
3948     while (idx < phi->req()) {
3949       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, rec_depth + 1);
3950       if (mem != nullptr && mem->is_Phi()) {
3951         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
3952         if (new_phi_created) {
3953           // found an phi for which we created a new split, push current one on worklist and begin
3954           // processing new one
3955           phi_list.push(phi);
3956           cur_input.push(idx);
3957           phi = mem->as_Phi();
3958           result = newphi;
3959           idx = 1;
3960           continue;
3961         } else {
3962           mem = newphi;
3963         }
3964       }
3965       if (C->failing()) {
3966         return nullptr;
3967       }
3968       result->set_req(idx++, mem);
3969     }
3970 #ifdef ASSERT
3971     // verify that the new Phi has an input for each input of the original
3972     assert( phi->req() == result->req(), "must have same number of inputs.");
3973     assert( result->in(0) != nullptr && result->in(0) == phi->in(0), "regions must match");
3974 #endif
3975     // Check if all new phi's inputs have specified alias index.
3976     // Otherwise use old phi.
3977     for (uint i = 1; i < phi->req(); i++) {
3978       Node* in = result->in(i);
3979       assert((phi->in(i) == nullptr) == (in == nullptr), "inputs must correspond.");
3980     }
3981     // we have finished processing a Phi, see if there are any more to do
3982     finished = (phi_list.length() == 0 );
3983     if (!finished) {
3984       phi = phi_list.pop();
3985       idx = cur_input.pop();
3986       PhiNode *prev_result = get_map_phi(phi->_idx);
3987       prev_result->set_req(idx++, result);
3988       result = prev_result;
3989     }
3990   }
3991   return result;
3992 }
3993 
3994 //
3995 // The next methods are derived from methods in MemNode.
3996 //
3997 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
3998   Node *mem = mmem;
3999   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
4000   // means an array I have not precisely typed yet.  Do not do any
4001   // alias stuff with it any time soon.
4002   if (toop->base() != Type::AnyPtr &&
4003       !(toop->isa_instptr() &&
4004         toop->is_instptr()->instance_klass()->is_java_lang_Object() &&
4005         toop->offset() == Type::OffsetBot)) {
4006     mem = mmem->memory_at(alias_idx);
4007     // Update input if it is progress over what we have now
4008   }
4009   return mem;
4010 }
4011 
4012 //
4013 // Move memory users to their memory slices.
4014 //
4015 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
4016   Compile* C = _compile;
4017   PhaseGVN* igvn = _igvn;
4018   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
4019   assert(tp != nullptr, "ptr type");
4020   int alias_idx = C->get_alias_index(tp);
4021   int general_idx = C->get_general_index(alias_idx);
4022 
4023   // Move users first
4024   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4025     Node* use = n->fast_out(i);
4026     if (use->is_MergeMem()) {
4027       MergeMemNode* mmem = use->as_MergeMem();
4028       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
4029       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
4030         continue; // Nothing to do
4031       }
4032       // Replace previous general reference to mem node.
4033       uint orig_uniq = C->unique();
4034       Node* m = find_inst_mem(n, general_idx, orig_phis);
4035       assert(orig_uniq == C->unique(), "no new nodes");
4036       mmem->set_memory_at(general_idx, m);
4037       --imax;
4038       --i;
4039     } else if (use->is_MemBar()) {
4040       assert(!use->is_Initialize(), "initializing stores should not be moved");
4041       if (use->req() > MemBarNode::Precedent &&
4042           use->in(MemBarNode::Precedent) == n) {
4043         // Don't move related membars.
4044         record_for_optimizer(use);
4045         continue;
4046       }
4047       tp = use->as_MemBar()->adr_type()->isa_ptr();
4048       if ((tp != nullptr && C->get_alias_index(tp) == alias_idx) ||
4049           alias_idx == general_idx) {
4050         continue; // Nothing to do
4051       }
4052       // Move to general memory slice.
4053       uint orig_uniq = C->unique();
4054       Node* m = find_inst_mem(n, general_idx, orig_phis);
4055       assert(orig_uniq == C->unique(), "no new nodes");
4056       igvn->hash_delete(use);
4057       imax -= use->replace_edge(n, m, igvn);
4058       igvn->hash_insert(use);
4059       record_for_optimizer(use);
4060       --i;
4061 #ifdef ASSERT
4062     } else if (use->is_Mem()) {
4063       // Memory nodes should have new memory input.
4064       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
4065       assert(tp != nullptr, "ptr type");
4066       int idx = C->get_alias_index(tp);
4067       assert(get_map(use->_idx) != nullptr || idx == alias_idx,
4068              "Following memory nodes should have new memory input or be on the same memory slice");
4069     } else if (use->is_Phi()) {
4070       // Phi nodes should be split and moved already.
4071       tp = use->as_Phi()->adr_type()->isa_ptr();
4072       assert(tp != nullptr, "ptr type");
4073       int idx = C->get_alias_index(tp);
4074       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
4075     } else {
4076       use->dump();
4077       assert(false, "should not be here");
4078 #endif
4079     }
4080   }
4081 }
4082 
4083 //
4084 // Search memory chain of "mem" to find a MemNode whose address
4085 // is the specified alias index.
4086 //
4087 #define FIND_INST_MEM_RECURSION_DEPTH_LIMIT 1000
4088 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis, uint rec_depth) {
4089   if (rec_depth > FIND_INST_MEM_RECURSION_DEPTH_LIMIT) {
4090     _compile->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis());
4091     return nullptr;
4092   }
4093   if (orig_mem == nullptr) {
4094     return orig_mem;
4095   }
4096   Compile* C = _compile;
4097   PhaseGVN* igvn = _igvn;
4098   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
4099   bool is_instance = (toop != nullptr) && toop->is_known_instance();
4100   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
4101   Node *prev = nullptr;
4102   Node *result = orig_mem;
4103   while (prev != result) {
4104     prev = result;
4105     if (result == start_mem) {
4106       break;  // hit one of our sentinels
4107     }
4108     if (result->is_Mem()) {
4109       const Type *at = igvn->type(result->in(MemNode::Address));
4110       if (at == Type::TOP) {
4111         break; // Dead
4112       }
4113       assert (at->isa_ptr() != nullptr, "pointer type required.");
4114       int idx = C->get_alias_index(at->is_ptr());
4115       if (idx == alias_idx) {
4116         break; // Found
4117       }
4118       if (!is_instance && (at->isa_oopptr() == nullptr ||
4119                            !at->is_oopptr()->is_known_instance())) {
4120         break; // Do not skip store to general memory slice.
4121       }
4122       result = result->in(MemNode::Memory);
4123     }
4124     if (!is_instance) {
4125       continue;  // don't search further for non-instance types
4126     }
4127     // skip over a call which does not affect this memory slice
4128     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
4129       Node *proj_in = result->in(0);
4130       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
4131         break;  // hit one of our sentinels
4132       } else if (proj_in->is_Call()) {
4133         // ArrayCopy node processed here as well
4134         CallNode *call = proj_in->as_Call();
4135         if (!call->may_modify(toop, igvn)) {
4136           result = call->in(TypeFunc::Memory);
4137         }
4138       } else if (proj_in->is_Initialize()) {
4139         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
4140         // Stop if this is the initialization for the object instance which
4141         // which contains this memory slice, otherwise skip over it.
4142         if (alloc == nullptr || alloc->_idx != (uint)toop->instance_id()) {
4143           result = proj_in->in(TypeFunc::Memory);
4144         }
4145       } else if (proj_in->is_MemBar()) {
4146         // Check if there is an array copy for a clone
4147         Node* control_proj_ac = proj_in->in(0);
4148 
4149         if (control_proj_ac->is_Proj() && control_proj_ac->in(0)->is_ArrayCopy()) {
4150           // Stop if it is a clone
4151           ArrayCopyNode* ac = control_proj_ac->in(0)->as_ArrayCopy();
4152           if (ac->may_modify(toop, igvn)) {
4153             break;
4154           }
4155         }
4156         result = proj_in->in(TypeFunc::Memory);
4157       }
4158     } else if (result->is_MergeMem()) {
4159       MergeMemNode *mmem = result->as_MergeMem();
4160       result = step_through_mergemem(mmem, alias_idx, toop);
4161       if (result == mmem->base_memory()) {
4162         // Didn't find instance memory, search through general slice recursively.
4163         result = mmem->memory_at(C->get_general_index(alias_idx));
4164         result = find_inst_mem(result, alias_idx, orig_phis, rec_depth + 1);
4165         if (C->failing()) {
4166           return nullptr;
4167         }
4168         mmem->set_memory_at(alias_idx, result);
4169       }
4170     } else if (result->is_Phi() &&
4171                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
4172       Node *un = result->as_Phi()->unique_input(igvn);
4173       if (un != nullptr) {
4174         orig_phis.append_if_missing(result->as_Phi());
4175         result = un;
4176       } else {
4177         break;
4178       }
4179     } else if (result->is_ClearArray()) {
4180       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
4181         // Can not bypass initialization of the instance
4182         // we are looking for.
4183         break;
4184       }
4185       // Otherwise skip it (the call updated 'result' value).
4186     } else if (result->Opcode() == Op_SCMemProj) {
4187       Node* mem = result->in(0);
4188       Node* adr = nullptr;
4189       if (mem->is_LoadStore()) {
4190         adr = mem->in(MemNode::Address);
4191       } else {
4192         assert(mem->Opcode() == Op_EncodeISOArray ||
4193                mem->Opcode() == Op_StrCompressedCopy, "sanity");
4194         adr = mem->in(3); // Memory edge corresponds to destination array
4195       }
4196       const Type *at = igvn->type(adr);
4197       if (at != Type::TOP) {
4198         assert(at->isa_ptr() != nullptr, "pointer type required.");
4199         int idx = C->get_alias_index(at->is_ptr());
4200         if (idx == alias_idx) {
4201           // Assert in debug mode
4202           assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
4203           break; // In product mode return SCMemProj node
4204         }
4205       }
4206       result = mem->in(MemNode::Memory);
4207     } else if (result->Opcode() == Op_StrInflatedCopy) {
4208       Node* adr = result->in(3); // Memory edge corresponds to destination array
4209       const Type *at = igvn->type(adr);
4210       if (at != Type::TOP) {
4211         assert(at->isa_ptr() != nullptr, "pointer type required.");
4212         int idx = C->get_alias_index(at->is_ptr());
4213         if (idx == alias_idx) {
4214           // Assert in debug mode
4215           assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
4216           break; // In product mode return SCMemProj node
4217         }
4218       }
4219       result = result->in(MemNode::Memory);
4220     }
4221   }
4222   if (result->is_Phi()) {
4223     PhiNode *mphi = result->as_Phi();
4224     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
4225     const TypePtr *t = mphi->adr_type();
4226     if (!is_instance) {
4227       // Push all non-instance Phis on the orig_phis worklist to update inputs
4228       // during Phase 4 if needed.
4229       orig_phis.append_if_missing(mphi);
4230     } else if (C->get_alias_index(t) != alias_idx) {
4231       // Create a new Phi with the specified alias index type.
4232       result = split_memory_phi(mphi, alias_idx, orig_phis, rec_depth + 1);
4233     }
4234   }
4235   // the result is either MemNode, PhiNode, InitializeNode.
4236   return result;
4237 }
4238 
4239 //
4240 //  Convert the types of non-escaped object to instance types where possible,
4241 //  propagate the new type information through the graph, and update memory
4242 //  edges and MergeMem inputs to reflect the new type.
4243 //
4244 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
4245 //  The processing is done in 4 phases:
4246 //
4247 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
4248 //            types for the CheckCastPP for allocations where possible.
4249 //            Propagate the new types through users as follows:
4250 //               casts and Phi:  push users on alloc_worklist
4251 //               AddP:  cast Base and Address inputs to the instance type
4252 //                      push any AddP users on alloc_worklist and push any memnode
4253 //                      users onto memnode_worklist.
4254 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
4255 //            search the Memory chain for a store with the appropriate type
4256 //            address type.  If a Phi is found, create a new version with
4257 //            the appropriate memory slices from each of the Phi inputs.
4258 //            For stores, process the users as follows:
4259 //               MemNode:  push on memnode_worklist
4260 //               MergeMem: push on mergemem_worklist
4261 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
4262 //            moving the first node encountered of each  instance type to the
4263 //            the input corresponding to its alias index.
4264 //            appropriate memory slice.
4265 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
4266 //
4267 // In the following example, the CheckCastPP nodes are the cast of allocation
4268 // results and the allocation of node 29 is non-escaped and eligible to be an
4269 // instance type.
4270 //
4271 // We start with:
4272 //
4273 //     7 Parm #memory
4274 //    10  ConI  "12"
4275 //    19  CheckCastPP   "Foo"
4276 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
4277 //    29  CheckCastPP   "Foo"
4278 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
4279 //
4280 //    40  StoreP  25   7  20   ... alias_index=4
4281 //    50  StoreP  35  40  30   ... alias_index=4
4282 //    60  StoreP  45  50  20   ... alias_index=4
4283 //    70  LoadP    _  60  30   ... alias_index=4
4284 //    80  Phi     75  50  60   Memory alias_index=4
4285 //    90  LoadP    _  80  30   ... alias_index=4
4286 //   100  LoadP    _  80  20   ... alias_index=4
4287 //
4288 //
4289 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
4290 // and creating a new alias index for node 30.  This gives:
4291 //
4292 //     7 Parm #memory
4293 //    10  ConI  "12"
4294 //    19  CheckCastPP   "Foo"
4295 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
4296 //    29  CheckCastPP   "Foo"  iid=24
4297 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
4298 //
4299 //    40  StoreP  25   7  20   ... alias_index=4
4300 //    50  StoreP  35  40  30   ... alias_index=6
4301 //    60  StoreP  45  50  20   ... alias_index=4
4302 //    70  LoadP    _  60  30   ... alias_index=6
4303 //    80  Phi     75  50  60   Memory alias_index=4
4304 //    90  LoadP    _  80  30   ... alias_index=6
4305 //   100  LoadP    _  80  20   ... alias_index=4
4306 //
4307 // In phase 2, new memory inputs are computed for the loads and stores,
4308 // And a new version of the phi is created.  In phase 4, the inputs to
4309 // node 80 are updated and then the memory nodes are updated with the
4310 // values computed in phase 2.  This results in:
4311 //
4312 //     7 Parm #memory
4313 //    10  ConI  "12"
4314 //    19  CheckCastPP   "Foo"
4315 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
4316 //    29  CheckCastPP   "Foo"  iid=24
4317 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
4318 //
4319 //    40  StoreP  25  7   20   ... alias_index=4
4320 //    50  StoreP  35  7   30   ... alias_index=6
4321 //    60  StoreP  45  40  20   ... alias_index=4
4322 //    70  LoadP    _  50  30   ... alias_index=6
4323 //    80  Phi     75  40  60   Memory alias_index=4
4324 //   120  Phi     75  50  50   Memory alias_index=6
4325 //    90  LoadP    _ 120  30   ... alias_index=6
4326 //   100  LoadP    _  80  20   ... alias_index=4
4327 //
4328 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist,
4329                                          GrowableArray<ArrayCopyNode*> &arraycopy_worklist,
4330                                          GrowableArray<MergeMemNode*> &mergemem_worklist,
4331                                          Unique_Node_List &reducible_merges) {
4332   DEBUG_ONLY(Unique_Node_List reduced_merges;)
4333   GrowableArray<Node *>  memnode_worklist;
4334   GrowableArray<PhiNode *>  orig_phis;
4335   PhaseIterGVN  *igvn = _igvn;
4336   uint new_index_start = (uint) _compile->num_alias_types();
4337   VectorSet visited;
4338   ideal_nodes.clear(); // Reset for use with set_map/get_map.
4339   uint unique_old = _compile->unique();
4340 
4341   //  Phase 1:  Process possible allocations from alloc_worklist.
4342   //  Create instance types for the CheckCastPP for allocations where possible.
4343   //
4344   // (Note: don't forget to change the order of the second AddP node on
4345   //  the alloc_worklist if the order of the worklist processing is changed,
4346   //  see the comment in find_second_addp().)
4347   //
4348   while (alloc_worklist.length() != 0) {
4349     Node *n = alloc_worklist.pop();
4350     uint ni = n->_idx;
4351     if (n->is_Call()) {
4352       CallNode *alloc = n->as_Call();
4353       // copy escape information to call node
4354       PointsToNode* ptn = ptnode_adr(alloc->_idx);
4355       PointsToNode::EscapeState es = ptn->escape_state();
4356       // We have an allocation or call which returns a Java object,
4357       // see if it is non-escaped.
4358       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable()) {
4359         continue;
4360       }
4361       // Find CheckCastPP for the allocate or for the return value of a call
4362       n = alloc->result_cast();
4363       if (n == nullptr) {            // No uses except Initialize node
4364         if (alloc->is_Allocate()) {
4365           // Set the scalar_replaceable flag for allocation
4366           // so it could be eliminated if it has no uses.
4367           alloc->as_Allocate()->_is_scalar_replaceable = true;
4368         }
4369         continue;
4370       }
4371       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
4372         // we could reach here for allocate case if one init is associated with many allocs.
4373         if (alloc->is_Allocate()) {
4374           alloc->as_Allocate()->_is_scalar_replaceable = false;
4375         }
4376         continue;
4377       }
4378 
4379       // The inline code for Object.clone() casts the allocation result to
4380       // java.lang.Object and then to the actual type of the allocated
4381       // object. Detect this case and use the second cast.
4382       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
4383       // the allocation result is cast to java.lang.Object and then
4384       // to the actual Array type.
4385       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
4386           && (alloc->is_AllocateArray() ||
4387               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeInstKlassPtr::OBJECT)) {
4388         Node *cast2 = nullptr;
4389         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4390           Node *use = n->fast_out(i);
4391           if (use->is_CheckCastPP()) {
4392             cast2 = use;
4393             break;
4394           }
4395         }
4396         if (cast2 != nullptr) {
4397           n = cast2;
4398         } else {
4399           // Non-scalar replaceable if the allocation type is unknown statically
4400           // (reflection allocation), the object can't be restored during
4401           // deoptimization without precise type.
4402           continue;
4403         }
4404       }
4405 
4406       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
4407       if (t == nullptr) {
4408         continue;  // not a TypeOopPtr
4409       }
4410       if (!t->klass_is_exact()) {
4411         continue; // not an unique type
4412       }
4413       if (alloc->is_Allocate()) {
4414         // Set the scalar_replaceable flag for allocation
4415         // so it could be eliminated.
4416         alloc->as_Allocate()->_is_scalar_replaceable = true;
4417       }
4418       set_escape_state(ptnode_adr(n->_idx), es NOT_PRODUCT(COMMA trace_propagate_message(ptn))); // CheckCastPP escape state
4419       // in order for an object to be scalar-replaceable, it must be:
4420       //   - a direct allocation (not a call returning an object)
4421       //   - non-escaping
4422       //   - eligible to be a unique type
4423       //   - not determined to be ineligible by escape analysis
4424       set_map(alloc, n);
4425       set_map(n, alloc);
4426       const TypeOopPtr* tinst = t->cast_to_instance_id(ni);
4427       igvn->hash_delete(n);
4428       igvn->set_type(n,  tinst);
4429       n->raise_bottom_type(tinst);
4430       igvn->hash_insert(n);
4431       record_for_optimizer(n);
4432       // Allocate an alias index for the header fields. Accesses to
4433       // the header emitted during macro expansion wouldn't have
4434       // correct memory state otherwise.
4435       _compile->get_alias_index(tinst->add_offset(oopDesc::mark_offset_in_bytes()));
4436       _compile->get_alias_index(tinst->add_offset(oopDesc::klass_offset_in_bytes()));
4437       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
4438 
4439         // First, put on the worklist all Field edges from Connection Graph
4440         // which is more accurate than putting immediate users from Ideal Graph.
4441         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
4442           PointsToNode* tgt = e.get();
4443           if (tgt->is_Arraycopy()) {
4444             continue;
4445           }
4446           Node* use = tgt->ideal_node();
4447           assert(tgt->is_Field() && use->is_AddP(),
4448                  "only AddP nodes are Field edges in CG");
4449           if (use->outcnt() > 0) { // Don't process dead nodes
4450             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
4451             if (addp2 != nullptr) {
4452               assert(alloc->is_AllocateArray(),"array allocation was expected");
4453               alloc_worklist.append_if_missing(addp2);
4454             }
4455             alloc_worklist.append_if_missing(use);
4456           }
4457         }
4458 
4459         // An allocation may have an Initialize which has raw stores. Scan
4460         // the users of the raw allocation result and push AddP users
4461         // on alloc_worklist.
4462         Node *raw_result = alloc->proj_out_or_null(TypeFunc::Parms);
4463         assert (raw_result != nullptr, "must have an allocation result");
4464         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
4465           Node *use = raw_result->fast_out(i);
4466           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
4467             Node* addp2 = find_second_addp(use, raw_result);
4468             if (addp2 != nullptr) {
4469               assert(alloc->is_AllocateArray(),"array allocation was expected");
4470               alloc_worklist.append_if_missing(addp2);
4471             }
4472             alloc_worklist.append_if_missing(use);
4473           } else if (use->is_MemBar()) {
4474             memnode_worklist.append_if_missing(use);
4475           }
4476         }
4477       }
4478     } else if (n->is_AddP()) {
4479       if (has_reducible_merge_base(n->as_AddP(), reducible_merges)) {
4480         // This AddP will go away when we reduce the Phi
4481         continue;
4482       }
4483       Node* addp_base = get_addp_base(n);
4484       JavaObjectNode* jobj = unique_java_object(addp_base);
4485       if (jobj == nullptr || jobj == phantom_obj) {
4486 #ifdef ASSERT
4487         ptnode_adr(get_addp_base(n)->_idx)->dump();
4488         ptnode_adr(n->_idx)->dump();
4489         assert(jobj != nullptr && jobj != phantom_obj, "escaped allocation");
4490 #endif
4491         _compile->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis());
4492         return;
4493       }
4494       Node *base = get_map(jobj->idx());  // CheckCastPP node
4495       if (!split_AddP(n, base)) continue; // wrong type from dead path
4496     } else if (n->is_Phi() ||
4497                n->is_CheckCastPP() ||
4498                n->is_EncodeP() ||
4499                n->is_DecodeN() ||
4500                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
4501       if (visited.test_set(n->_idx)) {
4502         assert(n->is_Phi(), "loops only through Phi's");
4503         continue;  // already processed
4504       }
4505       // Reducible Phi's will be removed from the graph after split_unique_types
4506       // finishes. For now we just try to split out the SR inputs of the merge.
4507       Node* parent = n->in(1);
4508       if (reducible_merges.member(n)) {
4509         reduce_phi(n->as_Phi(), alloc_worklist, memnode_worklist);
4510 #ifdef ASSERT
4511         if (VerifyReduceAllocationMerges) {
4512           reduced_merges.push(n);
4513         }
4514 #endif
4515         continue;
4516       } else if (reducible_merges.member(parent)) {
4517         // 'n' is an user of a reducible merge (a Phi). It will be simplified as
4518         // part of reduce_merge.
4519         continue;
4520       }
4521       JavaObjectNode* jobj = unique_java_object(n);
4522       if (jobj == nullptr || jobj == phantom_obj) {
4523 #ifdef ASSERT
4524         ptnode_adr(n->_idx)->dump();
4525         assert(jobj != nullptr && jobj != phantom_obj, "escaped allocation");
4526 #endif
4527         _compile->record_failure(_invocation > 0 ? C2Compiler::retry_no_iterative_escape_analysis() : C2Compiler::retry_no_escape_analysis());
4528         return;
4529       } else {
4530         Node *val = get_map(jobj->idx());   // CheckCastPP node
4531         TypeNode *tn = n->as_Type();
4532         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
4533         assert(tinst != nullptr && tinst->is_known_instance() &&
4534                tinst->instance_id() == jobj->idx() , "instance type expected.");
4535 
4536         const Type *tn_type = igvn->type(tn);
4537         const TypeOopPtr *tn_t;
4538         if (tn_type->isa_narrowoop()) {
4539           tn_t = tn_type->make_ptr()->isa_oopptr();
4540         } else {
4541           tn_t = tn_type->isa_oopptr();
4542         }
4543         if (tn_t != nullptr && tinst->maybe_java_subtype_of(tn_t)) {
4544           if (tn_type->isa_narrowoop()) {
4545             tn_type = tinst->make_narrowoop();
4546           } else {
4547             tn_type = tinst;
4548           }
4549           igvn->hash_delete(tn);
4550           igvn->set_type(tn, tn_type);
4551           tn->set_type(tn_type);
4552           igvn->hash_insert(tn);
4553           record_for_optimizer(n);
4554         } else {
4555           assert(tn_type == TypePtr::NULL_PTR ||
4556                  (tn_t != nullptr && !tinst->maybe_java_subtype_of(tn_t)),
4557                  "unexpected type");
4558           continue; // Skip dead path with different type
4559         }
4560       }
4561     } else {
4562       DEBUG_ONLY(n->dump();)
4563       assert(false, "EA: unexpected node");
4564       continue;
4565     }
4566     // push allocation's users on appropriate worklist
4567     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4568       Node *use = n->fast_out(i);
4569       if(use->is_Mem() && use->in(MemNode::Address) == n) {
4570         // Load/store to instance's field
4571         memnode_worklist.append_if_missing(use);
4572       } else if (use->is_MemBar()) {
4573         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
4574           memnode_worklist.append_if_missing(use);
4575         }
4576       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
4577         Node* addp2 = find_second_addp(use, n);
4578         if (addp2 != nullptr) {
4579           alloc_worklist.append_if_missing(addp2);
4580         }
4581         alloc_worklist.append_if_missing(use);
4582       } else if (use->is_Phi() ||
4583                  use->is_CheckCastPP() ||
4584                  use->is_EncodeNarrowPtr() ||
4585                  use->is_DecodeNarrowPtr() ||
4586                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
4587         alloc_worklist.append_if_missing(use);
4588 #ifdef ASSERT
4589       } else if (use->is_Mem()) {
4590         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
4591       } else if (use->is_MergeMem()) {
4592         assert(mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
4593       } else if (use->is_SafePoint()) {
4594         // Look for MergeMem nodes for calls which reference unique allocation
4595         // (through CheckCastPP nodes) even for debug info.
4596         Node* m = use->in(TypeFunc::Memory);
4597         if (m->is_MergeMem()) {
4598           assert(mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
4599         }
4600       } else if (use->Opcode() == Op_EncodeISOArray) {
4601         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
4602           // EncodeISOArray overwrites destination array
4603           memnode_worklist.append_if_missing(use);
4604         }
4605       } else {
4606         uint op = use->Opcode();
4607         if ((op == Op_StrCompressedCopy || op == Op_StrInflatedCopy) &&
4608             (use->in(MemNode::Memory) == n)) {
4609           // They overwrite memory edge corresponding to destination array,
4610           memnode_worklist.append_if_missing(use);
4611         } else if (!(op == Op_CmpP || op == Op_Conv2B ||
4612               op == Op_CastP2X ||
4613               op == Op_FastLock || op == Op_AryEq ||
4614               op == Op_StrComp || op == Op_CountPositives ||
4615               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
4616               op == Op_StrEquals || op == Op_VectorizedHashCode ||
4617               op == Op_StrIndexOf || op == Op_StrIndexOfChar ||
4618               op == Op_SubTypeCheck ||
4619               op == Op_ReinterpretS2HF ||
4620               BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use))) {
4621           n->dump();
4622           use->dump();
4623           assert(false, "EA: missing allocation reference path");
4624         }
4625 #endif
4626       }
4627     }
4628 
4629   }
4630 
4631 #ifdef ASSERT
4632   if (VerifyReduceAllocationMerges) {
4633     for (uint i = 0; i < reducible_merges.size(); i++) {
4634       Node* phi = reducible_merges.at(i);
4635 
4636       if (!reduced_merges.member(phi)) {
4637         phi->dump(2);
4638         phi->dump(-2);
4639         assert(false, "This reducible merge wasn't reduced.");
4640       }
4641 
4642       // At this point reducible Phis shouldn't have AddP users anymore; only SafePoints or Casts.
4643       for (DUIterator_Fast jmax, j = phi->fast_outs(jmax); j < jmax; j++) {
4644         Node* use = phi->fast_out(j);
4645         if (!use->is_SafePoint() && !use->is_CastPP()) {
4646           phi->dump(2);
4647           phi->dump(-2);
4648           assert(false, "Unexpected user of reducible Phi -> %d:%s:%d", use->_idx, use->Name(), use->outcnt());
4649         }
4650       }
4651     }
4652   }
4653 #endif
4654 
4655   // Go over all ArrayCopy nodes and if one of the inputs has a unique
4656   // type, record it in the ArrayCopy node so we know what memory this
4657   // node uses/modified.
4658   for (int next = 0; next < arraycopy_worklist.length(); next++) {
4659     ArrayCopyNode* ac = arraycopy_worklist.at(next);
4660     Node* dest = ac->in(ArrayCopyNode::Dest);
4661     if (dest->is_AddP()) {
4662       dest = get_addp_base(dest);
4663     }
4664     JavaObjectNode* jobj = unique_java_object(dest);
4665     if (jobj != nullptr) {
4666       Node *base = get_map(jobj->idx());
4667       if (base != nullptr) {
4668         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
4669         ac->_dest_type = base_t;
4670       }
4671     }
4672     Node* src = ac->in(ArrayCopyNode::Src);
4673     if (src->is_AddP()) {
4674       src = get_addp_base(src);
4675     }
4676     jobj = unique_java_object(src);
4677     if (jobj != nullptr) {
4678       Node* base = get_map(jobj->idx());
4679       if (base != nullptr) {
4680         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
4681         ac->_src_type = base_t;
4682       }
4683     }
4684   }
4685 
4686   // New alias types were created in split_AddP().
4687   uint new_index_end = (uint) _compile->num_alias_types();
4688 
4689   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
4690   //            compute new values for Memory inputs  (the Memory inputs are not
4691   //            actually updated until phase 4.)
4692   if (memnode_worklist.length() == 0)
4693     return;  // nothing to do
4694   while (memnode_worklist.length() != 0) {
4695     Node *n = memnode_worklist.pop();
4696     if (visited.test_set(n->_idx)) {
4697       continue;
4698     }
4699     if (n->is_Phi() || n->is_ClearArray()) {
4700       // we don't need to do anything, but the users must be pushed
4701     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
4702       // we don't need to do anything, but the users must be pushed
4703       n = n->as_MemBar()->proj_out_or_null(TypeFunc::Memory);
4704       if (n == nullptr) {
4705         continue;
4706       }
4707     } else if (n->is_CallLeaf()) {
4708       // Runtime calls with narrow memory input (no MergeMem node)
4709       // get the memory projection
4710       n = n->as_Call()->proj_out_or_null(TypeFunc::Memory);
4711       if (n == nullptr) {
4712         continue;
4713       }
4714     } else if (n->Opcode() == Op_StrInflatedCopy) {
4715       // Check direct uses of StrInflatedCopy.
4716       // It is memory type Node - no special SCMemProj node.
4717     } else if (n->Opcode() == Op_StrCompressedCopy ||
4718                n->Opcode() == Op_EncodeISOArray) {
4719       // get the memory projection
4720       n = n->find_out_with(Op_SCMemProj);
4721       assert(n != nullptr && n->Opcode() == Op_SCMemProj, "memory projection required");
4722     } else {
4723 #ifdef ASSERT
4724       if (!n->is_Mem()) {
4725         n->dump();
4726       }
4727       assert(n->is_Mem(), "memory node required.");
4728 #endif
4729       Node *addr = n->in(MemNode::Address);
4730       const Type *addr_t = igvn->type(addr);
4731       if (addr_t == Type::TOP) {
4732         continue;
4733       }
4734       assert (addr_t->isa_ptr() != nullptr, "pointer type required.");
4735       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
4736       assert ((uint)alias_idx < new_index_end, "wrong alias index");
4737       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
4738       if (_compile->failing()) {
4739         return;
4740       }
4741       if (mem != n->in(MemNode::Memory)) {
4742         // We delay the memory edge update since we need old one in
4743         // MergeMem code below when instances memory slices are separated.
4744         set_map(n, mem);
4745       }
4746       if (n->is_Load()) {
4747         continue;  // don't push users
4748       } else if (n->is_LoadStore()) {
4749         // get the memory projection
4750         n = n->find_out_with(Op_SCMemProj);
4751         assert(n != nullptr && n->Opcode() == Op_SCMemProj, "memory projection required");
4752       }
4753     }
4754     // push user on appropriate worklist
4755     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4756       Node *use = n->fast_out(i);
4757       if (use->is_Phi() || use->is_ClearArray()) {
4758         memnode_worklist.append_if_missing(use);
4759       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
4760         memnode_worklist.append_if_missing(use);
4761       } else if (use->is_MemBar() || use->is_CallLeaf()) {
4762         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
4763           memnode_worklist.append_if_missing(use);
4764         }
4765 #ifdef ASSERT
4766       } else if(use->is_Mem()) {
4767         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
4768       } else if (use->is_MergeMem()) {
4769         assert(mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
4770       } else if (use->Opcode() == Op_EncodeISOArray) {
4771         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
4772           // EncodeISOArray overwrites destination array
4773           memnode_worklist.append_if_missing(use);
4774         }
4775       } else {
4776         uint op = use->Opcode();
4777         if ((use->in(MemNode::Memory) == n) &&
4778             (op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) {
4779           // They overwrite memory edge corresponding to destination array,
4780           memnode_worklist.append_if_missing(use);
4781         } else if (!(BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use) ||
4782               op == Op_AryEq || op == Op_StrComp || op == Op_CountPositives ||
4783               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy || op == Op_VectorizedHashCode ||
4784               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar)) {
4785           n->dump();
4786           use->dump();
4787           assert(false, "EA: missing memory path");
4788         }
4789 #endif
4790       }
4791     }
4792   }
4793 
4794   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
4795   //            Walk each memory slice moving the first node encountered of each
4796   //            instance type to the input corresponding to its alias index.
4797   uint length = mergemem_worklist.length();
4798   for( uint next = 0; next < length; ++next ) {
4799     MergeMemNode* nmm = mergemem_worklist.at(next);
4800     assert(!visited.test_set(nmm->_idx), "should not be visited before");
4801     // Note: we don't want to use MergeMemStream here because we only want to
4802     // scan inputs which exist at the start, not ones we add during processing.
4803     // Note 2: MergeMem may already contains instance memory slices added
4804     // during find_inst_mem() call when memory nodes were processed above.
4805     igvn->hash_delete(nmm);
4806     uint nslices = MIN2(nmm->req(), new_index_start);
4807     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
4808       Node* mem = nmm->in(i);
4809       Node* cur = nullptr;
4810       if (mem == nullptr || mem->is_top()) {
4811         continue;
4812       }
4813       // First, update mergemem by moving memory nodes to corresponding slices
4814       // if their type became more precise since this mergemem was created.
4815       while (mem->is_Mem()) {
4816         const Type *at = igvn->type(mem->in(MemNode::Address));
4817         if (at != Type::TOP) {
4818           assert (at->isa_ptr() != nullptr, "pointer type required.");
4819           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
4820           if (idx == i) {
4821             if (cur == nullptr) {
4822               cur = mem;
4823             }
4824           } else {
4825             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
4826               nmm->set_memory_at(idx, mem);
4827             }
4828           }
4829         }
4830         mem = mem->in(MemNode::Memory);
4831       }
4832       nmm->set_memory_at(i, (cur != nullptr) ? cur : mem);
4833       // Find any instance of the current type if we haven't encountered
4834       // already a memory slice of the instance along the memory chain.
4835       for (uint ni = new_index_start; ni < new_index_end; ni++) {
4836         if((uint)_compile->get_general_index(ni) == i) {
4837           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
4838           if (nmm->is_empty_memory(m)) {
4839             Node* result = find_inst_mem(mem, ni, orig_phis);
4840             if (_compile->failing()) {
4841               return;
4842             }
4843             nmm->set_memory_at(ni, result);
4844           }
4845         }
4846       }
4847     }
4848     // Find the rest of instances values
4849     for (uint ni = new_index_start; ni < new_index_end; ni++) {
4850       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
4851       Node* result = step_through_mergemem(nmm, ni, tinst);
4852       if (result == nmm->base_memory()) {
4853         // Didn't find instance memory, search through general slice recursively.
4854         result = nmm->memory_at(_compile->get_general_index(ni));
4855         result = find_inst_mem(result, ni, orig_phis);
4856         if (_compile->failing()) {
4857           return;
4858         }
4859         nmm->set_memory_at(ni, result);
4860       }
4861     }
4862 
4863     // If we have crossed the 3/4 point of max node limit it's too risky
4864     // to continue with EA/SR because we might hit the max node limit.
4865     if (_compile->live_nodes() >= _compile->max_node_limit() * 0.75) {
4866       if (_compile->do_reduce_allocation_merges()) {
4867         _compile->record_failure(C2Compiler::retry_no_reduce_allocation_merges());
4868       } else if (_invocation > 0) {
4869         _compile->record_failure(C2Compiler::retry_no_iterative_escape_analysis());
4870       } else {
4871         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
4872       }
4873       return;
4874     }
4875 
4876     igvn->hash_insert(nmm);
4877     record_for_optimizer(nmm);
4878   }
4879 
4880   //  Phase 4:  Update the inputs of non-instance memory Phis and
4881   //            the Memory input of memnodes
4882   // First update the inputs of any non-instance Phi's from
4883   // which we split out an instance Phi.  Note we don't have
4884   // to recursively process Phi's encountered on the input memory
4885   // chains as is done in split_memory_phi() since they  will
4886   // also be processed here.
4887   for (int j = 0; j < orig_phis.length(); j++) {
4888     PhiNode *phi = orig_phis.at(j);
4889     int alias_idx = _compile->get_alias_index(phi->adr_type());
4890     igvn->hash_delete(phi);
4891     for (uint i = 1; i < phi->req(); i++) {
4892       Node *mem = phi->in(i);
4893       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
4894       if (_compile->failing()) {
4895         return;
4896       }
4897       if (mem != new_mem) {
4898         phi->set_req(i, new_mem);
4899       }
4900     }
4901     igvn->hash_insert(phi);
4902     record_for_optimizer(phi);
4903   }
4904 
4905   // Update the memory inputs of MemNodes with the value we computed
4906   // in Phase 2 and move stores memory users to corresponding memory slices.
4907   // Disable memory split verification code until the fix for 6984348.
4908   // Currently it produces false negative results since it does not cover all cases.
4909 #if 0 // ifdef ASSERT
4910   visited.Reset();
4911   Node_Stack old_mems(arena, _compile->unique() >> 2);
4912 #endif
4913   for (uint i = 0; i < ideal_nodes.size(); i++) {
4914     Node*    n = ideal_nodes.at(i);
4915     Node* nmem = get_map(n->_idx);
4916     assert(nmem != nullptr, "sanity");
4917     if (n->is_Mem()) {
4918 #if 0 // ifdef ASSERT
4919       Node* old_mem = n->in(MemNode::Memory);
4920       if (!visited.test_set(old_mem->_idx)) {
4921         old_mems.push(old_mem, old_mem->outcnt());
4922       }
4923 #endif
4924       assert(n->in(MemNode::Memory) != nmem, "sanity");
4925       if (!n->is_Load()) {
4926         // Move memory users of a store first.
4927         move_inst_mem(n, orig_phis);
4928       }
4929       // Now update memory input
4930       igvn->hash_delete(n);
4931       n->set_req(MemNode::Memory, nmem);
4932       igvn->hash_insert(n);
4933       record_for_optimizer(n);
4934     } else {
4935       assert(n->is_Allocate() || n->is_CheckCastPP() ||
4936              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
4937     }
4938   }
4939 #if 0 // ifdef ASSERT
4940   // Verify that memory was split correctly
4941   while (old_mems.is_nonempty()) {
4942     Node* old_mem = old_mems.node();
4943     uint  old_cnt = old_mems.index();
4944     old_mems.pop();
4945     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
4946   }
4947 #endif
4948 }
4949 
4950 #ifndef PRODUCT
4951 int ConnectionGraph::_no_escape_counter = 0;
4952 int ConnectionGraph::_arg_escape_counter = 0;
4953 int ConnectionGraph::_global_escape_counter = 0;
4954 
4955 static const char *node_type_names[] = {
4956   "UnknownType",
4957   "JavaObject",
4958   "LocalVar",
4959   "Field",
4960   "Arraycopy"
4961 };
4962 
4963 static const char *esc_names[] = {
4964   "UnknownEscape",
4965   "NoEscape",
4966   "ArgEscape",
4967   "GlobalEscape"
4968 };
4969 
4970 void PointsToNode::dump_header(bool print_state, outputStream* out) const {
4971   NodeType nt = node_type();
4972   out->print("%s(%d) ", node_type_names[(int) nt], _pidx);
4973   if (print_state) {
4974     EscapeState es = escape_state();
4975     EscapeState fields_es = fields_escape_state();
4976     out->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
4977     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable()) {
4978       out->print("NSR ");
4979     }
4980   }
4981 }
4982 
4983 void PointsToNode::dump(bool print_state, outputStream* out, bool newline) const {
4984   dump_header(print_state, out);
4985   if (is_Field()) {
4986     FieldNode* f = (FieldNode*)this;
4987     if (f->is_oop()) {
4988       out->print("oop ");
4989     }
4990     if (f->offset() > 0) {
4991       out->print("+%d ", f->offset());
4992     }
4993     out->print("(");
4994     for (BaseIterator i(f); i.has_next(); i.next()) {
4995       PointsToNode* b = i.get();
4996       out->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
4997     }
4998     out->print(" )");
4999   }
5000   out->print("[");
5001   for (EdgeIterator i(this); i.has_next(); i.next()) {
5002     PointsToNode* e = i.get();
5003     out->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
5004   }
5005   out->print(" [");
5006   for (UseIterator i(this); i.has_next(); i.next()) {
5007     PointsToNode* u = i.get();
5008     bool is_base = false;
5009     if (PointsToNode::is_base_use(u)) {
5010       is_base = true;
5011       u = PointsToNode::get_use_node(u)->as_Field();
5012     }
5013     out->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
5014   }
5015   out->print(" ]]  ");
5016   if (_node == nullptr) {
5017     out->print("<null>%s", newline ? "\n" : "");
5018   } else {
5019     _node->dump(newline ? "\n" : "", false, out);
5020   }
5021 }
5022 
5023 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
5024   bool first = true;
5025   int ptnodes_length = ptnodes_worklist.length();
5026   for (int i = 0; i < ptnodes_length; i++) {
5027     PointsToNode *ptn = ptnodes_worklist.at(i);
5028     if (ptn == nullptr || !ptn->is_JavaObject()) {
5029       continue;
5030     }
5031     PointsToNode::EscapeState es = ptn->escape_state();
5032     if ((es != PointsToNode::NoEscape) && !Verbose) {
5033       continue;
5034     }
5035     Node* n = ptn->ideal_node();
5036     if (n->is_Allocate() || (n->is_CallStaticJava() &&
5037                              n->as_CallStaticJava()->is_boxing_method())) {
5038       if (first) {
5039         tty->cr();
5040         tty->print("======== Connection graph for ");
5041         _compile->method()->print_short_name();
5042         tty->cr();
5043         tty->print_cr("invocation #%d: %d iterations and %f sec to build connection graph with %d nodes and worklist size %d",
5044                       _invocation, _build_iterations, _build_time, nodes_size(), ptnodes_worklist.length());
5045         tty->cr();
5046         first = false;
5047       }
5048       ptn->dump();
5049       // Print all locals and fields which reference this allocation
5050       for (UseIterator j(ptn); j.has_next(); j.next()) {
5051         PointsToNode* use = j.get();
5052         if (use->is_LocalVar()) {
5053           use->dump(Verbose);
5054         } else if (Verbose) {
5055           use->dump();
5056         }
5057       }
5058       tty->cr();
5059     }
5060   }
5061 }
5062 
5063 void ConnectionGraph::print_statistics() {
5064   tty->print_cr("No escape = %d, Arg escape = %d, Global escape = %d", AtomicAccess::load(&_no_escape_counter), AtomicAccess::load(&_arg_escape_counter), AtomicAccess::load(&_global_escape_counter));
5065 }
5066 
5067 void ConnectionGraph::escape_state_statistics(GrowableArray<JavaObjectNode*>& java_objects_worklist) {
5068   if (!PrintOptoStatistics || (_invocation > 0)) { // Collect data only for the first invocation
5069     return;
5070   }
5071   for (int next = 0; next < java_objects_worklist.length(); ++next) {
5072     JavaObjectNode* ptn = java_objects_worklist.at(next);
5073     if (ptn->ideal_node()->is_Allocate()) {
5074       if (ptn->escape_state() == PointsToNode::NoEscape) {
5075         AtomicAccess::inc(&ConnectionGraph::_no_escape_counter);
5076       } else if (ptn->escape_state() == PointsToNode::ArgEscape) {
5077         AtomicAccess::inc(&ConnectionGraph::_arg_escape_counter);
5078       } else if (ptn->escape_state() == PointsToNode::GlobalEscape) {
5079         AtomicAccess::inc(&ConnectionGraph::_global_escape_counter);
5080       } else {
5081         assert(false, "Unexpected Escape State");
5082       }
5083     }
5084   }
5085 }
5086 
5087 void ConnectionGraph::trace_es_update_helper(PointsToNode* ptn, PointsToNode::EscapeState es, bool fields, const char* reason) const {
5088   if (_compile->directive()->TraceEscapeAnalysisOption) {
5089     assert(ptn != nullptr, "should not be null");
5090     assert(reason != nullptr, "should not be null");
5091     ptn->dump_header(true);
5092     PointsToNode::EscapeState new_es = fields ? ptn->escape_state() : es;
5093     PointsToNode::EscapeState new_fields_es = fields ? es : ptn->fields_escape_state();
5094     tty->print_cr("-> %s(%s) %s", esc_names[(int)new_es], esc_names[(int)new_fields_es], reason);
5095   }
5096 }
5097 
5098 const char* ConnectionGraph::trace_propagate_message(PointsToNode* from) const {
5099   if (_compile->directive()->TraceEscapeAnalysisOption) {
5100     stringStream ss;
5101     ss.print("propagated from: ");
5102     from->dump(true, &ss, false);
5103     return ss.as_string();
5104   } else {
5105     return nullptr;
5106   }
5107 }
5108 
5109 const char* ConnectionGraph::trace_arg_escape_message(CallNode* call) const {
5110   if (_compile->directive()->TraceEscapeAnalysisOption) {
5111     stringStream ss;
5112     ss.print("escapes as arg to:");
5113     call->dump("", false, &ss);
5114     return ss.as_string();
5115   } else {
5116     return nullptr;
5117   }
5118 }
5119 
5120 const char* ConnectionGraph::trace_merged_message(PointsToNode* other) const {
5121   if (_compile->directive()->TraceEscapeAnalysisOption) {
5122     stringStream ss;
5123     ss.print("is merged with other object: ");
5124     other->dump_header(true, &ss);
5125     return ss.as_string();
5126   } else {
5127     return nullptr;
5128   }
5129 }
5130 
5131 #endif
5132 
5133 void ConnectionGraph::record_for_optimizer(Node *n) {
5134   _igvn->_worklist.push(n);
5135   _igvn->add_users_to_worklist(n);
5136 }