1 /*
   2  * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/ciMethodData.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "gc/shared/barrierSet.hpp"
  28 #include "gc/shared/c2/barrierSetC2.hpp"
  29 #include "libadt/vectset.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/arraycopynode.hpp"
  34 #include "opto/c2_globals.hpp"
  35 #include "opto/callnode.hpp"
  36 #include "opto/castnode.hpp"
  37 #include "opto/connode.hpp"
  38 #include "opto/convertnode.hpp"
  39 #include "opto/divnode.hpp"
  40 #include "opto/idealGraphPrinter.hpp"
  41 #include "opto/loopnode.hpp"
  42 #include "opto/movenode.hpp"
  43 #include "opto/mulnode.hpp"
  44 #include "opto/opaquenode.hpp"
  45 #include "opto/opcodes.hpp"
  46 #include "opto/predicates.hpp"
  47 #include "opto/rootnode.hpp"
  48 #include "opto/runtime.hpp"
  49 #include "opto/vectorization.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #include "utilities/checkedCast.hpp"
  52 #include "utilities/powerOfTwo.hpp"
  53 
  54 //=============================================================================
  55 //--------------------------is_cloop_ind_var-----------------------------------
  56 // Determine if a node is a counted loop induction variable.
  57 // NOTE: The method is declared in "node.hpp".
  58 bool Node::is_cloop_ind_var() const {
  59   return (is_Phi() &&
  60           as_Phi()->region()->is_CountedLoop() &&
  61           as_Phi()->region()->as_CountedLoop()->phi() == this);
  62 }
  63 
  64 //=============================================================================
  65 //------------------------------dump_spec--------------------------------------
  66 // Dump special per-node info
  67 #ifndef PRODUCT
  68 void LoopNode::dump_spec(outputStream *st) const {
  69   RegionNode::dump_spec(st);
  70   if (is_inner_loop()) st->print( "inner " );
  71   if (is_partial_peel_loop()) st->print( "partial_peel " );
  72   if (partial_peel_has_failed()) st->print( "partial_peel_failed " );
  73 }
  74 #endif
  75 
  76 //------------------------------is_valid_counted_loop-------------------------
  77 bool LoopNode::is_valid_counted_loop(BasicType bt) const {
  78   if (is_BaseCountedLoop() && as_BaseCountedLoop()->bt() == bt) {
  79     BaseCountedLoopNode*    l  = as_BaseCountedLoop();
  80     BaseCountedLoopEndNode* le = l->loopexit_or_null();
  81     if (le != nullptr &&
  82         le->true_proj_or_null() == l->in(LoopNode::LoopBackControl)) {
  83       Node* phi  = l->phi();
  84       IfFalseNode* exit = le->false_proj_or_null();
  85       if (exit != nullptr && phi != nullptr && phi->is_Phi() &&
  86           phi->in(LoopNode::LoopBackControl) == l->incr() &&
  87           le->loopnode() == l && le->stride_is_con()) {
  88         return true;
  89       }
  90     }
  91   }
  92   return false;
  93 }
  94 
  95 //------------------------------get_early_ctrl---------------------------------
  96 // Compute earliest legal control
  97 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
  98   assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
  99   uint i;
 100   Node *early;
 101   if (n->in(0) && !n->is_expensive()) {
 102     early = n->in(0);
 103     if (!early->is_CFG()) // Might be a non-CFG multi-def
 104       early = get_ctrl(early);        // So treat input as a straight data input
 105     i = 1;
 106   } else {
 107     early = get_ctrl(n->in(1));
 108     i = 2;
 109   }
 110   uint e_d = dom_depth(early);
 111   assert( early, "" );
 112   for (; i < n->req(); i++) {
 113     Node *cin = get_ctrl(n->in(i));
 114     assert( cin, "" );
 115     // Keep deepest dominator depth
 116     uint c_d = dom_depth(cin);
 117     if (c_d > e_d) {           // Deeper guy?
 118       early = cin;              // Keep deepest found so far
 119       e_d = c_d;
 120     } else if (c_d == e_d &&    // Same depth?
 121                early != cin) { // If not equal, must use slower algorithm
 122       // If same depth but not equal, one _must_ dominate the other
 123       // and we want the deeper (i.e., dominated) guy.
 124       Node *n1 = early;
 125       Node *n2 = cin;
 126       while (1) {
 127         n1 = idom(n1);          // Walk up until break cycle
 128         n2 = idom(n2);
 129         if (n1 == cin ||        // Walked early up to cin
 130             dom_depth(n2) < c_d)
 131           break;                // early is deeper; keep him
 132         if (n2 == early ||      // Walked cin up to early
 133             dom_depth(n1) < c_d) {
 134           early = cin;          // cin is deeper; keep him
 135           break;
 136         }
 137       }
 138       e_d = dom_depth(early);   // Reset depth register cache
 139     }
 140   }
 141 
 142   // Return earliest legal location
 143   assert(early == find_non_split_ctrl(early), "unexpected early control");
 144 
 145   if (n->is_expensive() && !_verify_only && !_verify_me) {
 146     assert(n->in(0), "should have control input");
 147     early = get_early_ctrl_for_expensive(n, early);
 148   }
 149 
 150   return early;
 151 }
 152 
 153 //------------------------------get_early_ctrl_for_expensive---------------------------------
 154 // Move node up the dominator tree as high as legal while still beneficial
 155 Node *PhaseIdealLoop::get_early_ctrl_for_expensive(Node *n, Node* earliest) {
 156   assert(n->in(0) && n->is_expensive(), "expensive node with control input here");
 157   assert(OptimizeExpensiveOps, "optimization off?");
 158 
 159   Node* ctl = n->in(0);
 160   assert(ctl->is_CFG(), "expensive input 0 must be cfg");
 161   uint min_dom_depth = dom_depth(earliest);
 162 #ifdef ASSERT
 163   if (!is_dominator(ctl, earliest) && !is_dominator(earliest, ctl)) {
 164     dump_bad_graph("Bad graph detected in get_early_ctrl_for_expensive", n, earliest, ctl);
 165     assert(false, "Bad graph detected in get_early_ctrl_for_expensive");
 166   }
 167 #endif
 168   if (dom_depth(ctl) < min_dom_depth) {
 169     return earliest;
 170   }
 171 
 172   while (true) {
 173     Node* next = ctl;
 174     // Moving the node out of a loop on the projection of an If
 175     // confuses Loop Predication. So, once we hit a loop in an If branch
 176     // that doesn't branch to an UNC, we stop. The code that process
 177     // expensive nodes will notice the loop and skip over it to try to
 178     // move the node further up.
 179     if (ctl->is_CountedLoop() && ctl->in(1) != nullptr && ctl->in(1)->in(0) != nullptr && ctl->in(1)->in(0)->is_If()) {
 180       if (!ctl->in(1)->as_Proj()->is_uncommon_trap_if_pattern()) {
 181         break;
 182       }
 183       next = idom(ctl->in(1)->in(0));
 184     } else if (ctl->is_Proj()) {
 185       // We only move it up along a projection if the projection is
 186       // the single control projection for its parent: same code path,
 187       // if it's a If with UNC or fallthrough of a call.
 188       Node* parent_ctl = ctl->in(0);
 189       if (parent_ctl == nullptr) {
 190         break;
 191       } else if (parent_ctl->is_CountedLoopEnd() && parent_ctl->as_CountedLoopEnd()->loopnode() != nullptr) {
 192         next = parent_ctl->as_CountedLoopEnd()->loopnode()->init_control();
 193       } else if (parent_ctl->is_If()) {
 194         if (!ctl->as_Proj()->is_uncommon_trap_if_pattern()) {
 195           break;
 196         }
 197         assert(idom(ctl) == parent_ctl, "strange");
 198         next = idom(parent_ctl);
 199       } else if (ctl->is_CatchProj()) {
 200         if (ctl->as_Proj()->_con != CatchProjNode::fall_through_index) {
 201           break;
 202         }
 203         assert(parent_ctl->in(0)->in(0)->is_Call(), "strange graph");
 204         next = parent_ctl->in(0)->in(0)->in(0);
 205       } else {
 206         // Check if parent control has a single projection (this
 207         // control is the only possible successor of the parent
 208         // control). If so, we can try to move the node above the
 209         // parent control.
 210         int nb_ctl_proj = 0;
 211         for (DUIterator_Fast imax, i = parent_ctl->fast_outs(imax); i < imax; i++) {
 212           Node *p = parent_ctl->fast_out(i);
 213           if (p->is_Proj() && p->is_CFG()) {
 214             nb_ctl_proj++;
 215             if (nb_ctl_proj > 1) {
 216               break;
 217             }
 218           }
 219         }
 220 
 221         if (nb_ctl_proj > 1) {
 222           break;
 223         }
 224         assert(parent_ctl->is_Start() || parent_ctl->is_MemBar() || parent_ctl->is_Call() ||
 225                BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(parent_ctl), "unexpected node");
 226         assert(idom(ctl) == parent_ctl, "strange");
 227         next = idom(parent_ctl);
 228       }
 229     } else {
 230       next = idom(ctl);
 231     }
 232     if (next->is_Root() || next->is_Start() || dom_depth(next) < min_dom_depth) {
 233       break;
 234     }
 235     ctl = next;
 236   }
 237 
 238   if (ctl != n->in(0)) {
 239     _igvn.replace_input_of(n, 0, ctl);
 240     _igvn.hash_insert(n);
 241   }
 242 
 243   return ctl;
 244 }
 245 
 246 
 247 //------------------------------set_early_ctrl---------------------------------
 248 // Set earliest legal control
 249 void PhaseIdealLoop::set_early_ctrl(Node* n, bool update_body) {
 250   Node *early = get_early_ctrl(n);
 251 
 252   // Record earliest legal location
 253   set_ctrl(n, early);
 254   IdealLoopTree *loop = get_loop(early);
 255   if (update_body && loop->_child == nullptr) {
 256     loop->_body.push(n);
 257   }
 258 }
 259 
 260 //------------------------------set_subtree_ctrl-------------------------------
 261 // set missing _ctrl entries on new nodes
 262 void PhaseIdealLoop::set_subtree_ctrl(Node* n, bool update_body) {
 263   // Already set?  Get out.
 264   if (_loop_or_ctrl[n->_idx]) return;
 265   // Recursively set _loop_or_ctrl array to indicate where the Node goes
 266   uint i;
 267   for (i = 0; i < n->req(); ++i) {
 268     Node *m = n->in(i);
 269     if (m && m != C->root()) {
 270       set_subtree_ctrl(m, update_body);
 271     }
 272   }
 273 
 274   // Fixup self
 275   set_early_ctrl(n, update_body);
 276 }
 277 
 278 IdealLoopTree* PhaseIdealLoop::insert_outer_loop(IdealLoopTree* loop, LoopNode* outer_l, Node* outer_ift) {
 279   IdealLoopTree* outer_ilt = new IdealLoopTree(this, outer_l, outer_ift);
 280   IdealLoopTree* parent = loop->_parent;
 281   IdealLoopTree* sibling = parent->_child;
 282   if (sibling == loop) {
 283     parent->_child = outer_ilt;
 284   } else {
 285     while (sibling->_next != loop) {
 286       sibling = sibling->_next;
 287     }
 288     sibling->_next = outer_ilt;
 289   }
 290   outer_ilt->_next = loop->_next;
 291   outer_ilt->_parent = parent;
 292   outer_ilt->_child = loop;
 293   outer_ilt->_nest = loop->_nest;
 294   loop->_parent = outer_ilt;
 295   loop->_next = nullptr;
 296   loop->_nest++;
 297   assert(loop->_nest <= SHRT_MAX, "sanity");
 298   return outer_ilt;
 299 }
 300 
 301 // Create a skeleton strip mined outer loop: an OuterStripMinedLoop head before the inner strip mined CountedLoop, a
 302 // SafePoint on exit of the inner CountedLoopEnd and an OuterStripMinedLoopEnd test that can't constant fold until loop
 303 // optimizations are over. The inner strip mined loop is left as it is. Only once loop optimizations are over, do we
 304 // adjust the inner loop exit condition to limit its number of iterations, set the outer loop exit condition and add
 305 // Phis to the outer loop head. Some loop optimizations that operate on the inner strip mined loop need to be aware of
 306 // the outer strip mined loop: loop unswitching needs to clone the outer loop as well as the inner, unrolling needs to
 307 // only clone the inner loop etc. No optimizations need to change the outer strip mined loop as it is only a skeleton.
 308 //
 309 // Schematically:
 310 //
 311 // OuterStripMinedLoop -------|
 312 //       |                    |
 313 // CountedLoop ----------- |  |
 314 //     \- Phi (iv) -|      |  |
 315 //       /  \       |      |  |
 316 //     CmpI  AddI --|      |  |
 317 //       \                 |  |
 318 //        Bool             |  |
 319 //         \               |  |
 320 // CountedLoopEnd          |  |
 321 //       /  \              |  |
 322 // IfFalse   IfTrue--------|  |
 323 //      |                     |
 324 // SafePoint                  |
 325 //      |                     |
 326 // OuterStripMinedLoopEnd     |
 327 //       /   \                |
 328 // IfFalse   IfTrue-----------|
 329 //      |
 330 //
 331 //
 332 // As loop optimizations transform the inner loop, the outer strip mined loop stays mostly unchanged. The only exception
 333 // is nodes referenced from the SafePoint and sunk from the inner loop: they end up in the outer strip mined loop.
 334 //
 335 // Not adding Phis to the outer loop head from the beginning, and only adding them after loop optimizations does not
 336 // conform to C2's IR rules: any variable or memory slice that is mutated in a loop should have a Phi. The main
 337 // motivation for such a design that doesn't conform to C2's IR rules is to allow existing loop optimizations to be
 338 // mostly unaffected by the outer strip mined loop: the only extra step needed in most cases is to step over the
 339 // OuterStripMinedLoop. The main drawback is that once loop optimizations are over, an extra step is needed to finish
 340 // constructing the outer loop. This is handled by OuterStripMinedLoopNode::adjust_strip_mined_loop().
 341 //
 342 // Adding Phis to the outer loop is largely straightforward: there needs to be one Phi in the outer loop for every Phi
 343 // in the inner loop. Things may be more complicated for sunk Store nodes: there may not be any inner loop Phi left
 344 // after sinking for a particular memory slice but the outer loop needs a Phi. See
 345 // OuterStripMinedLoopNode::handle_sunk_stores_when_finishing_construction()
 346 IdealLoopTree* PhaseIdealLoop::create_outer_strip_mined_loop(Node* init_control,
 347                                                              IdealLoopTree* loop, float cl_prob, float le_fcnt,
 348                                                              Node*& entry_control, Node*& iffalse) {
 349   Node* outer_test = intcon(0);
 350   Node *orig = iffalse;
 351   iffalse = iffalse->clone();
 352   _igvn.register_new_node_with_optimizer(iffalse);
 353   set_idom(iffalse, idom(orig), dom_depth(orig));
 354 
 355   IfNode *outer_le = new OuterStripMinedLoopEndNode(iffalse, outer_test, cl_prob, le_fcnt);
 356   Node *outer_ift = new IfTrueNode (outer_le);
 357   Node* outer_iff = orig;
 358   _igvn.replace_input_of(outer_iff, 0, outer_le);
 359 
 360   LoopNode *outer_l = new OuterStripMinedLoopNode(C, init_control, outer_ift);
 361   entry_control = outer_l;
 362 
 363   IdealLoopTree* outer_ilt = insert_outer_loop(loop, outer_l, outer_ift);
 364 
 365   set_loop(iffalse, outer_ilt);
 366   // When this code runs, loop bodies have not yet been populated.
 367   const bool body_populated = false;
 368   register_control(outer_le, outer_ilt, iffalse, body_populated);
 369   register_control(outer_ift, outer_ilt, outer_le, body_populated);
 370   set_idom(outer_iff, outer_le, dom_depth(outer_le));
 371   _igvn.register_new_node_with_optimizer(outer_l);
 372   set_loop(outer_l, outer_ilt);
 373   set_idom(outer_l, init_control, dom_depth(init_control)+1);
 374 
 375   return outer_ilt;
 376 }
 377 
 378 void PhaseIdealLoop::insert_loop_limit_check_predicate(ParsePredicateSuccessProj* loop_limit_check_parse_proj,
 379                                                        Node* cmp_limit, Node* bol) {
 380   assert(loop_limit_check_parse_proj->in(0)->is_ParsePredicate(), "must be parse predicate");
 381   Node* new_predicate_proj = create_new_if_for_predicate(loop_limit_check_parse_proj, nullptr,
 382                                                          Deoptimization::Reason_loop_limit_check,
 383                                                          Op_If);
 384   Node* iff = new_predicate_proj->in(0);
 385   cmp_limit = _igvn.register_new_node_with_optimizer(cmp_limit);
 386   bol = _igvn.register_new_node_with_optimizer(bol);
 387   set_subtree_ctrl(bol, false);
 388   _igvn.replace_input_of(iff, 1, bol);
 389 
 390 #ifndef PRODUCT
 391   // report that the loop predication has been actually performed
 392   // for this loop
 393   if (TraceLoopLimitCheck) {
 394     tty->print_cr("Counted Loop Limit Check generated:");
 395     DEBUG_ONLY( bol->dump(2); )
 396   }
 397 #endif
 398 }
 399 
 400 Node* PhaseIdealLoop::loop_exit_control(Node* x, IdealLoopTree* loop) {
 401   // Counted loop head must be a good RegionNode with only 3 not null
 402   // control input edges: Self, Entry, LoopBack.
 403   if (x->in(LoopNode::Self) == nullptr || x->req() != 3 || loop->_irreducible) {
 404     return nullptr;
 405   }
 406   Node *init_control = x->in(LoopNode::EntryControl);
 407   Node *back_control = x->in(LoopNode::LoopBackControl);
 408   if (init_control == nullptr || back_control == nullptr) {   // Partially dead
 409     return nullptr;
 410   }
 411   // Must also check for TOP when looking for a dead loop
 412   if (init_control->is_top() || back_control->is_top()) {
 413     return nullptr;
 414   }
 415 
 416   // Allow funny placement of Safepoint
 417   if (back_control->Opcode() == Op_SafePoint) {
 418     back_control = back_control->in(TypeFunc::Control);
 419   }
 420 
 421   // Controlling test for loop
 422   Node *iftrue = back_control;
 423   uint iftrue_op = iftrue->Opcode();
 424   if (iftrue_op != Op_IfTrue &&
 425       iftrue_op != Op_IfFalse) {
 426     // I have a weird back-control.  Probably the loop-exit test is in
 427     // the middle of the loop and I am looking at some trailing control-flow
 428     // merge point.  To fix this I would have to partially peel the loop.
 429     return nullptr; // Obscure back-control
 430   }
 431 
 432   // Get boolean guarding loop-back test
 433   Node *iff = iftrue->in(0);
 434   if (get_loop(iff) != loop || !iff->in(1)->is_Bool()) {
 435     return nullptr;
 436   }
 437   return iftrue;
 438 }
 439 
 440 Node* PhaseIdealLoop::loop_exit_test(Node* back_control, IdealLoopTree* loop, Node*& incr, Node*& limit, BoolTest::mask& bt, float& cl_prob) {
 441   Node* iftrue = back_control;
 442   uint iftrue_op = iftrue->Opcode();
 443   Node* iff = iftrue->in(0);
 444   BoolNode* test = iff->in(1)->as_Bool();
 445   bt = test->_test._test;
 446   cl_prob = iff->as_If()->_prob;
 447   if (iftrue_op == Op_IfFalse) {
 448     bt = BoolTest(bt).negate();
 449     cl_prob = 1.0 - cl_prob;
 450   }
 451   // Get backedge compare
 452   Node* cmp = test->in(1);
 453   if (!cmp->is_Cmp()) {
 454     return nullptr;
 455   }
 456 
 457   // Find the trip-counter increment & limit.  Limit must be loop invariant.
 458   incr  = cmp->in(1);
 459   limit = cmp->in(2);
 460 
 461   // ---------
 462   // need 'loop()' test to tell if limit is loop invariant
 463   // ---------
 464 
 465   if (!ctrl_is_member(loop, incr)) { // Swapped trip counter and limit?
 466     Node* tmp = incr;            // Then reverse order into the CmpI
 467     incr = limit;
 468     limit = tmp;
 469     bt = BoolTest(bt).commute(); // And commute the exit test
 470   }
 471   if (ctrl_is_member(loop, limit)) { // Limit must be loop-invariant
 472     return nullptr;
 473   }
 474   if (!ctrl_is_member(loop, incr)) { // Trip counter must be loop-variant
 475     return nullptr;
 476   }
 477   return cmp;
 478 }
 479 
 480 Node* PhaseIdealLoop::loop_iv_incr(Node* incr, Node* x, IdealLoopTree* loop, Node*& phi_incr) {
 481   if (incr->is_Phi()) {
 482     if (incr->as_Phi()->region() != x || incr->req() != 3) {
 483       return nullptr; // Not simple trip counter expression
 484     }
 485     phi_incr = incr;
 486     incr = phi_incr->in(LoopNode::LoopBackControl); // Assume incr is on backedge of Phi
 487     if (!ctrl_is_member(loop, incr)) { // Trip counter must be loop-variant
 488       return nullptr;
 489     }
 490   }
 491   return incr;
 492 }
 493 
 494 Node* PhaseIdealLoop::loop_iv_stride(Node* incr, Node*& xphi) {
 495   assert(incr->Opcode() == Op_AddI || incr->Opcode() == Op_AddL, "caller resp.");
 496   // Get merge point
 497   xphi = incr->in(1);
 498   Node *stride = incr->in(2);
 499   if (!stride->is_Con()) {     // Oops, swap these
 500     if (!xphi->is_Con()) {     // Is the other guy a constant?
 501       return nullptr;          // Nope, unknown stride, bail out
 502     }
 503     Node *tmp = xphi;          // 'incr' is commutative, so ok to swap
 504     xphi = stride;
 505     stride = tmp;
 506   }
 507   return stride;
 508 }
 509 
 510 PhiNode* PhaseIdealLoop::loop_iv_phi(Node* xphi, Node* phi_incr, Node* x) {
 511   if (!xphi->is_Phi()) {
 512     return nullptr; // Too much math on the trip counter
 513   }
 514   if (phi_incr != nullptr && phi_incr != xphi) {
 515     return nullptr;
 516   }
 517   PhiNode *phi = xphi->as_Phi();
 518 
 519   // Phi must be of loop header; backedge must wrap to increment
 520   if (phi->region() != x) {
 521     return nullptr;
 522   }
 523   return phi;
 524 }
 525 
 526 static int check_stride_overflow(jlong final_correction, const TypeInteger* limit_t, BasicType bt) {
 527   if (final_correction > 0) {
 528     if (limit_t->lo_as_long() > (max_signed_integer(bt) - final_correction)) {
 529       return -1;
 530     }
 531     if (limit_t->hi_as_long() > (max_signed_integer(bt) - final_correction)) {
 532       return 1;
 533     }
 534   } else {
 535     if (limit_t->hi_as_long() < (min_signed_integer(bt) - final_correction)) {
 536       return -1;
 537     }
 538     if (limit_t->lo_as_long() < (min_signed_integer(bt) - final_correction)) {
 539       return 1;
 540     }
 541   }
 542   return 0;
 543 }
 544 
 545 static bool condition_stride_ok(BoolTest::mask bt, jlong stride_con) {
 546   // If the condition is inverted and we will be rolling
 547   // through MININT to MAXINT, then bail out.
 548   if (bt == BoolTest::eq || // Bail out, but this loop trips at most twice!
 549       // Odd stride
 550       (bt == BoolTest::ne && stride_con != 1 && stride_con != -1) ||
 551       // Count down loop rolls through MAXINT
 552       ((bt == BoolTest::le || bt == BoolTest::lt) && stride_con < 0) ||
 553       // Count up loop rolls through MININT
 554       ((bt == BoolTest::ge || bt == BoolTest::gt) && stride_con > 0)) {
 555     return false; // Bail out
 556   }
 557   return true;
 558 }
 559 
 560 Node* PhaseIdealLoop::loop_nest_replace_iv(Node* iv_to_replace, Node* inner_iv, Node* outer_phi, Node* inner_head,
 561                                            BasicType bt) {
 562   Node* iv_as_long;
 563   if (bt == T_LONG) {
 564     iv_as_long = new ConvI2LNode(inner_iv, TypeLong::INT);
 565     register_new_node(iv_as_long, inner_head);
 566   } else {
 567     iv_as_long = inner_iv;
 568   }
 569   Node* iv_replacement = AddNode::make(outer_phi, iv_as_long, bt);
 570   register_new_node(iv_replacement, inner_head);
 571   for (DUIterator_Last imin, i = iv_to_replace->last_outs(imin); i >= imin;) {
 572     Node* u = iv_to_replace->last_out(i);
 573 #ifdef ASSERT
 574     if (!is_dominator(inner_head, ctrl_or_self(u))) {
 575       assert(u->is_Phi(), "should be a Phi");
 576       for (uint j = 1; j < u->req(); j++) {
 577         if (u->in(j) == iv_to_replace) {
 578           assert(is_dominator(inner_head, u->in(0)->in(j)), "iv use above loop?");
 579         }
 580       }
 581     }
 582 #endif
 583     _igvn.rehash_node_delayed(u);
 584     int nb = u->replace_edge(iv_to_replace, iv_replacement, &_igvn);
 585     i -= nb;
 586   }
 587   return iv_replacement;
 588 }
 589 
 590 // Add a Parse Predicate with an uncommon trap on the failing/false path. Normal control will continue on the true path.
 591 void PhaseIdealLoop::add_parse_predicate(Deoptimization::DeoptReason reason, Node* inner_head, IdealLoopTree* loop,
 592                                          SafePointNode* sfpt) {
 593   if (!C->too_many_traps(reason)) {
 594     ParsePredicateNode* parse_predicate = new ParsePredicateNode(inner_head->in(LoopNode::EntryControl), reason, &_igvn);
 595     register_control(parse_predicate, loop, inner_head->in(LoopNode::EntryControl));
 596     Node* if_false = new IfFalseNode(parse_predicate);
 597     register_control(if_false, _ltree_root, parse_predicate);
 598     Node* if_true = new IfTrueNode(parse_predicate);
 599     register_control(if_true, loop, parse_predicate);
 600 
 601     int trap_request = Deoptimization::make_trap_request(reason, Deoptimization::Action_maybe_recompile);
 602     address call_addr = OptoRuntime::uncommon_trap_blob()->entry_point();
 603     const TypePtr* no_memory_effects = nullptr;
 604     CallNode* unc = new CallStaticJavaNode(OptoRuntime::uncommon_trap_Type(), call_addr, "uncommon_trap",
 605                                            no_memory_effects);
 606 
 607     Node* mem = nullptr;
 608     Node* i_o = nullptr;
 609     if (sfpt->is_Call()) {
 610       mem = sfpt->proj_out(TypeFunc::Memory);
 611       i_o = sfpt->proj_out(TypeFunc::I_O);
 612     } else {
 613       mem = sfpt->memory();
 614       i_o = sfpt->i_o();
 615     }
 616 
 617     Node *frame = new ParmNode(C->start(), TypeFunc::FramePtr);
 618     register_new_node(frame, C->start());
 619     Node *ret = new ParmNode(C->start(), TypeFunc::ReturnAdr);
 620     register_new_node(ret, C->start());
 621 
 622     unc->init_req(TypeFunc::Control, if_false);
 623     unc->init_req(TypeFunc::I_O, i_o);
 624     unc->init_req(TypeFunc::Memory, mem); // may gc ptrs
 625     unc->init_req(TypeFunc::FramePtr, frame);
 626     unc->init_req(TypeFunc::ReturnAdr, ret);
 627     unc->init_req(TypeFunc::Parms+0, _igvn.intcon(trap_request));
 628     unc->set_cnt(PROB_UNLIKELY_MAG(4));
 629     unc->copy_call_debug_info(&_igvn, sfpt);
 630 
 631     for (uint i = TypeFunc::Parms; i < unc->req(); i++) {
 632       set_subtree_ctrl(unc->in(i), false);
 633     }
 634     register_control(unc, _ltree_root, if_false);
 635 
 636     Node* ctrl = new ProjNode(unc, TypeFunc::Control);
 637     register_control(ctrl, _ltree_root, unc);
 638     Node* halt = new HaltNode(ctrl, frame, "uncommon trap returned which should never happen" PRODUCT_ONLY(COMMA /*reachable*/false));
 639     register_control(halt, _ltree_root, ctrl);
 640     _igvn.add_input_to(C->root(), halt);
 641 
 642     _igvn.replace_input_of(inner_head, LoopNode::EntryControl, if_true);
 643     set_idom(inner_head, if_true, dom_depth(inner_head));
 644   }
 645 }
 646 
 647 // Find a safepoint node that dominates the back edge. We need a
 648 // SafePointNode so we can use its jvm state to create empty
 649 // predicates.
 650 static bool no_side_effect_since_safepoint(Compile* C, Node* x, Node* mem, MergeMemNode* mm, PhaseIdealLoop* phase) {
 651   SafePointNode* safepoint = nullptr;
 652   for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
 653     Node* u = x->fast_out(i);
 654     if (u->is_memory_phi()) {
 655       Node* m = u->in(LoopNode::LoopBackControl);
 656       if (u->adr_type() == TypePtr::BOTTOM) {
 657         if (m->is_MergeMem() && mem->is_MergeMem()) {
 658           if (m != mem DEBUG_ONLY(|| true)) {
 659             // MergeMemStream can modify m, for example to adjust the length to mem.
 660             // This is unfortunate, and probably unnecessary. But as it is, we need
 661             // to add m to the igvn worklist, else we may have a modified node that
 662             // is not on the igvn worklist.
 663             phase->igvn()._worklist.push(m);
 664             for (MergeMemStream mms(m->as_MergeMem(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
 665               if (!mms.is_empty()) {
 666                 if (mms.memory() != mms.memory2()) {
 667                   return false;
 668                 }
 669 #ifdef ASSERT
 670                 if (mms.alias_idx() != Compile::AliasIdxBot) {
 671                   mm->set_memory_at(mms.alias_idx(), mem->as_MergeMem()->base_memory());
 672                 }
 673 #endif
 674               }
 675             }
 676           }
 677         } else if (mem->is_MergeMem()) {
 678           if (m != mem->as_MergeMem()->base_memory()) {
 679             return false;
 680           }
 681         } else {
 682           return false;
 683         }
 684       } else {
 685         if (mem->is_MergeMem()) {
 686           if (m != mem->as_MergeMem()->memory_at(C->get_alias_index(u->adr_type()))) {
 687             return false;
 688           }
 689 #ifdef ASSERT
 690           mm->set_memory_at(C->get_alias_index(u->adr_type()), mem->as_MergeMem()->base_memory());
 691 #endif
 692         } else {
 693           if (m != mem) {
 694             return false;
 695           }
 696         }
 697       }
 698     }
 699   }
 700   return true;
 701 }
 702 
 703 SafePointNode* PhaseIdealLoop::find_safepoint(Node* back_control, Node* x, IdealLoopTree* loop) {
 704   IfNode* exit_test = back_control->in(0)->as_If();
 705   SafePointNode* safepoint = nullptr;
 706   if (exit_test->in(0)->is_SafePoint() && exit_test->in(0)->outcnt() == 1) {
 707     safepoint = exit_test->in(0)->as_SafePoint();
 708   } else {
 709     Node* c = back_control;
 710     while (c != x && c->Opcode() != Op_SafePoint) {
 711       c = idom(c);
 712     }
 713 
 714     if (c->Opcode() == Op_SafePoint) {
 715       safepoint = c->as_SafePoint();
 716     }
 717 
 718     if (safepoint == nullptr) {
 719       return nullptr;
 720     }
 721 
 722     Node* mem = safepoint->in(TypeFunc::Memory);
 723 
 724     // We can only use that safepoint if there's no side effect between the backedge and the safepoint.
 725 
 726     // mm is the memory state at the safepoint (when it's a MergeMem)
 727     // no_side_effect_since_safepoint() goes over the memory state at the backedge. It resets the mm input for each
 728     // component of the memory state it encounters so it points to the base memory. Once no_side_effect_since_safepoint()
 729     // is done, if no side effect after the safepoint was found, mm should transform to the base memory: the states at
 730     // the backedge and safepoint are the same so all components of the memory state at the safepoint should have been
 731     // reset.
 732     MergeMemNode* mm = nullptr;
 733 #ifdef ASSERT
 734     if (mem->is_MergeMem()) {
 735       mm = mem->clone()->as_MergeMem();
 736       _igvn._worklist.push(mm);
 737       for (MergeMemStream mms(mem->as_MergeMem()); mms.next_non_empty(); ) {
 738         // Loop invariant memory state won't be reset by no_side_effect_since_safepoint(). Do it here.
 739         // Escape Analysis can add state to mm that it doesn't add to the backedge memory Phis, breaking verification
 740         // code that relies on mm. Clear that extra state here.
 741         if (mms.alias_idx() != Compile::AliasIdxBot &&
 742             (loop != get_loop(ctrl_or_self(mms.memory())) ||
 743              (mms.adr_type()->isa_oop_ptr() && mms.adr_type()->is_known_instance()))) {
 744           mm->set_memory_at(mms.alias_idx(), mem->as_MergeMem()->base_memory());
 745         }
 746       }
 747     }
 748 #endif
 749     if (!no_side_effect_since_safepoint(C, x, mem, mm, this)) {
 750       safepoint = nullptr;
 751     } else {
 752       assert(mm == nullptr|| _igvn.transform(mm) == mem->as_MergeMem()->base_memory(), "all memory state should have been processed");
 753     }
 754 #ifdef ASSERT
 755     if (mm != nullptr) {
 756       _igvn.remove_dead_node(mm);
 757     }
 758 #endif
 759   }
 760   return safepoint;
 761 }
 762 
 763 // If the loop has the shape of a counted loop but with a long
 764 // induction variable, transform the loop in a loop nest: an inner
 765 // loop that iterates for at most max int iterations with an integer
 766 // induction variable and an outer loop that iterates over the full
 767 // range of long values from the initial loop in (at most) max int
 768 // steps. That is:
 769 //
 770 // x: for (long phi = init; phi < limit; phi += stride) {
 771 //   // phi := Phi(L, init, incr)
 772 //   // incr := AddL(phi, longcon(stride))
 773 //   long incr = phi + stride;
 774 //   ... use phi and incr ...
 775 // }
 776 //
 777 // OR:
 778 //
 779 // x: for (long phi = init; (phi += stride) < limit; ) {
 780 //   // phi := Phi(L, AddL(init, stride), incr)
 781 //   // incr := AddL(phi, longcon(stride))
 782 //   long incr = phi + stride;
 783 //   ... use phi and (phi + stride) ...
 784 // }
 785 //
 786 // ==transform=>
 787 //
 788 // const ulong inner_iters_limit = INT_MAX - stride - 1;  //near 0x7FFFFFF0
 789 // assert(stride <= inner_iters_limit);  // else abort transform
 790 // assert((extralong)limit + stride <= LONG_MAX);  // else deopt
 791 // outer_head: for (long outer_phi = init;;) {
 792 //   // outer_phi := Phi(outer_head, init, AddL(outer_phi, I2L(inner_phi)))
 793 //   ulong inner_iters_max = (ulong) MAX(0, ((extralong)limit + stride - outer_phi));
 794 //   long inner_iters_actual = MIN(inner_iters_limit, inner_iters_max);
 795 //   assert(inner_iters_actual == (int)inner_iters_actual);
 796 //   int inner_phi, inner_incr;
 797 //   x: for (inner_phi = 0;; inner_phi = inner_incr) {
 798 //     // inner_phi := Phi(x, intcon(0), inner_incr)
 799 //     // inner_incr := AddI(inner_phi, intcon(stride))
 800 //     inner_incr = inner_phi + stride;
 801 //     if (inner_incr < inner_iters_actual) {
 802 //       ... use phi=>(outer_phi+inner_phi) ...
 803 //       continue;
 804 //     }
 805 //     else break;
 806 //   }
 807 //   if ((outer_phi+inner_phi) < limit)  //OR (outer_phi+inner_incr) < limit
 808 //     continue;
 809 //   else break;
 810 // }
 811 //
 812 // The same logic is used to transform an int counted loop that contains long range checks into a loop nest of 2 int
 813 // loops with long range checks transformed to int range checks in the inner loop.
 814 bool PhaseIdealLoop::create_loop_nest(IdealLoopTree* loop, Node_List &old_new) {
 815   Node* x = loop->_head;
 816   // Only for inner loops
 817   if (loop->_child != nullptr || !x->is_BaseCountedLoop() || x->as_Loop()->is_loop_nest_outer_loop()) {
 818     return false;
 819   }
 820 
 821   if (x->is_CountedLoop() && !x->as_CountedLoop()->is_main_loop() && !x->as_CountedLoop()->is_normal_loop()) {
 822     return false;
 823   }
 824 
 825   BaseCountedLoopNode* head = x->as_BaseCountedLoop();
 826   BasicType bt = x->as_BaseCountedLoop()->bt();
 827 
 828   check_counted_loop_shape(loop, x, bt);
 829 
 830 #ifndef PRODUCT
 831   if (bt == T_LONG) {
 832     AtomicAccess::inc(&_long_loop_candidates);
 833   }
 834 #endif
 835 
 836   jlong stride_con_long = head->stride_con();
 837   assert(stride_con_long != 0, "missed some peephole opt");
 838   // We can't iterate for more than max int at a time.
 839   if (stride_con_long != (jint)stride_con_long || stride_con_long == min_jint) {
 840     assert(bt == T_LONG, "only for long loops");
 841     return false;
 842   }
 843   jint stride_con = checked_cast<jint>(stride_con_long);
 844   // The number of iterations for the integer count loop: guarantee no
 845   // overflow: max_jint - stride_con max. -1 so there's no need for a
 846   // loop limit check if the exit test is <= or >=.
 847   int iters_limit = max_jint - ABS(stride_con) - 1;
 848 #ifdef ASSERT
 849   if (bt == T_LONG && StressLongCountedLoop > 0) {
 850     iters_limit = iters_limit / StressLongCountedLoop;
 851   }
 852 #endif
 853   // At least 2 iterations so counted loop construction doesn't fail
 854   if (iters_limit/ABS(stride_con) < 2) {
 855     return false;
 856   }
 857 
 858   assert(iters_limit > 0, "can't be negative");
 859 
 860   PhiNode* phi = head->phi()->as_Phi();
 861 
 862   Node* back_control = head->in(LoopNode::LoopBackControl);
 863 
 864   // data nodes on back branch not supported
 865   if (back_control->outcnt() > 1) {
 866     return false;
 867   }
 868 
 869   Node* limit = head->limit();
 870   // We'll need to use the loop limit before the inner loop is entered
 871   if (!is_dominator(get_ctrl(limit), x)) {
 872     return false;
 873   }
 874 
 875   IfNode* exit_test = head->loopexit();
 876 
 877   assert(back_control->Opcode() == Op_IfTrue, "wrong projection for back edge");
 878 
 879   Node_List range_checks;
 880   iters_limit = extract_long_range_checks(loop, stride_con, iters_limit, phi, range_checks);
 881 
 882   if (bt == T_INT) {
 883     // The only purpose of creating a loop nest is to handle long range checks. If there are none, do not proceed further.
 884     if (range_checks.size() == 0) {
 885       return false;
 886     }
 887   }
 888 
 889   // Take what we know about the number of iterations of the long counted loop into account when computing the limit of
 890   // the inner loop.
 891   Node* init = head->init_trip();
 892   const TypeInteger* lo = _igvn.type(init)->is_integer(bt);
 893   const TypeInteger* hi = _igvn.type(limit)->is_integer(bt);
 894   if (stride_con < 0) {
 895     swap(lo, hi);
 896   }
 897   if (hi->hi_as_long() <= lo->lo_as_long()) {
 898     // not a loop after all
 899     return false;
 900   }
 901 
 902   if (range_checks.size() > 0) {
 903     // This transformation requires peeling one iteration. Also, if it has range checks and they are eliminated by Loop
 904     // Predication, then 2 Hoisted Check Predicates are added for one range check. Finally, transforming a long range
 905     // check requires extra logic to be executed before the loop is entered and for the outer loop. As a result, the
 906     // transformations can't pay off for a small number of iterations: roughly, if the loop runs for 3 iterations, it's
 907     // going to execute as many range checks once transformed with range checks eliminated (1 peeled iteration with
 908     // range checks + 2 predicates per range checks) as it would have not transformed. It also has to pay for the extra
 909     // logic on loop entry and for the outer loop.
 910     loop->compute_trip_count(this, bt);
 911     if (head->is_CountedLoop() && head->as_CountedLoop()->has_exact_trip_count()) {
 912       if (head->as_CountedLoop()->trip_count() <= 3) {
 913         return false;
 914       }
 915     } else {
 916       loop->compute_profile_trip_cnt(this);
 917       if (!head->is_profile_trip_failed() && head->profile_trip_cnt() <= 3) {
 918         return false;
 919       }
 920     }
 921   }
 922 
 923   if (try_make_short_running_loop(loop, stride_con, range_checks, iters_limit)) {
 924     C->set_major_progress();
 925     return true;
 926   }
 927 
 928   julong orig_iters = (julong)hi->hi_as_long() - lo->lo_as_long();
 929   iters_limit = checked_cast<int>(MIN2((julong)iters_limit, orig_iters));
 930 
 931   // We need a safepoint to insert Parse Predicates for the inner loop.
 932   SafePointNode* safepoint;
 933   if (bt == T_INT && head->as_CountedLoop()->is_strip_mined()) {
 934     // Loop is strip mined: use the safepoint of the outer strip mined loop
 935     OuterStripMinedLoopNode* outer_loop = head->as_CountedLoop()->outer_loop();
 936     assert(outer_loop != nullptr, "no outer loop");
 937     safepoint = outer_loop->outer_safepoint();
 938     outer_loop->transform_to_counted_loop(&_igvn, this);
 939     exit_test = head->loopexit();
 940   } else {
 941     safepoint = find_safepoint(back_control, x, loop);
 942   }
 943 
 944   IfFalseNode* exit_branch = exit_test->false_proj();
 945   Node* entry_control = head->in(LoopNode::EntryControl);
 946 
 947   // Clone the control flow of the loop to build an outer loop
 948   Node* outer_back_branch = back_control->clone();
 949   Node* outer_exit_test = new IfNode(exit_test->in(0), exit_test->in(1), exit_test->_prob, exit_test->_fcnt);
 950   Node* inner_exit_branch = exit_branch->clone();
 951 
 952   LoopNode* outer_head = new LoopNode(entry_control, outer_back_branch);
 953   IdealLoopTree* outer_ilt = insert_outer_loop(loop, outer_head, outer_back_branch);
 954 
 955   const bool body_populated = true;
 956   register_control(outer_head, outer_ilt, entry_control, body_populated);
 957 
 958   _igvn.register_new_node_with_optimizer(inner_exit_branch);
 959   set_loop(inner_exit_branch, outer_ilt);
 960   set_idom(inner_exit_branch, exit_test, dom_depth(exit_branch));
 961 
 962   outer_exit_test->set_req(0, inner_exit_branch);
 963   register_control(outer_exit_test, outer_ilt, inner_exit_branch, body_populated);
 964 
 965   _igvn.replace_input_of(exit_branch, 0, outer_exit_test);
 966   set_idom(exit_branch, outer_exit_test, dom_depth(exit_branch));
 967 
 968   outer_back_branch->set_req(0, outer_exit_test);
 969   register_control(outer_back_branch, outer_ilt, outer_exit_test, body_populated);
 970 
 971   _igvn.replace_input_of(x, LoopNode::EntryControl, outer_head);
 972   set_idom(x, outer_head, dom_depth(x));
 973 
 974   // add an iv phi to the outer loop and use it to compute the inner
 975   // loop iteration limit
 976   Node* outer_phi = phi->clone();
 977   outer_phi->set_req(0, outer_head);
 978   register_new_node(outer_phi, outer_head);
 979 
 980   Node* inner_iters_max = nullptr;
 981   if (stride_con > 0) {
 982     inner_iters_max = MaxNode::max_diff_with_zero(limit, outer_phi, TypeInteger::bottom(bt), _igvn);
 983   } else {
 984     inner_iters_max = MaxNode::max_diff_with_zero(outer_phi, limit, TypeInteger::bottom(bt), _igvn);
 985   }
 986 
 987   Node* inner_iters_limit = _igvn.integercon(iters_limit, bt);
 988   // inner_iters_max may not fit in a signed integer (iterating from
 989   // Long.MIN_VALUE to Long.MAX_VALUE for instance). Use an unsigned
 990   // min.
 991   const TypeInteger* inner_iters_actual_range = TypeInteger::make(0, iters_limit, Type::WidenMin, bt);
 992   Node* inner_iters_actual = MaxNode::unsigned_min(inner_iters_max, inner_iters_limit, inner_iters_actual_range, _igvn);
 993 
 994   Node* inner_iters_actual_int;
 995   if (bt == T_LONG) {
 996     inner_iters_actual_int = new ConvL2INode(inner_iters_actual);
 997     _igvn.register_new_node_with_optimizer(inner_iters_actual_int);
 998     // When the inner loop is transformed to a counted loop, a loop limit check is not expected to be needed because
 999     // the loop limit is less or equal to max_jint - stride - 1 (if stride is positive but a similar argument exists for
1000     // a negative stride). We add a CastII here to guarantee that, when the counted loop is created in a subsequent loop
1001     // opts pass, an accurate range of values for the limits is found.
1002     const TypeInt* inner_iters_actual_int_range = TypeInt::make(0, iters_limit, Type::WidenMin);
1003     inner_iters_actual_int = new CastIINode(outer_head, inner_iters_actual_int, inner_iters_actual_int_range, ConstraintCastNode::DependencyType::NonFloatingNonNarrowing);
1004     _igvn.register_new_node_with_optimizer(inner_iters_actual_int);
1005   } else {
1006     inner_iters_actual_int = inner_iters_actual;
1007   }
1008 
1009   Node* int_zero = intcon(0);
1010   if (stride_con < 0) {
1011     inner_iters_actual_int = new SubINode(int_zero, inner_iters_actual_int);
1012     _igvn.register_new_node_with_optimizer(inner_iters_actual_int);
1013   }
1014 
1015   // Clone the iv data nodes as an integer iv
1016   Node* int_stride = intcon(stride_con);
1017   Node* inner_phi = new PhiNode(x->in(0), TypeInt::INT);
1018   Node* inner_incr = new AddINode(inner_phi, int_stride);
1019   Node* inner_cmp = nullptr;
1020   inner_cmp = new CmpINode(inner_incr, inner_iters_actual_int);
1021   Node* inner_bol = new BoolNode(inner_cmp, exit_test->in(1)->as_Bool()->_test._test);
1022   inner_phi->set_req(LoopNode::EntryControl, int_zero);
1023   inner_phi->set_req(LoopNode::LoopBackControl, inner_incr);
1024   register_new_node(inner_phi, x);
1025   register_new_node(inner_incr, x);
1026   register_new_node(inner_cmp, x);
1027   register_new_node(inner_bol, x);
1028 
1029   _igvn.replace_input_of(exit_test, 1, inner_bol);
1030 
1031   // Clone inner loop phis to outer loop
1032   for (uint i = 0; i < head->outcnt(); i++) {
1033     Node* u = head->raw_out(i);
1034     if (u->is_Phi() && u != inner_phi && u != phi) {
1035       assert(u->in(0) == head, "inconsistent");
1036       Node* clone = u->clone();
1037       clone->set_req(0, outer_head);
1038       register_new_node(clone, outer_head);
1039       _igvn.replace_input_of(u, LoopNode::EntryControl, clone);
1040     }
1041   }
1042 
1043   // Replace inner loop long iv phi as inner loop int iv phi + outer
1044   // loop iv phi
1045   Node* iv_add = loop_nest_replace_iv(phi, inner_phi, outer_phi, head, bt);
1046 
1047   set_subtree_ctrl(inner_iters_actual_int, body_populated);
1048 
1049   LoopNode* inner_head = create_inner_head(loop, head, exit_test);
1050 
1051   // Summary of steps from initial loop to loop nest:
1052   //
1053   // == old IR nodes =>
1054   //
1055   // entry_control: {...}
1056   // x:
1057   // for (long phi = init;;) {
1058   //   // phi := Phi(x, init, incr)
1059   //   // incr := AddL(phi, longcon(stride))
1060   //   exit_test:
1061   //   if (phi < limit)
1062   //     back_control: fallthrough;
1063   //   else
1064   //     exit_branch: break;
1065   //   long incr = phi + stride;
1066   //   ... use phi and incr ...
1067   //   phi = incr;
1068   // }
1069   //
1070   // == new IR nodes (just before final peel) =>
1071   //
1072   // entry_control: {...}
1073   // long adjusted_limit = limit + stride;  //because phi_incr != nullptr
1074   // assert(!limit_check_required || (extralong)limit + stride == adjusted_limit);  // else deopt
1075   // ulong inner_iters_limit = max_jint - ABS(stride) - 1;  //near 0x7FFFFFF0
1076   // outer_head:
1077   // for (long outer_phi = init;;) {
1078   //   // outer_phi := phi->clone(), in(0):=outer_head, => Phi(outer_head, init, incr)
1079   //   // REPLACE phi  => AddL(outer_phi, I2L(inner_phi))
1080   //   // REPLACE incr => AddL(outer_phi, I2L(inner_incr))
1081   //   // SO THAT outer_phi := Phi(outer_head, init, AddL(outer_phi, I2L(inner_incr)))
1082   //   ulong inner_iters_max = (ulong) MAX(0, ((extralong)adjusted_limit - outer_phi) * SGN(stride));
1083   //   int inner_iters_actual_int = (int) MIN(inner_iters_limit, inner_iters_max) * SGN(stride);
1084   //   inner_head: x: //in(1) := outer_head
1085   //   int inner_phi;
1086   //   for (inner_phi = 0;;) {
1087   //     // inner_phi := Phi(x, intcon(0), inner_phi + stride)
1088   //     int inner_incr = inner_phi + stride;
1089   //     bool inner_bol = (inner_incr < inner_iters_actual_int);
1090   //     exit_test: //exit_test->in(1) := inner_bol;
1091   //     if (inner_bol) // WAS (phi < limit)
1092   //       back_control: fallthrough;
1093   //     else
1094   //       inner_exit_branch: break;  //exit_branch->clone()
1095   //     ... use phi=>(outer_phi+inner_phi) ...
1096   //     inner_phi = inner_phi + stride;  // inner_incr
1097   //   }
1098   //   outer_exit_test:  //exit_test->clone(), in(0):=inner_exit_branch
1099   //   if ((outer_phi+inner_phi) < limit)  // WAS (phi < limit)
1100   //     outer_back_branch: fallthrough;  //back_control->clone(), in(0):=outer_exit_test
1101   //   else
1102   //     exit_branch: break;  //in(0) := outer_exit_test
1103   // }
1104 
1105   if (bt == T_INT) {
1106     outer_phi = new ConvI2LNode(outer_phi);
1107     register_new_node(outer_phi, outer_head);
1108   }
1109 
1110   transform_long_range_checks(stride_con, range_checks, outer_phi, inner_iters_actual_int,
1111                               inner_phi, iv_add, inner_head);
1112   // Peel one iteration of the loop and use the safepoint at the end
1113   // of the peeled iteration to insert Parse Predicates. If no well
1114   // positioned safepoint peel to guarantee a safepoint in the outer
1115   // loop.
1116   if (safepoint != nullptr || !loop->_has_call) {
1117     old_new.clear();
1118     do_peeling(loop, old_new);
1119   } else {
1120     C->set_major_progress();
1121   }
1122 
1123   if (safepoint != nullptr) {
1124     SafePointNode* cloned_sfpt = old_new[safepoint->_idx]->as_SafePoint();
1125 
1126     if (ShortRunningLongLoop) {
1127       add_parse_predicate(Deoptimization::Reason_short_running_long_loop, inner_head, outer_ilt, cloned_sfpt);
1128     }
1129     if (UseLoopPredicate) {
1130       add_parse_predicate(Deoptimization::Reason_predicate, inner_head, outer_ilt, cloned_sfpt);
1131       if (UseProfiledLoopPredicate) {
1132         add_parse_predicate(Deoptimization::Reason_profile_predicate, inner_head, outer_ilt, cloned_sfpt);
1133       }
1134     }
1135 
1136     if (UseAutoVectorizationPredicate) {
1137       // We only want to use the auto-vectorization check as a trap once per bci. And
1138       // PhaseIdealLoop::add_parse_predicate only checks trap limits per method, so
1139       // we do a custom check here.
1140       if (!C->too_many_traps(cloned_sfpt->jvms()->method(), cloned_sfpt->jvms()->bci(), Deoptimization::Reason_auto_vectorization_check)) {
1141         add_parse_predicate(Deoptimization::Reason_auto_vectorization_check, inner_head, outer_ilt, cloned_sfpt);
1142       }
1143     }
1144 
1145     add_parse_predicate(Deoptimization::Reason_loop_limit_check, inner_head, outer_ilt, cloned_sfpt);
1146   }
1147 
1148 #ifndef PRODUCT
1149   if (bt == T_LONG) {
1150     AtomicAccess::inc(&_long_loop_nests);
1151   }
1152 #endif
1153 
1154   inner_head->mark_loop_nest_inner_loop();
1155   outer_head->mark_loop_nest_outer_loop();
1156 
1157   return true;
1158 }
1159 
1160 // Make a copy of Parse/Template Assertion predicates below existing predicates at the loop passed as argument
1161 class CloneShortLoopPredicateVisitor : public PredicateVisitor {
1162   ClonePredicateToTargetLoop _clone_predicate_to_loop;
1163   PhaseIdealLoop* const _phase;
1164   Node* const _new_init;
1165 
1166 public:
1167   CloneShortLoopPredicateVisitor(LoopNode* target_loop_head,
1168                                  Node* new_init,
1169                                  const NodeInSingleLoopBody &node_in_loop_body,
1170                                  PhaseIdealLoop* phase)
1171     : _clone_predicate_to_loop(target_loop_head, node_in_loop_body, phase),
1172       _phase(phase),
1173       _new_init(new_init) {
1174   }
1175   NONCOPYABLE(CloneShortLoopPredicateVisitor);
1176 
1177   using PredicateVisitor::visit;
1178 
1179   void visit(const ParsePredicate& parse_predicate) override {
1180     _clone_predicate_to_loop.clone_parse_predicate(parse_predicate, true);
1181     parse_predicate.kill(_phase->igvn());
1182   }
1183 
1184   void visit(const TemplateAssertionPredicate& template_assertion_predicate) override {
1185     _clone_predicate_to_loop.clone_template_assertion_predicate_and_replace_init(template_assertion_predicate, _new_init);
1186     template_assertion_predicate.kill(_phase->igvn());
1187   }
1188 };
1189 
1190 // For an int counted loop, try_make_short_running_loop() transforms the loop from:
1191 //     for (int = start; i < stop; i+= stride) { ... }
1192 // to
1193 //     for (int = 0; i < stop - start; i+= stride) { ... }
1194 // Template Assertion Predicates added so far were with an init value of start. They need to be updated with the new
1195 // init value of 0 (otherwise when a template assertion predicate is turned into an initialized assertion predicate, it
1196 // performs an incorrect check):
1197 //                                zero
1198 //        init                     |
1199 //         |           ===>   OpaqueLoopInit   init
1200 //  OpaqueLoopInit                         \   /
1201 //                                          AddI
1202 //
1203 Node* PhaseIdealLoop::new_assertion_predicate_opaque_init(Node* entry_control, Node* init, Node* int_zero) {
1204   OpaqueLoopInitNode* new_opaque_init = new OpaqueLoopInitNode(C, int_zero);
1205   register_new_node(new_opaque_init, entry_control);
1206   Node* new_init = new AddINode(new_opaque_init, init);
1207   register_new_node(new_init, entry_control);
1208   return new_init;
1209 }
1210 
1211 // If the loop is either statically known to run for a small enough number of iterations or if profile data indicates
1212 // that, we don't want an outer loop because the overhead of having an outer loop whose backedge is never taken, has a
1213 // measurable cost. Furthermore, creating the loop nest usually causes one iteration of the loop to be peeled so
1214 // predicates can be set up. If the loop is short running, then it's an extra iteration that's run with range checks
1215 // (compared to an int counted loop with int range checks).
1216 //
1217 // In the short running case, turn the loop into a regular loop again and transform the long range checks:
1218 // - LongCountedLoop: Create LoopNode but keep the loop limit type with a CastLL node to avoid that we later try to
1219 //                    create a Loop Limit Check when turning the LoopNode into a CountedLoopNode.
1220 // - CountedLoop: Can be reused.
1221 bool PhaseIdealLoop::try_make_short_running_loop(IdealLoopTree* loop, jint stride_con, const Node_List &range_checks,
1222                                                  const uint iters_limit) {
1223   if (!ShortRunningLongLoop) {
1224     return false;
1225   }
1226   BaseCountedLoopNode* head = loop->_head->as_BaseCountedLoop();
1227   BasicType bt = head->bt();
1228   Node* entry_control = head->skip_strip_mined()->in(LoopNode::EntryControl);
1229 
1230   loop->compute_trip_count(this, bt);
1231   // Loop must run for no more than iter_limits as it guarantees no overflow of scale * iv in long range checks (see
1232   // comment above PhaseIdealLoop::transform_long_range_checks()).
1233   // iters_limit / ABS(stride_con) is the largest trip count for which we know it's correct to not create a loop nest:
1234   // it's always beneficial to have a single loop rather than a loop nest, so we try to apply this transformation as
1235   // often as possible.
1236   bool known_short_running_loop = head->trip_count() <= iters_limit / ABS(stride_con);
1237   bool profile_short_running_loop = false;
1238   if (!known_short_running_loop) {
1239     loop->compute_profile_trip_cnt(this);
1240     if (StressShortRunningLongLoop) {
1241       profile_short_running_loop = true;
1242     } else {
1243       profile_short_running_loop = !head->is_profile_trip_failed() && head->profile_trip_cnt() <= iters_limit / ABS(stride_con);
1244     }
1245   }
1246 
1247   if (!known_short_running_loop && !profile_short_running_loop) {
1248     return false;
1249   }
1250 
1251   Node* limit = head->limit();
1252   Node* init = head->init_trip();
1253 
1254   Node* new_limit;
1255   if (stride_con > 0) {
1256     new_limit = SubNode::make(limit, init, bt);
1257   } else {
1258     new_limit = SubNode::make(init, limit, bt);
1259   }
1260   register_new_node(new_limit, entry_control);
1261 
1262   Node* int_zero = intcon(0);
1263   PhiNode* phi = head->phi()->as_Phi();
1264   if (profile_short_running_loop) {
1265     // Add a Short Running Long Loop Predicate. It's the first predicate in the predicate chain before entering a loop
1266     // because a cast that's control dependent on the Short Running Long Loop Predicate is added to narrow the limit and
1267     // future predicates may be dependent on the new limit (so have to be between the loop and Short Running Long Loop
1268     // Predicate). The current limit could, itself, be dependent on an existing predicate. Clone parse and template
1269     // assertion predicates below existing predicates to get proper ordering of predicates when walking from the loop
1270     // up: future predicates, Short Running Long Loop Predicate, existing predicates.
1271     //
1272     //        Existing Hoisted
1273     //        Check Predicates
1274     //               |
1275     //     New Short Running Long
1276     //         Loop Predicate
1277     //               |
1278     //   Cloned Parse Predicates and
1279     //  Template Assertion Predicates
1280     //  (future predicates added here)
1281     //               |
1282     //             Loop
1283     const Predicates predicates_before_cloning(entry_control);
1284     const PredicateBlock* short_running_long_loop_predicate_block = predicates_before_cloning.short_running_long_loop_predicate_block();
1285     if (!short_running_long_loop_predicate_block->has_parse_predicate()) { // already trapped
1286       return false;
1287     }
1288     Node* new_init = new_assertion_predicate_opaque_init(entry_control, init, int_zero);
1289 
1290     PredicateIterator predicate_iterator(entry_control);
1291     NodeInSingleLoopBody node_in_short_loop_body(this, loop);
1292     CloneShortLoopPredicateVisitor clone_short_loop_predicates_visitor(head, new_init, node_in_short_loop_body, this);
1293     predicate_iterator.for_each(clone_short_loop_predicates_visitor);
1294 
1295     entry_control = head->skip_strip_mined()->in(LoopNode::EntryControl);
1296 
1297     const Predicates predicates_after_cloning(entry_control);
1298 
1299     ParsePredicateSuccessProj* short_running_loop_predicate_proj = predicates_after_cloning.
1300         short_running_long_loop_predicate_block()->
1301         parse_predicate_success_proj();
1302     assert(short_running_loop_predicate_proj->in(0)->is_ParsePredicate(), "must be parse predicate");
1303 
1304     const jlong iters_limit_long = iters_limit;
1305     Node* cmp_limit = CmpNode::make(new_limit, _igvn.integercon(iters_limit_long, bt), bt);
1306     Node* bol = new BoolNode(cmp_limit, BoolTest::le);
1307     Node* new_predicate_proj = create_new_if_for_predicate(short_running_loop_predicate_proj,
1308                                                            nullptr,
1309                                                            Deoptimization::Reason_short_running_long_loop,
1310                                                            Op_If);
1311     Node* iff = new_predicate_proj->in(0);
1312     _igvn.replace_input_of(iff, 1, bol);
1313     register_new_node(cmp_limit, iff->in(0));
1314     register_new_node(bol, iff->in(0));
1315     new_limit = ConstraintCastNode::make_cast_for_basic_type(new_predicate_proj, new_limit,
1316                                                              TypeInteger::make(1, iters_limit_long, Type::WidenMin, bt),
1317                                                              ConstraintCastNode::DependencyType::NonFloatingNonNarrowing, bt);
1318     register_new_node(new_limit, new_predicate_proj);
1319 
1320 #ifndef PRODUCT
1321     if (TraceLoopLimitCheck) {
1322       tty->print_cr("Short Long Loop Check Predicate generated:");
1323       DEBUG_ONLY(bol->dump(2);)
1324     }
1325 #endif
1326     entry_control = head->skip_strip_mined()->in(LoopNode::EntryControl);
1327   } else if (bt == T_LONG) {
1328     // We're turning a long counted loop into a regular loop that will be converted into an int counted loop. That loop
1329     // won't need loop limit check predicates (iters_limit guarantees that). Add a cast to make sure that, whatever
1330     // transformation happens by the time the counted loop is created (in a subsequent pass of loop opts), C2 knows
1331     // enough about the loop's limit that it doesn't try to add loop limit check predicates.
1332     const Predicates predicates(entry_control);
1333     const TypeLong* new_limit_t = new_limit->Value(&_igvn)->is_long();
1334     new_limit = ConstraintCastNode::make_cast_for_basic_type(predicates.entry(), new_limit,
1335                                                              TypeLong::make(0, new_limit_t->_hi, new_limit_t->_widen),
1336                                                              ConstraintCastNode::DependencyType::NonFloatingNonNarrowing, bt);
1337     register_new_node(new_limit, predicates.entry());
1338   } else {
1339     assert(bt == T_INT && known_short_running_loop, "only CountedLoop statically known to be short running");
1340     PredicateIterator predicate_iterator(entry_control);
1341     Node* new_init = new_assertion_predicate_opaque_init(entry_control, init, int_zero);
1342     UpdateInitForTemplateAssertionPredicates update_init_for_template_assertion_predicates(new_init, this);
1343     predicate_iterator.for_each(update_init_for_template_assertion_predicates);
1344   }
1345   IfNode* exit_test = head->loopexit();
1346 
1347   if (bt == T_LONG) {
1348     // The loop is short running so new_limit fits into an int: either we determined that statically or added a guard
1349     new_limit = new ConvL2INode(new_limit);
1350     register_new_node(new_limit, entry_control);
1351   }
1352 
1353   if (stride_con < 0) {
1354     new_limit = new SubINode(int_zero, new_limit);
1355     register_new_node(new_limit, entry_control);
1356   }
1357 
1358   // Clone the iv data nodes as an integer iv
1359   Node* int_stride = intcon(stride_con);
1360   Node* inner_phi = new PhiNode(head, TypeInt::INT);
1361   Node* inner_incr = new AddINode(inner_phi, int_stride);
1362   Node* inner_cmp = new CmpINode(inner_incr, new_limit);
1363   Node* inner_bol = new BoolNode(inner_cmp, exit_test->in(1)->as_Bool()->_test._test);
1364   inner_phi->set_req(LoopNode::EntryControl, int_zero);
1365   inner_phi->set_req(LoopNode::LoopBackControl, inner_incr);
1366   register_new_node(inner_phi, head);
1367   register_new_node(inner_incr, head);
1368   register_new_node(inner_cmp, head);
1369   register_new_node(inner_bol, head);
1370 
1371   _igvn.replace_input_of(exit_test, 1, inner_bol);
1372 
1373   // Replace inner loop long iv phi as inner loop int iv phi + outer
1374   // loop iv phi
1375   Node* iv_add = loop_nest_replace_iv(phi, inner_phi, init, head, bt);
1376 
1377   LoopNode* inner_head = head;
1378   if (bt == T_LONG) {
1379     // Turn the loop back to a counted loop
1380     inner_head = create_inner_head(loop, head, exit_test);
1381   } else {
1382     // Use existing counted loop
1383     revert_to_normal_loop(head);
1384   }
1385 
1386   if (bt == T_INT) {
1387     init = new ConvI2LNode(init);
1388     register_new_node(init, entry_control);
1389   }
1390 
1391   transform_long_range_checks(stride_con, range_checks, init, new_limit,
1392                               inner_phi, iv_add, inner_head);
1393 
1394   inner_head->mark_loop_nest_inner_loop();
1395 
1396   return true;
1397 }
1398 
1399 int PhaseIdealLoop::extract_long_range_checks(const IdealLoopTree* loop, jint stride_con, int iters_limit, PhiNode* phi,
1400                                               Node_List& range_checks) {
1401   const jlong min_iters = 2;
1402   jlong reduced_iters_limit = iters_limit;
1403   jlong original_iters_limit = iters_limit;
1404   for (uint i = 0; i < loop->_body.size(); i++) {
1405     Node* c = loop->_body.at(i);
1406     if (c->is_IfProj() && c->in(0)->is_RangeCheck()) {
1407       IfProjNode* if_proj = c->as_IfProj();
1408       CallStaticJavaNode* call = if_proj->is_uncommon_trap_if_pattern();
1409       if (call != nullptr) {
1410         Node* range = nullptr;
1411         Node* offset = nullptr;
1412         jlong scale = 0;
1413         if (loop->is_range_check_if(if_proj, this, T_LONG, phi, range, offset, scale) &&
1414             loop->is_invariant(range) && loop->is_invariant(offset) &&
1415             scale != min_jlong &&
1416             original_iters_limit / ABS(scale) >= min_iters * ABS(stride_con)) {
1417           assert(scale == (jint)scale, "scale should be an int");
1418           reduced_iters_limit = MIN2(reduced_iters_limit, original_iters_limit/ABS(scale));
1419           range_checks.push(c);
1420         }
1421       }
1422     }
1423   }
1424 
1425   return checked_cast<int>(reduced_iters_limit);
1426 }
1427 
1428 // One execution of the inner loop covers a sub-range of the entire iteration range of the loop: [A,Z), aka [A=init,
1429 // Z=limit). If the loop has at least one trip (which is the case here), the iteration variable i always takes A as its
1430 // first value, followed by A+S (S is the stride), next A+2S, etc. The limit is exclusive, so that the final value B of
1431 // i is never Z.  It will be B=Z-1 if S=1, or B=Z+1 if S=-1.
1432 
1433 // If |S|>1 the formula for the last value B would require a floor operation, specifically B=floor((Z-sgn(S)-A)/S)*S+A,
1434 // which is B=Z-sgn(S)U for some U in [1,|S|].  So when S>0, i ranges as i:[A,Z) or i:[A,B=Z-U], or else (in reverse)
1435 // as i:(Z,A] or i:[B=Z+U,A].  It will become important to reason about this inclusive range [A,B] or [B,A].
1436 
1437 // Within the loop there may be many range checks.  Each such range check (R.C.) is of the form 0 <= i*K+L < R, where K
1438 // is a scale factor applied to the loop iteration variable i, and L is some offset; K, L, and R are loop-invariant.
1439 // Because R is never negative (see below), this check can always be simplified to an unsigned check i*K+L <u R.
1440 
1441 // When a long loop over a 64-bit variable i (outer_iv) is decomposed into a series of shorter sub-loops over a 32-bit
1442 // variable j (inner_iv), j ranges over a shorter interval j:[0,B_2] or [0,Z_2) (assuming S > 0), where the limit is
1443 // chosen to prevent various cases of 32-bit overflow (including multiplications j*K below).  In the sub-loop the
1444 // logical value i is offset from j by a 64-bit constant C, so i ranges in i:C+[0,Z_2).
1445 
1446 // For S<0, j ranges (in reverse!) through j:[-|B_2|,0] or (-|Z_2|,0].  For either sign of S, we can say i=j+C and j
1447 // ranges through 32-bit ranges [A_2,B_2] or [B_2,A_2] (A_2=0 of course).
1448 
1449 // The disjoint union of all the C+[A_2,B_2] ranges from the sub-loops must be identical to the whole range [A,B].
1450 // Assuming S>0, the first C must be A itself, and the next C value is the previous C+B_2, plus S.  If |S|=1, the next
1451 // C value is also the previous C+Z_2.  In each sub-loop, j counts from j=A_2=0 and i counts from C+0 and exits at
1452 // j=B_2 (i=C+B_2), just before it gets to i=C+Z_2.  Both i and j count up (from C and 0) if S>0; otherwise they count
1453 // down (from C and 0 again).
1454 
1455 // Returning to range checks, we see that each i*K+L <u R expands to (C+j)*K+L <u R, or j*K+Q <u R, where Q=(C*K+L).
1456 // (Recall that K and L and R are loop-invariant scale, offset and range values for a particular R.C.)  This is still a
1457 // 64-bit comparison, so the range check elimination logic will not apply to it.  (The R.C.E. transforms operate only on
1458 // 32-bit indexes and comparisons, because they use 64-bit temporary values to avoid overflow; see
1459 // PhaseIdealLoop::add_constraint.)
1460 
1461 // We must transform this comparison so that it gets the same answer, but by means of a 32-bit R.C. (using j not i) of
1462 // the form j*K+L_2 <u32 R_2.  Note that L_2 and R_2 must be loop-invariant, but only with respect to the sub-loop.  Thus, the
1463 // problem reduces to computing values for L_2 and R_2 (for each R.C. in the loop) in the loop header for the sub-loop.
1464 // Then the standard R.C.E. transforms can take those as inputs and further compute the necessary minimum and maximum
1465 // values for the 32-bit counter j within which the range checks can be eliminated.
1466 
1467 // So, given j*K+Q <u R, we need to find some j*K+L_2 <u32 R_2, where L_2 and R_2 fit in 32 bits, and the 32-bit operations do
1468 // not overflow. We also need to cover the cases where i*K+L (= j*K+Q) overflows to a 64-bit negative, since that is
1469 // allowed as an input to the R.C., as long as the R.C. as a whole fails.
1470 
1471 // If 32-bit multiplication j*K might overflow, we adjust the sub-loop limit Z_2 closer to zero to reduce j's range.
1472 
1473 // For each R.C. j*K+Q <u32 R, the range of mathematical values of j*K+Q in the sub-loop is [Q_min, Q_max], where
1474 // Q_min=Q and Q_max=B_2*K+Q (if S>0 and K>0), Q_min=A_2*K+Q and Q_max=Q (if S<0 and K>0),
1475 // Q_min=B_2*K+Q and Q_max=Q if (S>0 and K<0), Q_min=Q and Q_max=A_2*K+Q (if S<0 and K<0)
1476 
1477 // Note that the first R.C. value is always Q=(S*K>0 ? Q_min : Q_max).  Also Q_{min,max} = Q + {min,max}(A_2*K,B_2*K).
1478 // If S*K>0 then, as the loop iterations progress, each R.C. value i*K+L = j*K+Q goes up from Q=Q_min towards Q_max.
1479 // If S*K<0 then j*K+Q starts at Q=Q_max and goes down towards Q_min.
1480 
1481 // Case A: Some Negatives (but no overflow).
1482 // Number line:
1483 // |s64_min   .    .    .    0    .    .    .   s64_max|
1484 // |    .  Q_min..Q_max .    0    .    .    .     .    |  s64 negative
1485 // |    .     .    .    .    R=0  R<   R<   R<    R<   |  (against R values)
1486 // |    .     .    .  Q_min..0..Q_max  .    .     .    |  small mixed
1487 // |    .     .    .    .    R    R    R<   R<    R<   |  (against R values)
1488 //
1489 // R values which are out of range (>Q_max+1) are reduced to max(0,Q_max+1).  They are marked on the number line as R<.
1490 //
1491 // So, if Q_min <s64 0, then use this test:
1492 // j*K + s32_trunc(Q_min) <u32 clamp(R, 0, Q_max+1) if S*K>0 (R.C.E. steps upward)
1493 // j*K + s32_trunc(Q_max) <u32 clamp(R, 0, Q_max+1) if S*K<0 (R.C.E. steps downward)
1494 // Both formulas reduce to adding j*K to the 32-bit truncated value of the first R.C. expression value, Q:
1495 // j*K + s32_trunc(Q) <u32 clamp(R, 0, Q_max+1) for all S,K
1496 
1497 // If the 32-bit truncation loses information, no harm is done, since certainly the clamp also will return R_2=zero.
1498 
1499 // Case B: No Negatives.
1500 // Number line:
1501 // |s64_min   .    .    .    0    .    .    .   s64_max|
1502 // |    .     .    .    .    0 Q_min..Q_max .     .    |  small positive
1503 // |    .     .    .    .    R>   R    R    R<    R<   |  (against R values)
1504 // |    .     .    .    .    0    . Q_min..Q_max  .    |  s64 positive
1505 // |    .     .    .    .    R>   R>   R    R     R<   |  (against R values)
1506 //
1507 // R values which are out of range (<Q_min or >Q_max+1) are reduced as marked: R> up to Q_min, R< down to Q_max+1.
1508 // Then the whole comparison is shifted left by Q_min, so it can take place at zero, which is a nice 32-bit value.
1509 //
1510 // So, if both Q_min, Q_max+1 >=s64 0, then use this test:
1511 // j*K + 0         <u32 clamp(R, Q_min, Q_max+1) - Q_min if S*K>0
1512 // More generally:
1513 // j*K + Q - Q_min <u32 clamp(R, Q_min, Q_max+1) - Q_min for all S,K
1514 
1515 // Case C: Overflow in the 64-bit domain
1516 // Number line:
1517 // |..Q_max-2^64   .    .    0    .    .    .   Q_min..|  s64 overflow
1518 // |    .     .    .    .    R>   R>   R>   R>    R    |  (against R values)
1519 //
1520 // In this case, Q_min >s64 Q_max+1, even though the mathematical values of Q_min and Q_max+1 are correctly ordered.
1521 // The formulas from the previous case can be used, except that the bad upper bound Q_max is replaced by max_jlong.
1522 // (In fact, we could use any replacement bound from R to max_jlong inclusive, as the input to the clamp function.)
1523 //
1524 // So if Q_min >=s64 0 but Q_max+1 <s64 0, use this test:
1525 // j*K + 0         <u32 clamp(R, Q_min, max_jlong) - Q_min if S*K>0
1526 // More generally:
1527 // j*K + Q - Q_min <u32 clamp(R, Q_min, max_jlong) - Q_min for all S,K
1528 //
1529 // Dropping the bad bound means only Q_min is used to reduce the range of R:
1530 // j*K + Q - Q_min <u32 max(Q_min, R) - Q_min for all S,K
1531 //
1532 // Here the clamp function is a 64-bit min/max that reduces the dynamic range of its R operand to the required [L,H]:
1533 //     clamp(X, L, H) := max(L, min(X, H))
1534 // When degenerately L > H, it returns L not H.
1535 //
1536 // All of the formulas above can be merged into a single one:
1537 //     L_clamp = Q_min < 0 ? 0 : Q_min        --whether and how far to left-shift
1538 //     H_clamp = Q_max+1 < Q_min ? max_jlong : Q_max+1
1539 //             = Q_max+1 < 0 && Q_min >= 0 ? max_jlong : Q_max+1
1540 //     Q_first = Q = (S*K>0 ? Q_min : Q_max) = (C*K+L)
1541 //     R_clamp = clamp(R, L_clamp, H_clamp)   --reduced dynamic range
1542 //     replacement R.C.:
1543 //       j*K + Q_first - L_clamp <u32 R_clamp - L_clamp
1544 //     or equivalently:
1545 //       j*K + L_2 <u32 R_2
1546 //     where
1547 //       L_2 = Q_first - L_clamp
1548 //       R_2 = R_clamp - L_clamp
1549 //
1550 // Note on why R is never negative:
1551 //
1552 // Various details of this transformation would break badly if R could be negative, so this transformation only
1553 // operates after obtaining hard evidence that R<0 is impossible.  For example, if R comes from a LoadRange node, we
1554 // know R cannot be negative.  For explicit checks (of both int and long) a proof is constructed in
1555 // inline_preconditions_checkIndex, which triggers an uncommon trap if R<0, then wraps R in a ConstraintCastNode with a
1556 // non-negative type.  Later on, when IdealLoopTree::is_range_check_if looks for an optimizable R.C., it checks that
1557 // the type of that R node is non-negative.  Any "wild" R node that could be negative is not treated as an optimizable
1558 // R.C., but R values from a.length and inside checkIndex are good to go.
1559 //
1560 void PhaseIdealLoop::transform_long_range_checks(int stride_con, const Node_List &range_checks, Node* outer_phi,
1561                                                  Node* inner_iters_actual_int, Node* inner_phi,
1562                                                  Node* iv_add, LoopNode* inner_head) {
1563   Node* long_zero = longcon(0);
1564   Node* int_zero = intcon(0);
1565   Node* long_one = longcon(1);
1566   Node* int_stride = intcon(checked_cast<int>(stride_con));
1567 
1568   for (uint i = 0; i < range_checks.size(); i++) {
1569     ProjNode* proj = range_checks.at(i)->as_Proj();
1570     RangeCheckNode* rc = proj->in(0)->as_RangeCheck();
1571     jlong scale = 0;
1572     Node* offset = nullptr;
1573     Node* rc_bol = rc->in(1);
1574     Node* rc_cmp = rc_bol->in(1);
1575     if (rc_cmp->Opcode() == Op_CmpU) {
1576       // could be shared and have already been taken care of
1577       continue;
1578     }
1579     bool short_scale = false;
1580     bool ok = is_scaled_iv_plus_offset(rc_cmp->in(1), iv_add, T_LONG, &scale, &offset, &short_scale);
1581     assert(ok, "inconsistent: was tested before");
1582     Node* range = rc_cmp->in(2);
1583     Node* c = rc->in(0);
1584     Node* entry_control = inner_head->in(LoopNode::EntryControl);
1585 
1586     Node* R = range;
1587     Node* K = longcon(scale);
1588 
1589     Node* L = offset;
1590 
1591     if (short_scale) {
1592       // This converts:
1593       // (int)i*K + L <u64 R
1594       // with K an int into:
1595       // i*(long)K + L <u64 unsigned_min((long)max_jint + L + 1, R)
1596       // to protect against an overflow of (int)i*K
1597       //
1598       // Because if (int)i*K overflows, there are K,L where:
1599       // (int)i*K + L <u64 R is false because (int)i*K+L overflows to a negative which becomes a huge u64 value.
1600       // But if i*(long)K + L is >u64 (long)max_jint and still is <u64 R, then
1601       // i*(long)K + L <u64 R is true.
1602       //
1603       // As a consequence simply converting i*K + L <u64 R to i*(long)K + L <u64 R could cause incorrect execution.
1604       //
1605       // It's always true that:
1606       // (int)i*K <u64 (long)max_jint + 1
1607       // which implies (int)i*K + L <u64 (long)max_jint + 1 + L
1608       // As a consequence:
1609       // i*(long)K + L <u64 unsigned_min((long)max_jint + L + 1, R)
1610       // is always false in case of overflow of i*K
1611       //
1612       // Note, there are also K,L where i*K overflows and
1613       // i*K + L <u64 R is true, but
1614       // i*(long)K + L <u64 unsigned_min((long)max_jint + L + 1, R) is false
1615       // So this transformation could cause spurious deoptimizations and failed range check elimination
1616       // (but not incorrect execution) for unlikely corner cases with overflow.
1617       // If this causes problems in practice, we could maybe direct execution to a post-loop, instead of deoptimizing.
1618       Node* max_jint_plus_one_long = longcon((jlong)max_jint + 1);
1619       Node* max_range = new AddLNode(max_jint_plus_one_long, L);
1620       register_new_node(max_range, entry_control);
1621       R = MaxNode::unsigned_min(R, max_range, TypeLong::POS, _igvn);
1622       set_subtree_ctrl(R, true);
1623     }
1624 
1625     Node* C = outer_phi;
1626 
1627     // Start with 64-bit values:
1628     //   i*K + L <u64 R
1629     //   (C+j)*K + L <u64 R
1630     //   j*K + Q <u64 R    where Q = Q_first = C*K+L
1631     Node* Q_first = new MulLNode(C, K);
1632     register_new_node(Q_first, entry_control);
1633     Q_first = new AddLNode(Q_first, L);
1634     register_new_node(Q_first, entry_control);
1635 
1636     // Compute endpoints of the range of values j*K + Q.
1637     //  Q_min = (j=0)*K + Q;  Q_max = (j=B_2)*K + Q
1638     Node* Q_min = Q_first;
1639 
1640     // Compute the exact ending value B_2 (which is really A_2 if S < 0)
1641     Node* B_2 = new LoopLimitNode(this->C, int_zero, inner_iters_actual_int, int_stride);
1642     register_new_node(B_2, entry_control);
1643     B_2 = new SubINode(B_2, int_stride);
1644     register_new_node(B_2, entry_control);
1645     B_2 = new ConvI2LNode(B_2);
1646     register_new_node(B_2, entry_control);
1647 
1648     Node* Q_max = new MulLNode(B_2, K);
1649     register_new_node(Q_max, entry_control);
1650     Q_max = new AddLNode(Q_max, Q_first);
1651     register_new_node(Q_max, entry_control);
1652 
1653     if (scale * stride_con < 0) {
1654       swap(Q_min, Q_max);
1655     }
1656     // Now, mathematically, Q_max > Q_min, and they are close enough so that (Q_max-Q_min) fits in 32 bits.
1657 
1658     // L_clamp = Q_min < 0 ? 0 : Q_min
1659     Node* Q_min_cmp = new CmpLNode(Q_min, long_zero);
1660     register_new_node(Q_min_cmp, entry_control);
1661     Node* Q_min_bool = new BoolNode(Q_min_cmp, BoolTest::lt);
1662     register_new_node(Q_min_bool, entry_control);
1663     Node* L_clamp = new CMoveLNode(Q_min_bool, Q_min, long_zero, TypeLong::LONG);
1664     register_new_node(L_clamp, entry_control);
1665     // (This could also be coded bitwise as L_clamp = Q_min & ~(Q_min>>63).)
1666 
1667     Node* Q_max_plus_one = new AddLNode(Q_max, long_one);
1668     register_new_node(Q_max_plus_one, entry_control);
1669 
1670     // H_clamp = Q_max+1 < Q_min ? max_jlong : Q_max+1
1671     // (Because Q_min and Q_max are close, the overflow check could also be encoded as Q_max+1 < 0 & Q_min >= 0.)
1672     Node* max_jlong_long = longcon(max_jlong);
1673     Node* Q_max_cmp = new CmpLNode(Q_max_plus_one, Q_min);
1674     register_new_node(Q_max_cmp, entry_control);
1675     Node* Q_max_bool = new BoolNode(Q_max_cmp, BoolTest::lt);
1676     register_new_node(Q_max_bool, entry_control);
1677     Node* H_clamp = new CMoveLNode(Q_max_bool, Q_max_plus_one, max_jlong_long, TypeLong::LONG);
1678     register_new_node(H_clamp, entry_control);
1679     // (This could also be coded bitwise as H_clamp = ((Q_max+1)<<1 | M)>>>1 where M = (Q_max+1)>>63 & ~Q_min>>63.)
1680 
1681     // R_2 = clamp(R, L_clamp, H_clamp) - L_clamp
1682     // that is:  R_2 = clamp(R, L_clamp=0, H_clamp=Q_max)      if Q_min < 0
1683     // or else:  R_2 = clamp(R, L_clamp,   H_clamp) - Q_min    if Q_min >= 0
1684     // and also: R_2 = clamp(R, L_clamp,   Q_max+1) - L_clamp  if Q_min < Q_max+1 (no overflow)
1685     // or else:  R_2 = clamp(R, L_clamp, *no limit*)- L_clamp  if Q_max+1 < Q_min (overflow)
1686     Node* R_2 = clamp(R, L_clamp, H_clamp);
1687     R_2 = new SubLNode(R_2, L_clamp);
1688     register_new_node(R_2, entry_control);
1689     R_2 = new ConvL2INode(R_2, TypeInt::POS);
1690     register_new_node(R_2, entry_control);
1691 
1692     // L_2 = Q_first - L_clamp
1693     // We are subtracting L_clamp from both sides of the <u32 comparison.
1694     // If S*K>0, then Q_first == 0 and the R.C. expression at -L_clamp and steps upward to Q_max-L_clamp.
1695     // If S*K<0, then Q_first != 0 and the R.C. expression starts high and steps downward to Q_min-L_clamp.
1696     Node* L_2 = new SubLNode(Q_first, L_clamp);
1697     register_new_node(L_2, entry_control);
1698     L_2 = new ConvL2INode(L_2, TypeInt::INT);
1699     register_new_node(L_2, entry_control);
1700 
1701     // Transform the range check using the computed values L_2/R_2
1702     // from:   i*K + L   <u64 R
1703     // to:     j*K + L_2 <u32 R_2
1704     // that is:
1705     //   (j*K + Q_first) - L_clamp <u32 clamp(R, L_clamp, H_clamp) - L_clamp
1706     K = intcon(checked_cast<int>(scale));
1707     Node* scaled_iv = new MulINode(inner_phi, K);
1708     register_new_node(scaled_iv, c);
1709     Node* scaled_iv_plus_offset = new AddINode(scaled_iv, L_2);
1710     register_new_node(scaled_iv_plus_offset, c);
1711 
1712     Node* new_rc_cmp = new CmpUNode(scaled_iv_plus_offset, R_2);
1713     register_new_node(new_rc_cmp, c);
1714 
1715     _igvn.replace_input_of(rc_bol, 1, new_rc_cmp);
1716   }
1717 }
1718 
1719 Node* PhaseIdealLoop::clamp(Node* R, Node* L, Node* H) {
1720   Node* min = MaxNode::signed_min(R, H, TypeLong::LONG, _igvn);
1721   set_subtree_ctrl(min, true);
1722   Node* max = MaxNode::signed_max(L, min, TypeLong::LONG, _igvn);
1723   set_subtree_ctrl(max, true);
1724   return max;
1725 }
1726 
1727 LoopNode* PhaseIdealLoop::create_inner_head(IdealLoopTree* loop, BaseCountedLoopNode* head,
1728                                             IfNode* exit_test) {
1729   LoopNode* new_inner_head = new LoopNode(head->in(1), head->in(2));
1730   IfNode* new_inner_exit = new IfNode(exit_test->in(0), exit_test->in(1), exit_test->_prob, exit_test->_fcnt);
1731   _igvn.register_new_node_with_optimizer(new_inner_head);
1732   _igvn.register_new_node_with_optimizer(new_inner_exit);
1733   loop->_body.push(new_inner_head);
1734   loop->_body.push(new_inner_exit);
1735   loop->_body.yank(head);
1736   loop->_body.yank(exit_test);
1737   set_loop(new_inner_head, loop);
1738   set_loop(new_inner_exit, loop);
1739   set_idom(new_inner_head, idom(head), dom_depth(head));
1740   set_idom(new_inner_exit, idom(exit_test), dom_depth(exit_test));
1741   replace_node_and_forward_ctrl(head, new_inner_head);
1742   replace_node_and_forward_ctrl(exit_test, new_inner_exit);
1743   loop->_head = new_inner_head;
1744   return new_inner_head;
1745 }
1746 
1747 #ifdef ASSERT
1748 void PhaseIdealLoop::check_counted_loop_shape(IdealLoopTree* loop, Node* x, BasicType bt) {
1749   Node* back_control = loop_exit_control(x, loop);
1750   assert(back_control != nullptr, "no back control");
1751 
1752   BoolTest::mask mask = BoolTest::illegal;
1753   float cl_prob = 0;
1754   Node* incr = nullptr;
1755   Node* limit = nullptr;
1756 
1757   Node* cmp = loop_exit_test(back_control, loop, incr, limit, mask, cl_prob);
1758   assert(cmp != nullptr && cmp->Opcode() == Op_Cmp(bt), "no exit test");
1759 
1760   Node* phi_incr = nullptr;
1761   incr = loop_iv_incr(incr, x, loop, phi_incr);
1762   assert(incr != nullptr && incr->Opcode() == Op_Add(bt), "no incr");
1763 
1764   Node* xphi = nullptr;
1765   Node* stride = loop_iv_stride(incr, xphi);
1766 
1767   assert(stride != nullptr, "no stride");
1768 
1769   PhiNode* phi = loop_iv_phi(xphi, phi_incr, x);
1770 
1771   assert(phi != nullptr && phi->in(LoopNode::LoopBackControl) == incr, "No phi");
1772 
1773   jlong stride_con = stride->get_integer_as_long(bt);
1774 
1775   assert(condition_stride_ok(mask, stride_con), "illegal condition");
1776 
1777   assert(mask != BoolTest::ne, "unexpected condition");
1778   assert(phi_incr == nullptr, "bad loop shape");
1779   assert(cmp->in(1) == incr, "bad exit test shape");
1780 
1781   // Safepoint on backedge not supported
1782   assert(x->in(LoopNode::LoopBackControl)->Opcode() != Op_SafePoint, "no safepoint on backedge");
1783 }
1784 #endif
1785 
1786 #ifdef ASSERT
1787 // convert an int counted loop to a long counted to stress handling of
1788 // long counted loops
1789 bool PhaseIdealLoop::convert_to_long_loop(Node* cmp, Node* phi, IdealLoopTree* loop) {
1790   Unique_Node_List iv_nodes;
1791   Node_List old_new;
1792   iv_nodes.push(cmp);
1793   bool failed = false;
1794 
1795   for (uint i = 0; i < iv_nodes.size() && !failed; i++) {
1796     Node* n = iv_nodes.at(i);
1797     switch(n->Opcode()) {
1798       case Op_Phi: {
1799         Node* clone = new PhiNode(n->in(0), TypeLong::LONG);
1800         old_new.map(n->_idx, clone);
1801         break;
1802       }
1803       case Op_CmpI: {
1804         Node* clone = new CmpLNode(nullptr, nullptr);
1805         old_new.map(n->_idx, clone);
1806         break;
1807       }
1808       case Op_AddI: {
1809         Node* clone = new AddLNode(nullptr, nullptr);
1810         old_new.map(n->_idx, clone);
1811         break;
1812       }
1813       case Op_CastII: {
1814         failed = true;
1815         break;
1816       }
1817       default:
1818         DEBUG_ONLY(n->dump());
1819         fatal("unexpected");
1820     }
1821 
1822     for (uint i = 1; i < n->req(); i++) {
1823       Node* in = n->in(i);
1824       if (in == nullptr) {
1825         continue;
1826       }
1827       if (ctrl_is_member(loop, in)) {
1828         iv_nodes.push(in);
1829       }
1830     }
1831   }
1832 
1833   if (failed) {
1834     for (uint i = 0; i < iv_nodes.size(); i++) {
1835       Node* n = iv_nodes.at(i);
1836       Node* clone = old_new[n->_idx];
1837       if (clone != nullptr) {
1838         _igvn.remove_dead_node(clone);
1839       }
1840     }
1841     return false;
1842   }
1843 
1844   for (uint i = 0; i < iv_nodes.size(); i++) {
1845     Node* n = iv_nodes.at(i);
1846     Node* clone = old_new[n->_idx];
1847     for (uint i = 1; i < n->req(); i++) {
1848       Node* in = n->in(i);
1849       if (in == nullptr) {
1850         continue;
1851       }
1852       Node* in_clone = old_new[in->_idx];
1853       if (in_clone == nullptr) {
1854         assert(_igvn.type(in)->isa_int(), "");
1855         in_clone = new ConvI2LNode(in);
1856         _igvn.register_new_node_with_optimizer(in_clone);
1857         set_subtree_ctrl(in_clone, false);
1858       }
1859       if (in_clone->in(0) == nullptr) {
1860         in_clone->set_req(0, C->top());
1861         clone->set_req(i, in_clone);
1862         in_clone->set_req(0, nullptr);
1863       } else {
1864         clone->set_req(i, in_clone);
1865       }
1866     }
1867     _igvn.register_new_node_with_optimizer(clone);
1868   }
1869   set_ctrl(old_new[phi->_idx], phi->in(0));
1870 
1871   for (uint i = 0; i < iv_nodes.size(); i++) {
1872     Node* n = iv_nodes.at(i);
1873     Node* clone = old_new[n->_idx];
1874     set_subtree_ctrl(clone, false);
1875     Node* m = n->Opcode() == Op_CmpI ? clone : nullptr;
1876     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1877       Node* u = n->fast_out(i);
1878       if (iv_nodes.member(u)) {
1879         continue;
1880       }
1881       if (m == nullptr) {
1882         m = new ConvL2INode(clone);
1883         _igvn.register_new_node_with_optimizer(m);
1884         set_subtree_ctrl(m, false);
1885       }
1886       _igvn.rehash_node_delayed(u);
1887       int nb = u->replace_edge(n, m, &_igvn);
1888       --i, imax -= nb;
1889     }
1890   }
1891   return true;
1892 }
1893 #endif
1894 
1895 //------------------------------is_counted_loop--------------------------------
1896 bool PhaseIdealLoop::is_counted_loop(Node* x, IdealLoopTree*&loop, BasicType iv_bt) {
1897   PhaseGVN *gvn = &_igvn;
1898 
1899   Node* back_control = loop_exit_control(x, loop);
1900   if (back_control == nullptr) {
1901     return false;
1902   }
1903 
1904   BoolTest::mask bt = BoolTest::illegal;
1905   float cl_prob = 0;
1906   Node* incr = nullptr;
1907   Node* limit = nullptr;
1908   Node* cmp = loop_exit_test(back_control, loop, incr, limit, bt, cl_prob);
1909   if (cmp == nullptr || cmp->Opcode() != Op_Cmp(iv_bt)) {
1910     return false; // Avoid pointer & float & 64-bit compares
1911   }
1912 
1913   // Trip-counter increment must be commutative & associative.
1914   if (incr->Opcode() == Op_Cast(iv_bt)) {
1915     incr = incr->in(1);
1916   }
1917 
1918   Node* phi_incr = nullptr;
1919   incr = loop_iv_incr(incr, x, loop, phi_incr);
1920   if (incr == nullptr) {
1921     return false;
1922   }
1923 
1924   Node* trunc1 = nullptr;
1925   Node* trunc2 = nullptr;
1926   const TypeInteger* iv_trunc_t = nullptr;
1927   Node* orig_incr = incr;
1928   if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t, iv_bt))) {
1929     return false; // Funny increment opcode
1930   }
1931   assert(incr->Opcode() == Op_Add(iv_bt), "wrong increment code");
1932 
1933   Node* xphi = nullptr;
1934   Node* stride = loop_iv_stride(incr, xphi);
1935 
1936   if (stride == nullptr) {
1937     return false;
1938   }
1939 
1940   // Iteratively uncast the loop induction variable
1941   // until no more CastII/CastLL nodes are found.
1942   while (xphi->Opcode() == Op_Cast(iv_bt)) {
1943     xphi = xphi->in(1);
1944   }
1945 
1946   // Stride must be constant
1947   jlong stride_con = stride->get_integer_as_long(iv_bt);
1948   assert(stride_con != 0, "missed some peephole opt");
1949 
1950   PhiNode* phi = loop_iv_phi(xphi, phi_incr, x);
1951 
1952   if (phi == nullptr ||
1953       (trunc1 == nullptr && phi->in(LoopNode::LoopBackControl) != incr) ||
1954       (trunc1 != nullptr && phi->in(LoopNode::LoopBackControl) != trunc1)) {
1955     return false;
1956   }
1957 
1958   Node* iftrue = back_control;
1959   uint iftrue_op = iftrue->Opcode();
1960   Node* iff = iftrue->in(0);
1961   BoolNode* test = iff->in(1)->as_Bool();
1962 
1963   const TypeInteger* limit_t = gvn->type(limit)->is_integer(iv_bt);
1964   if (trunc1 != nullptr) {
1965     // When there is a truncation, we must be sure that after the truncation
1966     // the trip counter will end up higher than the limit, otherwise we are looking
1967     // at an endless loop. Can happen with range checks.
1968 
1969     // Example:
1970     // int i = 0;
1971     // while (true)
1972     //    sum + = array[i];
1973     //    i++;
1974     //    i = i && 0x7fff;
1975     //  }
1976     //
1977     // If the array is shorter than 0x8000 this exits through a AIOOB
1978     //  - Counted loop transformation is ok
1979     // If the array is longer then this is an endless loop
1980     //  - No transformation can be done.
1981 
1982     const TypeInteger* incr_t = gvn->type(orig_incr)->is_integer(iv_bt);
1983     if (limit_t->hi_as_long() > incr_t->hi_as_long()) {
1984       // if the limit can have a higher value than the increment (before the phi)
1985       return false;
1986     }
1987   }
1988 
1989   Node *init_trip = phi->in(LoopNode::EntryControl);
1990 
1991   // If iv trunc type is smaller than int, check for possible wrap.
1992   if (!TypeInteger::bottom(iv_bt)->higher_equal(iv_trunc_t)) {
1993     assert(trunc1 != nullptr, "must have found some truncation");
1994 
1995     // Get a better type for the phi (filtered thru if's)
1996     const TypeInteger* phi_ft = filtered_type(phi);
1997 
1998     // Can iv take on a value that will wrap?
1999     //
2000     // Ensure iv's limit is not within "stride" of the wrap value.
2001     //
2002     // Example for "short" type
2003     //    Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
2004     //    If the stride is +10, then the last value of the induction
2005     //    variable before the increment (phi_ft->_hi) must be
2006     //    <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
2007     //    ensure no truncation occurs after the increment.
2008 
2009     if (stride_con > 0) {
2010       if (iv_trunc_t->hi_as_long() - phi_ft->hi_as_long() < stride_con ||
2011           iv_trunc_t->lo_as_long() > phi_ft->lo_as_long()) {
2012         return false;  // truncation may occur
2013       }
2014     } else if (stride_con < 0) {
2015       if (iv_trunc_t->lo_as_long() - phi_ft->lo_as_long() > stride_con ||
2016           iv_trunc_t->hi_as_long() < phi_ft->hi_as_long()) {
2017         return false;  // truncation may occur
2018       }
2019     }
2020     // No possibility of wrap so truncation can be discarded
2021     // Promote iv type to Int
2022   } else {
2023     assert(trunc1 == nullptr && trunc2 == nullptr, "no truncation for int");
2024   }
2025 
2026   if (!condition_stride_ok(bt, stride_con)) {
2027     return false;
2028   }
2029 
2030   const TypeInteger* init_t = gvn->type(init_trip)->is_integer(iv_bt);
2031 
2032   if (stride_con > 0) {
2033     if (init_t->lo_as_long() > max_signed_integer(iv_bt) - stride_con) {
2034       return false; // cyclic loop
2035     }
2036   } else {
2037     if (init_t->hi_as_long() < min_signed_integer(iv_bt) - stride_con) {
2038       return false; // cyclic loop
2039     }
2040   }
2041 
2042   if (phi_incr != nullptr && bt != BoolTest::ne) {
2043     // check if there is a possibility of IV overflowing after the first increment
2044     if (stride_con > 0) {
2045       if (init_t->hi_as_long() > max_signed_integer(iv_bt) - stride_con) {
2046         return false;
2047       }
2048     } else {
2049       if (init_t->lo_as_long() < min_signed_integer(iv_bt) - stride_con) {
2050         return false;
2051       }
2052     }
2053   }
2054 
2055   // =================================================
2056   // ---- SUCCESS!   Found A Trip-Counted Loop!  -----
2057   //
2058 
2059   if (x->Opcode() == Op_Region) {
2060     // x has not yet been transformed to Loop or LongCountedLoop.
2061     // This should only happen if we are inside an infinite loop.
2062     // It happens like this:
2063     //   build_loop_tree -> do not attach infinite loop and nested loops
2064     //   beautify_loops  -> does not transform the infinite and nested loops to LoopNode, because not attached yet
2065     //   build_loop_tree -> find and attach infinite and nested loops
2066     //   counted_loop    -> nested Regions are not yet transformed to LoopNodes, we land here
2067     assert(x->as_Region()->is_in_infinite_subgraph(),
2068            "x can only be a Region and not Loop if inside infinite loop");
2069     // Come back later when Region is transformed to LoopNode
2070     return false;
2071   }
2072 
2073   assert(x->Opcode() == Op_Loop || x->Opcode() == Op_LongCountedLoop, "regular loops only");
2074   C->print_method(PHASE_BEFORE_CLOOPS, 3, x);
2075 
2076   // ===================================================
2077   // We can only convert this loop to a counted loop if we can guarantee that the iv phi will never overflow at runtime.
2078   // This is an implicit assumption taken by some loop optimizations. We therefore must ensure this property at all cost.
2079   // At this point, we've already excluded some trivial cases where an overflow could have been proven statically.
2080   // But even though we cannot prove that an overflow will *not* happen, we still want to speculatively convert this loop
2081   // to a counted loop. This can be achieved by adding additional iv phi overflow checks before the loop. If they fail,
2082   // we trap and resume execution before the loop without having executed any iteration of the loop, yet.
2083   //
2084   // These additional iv phi overflow checks can be inserted as Loop Limit Check Predicates above the Loop Limit Check
2085   // Parse Predicate which captures a JVM state just before the entry of the loop. If there is no such Parse Predicate,
2086   // we cannot generate a Loop Limit Check Predicate and thus cannot speculatively convert the loop to a counted loop.
2087   //
2088   // In the following, we only focus on int loops with stride > 0 to keep things simple. The argumentation and proof
2089   // for stride < 0 is analogously. For long loops, we would replace max_int with max_long.
2090   //
2091   //
2092   // The loop to be converted does not always need to have the often used shape:
2093   //
2094   //                                                 i = init
2095   //     i = init                                loop:
2096   //     do {                                        ...
2097   //         // ...               equivalent         i+=stride
2098   //         i+=stride               <==>            if (i < limit)
2099   //     } while (i < limit);                          goto loop
2100   //                                             exit:
2101   //                                                 ...
2102   //
2103   // where the loop exit check uses the post-incremented iv phi and a '<'-operator.
2104   //
2105   // We could also have '<='-operator (or '>='-operator for negative strides) or use the pre-incremented iv phi value
2106   // in the loop exit check:
2107   //
2108   //         i = init
2109   //     loop:
2110   //         ...
2111   //         if (i <= limit)
2112   //             i+=stride
2113   //             goto loop
2114   //     exit:
2115   //         ...
2116   //
2117   // Let's define the following terms:
2118   // - iv_pre_i: The pre-incremented iv phi before the i-th iteration.
2119   // - iv_post_i: The post-incremented iv phi after the i-th iteration.
2120   //
2121   // The iv_pre_i and iv_post_i have the following relation:
2122   //      iv_pre_i + stride = iv_post_i
2123   //
2124   // When converting a loop to a counted loop, we want to have a canonicalized loop exit check of the form:
2125   //     iv_post_i < adjusted_limit
2126   //
2127   // If that is not the case, we need to canonicalize the loop exit check by using different values for adjusted_limit:
2128   // (LE1) iv_post_i < limit: Already canonicalized. We can directly use limit as adjusted_limit.
2129   //           -> adjusted_limit = limit.
2130   // (LE2) iv_post_i <= limit:
2131   //           iv_post_i < limit + 1
2132   //           -> adjusted limit = limit + 1
2133   // (LE3) iv_pre_i < limit:
2134   //           iv_pre_i + stride < limit + stride
2135   //           iv_post_i < limit + stride
2136   //           -> adjusted_limit = limit + stride
2137   // (LE4) iv_pre_i <= limit:
2138   //           iv_pre_i < limit + 1
2139   //           iv_pre_i + stride < limit + stride + 1
2140   //           iv_post_i < limit + stride + 1
2141   //           -> adjusted_limit = limit + stride + 1
2142   //
2143   // Note that:
2144   //     (AL) limit <= adjusted_limit.
2145   //
2146   // The following loop invariant has to hold for counted loops with n iterations (i.e. loop exit check true after n-th
2147   // loop iteration) and a canonicalized loop exit check to guarantee that no iv_post_i over- or underflows:
2148   // (INV) For i = 1..n, min_int <= iv_post_i <= max_int
2149   //
2150   // To prove (INV), we require the following two conditions/assumptions:
2151   // (i): adjusted_limit - 1 + stride <= max_int
2152   // (ii): init < limit
2153   //
2154   // If we can prove (INV), we know that there can be no over- or underflow of any iv phi value. We prove (INV) by
2155   // induction by assuming (i) and (ii).
2156   //
2157   // Proof by Induction
2158   // ------------------
2159   // > Base case (i = 1): We show that (INV) holds after the first iteration:
2160   //     min_int <= iv_post_1 = init + stride <= max_int
2161   // Proof:
2162   //     First, we note that (ii) implies
2163   //         (iii) init <= limit - 1
2164   //     max_int >= adjusted_limit - 1 + stride   [using (i)]
2165   //             >= limit - 1 + stride            [using (AL)]
2166   //             >= init + stride                 [using (iii)]
2167   //             >= min_int                       [using stride > 0, no underflow]
2168   // Thus, no overflow happens after the first iteration and (INV) holds for i = 1.
2169   //
2170   // Note that to prove the base case we need (i) and (ii).
2171   //
2172   // > Induction Hypothesis (i = j, j > 1): Assume that (INV) holds after the j-th iteration:
2173   //     min_int <= iv_post_j <= max_int
2174   // > Step case (i = j + 1): We show that (INV) also holds after the j+1-th iteration:
2175   //     min_int <= iv_post_{j+1} = iv_post_j + stride <= max_int
2176   // Proof:
2177   // If iv_post_j >= adjusted_limit:
2178   //     We exit the loop after the j-th iteration, and we don't execute the j+1-th iteration anymore. Thus, there is
2179   //     also no iv_{j+1}. Since (INV) holds for iv_j, there is nothing left to prove.
2180   // If iv_post_j < adjusted_limit:
2181   //     First, we note that:
2182   //         (iv) iv_post_j <= adjusted_limit - 1
2183   //     max_int >= adjusted_limit - 1 + stride    [using (i)]
2184   //             >= iv_post_j + stride             [using (iv)]
2185   //             >= min_int                        [using stride > 0, no underflow]
2186   //
2187   // Note that to prove the step case we only need (i).
2188   //
2189   // Thus, by assuming (i) and (ii), we proved (INV).
2190   //
2191   //
2192   // It is therefore enough to add the following two Loop Limit Check Predicates to check assumptions (i) and (ii):
2193   //
2194   // (1) Loop Limit Check Predicate for (i):
2195   //     Using (i): adjusted_limit - 1 + stride <= max_int
2196   //
2197   //     This condition is now restated to use limit instead of adjusted_limit:
2198   //
2199   //     To prevent an overflow of adjusted_limit -1 + stride itself, we rewrite this check to
2200   //         max_int - stride + 1 >= adjusted_limit
2201   //     We can merge the two constants into
2202   //         canonicalized_correction = stride - 1
2203   //     which gives us
2204   //        max_int - canonicalized_correction >= adjusted_limit
2205   //
2206   //     To directly use limit instead of adjusted_limit in the predicate condition, we split adjusted_limit into:
2207   //         adjusted_limit = limit + limit_correction
2208   //     Since stride > 0 and limit_correction <= stride + 1, we can restate this with no over- or underflow into:
2209   //         max_int - canonicalized_correction - limit_correction >= limit
2210   //     Since canonicalized_correction and limit_correction are both constants, we can replace them with a new constant:
2211   //         (v) final_correction = canonicalized_correction + limit_correction
2212   //
2213   //     which gives us:
2214   //
2215   //     Final predicate condition:
2216   //         max_int - final_correction >= limit
2217   //
2218   //     However, we need to be careful that (v) does not over- or underflow.
2219   //     We know that:
2220   //         canonicalized_correction = stride - 1
2221   //     and
2222   //         limit_correction <= stride + 1
2223   //     and thus
2224   //         canonicalized_correction + limit_correction <= 2 * stride
2225   //     To prevent an over- or underflow of (v), we must ensure that
2226   //         2 * stride <= max_int
2227   //     which can safely be checked without over- or underflow with
2228   //         (vi) stride != min_int AND abs(stride) <= max_int / 2
2229   //
2230   //     We could try to further optimize the cases where (vi) does not hold but given that such large strides are
2231   //     very uncommon and the loop would only run for a very few iterations anyway, we simply bail out if (vi) fails.
2232   //
2233   // (2) Loop Limit Check Predicate for (ii):
2234   //     Using (ii): init < limit
2235   //
2236   //     This Loop Limit Check Predicate is not required if we can prove at compile time that either:
2237   //        (2.1) type(init) < type(limit)
2238   //             In this case, we know:
2239   //                 all possible values of init < all possible values of limit
2240   //             and we can skip the predicate.
2241   //
2242   //        (2.2) init < limit is already checked before (i.e. found as a dominating check)
2243   //            In this case, we do not need to re-check the condition and can skip the predicate.
2244   //            This is often found for while- and for-loops which have the following shape:
2245   //
2246   //                if (init < limit) { // Dominating test. Do not need the Loop Limit Check Predicate below.
2247   //                    i = init;
2248   //                    if (init >= limit) { trap(); } // Here we would insert the Loop Limit Check Predicate
2249   //                    do {
2250   //                        i += stride;
2251   //                    } while (i < limit);
2252   //                }
2253   //
2254   //        (2.3) init + stride <= max_int
2255   //            In this case, there is no overflow of the iv phi after the first loop iteration.
2256   //            In the proof of the base case above we showed that init + stride <= max_int by using assumption (ii):
2257   //                init < limit
2258   //            In the proof of the step case above, we did not need (ii) anymore. Therefore, if we already know at
2259   //            compile time that init + stride <= max_int then we have trivially proven the base case and that
2260   //            there is no overflow of the iv phi after the first iteration. In this case, we don't need to check (ii)
2261   //            again and can skip the predicate.
2262 
2263   // Check (vi) and bail out if the stride is too big.
2264   if (stride_con == min_signed_integer(iv_bt) || (ABS(stride_con) > max_signed_integer(iv_bt) / 2)) {
2265     return false;
2266   }
2267 
2268   // Accounting for (LE3) and (LE4) where we use pre-incremented phis in the loop exit check.
2269   const jlong limit_correction_for_pre_iv_exit_check = (phi_incr != nullptr) ? stride_con : 0;
2270 
2271   // Accounting for (LE2) and (LE4) where we use <= or >= in the loop exit check.
2272   const bool includes_limit = (bt == BoolTest::le || bt == BoolTest::ge);
2273   const jlong limit_correction_for_le_ge_exit_check = (includes_limit ? (stride_con > 0 ? 1 : -1) : 0);
2274 
2275   const jlong limit_correction = limit_correction_for_pre_iv_exit_check + limit_correction_for_le_ge_exit_check;
2276   const jlong canonicalized_correction = stride_con + (stride_con > 0 ? -1 : 1);
2277   const jlong final_correction = canonicalized_correction + limit_correction;
2278 
2279   int sov = check_stride_overflow(final_correction, limit_t, iv_bt);
2280   Node* init_control = x->in(LoopNode::EntryControl);
2281 
2282   // If sov==0, limit's type always satisfies the condition, for
2283   // example, when it is an array length.
2284   if (sov != 0) {
2285     if (sov < 0) {
2286       return false;  // Bailout: integer overflow is certain.
2287     }
2288     // (1) Loop Limit Check Predicate is required because we could not statically prove that
2289     //     limit + final_correction = adjusted_limit - 1 + stride <= max_int
2290     assert(!x->as_Loop()->is_loop_nest_inner_loop(), "loop was transformed");
2291     const Predicates predicates(init_control);
2292     const PredicateBlock* loop_limit_check_predicate_block = predicates.loop_limit_check_predicate_block();
2293     if (!loop_limit_check_predicate_block->has_parse_predicate()) {
2294       // The Loop Limit Check Parse Predicate is not generated if this method trapped here before.
2295 #ifdef ASSERT
2296       if (TraceLoopLimitCheck) {
2297         tty->print("Missing Loop Limit Check Parse Predicate:");
2298         loop->dump_head();
2299         x->dump(1);
2300       }
2301 #endif
2302       return false;
2303     }
2304 
2305     ParsePredicateNode* loop_limit_check_parse_predicate = loop_limit_check_predicate_block->parse_predicate();
2306     if (!is_dominator(get_ctrl(limit), loop_limit_check_parse_predicate->in(0))) {
2307       return false;
2308     }
2309 
2310     Node* cmp_limit;
2311     Node* bol;
2312 
2313     if (stride_con > 0) {
2314       cmp_limit = CmpNode::make(limit, _igvn.integercon(max_signed_integer(iv_bt) - final_correction, iv_bt), iv_bt);
2315       bol = new BoolNode(cmp_limit, BoolTest::le);
2316     } else {
2317       cmp_limit = CmpNode::make(limit, _igvn.integercon(min_signed_integer(iv_bt) - final_correction, iv_bt), iv_bt);
2318       bol = new BoolNode(cmp_limit, BoolTest::ge);
2319     }
2320 
2321     insert_loop_limit_check_predicate(init_control->as_IfTrue(), cmp_limit, bol);
2322   }
2323 
2324   // (2.3)
2325   const bool init_plus_stride_could_overflow =
2326           (stride_con > 0 && init_t->hi_as_long() > max_signed_integer(iv_bt) - stride_con) ||
2327           (stride_con < 0 && init_t->lo_as_long() < min_signed_integer(iv_bt) - stride_con);
2328   // (2.1)
2329   const bool init_gte_limit = (stride_con > 0 && init_t->hi_as_long() >= limit_t->lo_as_long()) ||
2330                               (stride_con < 0 && init_t->lo_as_long() <= limit_t->hi_as_long());
2331 
2332   if (init_gte_limit && // (2.1)
2333      ((bt == BoolTest::ne || init_plus_stride_could_overflow) && // (2.3)
2334       !has_dominating_loop_limit_check(init_trip, limit, stride_con, iv_bt, init_control))) { // (2.2)
2335     // (2) Iteration Loop Limit Check Predicate is required because neither (2.1), (2.2), nor (2.3) holds.
2336     // We use the following condition:
2337     // - stride > 0: init < limit
2338     // - stride < 0: init > limit
2339     //
2340     // This predicate is always required if we have a non-equal-operator in the loop exit check (where stride = 1 is
2341     // a requirement). We transform the loop exit check by using a less-than-operator. By doing so, we must always
2342     // check that init < limit. Otherwise, we could have a different number of iterations at runtime.
2343 
2344     const Predicates predicates(init_control);
2345     const PredicateBlock* loop_limit_check_predicate_block = predicates.loop_limit_check_predicate_block();
2346     if (!loop_limit_check_predicate_block->has_parse_predicate()) {
2347       // The Loop Limit Check Parse Predicate is not generated if this method trapped here before.
2348 #ifdef ASSERT
2349       if (TraceLoopLimitCheck) {
2350         tty->print("Missing Loop Limit Check Parse Predicate:");
2351         loop->dump_head();
2352         x->dump(1);
2353       }
2354 #endif
2355       return false;
2356     }
2357 
2358     ParsePredicateNode* loop_limit_check_parse_predicate = loop_limit_check_predicate_block->parse_predicate();
2359     Node* parse_predicate_entry = loop_limit_check_parse_predicate->in(0);
2360     if (!is_dominator(get_ctrl(limit), parse_predicate_entry) ||
2361         !is_dominator(get_ctrl(init_trip), parse_predicate_entry)) {
2362       return false;
2363     }
2364 
2365     Node* cmp_limit;
2366     Node* bol;
2367 
2368     if (stride_con > 0) {
2369       cmp_limit = CmpNode::make(init_trip, limit, iv_bt);
2370       bol = new BoolNode(cmp_limit, BoolTest::lt);
2371     } else {
2372       cmp_limit = CmpNode::make(init_trip, limit, iv_bt);
2373       bol = new BoolNode(cmp_limit, BoolTest::gt);
2374     }
2375 
2376     insert_loop_limit_check_predicate(init_control->as_IfTrue(), cmp_limit, bol);
2377   }
2378 
2379   if (bt == BoolTest::ne) {
2380     // Now we need to canonicalize the loop condition if it is 'ne'.
2381     assert(stride_con == 1 || stride_con == -1, "simple increment only - checked before");
2382     if (stride_con > 0) {
2383       // 'ne' can be replaced with 'lt' only when init < limit. This is ensured by the inserted predicate above.
2384       bt = BoolTest::lt;
2385     } else {
2386       assert(stride_con < 0, "must be");
2387       // 'ne' can be replaced with 'gt' only when init > limit. This is ensured by the inserted predicate above.
2388       bt = BoolTest::gt;
2389     }
2390   }
2391 
2392   Node* sfpt = nullptr;
2393   if (loop->_child == nullptr) {
2394     sfpt = find_safepoint(back_control, x, loop);
2395   } else {
2396     sfpt = iff->in(0);
2397     if (sfpt->Opcode() != Op_SafePoint) {
2398       sfpt = nullptr;
2399     }
2400   }
2401 
2402   if (x->in(LoopNode::LoopBackControl)->Opcode() == Op_SafePoint) {
2403     Node* backedge_sfpt = x->in(LoopNode::LoopBackControl);
2404     if (((iv_bt == T_INT && LoopStripMiningIter != 0) ||
2405          iv_bt == T_LONG) &&
2406         sfpt == nullptr) {
2407       // Leaving the safepoint on the backedge and creating a
2408       // CountedLoop will confuse optimizations. We can't move the
2409       // safepoint around because its jvm state wouldn't match a new
2410       // location. Give up on that loop.
2411       return false;
2412     }
2413     if (is_deleteable_safept(backedge_sfpt)) {
2414       replace_node_and_forward_ctrl(backedge_sfpt, iftrue);
2415       if (loop->_safepts != nullptr) {
2416         loop->_safepts->yank(backedge_sfpt);
2417       }
2418       loop->_tail = iftrue;
2419     }
2420   }
2421 
2422 
2423 #ifdef ASSERT
2424   if (iv_bt == T_INT &&
2425       !x->as_Loop()->is_loop_nest_inner_loop() &&
2426       StressLongCountedLoop > 0 &&
2427       trunc1 == nullptr &&
2428       convert_to_long_loop(cmp, phi, loop)) {
2429     return false;
2430   }
2431 #endif
2432 
2433   Node* adjusted_limit = limit;
2434   if (phi_incr != nullptr) {
2435     // If compare points directly to the phi we need to adjust
2436     // the compare so that it points to the incr. Limit have
2437     // to be adjusted to keep trip count the same and we
2438     // should avoid int overflow.
2439     //
2440     //   i = init; do {} while(i++ < limit);
2441     // is converted to
2442     //   i = init; do {} while(++i < limit+1);
2443     //
2444     adjusted_limit = gvn->transform(AddNode::make(limit, stride, iv_bt));
2445   }
2446 
2447   if (includes_limit) {
2448     // The limit check guaranties that 'limit <= (max_jint - stride)' so
2449     // we can convert 'i <= limit' to 'i < limit+1' since stride != 0.
2450     //
2451     Node* one = (stride_con > 0) ? gvn->integercon( 1, iv_bt) : gvn->integercon(-1, iv_bt);
2452     adjusted_limit = gvn->transform(AddNode::make(adjusted_limit, one, iv_bt));
2453     if (bt == BoolTest::le)
2454       bt = BoolTest::lt;
2455     else if (bt == BoolTest::ge)
2456       bt = BoolTest::gt;
2457     else
2458       ShouldNotReachHere();
2459   }
2460   set_subtree_ctrl(adjusted_limit, false);
2461 
2462   // Build a canonical trip test.
2463   // Clone code, as old values may be in use.
2464   incr = incr->clone();
2465   incr->set_req(1,phi);
2466   incr->set_req(2,stride);
2467   incr = _igvn.register_new_node_with_optimizer(incr);
2468   set_early_ctrl(incr, false);
2469   _igvn.rehash_node_delayed(phi);
2470   phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn );
2471 
2472   // If phi type is more restrictive than Int, raise to
2473   // Int to prevent (almost) infinite recursion in igvn
2474   // which can only handle integer types for constants or minint..maxint.
2475   if (!TypeInteger::bottom(iv_bt)->higher_equal(phi->bottom_type())) {
2476     Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInteger::bottom(iv_bt));
2477     nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl));
2478     nphi = _igvn.register_new_node_with_optimizer(nphi);
2479     set_ctrl(nphi, get_ctrl(phi));
2480     _igvn.replace_node(phi, nphi);
2481     phi = nphi->as_Phi();
2482   }
2483   cmp = cmp->clone();
2484   cmp->set_req(1,incr);
2485   cmp->set_req(2, adjusted_limit);
2486   cmp = _igvn.register_new_node_with_optimizer(cmp);
2487   set_ctrl(cmp, iff->in(0));
2488 
2489   test = test->clone()->as_Bool();
2490   (*(BoolTest*)&test->_test)._test = bt;
2491   test->set_req(1,cmp);
2492   _igvn.register_new_node_with_optimizer(test);
2493   set_ctrl(test, iff->in(0));
2494 
2495   // Replace the old IfNode with a new LoopEndNode
2496   Node *lex = _igvn.register_new_node_with_optimizer(BaseCountedLoopEndNode::make(iff->in(0), test, cl_prob, iff->as_If()->_fcnt, iv_bt));
2497   IfNode *le = lex->as_If();
2498   uint dd = dom_depth(iff);
2499   set_idom(le, le->in(0), dd); // Update dominance for loop exit
2500   set_loop(le, loop);
2501 
2502   // Get the loop-exit control
2503   Node *iffalse = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
2504 
2505   // Need to swap loop-exit and loop-back control?
2506   if (iftrue_op == Op_IfFalse) {
2507     Node *ift2=_igvn.register_new_node_with_optimizer(new IfTrueNode (le));
2508     Node *iff2=_igvn.register_new_node_with_optimizer(new IfFalseNode(le));
2509 
2510     loop->_tail = back_control = ift2;
2511     set_loop(ift2, loop);
2512     set_loop(iff2, get_loop(iffalse));
2513 
2514     // Lazy update of 'get_ctrl' mechanism.
2515     replace_node_and_forward_ctrl(iffalse, iff2);
2516     replace_node_and_forward_ctrl(iftrue,  ift2);
2517 
2518     // Swap names
2519     iffalse = iff2;
2520     iftrue  = ift2;
2521   } else {
2522     _igvn.rehash_node_delayed(iffalse);
2523     _igvn.rehash_node_delayed(iftrue);
2524     iffalse->set_req_X( 0, le, &_igvn );
2525     iftrue ->set_req_X( 0, le, &_igvn );
2526   }
2527 
2528   set_idom(iftrue,  le, dd+1);
2529   set_idom(iffalse, le, dd+1);
2530   assert(iff->outcnt() == 0, "should be dead now");
2531   replace_node_and_forward_ctrl(iff, le); // fix 'get_ctrl'
2532 
2533   Node* entry_control = init_control;
2534   bool strip_mine_loop = iv_bt == T_INT &&
2535                          loop->_child == nullptr &&
2536                          sfpt != nullptr &&
2537                          !loop->_has_call &&
2538                          is_deleteable_safept(sfpt);
2539   IdealLoopTree* outer_ilt = nullptr;
2540   if (strip_mine_loop) {
2541     outer_ilt = create_outer_strip_mined_loop(init_control, loop, cl_prob, le->_fcnt,
2542                                               entry_control, iffalse);
2543   }
2544 
2545   // Now setup a new CountedLoopNode to replace the existing LoopNode
2546   BaseCountedLoopNode *l = BaseCountedLoopNode::make(entry_control, back_control, iv_bt);
2547   l->set_unswitch_count(x->as_Loop()->unswitch_count()); // Preserve
2548   // The following assert is approximately true, and defines the intention
2549   // of can_be_counted_loop.  It fails, however, because phase->type
2550   // is not yet initialized for this loop and its parts.
2551   //assert(l->can_be_counted_loop(this), "sanity");
2552   _igvn.register_new_node_with_optimizer(l);
2553   set_loop(l, loop);
2554   loop->_head = l;
2555   // Fix all data nodes placed at the old loop head.
2556   // Uses the lazy-update mechanism of 'get_ctrl'.
2557   replace_node_and_forward_ctrl(x, l);
2558   set_idom(l, entry_control, dom_depth(entry_control) + 1);
2559 
2560   if (iv_bt == T_INT && (LoopStripMiningIter == 0 || strip_mine_loop)) {
2561     // Check for immediately preceding SafePoint and remove
2562     if (sfpt != nullptr && (strip_mine_loop || is_deleteable_safept(sfpt))) {
2563       if (strip_mine_loop) {
2564         Node* outer_le = outer_ilt->_tail->in(0);
2565         Node* sfpt_clone = sfpt->clone();
2566         sfpt_clone->set_req(0, iffalse);
2567         outer_le->set_req(0, sfpt_clone);
2568 
2569         Node* polladdr = sfpt_clone->in(TypeFunc::Parms);
2570         if (polladdr != nullptr && polladdr->is_Load()) {
2571           // Polling load should be pinned outside inner loop.
2572           Node* new_polladdr = polladdr->clone();
2573           new_polladdr->set_req(0, iffalse);
2574           _igvn.register_new_node_with_optimizer(new_polladdr, polladdr);
2575           set_ctrl(new_polladdr, iffalse);
2576           sfpt_clone->set_req(TypeFunc::Parms, new_polladdr);
2577         }
2578         // When this code runs, loop bodies have not yet been populated.
2579         const bool body_populated = false;
2580         register_control(sfpt_clone, outer_ilt, iffalse, body_populated);
2581         set_idom(outer_le, sfpt_clone, dom_depth(sfpt_clone));
2582       }
2583       replace_node_and_forward_ctrl(sfpt, sfpt->in(TypeFunc::Control));
2584       if (loop->_safepts != nullptr) {
2585         loop->_safepts->yank(sfpt);
2586       }
2587     }
2588   }
2589 
2590 #ifdef ASSERT
2591   assert(l->is_valid_counted_loop(iv_bt), "counted loop shape is messed up");
2592   assert(l == loop->_head && l->phi() == phi && l->loopexit_or_null() == lex, "" );
2593 #endif
2594 #ifndef PRODUCT
2595   if (TraceLoopOpts) {
2596     tty->print("Counted      ");
2597     loop->dump_head();
2598   }
2599 #endif
2600 
2601   C->print_method(PHASE_AFTER_CLOOPS, 3, l);
2602 
2603   // Capture bounds of the loop in the induction variable Phi before
2604   // subsequent transformation (iteration splitting) obscures the
2605   // bounds
2606   l->phi()->as_Phi()->set_type(l->phi()->Value(&_igvn));
2607 
2608   if (strip_mine_loop) {
2609     l->mark_strip_mined();
2610     l->verify_strip_mined(1);
2611     outer_ilt->_head->as_Loop()->verify_strip_mined(1);
2612     loop = outer_ilt;
2613   }
2614 
2615 #ifndef PRODUCT
2616   if (x->as_Loop()->is_loop_nest_inner_loop() && iv_bt == T_LONG) {
2617     AtomicAccess::inc(&_long_loop_counted_loops);
2618   }
2619 #endif
2620   if (iv_bt == T_LONG && x->as_Loop()->is_loop_nest_outer_loop()) {
2621     l->mark_loop_nest_outer_loop();
2622   }
2623 
2624   return true;
2625 }
2626 
2627 // Check if there is a dominating loop limit check of the form 'init < limit' starting at the loop entry.
2628 // If there is one, then we do not need to create an additional Loop Limit Check Predicate.
2629 bool PhaseIdealLoop::has_dominating_loop_limit_check(Node* init_trip, Node* limit, const jlong stride_con,
2630                                                      const BasicType iv_bt, Node* loop_entry) {
2631   // Eagerly call transform() on the Cmp and Bool node to common them up if possible. This is required in order to
2632   // successfully find a dominated test with the If node below.
2633   Node* cmp_limit;
2634   Node* bol;
2635   if (stride_con > 0) {
2636     cmp_limit = _igvn.transform(CmpNode::make(init_trip, limit, iv_bt));
2637     bol = _igvn.transform(new BoolNode(cmp_limit, BoolTest::lt));
2638   } else {
2639     cmp_limit = _igvn.transform(CmpNode::make(init_trip, limit, iv_bt));
2640     bol = _igvn.transform(new BoolNode(cmp_limit, BoolTest::gt));
2641   }
2642 
2643   // Check if there is already a dominating init < limit check. If so, we do not need a Loop Limit Check Predicate.
2644   IfNode* iff = new IfNode(loop_entry, bol, PROB_MIN, COUNT_UNKNOWN);
2645   // Also add fake IfProj nodes in order to call transform() on the newly created IfNode.
2646   IfFalseNode* if_false = new IfFalseNode(iff);
2647   IfTrueNode* if_true = new IfTrueNode(iff);
2648   Node* dominated_iff = _igvn.transform(iff);
2649   // ConI node? Found dominating test (IfNode::dominated_by() returns a ConI node).
2650   const bool found_dominating_test = dominated_iff != nullptr && dominated_iff->is_ConI();
2651 
2652   // Kill the If with its projections again in the next IGVN round by cutting it off from the graph.
2653   _igvn.replace_input_of(iff, 0, C->top());
2654   _igvn.replace_input_of(iff, 1, C->top());
2655   return found_dominating_test;
2656 }
2657 
2658 //----------------------exact_limit-------------------------------------------
2659 Node* PhaseIdealLoop::exact_limit( IdealLoopTree *loop ) {
2660   assert(loop->_head->is_CountedLoop(), "");
2661   CountedLoopNode *cl = loop->_head->as_CountedLoop();
2662   assert(cl->is_valid_counted_loop(T_INT), "");
2663 
2664   if (cl->stride_con() == 1 ||
2665       cl->stride_con() == -1 ||
2666       cl->limit()->Opcode() == Op_LoopLimit) {
2667     // Old code has exact limit (it could be incorrect in case of int overflow).
2668     // Loop limit is exact with stride == 1. And loop may already have exact limit.
2669     return cl->limit();
2670   }
2671   Node *limit = nullptr;
2672 #ifdef ASSERT
2673   BoolTest::mask bt = cl->loopexit()->test_trip();
2674   assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
2675 #endif
2676   if (cl->has_exact_trip_count()) {
2677     // Simple case: loop has constant boundaries.
2678     // Use jlongs to avoid integer overflow.
2679     int stride_con = cl->stride_con();
2680     jlong  init_con = cl->init_trip()->get_int();
2681     jlong limit_con = cl->limit()->get_int();
2682     julong trip_cnt = cl->trip_count();
2683     jlong final_con = init_con + trip_cnt*stride_con;
2684     int final_int = (int)final_con;
2685     // The final value should be in integer range since the loop
2686     // is counted and the limit was checked for overflow.
2687     assert(final_con == (jlong)final_int, "final value should be integer");
2688     limit = _igvn.intcon(final_int);
2689   } else {
2690     // Create new LoopLimit node to get exact limit (final iv value).
2691     limit = new LoopLimitNode(C, cl->init_trip(), cl->limit(), cl->stride());
2692     register_new_node(limit, cl->in(LoopNode::EntryControl));
2693   }
2694   assert(limit != nullptr, "sanity");
2695   return limit;
2696 }
2697 
2698 //------------------------------Ideal------------------------------------------
2699 // Return a node which is more "ideal" than the current node.
2700 // Attempt to convert into a counted-loop.
2701 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2702   if (!can_be_counted_loop(phase) && !is_OuterStripMinedLoop()) {
2703     phase->C->set_major_progress();
2704   }
2705   return RegionNode::Ideal(phase, can_reshape);
2706 }
2707 
2708 #ifdef ASSERT
2709 void LoopNode::verify_strip_mined(int expect_skeleton) const {
2710   const OuterStripMinedLoopNode* outer = nullptr;
2711   const CountedLoopNode* inner = nullptr;
2712   if (is_strip_mined()) {
2713     if (!is_valid_counted_loop(T_INT)) {
2714       return; // Skip malformed counted loop
2715     }
2716     assert(is_CountedLoop(), "no Loop should be marked strip mined");
2717     inner = as_CountedLoop();
2718     outer = inner->in(LoopNode::EntryControl)->as_OuterStripMinedLoop();
2719   } else if (is_OuterStripMinedLoop()) {
2720     outer = this->as_OuterStripMinedLoop();
2721     inner = outer->unique_ctrl_out()->as_CountedLoop();
2722     assert(inner->is_valid_counted_loop(T_INT) && inner->is_strip_mined(), "OuterStripMinedLoop should have been removed");
2723     assert(!is_strip_mined(), "outer loop shouldn't be marked strip mined");
2724   }
2725   if (inner != nullptr || outer != nullptr) {
2726     assert(inner != nullptr && outer != nullptr, "missing loop in strip mined nest");
2727     Node* outer_tail = outer->in(LoopNode::LoopBackControl);
2728     Node* outer_le = outer_tail->in(0);
2729     assert(outer_le->Opcode() == Op_OuterStripMinedLoopEnd, "tail of outer loop should be an If");
2730     Node* sfpt = outer_le->in(0);
2731     assert(sfpt->Opcode() == Op_SafePoint, "where's the safepoint?");
2732     Node* inner_out = sfpt->in(0);
2733     CountedLoopEndNode* cle = inner_out->in(0)->as_CountedLoopEnd();
2734     assert(cle == inner->loopexit_or_null(), "mismatch");
2735     bool has_skeleton = outer_le->in(1)->bottom_type()->singleton() && outer_le->in(1)->bottom_type()->is_int()->get_con() == 0;
2736     if (has_skeleton) {
2737       assert(expect_skeleton == 1 || expect_skeleton == -1, "unexpected skeleton node");
2738       assert(outer->outcnt() == 2, "only control nodes");
2739     } else {
2740       assert(expect_skeleton == 0 || expect_skeleton == -1, "no skeleton node?");
2741       uint phis = 0;
2742       uint be_loads = 0;
2743       Node* be = inner->in(LoopNode::LoopBackControl);
2744       for (DUIterator_Fast imax, i = inner->fast_outs(imax); i < imax; i++) {
2745         Node* u = inner->fast_out(i);
2746         if (u->is_Phi()) {
2747           phis++;
2748           for (DUIterator_Fast jmax, j = be->fast_outs(jmax); j < jmax; j++) {
2749             Node* n = be->fast_out(j);
2750             if (n->is_Load()) {
2751               assert(n->in(0) == be || n->find_prec_edge(be) > 0, "should be on the backedge");
2752               do {
2753                 n = n->raw_out(0);
2754               } while (!n->is_Phi());
2755               if (n == u) {
2756                 be_loads++;
2757                 break;
2758               }
2759             }
2760           }
2761         }
2762       }
2763       assert(be_loads <= phis, "wrong number phis that depends on a pinned load");
2764       for (DUIterator_Fast imax, i = outer->fast_outs(imax); i < imax; i++) {
2765         Node* u = outer->fast_out(i);
2766         assert(u == outer || u == inner || u->is_Phi(), "nothing between inner and outer loop");
2767       }
2768       uint stores = 0;
2769       for (DUIterator_Fast imax, i = inner_out->fast_outs(imax); i < imax; i++) {
2770         Node* u = inner_out->fast_out(i);
2771         if (u->is_Store()) {
2772           stores++;
2773         }
2774       }
2775       // Late optimization of loads on backedge can cause Phi of outer loop to be eliminated but Phi of inner loop is
2776       // not guaranteed to be optimized out.
2777       assert(outer->outcnt() >= phis + 2 - be_loads && outer->outcnt() <= phis + 2 + stores + 1, "only phis");
2778     }
2779     assert(sfpt->outcnt() == 1, "no data node");
2780     assert(outer_tail->outcnt() == 1 || !has_skeleton, "no data node");
2781   }
2782 }
2783 #endif
2784 
2785 //=============================================================================
2786 //------------------------------Ideal------------------------------------------
2787 // Return a node which is more "ideal" than the current node.
2788 // Attempt to convert into a counted-loop.
2789 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2790   return RegionNode::Ideal(phase, can_reshape);
2791 }
2792 
2793 //------------------------------dump_spec--------------------------------------
2794 // Dump special per-node info
2795 #ifndef PRODUCT
2796 void CountedLoopNode::dump_spec(outputStream *st) const {
2797   LoopNode::dump_spec(st);
2798   if (stride_is_con()) {
2799     st->print("stride: %d ",stride_con());
2800   }
2801   if (is_pre_loop ()) st->print("pre of N%d" , _main_idx);
2802   if (is_main_loop()) st->print("main of N%d", _idx);
2803   if (is_post_loop()) st->print("post of N%d", _main_idx);
2804   if (is_strip_mined()) st->print(" strip mined");
2805   if (is_multiversion_fast_loop())         { st->print(" multiversion_fast"); }
2806   if (is_multiversion_slow_loop())         { st->print(" multiversion_slow"); }
2807   if (is_multiversion_delayed_slow_loop()) { st->print(" multiversion_delayed_slow"); }
2808 }
2809 #endif
2810 
2811 //=============================================================================
2812 jlong BaseCountedLoopEndNode::stride_con() const {
2813   return stride()->bottom_type()->is_integer(bt())->get_con_as_long(bt());
2814 }
2815 
2816 
2817 BaseCountedLoopEndNode* BaseCountedLoopEndNode::make(Node* control, Node* test, float prob, float cnt, BasicType bt) {
2818   if (bt == T_INT) {
2819     return new CountedLoopEndNode(control, test, prob, cnt);
2820   }
2821   assert(bt == T_LONG, "unsupported");
2822   return new LongCountedLoopEndNode(control, test, prob, cnt);
2823 }
2824 
2825 //=============================================================================
2826 //------------------------------Value-----------------------------------------
2827 const Type* LoopLimitNode::Value(PhaseGVN* phase) const {
2828   const Type* init_t   = phase->type(in(Init));
2829   const Type* limit_t  = phase->type(in(Limit));
2830   const Type* stride_t = phase->type(in(Stride));
2831   // Either input is TOP ==> the result is TOP
2832   if (init_t   == Type::TOP) return Type::TOP;
2833   if (limit_t  == Type::TOP) return Type::TOP;
2834   if (stride_t == Type::TOP) return Type::TOP;
2835 
2836   int stride_con = stride_t->is_int()->get_con();
2837   if (stride_con == 1)
2838     return bottom_type();  // Identity
2839 
2840   if (init_t->is_int()->is_con() && limit_t->is_int()->is_con()) {
2841     // Use jlongs to avoid integer overflow.
2842     jlong init_con   =  init_t->is_int()->get_con();
2843     jlong limit_con  = limit_t->is_int()->get_con();
2844     int  stride_m   = stride_con - (stride_con > 0 ? 1 : -1);
2845     jlong trip_count = (limit_con - init_con + stride_m)/stride_con;
2846     jlong final_con  = init_con + stride_con*trip_count;
2847     int final_int = (int)final_con;
2848     // The final value should be in integer range in almost all cases,
2849     // since the loop is counted and the limit was checked for overflow.
2850     // There some exceptions, for example:
2851     // - During CCP, there might be a temporary overflow from PhiNodes, see JDK-8309266.
2852     // - During PhaseIdealLoop::split_thru_phi, the LoopLimitNode floats possibly far above
2853     //   the loop and its predicates, and we might get constants on one side of the phi that
2854     //   would lead to overflows. Such a code path would never lead us to enter the loop
2855     //   because of the loop limit overflow check that happens after the LoopLimitNode
2856     //   computation with overflow, but before we enter the loop, see JDK-8335747.
2857     if (final_con == (jlong)final_int) {
2858       return TypeInt::make(final_int);
2859     } else {
2860       return bottom_type();
2861     }
2862   }
2863 
2864   return bottom_type(); // TypeInt::INT
2865 }
2866 
2867 //------------------------------Ideal------------------------------------------
2868 // Return a node which is more "ideal" than the current node.
2869 Node *LoopLimitNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2870   if (phase->type(in(Init))   == Type::TOP ||
2871       phase->type(in(Limit))  == Type::TOP ||
2872       phase->type(in(Stride)) == Type::TOP)
2873     return nullptr;  // Dead
2874 
2875   int stride_con = phase->type(in(Stride))->is_int()->get_con();
2876   if (stride_con == 1)
2877     return nullptr;  // Identity
2878 
2879   // Delay following optimizations until all loop optimizations
2880   // done to keep Ideal graph simple.
2881   if (!can_reshape || !phase->C->post_loop_opts_phase()) {
2882     phase->C->record_for_post_loop_opts_igvn(this);
2883     return nullptr;
2884   }
2885 
2886   const TypeInt* init_t  = phase->type(in(Init) )->is_int();
2887   const TypeInt* limit_t = phase->type(in(Limit))->is_int();
2888   jlong stride_p;
2889   jlong lim, ini;
2890   julong max;
2891   if (stride_con > 0) {
2892     stride_p = stride_con;
2893     lim = limit_t->_hi;
2894     ini = init_t->_lo;
2895     max = (julong)max_jint;
2896   } else {
2897     stride_p = -(jlong)stride_con;
2898     lim = init_t->_hi;
2899     ini = limit_t->_lo;
2900     max = (julong)(juint)min_jint; // double cast to get 0x0000000080000000, not 0xffffffff80000000
2901   }
2902   julong range = lim - ini + stride_p;
2903   if (range <= max) {
2904     // Convert to integer expression if it is not overflow.
2905     Node* stride_m = phase->intcon(stride_con - (stride_con > 0 ? 1 : -1));
2906     Node *range = phase->transform(new SubINode(in(Limit), in(Init)));
2907     Node *bias  = phase->transform(new AddINode(range, stride_m));
2908     Node *trip  = phase->transform(new DivINode(nullptr, bias, in(Stride)));
2909     Node *span  = phase->transform(new MulINode(trip, in(Stride)));
2910     return new AddINode(span, in(Init)); // exact limit
2911   }
2912 
2913   if (is_power_of_2(stride_p) ||                // divisor is 2^n
2914       !Matcher::has_match_rule(Op_LoopLimit)) { // or no specialized Mach node?
2915     // Convert to long expression to avoid integer overflow
2916     // and let igvn optimizer convert this division.
2917     //
2918     Node*   init   = phase->transform( new ConvI2LNode(in(Init)));
2919     Node*  limit   = phase->transform( new ConvI2LNode(in(Limit)));
2920     Node* stride   = phase->longcon(stride_con);
2921     Node* stride_m = phase->longcon(stride_con - (stride_con > 0 ? 1 : -1));
2922 
2923     Node *range = phase->transform(new SubLNode(limit, init));
2924     Node *bias  = phase->transform(new AddLNode(range, stride_m));
2925     Node *span;
2926     if (stride_con > 0 && is_power_of_2(stride_p)) {
2927       // bias >= 0 if stride >0, so if stride is 2^n we can use &(-stride)
2928       // and avoid generating rounding for division. Zero trip guard should
2929       // guarantee that init < limit but sometimes the guard is missing and
2930       // we can get situation when init > limit. Note, for the empty loop
2931       // optimization zero trip guard is generated explicitly which leaves
2932       // only RCE predicate where exact limit is used and the predicate
2933       // will simply fail forcing recompilation.
2934       Node* neg_stride   = phase->longcon(-stride_con);
2935       span = phase->transform(new AndLNode(bias, neg_stride));
2936     } else {
2937       Node *trip  = phase->transform(new DivLNode(nullptr, bias, stride));
2938       span = phase->transform(new MulLNode(trip, stride));
2939     }
2940     // Convert back to int
2941     Node *span_int = phase->transform(new ConvL2INode(span));
2942     return new AddINode(span_int, in(Init)); // exact limit
2943   }
2944 
2945   return nullptr;    // No progress
2946 }
2947 
2948 //------------------------------Identity---------------------------------------
2949 // If stride == 1 return limit node.
2950 Node* LoopLimitNode::Identity(PhaseGVN* phase) {
2951   int stride_con = phase->type(in(Stride))->is_int()->get_con();
2952   if (stride_con == 1 || stride_con == -1)
2953     return in(Limit);
2954   return this;
2955 }
2956 
2957 //=============================================================================
2958 //----------------------match_incr_with_optional_truncation--------------------
2959 // Match increment with optional truncation:
2960 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
2961 // Return null for failure. Success returns the increment node.
2962 Node* CountedLoopNode::match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2,
2963                                                            const TypeInteger** trunc_type,
2964                                                            BasicType bt) {
2965   // Quick cutouts:
2966   if (expr == nullptr || expr->req() != 3)  return nullptr;
2967 
2968   Node *t1 = nullptr;
2969   Node *t2 = nullptr;
2970   Node* n1 = expr;
2971   int   n1op = n1->Opcode();
2972   const TypeInteger* trunc_t = TypeInteger::bottom(bt);
2973 
2974   if (bt == T_INT) {
2975     // Try to strip (n1 & M) or (n1 << N >> N) from n1.
2976     if (n1op == Op_AndI &&
2977         n1->in(2)->is_Con() &&
2978         n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
2979       // %%% This check should match any mask of 2**K-1.
2980       t1 = n1;
2981       n1 = t1->in(1);
2982       n1op = n1->Opcode();
2983       trunc_t = TypeInt::CHAR;
2984     } else if (n1op == Op_RShiftI &&
2985                n1->in(1) != nullptr &&
2986                n1->in(1)->Opcode() == Op_LShiftI &&
2987                n1->in(2) == n1->in(1)->in(2) &&
2988                n1->in(2)->is_Con()) {
2989       jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
2990       // %%% This check should match any shift in [1..31].
2991       if (shift == 16 || shift == 8) {
2992         t1 = n1;
2993         t2 = t1->in(1);
2994         n1 = t2->in(1);
2995         n1op = n1->Opcode();
2996         if (shift == 16) {
2997           trunc_t = TypeInt::SHORT;
2998         } else if (shift == 8) {
2999           trunc_t = TypeInt::BYTE;
3000         }
3001       }
3002     }
3003   }
3004 
3005   // If (maybe after stripping) it is an AddI, we won:
3006   if (n1op == Op_Add(bt)) {
3007     *trunc1 = t1;
3008     *trunc2 = t2;
3009     *trunc_type = trunc_t;
3010     return n1;
3011   }
3012 
3013   // failed
3014   return nullptr;
3015 }
3016 
3017 IfNode* CountedLoopNode::find_multiversion_if_from_multiversion_fast_main_loop() {
3018   assert(is_main_loop() && is_multiversion_fast_loop(), "must be multiversion fast main loop");
3019   CountedLoopEndNode* pre_end = find_pre_loop_end();
3020   if (pre_end == nullptr) { return nullptr; }
3021   Node* pre_entry = pre_end->loopnode()->in(LoopNode::EntryControl);
3022   const Predicates predicates(pre_entry);
3023   IfTrueNode* before_predicates = predicates.entry()->isa_IfTrue();
3024   if (before_predicates != nullptr &&
3025       before_predicates->in(0)->in(1)->is_OpaqueMultiversioning()) {
3026     return before_predicates->in(0)->as_If();
3027   }
3028   return nullptr;
3029 }
3030 
3031 LoopNode* CountedLoopNode::skip_strip_mined(int expect_skeleton) {
3032   if (is_strip_mined() && in(EntryControl) != nullptr && in(EntryControl)->is_OuterStripMinedLoop()) {
3033     verify_strip_mined(expect_skeleton);
3034     return in(EntryControl)->as_Loop();
3035   }
3036   return this;
3037 }
3038 
3039 OuterStripMinedLoopNode* CountedLoopNode::outer_loop() const {
3040   assert(is_strip_mined(), "not a strip mined loop");
3041   Node* c = in(EntryControl);
3042   if (c == nullptr || c->is_top() || !c->is_OuterStripMinedLoop()) {
3043     return nullptr;
3044   }
3045   return c->as_OuterStripMinedLoop();
3046 }
3047 
3048 IfTrueNode* OuterStripMinedLoopNode::outer_loop_tail() const {
3049   Node* c = in(LoopBackControl);
3050   if (c == nullptr || c->is_top()) {
3051     return nullptr;
3052   }
3053   return c->as_IfTrue();
3054 }
3055 
3056 IfTrueNode* CountedLoopNode::outer_loop_tail() const {
3057   LoopNode* l = outer_loop();
3058   if (l == nullptr) {
3059     return nullptr;
3060   }
3061   return l->outer_loop_tail();
3062 }
3063 
3064 OuterStripMinedLoopEndNode* OuterStripMinedLoopNode::outer_loop_end() const {
3065   IfTrueNode* proj = outer_loop_tail();
3066   if (proj == nullptr) {
3067     return nullptr;
3068   }
3069   Node* c = proj->in(0);
3070   if (c == nullptr || c->is_top() || c->outcnt() != 2) {
3071     return nullptr;
3072   }
3073   return c->as_OuterStripMinedLoopEnd();
3074 }
3075 
3076 OuterStripMinedLoopEndNode* CountedLoopNode::outer_loop_end() const {
3077   LoopNode* l = outer_loop();
3078   if (l == nullptr) {
3079     return nullptr;
3080   }
3081   return l->outer_loop_end();
3082 }
3083 
3084 IfFalseNode* OuterStripMinedLoopNode::outer_loop_exit() const {
3085   IfNode* le = outer_loop_end();
3086   if (le == nullptr) {
3087     return nullptr;
3088   }
3089   IfFalseNode* c = le->false_proj_or_null();
3090   if (c == nullptr) {
3091     return nullptr;
3092   }
3093   return c->as_IfFalse();
3094 }
3095 
3096 IfFalseNode* CountedLoopNode::outer_loop_exit() const {
3097   LoopNode* l = outer_loop();
3098   if (l == nullptr) {
3099     return nullptr;
3100   }
3101   return l->outer_loop_exit();
3102 }
3103 
3104 SafePointNode* OuterStripMinedLoopNode::outer_safepoint() const {
3105   IfNode* le = outer_loop_end();
3106   if (le == nullptr) {
3107     return nullptr;
3108   }
3109   Node* c = le->in(0);
3110   if (c == nullptr || c->is_top()) {
3111     return nullptr;
3112   }
3113   assert(c->Opcode() == Op_SafePoint, "broken outer loop");
3114   return c->as_SafePoint();
3115 }
3116 
3117 SafePointNode* CountedLoopNode::outer_safepoint() const {
3118   LoopNode* l = outer_loop();
3119   if (l == nullptr) {
3120     return nullptr;
3121   }
3122   return l->outer_safepoint();
3123 }
3124 
3125 Node* CountedLoopNode::skip_assertion_predicates_with_halt() {
3126   Node* ctrl = in(LoopNode::EntryControl);
3127   if (ctrl == nullptr) {
3128     // Dying loop.
3129     return nullptr;
3130   }
3131   if (is_main_loop()) {
3132     ctrl = skip_strip_mined()->in(LoopNode::EntryControl);
3133   }
3134   if (is_main_loop() || is_post_loop()) {
3135     AssertionPredicates assertion_predicates(ctrl);
3136     return assertion_predicates.entry();
3137   }
3138   return ctrl;
3139 }
3140 
3141 
3142 int CountedLoopNode::stride_con() const {
3143   CountedLoopEndNode* cle = loopexit_or_null();
3144   return cle != nullptr ? cle->stride_con() : 0;
3145 }
3146 
3147 BaseCountedLoopNode* BaseCountedLoopNode::make(Node* entry, Node* backedge, BasicType bt) {
3148   if (bt == T_INT) {
3149     return new CountedLoopNode(entry, backedge);
3150   }
3151   assert(bt == T_LONG, "unsupported");
3152   return new LongCountedLoopNode(entry, backedge);
3153 }
3154 
3155 void OuterStripMinedLoopNode::fix_sunk_stores_when_back_to_counted_loop(PhaseIterGVN* igvn,
3156                                                                         PhaseIdealLoop* iloop) const {
3157   CountedLoopNode* inner_cl = inner_counted_loop();
3158   IfFalseNode* cle_out = inner_loop_exit();
3159 
3160   if (cle_out->outcnt() > 1) {
3161     // Look for chains of stores that were sunk
3162     // out of the inner loop and are in the outer loop
3163     for (DUIterator_Fast imax, i = cle_out->fast_outs(imax); i < imax; i++) {
3164       Node* u = cle_out->fast_out(i);
3165       if (u->is_Store()) {
3166         int alias_idx = igvn->C->get_alias_index(u->adr_type());
3167         Node* first = u;
3168         for (;;) {
3169           Node* next = first->in(MemNode::Memory);
3170           if (!next->is_Store() || next->in(0) != cle_out) {
3171             break;
3172           }
3173           assert(igvn->C->get_alias_index(next->adr_type()) == alias_idx, "");
3174           first = next;
3175         }
3176         Node* last = u;
3177         for (;;) {
3178           Node* next = nullptr;
3179           for (DUIterator_Fast jmax, j = last->fast_outs(jmax); j < jmax; j++) {
3180             Node* uu = last->fast_out(j);
3181             if (uu->is_Store() && uu->in(0) == cle_out) {
3182               assert(next == nullptr, "only one in the outer loop");
3183               next = uu;
3184               assert(igvn->C->get_alias_index(next->adr_type()) == alias_idx, "");
3185             }
3186           }
3187           if (next == nullptr) {
3188             break;
3189           }
3190           last = next;
3191         }
3192         Node* phi = nullptr;
3193         for (DUIterator_Fast jmax, j = inner_cl->fast_outs(jmax); j < jmax; j++) {
3194           Node* uu = inner_cl->fast_out(j);
3195           if (uu->is_Phi()) {
3196             Node* be = uu->in(LoopNode::LoopBackControl);
3197             if (be->is_Store() && be->in(0) == inner_cl->in(LoopNode::LoopBackControl)) {
3198               assert(igvn->C->get_alias_index(uu->adr_type()) != alias_idx && igvn->C->get_alias_index(uu->adr_type()) != Compile::AliasIdxBot, "unexpected store");
3199             }
3200             if (be == last || be == first->in(MemNode::Memory)) {
3201               assert(igvn->C->get_alias_index(uu->adr_type()) == alias_idx || igvn->C->get_alias_index(uu->adr_type()) == Compile::AliasIdxBot, "unexpected alias");
3202               assert(phi == nullptr, "only one phi");
3203               phi = uu;
3204             }
3205           }
3206         }
3207 #ifdef ASSERT
3208         for (DUIterator_Fast jmax, j = inner_cl->fast_outs(jmax); j < jmax; j++) {
3209           Node* uu = inner_cl->fast_out(j);
3210           if (uu->is_memory_phi()) {
3211             if (uu->adr_type() == igvn->C->get_adr_type(igvn->C->get_alias_index(u->adr_type()))) {
3212               assert(phi == uu, "what's that phi?");
3213             } else if (uu->adr_type() == TypePtr::BOTTOM) {
3214               Node* n = uu->in(LoopNode::LoopBackControl);
3215               uint limit = igvn->C->live_nodes();
3216               uint i = 0;
3217               while (n != uu) {
3218                 i++;
3219                 assert(i < limit, "infinite loop");
3220                 if (n->is_Proj()) {
3221                   n = n->in(0);
3222                 } else if (n->is_SafePoint() || n->is_MemBar()) {
3223                   n = n->in(TypeFunc::Memory);
3224                 } else if (n->is_Phi()) {
3225                   n = n->in(1);
3226                 } else if (n->is_MergeMem()) {
3227                   n = n->as_MergeMem()->memory_at(igvn->C->get_alias_index(u->adr_type()));
3228                 } else if (n->is_Store() || n->is_LoadStore() || n->is_ClearArray()) {
3229                   n = n->in(MemNode::Memory);
3230                 } else {
3231                   n->dump();
3232                   ShouldNotReachHere();
3233                 }
3234               }
3235             }
3236           }
3237         }
3238 #endif
3239         if (phi == nullptr) {
3240           // If an entire chains was sunk, the
3241           // inner loop has no phi for that memory
3242           // slice, create one for the outer loop
3243           phi = PhiNode::make(inner_cl, first->in(MemNode::Memory), Type::MEMORY,
3244                               igvn->C->get_adr_type(igvn->C->get_alias_index(u->adr_type())));
3245           phi->set_req(LoopNode::LoopBackControl, last);
3246           phi = register_new_node(phi, inner_cl, igvn, iloop);
3247           igvn->replace_input_of(first, MemNode::Memory, phi);
3248         } else {
3249           // Or fix the outer loop fix to include
3250           // that chain of stores.
3251           Node* be = phi->in(LoopNode::LoopBackControl);
3252           assert(!(be->is_Store() && be->in(0) == inner_cl->in(LoopNode::LoopBackControl)), "store on the backedge + sunk stores: unsupported");
3253           if (be == first->in(MemNode::Memory)) {
3254             if (be == phi->in(LoopNode::LoopBackControl)) {
3255               igvn->replace_input_of(phi, LoopNode::LoopBackControl, last);
3256             } else {
3257               igvn->replace_input_of(be, MemNode::Memory, last);
3258             }
3259           } else {
3260 #ifdef ASSERT
3261             if (be == phi->in(LoopNode::LoopBackControl)) {
3262               assert(phi->in(LoopNode::LoopBackControl) == last, "");
3263             } else {
3264               assert(be->in(MemNode::Memory) == last, "");
3265             }
3266 #endif
3267           }
3268         }
3269       }
3270     }
3271   }
3272 }
3273 
3274 // The outer strip mined loop is initially only partially constructed. In particular Phis are omitted.
3275 // See comment above: PhaseIdealLoop::create_outer_strip_mined_loop()
3276 // We're now in the process of finishing the construction of the outer loop. For each Phi in the inner loop, a Phi in
3277 // the outer loop was just now created. However, Sunk Stores cause an extra challenge:
3278 // 1) If all Stores in the inner loop were sunk for a particular memory slice, there's no Phi left for that memory slice
3279 //    in the inner loop anymore, and hence we did not yet add a Phi for the outer loop. So an extra Phi must now be
3280 //    added for each chain of sunk Stores for a particular memory slice.
3281 // 2) If some Stores were sunk and some left in the inner loop, a Phi was already created in the outer loop but
3282 //    its backedge input wasn't wired correctly to the last Store of the chain: the backedge input was set to the
3283 //    backedge of the inner loop Phi instead, but it needs to be the last Store of the chain in the outer loop. We now
3284 //    have to fix that too.
3285 void OuterStripMinedLoopNode::handle_sunk_stores_when_finishing_construction(PhaseIterGVN* igvn) {
3286   IfFalseNode* cle_exit_proj = inner_loop_exit();
3287 
3288   // Find Sunk stores: Sunk stores are pinned on the loop exit projection of the inner loop. Indeed, because Sunk Stores
3289   // modify the memory state captured by the SafePoint in the outer strip mined loop, they must be above it. The
3290   // SafePoint's control input is the loop exit projection. It's also the only control out of the inner loop above the
3291   // SafePoint.
3292 #ifdef ASSERT
3293   int stores_in_outer_loop_cnt = 0;
3294   for (DUIterator_Fast imax, i = cle_exit_proj->fast_outs(imax); i < imax; i++) {
3295     Node* u = cle_exit_proj->fast_out(i);
3296     if (u->is_Store()) {
3297       stores_in_outer_loop_cnt++;
3298     }
3299   }
3300 #endif
3301 
3302   // Sunk stores are reachable from the memory state of the outer loop safepoint
3303   SafePointNode* safepoint = outer_safepoint();
3304   MergeMemNode* mm = safepoint->in(TypeFunc::Memory)->isa_MergeMem();
3305   if (mm == nullptr) {
3306     // There is no MergeMem, which should only happen if there was no memory node
3307     // sunk out of the loop.
3308     assert(stores_in_outer_loop_cnt == 0, "inconsistent");
3309     return;
3310   }
3311   DEBUG_ONLY(int stores_in_outer_loop_cnt2 = 0);
3312   for (MergeMemStream mms(mm); mms.next_non_empty();) {
3313     Node* mem = mms.memory();
3314     // Traverse up the chain of stores to find the first store pinned
3315     // at the loop exit projection.
3316     Node* last = mem;
3317     Node* first = nullptr;
3318     while (mem->is_Store() && mem->in(0) == cle_exit_proj) {
3319       DEBUG_ONLY(stores_in_outer_loop_cnt2++);
3320       first = mem;
3321       mem = mem->in(MemNode::Memory);
3322     }
3323     if (first != nullptr) {
3324       // Found a chain of Stores that were sunk
3325       // Do we already have a memory Phi for that slice on the outer loop? If that is the case, that Phi was created
3326       // by cloning an inner loop Phi. The inner loop Phi should have mem, the memory state of the first Store out of
3327       // the inner loop, as input on the backedge. So does the outer loop Phi given it's a clone.
3328       Node* phi = nullptr;
3329       for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
3330         Node* u = mem->fast_out(i);
3331         if (u->is_Phi() && u->in(0) == this && u->in(LoopBackControl) == mem) {
3332           assert(phi == nullptr, "there should be only one");
3333           phi = u;
3334           PRODUCT_ONLY(break);
3335         }
3336       }
3337       if (phi == nullptr) {
3338         // No outer loop Phi? create one
3339         phi = PhiNode::make(this, last);
3340         phi->set_req(EntryControl, mem);
3341         phi = igvn->transform(phi);
3342         igvn->replace_input_of(first, MemNode::Memory, phi);
3343       } else {
3344         // Fix memory state along the backedge: it should be the last sunk Store of the chain
3345         igvn->replace_input_of(phi, LoopBackControl, last);
3346       }
3347     }
3348   }
3349   assert(stores_in_outer_loop_cnt == stores_in_outer_loop_cnt2, "inconsistent");
3350 }
3351 
3352 void OuterStripMinedLoopNode::adjust_strip_mined_loop(PhaseIterGVN* igvn) {
3353   verify_strip_mined(1);
3354   // Look for the outer & inner strip mined loop, reduce number of
3355   // iterations of the inner loop, set exit condition of outer loop,
3356   // construct required phi nodes for outer loop.
3357   CountedLoopNode* inner_cl = inner_counted_loop();
3358   assert(inner_cl->is_strip_mined(), "inner loop should be strip mined");
3359   if (LoopStripMiningIter == 0) {
3360     remove_outer_loop_and_safepoint(igvn);
3361     return;
3362   }
3363   if (LoopStripMiningIter == 1) {
3364     transform_to_counted_loop(igvn, nullptr);
3365     return;
3366   }
3367   Node* inner_iv_phi = inner_cl->phi();
3368   if (inner_iv_phi == nullptr) {
3369     IfNode* outer_le = outer_loop_end();
3370     Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
3371     igvn->replace_node(outer_le, iff);
3372     inner_cl->clear_strip_mined();
3373     return;
3374   }
3375   CountedLoopEndNode* inner_cle = inner_counted_loop_end();
3376 
3377   int stride = inner_cl->stride_con();
3378   // For a min int stride, LoopStripMiningIter * stride overflows the int range for all values of LoopStripMiningIter
3379   // except 0 or 1. Those values are handled early on in this method and causes the method to return. So for a min int
3380   // stride, the method is guaranteed to return at the next check below.
3381   jlong scaled_iters_long = ((jlong)LoopStripMiningIter) * ABS((jlong)stride);
3382   int scaled_iters = (int)scaled_iters_long;
3383   if ((jlong)scaled_iters != scaled_iters_long) {
3384     // Remove outer loop and safepoint (too few iterations)
3385     remove_outer_loop_and_safepoint(igvn);
3386     return;
3387   }
3388   jlong short_scaled_iters = LoopStripMiningIterShortLoop * ABS(stride);
3389   const TypeInt* inner_iv_t = igvn->type(inner_iv_phi)->is_int();
3390   jlong iter_estimate = (jlong)inner_iv_t->_hi - (jlong)inner_iv_t->_lo;
3391   assert(iter_estimate > 0, "broken");
3392   if (iter_estimate <= short_scaled_iters) {
3393     // Remove outer loop and safepoint: loop executes less than LoopStripMiningIterShortLoop
3394     remove_outer_loop_and_safepoint(igvn);
3395     return;
3396   }
3397   if (iter_estimate <= scaled_iters_long) {
3398     // We would only go through one iteration of
3399     // the outer loop: drop the outer loop but
3400     // keep the safepoint so we don't run for
3401     // too long without a safepoint
3402     IfNode* outer_le = outer_loop_end();
3403     Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
3404     igvn->replace_node(outer_le, iff);
3405     inner_cl->clear_strip_mined();
3406     return;
3407   }
3408 
3409   IfTrueNode* cle_tail = inner_cle->true_proj();
3410   ResourceMark rm;
3411   Node_List old_new;
3412   if (cle_tail->outcnt() > 1) {
3413     // Look for nodes on backedge of inner loop and clone them
3414     Unique_Node_List backedge_nodes;
3415     for (DUIterator_Fast imax, i = cle_tail->fast_outs(imax); i < imax; i++) {
3416       Node* u = cle_tail->fast_out(i);
3417       if (u != inner_cl) {
3418         assert(!u->is_CFG(), "control flow on the backedge?");
3419         backedge_nodes.push(u);
3420       }
3421     }
3422     uint last = igvn->C->unique();
3423     for (uint next = 0; next < backedge_nodes.size(); next++) {
3424       Node* n = backedge_nodes.at(next);
3425       old_new.map(n->_idx, n->clone());
3426       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3427         Node* u = n->fast_out(i);
3428         assert(!u->is_CFG(), "broken");
3429         if (u->_idx >= last) {
3430           continue;
3431         }
3432         if (!u->is_Phi()) {
3433           backedge_nodes.push(u);
3434         } else {
3435           assert(u->in(0) == inner_cl, "strange phi on the backedge");
3436         }
3437       }
3438     }
3439     // Put the clones on the outer loop backedge
3440     Node* le_tail = outer_loop_tail();
3441     for (uint next = 0; next < backedge_nodes.size(); next++) {
3442       Node *n = old_new[backedge_nodes.at(next)->_idx];
3443       for (uint i = 1; i < n->req(); i++) {
3444         if (n->in(i) != nullptr && old_new[n->in(i)->_idx] != nullptr) {
3445           n->set_req(i, old_new[n->in(i)->_idx]);
3446         }
3447       }
3448       if (n->in(0) != nullptr && n->in(0) == cle_tail) {
3449         n->set_req(0, le_tail);
3450       }
3451       igvn->register_new_node_with_optimizer(n);
3452     }
3453   }
3454 
3455   Node* iv_phi = nullptr;
3456   // Make a clone of each phi in the inner loop for the outer loop
3457   // When Stores were Sunk, after this step, a Phi may still be missing or its backedge incorrectly wired. See
3458   // handle_sunk_stores_when_finishing_construction()
3459   for (uint i = 0; i < inner_cl->outcnt(); i++) {
3460     Node* u = inner_cl->raw_out(i);
3461     if (u->is_Phi()) {
3462       assert(u->in(0) == inner_cl, "inconsistent");
3463       Node* phi = u->clone();
3464       phi->set_req(0, this);
3465       Node* be = old_new[phi->in(LoopNode::LoopBackControl)->_idx];
3466       if (be != nullptr) {
3467         phi->set_req(LoopNode::LoopBackControl, be);
3468       }
3469       phi = igvn->transform(phi);
3470       igvn->replace_input_of(u, LoopNode::EntryControl, phi);
3471       if (u == inner_iv_phi) {
3472         iv_phi = phi;
3473       }
3474     }
3475   }
3476 
3477   handle_sunk_stores_when_finishing_construction(igvn);
3478 
3479   if (iv_phi != nullptr) {
3480     // Now adjust the inner loop's exit condition
3481     Node* limit = inner_cl->limit();
3482     // If limit < init for stride > 0 (or limit > init for stride < 0),
3483     // the loop body is run only once. Given limit - init (init - limit resp.)
3484     // would be negative, the unsigned comparison below would cause
3485     // the loop body to be run for LoopStripMiningIter.
3486     Node* max = nullptr;
3487     if (stride > 0) {
3488       max = MaxNode::max_diff_with_zero(limit, iv_phi, TypeInt::INT, *igvn);
3489     } else {
3490       max = MaxNode::max_diff_with_zero(iv_phi, limit, TypeInt::INT, *igvn);
3491     }
3492     // sub is positive and can be larger than the max signed int
3493     // value. Use an unsigned min.
3494     Node* const_iters = igvn->intcon(scaled_iters);
3495     Node* min = MaxNode::unsigned_min(max, const_iters, TypeInt::make(0, scaled_iters, Type::WidenMin), *igvn);
3496     // min is the number of iterations for the next inner loop execution:
3497     // unsigned_min(max(limit - iv_phi, 0), scaled_iters) if stride > 0
3498     // unsigned_min(max(iv_phi - limit, 0), scaled_iters) if stride < 0
3499 
3500     Node* new_limit = nullptr;
3501     if (stride > 0) {
3502       new_limit = igvn->transform(new AddINode(min, iv_phi));
3503     } else {
3504       new_limit = igvn->transform(new SubINode(iv_phi, min));
3505     }
3506     Node* inner_cmp = inner_cle->cmp_node();
3507     Node* inner_bol = inner_cle->in(CountedLoopEndNode::TestValue);
3508     Node* outer_bol = inner_bol;
3509     // cmp node for inner loop may be shared
3510     inner_cmp = inner_cmp->clone();
3511     inner_cmp->set_req(2, new_limit);
3512     inner_bol = inner_bol->clone();
3513     inner_bol->set_req(1, igvn->transform(inner_cmp));
3514     igvn->replace_input_of(inner_cle, CountedLoopEndNode::TestValue, igvn->transform(inner_bol));
3515     // Set the outer loop's exit condition too
3516     igvn->replace_input_of(outer_loop_end(), 1, outer_bol);
3517   } else {
3518     assert(false, "should be able to adjust outer loop");
3519     IfNode* outer_le = outer_loop_end();
3520     Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
3521     igvn->replace_node(outer_le, iff);
3522     inner_cl->clear_strip_mined();
3523   }
3524 }
3525 
3526 void OuterStripMinedLoopNode::transform_to_counted_loop(PhaseIterGVN* igvn, PhaseIdealLoop* iloop) {
3527   CountedLoopNode* inner_cl = unique_ctrl_out()->as_CountedLoop();
3528   CountedLoopEndNode* cle = inner_cl->loopexit();
3529   Node* inner_test = cle->in(1);
3530   IfNode* outer_le = outer_loop_end();
3531   CountedLoopEndNode* inner_cle = inner_cl->loopexit();
3532   Node* safepoint = outer_safepoint();
3533 
3534   fix_sunk_stores_when_back_to_counted_loop(igvn, iloop);
3535 
3536   // make counted loop exit test always fail
3537   ConINode* zero = igvn->intcon(0);
3538   if (iloop != nullptr) {
3539     iloop->set_root_as_ctrl(zero);
3540   }
3541   igvn->replace_input_of(cle, 1, zero);
3542   // replace outer loop end with CountedLoopEndNode with formers' CLE's exit test
3543   Node* new_end = new CountedLoopEndNode(outer_le->in(0), inner_test, cle->_prob, cle->_fcnt);
3544   register_control(new_end, inner_cl, outer_le->in(0), igvn, iloop);
3545   if (iloop == nullptr) {
3546     igvn->replace_node(outer_le, new_end);
3547   } else {
3548     iloop->replace_node_and_forward_ctrl(outer_le, new_end);
3549   }
3550   // the backedge of the inner loop must be rewired to the new loop end
3551   IfTrueNode* backedge = cle->true_proj();
3552   igvn->replace_input_of(backedge, 0, new_end);
3553   if (iloop != nullptr) {
3554     iloop->set_idom(backedge, new_end, iloop->dom_depth(new_end) + 1);
3555   }
3556   // make the outer loop go away
3557   igvn->replace_input_of(in(LoopBackControl), 0, igvn->C->top());
3558   igvn->replace_input_of(this, LoopBackControl, igvn->C->top());
3559   inner_cl->clear_strip_mined();
3560   if (iloop != nullptr) {
3561     Unique_Node_List wq;
3562     wq.push(safepoint);
3563 
3564     IdealLoopTree* outer_loop_ilt = iloop->get_loop(this);
3565     IdealLoopTree* loop = iloop->get_loop(inner_cl);
3566 
3567     for (uint i = 0; i < wq.size(); i++) {
3568       Node* n = wq.at(i);
3569       for (uint j = 0; j < n->req(); ++j) {
3570         Node* in = n->in(j);
3571         if (in == nullptr || in->is_CFG()) {
3572           continue;
3573         }
3574         if (iloop->get_loop(iloop->get_ctrl(in)) != outer_loop_ilt) {
3575           continue;
3576         }
3577         wq.push(in);
3578       }
3579       assert(!loop->_body.contains(n), "Shouldn't append node to body twice");
3580       loop->_body.push(n);
3581     }
3582     iloop->set_loop(safepoint, loop);
3583     loop->_body.push(safepoint);
3584     iloop->set_loop(safepoint->in(0), loop);
3585     loop->_body.push(safepoint->in(0));
3586     outer_loop_ilt->_tail = igvn->C->top();
3587   }
3588 }
3589 
3590 void OuterStripMinedLoopNode::remove_outer_loop_and_safepoint(PhaseIterGVN* igvn) const {
3591   CountedLoopNode* inner_cl = unique_ctrl_out()->as_CountedLoop();
3592   Node* outer_sfpt = outer_safepoint();
3593   Node* outer_out = outer_loop_exit();
3594   igvn->replace_node(outer_out, outer_sfpt->in(0));
3595   igvn->replace_input_of(outer_sfpt, 0, igvn->C->top());
3596   inner_cl->clear_strip_mined();
3597 }
3598 
3599 Node* OuterStripMinedLoopNode::register_new_node(Node* node, LoopNode* ctrl, PhaseIterGVN* igvn, PhaseIdealLoop* iloop) {
3600   if (iloop == nullptr) {
3601     return igvn->transform(node);
3602   }
3603   iloop->register_new_node(node, ctrl);
3604   return node;
3605 }
3606 
3607 Node* OuterStripMinedLoopNode::register_control(Node* node, Node* loop, Node* idom, PhaseIterGVN* igvn,
3608                                                 PhaseIdealLoop* iloop) {
3609   if (iloop == nullptr) {
3610     return igvn->transform(node);
3611   }
3612   iloop->register_control(node, iloop->get_loop(loop), idom);
3613   return node;
3614 }
3615 
3616 const Type* OuterStripMinedLoopEndNode::Value(PhaseGVN* phase) const {
3617   if (!in(0)) return Type::TOP;
3618   if (phase->type(in(0)) == Type::TOP)
3619     return Type::TOP;
3620 
3621   // Until expansion, the loop end condition is not set so this should not constant fold.
3622   if (is_expanded(phase)) {
3623     return IfNode::Value(phase);
3624   }
3625 
3626   return TypeTuple::IFBOTH;
3627 }
3628 
3629 bool OuterStripMinedLoopEndNode::is_expanded(PhaseGVN *phase) const {
3630   // The outer strip mined loop head only has Phi uses after expansion
3631   if (phase->is_IterGVN()) {
3632     IfTrueNode* backedge = true_proj_or_null();
3633     if (backedge != nullptr) {
3634       Node* head = backedge->unique_ctrl_out_or_null();
3635       if (head != nullptr && head->is_OuterStripMinedLoop()) {
3636         if (head->find_out_with(Op_Phi) != nullptr) {
3637           return true;
3638         }
3639       }
3640     }
3641   }
3642   return false;
3643 }
3644 
3645 Node *OuterStripMinedLoopEndNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3646   if (remove_dead_region(phase, can_reshape))  return this;
3647 
3648   return nullptr;
3649 }
3650 
3651 //------------------------------filtered_type--------------------------------
3652 // Return a type based on condition control flow
3653 // A successful return will be a type that is restricted due
3654 // to a series of dominating if-tests, such as:
3655 //    if (i < 10) {
3656 //       if (i > 0) {
3657 //          here: "i" type is [1..10)
3658 //       }
3659 //    }
3660 // or a control flow merge
3661 //    if (i < 10) {
3662 //       do {
3663 //          phi( , ) -- at top of loop type is [min_int..10)
3664 //         i = ?
3665 //       } while ( i < 10)
3666 //
3667 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
3668   assert(n && n->bottom_type()->is_int(), "must be int");
3669   const TypeInt* filtered_t = nullptr;
3670   if (!n->is_Phi()) {
3671     assert(n_ctrl != nullptr || n_ctrl == C->top(), "valid control");
3672     filtered_t = filtered_type_from_dominators(n, n_ctrl);
3673 
3674   } else {
3675     Node* phi    = n->as_Phi();
3676     Node* region = phi->in(0);
3677     assert(n_ctrl == nullptr || n_ctrl == region, "ctrl parameter must be region");
3678     if (region && region != C->top()) {
3679       for (uint i = 1; i < phi->req(); i++) {
3680         Node* val   = phi->in(i);
3681         Node* use_c = region->in(i);
3682         const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
3683         if (val_t != nullptr) {
3684           if (filtered_t == nullptr) {
3685             filtered_t = val_t;
3686           } else {
3687             filtered_t = filtered_t->meet(val_t)->is_int();
3688           }
3689         }
3690       }
3691     }
3692   }
3693   const TypeInt* n_t = _igvn.type(n)->is_int();
3694   if (filtered_t != nullptr) {
3695     n_t = n_t->join(filtered_t)->is_int();
3696   }
3697   return n_t;
3698 }
3699 
3700 
3701 //------------------------------filtered_type_from_dominators--------------------------------
3702 // Return a possibly more restrictive type for val based on condition control flow of dominators
3703 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
3704   if (val->is_Con()) {
3705      return val->bottom_type()->is_int();
3706   }
3707   uint if_limit = 10; // Max number of dominating if's visited
3708   const TypeInt* rtn_t = nullptr;
3709 
3710   if (use_ctrl && use_ctrl != C->top()) {
3711     Node* val_ctrl = get_ctrl(val);
3712     uint val_dom_depth = dom_depth(val_ctrl);
3713     Node* pred = use_ctrl;
3714     uint if_cnt = 0;
3715     while (if_cnt < if_limit) {
3716       if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
3717         if_cnt++;
3718         const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
3719         if (if_t != nullptr) {
3720           if (rtn_t == nullptr) {
3721             rtn_t = if_t;
3722           } else {
3723             rtn_t = rtn_t->join(if_t)->is_int();
3724           }
3725         }
3726       }
3727       pred = idom(pred);
3728       if (pred == nullptr || pred == C->top()) {
3729         break;
3730       }
3731       // Stop if going beyond definition block of val
3732       if (dom_depth(pred) < val_dom_depth) {
3733         break;
3734       }
3735     }
3736   }
3737   return rtn_t;
3738 }
3739 
3740 
3741 //------------------------------dump_spec--------------------------------------
3742 // Dump special per-node info
3743 #ifndef PRODUCT
3744 void CountedLoopEndNode::dump_spec(outputStream *st) const {
3745   if( in(TestValue) != nullptr && in(TestValue)->is_Bool() ) {
3746     BoolTest bt( test_trip()); // Added this for g++.
3747 
3748     st->print("[");
3749     bt.dump_on(st);
3750     st->print("]");
3751   }
3752   st->print(" ");
3753   IfNode::dump_spec(st);
3754 }
3755 #endif
3756 
3757 //=============================================================================
3758 //------------------------------is_member--------------------------------------
3759 // Is 'l' a member of 'this'?
3760 bool IdealLoopTree::is_member(const IdealLoopTree *l) const {
3761   while( l->_nest > _nest ) l = l->_parent;
3762   return l == this;
3763 }
3764 
3765 //------------------------------set_nest---------------------------------------
3766 // Set loop tree nesting depth.  Accumulate _has_call bits.
3767 int IdealLoopTree::set_nest( uint depth ) {
3768   assert(depth <= SHRT_MAX, "sanity");
3769   _nest = depth;
3770   int bits = _has_call;
3771   if( _child ) bits |= _child->set_nest(depth+1);
3772   if( bits ) _has_call = 1;
3773   if( _next  ) bits |= _next ->set_nest(depth  );
3774   return bits;
3775 }
3776 
3777 //------------------------------split_fall_in----------------------------------
3778 // Split out multiple fall-in edges from the loop header.  Move them to a
3779 // private RegionNode before the loop.  This becomes the loop landing pad.
3780 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
3781   PhaseIterGVN &igvn = phase->_igvn;
3782   uint i;
3783 
3784   // Make a new RegionNode to be the landing pad.
3785   RegionNode* landing_pad = new RegionNode(fall_in_cnt + 1);
3786   phase->set_loop(landing_pad,_parent);
3787   // If _head was irreducible loop entry, landing_pad may now be too
3788   landing_pad->set_loop_status(_head->as_Region()->loop_status());
3789   // Gather all the fall-in control paths into the landing pad
3790   uint icnt = fall_in_cnt;
3791   uint oreq = _head->req();
3792   for( i = oreq-1; i>0; i-- )
3793     if( !phase->is_member( this, _head->in(i) ) )
3794       landing_pad->set_req(icnt--,_head->in(i));
3795 
3796   // Peel off PhiNode edges as well
3797   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
3798     Node *oj = _head->fast_out(j);
3799     if( oj->is_Phi() ) {
3800       PhiNode* old_phi = oj->as_Phi();
3801       assert( old_phi->region() == _head, "" );
3802       igvn.hash_delete(old_phi);   // Yank from hash before hacking edges
3803       Node *p = PhiNode::make_blank(landing_pad, old_phi);
3804       uint icnt = fall_in_cnt;
3805       for( i = oreq-1; i>0; i-- ) {
3806         if( !phase->is_member( this, _head->in(i) ) ) {
3807           p->init_req(icnt--, old_phi->in(i));
3808           // Go ahead and clean out old edges from old phi
3809           old_phi->del_req(i);
3810         }
3811       }
3812       // Search for CSE's here, because ZKM.jar does a lot of
3813       // loop hackery and we need to be a little incremental
3814       // with the CSE to avoid O(N^2) node blow-up.
3815       Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
3816       if( p2 ) {                // Found CSE
3817         p->destruct(&igvn);     // Recover useless new node
3818         p = p2;                 // Use old node
3819       } else {
3820         igvn.register_new_node_with_optimizer(p, old_phi);
3821       }
3822       // Make old Phi refer to new Phi.
3823       old_phi->add_req(p);
3824       // Check for the special case of making the old phi useless and
3825       // disappear it.  In JavaGrande I have a case where this useless
3826       // Phi is the loop limit and prevents recognizing a CountedLoop
3827       // which in turn prevents removing an empty loop.
3828       Node *id_old_phi = old_phi->Identity(&igvn);
3829       if( id_old_phi != old_phi ) { // Found a simple identity?
3830         // Note that I cannot call 'replace_node' here, because
3831         // that will yank the edge from old_phi to the Region and
3832         // I'm mid-iteration over the Region's uses.
3833         for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
3834           Node* use = old_phi->last_out(i);
3835           igvn.rehash_node_delayed(use);
3836           uint uses_found = 0;
3837           for (uint j = 0; j < use->len(); j++) {
3838             if (use->in(j) == old_phi) {
3839               if (j < use->req()) use->set_req (j, id_old_phi);
3840               else                use->set_prec(j, id_old_phi);
3841               uses_found++;
3842             }
3843           }
3844           i -= uses_found;    // we deleted 1 or more copies of this edge
3845         }
3846       }
3847       igvn._worklist.push(old_phi);
3848     }
3849   }
3850   // Finally clean out the fall-in edges from the RegionNode
3851   for( i = oreq-1; i>0; i-- ) {
3852     if( !phase->is_member( this, _head->in(i) ) ) {
3853       _head->del_req(i);
3854     }
3855   }
3856   igvn.rehash_node_delayed(_head);
3857   // Transform landing pad
3858   igvn.register_new_node_with_optimizer(landing_pad, _head);
3859   // Insert landing pad into the header
3860   _head->add_req(landing_pad);
3861 }
3862 
3863 //------------------------------split_outer_loop-------------------------------
3864 // Split out the outermost loop from this shared header.
3865 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
3866   PhaseIterGVN &igvn = phase->_igvn;
3867 
3868   // Find index of outermost loop; it should also be my tail.
3869   uint outer_idx = 1;
3870   while( _head->in(outer_idx) != _tail ) outer_idx++;
3871 
3872   // Make a LoopNode for the outermost loop.
3873   Node *ctl = _head->in(LoopNode::EntryControl);
3874   Node *outer = new LoopNode( ctl, _head->in(outer_idx) );
3875   outer = igvn.register_new_node_with_optimizer(outer, _head);
3876   phase->set_created_loop_node();
3877 
3878   // Outermost loop falls into '_head' loop
3879   _head->set_req(LoopNode::EntryControl, outer);
3880   _head->del_req(outer_idx);
3881   // Split all the Phis up between '_head' loop and 'outer' loop.
3882   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
3883     Node *out = _head->fast_out(j);
3884     if( out->is_Phi() ) {
3885       PhiNode *old_phi = out->as_Phi();
3886       assert( old_phi->region() == _head, "" );
3887       Node *phi = PhiNode::make_blank(outer, old_phi);
3888       phi->init_req(LoopNode::EntryControl,    old_phi->in(LoopNode::EntryControl));
3889       phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
3890       phi = igvn.register_new_node_with_optimizer(phi, old_phi);
3891       // Make old Phi point to new Phi on the fall-in path
3892       igvn.replace_input_of(old_phi, LoopNode::EntryControl, phi);
3893       old_phi->del_req(outer_idx);
3894     }
3895   }
3896 
3897   // Use the new loop head instead of the old shared one
3898   _head = outer;
3899   phase->set_loop(_head, this);
3900 }
3901 
3902 //------------------------------fix_parent-------------------------------------
3903 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
3904   loop->_parent = parent;
3905   if( loop->_child ) fix_parent( loop->_child, loop   );
3906   if( loop->_next  ) fix_parent( loop->_next , parent );
3907 }
3908 
3909 //------------------------------estimate_path_freq-----------------------------
3910 static float estimate_path_freq( Node *n ) {
3911   // Try to extract some path frequency info
3912   IfNode *iff;
3913   for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
3914     uint nop = n->Opcode();
3915     if( nop == Op_SafePoint ) {   // Skip any safepoint
3916       n = n->in(0);
3917       continue;
3918     }
3919     if( nop == Op_CatchProj ) {   // Get count from a prior call
3920       // Assume call does not always throw exceptions: means the call-site
3921       // count is also the frequency of the fall-through path.
3922       assert( n->is_CatchProj(), "" );
3923       if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
3924         return 0.0f;            // Assume call exception path is rare
3925       Node *call = n->in(0)->in(0)->in(0);
3926       assert( call->is_Call(), "expect a call here" );
3927       const JVMState *jvms = ((CallNode*)call)->jvms();
3928       ciMethodData* methodData = jvms->method()->method_data();
3929       if (!methodData->is_mature())  return 0.0f; // No call-site data
3930       ciProfileData* data = methodData->bci_to_data(jvms->bci());
3931       if ((data == nullptr) || !data->is_CounterData()) {
3932         // no call profile available, try call's control input
3933         n = n->in(0);
3934         continue;
3935       }
3936       return data->as_CounterData()->count()/FreqCountInvocations;
3937     }
3938     // See if there's a gating IF test
3939     Node *n_c = n->in(0);
3940     if( !n_c->is_If() ) break;       // No estimate available
3941     iff = n_c->as_If();
3942     if( iff->_fcnt != COUNT_UNKNOWN )   // Have a valid count?
3943       // Compute how much count comes on this path
3944       return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
3945     // Have no count info.  Skip dull uncommon-trap like branches.
3946     if( (nop == Op_IfTrue  && iff->_prob < PROB_LIKELY_MAG(5)) ||
3947         (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
3948       break;
3949     // Skip through never-taken branch; look for a real loop exit.
3950     n = iff->in(0);
3951   }
3952   return 0.0f;                  // No estimate available
3953 }
3954 
3955 //------------------------------merge_many_backedges---------------------------
3956 // Merge all the backedges from the shared header into a private Region.
3957 // Feed that region as the one backedge to this loop.
3958 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
3959   uint i;
3960 
3961   // Scan for the top 2 hottest backedges
3962   float hotcnt = 0.0f;
3963   float warmcnt = 0.0f;
3964   uint hot_idx = 0;
3965   // Loop starts at 2 because slot 1 is the fall-in path
3966   for( i = 2; i < _head->req(); i++ ) {
3967     float cnt = estimate_path_freq(_head->in(i));
3968     if( cnt > hotcnt ) {       // Grab hottest path
3969       warmcnt = hotcnt;
3970       hotcnt = cnt;
3971       hot_idx = i;
3972     } else if( cnt > warmcnt ) { // And 2nd hottest path
3973       warmcnt = cnt;
3974     }
3975   }
3976 
3977   // See if the hottest backedge is worthy of being an inner loop
3978   // by being much hotter than the next hottest backedge.
3979   if( hotcnt <= 0.0001 ||
3980       hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
3981 
3982   // Peel out the backedges into a private merge point; peel
3983   // them all except optionally hot_idx.
3984   PhaseIterGVN &igvn = phase->_igvn;
3985 
3986   Node *hot_tail = nullptr;
3987   // Make a Region for the merge point
3988   Node *r = new RegionNode(1);
3989   for( i = 2; i < _head->req(); i++ ) {
3990     if( i != hot_idx )
3991       r->add_req( _head->in(i) );
3992     else hot_tail = _head->in(i);
3993   }
3994   igvn.register_new_node_with_optimizer(r, _head);
3995   // Plug region into end of loop _head, followed by hot_tail
3996   while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
3997   igvn.replace_input_of(_head, 2, r);
3998   if( hot_idx ) _head->add_req(hot_tail);
3999 
4000   // Split all the Phis up between '_head' loop and the Region 'r'
4001   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
4002     Node *out = _head->fast_out(j);
4003     if( out->is_Phi() ) {
4004       PhiNode* n = out->as_Phi();
4005       igvn.hash_delete(n);      // Delete from hash before hacking edges
4006       Node *hot_phi = nullptr;
4007       Node *phi = new PhiNode(r, n->type(), n->adr_type());
4008       // Check all inputs for the ones to peel out
4009       uint j = 1;
4010       for( uint i = 2; i < n->req(); i++ ) {
4011         if( i != hot_idx )
4012           phi->set_req( j++, n->in(i) );
4013         else hot_phi = n->in(i);
4014       }
4015       // Register the phi but do not transform until whole place transforms
4016       igvn.register_new_node_with_optimizer(phi, n);
4017       // Add the merge phi to the old Phi
4018       while( n->req() > 3 ) n->del_req( n->req()-1 );
4019       igvn.replace_input_of(n, 2, phi);
4020       if( hot_idx ) n->add_req(hot_phi);
4021     }
4022   }
4023 
4024 
4025   // Insert a new IdealLoopTree inserted below me.  Turn it into a clone
4026   // of self loop tree.  Turn self into a loop headed by _head and with
4027   // tail being the new merge point.
4028   IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
4029   phase->set_loop(_tail,ilt);   // Adjust tail
4030   _tail = r;                    // Self's tail is new merge point
4031   phase->set_loop(r,this);
4032   ilt->_child = _child;         // New guy has my children
4033   _child = ilt;                 // Self has new guy as only child
4034   ilt->_parent = this;          // new guy has self for parent
4035   ilt->_nest = _nest;           // Same nesting depth (for now)
4036 
4037   // Starting with 'ilt', look for child loop trees using the same shared
4038   // header.  Flatten these out; they will no longer be loops in the end.
4039   IdealLoopTree **pilt = &_child;
4040   while( ilt ) {
4041     if( ilt->_head == _head ) {
4042       uint i;
4043       for( i = 2; i < _head->req(); i++ )
4044         if( _head->in(i) == ilt->_tail )
4045           break;                // Still a loop
4046       if( i == _head->req() ) { // No longer a loop
4047         // Flatten ilt.  Hang ilt's "_next" list from the end of
4048         // ilt's '_child' list.  Move the ilt's _child up to replace ilt.
4049         IdealLoopTree **cp = &ilt->_child;
4050         while( *cp ) cp = &(*cp)->_next;   // Find end of child list
4051         *cp = ilt->_next;       // Hang next list at end of child list
4052         *pilt = ilt->_child;    // Move child up to replace ilt
4053         ilt->_head = nullptr;   // Flag as a loop UNIONED into parent
4054         ilt = ilt->_child;      // Repeat using new ilt
4055         continue;               // do not advance over ilt->_child
4056       }
4057       assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
4058       phase->set_loop(_head,ilt);
4059     }
4060     pilt = &ilt->_child;        // Advance to next
4061     ilt = *pilt;
4062   }
4063 
4064   if( _child ) fix_parent( _child, this );
4065 }
4066 
4067 //------------------------------beautify_loops---------------------------------
4068 // Split shared headers and insert loop landing pads.
4069 // Insert a LoopNode to replace the RegionNode.
4070 // Return TRUE if loop tree is structurally changed.
4071 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
4072   bool result = false;
4073   // Cache parts in locals for easy
4074   PhaseIterGVN &igvn = phase->_igvn;
4075 
4076   igvn.hash_delete(_head);      // Yank from hash before hacking edges
4077 
4078   // Check for multiple fall-in paths.  Peel off a landing pad if need be.
4079   int fall_in_cnt = 0;
4080   for( uint i = 1; i < _head->req(); i++ )
4081     if( !phase->is_member( this, _head->in(i) ) )
4082       fall_in_cnt++;
4083   assert( fall_in_cnt, "at least 1 fall-in path" );
4084   if( fall_in_cnt > 1 )         // Need a loop landing pad to merge fall-ins
4085     split_fall_in( phase, fall_in_cnt );
4086 
4087   // Swap inputs to the _head and all Phis to move the fall-in edge to
4088   // the left.
4089   fall_in_cnt = 1;
4090   while( phase->is_member( this, _head->in(fall_in_cnt) ) )
4091     fall_in_cnt++;
4092   if( fall_in_cnt > 1 ) {
4093     // Since I am just swapping inputs I do not need to update def-use info
4094     Node *tmp = _head->in(1);
4095     igvn.rehash_node_delayed(_head);
4096     _head->set_req( 1, _head->in(fall_in_cnt) );
4097     _head->set_req( fall_in_cnt, tmp );
4098     // Swap also all Phis
4099     for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
4100       Node* phi = _head->fast_out(i);
4101       if( phi->is_Phi() ) {
4102         igvn.rehash_node_delayed(phi); // Yank from hash before hacking edges
4103         tmp = phi->in(1);
4104         phi->set_req( 1, phi->in(fall_in_cnt) );
4105         phi->set_req( fall_in_cnt, tmp );
4106       }
4107     }
4108   }
4109   assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
4110   assert(  phase->is_member( this, _head->in(2) ), "right edge is loop" );
4111 
4112   // If I am a shared header (multiple backedges), peel off the many
4113   // backedges into a private merge point and use the merge point as
4114   // the one true backedge.
4115   if (_head->req() > 3) {
4116     // Merge the many backedges into a single backedge but leave
4117     // the hottest backedge as separate edge for the following peel.
4118     if (!_irreducible) {
4119       merge_many_backedges( phase );
4120     }
4121 
4122     // When recursively beautify my children, split_fall_in can change
4123     // loop tree structure when I am an irreducible loop. Then the head
4124     // of my children has a req() not bigger than 3. Here we need to set
4125     // result to true to catch that case in order to tell the caller to
4126     // rebuild loop tree. See issue JDK-8244407 for details.
4127     result = true;
4128   }
4129 
4130   // If I have one hot backedge, peel off myself loop.
4131   // I better be the outermost loop.
4132   if (_head->req() > 3 && !_irreducible) {
4133     split_outer_loop( phase );
4134     result = true;
4135 
4136   } else if (!_head->is_Loop() && !_irreducible) {
4137     // Make a new LoopNode to replace the old loop head
4138     Node *l = new LoopNode( _head->in(1), _head->in(2) );
4139     l = igvn.register_new_node_with_optimizer(l, _head);
4140     phase->set_created_loop_node();
4141     // Go ahead and replace _head
4142     phase->_igvn.replace_node( _head, l );
4143     _head = l;
4144     phase->set_loop(_head, this);
4145   }
4146 
4147   // Now recursively beautify nested loops
4148   if( _child ) result |= _child->beautify_loops( phase );
4149   if( _next  ) result |= _next ->beautify_loops( phase );
4150   return result;
4151 }
4152 
4153 //------------------------------allpaths_check_safepts----------------------------
4154 // Allpaths backwards scan. Starting at the head, traversing all backedges, and the body. Terminating each path at first
4155 // safepoint encountered.  Helper for check_safepts.
4156 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
4157   assert(stack.size() == 0, "empty stack");
4158   stack.push(_head);
4159   visited.clear();
4160   visited.set(_head->_idx);
4161   while (stack.size() > 0) {
4162     Node* n = stack.pop();
4163     if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
4164       // Terminate this path
4165     } else if (n->Opcode() == Op_SafePoint) {
4166       if (_phase->get_loop(n) != this) {
4167         if (_required_safept == nullptr) _required_safept = new Node_List();
4168         // save the first we run into on that path: closest to the tail if the head has a single backedge
4169         _required_safept->push(n);
4170       }
4171       // Terminate this path
4172     } else {
4173       uint start = n->is_Region() ? 1 : 0;
4174       uint end   = n->is_Region() && (!n->is_Loop() || n == _head) ? n->req() : start + 1;
4175       for (uint i = start; i < end; i++) {
4176         Node* in = n->in(i);
4177         assert(in->is_CFG(), "must be");
4178         if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
4179           stack.push(in);
4180         }
4181       }
4182     }
4183   }
4184 }
4185 
4186 //------------------------------check_safepts----------------------------
4187 // Given dominators, try to find loops with calls that must always be
4188 // executed (call dominates loop tail).  These loops do not need non-call
4189 // safepoints (ncsfpt).
4190 //
4191 // A complication is that a safepoint in a inner loop may be needed
4192 // by an outer loop. In the following, the inner loop sees it has a
4193 // call (block 3) on every path from the head (block 2) to the
4194 // backedge (arc 3->2).  So it deletes the ncsfpt (non-call safepoint)
4195 // in block 2, _but_ this leaves the outer loop without a safepoint.
4196 //
4197 //             entry  0
4198 //                    |
4199 //                    v
4200 //   outer 1,2,4  +-> 1
4201 //                |    \
4202 //                |     v
4203 //    inner 2,3   |     2 <---+  ncsfpt in 2
4204 //                |    / \    |
4205 //                |   v   v   |
4206 //                |  4     3  |  call in 3
4207 //                |_/ \     \_|
4208 //                     |
4209 //                     v
4210 //               exit  5
4211 //
4212 // This method maintains a list (_required_safept) of ncsfpts that must
4213 // be protected for each loop. It only marks ncsfpts for prevervation,
4214 // and does not actually delete any of them.
4215 //
4216 // If some other method needs to delete a ncsfpt later, it will make sure
4217 // the ncsfpt is not in the list of all outer loops of the current loop.
4218 // See `PhaseIdealLoop::is_deleteable_safept`.
4219 //
4220 // The insights into the problem:
4221 //  A) Counted loops are okay (i.e. do not need to preserve ncsfpts),
4222 //     they will be handled in `IdealLoopTree::counted_loop`
4223 //  B) Innermost loops are okay because there's no inner loops that can
4224 //     delete their ncsfpts. Only outer loops need to mark safepoints for
4225 //     protection, because only loops further in can accidentally delete
4226 //     their ncsfpts
4227 //  C) If an outer loop has a call that's guaranteed to execute (on the
4228 //     idom-path), then that loop is okay. Because the call will always
4229 //     perform a safepoint poll, regardless of what safepoints are deleted
4230 //     from its inner loops
4231 //  D) Similarly, if an outer loop has a ncsfpt on the idom-path that isn't
4232 //     inside any nested loop, then that loop is okay
4233 //  E) Otherwise, if an outer loop's ncsfpt on the idom-path is nested in
4234 //     an inner loop, we need to prevent the inner loop from deleting it
4235 //
4236 // There are two analyses:
4237 //  1) The first, and cheaper one, scans the loop body from
4238 //     tail to head following the idom (immediate dominator)
4239 //     chain, looking for the cases (C,D,E) above.
4240 //     Since inner loops are scanned before outer loops, there is summary
4241 //     information about inner loops.  Inner loops can be skipped over
4242 //     when the tail of an inner loop is encountered.
4243 //
4244 //  2) The second, invoked if the first fails to find a call or ncsfpt on
4245 //     the idom path (which is rare), scans all predecessor control paths
4246 //     from the tail to the head, terminating a path when a call or sfpt
4247 //     is encountered, to find the ncsfpt's that are closest to the tail.
4248 //
4249 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
4250   // Bottom up traversal
4251   IdealLoopTree* ch = _child;
4252   if (_child) _child->check_safepts(visited, stack);
4253   if (_next)  _next ->check_safepts(visited, stack);
4254 
4255   if (!_head->is_CountedLoop() && !_has_sfpt && _parent != nullptr) {
4256     bool  has_call         = false;    // call on dom-path
4257     bool  has_local_ncsfpt = false;    // ncsfpt on dom-path at this loop depth
4258     Node* nonlocal_ncsfpt  = nullptr;  // ncsfpt on dom-path at a deeper depth
4259     if (!_irreducible) {
4260       // Scan the dom-path nodes from tail to head
4261       for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
4262         if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
4263           has_call = true;
4264           _has_sfpt = 1;          // Then no need for a safept!
4265           break;
4266         } else if (n->Opcode() == Op_SafePoint) {
4267           if (_phase->get_loop(n) == this) {
4268             // We found a local ncsfpt.
4269             // Continue searching for a call that is guaranteed to be a safepoint.
4270             has_local_ncsfpt = true;
4271           } else if (nonlocal_ncsfpt == nullptr) {
4272             nonlocal_ncsfpt = n; // save the one closest to the tail
4273           }
4274         } else {
4275           IdealLoopTree* nlpt = _phase->get_loop(n);
4276           if (this != nlpt) {
4277             // If at an inner loop tail, see if the inner loop has already
4278             // recorded seeing a call on the dom-path (and stop.)  If not,
4279             // jump to the head of the inner loop.
4280             assert(is_member(nlpt), "nested loop");
4281             Node* tail = nlpt->_tail;
4282             if (tail->in(0)->is_If()) tail = tail->in(0);
4283             if (n == tail) {
4284               // If inner loop has call on dom-path, so does outer loop
4285               if (nlpt->_has_sfpt) {
4286                 has_call = true;
4287                 _has_sfpt = 1;
4288                 break;
4289               }
4290               // Skip to head of inner loop
4291               assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
4292               n = nlpt->_head;
4293               if (_head == n) {
4294                 // this and nlpt (inner loop) have the same loop head. This should not happen because
4295                 // during beautify_loops we call merge_many_backedges. However, infinite loops may not
4296                 // have been attached to the loop-tree during build_loop_tree before beautify_loops,
4297                 // but then attached in the build_loop_tree afterwards, and so still have unmerged
4298                 // backedges. Check if we are indeed in an infinite subgraph, and terminate the scan,
4299                 // since we have reached the loop head of this.
4300                 assert(_head->as_Region()->is_in_infinite_subgraph(),
4301                        "only expect unmerged backedges in infinite loops");
4302                 break;
4303               }
4304             }
4305           }
4306         }
4307       }
4308     }
4309     // Record safept's that this loop needs preserved when an
4310     // inner loop attempts to delete it's safepoints.
4311     if (_child != nullptr && !has_call && !has_local_ncsfpt) {
4312       if (nonlocal_ncsfpt != nullptr) {
4313         if (_required_safept == nullptr) _required_safept = new Node_List();
4314         _required_safept->push(nonlocal_ncsfpt);
4315       } else {
4316         // Failed to find a suitable safept on the dom-path.  Now use
4317         // an all paths walk from tail to head, looking for safepoints to preserve.
4318         allpaths_check_safepts(visited, stack);
4319       }
4320     }
4321   }
4322 }
4323 
4324 //---------------------------is_deleteable_safept----------------------------
4325 // Is safept not required by an outer loop?
4326 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
4327   assert(sfpt->Opcode() == Op_SafePoint, "");
4328   IdealLoopTree* lp = get_loop(sfpt)->_parent;
4329   while (lp != nullptr) {
4330     Node_List* sfpts = lp->_required_safept;
4331     if (sfpts != nullptr) {
4332       for (uint i = 0; i < sfpts->size(); i++) {
4333         if (sfpt == sfpts->at(i))
4334           return false;
4335       }
4336     }
4337     lp = lp->_parent;
4338   }
4339   return true;
4340 }
4341 
4342 //---------------------------replace_parallel_iv-------------------------------
4343 // Replace parallel induction variable (parallel to trip counter)
4344 // This optimization looks for patterns similar to:
4345 //
4346 //    int a = init2;
4347 //    for (int iv = init; iv < limit; iv += stride_con) {
4348 //      a += stride_con2;
4349 //    }
4350 //
4351 // and transforms it to:
4352 //
4353 //    int iv2 = init2
4354 //    int iv = init
4355 //    loop:
4356 //      if (iv >= limit) goto exit
4357 //      iv += stride_con
4358 //      iv2 = init2 + (iv - init) * (stride_con2 / stride_con)
4359 //      goto loop
4360 //    exit:
4361 //    ...
4362 //
4363 // Such transformation introduces more optimization opportunities. In this
4364 // particular example, the loop can be eliminated entirely given that
4365 // `stride_con2 / stride_con` is exact  (i.e., no remainder). Checks are in
4366 // place to only perform this optimization if such a division is exact. This
4367 // example will be transformed into its semantic equivalence:
4368 //
4369 //     int iv2 = (iv * stride_con2 / stride_con) + (init2 - (init * stride_con2 / stride_con))
4370 //
4371 // which corresponds to the structure of transformed subgraph.
4372 //
4373 // However, if there is a mismatch between types of the loop and the parallel
4374 // induction variable (e.g., a long-typed IV in an int-typed loop), type
4375 // conversions are required:
4376 //
4377 //     long iv2 = ((long) iv * stride_con2 / stride_con) + (init2 - ((long) init * stride_con2 / stride_con))
4378 //
4379 void PhaseIdealLoop::replace_parallel_iv(IdealLoopTree *loop) {
4380   assert(loop->_head->is_CountedLoop(), "");
4381   CountedLoopNode *cl = loop->_head->as_CountedLoop();
4382   if (!cl->is_valid_counted_loop(T_INT)) {
4383     return;         // skip malformed counted loop
4384   }
4385   Node *incr = cl->incr();
4386   if (incr == nullptr) {
4387     return;         // Dead loop?
4388   }
4389   Node *init = cl->init_trip();
4390   Node *phi  = cl->phi();
4391   jlong stride_con = cl->stride_con();
4392 
4393   // Visit all children, looking for Phis
4394   for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
4395     Node *out = cl->out(i);
4396     // Look for other phis (secondary IVs). Skip dead ones
4397     if (!out->is_Phi() || out == phi || !has_node(out)) {
4398       continue;
4399     }
4400 
4401     PhiNode* phi2 = out->as_Phi();
4402     Node* incr2 = phi2->in(LoopNode::LoopBackControl);
4403     // Look for induction variables of the form:  X += constant
4404     if (phi2->region() != loop->_head ||
4405         incr2->req() != 3 ||
4406         incr2->in(1)->uncast() != phi2 ||
4407         incr2 == incr ||
4408         (incr2->Opcode() != Op_AddI && incr2->Opcode() != Op_AddL) ||
4409         !incr2->in(2)->is_Con()) {
4410       continue;
4411     }
4412 
4413     if (incr2->in(1)->is_ConstraintCast() &&
4414         !(incr2->in(1)->in(0)->is_IfProj() && incr2->in(1)->in(0)->in(0)->is_RangeCheck())) {
4415       // Skip AddI->CastII->Phi case if CastII is not controlled by local RangeCheck
4416       continue;
4417     }
4418     // Check for parallel induction variable (parallel to trip counter)
4419     // via an affine function.  In particular, count-down loops with
4420     // count-up array indices are common. We only RCE references off
4421     // the trip-counter, so we need to convert all these to trip-counter
4422     // expressions.
4423     Node* init2 = phi2->in(LoopNode::EntryControl);
4424 
4425     // Determine the basic type of the stride constant (and the iv being incremented).
4426     BasicType stride_con2_bt = incr2->Opcode() == Op_AddI ? T_INT : T_LONG;
4427     jlong stride_con2 = incr2->in(2)->get_integer_as_long(stride_con2_bt);
4428 
4429     // The ratio of the two strides cannot be represented as an int
4430     // if stride_con2 is min_jint (or min_jlong, respectively) and
4431     // stride_con is -1.
4432     if (stride_con2 == min_signed_integer(stride_con2_bt) && stride_con == -1) {
4433       continue;
4434     }
4435 
4436     // The general case here gets a little tricky.  We want to find the
4437     // GCD of all possible parallel IV's and make a new IV using this
4438     // GCD for the loop.  Then all possible IVs are simple multiples of
4439     // the GCD.  In practice, this will cover very few extra loops.
4440     // Instead we require 'stride_con2' to be a multiple of 'stride_con',
4441     // where +/-1 is the common case, but other integer multiples are
4442     // also easy to handle.
4443     jlong ratio_con = stride_con2 / stride_con;
4444 
4445     if ((ratio_con * stride_con) != stride_con2) { // Check for exact (no remainder)
4446         continue;
4447     }
4448 
4449 #ifndef PRODUCT
4450     if (TraceLoopOpts) {
4451       tty->print("Parallel IV: %d ", phi2->_idx);
4452       loop->dump_head();
4453     }
4454 #endif
4455 
4456     // Convert to using the trip counter.  The parallel induction
4457     // variable differs from the trip counter by a loop-invariant
4458     // amount, the difference between their respective initial values.
4459     // It is scaled by the 'ratio_con'.
4460     Node* ratio = integercon(ratio_con, stride_con2_bt);
4461 
4462     Node* init_converted = insert_convert_node_if_needed(stride_con2_bt, init);
4463     Node* phi_converted = insert_convert_node_if_needed(stride_con2_bt, phi);
4464 
4465     Node* ratio_init = MulNode::make(init_converted, ratio, stride_con2_bt);
4466     _igvn.register_new_node_with_optimizer(ratio_init, init_converted);
4467     set_early_ctrl(ratio_init, false);
4468 
4469     Node* diff = SubNode::make(init2, ratio_init, stride_con2_bt);
4470     _igvn.register_new_node_with_optimizer(diff, init2);
4471     set_early_ctrl(diff, false);
4472 
4473     Node* ratio_idx = MulNode::make(phi_converted, ratio, stride_con2_bt);
4474     _igvn.register_new_node_with_optimizer(ratio_idx, phi_converted);
4475     set_ctrl(ratio_idx, cl);
4476 
4477     Node* add = AddNode::make(ratio_idx, diff, stride_con2_bt);
4478     _igvn.register_new_node_with_optimizer(add);
4479     set_ctrl(add, cl);
4480 
4481     _igvn.replace_node( phi2, add );
4482     // Sometimes an induction variable is unused
4483     if (add->outcnt() == 0) {
4484       _igvn.remove_dead_node(add);
4485     }
4486     --i; // deleted this phi; rescan starting with next position
4487   }
4488 }
4489 
4490 Node* PhaseIdealLoop::insert_convert_node_if_needed(BasicType target, Node* input) {
4491   BasicType source = _igvn.type(input)->basic_type();
4492   if (source == target) {
4493     return input;
4494   }
4495 
4496   Node* converted = ConvertNode::create_convert(source, target, input);
4497   _igvn.register_new_node_with_optimizer(converted, input);
4498   set_early_ctrl(converted, false);
4499 
4500   return converted;
4501 }
4502 
4503 void IdealLoopTree::remove_safepoints(PhaseIdealLoop* phase, bool keep_one) {
4504   Node* keep = nullptr;
4505   if (keep_one) {
4506     // Look for a safepoint on the idom-path.
4507     for (Node* i = tail(); i != _head; i = phase->idom(i)) {
4508       if (i->Opcode() == Op_SafePoint && phase->get_loop(i) == this) {
4509         keep = i;
4510         break; // Found one
4511       }
4512     }
4513   }
4514 
4515   // Don't remove any safepoints if it is requested to keep a single safepoint and
4516   // no safepoint was found on idom-path. It is not safe to remove any safepoint
4517   // in this case since there's no safepoint dominating all paths in the loop body.
4518   bool prune = !keep_one || keep != nullptr;
4519 
4520   // Delete other safepoints in this loop.
4521   Node_List* sfpts = _safepts;
4522   if (prune && sfpts != nullptr) {
4523     assert(keep == nullptr || keep->Opcode() == Op_SafePoint, "not safepoint");
4524     for (uint i = 0; i < sfpts->size(); i++) {
4525       Node* n = sfpts->at(i);
4526       assert(phase->get_loop(n) == this, "");
4527       if (n != keep && phase->is_deleteable_safept(n)) {
4528         phase->replace_node_and_forward_ctrl(n, n->in(TypeFunc::Control));
4529       }
4530     }
4531   }
4532 }
4533 
4534 //------------------------------counted_loop-----------------------------------
4535 // Convert to counted loops where possible
4536 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
4537 
4538   // For grins, set the inner-loop flag here
4539   if (!_child) {
4540     if (_head->is_Loop()) _head->as_Loop()->set_inner_loop();
4541   }
4542 
4543   IdealLoopTree* loop = this;
4544   if (_head->is_CountedLoop() ||
4545       phase->is_counted_loop(_head, loop, T_INT)) {
4546 
4547     if (LoopStripMiningIter == 0 || _head->as_CountedLoop()->is_strip_mined()) {
4548       // Indicate we do not need a safepoint here
4549       _has_sfpt = 1;
4550     }
4551 
4552     // Remove safepoints
4553     bool keep_one_sfpt = !(_has_call || _has_sfpt);
4554     remove_safepoints(phase, keep_one_sfpt);
4555 
4556     // Look for induction variables
4557     phase->replace_parallel_iv(this);
4558   } else if (_head->is_LongCountedLoop() ||
4559              phase->is_counted_loop(_head, loop, T_LONG)) {
4560     remove_safepoints(phase, true);
4561   } else {
4562     assert(!_head->is_Loop() || !_head->as_Loop()->is_loop_nest_inner_loop(), "transformation to counted loop should not fail");
4563     if (_parent != nullptr && !_irreducible) {
4564       // Not a counted loop. Keep one safepoint.
4565       bool keep_one_sfpt = true;
4566       remove_safepoints(phase, keep_one_sfpt);
4567     }
4568   }
4569 
4570   // Recursively
4571   assert(loop->_child != this || (loop->_head->as_Loop()->is_OuterStripMinedLoop() && _head->as_CountedLoop()->is_strip_mined()), "what kind of loop was added?");
4572   assert(loop->_child != this || (loop->_child->_child == nullptr && loop->_child->_next == nullptr), "would miss some loops");
4573   if (loop->_child && loop->_child != this) loop->_child->counted_loop(phase);
4574   if (loop->_next)  loop->_next ->counted_loop(phase);
4575 }
4576 
4577 
4578 // The Estimated Loop Clone Size:
4579 //   CloneFactor * (~112% * BodySize + BC) + CC + FanOutTerm,
4580 // where  BC and  CC are  totally ad-hoc/magic  "body" and "clone" constants,
4581 // respectively, used to ensure that the node usage estimates made are on the
4582 // safe side, for the most part. The FanOutTerm is an attempt to estimate the
4583 // possible additional/excessive nodes generated due to data and control flow
4584 // merging, for edges reaching outside the loop.
4585 uint IdealLoopTree::est_loop_clone_sz(uint factor) const {
4586 
4587   precond(0 < factor && factor < 16);
4588 
4589   uint const bc = 13;
4590   uint const cc = 17;
4591   uint const sz = _body.size() + (_body.size() + 7) / 2;
4592   uint estimate = factor * (sz + bc) + cc;
4593 
4594   assert((estimate - cc) / factor == sz + bc, "overflow");
4595 
4596   return estimate + est_loop_flow_merge_sz();
4597 }
4598 
4599 // The Estimated Loop (full-) Unroll Size:
4600 //   UnrollFactor * (~106% * BodySize) + CC + FanOutTerm,
4601 // where CC is a (totally) ad-hoc/magic "clone" constant, used to ensure that
4602 // node usage estimates made are on the safe side, for the most part. This is
4603 // a "light" version of the loop clone size calculation (above), based on the
4604 // assumption that most of the loop-construct overhead will be unraveled when
4605 // (fully) unrolled. Defined for unroll factors larger or equal to one (>=1),
4606 // including an overflow check and returning UINT_MAX in case of an overflow.
4607 uint IdealLoopTree::est_loop_unroll_sz(uint factor) const {
4608 
4609   precond(factor > 0);
4610 
4611   // Take into account that after unroll conjoined heads and tails will fold.
4612   uint const b0 = _body.size() - EMPTY_LOOP_SIZE;
4613   uint const cc = 7;
4614   uint const sz = b0 + (b0 + 15) / 16;
4615   uint estimate = factor * sz + cc;
4616 
4617   if ((estimate - cc) / factor != sz) {
4618     return UINT_MAX;
4619   }
4620 
4621   return estimate + est_loop_flow_merge_sz();
4622 }
4623 
4624 // Estimate the growth effect (in nodes) of merging control and data flow when
4625 // cloning a loop body, based on the amount of  control and data flow reaching
4626 // outside of the (current) loop body.
4627 uint IdealLoopTree::est_loop_flow_merge_sz() const {
4628 
4629   uint ctrl_edge_out_cnt = 0;
4630   uint data_edge_out_cnt = 0;
4631 
4632   for (uint i = 0; i < _body.size(); i++) {
4633     Node* node = _body.at(i);
4634     uint outcnt = node->outcnt();
4635 
4636     for (uint k = 0; k < outcnt; k++) {
4637       Node* out = node->raw_out(k);
4638       if (out == nullptr) continue;
4639       if (out->is_CFG()) {
4640         if (!is_member(_phase->get_loop(out))) {
4641           ctrl_edge_out_cnt++;
4642         }
4643       } else if (_phase->has_ctrl(out)) {
4644         Node* ctrl = _phase->get_ctrl(out);
4645         assert(ctrl != nullptr, "must be");
4646         assert(ctrl->is_CFG(), "must be");
4647         if (!is_member(_phase->get_loop(ctrl))) {
4648           data_edge_out_cnt++;
4649         }
4650       }
4651     }
4652   }
4653   // Use data and control count (x2.0) in estimate iff both are > 0. This is
4654   // a rather pessimistic estimate for the most part, in particular for some
4655   // complex loops, but still not enough to capture all loops.
4656   if (ctrl_edge_out_cnt > 0 && data_edge_out_cnt > 0) {
4657     return 2 * (ctrl_edge_out_cnt + data_edge_out_cnt);
4658   }
4659   return 0;
4660 }
4661 
4662 #ifndef PRODUCT
4663 //------------------------------dump_head--------------------------------------
4664 // Dump 1 liner for loop header info
4665 void IdealLoopTree::dump_head() {
4666   tty->sp(2 * _nest);
4667   tty->print("Loop: N%d/N%d ", _head->_idx, _tail->_idx);
4668   if (_irreducible) tty->print(" IRREDUCIBLE");
4669   Node* entry = _head->is_Loop() ? _head->as_Loop()->skip_strip_mined(-1)->in(LoopNode::EntryControl)
4670                                  : _head->in(LoopNode::EntryControl);
4671   const Predicates predicates(entry);
4672   if (predicates.loop_limit_check_predicate_block()->is_non_empty()) {
4673     tty->print(" limit_check");
4674   }
4675   if (predicates.short_running_long_loop_predicate_block()->is_non_empty()) {
4676     tty->print(" short_running");
4677   }
4678   if (UseLoopPredicate) {
4679     if (UseProfiledLoopPredicate && predicates.profiled_loop_predicate_block()->is_non_empty()) {
4680       tty->print(" profile_predicated");
4681     }
4682     if (predicates.loop_predicate_block()->is_non_empty()) {
4683       tty->print(" predicated");
4684     }
4685   }
4686   if (UseAutoVectorizationPredicate && predicates.auto_vectorization_check_block()->is_non_empty()) {
4687     tty->print(" auto_vectorization_check_predicate");
4688   }
4689   if (_head->is_CountedLoop()) {
4690     CountedLoopNode *cl = _head->as_CountedLoop();
4691     tty->print(" counted");
4692 
4693     Node* init_n = cl->init_trip();
4694     if (init_n  != nullptr &&  init_n->is_Con())
4695       tty->print(" [%d,", cl->init_trip()->get_int());
4696     else
4697       tty->print(" [int,");
4698     Node* limit_n = cl->limit();
4699     if (limit_n  != nullptr &&  limit_n->is_Con())
4700       tty->print("%d),", cl->limit()->get_int());
4701     else
4702       tty->print("int),");
4703     int stride_con  = cl->stride_con();
4704     if (stride_con > 0) tty->print("+");
4705     tty->print("%d", stride_con);
4706 
4707     tty->print(" (%0.f iters) ", cl->profile_trip_cnt());
4708 
4709     if (cl->is_pre_loop ()) tty->print(" pre" );
4710     if (cl->is_main_loop()) tty->print(" main");
4711     if (cl->is_post_loop()) tty->print(" post");
4712     if (cl->is_vectorized_loop()) tty->print(" vector");
4713     if (range_checks_present()) tty->print(" rc ");
4714     if (cl->is_multiversion_fast_loop())         { tty->print(" multiversion_fast"); }
4715     if (cl->is_multiversion_slow_loop())         { tty->print(" multiversion_slow"); }
4716     if (cl->is_multiversion_delayed_slow_loop()) { tty->print(" multiversion_delayed_slow"); }
4717   }
4718   if (_has_call) tty->print(" has_call");
4719   if (_has_sfpt) tty->print(" has_sfpt");
4720   if (_rce_candidate) tty->print(" rce");
4721   if (_safepts != nullptr && _safepts->size() > 0) {
4722     tty->print(" sfpts={"); _safepts->dump_simple(); tty->print(" }");
4723   }
4724   if (_required_safept != nullptr && _required_safept->size() > 0) {
4725     tty->print(" req={"); _required_safept->dump_simple(); tty->print(" }");
4726   }
4727   if (Verbose) {
4728     tty->print(" body={"); _body.dump_simple(); tty->print(" }");
4729   }
4730   if (_head->is_Loop() && _head->as_Loop()->is_strip_mined()) {
4731     tty->print(" strip_mined");
4732   }
4733   tty->cr();
4734 }
4735 
4736 //------------------------------dump-------------------------------------------
4737 // Dump loops by loop tree
4738 void IdealLoopTree::dump() {
4739   dump_head();
4740   if (_child) _child->dump();
4741   if (_next)  _next ->dump();
4742 }
4743 
4744 #endif
4745 
4746 static void log_loop_tree_helper(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
4747   if (loop == root) {
4748     if (loop->_child != nullptr) {
4749       log->begin_head("loop_tree");
4750       log->end_head();
4751       log_loop_tree_helper(root, loop->_child, log);
4752       log->tail("loop_tree");
4753       assert(loop->_next == nullptr, "what?");
4754     }
4755   } else if (loop != nullptr) {
4756     Node* head = loop->_head;
4757     log->begin_head("loop");
4758     log->print(" idx='%d' ", head->_idx);
4759     if (loop->_irreducible) log->print("irreducible='1' ");
4760     if (head->is_Loop()) {
4761       if (head->as_Loop()->is_inner_loop())        log->print("inner_loop='1' ");
4762       if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' ");
4763     } else if (head->is_CountedLoop()) {
4764       CountedLoopNode* cl = head->as_CountedLoop();
4765       if (cl->is_pre_loop())  log->print("pre_loop='%d' ",  cl->main_idx());
4766       if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx);
4767       if (cl->is_post_loop()) log->print("post_loop='%d' ", cl->main_idx());
4768     }
4769     log->end_head();
4770     log_loop_tree_helper(root, loop->_child, log);
4771     log->tail("loop");
4772     log_loop_tree_helper(root, loop->_next, log);
4773   }
4774 }
4775 
4776 void PhaseIdealLoop::log_loop_tree() {
4777   if (C->log() != nullptr) {
4778     log_loop_tree_helper(_ltree_root, _ltree_root, C->log());
4779   }
4780 }
4781 
4782 // Eliminate all Parse and Template Assertion Predicates that are not associated with a loop anymore. The eliminated
4783 // predicates will be removed during the next round of IGVN.
4784 void PhaseIdealLoop::eliminate_useless_predicates() const {
4785   if (C->parse_predicate_count() == 0 && C->template_assertion_predicate_count() == 0) {
4786     return; // No predicates left.
4787   }
4788 
4789   EliminateUselessPredicates eliminate_useless_predicates(_igvn, _ltree_root);
4790   eliminate_useless_predicates.eliminate();
4791 }
4792 
4793 // If a post or main loop is removed due to an assert predicate, the opaque that guards the loop is not needed anymore
4794 void PhaseIdealLoop::eliminate_useless_zero_trip_guard() {
4795   if (_zero_trip_guard_opaque_nodes.size() == 0) {
4796     return;
4797   }
4798   Unique_Node_List useful_zero_trip_guard_opaques_nodes;
4799   for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
4800     IdealLoopTree* lpt = iter.current();
4801     if (lpt->_child == nullptr && lpt->is_counted()) {
4802       CountedLoopNode* head = lpt->_head->as_CountedLoop();
4803       Node* opaque = head->is_canonical_loop_entry();
4804       if (opaque != nullptr) {
4805         useful_zero_trip_guard_opaques_nodes.push(opaque);
4806 #ifdef ASSERT
4807         // See PhaseIdealLoop::do_unroll
4808         // This property is required in do_unroll, but it may not hold after cloning a loop.
4809         // In such a case, we bail out from unrolling, and rely on IGVN to clean up the graph.
4810         // We are here before loop cloning (before iteration_split), so if this property
4811         // does not hold, it must come from the previous round of loop optimizations, meaning
4812         // that IGVN failed to clean it: we will catch that here.
4813         // On the other hand, if this assert passes, a bailout in do_unroll means that
4814         // this property was broken in the current round of loop optimization (between here
4815         // and do_unroll), so we give a chance to IGVN to make the property true again.
4816         if (head->is_main_loop()) {
4817           assert(opaque->outcnt() == 1, "opaque node should not be shared");
4818           assert(opaque->in(1) == head->limit(), "After IGVN cleanup, input of opaque node must be the limit.");
4819         }
4820         if (head->is_post_loop()) {
4821           assert(opaque->outcnt() == 1, "opaque node should not be shared");
4822         }
4823 #endif
4824       }
4825     }
4826   }
4827   for (uint i = 0; i < _zero_trip_guard_opaque_nodes.size(); ++i) {
4828     OpaqueZeroTripGuardNode* opaque = ((OpaqueZeroTripGuardNode*)_zero_trip_guard_opaque_nodes.at(i));
4829     DEBUG_ONLY(CountedLoopNode* guarded_loop = opaque->guarded_loop());
4830     if (!useful_zero_trip_guard_opaques_nodes.member(opaque)) {
4831       IfNode* iff = opaque->if_node();
4832       IdealLoopTree* loop = get_loop(iff);
4833       while (loop != _ltree_root && loop != nullptr) {
4834         loop = loop->_parent;
4835       }
4836       if (loop == nullptr) {
4837         // unreachable from _ltree_root: zero trip guard is in a newly discovered infinite loop.
4838         // We can't tell if the opaque node is useful or not
4839         assert(guarded_loop == nullptr || guarded_loop->is_in_infinite_subgraph(), "");
4840       } else {
4841         assert(guarded_loop == nullptr, "");
4842         this->_igvn.replace_node(opaque, opaque->in(1));
4843       }
4844     } else {
4845       assert(guarded_loop != nullptr, "");
4846     }
4847   }
4848 }
4849 
4850 void PhaseIdealLoop::eliminate_useless_multiversion_if() {
4851   if (_multiversion_opaque_nodes.size() == 0) {
4852     return;
4853   }
4854 
4855   ResourceMark rm;
4856   Unique_Node_List useful_multiversioning_opaque_nodes;
4857 
4858   // The OpaqueMultiversioning is only used from the fast main loop in AutoVectorization, to add
4859   // speculative runtime-checks to the multiversion_if. Thus, a OpaqueMultiversioning is only
4860   // useful if it can be found from a fast main loop. If it can not be found from a fast main loop,
4861   // then we cannot ever use that multiversion_if to add more speculative runtime-checks, and hence
4862   // it is useless. If it is still in delayed mode, i.e. has not yet had any runtime-checks added,
4863   // then we can let it constant fold towards the fast loop.
4864   for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
4865     IdealLoopTree* lpt = iter.current();
4866     if (lpt->_child == nullptr && lpt->is_counted()) {
4867       CountedLoopNode* head = lpt->_head->as_CountedLoop();
4868       if (head->is_main_loop() && head->is_multiversion_fast_loop()) {
4869         // There are fast_loop pre/main/post loops, but the finding traversal starts at the main
4870         // loop, and traverses via the fast pre loop to the multiversion_if.
4871         IfNode* multiversion_if = head->find_multiversion_if_from_multiversion_fast_main_loop();
4872         if (multiversion_if != nullptr) {
4873             useful_multiversioning_opaque_nodes.push(multiversion_if->in(1)->as_OpaqueMultiversioning());
4874         } else {
4875           // We could not find the multiversion_if, and would never find it again. Remove the
4876           // multiversion marking for consistency.
4877           head->set_no_multiversion();
4878         }
4879       }
4880     }
4881   }
4882 
4883   for (uint i = 0; i < _multiversion_opaque_nodes.size(); i++) {
4884     OpaqueMultiversioningNode* opaque = _multiversion_opaque_nodes.at(i)->as_OpaqueMultiversioning();
4885     if (!useful_multiversioning_opaque_nodes.member(opaque)) {
4886       if (opaque->is_delayed_slow_loop()) {
4887         // We cannot hack the node directly, otherwise the slow_loop will complain that it cannot
4888         // find the multiversioning opaque node. Instead, we mark the opaque node as useless, and
4889         // it can be constant folded during IGVN.
4890         opaque->mark_useless(_igvn);
4891       }
4892     }
4893   }
4894 }
4895 
4896 //------------------------process_expensive_nodes-----------------------------
4897 // Expensive nodes have their control input set to prevent the GVN
4898 // from commoning them and as a result forcing the resulting node to
4899 // be in a more frequent path. Use CFG information here, to change the
4900 // control inputs so that some expensive nodes can be commoned while
4901 // not executed more frequently.
4902 bool PhaseIdealLoop::process_expensive_nodes() {
4903   assert(OptimizeExpensiveOps, "optimization off?");
4904 
4905   // Sort nodes to bring similar nodes together
4906   C->sort_expensive_nodes();
4907 
4908   bool progress = false;
4909 
4910   for (int i = 0; i < C->expensive_count(); ) {
4911     Node* n = C->expensive_node(i);
4912     int start = i;
4913     // Find nodes similar to n
4914     i++;
4915     for (; i < C->expensive_count() && Compile::cmp_expensive_nodes(n, C->expensive_node(i)) == 0; i++);
4916     int end = i;
4917     // And compare them two by two
4918     for (int j = start; j < end; j++) {
4919       Node* n1 = C->expensive_node(j);
4920       if (is_node_unreachable(n1)) {
4921         continue;
4922       }
4923       for (int k = j+1; k < end; k++) {
4924         Node* n2 = C->expensive_node(k);
4925         if (is_node_unreachable(n2)) {
4926           continue;
4927         }
4928 
4929         assert(n1 != n2, "should be pair of nodes");
4930 
4931         Node* c1 = n1->in(0);
4932         Node* c2 = n2->in(0);
4933 
4934         Node* parent_c1 = c1;
4935         Node* parent_c2 = c2;
4936 
4937         // The call to get_early_ctrl_for_expensive() moves the
4938         // expensive nodes up but stops at loops that are in a if
4939         // branch. See whether we can exit the loop and move above the
4940         // If.
4941         if (c1->is_Loop()) {
4942           parent_c1 = c1->in(1);
4943         }
4944         if (c2->is_Loop()) {
4945           parent_c2 = c2->in(1);
4946         }
4947 
4948         if (parent_c1 == parent_c2) {
4949           _igvn._worklist.push(n1);
4950           _igvn._worklist.push(n2);
4951           continue;
4952         }
4953 
4954         // Look for identical expensive node up the dominator chain.
4955         if (is_dominator(c1, c2)) {
4956           c2 = c1;
4957         } else if (is_dominator(c2, c1)) {
4958           c1 = c2;
4959         } else if (parent_c1->is_Proj() && parent_c1->in(0)->is_If() &&
4960                    parent_c2->is_Proj() && parent_c1->in(0) == parent_c2->in(0)) {
4961           // Both branches have the same expensive node so move it up
4962           // before the if.
4963           c1 = c2 = idom(parent_c1->in(0));
4964         }
4965         // Do the actual moves
4966         if (n1->in(0) != c1) {
4967           _igvn.replace_input_of(n1, 0, c1);
4968           progress = true;
4969         }
4970         if (n2->in(0) != c2) {
4971           _igvn.replace_input_of(n2, 0, c2);
4972           progress = true;
4973         }
4974       }
4975     }
4976   }
4977 
4978   return progress;
4979 }
4980 
4981 //=============================================================================
4982 //----------------------------build_and_optimize-------------------------------
4983 // Create a PhaseLoop.  Build the ideal Loop tree.  Map each Ideal Node to
4984 // its corresponding LoopNode.  If 'optimize' is true, do some loop cleanups.
4985 void PhaseIdealLoop::build_and_optimize() {
4986   assert(!C->post_loop_opts_phase(), "no loop opts allowed");
4987 
4988   bool do_split_ifs = (_mode == LoopOptsDefault);
4989   bool skip_loop_opts = (_mode == LoopOptsNone);
4990   bool do_max_unroll = (_mode == LoopOptsMaxUnroll);
4991 
4992 
4993   bool old_progress = C->major_progress();
4994   uint orig_worklist_size = _igvn._worklist.size();
4995 
4996   // Reset major-progress flag for the driver's heuristics
4997   C->clear_major_progress();
4998 
4999 #ifndef PRODUCT
5000   // Capture for later assert
5001   uint unique = C->unique();
5002   _loop_invokes++;
5003   _loop_work += unique;
5004 #endif
5005 
5006   // True if the method has at least 1 irreducible loop
5007   _has_irreducible_loops = false;
5008 
5009   _created_loop_node = false;
5010 
5011   VectorSet visited;
5012   // Pre-grow the mapping from Nodes to IdealLoopTrees.
5013   _loop_or_ctrl.map(C->unique(), nullptr);
5014   memset(_loop_or_ctrl.adr(), 0, wordSize * C->unique());
5015 
5016   // Pre-build the top-level outermost loop tree entry
5017   _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
5018   // Do not need a safepoint at the top level
5019   _ltree_root->_has_sfpt = 1;
5020 
5021   // Initialize Dominators.
5022   // Checked in clone_loop_predicate() during beautify_loops().
5023   _idom_size = 0;
5024   _idom      = nullptr;
5025   _dom_depth = nullptr;
5026   _dom_stk   = nullptr;
5027 
5028   // Empty pre-order array
5029   allocate_preorders();
5030 
5031   // Build a loop tree on the fly.  Build a mapping from CFG nodes to
5032   // IdealLoopTree entries.  Data nodes are NOT walked.
5033   build_loop_tree();
5034   // Check for bailout, and return
5035   if (C->failing()) {
5036     return;
5037   }
5038 
5039   // Verify that the has_loops() flag set at parse time is consistent with the just built loop tree. When the back edge
5040   // is an exception edge, parsing doesn't set has_loops().
5041   assert(_ltree_root->_child == nullptr || C->has_loops() || C->has_exception_backedge(), "parsing found no loops but there are some");
5042   // No loops after all
5043   if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false);
5044 
5045   // There should always be an outer loop containing the Root and Return nodes.
5046   // If not, we have a degenerate empty program.  Bail out in this case.
5047   if (!has_node(C->root())) {
5048     if (!_verify_only) {
5049       C->clear_major_progress();
5050       assert(false, "empty program detected during loop optimization");
5051       C->record_method_not_compilable("empty program detected during loop optimization");
5052     }
5053     return;
5054   }
5055 
5056   // Nothing to do, so get out
5057   bool stop_early = !C->has_loops() && !skip_loop_opts && !do_split_ifs && !do_max_unroll && !_verify_me &&
5058           !_verify_only;
5059   bool do_expensive_nodes = C->should_optimize_expensive_nodes(_igvn);
5060   if (stop_early && !do_expensive_nodes) {
5061     return;
5062   }
5063 
5064   // Set loop nesting depth
5065   _ltree_root->set_nest( 0 );
5066 
5067   // Split shared headers and insert loop landing pads.
5068   // Do not bother doing this on the Root loop of course.
5069   if( !_verify_me && !_verify_only && _ltree_root->_child ) {
5070     C->print_method(PHASE_BEFORE_BEAUTIFY_LOOPS, 3);
5071     if( _ltree_root->_child->beautify_loops( this ) ) {
5072       // Re-build loop tree!
5073       _ltree_root->_child = nullptr;
5074       _loop_or_ctrl.clear();
5075       reallocate_preorders();
5076       build_loop_tree();
5077       // Check for bailout, and return
5078       if (C->failing()) {
5079         return;
5080       }
5081       // Reset loop nesting depth
5082       _ltree_root->set_nest( 0 );
5083 
5084       C->print_method(PHASE_AFTER_BEAUTIFY_LOOPS, 3);
5085     }
5086   }
5087 
5088   // Build Dominators for elision of null checks & loop finding.
5089   // Since nodes do not have a slot for immediate dominator, make
5090   // a persistent side array for that info indexed on node->_idx.
5091   _idom_size = C->unique();
5092   _idom      = NEW_RESOURCE_ARRAY( Node*, _idom_size );
5093   _dom_depth = NEW_RESOURCE_ARRAY( uint,  _idom_size );
5094   _dom_stk   = nullptr; // Allocated on demand in recompute_dom_depth
5095   memset( _dom_depth, 0, _idom_size * sizeof(uint) );
5096 
5097   Dominators();
5098 
5099   if (!_verify_only) {
5100     // As a side effect, Dominators removed any unreachable CFG paths
5101     // into RegionNodes.  It doesn't do this test against Root, so
5102     // we do it here.
5103     for( uint i = 1; i < C->root()->req(); i++ ) {
5104       if (!_loop_or_ctrl[C->root()->in(i)->_idx]) { // Dead path into Root?
5105         _igvn.delete_input_of(C->root(), i);
5106         i--;                      // Rerun same iteration on compressed edges
5107       }
5108     }
5109 
5110     // Given dominators, try to find inner loops with calls that must
5111     // always be executed (call dominates loop tail).  These loops do
5112     // not need a separate safepoint.
5113     Node_List cisstack;
5114     _ltree_root->check_safepts(visited, cisstack);
5115   }
5116 
5117   // Walk the DATA nodes and place into loops.  Find earliest control
5118   // node.  For CFG nodes, the _loop_or_ctrl array starts out and remains
5119   // holding the associated IdealLoopTree pointer.  For DATA nodes, the
5120   // _loop_or_ctrl array holds the earliest legal controlling CFG node.
5121 
5122   // Allocate stack with enough space to avoid frequent realloc
5123   int stack_size = (C->live_nodes() >> 1) + 16; // (live_nodes>>1)+16 from Java2D stats
5124   Node_Stack nstack(stack_size);
5125 
5126   visited.clear();
5127   Node_List worklist;
5128   // Don't need C->root() on worklist since
5129   // it will be processed among C->top() inputs
5130   worklist.push(C->top());
5131   visited.set(C->top()->_idx); // Set C->top() as visited now
5132   build_loop_early( visited, worklist, nstack );
5133 
5134   // Given early legal placement, try finding counted loops.  This placement
5135   // is good enough to discover most loop invariants.
5136   if (!_verify_me && !_verify_only) {
5137     _ltree_root->counted_loop( this );
5138   }
5139 
5140   // Find latest loop placement.  Find ideal loop placement.
5141   visited.clear();
5142   init_dom_lca_tags();
5143   // Need C->root() on worklist when processing outs
5144   worklist.push(C->root());
5145   NOT_PRODUCT( C->verify_graph_edges(); )
5146   worklist.push(C->top());
5147   build_loop_late( visited, worklist, nstack );
5148   if (C->failing()) { return; }
5149 
5150   if (_verify_only) {
5151     C->restore_major_progress(old_progress);
5152     assert(C->unique() == unique, "verification _mode made Nodes? ? ?");
5153     assert(_igvn._worklist.size() == orig_worklist_size, "shouldn't push anything");
5154     return;
5155   }
5156 
5157   // clear out the dead code after build_loop_late
5158   while (_deadlist.size()) {
5159     _igvn.remove_globally_dead_node(_deadlist.pop());
5160   }
5161 
5162   eliminate_useless_zero_trip_guard();
5163   eliminate_useless_multiversion_if();
5164 
5165   if (stop_early) {
5166     assert(do_expensive_nodes, "why are we here?");
5167     if (process_expensive_nodes()) {
5168       // If we made some progress when processing expensive nodes then
5169       // the IGVN may modify the graph in a way that will allow us to
5170       // make some more progress: we need to try processing expensive
5171       // nodes again.
5172       C->set_major_progress();
5173     }
5174     return;
5175   }
5176 
5177   // Some parser-inserted loop predicates could never be used by loop
5178   // predication or they were moved away from loop during some optimizations.
5179   // For example, peeling. Eliminate them before next loop optimizations.
5180   eliminate_useless_predicates();
5181 
5182 #ifndef PRODUCT
5183   C->verify_graph_edges();
5184   if (_verify_me) {             // Nested verify pass?
5185     // Check to see if the verify _mode is broken
5186     assert(C->unique() == unique, "non-optimize _mode made Nodes? ? ?");
5187     return;
5188   }
5189   DEBUG_ONLY( if (VerifyLoopOptimizations) { verify(); } );
5190   if (TraceLoopOpts && C->has_loops()) {
5191     _ltree_root->dump();
5192   }
5193 #endif
5194 
5195   if (skip_loop_opts) {
5196     C->restore_major_progress(old_progress);
5197     return;
5198   }
5199 
5200   if (do_max_unroll) {
5201     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
5202       IdealLoopTree* lpt = iter.current();
5203       if (lpt->is_innermost() && lpt->_allow_optimizations && !lpt->_has_call && lpt->is_counted()) {
5204         lpt->compute_trip_count(this, T_INT);
5205         if (!lpt->do_one_iteration_loop(this) &&
5206             !lpt->do_remove_empty_loop(this)) {
5207           AutoNodeBudget node_budget(this);
5208           if (lpt->_head->as_CountedLoop()->is_normal_loop() &&
5209               lpt->policy_maximally_unroll(this)) {
5210             memset( worklist.adr(), 0, worklist.max()*sizeof(Node*) );
5211             do_maximally_unroll(lpt, worklist);
5212           }
5213         }
5214       }
5215     }
5216 
5217     C->restore_major_progress(old_progress);
5218     return;
5219   }
5220 
5221   if (ReassociateInvariants && !C->major_progress()) {
5222     // Reassociate invariants and prep for split_thru_phi
5223     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
5224       IdealLoopTree* lpt = iter.current();
5225       if (!lpt->is_loop()) {
5226         continue;
5227       }
5228       Node* head = lpt->_head;
5229       if (!lpt->is_innermost()) continue;
5230 
5231       // check for vectorized loops, any reassociation of invariants was already done
5232       if (head->is_CountedLoop() && head->as_CountedLoop()->is_unroll_only()) {
5233         continue;
5234       } else {
5235         AutoNodeBudget node_budget(this);
5236         lpt->reassociate_invariants(this);
5237       }
5238       // Because RCE opportunities can be masked by split_thru_phi,
5239       // look for RCE candidates and inhibit split_thru_phi
5240       // on just their loop-phi's for this pass of loop opts
5241       if (SplitIfBlocks && do_split_ifs &&
5242           head->is_BaseCountedLoop() &&
5243           head->as_BaseCountedLoop()->is_valid_counted_loop(head->as_BaseCountedLoop()->bt()) &&
5244           (lpt->policy_range_check(this, true, T_LONG) ||
5245            (head->is_CountedLoop() && lpt->policy_range_check(this, true, T_INT)))) {
5246         lpt->_rce_candidate = 1; // = true
5247       }
5248     }
5249   }
5250 
5251   // Check for aggressive application of split-if and other transforms
5252   // that require basic-block info (like cloning through Phi's)
5253   if (!C->major_progress() && SplitIfBlocks && do_split_ifs) {
5254     visited.clear();
5255     split_if_with_blocks(visited, nstack);
5256     if (C->failing()) {
5257       return;
5258     }
5259     DEBUG_ONLY( if (VerifyLoopOptimizations) { verify(); } );
5260   }
5261 
5262   if (!C->major_progress() && do_expensive_nodes && process_expensive_nodes()) {
5263     C->set_major_progress();
5264   }
5265 
5266   // Perform loop predication before iteration splitting
5267   if (UseLoopPredicate && C->has_loops() && !C->major_progress() && (C->parse_predicate_count() > 0)) {
5268     _ltree_root->_child->loop_predication(this);
5269   }
5270 
5271   if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) {
5272     if (do_intrinsify_fill()) {
5273       C->set_major_progress();
5274     }
5275   }
5276 
5277   // Perform iteration-splitting on inner loops.  Split iterations to avoid
5278   // range checks or one-shot null checks.
5279 
5280   // If split-if's didn't hack the graph too bad (no CFG changes)
5281   // then do loop opts.
5282   if (C->has_loops() && !C->major_progress()) {
5283     memset( worklist.adr(), 0, worklist.max()*sizeof(Node*) );
5284     _ltree_root->_child->iteration_split( this, worklist );
5285     // No verify after peeling!  GCM has hoisted code out of the loop.
5286     // After peeling, the hoisted code could sink inside the peeled area.
5287     // The peeling code does not try to recompute the best location for
5288     // all the code before the peeled area, so the verify pass will always
5289     // complain about it.
5290   }
5291 
5292   // Check for bailout, and return
5293   if (C->failing()) {
5294     return;
5295   }
5296 
5297   // Do verify graph edges in any case
5298   NOT_PRODUCT( C->verify_graph_edges(); );
5299 
5300   if (!do_split_ifs) {
5301     // We saw major progress in Split-If to get here.  We forced a
5302     // pass with unrolling and not split-if, however more split-if's
5303     // might make progress.  If the unrolling didn't make progress
5304     // then the major-progress flag got cleared and we won't try
5305     // another round of Split-If.  In particular the ever-common
5306     // instance-of/check-cast pattern requires at least 2 rounds of
5307     // Split-If to clear out.
5308     C->set_major_progress();
5309   }
5310 
5311   // Repeat loop optimizations if new loops were seen
5312   if (created_loop_node()) {
5313     C->set_major_progress();
5314   }
5315 
5316   // Auto-vectorize main-loop
5317   if (C->do_superword() && C->has_loops() && !C->major_progress()) {
5318     Compile::TracePhase tp(_t_autoVectorize);
5319 
5320     // Shared data structures for all AutoVectorizations, to reduce allocations
5321     // of large arrays.
5322     VSharedData vshared;
5323     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
5324       IdealLoopTree* lpt = iter.current();
5325       AutoVectorizeStatus status = auto_vectorize(lpt, vshared);
5326 
5327       if (status == AutoVectorizeStatus::TriedAndFailed) {
5328         // We tried vectorization, but failed. From now on only unroll the loop.
5329         CountedLoopNode* cl = lpt->_head->as_CountedLoop();
5330         if (cl->has_passed_slp()) {
5331           C->set_major_progress();
5332           cl->set_notpassed_slp();
5333           cl->mark_do_unroll_only();
5334         }
5335       }
5336     }
5337   }
5338 
5339   // Keep loop predicates and perform optimizations with them
5340   // until no more loop optimizations could be done.
5341   // After that switch predicates off and do more loop optimizations.
5342   if (!C->major_progress() && (C->parse_predicate_count() > 0)) {
5343     C->mark_parse_predicate_nodes_useless(_igvn);
5344     assert(C->parse_predicate_count() == 0, "should be zero now");
5345     if (TraceLoopOpts) {
5346       tty->print_cr("PredicatesOff");
5347     }
5348     C->set_major_progress();
5349   }
5350 }
5351 
5352 #ifndef PRODUCT
5353 //------------------------------print_statistics-------------------------------
5354 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
5355 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
5356 volatile int PhaseIdealLoop::_long_loop_candidates=0; // Number of long loops seen
5357 volatile int PhaseIdealLoop::_long_loop_nests=0; // Number of long loops successfully transformed to a nest
5358 volatile int PhaseIdealLoop::_long_loop_counted_loops=0; // Number of long loops successfully transformed to a counted loop
5359 void PhaseIdealLoop::print_statistics() {
5360   tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d, long loops=%d/%d/%d", _loop_invokes, _loop_work, _long_loop_counted_loops, _long_loop_nests, _long_loop_candidates);
5361 }
5362 #endif
5363 
5364 #ifdef ASSERT
5365 // Build a verify-only PhaseIdealLoop, and see that it agrees with "this".
5366 void PhaseIdealLoop::verify() const {
5367   ResourceMark rm;
5368   bool old_progress = C->major_progress();
5369   bool success = true;
5370 
5371   PhaseIdealLoop phase_verify(_igvn, this);
5372   if (C->failing_internal()) {
5373     return;
5374   }
5375 
5376   // Verify ctrl and idom of every node.
5377   success &= verify_idom_and_nodes(C->root(), &phase_verify);
5378 
5379   // Verify loop-tree.
5380   success &= _ltree_root->verify_tree(phase_verify._ltree_root);
5381 
5382   assert(success, "VerifyLoopOptimizations failed");
5383 
5384   // Major progress was cleared by creating a verify version of PhaseIdealLoop.
5385   C->restore_major_progress(old_progress);
5386 }
5387 
5388 // Perform a BFS starting at n, through all inputs.
5389 // Call verify_idom and verify_node on all nodes of BFS traversal.
5390 bool PhaseIdealLoop::verify_idom_and_nodes(Node* root, const PhaseIdealLoop* phase_verify) const {
5391   Unique_Node_List worklist;
5392   worklist.push(root);
5393   bool success = true;
5394   for (uint i = 0; i < worklist.size(); i++) {
5395     Node* n = worklist.at(i);
5396     // process node
5397     success &= verify_idom(n, phase_verify);
5398     success &= verify_loop_ctrl(n, phase_verify);
5399     // visit inputs
5400     for (uint j = 0; j < n->req(); j++) {
5401       if (n->in(j) != nullptr) {
5402         worklist.push(n->in(j));
5403       }
5404     }
5405   }
5406   return success;
5407 }
5408 
5409 // Verify dominator structure (IDOM).
5410 bool PhaseIdealLoop::verify_idom(Node* n, const PhaseIdealLoop* phase_verify) const {
5411   // Verify IDOM for all CFG nodes (except root).
5412   if (!n->is_CFG() || n->is_Root()) {
5413     return true; // pass
5414   }
5415 
5416   if (n->_idx >= _idom_size) {
5417     tty->print("CFG Node with no idom: ");
5418     n->dump();
5419     return false; // fail
5420   }
5421 
5422   Node* id = idom_no_update(n);
5423   Node* id_verify = phase_verify->idom_no_update(n);
5424   if (id != id_verify) {
5425     tty->print("Mismatching idom for node: ");
5426     n->dump();
5427     tty->print("  We have idom: ");
5428     id->dump();
5429     tty->print("  Verify has idom: ");
5430     id_verify->dump();
5431     tty->cr();
5432     return false; // fail
5433   }
5434   return true; // pass
5435 }
5436 
5437 // Verify "_loop_or_ctrl": control and loop membership.
5438 //  (0) _loop_or_ctrl[i] == nullptr -> node not reachable.
5439 //  (1) has_ctrl -> check lowest bit. 1 -> data node. 0 -> ctrl node.
5440 //  (2) has_ctrl true: get_ctrl_no_update returns ctrl of data node.
5441 //  (3) has_ctrl false: get_loop_idx returns IdealLoopTree for ctrl node.
5442 bool PhaseIdealLoop::verify_loop_ctrl(Node* n, const PhaseIdealLoop* phase_verify) const {
5443   const uint i = n->_idx;
5444   // The loop-tree was built from def to use (top-down).
5445   // The verification happens from use to def (bottom-up).
5446   // We may thus find nodes during verification that are not in the loop-tree.
5447   if (_loop_or_ctrl[i] == nullptr || phase_verify->_loop_or_ctrl[i] == nullptr) {
5448     if (_loop_or_ctrl[i] != nullptr || phase_verify->_loop_or_ctrl[i] != nullptr) {
5449       tty->print_cr("Was reachable in only one. this %d, verify %d.",
5450                  _loop_or_ctrl[i] != nullptr, phase_verify->_loop_or_ctrl[i] != nullptr);
5451       n->dump();
5452       return false; // fail
5453     }
5454     // Not reachable for both.
5455     return true; // pass
5456   }
5457 
5458   if (n->is_CFG() == has_ctrl(n)) {
5459     tty->print_cr("Exactly one should be true: %d for is_CFG, %d for has_ctrl.", n->is_CFG(), has_ctrl(n));
5460     n->dump();
5461     return false; // fail
5462   }
5463 
5464   if (has_ctrl(n) != phase_verify->has_ctrl(n)) {
5465     tty->print_cr("Mismatch has_ctrl: %d for this, %d for verify.", has_ctrl(n), phase_verify->has_ctrl(n));
5466     n->dump();
5467     return false; // fail
5468   } else if (has_ctrl(n)) {
5469     assert(phase_verify->has_ctrl(n), "sanity");
5470     // n is a data node.
5471     // Verify that its ctrl is the same.
5472 
5473     // Broken part of VerifyLoopOptimizations (A)
5474     // Reason:
5475     //   BUG, wrong control set for example in
5476     //   PhaseIdealLoop::split_if_with_blocks
5477     //   at "set_ctrl(x, new_ctrl);"
5478     /*
5479     if( _loop_or_ctrl[i] != loop_verify->_loop_or_ctrl[i] &&
5480         get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
5481       tty->print("Mismatched control setting for: ");
5482       n->dump();
5483       if( fail++ > 10 ) return;
5484       Node *c = get_ctrl_no_update(n);
5485       tty->print("We have it as: ");
5486       if( c->in(0) ) c->dump();
5487         else tty->print_cr("N%d",c->_idx);
5488       tty->print("Verify thinks: ");
5489       if( loop_verify->has_ctrl(n) )
5490         loop_verify->get_ctrl_no_update(n)->dump();
5491       else
5492         loop_verify->get_loop_idx(n)->dump();
5493       tty->cr();
5494     }
5495     */
5496     return true; // pass
5497   } else {
5498     assert(!phase_verify->has_ctrl(n), "sanity");
5499     // n is a ctrl node.
5500     // Verify that not has_ctrl, and that get_loop_idx is the same.
5501 
5502     // Broken part of VerifyLoopOptimizations (B)
5503     // Reason:
5504     //   NeverBranch node for example is added to loop outside its scope.
5505     //   Once we run build_loop_tree again, it is added to the correct loop.
5506     /*
5507     if (!C->major_progress()) {
5508       // Loop selection can be messed up if we did a major progress
5509       // operation, like split-if.  Do not verify in that case.
5510       IdealLoopTree *us = get_loop_idx(n);
5511       IdealLoopTree *them = loop_verify->get_loop_idx(n);
5512       if( us->_head != them->_head ||  us->_tail != them->_tail ) {
5513         tty->print("Unequals loops for: ");
5514         n->dump();
5515         if( fail++ > 10 ) return;
5516         tty->print("We have it as: ");
5517         us->dump();
5518         tty->print("Verify thinks: ");
5519         them->dump();
5520         tty->cr();
5521       }
5522     }
5523     */
5524     return true; // pass
5525   }
5526 }
5527 
5528 static int compare_tree(IdealLoopTree* const& a, IdealLoopTree* const& b) {
5529   assert(a != nullptr && b != nullptr, "must be");
5530   return a->_head->_idx - b->_head->_idx;
5531 }
5532 
5533 GrowableArray<IdealLoopTree*> IdealLoopTree::collect_sorted_children() const {
5534   GrowableArray<IdealLoopTree*> children;
5535   IdealLoopTree* child = _child;
5536   while (child != nullptr) {
5537     assert(child->_parent == this, "all must be children of this");
5538     children.insert_sorted<compare_tree>(child);
5539     child = child->_next;
5540   }
5541   return children;
5542 }
5543 
5544 // Verify that tree structures match. Because the CFG can change, siblings
5545 // within the loop tree can be reordered. We attempt to deal with that by
5546 // reordering the verify's loop tree if possible.
5547 bool IdealLoopTree::verify_tree(IdealLoopTree* loop_verify) const {
5548   assert(_head == loop_verify->_head, "mismatched loop head");
5549   assert(this->_parent != nullptr || this->_next == nullptr, "is_root_loop implies has_no_sibling");
5550 
5551   // Collect the children
5552   GrowableArray<IdealLoopTree*> children = collect_sorted_children();
5553   GrowableArray<IdealLoopTree*> children_verify = loop_verify->collect_sorted_children();
5554 
5555   bool success = true;
5556 
5557   // Compare the two children lists
5558   for (int i = 0, j = 0; i < children.length() || j < children_verify.length(); ) {
5559     IdealLoopTree* child        = nullptr;
5560     IdealLoopTree* child_verify = nullptr;
5561     // Read from both lists, if possible.
5562     if (i < children.length()) {
5563       child = children.at(i);
5564     }
5565     if (j < children_verify.length()) {
5566       child_verify = children_verify.at(j);
5567     }
5568     assert(child != nullptr || child_verify != nullptr, "must find at least one");
5569     if (child != nullptr && child_verify != nullptr && child->_head != child_verify->_head) {
5570       // We found two non-equal children. Select the smaller one.
5571       if (child->_head->_idx < child_verify->_head->_idx) {
5572         child_verify = nullptr;
5573       } else {
5574         child = nullptr;
5575       }
5576     }
5577     // Process the two children, or potentially log the failure if we only found one.
5578     if (child_verify == nullptr) {
5579       if (child->_irreducible && Compile::current()->major_progress()) {
5580         // Irreducible loops can pick a different header (one of its entries).
5581       } else {
5582         tty->print_cr("We have a loop that verify does not have");
5583         child->dump();
5584         success = false;
5585       }
5586       i++; // step for this
5587     } else if (child == nullptr) {
5588       if (child_verify->_irreducible && Compile::current()->major_progress()) {
5589         // Irreducible loops can pick a different header (one of its entries).
5590       } else if (child_verify->_head->as_Region()->is_in_infinite_subgraph()) {
5591         // Infinite loops do not get attached to the loop-tree on their first visit.
5592         // "this" runs before "loop_verify". It is thus possible that we find the
5593         // infinite loop only for "child_verify". Only finding it with "child" would
5594         // mean that we lost it, which is not ok.
5595       } else {
5596         tty->print_cr("Verify has a loop that we do not have");
5597         child_verify->dump();
5598         success = false;
5599       }
5600       j++; // step for verify
5601     } else {
5602       assert(child->_head == child_verify->_head, "We have both and they are equal");
5603       success &= child->verify_tree(child_verify); // Recursion
5604       i++; // step for this
5605       j++; // step for verify
5606     }
5607   }
5608 
5609   // Broken part of VerifyLoopOptimizations (D)
5610   // Reason:
5611   //   split_if has to update the _tail, if it is modified. But that is done by
5612   //   checking to what loop the iff belongs to. That info can be wrong, and then
5613   //   we do not update the _tail correctly.
5614   /*
5615   Node *tail = _tail;           // Inline a non-updating version of
5616   while( !tail->in(0) )         // the 'tail()' call.
5617     tail = tail->in(1);
5618   assert( tail == loop->_tail, "mismatched loop tail" );
5619   */
5620 
5621   if (_head->is_CountedLoop()) {
5622     CountedLoopNode *cl = _head->as_CountedLoop();
5623 
5624     Node* ctrl     = cl->init_control();
5625     Node* back     = cl->back_control();
5626     assert(ctrl != nullptr && ctrl->is_CFG(), "sane loop in-ctrl");
5627     assert(back != nullptr && back->is_CFG(), "sane loop backedge");
5628     cl->loopexit(); // assert implied
5629   }
5630 
5631   // Broken part of VerifyLoopOptimizations (E)
5632   // Reason:
5633   //   PhaseIdealLoop::split_thru_region creates new nodes for loop that are not added
5634   //   to the loop body. Or maybe they are not added to the correct loop.
5635   //   at "Node* x = n->clone();"
5636   /*
5637   // Innermost loops need to verify loop bodies,
5638   // but only if no 'major_progress'
5639   int fail = 0;
5640   if (!Compile::current()->major_progress() && _child == nullptr) {
5641     for( uint i = 0; i < _body.size(); i++ ) {
5642       Node *n = _body.at(i);
5643       if (n->outcnt() == 0)  continue; // Ignore dead
5644       uint j;
5645       for( j = 0; j < loop->_body.size(); j++ )
5646         if( loop->_body.at(j) == n )
5647           break;
5648       if( j == loop->_body.size() ) { // Not found in loop body
5649         // Last ditch effort to avoid assertion: Its possible that we
5650         // have some users (so outcnt not zero) but are still dead.
5651         // Try to find from root.
5652         if (Compile::current()->root()->find(n->_idx)) {
5653           fail++;
5654           tty->print("We have that verify does not: ");
5655           n->dump();
5656         }
5657       }
5658     }
5659     for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
5660       Node *n = loop->_body.at(i2);
5661       if (n->outcnt() == 0)  continue; // Ignore dead
5662       uint j;
5663       for( j = 0; j < _body.size(); j++ )
5664         if( _body.at(j) == n )
5665           break;
5666       if( j == _body.size() ) { // Not found in loop body
5667         // Last ditch effort to avoid assertion: Its possible that we
5668         // have some users (so outcnt not zero) but are still dead.
5669         // Try to find from root.
5670         if (Compile::current()->root()->find(n->_idx)) {
5671           fail++;
5672           tty->print("Verify has that we do not: ");
5673           n->dump();
5674         }
5675       }
5676     }
5677     assert( !fail, "loop body mismatch" );
5678   }
5679   */
5680   return success;
5681 }
5682 #endif
5683 
5684 //------------------------------set_idom---------------------------------------
5685 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
5686   _nesting.check(); // Check if a potential reallocation in the resource arena is safe
5687   uint idx = d->_idx;
5688   if (idx >= _idom_size) {
5689     uint newsize = next_power_of_2(idx);
5690     _idom      = REALLOC_RESOURCE_ARRAY( Node*,     _idom,_idom_size,newsize);
5691     _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
5692     memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
5693     _idom_size = newsize;
5694   }
5695   _idom[idx] = n;
5696   _dom_depth[idx] = dom_depth;
5697 }
5698 
5699 //------------------------------recompute_dom_depth---------------------------------------
5700 // The dominator tree is constructed with only parent pointers.
5701 // This recomputes the depth in the tree by first tagging all
5702 // nodes as "no depth yet" marker.  The next pass then runs up
5703 // the dom tree from each node marked "no depth yet", and computes
5704 // the depth on the way back down.
5705 void PhaseIdealLoop::recompute_dom_depth() {
5706   uint no_depth_marker = C->unique();
5707   uint i;
5708   // Initialize depth to "no depth yet" and realize all lazy updates
5709   for (i = 0; i < _idom_size; i++) {
5710     // Only indices with a _dom_depth has a Node* or null (otherwise uninitialized).
5711     if (_dom_depth[i] > 0 && _idom[i] != nullptr) {
5712       _dom_depth[i] = no_depth_marker;
5713 
5714       // heal _idom if it has a fwd mapping in _loop_or_ctrl
5715       if (_idom[i]->in(0) == nullptr) {
5716         idom(i);
5717       }
5718     }
5719   }
5720   if (_dom_stk == nullptr) {
5721     uint init_size = C->live_nodes() / 100; // Guess that 1/100 is a reasonable initial size.
5722     if (init_size < 10) init_size = 10;
5723     _dom_stk = new GrowableArray<uint>(init_size);
5724   }
5725   // Compute new depth for each node.
5726   for (i = 0; i < _idom_size; i++) {
5727     uint j = i;
5728     // Run up the dom tree to find a node with a depth
5729     while (_dom_depth[j] == no_depth_marker) {
5730       _dom_stk->push(j);
5731       j = _idom[j]->_idx;
5732     }
5733     // Compute the depth on the way back down this tree branch
5734     uint dd = _dom_depth[j] + 1;
5735     while (_dom_stk->length() > 0) {
5736       uint j = _dom_stk->pop();
5737       _dom_depth[j] = dd;
5738       dd++;
5739     }
5740   }
5741 }
5742 
5743 //------------------------------sort-------------------------------------------
5744 // Insert 'loop' into the existing loop tree.  'innermost' is a leaf of the
5745 // loop tree, not the root.
5746 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
5747   if( !innermost ) return loop; // New innermost loop
5748 
5749   int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
5750   assert( loop_preorder, "not yet post-walked loop" );
5751   IdealLoopTree **pp = &innermost;      // Pointer to previous next-pointer
5752   IdealLoopTree *l = *pp;               // Do I go before or after 'l'?
5753 
5754   // Insert at start of list
5755   while( l ) {                  // Insertion sort based on pre-order
5756     if( l == loop ) return innermost; // Already on list!
5757     int l_preorder = get_preorder(l->_head); // Cache pre-order number
5758     assert( l_preorder, "not yet post-walked l" );
5759     // Check header pre-order number to figure proper nesting
5760     if( loop_preorder > l_preorder )
5761       break;                    // End of insertion
5762     // If headers tie (e.g., shared headers) check tail pre-order numbers.
5763     // Since I split shared headers, you'd think this could not happen.
5764     // BUT: I must first do the preorder numbering before I can discover I
5765     // have shared headers, so the split headers all get the same preorder
5766     // number as the RegionNode they split from.
5767     if( loop_preorder == l_preorder &&
5768         get_preorder(loop->_tail) < get_preorder(l->_tail) )
5769       break;                    // Also check for shared headers (same pre#)
5770     pp = &l->_parent;           // Chain up list
5771     l = *pp;
5772   }
5773   // Link into list
5774   // Point predecessor to me
5775   *pp = loop;
5776   // Point me to successor
5777   IdealLoopTree *p = loop->_parent;
5778   loop->_parent = l;            // Point me to successor
5779   if( p ) sort( p, innermost ); // Insert my parents into list as well
5780   return innermost;
5781 }
5782 
5783 //------------------------------build_loop_tree--------------------------------
5784 // I use a modified Vick/Tarjan algorithm.  I need pre- and a post- visit
5785 // bits.  The _loop_or_ctrl[] array is mapped by Node index and holds a null for
5786 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
5787 // tightest enclosing IdealLoopTree for post-walked.
5788 //
5789 // During my forward walk I do a short 1-layer lookahead to see if I can find
5790 // a loop backedge with that doesn't have any work on the backedge.  This
5791 // helps me construct nested loops with shared headers better.
5792 //
5793 // Once I've done the forward recursion, I do the post-work.  For each child
5794 // I check to see if there is a backedge.  Backedges define a loop!  I
5795 // insert an IdealLoopTree at the target of the backedge.
5796 //
5797 // During the post-work I also check to see if I have several children
5798 // belonging to different loops.  If so, then this Node is a decision point
5799 // where control flow can choose to change loop nests.  It is at this
5800 // decision point where I can figure out how loops are nested.  At this
5801 // time I can properly order the different loop nests from my children.
5802 // Note that there may not be any backedges at the decision point!
5803 //
5804 // Since the decision point can be far removed from the backedges, I can't
5805 // order my loops at the time I discover them.  Thus at the decision point
5806 // I need to inspect loop header pre-order numbers to properly nest my
5807 // loops.  This means I need to sort my childrens' loops by pre-order.
5808 // The sort is of size number-of-control-children, which generally limits
5809 // it to size 2 (i.e., I just choose between my 2 target loops).
5810 void PhaseIdealLoop::build_loop_tree() {
5811   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
5812   GrowableArray <Node *> bltstack(C->live_nodes() >> 1);
5813   Node *n = C->root();
5814   bltstack.push(n);
5815   int pre_order = 1;
5816   int stack_size;
5817 
5818   while ( ( stack_size = bltstack.length() ) != 0 ) {
5819     n = bltstack.top(); // Leave node on stack
5820     if ( !is_visited(n) ) {
5821       // ---- Pre-pass Work ----
5822       // Pre-walked but not post-walked nodes need a pre_order number.
5823 
5824       set_preorder_visited( n, pre_order ); // set as visited
5825 
5826       // ---- Scan over children ----
5827       // Scan first over control projections that lead to loop headers.
5828       // This helps us find inner-to-outer loops with shared headers better.
5829 
5830       // Scan children's children for loop headers.
5831       for ( int i = n->outcnt() - 1; i >= 0; --i ) {
5832         Node* m = n->raw_out(i);       // Child
5833         if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
5834           // Scan over children's children to find loop
5835           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
5836             Node* l = m->fast_out(j);
5837             if( is_visited(l) &&       // Been visited?
5838                 !is_postvisited(l) &&  // But not post-visited
5839                 get_preorder(l) < pre_order ) { // And smaller pre-order
5840               // Found!  Scan the DFS down this path before doing other paths
5841               bltstack.push(m);
5842               break;
5843             }
5844           }
5845         }
5846       }
5847       pre_order++;
5848     }
5849     else if ( !is_postvisited(n) ) {
5850       // Note: build_loop_tree_impl() adds out edges on rare occasions,
5851       // such as com.sun.rsasign.am::a.
5852       // For non-recursive version, first, process current children.
5853       // On next iteration, check if additional children were added.
5854       for ( int k = n->outcnt() - 1; k >= 0; --k ) {
5855         Node* u = n->raw_out(k);
5856         if ( u->is_CFG() && !is_visited(u) ) {
5857           bltstack.push(u);
5858         }
5859       }
5860       if ( bltstack.length() == stack_size ) {
5861         // There were no additional children, post visit node now
5862         (void)bltstack.pop(); // Remove node from stack
5863         pre_order = build_loop_tree_impl(n, pre_order);
5864         // Check for bailout
5865         if (C->failing()) {
5866           return;
5867         }
5868         // Check to grow _preorders[] array for the case when
5869         // build_loop_tree_impl() adds new nodes.
5870         check_grow_preorders();
5871       }
5872     }
5873     else {
5874       (void)bltstack.pop(); // Remove post-visited node from stack
5875     }
5876   }
5877   DEBUG_ONLY(verify_regions_in_irreducible_loops();)
5878 }
5879 
5880 //------------------------------build_loop_tree_impl---------------------------
5881 int PhaseIdealLoop::build_loop_tree_impl(Node* n, int pre_order) {
5882   // ---- Post-pass Work ----
5883   // Pre-walked but not post-walked nodes need a pre_order number.
5884 
5885   // Tightest enclosing loop for this Node
5886   IdealLoopTree *innermost = nullptr;
5887 
5888   // For all children, see if any edge is a backedge.  If so, make a loop
5889   // for it.  Then find the tightest enclosing loop for the self Node.
5890   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
5891     Node* m = n->fast_out(i);   // Child
5892     if (n == m) continue;      // Ignore control self-cycles
5893     if (!m->is_CFG()) continue;// Ignore non-CFG edges
5894 
5895     IdealLoopTree *l;           // Child's loop
5896     if (!is_postvisited(m)) {  // Child visited but not post-visited?
5897       // Found a backedge
5898       assert(get_preorder(m) < pre_order, "should be backedge");
5899       // Check for the RootNode, which is already a LoopNode and is allowed
5900       // to have multiple "backedges".
5901       if (m == C->root()) {     // Found the root?
5902         l = _ltree_root;        // Root is the outermost LoopNode
5903       } else {                  // Else found a nested loop
5904         // Insert a LoopNode to mark this loop.
5905         l = new IdealLoopTree(this, m, n);
5906       } // End of Else found a nested loop
5907       if (!has_loop(m)) {        // If 'm' does not already have a loop set
5908         set_loop(m, l);         // Set loop header to loop now
5909       }
5910     } else {                    // Else not a nested loop
5911       if (!_loop_or_ctrl[m->_idx]) continue; // Dead code has no loop
5912       IdealLoopTree* m_loop = get_loop(m);
5913       l = m_loop;          // Get previously determined loop
5914       // If successor is header of a loop (nest), move up-loop till it
5915       // is a member of some outer enclosing loop.  Since there are no
5916       // shared headers (I've split them already) I only need to go up
5917       // at most 1 level.
5918       while (l && l->_head == m) { // Successor heads loop?
5919         l = l->_parent;         // Move up 1 for me
5920       }
5921       // If this loop is not properly parented, then this loop
5922       // has no exit path out, i.e. its an infinite loop.
5923       if (!l) {
5924         // Make loop "reachable" from root so the CFG is reachable.  Basically
5925         // insert a bogus loop exit that is never taken.  'm', the loop head,
5926         // points to 'n', one (of possibly many) fall-in paths.  There may be
5927         // many backedges as well.
5928 
5929         if (!_verify_only) {
5930           // Insert the NeverBranch between 'm' and it's control user.
5931           NeverBranchNode *iff = new NeverBranchNode( m );
5932           _igvn.register_new_node_with_optimizer(iff);
5933           set_loop(iff, m_loop);
5934           Node *if_t = new CProjNode( iff, 0 );
5935           _igvn.register_new_node_with_optimizer(if_t);
5936           set_loop(if_t, m_loop);
5937 
5938           Node* cfg = nullptr;       // Find the One True Control User of m
5939           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
5940             Node* x = m->fast_out(j);
5941             if (x->is_CFG() && x != m && x != iff)
5942               { cfg = x; break; }
5943           }
5944           assert(cfg != nullptr, "must find the control user of m");
5945           uint k = 0;             // Probably cfg->in(0)
5946           while( cfg->in(k) != m ) k++; // But check in case cfg is a Region
5947           _igvn.replace_input_of(cfg, k, if_t); // Now point to NeverBranch
5948 
5949           // Now create the never-taken loop exit
5950           Node *if_f = new CProjNode( iff, 1 );
5951           _igvn.register_new_node_with_optimizer(if_f);
5952           set_loop(if_f, _ltree_root);
5953           // Find frame ptr for Halt.  Relies on the optimizer
5954           // V-N'ing.  Easier and quicker than searching through
5955           // the program structure.
5956           Node *frame = new ParmNode( C->start(), TypeFunc::FramePtr );
5957           _igvn.register_new_node_with_optimizer(frame);
5958           // Halt & Catch Fire
5959           Node* halt = new HaltNode(if_f, frame, "never-taken loop exit reached");
5960           _igvn.register_new_node_with_optimizer(halt);
5961           set_loop(halt, _ltree_root);
5962           _igvn.add_input_to(C->root(), halt);
5963         }
5964         set_loop(C->root(), _ltree_root);
5965         // move to outer most loop with same header
5966         l = m_loop;
5967         while (true) {
5968           IdealLoopTree* next = l->_parent;
5969           if (next == nullptr || next->_head != m) {
5970             break;
5971           }
5972           l = next;
5973         }
5974         // properly insert infinite loop in loop tree
5975         sort(_ltree_root, l);
5976         // fix child link from parent
5977         IdealLoopTree* p = l->_parent;
5978         l->_next = p->_child;
5979         p->_child = l;
5980         // code below needs enclosing loop
5981         l = l->_parent;
5982       }
5983     }
5984     if (is_postvisited(l->_head)) {
5985       // We are currently visiting l, but its head has already been post-visited.
5986       // l is irreducible: we just found a second entry m.
5987       _has_irreducible_loops = true;
5988       RegionNode* secondary_entry = m->as_Region();
5989 
5990       if (!secondary_entry->can_be_irreducible_entry()) {
5991         assert(!VerifyNoNewIrreducibleLoops, "A new irreducible loop was created after parsing.");
5992         C->record_method_not_compilable("A new irreducible loop was created after parsing.");
5993         return pre_order;
5994       }
5995 
5996       // Walk up the loop-tree, mark all loops that are already post-visited as irreducible
5997       // Since m is a secondary entry to them all.
5998       while( is_postvisited(l->_head) ) {
5999         l->_irreducible = 1; // = true
6000         RegionNode* head = l->_head->as_Region();
6001         if (!head->can_be_irreducible_entry()) {
6002           assert(!VerifyNoNewIrreducibleLoops, "A new irreducible loop was created after parsing.");
6003           C->record_method_not_compilable("A new irreducible loop was created after parsing.");
6004           return pre_order;
6005         }
6006         l = l->_parent;
6007         // Check for bad CFG here to prevent crash, and bailout of compile
6008         if (l == nullptr) {
6009 #ifndef PRODUCT
6010           if (TraceLoopOpts) {
6011             tty->print_cr("bailout: unhandled CFG: infinite irreducible loop");
6012             m->dump();
6013           }
6014 #endif
6015           // This is a rare case that we do not want to handle in C2.
6016           C->record_method_not_compilable("unhandled CFG detected during loop optimization");
6017           return pre_order;
6018         }
6019       }
6020     }
6021     if (!_verify_only) {
6022       C->set_has_irreducible_loop(_has_irreducible_loops);
6023     }
6024 
6025     // This Node might be a decision point for loops.  It is only if
6026     // it's children belong to several different loops.  The sort call
6027     // does a trivial amount of work if there is only 1 child or all
6028     // children belong to the same loop.  If however, the children
6029     // belong to different loops, the sort call will properly set the
6030     // _parent pointers to show how the loops nest.
6031     //
6032     // In any case, it returns the tightest enclosing loop.
6033     innermost = sort( l, innermost );
6034   }
6035 
6036   // Def-use info will have some dead stuff; dead stuff will have no
6037   // loop decided on.
6038 
6039   // Am I a loop header?  If so fix up my parent's child and next ptrs.
6040   if( innermost && innermost->_head == n ) {
6041     assert( get_loop(n) == innermost, "" );
6042     IdealLoopTree *p = innermost->_parent;
6043     IdealLoopTree *l = innermost;
6044     while (p && l->_head == n) {
6045       l->_next = p->_child;     // Put self on parents 'next child'
6046       p->_child = l;            // Make self as first child of parent
6047       l = p;                    // Now walk up the parent chain
6048       p = l->_parent;
6049     }
6050   } else {
6051     // Note that it is possible for a LoopNode to reach here, if the
6052     // backedge has been made unreachable (hence the LoopNode no longer
6053     // denotes a Loop, and will eventually be removed).
6054 
6055     // Record tightest enclosing loop for self.  Mark as post-visited.
6056     set_loop(n, innermost);
6057     // Also record has_call flag early on
6058     if (innermost) {
6059       if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
6060         // Do not count uncommon calls
6061         if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
6062           Node *iff = n->in(0)->in(0);
6063           // No any calls for vectorized loops.
6064           if (C->do_superword() ||
6065               !iff->is_If() ||
6066               (n->in(0)->Opcode() == Op_IfFalse && (1.0 - iff->as_If()->_prob) >= 0.01) ||
6067               iff->as_If()->_prob >= 0.01) {
6068             innermost->_has_call = 1;
6069           }
6070         }
6071       } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
6072         // Disable loop optimizations if the loop has a scalar replaceable
6073         // allocation. This disabling may cause a potential performance lost
6074         // if the allocation is not eliminated for some reason.
6075         innermost->_allow_optimizations = false;
6076         innermost->_has_call = 1; // = true
6077       } else if (n->Opcode() == Op_SafePoint) {
6078         // Record all safepoints in this loop.
6079         if (innermost->_safepts == nullptr) innermost->_safepts = new Node_List();
6080         innermost->_safepts->push(n);
6081       }
6082     }
6083   }
6084 
6085   // Flag as post-visited now
6086   set_postvisited(n);
6087   return pre_order;
6088 }
6089 
6090 #ifdef ASSERT
6091 //--------------------------verify_regions_in_irreducible_loops----------------
6092 // Iterate down from Root through CFG, verify for every region:
6093 // if it is in an irreducible loop it must be marked as such
6094 void PhaseIdealLoop::verify_regions_in_irreducible_loops() {
6095   ResourceMark rm;
6096   if (!_has_irreducible_loops) {
6097     // last build_loop_tree has not found any irreducible loops
6098     // hence no region has to be marked is_in_irreduible_loop
6099     return;
6100   }
6101 
6102   RootNode* root = C->root();
6103   Unique_Node_List worklist; // visit all nodes once
6104   worklist.push(root);
6105   bool failure = false;
6106   for (uint i = 0; i < worklist.size(); i++) {
6107     Node* n = worklist.at(i);
6108     if (n->is_Region()) {
6109       RegionNode* region = n->as_Region();
6110       if (is_in_irreducible_loop(region) &&
6111           region->loop_status() == RegionNode::LoopStatus::Reducible) {
6112         failure = true;
6113         tty->print("irreducible! ");
6114         region->dump();
6115       }
6116     }
6117     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
6118       Node* use = n->fast_out(j);
6119       if (use->is_CFG()) {
6120         worklist.push(use); // push if was not pushed before
6121       }
6122     }
6123   }
6124   assert(!failure, "region in irreducible loop was marked as reducible");
6125 }
6126 
6127 //---------------------------is_in_irreducible_loop-------------------------
6128 // Analogous to ciTypeFlow::Block::is_in_irreducible_loop
6129 bool PhaseIdealLoop::is_in_irreducible_loop(RegionNode* region) {
6130   if (!_has_irreducible_loops) {
6131     return false; // no irreducible loop in graph
6132   }
6133   IdealLoopTree* l = get_loop(region); // l: innermost loop that contains region
6134   do {
6135     if (l->_irreducible) {
6136       return true; // found it
6137     }
6138     if (l == _ltree_root) {
6139       return false; // reached root, terimnate
6140     }
6141     l = l->_parent;
6142   } while (l != nullptr);
6143   assert(region->is_in_infinite_subgraph(), "must be in infinite subgraph");
6144   // We have "l->_parent == nullptr", which happens only for infinite loops,
6145   // where no parent is attached to the loop. We did not find any irreducible
6146   // loop from this block out to lp. Thus lp only has one entry, and no exit
6147   // (it is infinite and reducible). We can always rewrite an infinite loop
6148   // that is nested inside other loops:
6149   // while(condition) { infinite_loop; }
6150   // with an equivalent program where the infinite loop is an outermost loop
6151   // that is not nested in any loop:
6152   // while(condition) { break; } infinite_loop;
6153   // Thus, we can understand lp as an outermost loop, and can terminate and
6154   // conclude: this block is in no irreducible loop.
6155   return false;
6156 }
6157 #endif
6158 
6159 //------------------------------build_loop_early-------------------------------
6160 // Put Data nodes into some loop nest, by setting the _loop_or_ctrl[]->loop mapping.
6161 // First pass computes the earliest controlling node possible.  This is the
6162 // controlling input with the deepest dominating depth.
6163 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
6164   while (worklist.size() != 0) {
6165     // Use local variables nstack_top_n & nstack_top_i to cache values
6166     // on nstack's top.
6167     Node *nstack_top_n = worklist.pop();
6168     uint  nstack_top_i = 0;
6169 //while_nstack_nonempty:
6170     while (true) {
6171       // Get parent node and next input's index from stack's top.
6172       Node  *n = nstack_top_n;
6173       uint   i = nstack_top_i;
6174       uint cnt = n->req(); // Count of inputs
6175       if (i == 0) {        // Pre-process the node.
6176         if( has_node(n) &&            // Have either loop or control already?
6177             !has_ctrl(n) ) {          // Have loop picked out already?
6178           // During "merge_many_backedges" we fold up several nested loops
6179           // into a single loop.  This makes the members of the original
6180           // loop bodies pointing to dead loops; they need to move up
6181           // to the new UNION'd larger loop.  I set the _head field of these
6182           // dead loops to null and the _parent field points to the owning
6183           // loop.  Shades of UNION-FIND algorithm.
6184           IdealLoopTree *ilt;
6185           while( !(ilt = get_loop(n))->_head ) {
6186             // Normally I would use a set_loop here.  But in this one special
6187             // case, it is legal (and expected) to change what loop a Node
6188             // belongs to.
6189             _loop_or_ctrl.map(n->_idx, (Node*)(ilt->_parent));
6190           }
6191           // Remove safepoints ONLY if I've already seen I don't need one.
6192           // (the old code here would yank a 2nd safepoint after seeing a
6193           // first one, even though the 1st did not dominate in the loop body
6194           // and thus could be avoided indefinitely)
6195           if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
6196               is_deleteable_safept(n)) {
6197             Node *in = n->in(TypeFunc::Control);
6198             replace_node_and_forward_ctrl(n, in); // Pull safepoint now
6199             if (ilt->_safepts != nullptr) {
6200               ilt->_safepts->yank(n);
6201             }
6202             // Carry on with the recursion "as if" we are walking
6203             // only the control input
6204             if( !visited.test_set( in->_idx ) ) {
6205               worklist.push(in);      // Visit this guy later, using worklist
6206             }
6207             // Get next node from nstack:
6208             // - skip n's inputs processing by setting i > cnt;
6209             // - we also will not call set_early_ctrl(n) since
6210             //   has_node(n) == true (see the condition above).
6211             i = cnt + 1;
6212           }
6213         }
6214       } // if (i == 0)
6215 
6216       // Visit all inputs
6217       bool done = true;       // Assume all n's inputs will be processed
6218       while (i < cnt) {
6219         Node *in = n->in(i);
6220         ++i;
6221         if (in == nullptr) continue;
6222         if (in->pinned() && !in->is_CFG())
6223           set_ctrl(in, in->in(0));
6224         int is_visited = visited.test_set( in->_idx );
6225         if (!has_node(in)) {  // No controlling input yet?
6226           assert( !in->is_CFG(), "CFG Node with no controlling input?" );
6227           assert( !is_visited, "visit only once" );
6228           nstack.push(n, i);  // Save parent node and next input's index.
6229           nstack_top_n = in;  // Process current input now.
6230           nstack_top_i = 0;
6231           done = false;       // Not all n's inputs processed.
6232           break; // continue while_nstack_nonempty;
6233         } else if (!is_visited) {
6234           // This guy has a location picked out for him, but has not yet
6235           // been visited.  Happens to all CFG nodes, for instance.
6236           // Visit him using the worklist instead of recursion, to break
6237           // cycles.  Since he has a location already we do not need to
6238           // find his location before proceeding with the current Node.
6239           worklist.push(in);  // Visit this guy later, using worklist
6240         }
6241       }
6242       if (done) {
6243         // All of n's inputs have been processed, complete post-processing.
6244 
6245         // Compute earliest point this Node can go.
6246         // CFG, Phi, pinned nodes already know their controlling input.
6247         if (!has_node(n)) {
6248           // Record earliest legal location
6249           set_early_ctrl(n, false);
6250         }
6251         if (nstack.is_empty()) {
6252           // Finished all nodes on stack.
6253           // Process next node on the worklist.
6254           break;
6255         }
6256         // Get saved parent node and next input's index.
6257         nstack_top_n = nstack.node();
6258         nstack_top_i = nstack.index();
6259         nstack.pop();
6260       }
6261     } // while (true)
6262   }
6263 }
6264 
6265 //------------------------------dom_lca_internal--------------------------------
6266 // Pair-wise LCA
6267 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
6268   if( !n1 ) return n2;          // Handle null original LCA
6269   assert( n1->is_CFG(), "" );
6270   assert( n2->is_CFG(), "" );
6271   // find LCA of all uses
6272   uint d1 = dom_depth(n1);
6273   uint d2 = dom_depth(n2);
6274   while (n1 != n2) {
6275     if (d1 > d2) {
6276       n1 =      idom(n1);
6277       d1 = dom_depth(n1);
6278     } else if (d1 < d2) {
6279       n2 =      idom(n2);
6280       d2 = dom_depth(n2);
6281     } else {
6282       // Here d1 == d2.  Due to edits of the dominator-tree, sections
6283       // of the tree might have the same depth.  These sections have
6284       // to be searched more carefully.
6285 
6286       // Scan up all the n1's with equal depth, looking for n2.
6287       Node *t1 = idom(n1);
6288       while (dom_depth(t1) == d1) {
6289         if (t1 == n2)  return n2;
6290         t1 = idom(t1);
6291       }
6292       // Scan up all the n2's with equal depth, looking for n1.
6293       Node *t2 = idom(n2);
6294       while (dom_depth(t2) == d2) {
6295         if (t2 == n1)  return n1;
6296         t2 = idom(t2);
6297       }
6298       // Move up to a new dominator-depth value as well as up the dom-tree.
6299       n1 = t1;
6300       n2 = t2;
6301       d1 = dom_depth(n1);
6302       d2 = dom_depth(n2);
6303     }
6304   }
6305   return n1;
6306 }
6307 
6308 //------------------------------compute_idom-----------------------------------
6309 // Locally compute IDOM using dom_lca call.  Correct only if the incoming
6310 // IDOMs are correct.
6311 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
6312   assert( region->is_Region(), "" );
6313   Node *LCA = nullptr;
6314   for( uint i = 1; i < region->req(); i++ ) {
6315     if( region->in(i) != C->top() )
6316       LCA = dom_lca( LCA, region->in(i) );
6317   }
6318   return LCA;
6319 }
6320 
6321 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) {
6322   bool had_error = false;
6323 #ifdef ASSERT
6324   if (early != C->root()) {
6325     // Make sure that there's a dominance path from LCA to early
6326     Node* d = LCA;
6327     while (d != early) {
6328       if (d == C->root()) {
6329         dump_bad_graph("Bad graph detected in compute_lca_of_uses", n, early, LCA);
6330         tty->print_cr("*** Use %d isn't dominated by def %d ***", use->_idx, n->_idx);
6331         had_error = true;
6332         break;
6333       }
6334       d = idom(d);
6335     }
6336   }
6337 #endif
6338   return had_error;
6339 }
6340 
6341 
6342 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
6343   // Compute LCA over list of uses
6344   bool had_error = false;
6345   Node *LCA = nullptr;
6346   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
6347     Node* c = n->fast_out(i);
6348     if (_loop_or_ctrl[c->_idx] == nullptr)
6349       continue;                 // Skip the occasional dead node
6350     if( c->is_Phi() ) {         // For Phis, we must land above on the path
6351       for( uint j=1; j<c->req(); j++ ) {// For all inputs
6352         if( c->in(j) == n ) {   // Found matching input?
6353           Node *use = c->in(0)->in(j);
6354           if (_verify_only && use->is_top()) continue;
6355           LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
6356           if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
6357         }
6358       }
6359     } else {
6360       // For CFG data-users, use is in the block just prior
6361       Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
6362       LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
6363       if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
6364     }
6365   }
6366   assert(!had_error, "bad dominance");
6367   return LCA;
6368 }
6369 
6370 // Check the shape of the graph at the loop entry. In some cases,
6371 // the shape of the graph does not match the shape outlined below.
6372 // That is caused by the Opaque1 node "protecting" the shape of
6373 // the graph being removed by, for example, the IGVN performed
6374 // in PhaseIdealLoop::build_and_optimize().
6375 //
6376 // After the Opaque1 node has been removed, optimizations (e.g., split-if,
6377 // loop unswitching, and IGVN, or a combination of them) can freely change
6378 // the graph's shape. As a result, the graph shape outlined below cannot
6379 // be guaranteed anymore.
6380 Node* CountedLoopNode::is_canonical_loop_entry() {
6381   if (!is_main_loop() && !is_post_loop()) {
6382     return nullptr;
6383   }
6384   Node* ctrl = skip_assertion_predicates_with_halt();
6385 
6386   if (ctrl == nullptr || (!ctrl->is_IfTrue() && !ctrl->is_IfFalse())) {
6387     return nullptr;
6388   }
6389   Node* iffm = ctrl->in(0);
6390   if (iffm == nullptr || iffm->Opcode() != Op_If) {
6391     return nullptr;
6392   }
6393   Node* bolzm = iffm->in(1);
6394   if (bolzm == nullptr || !bolzm->is_Bool()) {
6395     return nullptr;
6396   }
6397   Node* cmpzm = bolzm->in(1);
6398   if (cmpzm == nullptr || !cmpzm->is_Cmp()) {
6399     return nullptr;
6400   }
6401 
6402   uint input = is_main_loop() ? 2 : 1;
6403   if (input >= cmpzm->req() || cmpzm->in(input) == nullptr) {
6404     return nullptr;
6405   }
6406   bool res = cmpzm->in(input)->Opcode() == Op_OpaqueZeroTripGuard;
6407 #ifdef ASSERT
6408   bool found_opaque = false;
6409   for (uint i = 1; i < cmpzm->req(); i++) {
6410     Node* opnd = cmpzm->in(i);
6411     if (opnd && opnd->is_Opaque1()) {
6412       found_opaque = true;
6413       break;
6414     }
6415   }
6416   assert(found_opaque == res, "wrong pattern");
6417 #endif
6418   return res ? cmpzm->in(input) : nullptr;
6419 }
6420 
6421 // Find pre loop end from main loop. Returns nullptr if none.
6422 CountedLoopEndNode* CountedLoopNode::find_pre_loop_end() {
6423   assert(is_main_loop(), "Can only find pre-loop from main-loop");
6424   // The loop cannot be optimized if the graph shape at the loop entry is
6425   // inappropriate.
6426   if (is_canonical_loop_entry() == nullptr) {
6427     return nullptr;
6428   }
6429 
6430   Node* p_f = skip_assertion_predicates_with_halt()->in(0)->in(0);
6431   if (!p_f->is_IfFalse() || !p_f->in(0)->is_CountedLoopEnd()) {
6432     return nullptr;
6433   }
6434   CountedLoopEndNode* pre_end = p_f->in(0)->as_CountedLoopEnd();
6435   CountedLoopNode* loop_node = pre_end->loopnode();
6436   if (loop_node == nullptr || !loop_node->is_pre_loop()) {
6437     return nullptr;
6438   }
6439   return pre_end;
6440 }
6441 
6442 Node* CountedLoopNode::uncasted_init_trip(bool uncast) {
6443   Node* init = init_trip();
6444   if (uncast && init->is_CastII()) {
6445     // skip over the cast added by PhaseIdealLoop::cast_incr_before_loop() when pre/post/main loops are created because
6446     // it can get in the way of type propagation. For instance, the index tested by an Assertion Predicate, if the cast
6447     // is not skipped over, could be (1):
6448     // (AddI (CastII (AddI pre_loop_iv -2) int) 1)
6449     // while without the cast, it is (2):
6450     // (AddI (AddI pre_loop_iv -2) 1)
6451     // which is be transformed to (3):
6452     // (AddI pre_loop_iv -1)
6453     // The compiler may be able to constant fold the Assertion Predicate condition for (3) but not (1)
6454     assert(init->as_CastII()->carry_dependency() && skip_assertion_predicates_with_halt() == init->in(0), "casted iv phi from pre loop expected");
6455     init = init->in(1);
6456   }
6457   return init;
6458 }
6459 
6460 //------------------------------get_late_ctrl----------------------------------
6461 // Compute latest legal control.
6462 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
6463   assert(early != nullptr, "early control should not be null");
6464 
6465   Node* LCA = compute_lca_of_uses(n, early);
6466 #ifdef ASSERT
6467   if (LCA == C->root() && LCA != early) {
6468     // def doesn't dominate uses so print some useful debugging output
6469     compute_lca_of_uses(n, early, true);
6470   }
6471 #endif
6472 
6473   if (n->is_Load() && LCA != early) {
6474     LCA = get_late_ctrl_with_anti_dep(n->as_Load(), early, LCA);
6475   }
6476 
6477   assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
6478   return LCA;
6479 }
6480 
6481 // if this is a load, check for anti-dependent stores
6482 // We use a conservative algorithm to identify potential interfering
6483 // instructions and for rescheduling the load.  The users of the memory
6484 // input of this load are examined.  Any use which is not a load and is
6485 // dominated by early is considered a potentially interfering store.
6486 // This can produce false positives.
6487 Node* PhaseIdealLoop::get_late_ctrl_with_anti_dep(LoadNode* n, Node* early, Node* LCA) {
6488   int load_alias_idx = C->get_alias_index(n->adr_type());
6489   if (C->alias_type(load_alias_idx)->is_rewritable()) {
6490     Unique_Node_List worklist;
6491 
6492     Node* mem = n->in(MemNode::Memory);
6493     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
6494       Node* s = mem->fast_out(i);
6495       worklist.push(s);
6496     }
6497     for (uint i = 0; i < worklist.size() && LCA != early; i++) {
6498       Node* s = worklist.at(i);
6499       if (s->is_Load() || s->Opcode() == Op_SafePoint ||
6500           (s->is_CallStaticJava() && s->as_CallStaticJava()->uncommon_trap_request() != 0) ||
6501           s->is_Phi()) {
6502         continue;
6503       } else if (s->is_MergeMem()) {
6504         for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
6505           Node* s1 = s->fast_out(i);
6506           worklist.push(s1);
6507         }
6508       } else {
6509         Node* sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
6510         assert(sctrl != nullptr || !s->is_reachable_from_root(), "must have control");
6511         if (sctrl != nullptr && !sctrl->is_top() && is_dominator(early, sctrl)) {
6512           const TypePtr* adr_type = s->adr_type();
6513           if (s->is_ArrayCopy()) {
6514             // Copy to known instance needs destination type to test for aliasing
6515             const TypePtr* dest_type = s->as_ArrayCopy()->_dest_type;
6516             if (dest_type != TypeOopPtr::BOTTOM) {
6517               adr_type = dest_type;
6518             }
6519           }
6520           if (C->can_alias(adr_type, load_alias_idx)) {
6521             LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
6522           } else if (s->is_CFG() && s->is_Multi()) {
6523             // Look for the memory use of s (that is the use of its memory projection)
6524             for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
6525               Node* s1 = s->fast_out(i);
6526               assert(s1->is_Proj(), "projection expected");
6527               if (_igvn.type(s1) == Type::MEMORY) {
6528                 for (DUIterator_Fast jmax, j = s1->fast_outs(jmax); j < jmax; j++) {
6529                   Node* s2 = s1->fast_out(j);
6530                   worklist.push(s2);
6531                 }
6532               }
6533             }
6534           }
6535         }
6536       }
6537     }
6538     // For Phis only consider Region's inputs that were reached by following the memory edges
6539     if (LCA != early) {
6540       for (uint i = 0; i < worklist.size(); i++) {
6541         Node* s = worklist.at(i);
6542         if (s->is_Phi() && C->can_alias(s->adr_type(), load_alias_idx)) {
6543           Node* r = s->in(0);
6544           for (uint j = 1; j < s->req(); j++) {
6545             Node* in = s->in(j);
6546             Node* r_in = r->in(j);
6547             // We can't reach any node from a Phi because we don't enqueue Phi's uses above
6548             if (((worklist.member(in) && !in->is_Phi()) || in == mem) && is_dominator(early, r_in)) {
6549               LCA = dom_lca_for_get_late_ctrl(LCA, r_in, n);
6550             }
6551           }
6552         }
6553       }
6554     }
6555   }
6556   return LCA;
6557 }
6558 
6559 // Is CFG node 'dominator' dominating node 'n'?
6560 bool PhaseIdealLoop::is_dominator(Node* dominator, Node* n) {
6561   if (dominator == n) {
6562     return true;
6563   }
6564   assert(dominator->is_CFG() && n->is_CFG(), "must have CFG nodes");
6565   uint dd = dom_depth(dominator);
6566   while (dom_depth(n) >= dd) {
6567     if (n == dominator) {
6568       return true;
6569     }
6570     n = idom(n);
6571   }
6572   return false;
6573 }
6574 
6575 // Is CFG node 'dominator' strictly dominating node 'n'?
6576 bool PhaseIdealLoop::is_strict_dominator(Node* dominator, Node* n) {
6577   return dominator != n && is_dominator(dominator, n);
6578 }
6579 
6580 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
6581 // Pair-wise LCA with tags.
6582 // Tag each index with the node 'tag' currently being processed
6583 // before advancing up the dominator chain using idom().
6584 // Later calls that find a match to 'tag' know that this path has already
6585 // been considered in the current LCA (which is input 'n1' by convention).
6586 // Since get_late_ctrl() is only called once for each node, the tag array
6587 // does not need to be cleared between calls to get_late_ctrl().
6588 // Algorithm trades a larger constant factor for better asymptotic behavior
6589 //
6590 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal(Node *n1, Node *n2, Node *tag_node) {
6591   uint d1 = dom_depth(n1);
6592   uint d2 = dom_depth(n2);
6593   jlong tag = tag_node->_idx | (((jlong)_dom_lca_tags_round) << 32);
6594 
6595   do {
6596     if (d1 > d2) {
6597       // current lca is deeper than n2
6598       _dom_lca_tags.at_put_grow(n1->_idx, tag);
6599       n1 =      idom(n1);
6600       d1 = dom_depth(n1);
6601     } else if (d1 < d2) {
6602       // n2 is deeper than current lca
6603       jlong memo = _dom_lca_tags.at_grow(n2->_idx, 0);
6604       if (memo == tag) {
6605         return n1;    // Return the current LCA
6606       }
6607       _dom_lca_tags.at_put_grow(n2->_idx, tag);
6608       n2 =      idom(n2);
6609       d2 = dom_depth(n2);
6610     } else {
6611       // Here d1 == d2.  Due to edits of the dominator-tree, sections
6612       // of the tree might have the same depth.  These sections have
6613       // to be searched more carefully.
6614 
6615       // Scan up all the n1's with equal depth, looking for n2.
6616       _dom_lca_tags.at_put_grow(n1->_idx, tag);
6617       Node *t1 = idom(n1);
6618       while (dom_depth(t1) == d1) {
6619         if (t1 == n2)  return n2;
6620         _dom_lca_tags.at_put_grow(t1->_idx, tag);
6621         t1 = idom(t1);
6622       }
6623       // Scan up all the n2's with equal depth, looking for n1.
6624       _dom_lca_tags.at_put_grow(n2->_idx, tag);
6625       Node *t2 = idom(n2);
6626       while (dom_depth(t2) == d2) {
6627         if (t2 == n1)  return n1;
6628         _dom_lca_tags.at_put_grow(t2->_idx, tag);
6629         t2 = idom(t2);
6630       }
6631       // Move up to a new dominator-depth value as well as up the dom-tree.
6632       n1 = t1;
6633       n2 = t2;
6634       d1 = dom_depth(n1);
6635       d2 = dom_depth(n2);
6636     }
6637   } while (n1 != n2);
6638   return n1;
6639 }
6640 
6641 //------------------------------init_dom_lca_tags------------------------------
6642 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
6643 // Intended use does not involve any growth for the array, so it could
6644 // be of fixed size.
6645 void PhaseIdealLoop::init_dom_lca_tags() {
6646   uint limit = C->unique() + 1;
6647   _dom_lca_tags.at_grow(limit, 0);
6648   _dom_lca_tags_round = 0;
6649 #ifdef ASSERT
6650   for (uint i = 0; i < limit; ++i) {
6651     assert(_dom_lca_tags.at(i) == 0, "Must be distinct from each node pointer");
6652   }
6653 #endif // ASSERT
6654 }
6655 
6656 //------------------------------build_loop_late--------------------------------
6657 // Put Data nodes into some loop nest, by setting the _loop_or_ctrl[]->loop mapping.
6658 // Second pass finds latest legal placement, and ideal loop placement.
6659 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
6660   while (worklist.size() != 0) {
6661     Node *n = worklist.pop();
6662     // Only visit once
6663     if (visited.test_set(n->_idx)) continue;
6664     uint cnt = n->outcnt();
6665     uint   i = 0;
6666     while (true) {
6667       assert(_loop_or_ctrl[n->_idx], "no dead nodes");
6668       // Visit all children
6669       if (i < cnt) {
6670         Node* use = n->raw_out(i);
6671         ++i;
6672         // Check for dead uses.  Aggressively prune such junk.  It might be
6673         // dead in the global sense, but still have local uses so I cannot
6674         // easily call 'remove_dead_node'.
6675         if (_loop_or_ctrl[use->_idx] != nullptr || use->is_top()) { // Not dead?
6676           // Due to cycles, we might not hit the same fixed point in the verify
6677           // pass as we do in the regular pass.  Instead, visit such phis as
6678           // simple uses of the loop head.
6679           if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
6680             if( !visited.test(use->_idx) )
6681               worklist.push(use);
6682           } else if( !visited.test_set(use->_idx) ) {
6683             nstack.push(n, i); // Save parent and next use's index.
6684             n   = use;         // Process all children of current use.
6685             cnt = use->outcnt();
6686             i   = 0;
6687           }
6688         } else {
6689           // Do not visit around the backedge of loops via data edges.
6690           // push dead code onto a worklist
6691           _deadlist.push(use);
6692         }
6693       } else {
6694         // All of n's children have been processed, complete post-processing.
6695         build_loop_late_post(n);
6696         if (C->failing()) { return; }
6697         if (nstack.is_empty()) {
6698           // Finished all nodes on stack.
6699           // Process next node on the worklist.
6700           break;
6701         }
6702         // Get saved parent node and next use's index. Visit the rest of uses.
6703         n   = nstack.node();
6704         cnt = n->outcnt();
6705         i   = nstack.index();
6706         nstack.pop();
6707       }
6708     }
6709   }
6710 }
6711 
6712 // Verify that no data node is scheduled in the outer loop of a strip
6713 // mined loop.
6714 void PhaseIdealLoop::verify_strip_mined_scheduling(Node *n, Node* least) {
6715 #ifdef ASSERT
6716   if (get_loop(least)->_nest == 0) {
6717     return;
6718   }
6719   IdealLoopTree* loop = get_loop(least);
6720   Node* head = loop->_head;
6721   if (head->is_OuterStripMinedLoop() &&
6722       // Verification can't be applied to fully built strip mined loops
6723       head->as_Loop()->outer_loop_end()->in(1)->find_int_con(-1) == 0) {
6724     Node* sfpt = head->as_Loop()->outer_safepoint();
6725     ResourceMark rm;
6726     Unique_Node_List wq;
6727     wq.push(sfpt);
6728     for (uint i = 0; i < wq.size(); i++) {
6729       Node *m = wq.at(i);
6730       for (uint i = 1; i < m->req(); i++) {
6731         Node* nn = m->in(i);
6732         if (nn == n) {
6733           return;
6734         }
6735         if (nn != nullptr && has_ctrl(nn) && get_loop(get_ctrl(nn)) == loop) {
6736           wq.push(nn);
6737         }
6738       }
6739     }
6740     ShouldNotReachHere();
6741   }
6742 #endif
6743 }
6744 
6745 
6746 //------------------------------build_loop_late_post---------------------------
6747 // Put Data nodes into some loop nest, by setting the _loop_or_ctrl[]->loop mapping.
6748 // Second pass finds latest legal placement, and ideal loop placement.
6749 void PhaseIdealLoop::build_loop_late_post(Node *n) {
6750   build_loop_late_post_work(n, true);
6751 }
6752 
6753 // Class to visit all predicates in a predicate chain to find out which are dominated by a given node. Keeps track of
6754 // the entry to the earliest predicate that is still dominated by the given dominator. This class is used when trying to
6755 // legally skip all predicates when figuring out the latest placement such that a node does not interfere with Loop
6756 // Predication or creating a Loop Limit Check Predicate later.
6757 class DominatedPredicates : public UnifiedPredicateVisitor {
6758   Node* const _dominator;
6759   Node* _earliest_dominated_predicate_entry;
6760   bool _should_continue;
6761   PhaseIdealLoop* const _phase;
6762 
6763  public:
6764   DominatedPredicates(Node* dominator, Node* start_node, PhaseIdealLoop* phase)
6765       : _dominator(dominator),
6766         _earliest_dominated_predicate_entry(start_node),
6767         _should_continue(true),
6768         _phase(phase) {}
6769   NONCOPYABLE(DominatedPredicates);
6770 
6771   bool should_continue() const override {
6772     return _should_continue;
6773   }
6774 
6775   // Returns the entry to the earliest predicate that is still dominated by the given dominator (all could be dominated).
6776   Node* earliest_dominated_predicate_entry() const {
6777     return _earliest_dominated_predicate_entry;
6778   }
6779 
6780   void visit_predicate(const Predicate& predicate) override {
6781     Node* entry = predicate.entry();
6782     if (_phase->is_strict_dominator(entry, _dominator)) {
6783       _should_continue = false;
6784     } else {
6785       _earliest_dominated_predicate_entry = entry;
6786     }
6787   }
6788 };
6789 
6790 void PhaseIdealLoop::build_loop_late_post_work(Node *n, bool pinned) {
6791 
6792   if (n->req() == 2 && (n->Opcode() == Op_ConvI2L || n->Opcode() == Op_CastII) && !C->major_progress() && !_verify_only) {
6793     _igvn._worklist.push(n);  // Maybe we'll normalize it, if no more loops.
6794   }
6795 
6796 #ifdef ASSERT
6797   if (_verify_only && !n->is_CFG()) {
6798     // Check def-use domination.
6799     // We would like to expose this check in product but it appears to be expensive.
6800     compute_lca_of_uses(n, get_ctrl(n), true /* verify */);
6801   }
6802 #endif
6803 
6804   // CFG and pinned nodes already handled
6805   if( n->in(0) ) {
6806     if( n->in(0)->is_top() ) return; // Dead?
6807 
6808     // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
6809     // _must_ be pinned (they have to observe their control edge of course).
6810     // Unlike Stores (which modify an unallocable resource, the memory
6811     // state), Mods/Loads can float around.  So free them up.
6812     switch( n->Opcode() ) {
6813     case Op_DivI:
6814     case Op_DivF:
6815     case Op_DivD:
6816     case Op_ModI:
6817     case Op_LoadB:              // Same with Loads; they can sink
6818     case Op_LoadUB:             // during loop optimizations.
6819     case Op_LoadUS:
6820     case Op_LoadD:
6821     case Op_LoadF:
6822     case Op_LoadI:
6823     case Op_LoadKlass:
6824     case Op_LoadNKlass:
6825     case Op_LoadL:
6826     case Op_LoadS:
6827     case Op_LoadP:
6828     case Op_LoadN:
6829     case Op_LoadRange:
6830     case Op_LoadD_unaligned:
6831     case Op_LoadL_unaligned:
6832     case Op_StrComp:            // Does a bunch of load-like effects
6833     case Op_StrEquals:
6834     case Op_StrIndexOf:
6835     case Op_StrIndexOfChar:
6836     case Op_AryEq:
6837     case Op_VectorizedHashCode:
6838     case Op_CountPositives:
6839       pinned = false;
6840     }
6841     if (n->is_CMove() || n->is_ConstraintCast()) {
6842       pinned = false;
6843     }
6844     if( pinned ) {
6845       IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
6846       if( !chosen_loop->_child )       // Inner loop?
6847         chosen_loop->_body.push(n); // Collect inner loops
6848       return;
6849     }
6850   } else {                      // No slot zero
6851     if( n->is_CFG() ) {         // CFG with no slot 0 is dead
6852       _loop_or_ctrl.map(n->_idx,nullptr); // No block setting, it's globally dead
6853       return;
6854     }
6855     assert(!n->is_CFG() || n->outcnt() == 0, "");
6856   }
6857 
6858   // Do I have a "safe range" I can select over?
6859   Node *early = get_ctrl(n);// Early location already computed
6860 
6861   // Compute latest point this Node can go
6862   Node *LCA = get_late_ctrl( n, early );
6863   // LCA is null due to uses being dead
6864   if( LCA == nullptr ) {
6865 #ifdef ASSERT
6866     for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
6867       assert(_loop_or_ctrl[n->out(i1)->_idx] == nullptr, "all uses must also be dead");
6868     }
6869 #endif
6870     _loop_or_ctrl.map(n->_idx, nullptr); // This node is useless
6871     _deadlist.push(n);
6872     return;
6873   }
6874   assert(LCA != nullptr && !LCA->is_top(), "no dead nodes");
6875 
6876   Node *legal = LCA;            // Walk 'legal' up the IDOM chain
6877   Node *least = legal;          // Best legal position so far
6878   while( early != legal ) {     // While not at earliest legal
6879     if (legal->is_Start() && !early->is_Root()) {
6880 #ifdef ASSERT
6881       // Bad graph. Print idom path and fail.
6882       dump_bad_graph("Bad graph detected in build_loop_late", n, early, LCA);
6883       assert(false, "Bad graph detected in build_loop_late");
6884 #endif
6885       C->record_method_not_compilable("Bad graph detected in build_loop_late");
6886       return;
6887     }
6888     // Find least loop nesting depth
6889     legal = idom(legal);        // Bump up the IDOM tree
6890     // Check for lower nesting depth
6891     if( get_loop(legal)->_nest < get_loop(least)->_nest )
6892       least = legal;
6893   }
6894   assert(early == legal || legal != C->root(), "bad dominance of inputs");
6895 
6896   if (least != early) {
6897     // Move the node above predicates as far up as possible so a
6898     // following pass of Loop Predication doesn't hoist a predicate
6899     // that depends on it above that node.
6900     const PredicateIterator predicate_iterator(least);
6901     DominatedPredicates dominated_predicates(early, least, this);
6902     predicate_iterator.for_each(dominated_predicates);
6903     least = dominated_predicates.earliest_dominated_predicate_entry();
6904   }
6905   // Try not to place code on a loop entry projection
6906   // which can inhibit range check elimination.
6907   if (least != early) {
6908     Node* ctrl_out = least->unique_ctrl_out_or_null();
6909     if (ctrl_out != nullptr && ctrl_out->is_Loop() &&
6910         least == ctrl_out->in(LoopNode::EntryControl) &&
6911         (ctrl_out->is_CountedLoop() || ctrl_out->is_OuterStripMinedLoop())) {
6912       Node* least_dom = idom(least);
6913       if (get_loop(least_dom)->is_member(get_loop(least))) {
6914         least = least_dom;
6915       }
6916     }
6917   }
6918   // Don't extend live ranges of raw oops
6919   if (least != early && n->is_ConstraintCast() && n->in(1)->bottom_type()->isa_rawptr() &&
6920       !n->bottom_type()->isa_rawptr()) {
6921     least = early;
6922   }
6923 
6924 #ifdef ASSERT
6925   // Broken part of VerifyLoopOptimizations (F)
6926   // Reason:
6927   //   _verify_me->get_ctrl_no_update(n) seems to return wrong result
6928   /*
6929   // If verifying, verify that 'verify_me' has a legal location
6930   // and choose it as our location.
6931   if( _verify_me ) {
6932     Node *v_ctrl = _verify_me->get_ctrl_no_update(n);
6933     Node *legal = LCA;
6934     while( early != legal ) {   // While not at earliest legal
6935       if( legal == v_ctrl ) break;  // Check for prior good location
6936       legal = idom(legal)      ;// Bump up the IDOM tree
6937     }
6938     // Check for prior good location
6939     if( legal == v_ctrl ) least = legal; // Keep prior if found
6940   }
6941   */
6942 #endif
6943 
6944   // Assign discovered "here or above" point
6945   least = find_non_split_ctrl(least);
6946   verify_strip_mined_scheduling(n, least);
6947   set_ctrl(n, least);
6948 
6949   // Collect inner loop bodies
6950   IdealLoopTree *chosen_loop = get_loop(least);
6951   if( !chosen_loop->_child )   // Inner loop?
6952     chosen_loop->_body.push(n);// Collect inner loops
6953 
6954   if (!_verify_only && n->Opcode() == Op_OpaqueZeroTripGuard) {
6955     _zero_trip_guard_opaque_nodes.push(n);
6956   }
6957 
6958   if (!_verify_only && n->Opcode() == Op_OpaqueMultiversioning) {
6959     _multiversion_opaque_nodes.push(n);
6960   }
6961 }
6962 
6963 #ifdef ASSERT
6964 void PhaseIdealLoop::dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA) {
6965   tty->print_cr("%s", msg);
6966   tty->print("n: "); n->dump();
6967   tty->print("early(n): "); early->dump();
6968   if (n->in(0) != nullptr  && !n->in(0)->is_top() &&
6969       n->in(0) != early && !n->in(0)->is_Root()) {
6970     tty->print("n->in(0): "); n->in(0)->dump();
6971   }
6972   for (uint i = 1; i < n->req(); i++) {
6973     Node* in1 = n->in(i);
6974     if (in1 != nullptr && in1 != n && !in1->is_top()) {
6975       tty->print("n->in(%d): ", i); in1->dump();
6976       Node* in1_early = get_ctrl(in1);
6977       tty->print("early(n->in(%d)): ", i); in1_early->dump();
6978       if (in1->in(0) != nullptr     && !in1->in(0)->is_top() &&
6979           in1->in(0) != in1_early && !in1->in(0)->is_Root()) {
6980         tty->print("n->in(%d)->in(0): ", i); in1->in(0)->dump();
6981       }
6982       for (uint j = 1; j < in1->req(); j++) {
6983         Node* in2 = in1->in(j);
6984         if (in2 != nullptr && in2 != n && in2 != in1 && !in2->is_top()) {
6985           tty->print("n->in(%d)->in(%d): ", i, j); in2->dump();
6986           Node* in2_early = get_ctrl(in2);
6987           tty->print("early(n->in(%d)->in(%d)): ", i, j); in2_early->dump();
6988           if (in2->in(0) != nullptr     && !in2->in(0)->is_top() &&
6989               in2->in(0) != in2_early && !in2->in(0)->is_Root()) {
6990             tty->print("n->in(%d)->in(%d)->in(0): ", i, j); in2->in(0)->dump();
6991           }
6992         }
6993       }
6994     }
6995   }
6996   tty->cr();
6997   tty->print("LCA(n): "); LCA->dump();
6998   for (uint i = 0; i < n->outcnt(); i++) {
6999     Node* u1 = n->raw_out(i);
7000     if (u1 == n)
7001       continue;
7002     tty->print("n->out(%d): ", i); u1->dump();
7003     if (u1->is_CFG()) {
7004       for (uint j = 0; j < u1->outcnt(); j++) {
7005         Node* u2 = u1->raw_out(j);
7006         if (u2 != u1 && u2 != n && u2->is_CFG()) {
7007           tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
7008         }
7009       }
7010     } else {
7011       Node* u1_later = get_ctrl(u1);
7012       tty->print("later(n->out(%d)): ", i); u1_later->dump();
7013       if (u1->in(0) != nullptr     && !u1->in(0)->is_top() &&
7014           u1->in(0) != u1_later && !u1->in(0)->is_Root()) {
7015         tty->print("n->out(%d)->in(0): ", i); u1->in(0)->dump();
7016       }
7017       for (uint j = 0; j < u1->outcnt(); j++) {
7018         Node* u2 = u1->raw_out(j);
7019         if (u2 == n || u2 == u1)
7020           continue;
7021         tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
7022         if (!u2->is_CFG()) {
7023           Node* u2_later = get_ctrl(u2);
7024           tty->print("later(n->out(%d)->out(%d)): ", i, j); u2_later->dump();
7025           if (u2->in(0) != nullptr     && !u2->in(0)->is_top() &&
7026               u2->in(0) != u2_later && !u2->in(0)->is_Root()) {
7027             tty->print("n->out(%d)->in(0): ", i); u2->in(0)->dump();
7028           }
7029         }
7030       }
7031     }
7032   }
7033   dump_idoms(early, LCA);
7034   tty->cr();
7035 }
7036 
7037 // Class to compute the real LCA given an early node and a wrong LCA in a bad graph.
7038 class RealLCA {
7039   const PhaseIdealLoop* _phase;
7040   Node* _early;
7041   Node* _wrong_lca;
7042   uint _early_index;
7043   int _wrong_lca_index;
7044 
7045   // Given idom chains of early and wrong LCA: Walk through idoms starting at StartNode and find the first node which
7046   // is different: Return the previously visited node which must be the real LCA.
7047   // The node lists also contain _early and _wrong_lca, respectively.
7048   Node* find_real_lca(Unique_Node_List& early_with_idoms, Unique_Node_List& wrong_lca_with_idoms) {
7049     int early_index = early_with_idoms.size() - 1;
7050     int wrong_lca_index = wrong_lca_with_idoms.size() - 1;
7051     bool found_difference = false;
7052     do {
7053       if (early_with_idoms[early_index] != wrong_lca_with_idoms[wrong_lca_index]) {
7054         // First time early and wrong LCA idoms differ. Real LCA must be at the previous index.
7055         found_difference = true;
7056         break;
7057       }
7058       early_index--;
7059       wrong_lca_index--;
7060     } while (wrong_lca_index >= 0);
7061 
7062     assert(early_index >= 0, "must always find an LCA - cannot be early");
7063     _early_index = early_index;
7064     _wrong_lca_index = wrong_lca_index;
7065     Node* real_lca = early_with_idoms[_early_index + 1]; // Plus one to skip _early.
7066     assert(found_difference || real_lca == _wrong_lca, "wrong LCA dominates early and is therefore the real LCA");
7067     return real_lca;
7068   }
7069 
7070   void dump(Node* real_lca) {
7071     tty->cr();
7072     tty->print_cr("idoms of early \"%d %s\":", _early->_idx, _early->Name());
7073     _phase->dump_idom(_early, _early_index + 1);
7074 
7075     tty->cr();
7076     tty->print_cr("idoms of (wrong) LCA \"%d %s\":", _wrong_lca->_idx, _wrong_lca->Name());
7077     _phase->dump_idom(_wrong_lca, _wrong_lca_index + 1);
7078 
7079     tty->cr();
7080     tty->print("Real LCA of early \"%d %s\" (idom[%d]) and wrong LCA \"%d %s\"",
7081                _early->_idx, _early->Name(), _early_index, _wrong_lca->_idx, _wrong_lca->Name());
7082     if (_wrong_lca_index >= 0) {
7083       tty->print(" (idom[%d])", _wrong_lca_index);
7084     }
7085     tty->print_cr(":");
7086     real_lca->dump();
7087   }
7088 
7089  public:
7090   RealLCA(const PhaseIdealLoop* phase, Node* early, Node* wrong_lca)
7091       : _phase(phase), _early(early), _wrong_lca(wrong_lca), _early_index(0), _wrong_lca_index(0) {
7092     assert(!wrong_lca->is_Start(), "StartNode is always a common dominator");
7093   }
7094 
7095   void compute_and_dump() {
7096     ResourceMark rm;
7097     Unique_Node_List early_with_idoms;
7098     Unique_Node_List wrong_lca_with_idoms;
7099     early_with_idoms.push(_early);
7100     wrong_lca_with_idoms.push(_wrong_lca);
7101     _phase->get_idoms(_early, 10000, early_with_idoms);
7102     _phase->get_idoms(_wrong_lca, 10000, wrong_lca_with_idoms);
7103     Node* real_lca = find_real_lca(early_with_idoms, wrong_lca_with_idoms);
7104     dump(real_lca);
7105   }
7106 };
7107 
7108 // Dump the idom chain of early, of the wrong LCA and dump the real LCA of early and wrong LCA.
7109 void PhaseIdealLoop::dump_idoms(Node* early, Node* wrong_lca) {
7110   assert(!is_dominator(early, wrong_lca), "sanity check that early does not dominate wrong lca");
7111   assert(!has_ctrl(early) && !has_ctrl(wrong_lca), "sanity check, no data nodes");
7112 
7113   RealLCA real_lca(this, early, wrong_lca);
7114   real_lca.compute_and_dump();
7115 }
7116 #endif // ASSERT
7117 
7118 #ifndef PRODUCT
7119 //------------------------------dump-------------------------------------------
7120 void PhaseIdealLoop::dump() const {
7121   ResourceMark rm;
7122   Node_Stack stack(C->live_nodes() >> 2);
7123   Node_List rpo_list;
7124   VectorSet visited;
7125   visited.set(C->top()->_idx);
7126   rpo(C->root(), stack, visited, rpo_list);
7127   // Dump root loop indexed by last element in PO order
7128   dump(_ltree_root, rpo_list.size(), rpo_list);
7129 }
7130 
7131 void PhaseIdealLoop::dump(IdealLoopTree* loop, uint idx, Node_List &rpo_list) const {
7132   loop->dump_head();
7133 
7134   // Now scan for CFG nodes in the same loop
7135   for (uint j = idx; j > 0; j--) {
7136     Node* n = rpo_list[j-1];
7137     if (!_loop_or_ctrl[n->_idx])      // Skip dead nodes
7138       continue;
7139 
7140     if (get_loop(n) != loop) { // Wrong loop nest
7141       if (get_loop(n)->_head == n &&    // Found nested loop?
7142           get_loop(n)->_parent == loop)
7143         dump(get_loop(n), rpo_list.size(), rpo_list);     // Print it nested-ly
7144       continue;
7145     }
7146 
7147     // Dump controlling node
7148     tty->sp(2 * loop->_nest);
7149     tty->print("C");
7150     if (n == C->root()) {
7151       n->dump();
7152     } else {
7153       Node* cached_idom   = idom_no_update(n);
7154       Node* computed_idom = n->in(0);
7155       if (n->is_Region()) {
7156         computed_idom = compute_idom(n);
7157         // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
7158         // any MultiBranch ctrl node), so apply a similar transform to
7159         // the cached idom returned from idom_no_update.
7160         cached_idom = find_non_split_ctrl(cached_idom);
7161       }
7162       tty->print(" ID:%d", computed_idom->_idx);
7163       n->dump();
7164       if (cached_idom != computed_idom) {
7165         tty->print_cr("*** BROKEN IDOM!  Computed as: %d, cached as: %d",
7166                       computed_idom->_idx, cached_idom->_idx);
7167       }
7168     }
7169     // Dump nodes it controls
7170     for (uint k = 0; k < _loop_or_ctrl.max(); k++) {
7171       // (k < C->unique() && get_ctrl(find(k)) == n)
7172       if (k < C->unique() && _loop_or_ctrl[k] == (Node*)((intptr_t)n + 1)) {
7173         Node* m = C->root()->find(k);
7174         if (m && m->outcnt() > 0) {
7175           if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
7176             tty->print_cr("*** BROKEN CTRL ACCESSOR!  _loop_or_ctrl[k] is %p, ctrl is %p",
7177                           _loop_or_ctrl[k], has_ctrl(m) ? get_ctrl_no_update(m) : nullptr);
7178           }
7179           tty->sp(2 * loop->_nest + 1);
7180           m->dump();
7181         }
7182       }
7183     }
7184   }
7185 }
7186 
7187 void PhaseIdealLoop::dump_idom(Node* n, const uint count) const {
7188   if (has_ctrl(n)) {
7189     tty->print_cr("No idom for data nodes");
7190   } else {
7191     ResourceMark rm;
7192     Unique_Node_List idoms;
7193     get_idoms(n, count, idoms);
7194     dump_idoms_in_reverse(n, idoms);
7195   }
7196 }
7197 
7198 void PhaseIdealLoop::get_idoms(Node* n, const uint count, Unique_Node_List& idoms) const {
7199   Node* next = n;
7200   for (uint i = 0; !next->is_Start() && i < count; i++) {
7201     next = idom(next);
7202     assert(!idoms.member(next), "duplicated idom is not possible");
7203     idoms.push(next);
7204   }
7205 }
7206 
7207 void PhaseIdealLoop::dump_idoms_in_reverse(const Node* n, const Node_List& idom_list) const {
7208   Node* next;
7209   uint padding = 3;
7210   uint node_index_padding_width = (C->unique() == 0 ? 0 : static_cast<int>(log10(static_cast<double>(C->unique())))) + 1;
7211   for (int i = idom_list.size() - 1; i >= 0; i--) {
7212     if (i == 9 || i == 99) {
7213       padding++;
7214     }
7215     next = idom_list[i];
7216     tty->print_cr("idom[%d]:%*c%*d  %s", i, padding, ' ', node_index_padding_width, next->_idx, next->Name());
7217   }
7218   tty->print_cr("n:      %*c%*d  %s", padding, ' ', node_index_padding_width, n->_idx, n->Name());
7219 }
7220 #endif // NOT PRODUCT
7221 
7222 // Collect a R-P-O for the whole CFG.
7223 // Result list is in post-order (scan backwards for RPO)
7224 void PhaseIdealLoop::rpo(Node* start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list) const {
7225   stk.push(start, 0);
7226   visited.set(start->_idx);
7227 
7228   while (stk.is_nonempty()) {
7229     Node* m   = stk.node();
7230     uint  idx = stk.index();
7231     if (idx < m->outcnt()) {
7232       stk.set_index(idx + 1);
7233       Node* n = m->raw_out(idx);
7234       if (n->is_CFG() && !visited.test_set(n->_idx)) {
7235         stk.push(n, 0);
7236       }
7237     } else {
7238       rpo_list.push(m);
7239       stk.pop();
7240     }
7241   }
7242 }
7243 
7244 ConINode* PhaseIdealLoop::intcon(jint i) {
7245   ConINode* node = _igvn.intcon(i);
7246   set_root_as_ctrl(node);
7247   return node;
7248 }
7249 
7250 ConLNode* PhaseIdealLoop::longcon(jlong i) {
7251   ConLNode* node = _igvn.longcon(i);
7252   set_root_as_ctrl(node);
7253   return node;
7254 }
7255 
7256 ConNode* PhaseIdealLoop::makecon(const Type* t) {
7257   ConNode* node = _igvn.makecon(t);
7258   set_root_as_ctrl(node);
7259   return node;
7260 }
7261 
7262 ConNode* PhaseIdealLoop::integercon(jlong l, BasicType bt) {
7263   ConNode* node = _igvn.integercon(l, bt);
7264   set_root_as_ctrl(node);
7265   return node;
7266 }
7267 
7268 ConNode* PhaseIdealLoop::zerocon(BasicType bt) {
7269   ConNode* node = _igvn.zerocon(bt);
7270   set_root_as_ctrl(node);
7271   return node;
7272 }
7273 
7274 
7275 //=============================================================================
7276 //------------------------------LoopTreeIterator-------------------------------
7277 
7278 // Advance to next loop tree using a preorder, left-to-right traversal.
7279 void LoopTreeIterator::next() {
7280   assert(!done(), "must not be done.");
7281   if (_curnt->_child != nullptr) {
7282     _curnt = _curnt->_child;
7283   } else if (_curnt->_next != nullptr) {
7284     _curnt = _curnt->_next;
7285   } else {
7286     while (_curnt != _root && _curnt->_next == nullptr) {
7287       _curnt = _curnt->_parent;
7288     }
7289     if (_curnt == _root) {
7290       _curnt = nullptr;
7291       assert(done(), "must be done.");
7292     } else {
7293       assert(_curnt->_next != nullptr, "must be more to do");
7294       _curnt = _curnt->_next;
7295     }
7296   }
7297 }