1 /*
   2  * Copyright (c) 1998, 2026, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/ciMethodData.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "gc/shared/barrierSet.hpp"
  28 #include "gc/shared/c2/barrierSetC2.hpp"
  29 #include "libadt/vectset.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/arraycopynode.hpp"
  34 #include "opto/c2_globals.hpp"
  35 #include "opto/callnode.hpp"
  36 #include "opto/castnode.hpp"
  37 #include "opto/connode.hpp"
  38 #include "opto/convertnode.hpp"
  39 #include "opto/divnode.hpp"
  40 #include "opto/idealGraphPrinter.hpp"
  41 #include "opto/loopnode.hpp"
  42 #include "opto/movenode.hpp"
  43 #include "opto/mulnode.hpp"
  44 #include "opto/opaquenode.hpp"
  45 #include "opto/opcodes.hpp"
  46 #include "opto/predicates.hpp"
  47 #include "opto/rootnode.hpp"
  48 #include "opto/runtime.hpp"
  49 #include "opto/vectorization.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #include "utilities/checkedCast.hpp"
  52 #include "utilities/powerOfTwo.hpp"
  53 
  54 //=============================================================================
  55 //--------------------------is_cloop_ind_var-----------------------------------
  56 // Determine if a node is a counted loop induction variable.
  57 // NOTE: The method is declared in "node.hpp".
  58 bool Node::is_cloop_ind_var() const {
  59   return (is_Phi() &&
  60           as_Phi()->region()->is_CountedLoop() &&
  61           as_Phi()->region()->as_CountedLoop()->phi() == this);
  62 }
  63 
  64 //=============================================================================
  65 //------------------------------dump_spec--------------------------------------
  66 // Dump special per-node info
  67 #ifndef PRODUCT
  68 void LoopNode::dump_spec(outputStream *st) const {
  69   RegionNode::dump_spec(st);
  70   if (is_inner_loop()) st->print( "inner " );
  71   if (is_partial_peel_loop()) st->print( "partial_peel " );
  72   if (partial_peel_has_failed()) st->print( "partial_peel_failed " );
  73 }
  74 #endif
  75 
  76 //------------------------------is_valid_counted_loop-------------------------
  77 bool LoopNode::is_valid_counted_loop(BasicType bt) const {
  78   if (is_BaseCountedLoop() && as_BaseCountedLoop()->bt() == bt) {
  79     BaseCountedLoopNode*    l  = as_BaseCountedLoop();
  80     BaseCountedLoopEndNode* le = l->loopexit_or_null();
  81     if (le != nullptr &&
  82         le->true_proj_or_null() == l->in(LoopNode::LoopBackControl)) {
  83       Node* phi  = l->phi();
  84       IfFalseNode* exit = le->false_proj_or_null();
  85       if (exit != nullptr && phi != nullptr && phi->is_Phi() &&
  86           phi->in(LoopNode::LoopBackControl) == l->incr() &&
  87           le->loopnode() == l && le->stride_is_con()) {
  88         return true;
  89       }
  90     }
  91   }
  92   return false;
  93 }
  94 
  95 //------------------------------get_early_ctrl---------------------------------
  96 // Compute earliest legal control
  97 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
  98   assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
  99   uint i;
 100   Node *early;
 101   if (n->in(0) && !n->is_expensive()) {
 102     early = n->in(0);
 103     if (!early->is_CFG()) // Might be a non-CFG multi-def
 104       early = get_ctrl(early);        // So treat input as a straight data input
 105     i = 1;
 106   } else {
 107     early = get_ctrl(n->in(1));
 108     i = 2;
 109   }
 110   uint e_d = dom_depth(early);
 111   assert( early, "" );
 112   for (; i < n->req(); i++) {
 113     Node *cin = get_ctrl(n->in(i));
 114     assert( cin, "" );
 115     // Keep deepest dominator depth
 116     uint c_d = dom_depth(cin);
 117     if (c_d > e_d) {           // Deeper guy?
 118       early = cin;              // Keep deepest found so far
 119       e_d = c_d;
 120     } else if (c_d == e_d &&    // Same depth?
 121                early != cin) { // If not equal, must use slower algorithm
 122       // If same depth but not equal, one _must_ dominate the other
 123       // and we want the deeper (i.e., dominated) guy.
 124       Node *n1 = early;
 125       Node *n2 = cin;
 126       while (1) {
 127         n1 = idom(n1);          // Walk up until break cycle
 128         n2 = idom(n2);
 129         if (n1 == cin ||        // Walked early up to cin
 130             dom_depth(n2) < c_d)
 131           break;                // early is deeper; keep him
 132         if (n2 == early ||      // Walked cin up to early
 133             dom_depth(n1) < c_d) {
 134           early = cin;          // cin is deeper; keep him
 135           break;
 136         }
 137       }
 138       e_d = dom_depth(early);   // Reset depth register cache
 139     }
 140   }
 141 
 142   // Return earliest legal location
 143   assert(early == find_non_split_ctrl(early), "unexpected early control");
 144 
 145   if (n->is_expensive() && !_verify_only && !_verify_me) {
 146     assert(n->in(0), "should have control input");
 147     early = get_early_ctrl_for_expensive(n, early);
 148   }
 149 
 150   return early;
 151 }
 152 
 153 //------------------------------get_early_ctrl_for_expensive---------------------------------
 154 // Move node up the dominator tree as high as legal while still beneficial
 155 Node *PhaseIdealLoop::get_early_ctrl_for_expensive(Node *n, Node* earliest) {
 156   assert(n->in(0) && n->is_expensive(), "expensive node with control input here");
 157   assert(OptimizeExpensiveOps, "optimization off?");
 158 
 159   Node* ctl = n->in(0);
 160   assert(ctl->is_CFG(), "expensive input 0 must be cfg");
 161   uint min_dom_depth = dom_depth(earliest);
 162 #ifdef ASSERT
 163   if (!is_dominator(ctl, earliest) && !is_dominator(earliest, ctl)) {
 164     dump_bad_graph("Bad graph detected in get_early_ctrl_for_expensive", n, earliest, ctl);
 165     assert(false, "Bad graph detected in get_early_ctrl_for_expensive");
 166   }
 167 #endif
 168   if (dom_depth(ctl) < min_dom_depth) {
 169     return earliest;
 170   }
 171 
 172   while (true) {
 173     Node* next = ctl;
 174     // Moving the node out of a loop on the projection of an If
 175     // confuses Loop Predication. So, once we hit a loop in an If branch
 176     // that doesn't branch to an UNC, we stop. The code that process
 177     // expensive nodes will notice the loop and skip over it to try to
 178     // move the node further up.
 179     if (ctl->is_CountedLoop() && ctl->in(1) != nullptr && ctl->in(1)->in(0) != nullptr && ctl->in(1)->in(0)->is_If()) {
 180       if (!ctl->in(1)->as_Proj()->is_uncommon_trap_if_pattern()) {
 181         break;
 182       }
 183       next = idom(ctl->in(1)->in(0));
 184     } else if (ctl->is_Proj()) {
 185       // We only move it up along a projection if the projection is
 186       // the single control projection for its parent: same code path,
 187       // if it's a If with UNC or fallthrough of a call.
 188       Node* parent_ctl = ctl->in(0);
 189       if (parent_ctl == nullptr) {
 190         break;
 191       } else if (parent_ctl->is_CountedLoopEnd() && parent_ctl->as_CountedLoopEnd()->loopnode() != nullptr) {
 192         next = parent_ctl->as_CountedLoopEnd()->loopnode()->init_control();
 193       } else if (parent_ctl->is_If()) {
 194         if (!ctl->as_Proj()->is_uncommon_trap_if_pattern()) {
 195           break;
 196         }
 197         assert(idom(ctl) == parent_ctl, "strange");
 198         next = idom(parent_ctl);
 199       } else if (ctl->is_CatchProj()) {
 200         if (ctl->as_Proj()->_con != CatchProjNode::fall_through_index) {
 201           break;
 202         }
 203         assert(parent_ctl->in(0)->in(0)->is_Call(), "strange graph");
 204         next = parent_ctl->in(0)->in(0)->in(0);
 205       } else {
 206         // Check if parent control has a single projection (this
 207         // control is the only possible successor of the parent
 208         // control). If so, we can try to move the node above the
 209         // parent control.
 210         int nb_ctl_proj = 0;
 211         for (DUIterator_Fast imax, i = parent_ctl->fast_outs(imax); i < imax; i++) {
 212           Node *p = parent_ctl->fast_out(i);
 213           if (p->is_Proj() && p->is_CFG()) {
 214             nb_ctl_proj++;
 215             if (nb_ctl_proj > 1) {
 216               break;
 217             }
 218           }
 219         }
 220 
 221         if (nb_ctl_proj > 1) {
 222           break;
 223         }
 224         assert(parent_ctl->is_Start() || parent_ctl->is_MemBar() || parent_ctl->is_Call(), "unexpected node");
 225         assert(idom(ctl) == parent_ctl, "strange");
 226         next = idom(parent_ctl);
 227       }
 228     } else {
 229       next = idom(ctl);
 230     }
 231     if (next->is_Root() || next->is_Start() || dom_depth(next) < min_dom_depth) {
 232       break;
 233     }
 234     ctl = next;
 235   }
 236 
 237   if (ctl != n->in(0)) {
 238     _igvn.replace_input_of(n, 0, ctl);
 239     _igvn.hash_insert(n);
 240   }
 241 
 242   return ctl;
 243 }
 244 
 245 
 246 //------------------------------set_early_ctrl---------------------------------
 247 // Set earliest legal control
 248 void PhaseIdealLoop::set_early_ctrl(Node* n, bool update_body) {
 249   Node *early = get_early_ctrl(n);
 250 
 251   // Record earliest legal location
 252   set_ctrl(n, early);
 253   IdealLoopTree *loop = get_loop(early);
 254   if (update_body && loop->_child == nullptr) {
 255     loop->_body.push(n);
 256   }
 257 }
 258 
 259 //------------------------------set_subtree_ctrl-------------------------------
 260 // set missing _ctrl entries on new nodes
 261 void PhaseIdealLoop::set_subtree_ctrl(Node* n, bool update_body) {
 262   // Already set?  Get out.
 263   if (_loop_or_ctrl[n->_idx]) return;
 264   // Recursively set _loop_or_ctrl array to indicate where the Node goes
 265   uint i;
 266   for (i = 0; i < n->req(); ++i) {
 267     Node *m = n->in(i);
 268     if (m && m != C->root()) {
 269       set_subtree_ctrl(m, update_body);
 270     }
 271   }
 272 
 273   // Fixup self
 274   set_early_ctrl(n, update_body);
 275 }
 276 
 277 IdealLoopTree* PhaseIdealLoop::insert_outer_loop(IdealLoopTree* loop, LoopNode* outer_l, Node* outer_ift) {
 278   IdealLoopTree* outer_ilt = new IdealLoopTree(this, outer_l, outer_ift);
 279   IdealLoopTree* parent = loop->_parent;
 280   IdealLoopTree* sibling = parent->_child;
 281   if (sibling == loop) {
 282     parent->_child = outer_ilt;
 283   } else {
 284     while (sibling->_next != loop) {
 285       sibling = sibling->_next;
 286     }
 287     sibling->_next = outer_ilt;
 288   }
 289   outer_ilt->_next = loop->_next;
 290   outer_ilt->_parent = parent;
 291   outer_ilt->_child = loop;
 292   outer_ilt->_nest = loop->_nest;
 293   loop->_parent = outer_ilt;
 294   loop->_next = nullptr;
 295   loop->_nest++;
 296   assert(loop->_nest <= SHRT_MAX, "sanity");
 297   return outer_ilt;
 298 }
 299 
 300 // Create a skeleton strip mined outer loop: an OuterStripMinedLoop head before the inner strip mined CountedLoop, a
 301 // SafePoint on exit of the inner CountedLoopEnd and an OuterStripMinedLoopEnd test that can't constant fold until loop
 302 // optimizations are over. The inner strip mined loop is left as it is. Only once loop optimizations are over, do we
 303 // adjust the inner loop exit condition to limit its number of iterations, set the outer loop exit condition and add
 304 // Phis to the outer loop head. Some loop optimizations that operate on the inner strip mined loop need to be aware of
 305 // the outer strip mined loop: loop unswitching needs to clone the outer loop as well as the inner, unrolling needs to
 306 // only clone the inner loop etc. No optimizations need to change the outer strip mined loop as it is only a skeleton.
 307 //
 308 // Schematically:
 309 //
 310 // OuterStripMinedLoop -------|
 311 //       |                    |
 312 // CountedLoop ----------- |  |
 313 //     \- Phi (iv) -|      |  |
 314 //       /  \       |      |  |
 315 //     CmpI  AddI --|      |  |
 316 //       \                 |  |
 317 //        Bool             |  |
 318 //         \               |  |
 319 // CountedLoopEnd          |  |
 320 //       /  \              |  |
 321 // IfFalse   IfTrue--------|  |
 322 //      |                     |
 323 // SafePoint                  |
 324 //      |                     |
 325 // OuterStripMinedLoopEnd     |
 326 //       /   \                |
 327 // IfFalse   IfTrue-----------|
 328 //      |
 329 //
 330 //
 331 // As loop optimizations transform the inner loop, the outer strip mined loop stays mostly unchanged. The only exception
 332 // is nodes referenced from the SafePoint and sunk from the inner loop: they end up in the outer strip mined loop.
 333 //
 334 // Not adding Phis to the outer loop head from the beginning, and only adding them after loop optimizations does not
 335 // conform to C2's IR rules: any variable or memory slice that is mutated in a loop should have a Phi. The main
 336 // motivation for such a design that doesn't conform to C2's IR rules is to allow existing loop optimizations to be
 337 // mostly unaffected by the outer strip mined loop: the only extra step needed in most cases is to step over the
 338 // OuterStripMinedLoop. The main drawback is that once loop optimizations are over, an extra step is needed to finish
 339 // constructing the outer loop. This is handled by OuterStripMinedLoopNode::adjust_strip_mined_loop().
 340 //
 341 // Adding Phis to the outer loop is largely straightforward: there needs to be one Phi in the outer loop for every Phi
 342 // in the inner loop. Things may be more complicated for sunk Store nodes: there may not be any inner loop Phi left
 343 // after sinking for a particular memory slice but the outer loop needs a Phi. See
 344 // OuterStripMinedLoopNode::handle_sunk_stores_when_finishing_construction()
 345 IdealLoopTree* PhaseIdealLoop::create_outer_strip_mined_loop(Node* init_control,
 346                                                              IdealLoopTree* loop, float cl_prob, float le_fcnt,
 347                                                              Node*& entry_control, Node*& iffalse) {
 348   Node* outer_test = intcon(0);
 349   Node *orig = iffalse;
 350   iffalse = iffalse->clone();
 351   _igvn.register_new_node_with_optimizer(iffalse);
 352   set_idom(iffalse, idom(orig), dom_depth(orig));
 353 
 354   IfNode *outer_le = new OuterStripMinedLoopEndNode(iffalse, outer_test, cl_prob, le_fcnt);
 355   Node *outer_ift = new IfTrueNode (outer_le);
 356   Node* outer_iff = orig;
 357   _igvn.replace_input_of(outer_iff, 0, outer_le);
 358 
 359   LoopNode *outer_l = new OuterStripMinedLoopNode(C, init_control, outer_ift);
 360   entry_control = outer_l;
 361 
 362   IdealLoopTree* outer_ilt = insert_outer_loop(loop, outer_l, outer_ift);
 363 
 364   set_loop(iffalse, outer_ilt);
 365   // When this code runs, loop bodies have not yet been populated.
 366   const bool body_populated = false;
 367   register_control(outer_le, outer_ilt, iffalse, body_populated);
 368   register_control(outer_ift, outer_ilt, outer_le, body_populated);
 369   set_idom(outer_iff, outer_le, dom_depth(outer_le));
 370   _igvn.register_new_node_with_optimizer(outer_l);
 371   set_loop(outer_l, outer_ilt);
 372   set_idom(outer_l, init_control, dom_depth(init_control)+1);
 373 
 374   return outer_ilt;
 375 }
 376 
 377 void PhaseIdealLoop::insert_loop_limit_check_predicate(ParsePredicateSuccessProj* loop_limit_check_parse_proj,
 378                                                        Node* cmp_limit, Node* bol) {
 379   assert(loop_limit_check_parse_proj->in(0)->is_ParsePredicate(), "must be parse predicate");
 380   Node* new_predicate_proj = create_new_if_for_predicate(loop_limit_check_parse_proj, nullptr,
 381                                                          Deoptimization::Reason_loop_limit_check,
 382                                                          Op_If);
 383   Node* iff = new_predicate_proj->in(0);
 384   cmp_limit = _igvn.register_new_node_with_optimizer(cmp_limit);
 385   bol = _igvn.register_new_node_with_optimizer(bol);
 386   set_subtree_ctrl(bol, false);
 387   _igvn.replace_input_of(iff, 1, bol);
 388 
 389 #ifndef PRODUCT
 390   // report that the loop predication has been actually performed
 391   // for this loop
 392   if (TraceLoopLimitCheck) {
 393     tty->print_cr("Counted Loop Limit Check generated:");
 394     DEBUG_ONLY( bol->dump(2); )
 395   }
 396 #endif
 397 }
 398 
 399 Node* PhaseIdealLoop::loop_exit_control(Node* x, IdealLoopTree* loop) {
 400   // Counted loop head must be a good RegionNode with only 3 not null
 401   // control input edges: Self, Entry, LoopBack.
 402   if (x->in(LoopNode::Self) == nullptr || x->req() != 3 || loop->_irreducible) {
 403     return nullptr;
 404   }
 405   Node *init_control = x->in(LoopNode::EntryControl);
 406   Node *back_control = x->in(LoopNode::LoopBackControl);
 407   if (init_control == nullptr || back_control == nullptr) {   // Partially dead
 408     return nullptr;
 409   }
 410   // Must also check for TOP when looking for a dead loop
 411   if (init_control->is_top() || back_control->is_top()) {
 412     return nullptr;
 413   }
 414 
 415   // Allow funny placement of Safepoint
 416   if (back_control->Opcode() == Op_SafePoint) {
 417     back_control = back_control->in(TypeFunc::Control);
 418   }
 419 
 420   // Controlling test for loop
 421   Node *iftrue = back_control;
 422   uint iftrue_op = iftrue->Opcode();
 423   if (iftrue_op != Op_IfTrue &&
 424       iftrue_op != Op_IfFalse) {
 425     // I have a weird back-control.  Probably the loop-exit test is in
 426     // the middle of the loop and I am looking at some trailing control-flow
 427     // merge point.  To fix this I would have to partially peel the loop.
 428     return nullptr; // Obscure back-control
 429   }
 430 
 431   // Get boolean guarding loop-back test
 432   Node *iff = iftrue->in(0);
 433   if (get_loop(iff) != loop || !iff->in(1)->is_Bool()) {
 434     return nullptr;
 435   }
 436   return iftrue;
 437 }
 438 
 439 Node* PhaseIdealLoop::loop_exit_test(Node* back_control, IdealLoopTree* loop, Node*& incr, Node*& limit, BoolTest::mask& bt, float& cl_prob) {
 440   Node* iftrue = back_control;
 441   uint iftrue_op = iftrue->Opcode();
 442   Node* iff = iftrue->in(0);
 443   BoolNode* test = iff->in(1)->as_Bool();
 444   bt = test->_test._test;
 445   cl_prob = iff->as_If()->_prob;
 446   if (iftrue_op == Op_IfFalse) {
 447     bt = BoolTest(bt).negate();
 448     cl_prob = 1.0 - cl_prob;
 449   }
 450   // Get backedge compare
 451   Node* cmp = test->in(1);
 452   if (!cmp->is_Cmp()) {
 453     return nullptr;
 454   }
 455 
 456   // Find the trip-counter increment & limit.  Limit must be loop invariant.
 457   incr  = cmp->in(1);
 458   limit = cmp->in(2);
 459 
 460   // ---------
 461   // need 'loop()' test to tell if limit is loop invariant
 462   // ---------
 463 
 464   if (!ctrl_is_member(loop, incr)) { // Swapped trip counter and limit?
 465     Node* tmp = incr;            // Then reverse order into the CmpI
 466     incr = limit;
 467     limit = tmp;
 468     bt = BoolTest(bt).commute(); // And commute the exit test
 469   }
 470   if (ctrl_is_member(loop, limit)) { // Limit must be loop-invariant
 471     return nullptr;
 472   }
 473   if (!ctrl_is_member(loop, incr)) { // Trip counter must be loop-variant
 474     return nullptr;
 475   }
 476   return cmp;
 477 }
 478 
 479 Node* PhaseIdealLoop::loop_iv_incr(Node* incr, Node* x, IdealLoopTree* loop, Node*& phi_incr) {
 480   if (incr->is_Phi()) {
 481     if (incr->as_Phi()->region() != x || incr->req() != 3) {
 482       return nullptr; // Not simple trip counter expression
 483     }
 484     phi_incr = incr;
 485     incr = phi_incr->in(LoopNode::LoopBackControl); // Assume incr is on backedge of Phi
 486     if (!ctrl_is_member(loop, incr)) { // Trip counter must be loop-variant
 487       return nullptr;
 488     }
 489   }
 490   return incr;
 491 }
 492 
 493 Node* PhaseIdealLoop::loop_iv_stride(Node* incr, Node*& xphi) {
 494   assert(incr->Opcode() == Op_AddI || incr->Opcode() == Op_AddL, "caller resp.");
 495   // Get merge point
 496   xphi = incr->in(1);
 497   Node *stride = incr->in(2);
 498   if (!stride->is_Con()) {     // Oops, swap these
 499     if (!xphi->is_Con()) {     // Is the other guy a constant?
 500       return nullptr;          // Nope, unknown stride, bail out
 501     }
 502     Node *tmp = xphi;          // 'incr' is commutative, so ok to swap
 503     xphi = stride;
 504     stride = tmp;
 505   }
 506   return stride;
 507 }
 508 
 509 PhiNode* PhaseIdealLoop::loop_iv_phi(Node* xphi, Node* phi_incr, Node* x) {
 510   if (!xphi->is_Phi()) {
 511     return nullptr; // Too much math on the trip counter
 512   }
 513   if (phi_incr != nullptr && phi_incr != xphi) {
 514     return nullptr;
 515   }
 516   PhiNode *phi = xphi->as_Phi();
 517 
 518   // Phi must be of loop header; backedge must wrap to increment
 519   if (phi->region() != x) {
 520     return nullptr;
 521   }
 522   return phi;
 523 }
 524 
 525 static int check_stride_overflow(jlong final_correction, const TypeInteger* limit_t, BasicType bt) {
 526   if (final_correction > 0) {
 527     if (limit_t->lo_as_long() > (max_signed_integer(bt) - final_correction)) {
 528       return -1;
 529     }
 530     if (limit_t->hi_as_long() > (max_signed_integer(bt) - final_correction)) {
 531       return 1;
 532     }
 533   } else {
 534     if (limit_t->hi_as_long() < (min_signed_integer(bt) - final_correction)) {
 535       return -1;
 536     }
 537     if (limit_t->lo_as_long() < (min_signed_integer(bt) - final_correction)) {
 538       return 1;
 539     }
 540   }
 541   return 0;
 542 }
 543 
 544 static bool condition_stride_ok(BoolTest::mask bt, jlong stride_con) {
 545   // If the condition is inverted and we will be rolling
 546   // through MININT to MAXINT, then bail out.
 547   if (bt == BoolTest::eq || // Bail out, but this loop trips at most twice!
 548       // Odd stride
 549       (bt == BoolTest::ne && stride_con != 1 && stride_con != -1) ||
 550       // Count down loop rolls through MAXINT
 551       ((bt == BoolTest::le || bt == BoolTest::lt) && stride_con < 0) ||
 552       // Count up loop rolls through MININT
 553       ((bt == BoolTest::ge || bt == BoolTest::gt) && stride_con > 0)) {
 554     return false; // Bail out
 555   }
 556   return true;
 557 }
 558 
 559 Node* PhaseIdealLoop::loop_nest_replace_iv(Node* iv_to_replace, Node* inner_iv, Node* outer_phi, Node* inner_head,
 560                                            BasicType bt) {
 561   Node* iv_as_long;
 562   if (bt == T_LONG) {
 563     iv_as_long = new ConvI2LNode(inner_iv, TypeLong::INT);
 564     register_new_node(iv_as_long, inner_head);
 565   } else {
 566     iv_as_long = inner_iv;
 567   }
 568   Node* iv_replacement = AddNode::make(outer_phi, iv_as_long, bt);
 569   register_new_node(iv_replacement, inner_head);
 570   for (DUIterator_Last imin, i = iv_to_replace->last_outs(imin); i >= imin;) {
 571     Node* u = iv_to_replace->last_out(i);
 572 #ifdef ASSERT
 573     if (!is_dominator(inner_head, ctrl_or_self(u))) {
 574       assert(u->is_Phi(), "should be a Phi");
 575       for (uint j = 1; j < u->req(); j++) {
 576         if (u->in(j) == iv_to_replace) {
 577           assert(is_dominator(inner_head, u->in(0)->in(j)), "iv use above loop?");
 578         }
 579       }
 580     }
 581 #endif
 582     _igvn.rehash_node_delayed(u);
 583     int nb = u->replace_edge(iv_to_replace, iv_replacement, &_igvn);
 584     i -= nb;
 585   }
 586   return iv_replacement;
 587 }
 588 
 589 // Add a Parse Predicate with an uncommon trap on the failing/false path. Normal control will continue on the true path.
 590 void PhaseIdealLoop::add_parse_predicate(Deoptimization::DeoptReason reason, Node* inner_head, IdealLoopTree* loop,
 591                                          SafePointNode* sfpt) {
 592   if (!C->too_many_traps(sfpt->jvms()->method(), sfpt->jvms()->bci(), reason)) {
 593     ParsePredicateNode* parse_predicate = new ParsePredicateNode(inner_head->in(LoopNode::EntryControl), reason, &_igvn);
 594     register_control(parse_predicate, loop, inner_head->in(LoopNode::EntryControl));
 595     Node* if_false = new IfFalseNode(parse_predicate);
 596     register_control(if_false, _ltree_root, parse_predicate);
 597     Node* if_true = new IfTrueNode(parse_predicate);
 598     register_control(if_true, loop, parse_predicate);
 599 
 600     int trap_request = Deoptimization::make_trap_request(reason, Deoptimization::Action_maybe_recompile);
 601     address call_addr = OptoRuntime::uncommon_trap_blob()->entry_point();
 602     const TypePtr* no_memory_effects = nullptr;
 603     CallNode* unc = new CallStaticJavaNode(OptoRuntime::uncommon_trap_Type(), call_addr, "uncommon_trap",
 604                                            no_memory_effects);
 605 
 606     Node* mem = nullptr;
 607     Node* i_o = nullptr;
 608     if (sfpt->is_Call()) {
 609       mem = sfpt->proj_out(TypeFunc::Memory);
 610       i_o = sfpt->proj_out(TypeFunc::I_O);
 611     } else {
 612       mem = sfpt->memory();
 613       i_o = sfpt->i_o();
 614     }
 615 
 616     Node *frame = new ParmNode(C->start(), TypeFunc::FramePtr);
 617     register_new_node(frame, C->start());
 618     Node *ret = new ParmNode(C->start(), TypeFunc::ReturnAdr);
 619     register_new_node(ret, C->start());
 620 
 621     unc->init_req(TypeFunc::Control, if_false);
 622     unc->init_req(TypeFunc::I_O, i_o);
 623     unc->init_req(TypeFunc::Memory, mem); // may gc ptrs
 624     unc->init_req(TypeFunc::FramePtr, frame);
 625     unc->init_req(TypeFunc::ReturnAdr, ret);
 626     unc->init_req(TypeFunc::Parms+0, _igvn.intcon(trap_request));
 627     unc->set_cnt(PROB_UNLIKELY_MAG(4));
 628     unc->copy_call_debug_info(&_igvn, sfpt);
 629 
 630     for (uint i = TypeFunc::Parms; i < unc->req(); i++) {
 631       set_subtree_ctrl(unc->in(i), false);
 632     }
 633     register_control(unc, _ltree_root, if_false);
 634 
 635     Node* ctrl = new ProjNode(unc, TypeFunc::Control);
 636     register_control(ctrl, _ltree_root, unc);
 637     Node* halt = new HaltNode(ctrl, frame, "uncommon trap returned which should never happen" PRODUCT_ONLY(COMMA /*reachable*/false));
 638     register_control(halt, _ltree_root, ctrl);
 639     _igvn.add_input_to(C->root(), halt);
 640 
 641     _igvn.replace_input_of(inner_head, LoopNode::EntryControl, if_true);
 642     set_idom(inner_head, if_true, dom_depth(inner_head));
 643   }
 644 }
 645 
 646 // Find a safepoint node that dominates the back edge. We need a
 647 // SafePointNode so we can use its jvm state to create empty
 648 // predicates.
 649 static bool no_side_effect_since_safepoint(Compile* C, Node* x, Node* mem, MergeMemNode* mm, PhaseIdealLoop* phase) {
 650   SafePointNode* safepoint = nullptr;
 651   for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
 652     Node* u = x->fast_out(i);
 653     if (u->is_memory_phi()) {
 654       Node* m = u->in(LoopNode::LoopBackControl);
 655       if (u->adr_type() == TypePtr::BOTTOM) {
 656         if (m->is_MergeMem() && mem->is_MergeMem()) {
 657           if (m != mem DEBUG_ONLY(|| true)) {
 658             // MergeMemStream can modify m, for example to adjust the length to mem.
 659             // This is unfortunate, and probably unnecessary. But as it is, we need
 660             // to add m to the igvn worklist, else we may have a modified node that
 661             // is not on the igvn worklist.
 662             phase->igvn()._worklist.push(m);
 663             for (MergeMemStream mms(m->as_MergeMem(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
 664               if (!mms.is_empty()) {
 665                 if (mms.memory() != mms.memory2()) {
 666                   return false;
 667                 }
 668 #ifdef ASSERT
 669                 if (mms.alias_idx() != Compile::AliasIdxBot) {
 670                   mm->set_memory_at(mms.alias_idx(), mem->as_MergeMem()->base_memory());
 671                 }
 672 #endif
 673               }
 674             }
 675           }
 676         } else if (mem->is_MergeMem()) {
 677           if (m != mem->as_MergeMem()->base_memory()) {
 678             return false;
 679           }
 680         } else {
 681           return false;
 682         }
 683       } else {
 684         if (mem->is_MergeMem()) {
 685           if (m != mem->as_MergeMem()->memory_at(C->get_alias_index(u->adr_type()))) {
 686             return false;
 687           }
 688 #ifdef ASSERT
 689           mm->set_memory_at(C->get_alias_index(u->adr_type()), mem->as_MergeMem()->base_memory());
 690 #endif
 691         } else {
 692           if (m != mem) {
 693             return false;
 694           }
 695         }
 696       }
 697     }
 698   }
 699   return true;
 700 }
 701 
 702 SafePointNode* PhaseIdealLoop::find_safepoint(Node* back_control, Node* x, IdealLoopTree* loop) {
 703   IfNode* exit_test = back_control->in(0)->as_If();
 704   SafePointNode* safepoint = nullptr;
 705   if (exit_test->in(0)->is_SafePoint() && exit_test->in(0)->outcnt() == 1) {
 706     safepoint = exit_test->in(0)->as_SafePoint();
 707   } else {
 708     Node* c = back_control;
 709     while (c != x && c->Opcode() != Op_SafePoint) {
 710       c = idom(c);
 711     }
 712 
 713     if (c->Opcode() == Op_SafePoint) {
 714       safepoint = c->as_SafePoint();
 715     }
 716 
 717     if (safepoint == nullptr) {
 718       return nullptr;
 719     }
 720 
 721     Node* mem = safepoint->in(TypeFunc::Memory);
 722 
 723     // We can only use that safepoint if there's no side effect between the backedge and the safepoint.
 724 
 725     // mm is the memory state at the safepoint (when it's a MergeMem)
 726     // no_side_effect_since_safepoint() goes over the memory state at the backedge. It resets the mm input for each
 727     // component of the memory state it encounters so it points to the base memory. Once no_side_effect_since_safepoint()
 728     // is done, if no side effect after the safepoint was found, mm should transform to the base memory: the states at
 729     // the backedge and safepoint are the same so all components of the memory state at the safepoint should have been
 730     // reset.
 731     MergeMemNode* mm = nullptr;
 732 #ifdef ASSERT
 733     if (mem->is_MergeMem()) {
 734       mm = mem->clone()->as_MergeMem();
 735       _igvn._worklist.push(mm);
 736       for (MergeMemStream mms(mem->as_MergeMem()); mms.next_non_empty(); ) {
 737         // Loop invariant memory state won't be reset by no_side_effect_since_safepoint(). Do it here.
 738         // Escape Analysis can add state to mm that it doesn't add to the backedge memory Phis, breaking verification
 739         // code that relies on mm. Clear that extra state here.
 740         if (mms.alias_idx() != Compile::AliasIdxBot &&
 741             (loop != get_loop(ctrl_or_self(mms.memory())) ||
 742              (mms.adr_type()->isa_oop_ptr() && mms.adr_type()->is_known_instance()))) {
 743           mm->set_memory_at(mms.alias_idx(), mem->as_MergeMem()->base_memory());
 744         }
 745       }
 746     }
 747 #endif
 748     if (!no_side_effect_since_safepoint(C, x, mem, mm, this)) {
 749       safepoint = nullptr;
 750     } else {
 751       assert(mm == nullptr|| _igvn.transform(mm) == mem->as_MergeMem()->base_memory(), "all memory state should have been processed");
 752     }
 753 #ifdef ASSERT
 754     if (mm != nullptr) {
 755       _igvn.remove_dead_node(mm);
 756     }
 757 #endif
 758   }
 759   return safepoint;
 760 }
 761 
 762 void PhaseIdealLoop::add_parse_predicates(IdealLoopTree* outer_ilt, LoopNode* inner_head, SafePointNode* cloned_sfpt) {
 763   if (ShortRunningLongLoop) {
 764     add_parse_predicate(Deoptimization::Reason_short_running_long_loop, inner_head, outer_ilt, cloned_sfpt);
 765   }
 766   if (UseLoopPredicate) {
 767     add_parse_predicate(Deoptimization::Reason_predicate, inner_head, outer_ilt, cloned_sfpt);
 768     if (UseProfiledLoopPredicate) {
 769       add_parse_predicate(Deoptimization::Reason_profile_predicate, inner_head, outer_ilt, cloned_sfpt);
 770     }
 771   }
 772 
 773   if (UseAutoVectorizationPredicate) {
 774     add_parse_predicate(Deoptimization::Reason_auto_vectorization_check, inner_head, outer_ilt, cloned_sfpt);
 775   }
 776 
 777   add_parse_predicate(Deoptimization::Reason_loop_limit_check, inner_head, outer_ilt, cloned_sfpt);
 778 }
 779 
 780 // If the loop has the shape of a counted loop but with a long
 781 // induction variable, transform the loop in a loop nest: an inner
 782 // loop that iterates for at most max int iterations with an integer
 783 // induction variable and an outer loop that iterates over the full
 784 // range of long values from the initial loop in (at most) max int
 785 // steps. That is:
 786 //
 787 // x: for (long phi = init; phi < limit; phi += stride) {
 788 //   // phi := Phi(L, init, incr)
 789 //   // incr := AddL(phi, longcon(stride))
 790 //   long incr = phi + stride;
 791 //   ... use phi and incr ...
 792 // }
 793 //
 794 // OR:
 795 //
 796 // x: for (long phi = init; (phi += stride) < limit; ) {
 797 //   // phi := Phi(L, AddL(init, stride), incr)
 798 //   // incr := AddL(phi, longcon(stride))
 799 //   long incr = phi + stride;
 800 //   ... use phi and (phi + stride) ...
 801 // }
 802 //
 803 // ==transform=>
 804 //
 805 // const ulong inner_iters_limit = INT_MAX - stride - 1;  //near 0x7FFFFFF0
 806 // assert(stride <= inner_iters_limit);  // else abort transform
 807 // assert((extralong)limit + stride <= LONG_MAX);  // else deopt
 808 // outer_head: for (long outer_phi = init;;) {
 809 //   // outer_phi := Phi(outer_head, init, AddL(outer_phi, I2L(inner_phi)))
 810 //   ulong inner_iters_max = (ulong) MAX(0, ((extralong)limit + stride - outer_phi));
 811 //   long inner_iters_actual = MIN(inner_iters_limit, inner_iters_max);
 812 //   assert(inner_iters_actual == (int)inner_iters_actual);
 813 //   int inner_phi, inner_incr;
 814 //   x: for (inner_phi = 0;; inner_phi = inner_incr) {
 815 //     // inner_phi := Phi(x, intcon(0), inner_incr)
 816 //     // inner_incr := AddI(inner_phi, intcon(stride))
 817 //     inner_incr = inner_phi + stride;
 818 //     if (inner_incr < inner_iters_actual) {
 819 //       ... use phi=>(outer_phi+inner_phi) ...
 820 //       continue;
 821 //     }
 822 //     else break;
 823 //   }
 824 //   if ((outer_phi+inner_phi) < limit)  //OR (outer_phi+inner_incr) < limit
 825 //     continue;
 826 //   else break;
 827 // }
 828 //
 829 // The same logic is used to transform an int counted loop that contains long range checks into a loop nest of 2 int
 830 // loops with long range checks transformed to int range checks in the inner loop.
 831 bool PhaseIdealLoop::create_loop_nest(IdealLoopTree* loop, Node_List &old_new) {
 832   Node* x = loop->_head;
 833   // Only for inner loops
 834   if (loop->_child != nullptr || !x->is_BaseCountedLoop() || x->as_Loop()->is_loop_nest_outer_loop()) {
 835     return false;
 836   }
 837 
 838   if (x->is_CountedLoop() && !x->as_CountedLoop()->is_main_loop() && !x->as_CountedLoop()->is_normal_loop()) {
 839     return false;
 840   }
 841 
 842   BaseCountedLoopNode* head = x->as_BaseCountedLoop();
 843   BasicType bt = x->as_BaseCountedLoop()->bt();
 844 
 845   check_counted_loop_shape(loop, x, bt);
 846 
 847 #ifndef PRODUCT
 848   if (bt == T_LONG) {
 849     AtomicAccess::inc(&_long_loop_candidates);
 850   }
 851 #endif
 852 
 853   jlong stride_con_long = head->stride_con();
 854   assert(stride_con_long != 0, "missed some peephole opt");
 855   // We can't iterate for more than max int at a time.
 856   if (stride_con_long != (jint)stride_con_long || stride_con_long == min_jint) {
 857     assert(bt == T_LONG, "only for long loops");
 858     return false;
 859   }
 860   jint stride_con = checked_cast<jint>(stride_con_long);
 861   // The number of iterations for the integer count loop: guarantee no
 862   // overflow: max_jint - stride_con max. -1 so there's no need for a
 863   // loop limit check if the exit test is <= or >=.
 864   int iters_limit = max_jint - ABS(stride_con) - 1;
 865 #ifdef ASSERT
 866   if (bt == T_LONG && StressLongCountedLoop > 0) {
 867     iters_limit = iters_limit / StressLongCountedLoop;
 868   }
 869 #endif
 870   // At least 2 iterations so counted loop construction doesn't fail
 871   if (iters_limit/ABS(stride_con) < 2) {
 872     return false;
 873   }
 874 
 875   assert(iters_limit > 0, "can't be negative");
 876 
 877   PhiNode* phi = head->phi()->as_Phi();
 878 
 879   Node* back_control = head->in(LoopNode::LoopBackControl);
 880 
 881   // data nodes on back branch not supported
 882   if (back_control->outcnt() > 1) {
 883     return false;
 884   }
 885 
 886   Node* limit = head->limit();
 887   // We'll need to use the loop limit before the inner loop is entered
 888   if (!is_dominator(get_ctrl(limit), x)) {
 889     return false;
 890   }
 891 
 892   IfNode* exit_test = head->loopexit();
 893 
 894   assert(back_control->Opcode() == Op_IfTrue, "wrong projection for back edge");
 895 
 896   Node_List range_checks;
 897   iters_limit = extract_long_range_checks(loop, stride_con, iters_limit, phi, range_checks);
 898 
 899   if (bt == T_INT) {
 900     // The only purpose of creating a loop nest is to handle long range checks. If there are none, do not proceed further.
 901     if (range_checks.size() == 0) {
 902       return false;
 903     }
 904   }
 905 
 906   // Take what we know about the number of iterations of the long counted loop into account when computing the limit of
 907   // the inner loop.
 908   Node* init = head->init_trip();
 909   const TypeInteger* lo = _igvn.type(init)->is_integer(bt);
 910   const TypeInteger* hi = _igvn.type(limit)->is_integer(bt);
 911   if (stride_con < 0) {
 912     swap(lo, hi);
 913   }
 914   if (hi->hi_as_long() <= lo->lo_as_long()) {
 915     // not a loop after all
 916     return false;
 917   }
 918 
 919   if (range_checks.size() > 0) {
 920     // This transformation requires peeling one iteration. Also, if it has range checks and they are eliminated by Loop
 921     // Predication, then 2 Hoisted Check Predicates are added for one range check. Finally, transforming a long range
 922     // check requires extra logic to be executed before the loop is entered and for the outer loop. As a result, the
 923     // transformations can't pay off for a small number of iterations: roughly, if the loop runs for 3 iterations, it's
 924     // going to execute as many range checks once transformed with range checks eliminated (1 peeled iteration with
 925     // range checks + 2 predicates per range checks) as it would have not transformed. It also has to pay for the extra
 926     // logic on loop entry and for the outer loop.
 927     loop->compute_trip_count(this, bt);
 928     if (head->is_CountedLoop() && head->as_CountedLoop()->has_exact_trip_count()) {
 929       if (head->as_CountedLoop()->trip_count() <= 3) {
 930         return false;
 931       }
 932     } else {
 933       loop->compute_profile_trip_cnt(this);
 934       if (!head->is_profile_trip_failed() && head->profile_trip_cnt() <= 3) {
 935         return false;
 936       }
 937     }
 938   }
 939 
 940   if (try_make_short_running_loop(loop, stride_con, range_checks, iters_limit)) {
 941     C->set_major_progress();
 942     return true;
 943   }
 944 
 945   julong orig_iters = (julong)hi->hi_as_long() - lo->lo_as_long();
 946   iters_limit = checked_cast<int>(MIN2((julong)iters_limit, orig_iters));
 947 
 948   // We need a safepoint to insert Parse Predicates for the inner loop.
 949   SafePointNode* safepoint;
 950   if (bt == T_INT && head->as_CountedLoop()->is_strip_mined()) {
 951     // Loop is strip mined: use the safepoint of the outer strip mined loop
 952     OuterStripMinedLoopNode* outer_loop = head->as_CountedLoop()->outer_loop();
 953     assert(outer_loop != nullptr, "no outer loop");
 954     safepoint = outer_loop->outer_safepoint();
 955     outer_loop->transform_to_counted_loop(&_igvn, this);
 956     exit_test = head->loopexit();
 957   } else {
 958     safepoint = find_safepoint(back_control, x, loop);
 959   }
 960 
 961   IfFalseNode* exit_branch = exit_test->false_proj();
 962   Node* entry_control = head->in(LoopNode::EntryControl);
 963 
 964   // Clone the control flow of the loop to build an outer loop
 965   Node* outer_back_branch = back_control->clone();
 966   Node* outer_exit_test = new IfNode(exit_test->in(0), exit_test->in(1), exit_test->_prob, exit_test->_fcnt);
 967   Node* inner_exit_branch = exit_branch->clone();
 968 
 969   LoopNode* outer_head = new LoopNode(entry_control, outer_back_branch);
 970   IdealLoopTree* outer_ilt = insert_outer_loop(loop, outer_head, outer_back_branch);
 971 
 972   const bool body_populated = true;
 973   register_control(outer_head, outer_ilt, entry_control, body_populated);
 974 
 975   _igvn.register_new_node_with_optimizer(inner_exit_branch);
 976   set_loop(inner_exit_branch, outer_ilt);
 977   set_idom(inner_exit_branch, exit_test, dom_depth(exit_branch));
 978 
 979   outer_exit_test->set_req(0, inner_exit_branch);
 980   register_control(outer_exit_test, outer_ilt, inner_exit_branch, body_populated);
 981 
 982   _igvn.replace_input_of(exit_branch, 0, outer_exit_test);
 983   set_idom(exit_branch, outer_exit_test, dom_depth(exit_branch));
 984 
 985   outer_back_branch->set_req(0, outer_exit_test);
 986   register_control(outer_back_branch, outer_ilt, outer_exit_test, body_populated);
 987 
 988   _igvn.replace_input_of(x, LoopNode::EntryControl, outer_head);
 989   set_idom(x, outer_head, dom_depth(x));
 990 
 991   // add an iv phi to the outer loop and use it to compute the inner
 992   // loop iteration limit
 993   Node* outer_phi = phi->clone();
 994   outer_phi->set_req(0, outer_head);
 995   register_new_node(outer_phi, outer_head);
 996 
 997   Node* inner_iters_max = nullptr;
 998   if (stride_con > 0) {
 999     inner_iters_max = MinMaxNode::max_diff_with_zero(limit, outer_phi, TypeInteger::bottom(bt), _igvn);
1000   } else {
1001     inner_iters_max = MinMaxNode::max_diff_with_zero(outer_phi, limit, TypeInteger::bottom(bt), _igvn);
1002   }
1003 
1004   Node* inner_iters_limit = _igvn.integercon(iters_limit, bt);
1005   // inner_iters_max may not fit in a signed integer (iterating from
1006   // Long.MIN_VALUE to Long.MAX_VALUE for instance). Use an unsigned
1007   // min.
1008   const TypeInteger* inner_iters_actual_range = TypeInteger::make(0, iters_limit, Type::WidenMin, bt);
1009   Node* inner_iters_actual = MinMaxNode::unsigned_min(inner_iters_max, inner_iters_limit, inner_iters_actual_range, _igvn);
1010 
1011   Node* inner_iters_actual_int;
1012   if (bt == T_LONG) {
1013     inner_iters_actual_int = new ConvL2INode(inner_iters_actual);
1014     _igvn.register_new_node_with_optimizer(inner_iters_actual_int);
1015     // When the inner loop is transformed to a counted loop, a loop limit check is not expected to be needed because
1016     // the loop limit is less or equal to max_jint - stride - 1 (if stride is positive but a similar argument exists for
1017     // a negative stride). We add a CastII here to guarantee that, when the counted loop is created in a subsequent loop
1018     // opts pass, an accurate range of values for the limits is found.
1019     const TypeInt* inner_iters_actual_int_range = TypeInt::make(0, iters_limit, Type::WidenMin);
1020     inner_iters_actual_int = new CastIINode(outer_head, inner_iters_actual_int, inner_iters_actual_int_range, ConstraintCastNode::DependencyType::NonFloatingNonNarrowing);
1021     _igvn.register_new_node_with_optimizer(inner_iters_actual_int);
1022   } else {
1023     inner_iters_actual_int = inner_iters_actual;
1024   }
1025 
1026   Node* int_zero = intcon(0);
1027   if (stride_con < 0) {
1028     inner_iters_actual_int = new SubINode(int_zero, inner_iters_actual_int);
1029     _igvn.register_new_node_with_optimizer(inner_iters_actual_int);
1030   }
1031 
1032   // Clone the iv data nodes as an integer iv
1033   Node* int_stride = intcon(stride_con);
1034   Node* inner_phi = new PhiNode(x->in(0), TypeInt::INT);
1035   Node* inner_incr = new AddINode(inner_phi, int_stride);
1036   Node* inner_cmp = nullptr;
1037   inner_cmp = new CmpINode(inner_incr, inner_iters_actual_int);
1038   Node* inner_bol = new BoolNode(inner_cmp, exit_test->in(1)->as_Bool()->_test._test);
1039   inner_phi->set_req(LoopNode::EntryControl, int_zero);
1040   inner_phi->set_req(LoopNode::LoopBackControl, inner_incr);
1041   register_new_node(inner_phi, x);
1042   register_new_node(inner_incr, x);
1043   register_new_node(inner_cmp, x);
1044   register_new_node(inner_bol, x);
1045 
1046   _igvn.replace_input_of(exit_test, 1, inner_bol);
1047 
1048   // Clone inner loop phis to outer loop
1049   for (uint i = 0; i < head->outcnt(); i++) {
1050     Node* u = head->raw_out(i);
1051     if (u->is_Phi() && u != inner_phi && u != phi) {
1052       assert(u->in(0) == head, "inconsistent");
1053       Node* clone = u->clone();
1054       clone->set_req(0, outer_head);
1055       register_new_node(clone, outer_head);
1056       _igvn.replace_input_of(u, LoopNode::EntryControl, clone);
1057     }
1058   }
1059 
1060   // Replace inner loop long iv phi as inner loop int iv phi + outer
1061   // loop iv phi
1062   Node* iv_add = loop_nest_replace_iv(phi, inner_phi, outer_phi, head, bt);
1063 
1064   set_subtree_ctrl(inner_iters_actual_int, body_populated);
1065 
1066   LoopNode* inner_head = create_inner_head(loop, head, exit_test);
1067 
1068   // Summary of steps from initial loop to loop nest:
1069   //
1070   // == old IR nodes =>
1071   //
1072   // entry_control: {...}
1073   // x:
1074   // for (long phi = init;;) {
1075   //   // phi := Phi(x, init, incr)
1076   //   // incr := AddL(phi, longcon(stride))
1077   //   exit_test:
1078   //   if (phi < limit)
1079   //     back_control: fallthrough;
1080   //   else
1081   //     exit_branch: break;
1082   //   long incr = phi + stride;
1083   //   ... use phi and incr ...
1084   //   phi = incr;
1085   // }
1086   //
1087   // == new IR nodes (just before final peel) =>
1088   //
1089   // entry_control: {...}
1090   // long adjusted_limit = limit + stride;  //because phi_incr != nullptr
1091   // assert(!limit_check_required || (extralong)limit + stride == adjusted_limit);  // else deopt
1092   // ulong inner_iters_limit = max_jint - ABS(stride) - 1;  //near 0x7FFFFFF0
1093   // outer_head:
1094   // for (long outer_phi = init;;) {
1095   //   // outer_phi := phi->clone(), in(0):=outer_head, => Phi(outer_head, init, incr)
1096   //   // REPLACE phi  => AddL(outer_phi, I2L(inner_phi))
1097   //   // REPLACE incr => AddL(outer_phi, I2L(inner_incr))
1098   //   // SO THAT outer_phi := Phi(outer_head, init, AddL(outer_phi, I2L(inner_incr)))
1099   //   ulong inner_iters_max = (ulong) MAX(0, ((extralong)adjusted_limit - outer_phi) * SGN(stride));
1100   //   int inner_iters_actual_int = (int) MIN(inner_iters_limit, inner_iters_max) * SGN(stride);
1101   //   inner_head: x: //in(1) := outer_head
1102   //   int inner_phi;
1103   //   for (inner_phi = 0;;) {
1104   //     // inner_phi := Phi(x, intcon(0), inner_phi + stride)
1105   //     int inner_incr = inner_phi + stride;
1106   //     bool inner_bol = (inner_incr < inner_iters_actual_int);
1107   //     exit_test: //exit_test->in(1) := inner_bol;
1108   //     if (inner_bol) // WAS (phi < limit)
1109   //       back_control: fallthrough;
1110   //     else
1111   //       inner_exit_branch: break;  //exit_branch->clone()
1112   //     ... use phi=>(outer_phi+inner_phi) ...
1113   //     inner_phi = inner_phi + stride;  // inner_incr
1114   //   }
1115   //   outer_exit_test:  //exit_test->clone(), in(0):=inner_exit_branch
1116   //   if ((outer_phi+inner_phi) < limit)  // WAS (phi < limit)
1117   //     outer_back_branch: fallthrough;  //back_control->clone(), in(0):=outer_exit_test
1118   //   else
1119   //     exit_branch: break;  //in(0) := outer_exit_test
1120   // }
1121 
1122   if (bt == T_INT) {
1123     outer_phi = new ConvI2LNode(outer_phi);
1124     register_new_node(outer_phi, outer_head);
1125   }
1126 
1127   transform_long_range_checks(stride_con, range_checks, outer_phi, inner_iters_actual_int,
1128                               inner_phi, iv_add, inner_head);
1129   // Peel one iteration of the loop and use the safepoint at the end
1130   // of the peeled iteration to insert Parse Predicates. If no well
1131   // positioned safepoint peel to guarantee a safepoint in the outer
1132   // loop.
1133   if (safepoint != nullptr || !loop->_has_call) {
1134     old_new.clear();
1135     do_peeling(loop, old_new);
1136   } else {
1137     C->set_major_progress();
1138   }
1139 
1140   if (safepoint != nullptr) {
1141     SafePointNode* cloned_sfpt = old_new[safepoint->_idx]->as_SafePoint();
1142 
1143     add_parse_predicates(outer_ilt, inner_head, cloned_sfpt);
1144   }
1145 
1146 #ifndef PRODUCT
1147   if (bt == T_LONG) {
1148     AtomicAccess::inc(&_long_loop_nests);
1149   }
1150 #endif
1151 
1152   inner_head->mark_loop_nest_inner_loop();
1153   outer_head->mark_loop_nest_outer_loop();
1154 
1155   return true;
1156 }
1157 
1158 // Make a copy of Parse/Template Assertion predicates below existing predicates at the loop passed as argument
1159 class CloneShortLoopPredicateVisitor : public PredicateVisitor {
1160   ClonePredicateToTargetLoop _clone_predicate_to_loop;
1161   PhaseIdealLoop* const _phase;
1162   Node* const _new_init;
1163 
1164 public:
1165   CloneShortLoopPredicateVisitor(LoopNode* target_loop_head,
1166                                  Node* new_init,
1167                                  const NodeInSingleLoopBody &node_in_loop_body,
1168                                  PhaseIdealLoop* phase)
1169     : _clone_predicate_to_loop(target_loop_head, node_in_loop_body, phase),
1170       _phase(phase),
1171       _new_init(new_init) {
1172   }
1173   NONCOPYABLE(CloneShortLoopPredicateVisitor);
1174 
1175   using PredicateVisitor::visit;
1176 
1177   void visit(const ParsePredicate& parse_predicate) override {
1178     _clone_predicate_to_loop.clone_parse_predicate(parse_predicate, true);
1179     parse_predicate.kill(_phase->igvn());
1180   }
1181 
1182   void visit(const TemplateAssertionPredicate& template_assertion_predicate) override {
1183     _clone_predicate_to_loop.clone_template_assertion_predicate_and_replace_init(template_assertion_predicate, _new_init);
1184     template_assertion_predicate.kill(_phase->igvn());
1185   }
1186 };
1187 
1188 // For an int counted loop, try_make_short_running_loop() transforms the loop from:
1189 //     for (int = start; i < stop; i+= stride) { ... }
1190 // to
1191 //     for (int = 0; i < stop - start; i+= stride) { ... }
1192 // Template Assertion Predicates added so far were with an init value of start. They need to be updated with the new
1193 // init value of 0 (otherwise when a template assertion predicate is turned into an initialized assertion predicate, it
1194 // performs an incorrect check):
1195 //                                zero
1196 //        init                     |
1197 //         |           ===>   OpaqueLoopInit   init
1198 //  OpaqueLoopInit                         \   /
1199 //                                          AddI
1200 //
1201 Node* PhaseIdealLoop::new_assertion_predicate_opaque_init(Node* entry_control, Node* init, Node* int_zero) {
1202   OpaqueLoopInitNode* new_opaque_init = new OpaqueLoopInitNode(C, int_zero);
1203   register_new_node(new_opaque_init, entry_control);
1204   Node* new_init = new AddINode(new_opaque_init, init);
1205   register_new_node(new_init, entry_control);
1206   return new_init;
1207 }
1208 
1209 // If the loop is either statically known to run for a small enough number of iterations or if profile data indicates
1210 // that, we don't want an outer loop because the overhead of having an outer loop whose backedge is never taken, has a
1211 // measurable cost. Furthermore, creating the loop nest usually causes one iteration of the loop to be peeled so
1212 // predicates can be set up. If the loop is short running, then it's an extra iteration that's run with range checks
1213 // (compared to an int counted loop with int range checks).
1214 //
1215 // In the short running case, turn the loop into a regular loop again and transform the long range checks:
1216 // - LongCountedLoop: Create LoopNode but keep the loop limit type with a CastLL node to avoid that we later try to
1217 //                    create a Loop Limit Check when turning the LoopNode into a CountedLoopNode.
1218 // - CountedLoop: Can be reused.
1219 bool PhaseIdealLoop::try_make_short_running_loop(IdealLoopTree* loop, jint stride_con, const Node_List &range_checks,
1220                                                  const uint iters_limit) {
1221   if (!ShortRunningLongLoop) {
1222     return false;
1223   }
1224   BaseCountedLoopNode* head = loop->_head->as_BaseCountedLoop();
1225   BasicType bt = head->bt();
1226   Node* entry_control = head->skip_strip_mined()->in(LoopNode::EntryControl);
1227 
1228   loop->compute_trip_count(this, bt);
1229   // Loop must run for no more than iter_limits as it guarantees no overflow of scale * iv in long range checks (see
1230   // comment above PhaseIdealLoop::transform_long_range_checks()).
1231   // iters_limit / ABS(stride_con) is the largest trip count for which we know it's correct to not create a loop nest:
1232   // it's always beneficial to have a single loop rather than a loop nest, so we try to apply this transformation as
1233   // often as possible.
1234   bool known_short_running_loop = head->trip_count() <= iters_limit / ABS(stride_con);
1235   bool profile_short_running_loop = false;
1236   if (!known_short_running_loop) {
1237     loop->compute_profile_trip_cnt(this);
1238     if (StressShortRunningLongLoop) {
1239       profile_short_running_loop = true;
1240     } else {
1241       profile_short_running_loop = !head->is_profile_trip_failed() && head->profile_trip_cnt() <= iters_limit / ABS(stride_con);
1242     }
1243   }
1244 
1245   if (!known_short_running_loop && !profile_short_running_loop) {
1246     return false;
1247   }
1248 
1249   Node* limit = head->limit();
1250   Node* init = head->init_trip();
1251 
1252   Node* new_limit;
1253   if (stride_con > 0) {
1254     new_limit = SubNode::make(limit, init, bt);
1255   } else {
1256     new_limit = SubNode::make(init, limit, bt);
1257   }
1258   register_new_node(new_limit, entry_control);
1259 
1260   Node* int_zero = intcon(0);
1261   PhiNode* phi = head->phi()->as_Phi();
1262   if (profile_short_running_loop) {
1263     // Add a Short Running Long Loop Predicate. It's the first predicate in the predicate chain before entering a loop
1264     // because a cast that's control dependent on the Short Running Long Loop Predicate is added to narrow the limit and
1265     // future predicates may be dependent on the new limit (so have to be between the loop and Short Running Long Loop
1266     // Predicate). The current limit could, itself, be dependent on an existing predicate. Clone parse and template
1267     // assertion predicates below existing predicates to get proper ordering of predicates when walking from the loop
1268     // up: future predicates, Short Running Long Loop Predicate, existing predicates.
1269     //
1270     //        Existing Hoisted
1271     //        Check Predicates
1272     //               |
1273     //     New Short Running Long
1274     //         Loop Predicate
1275     //               |
1276     //   Cloned Parse Predicates and
1277     //  Template Assertion Predicates
1278     //  (future predicates added here)
1279     //               |
1280     //             Loop
1281     const Predicates predicates_before_cloning(entry_control);
1282     const PredicateBlock* short_running_long_loop_predicate_block = predicates_before_cloning.short_running_long_loop_predicate_block();
1283     if (!short_running_long_loop_predicate_block->has_parse_predicate()) { // already trapped
1284       return false;
1285     }
1286     Node* new_init = new_assertion_predicate_opaque_init(entry_control, init, int_zero);
1287 
1288     PredicateIterator predicate_iterator(entry_control);
1289     NodeInSingleLoopBody node_in_short_loop_body(this, loop);
1290     CloneShortLoopPredicateVisitor clone_short_loop_predicates_visitor(head, new_init, node_in_short_loop_body, this);
1291     predicate_iterator.for_each(clone_short_loop_predicates_visitor);
1292 
1293     entry_control = head->skip_strip_mined()->in(LoopNode::EntryControl);
1294 
1295     const Predicates predicates_after_cloning(entry_control);
1296 
1297     ParsePredicateSuccessProj* short_running_loop_predicate_proj = predicates_after_cloning.
1298         short_running_long_loop_predicate_block()->
1299         parse_predicate_success_proj();
1300     assert(short_running_loop_predicate_proj->in(0)->is_ParsePredicate(), "must be parse predicate");
1301 
1302     const jlong iters_limit_long = iters_limit;
1303     Node* cmp_limit = CmpNode::make(new_limit, _igvn.integercon(iters_limit_long, bt), bt);
1304     Node* bol = new BoolNode(cmp_limit, BoolTest::le);
1305     Node* new_predicate_proj = create_new_if_for_predicate(short_running_loop_predicate_proj,
1306                                                            nullptr,
1307                                                            Deoptimization::Reason_short_running_long_loop,
1308                                                            Op_If);
1309     Node* iff = new_predicate_proj->in(0);
1310     _igvn.replace_input_of(iff, 1, bol);
1311     register_new_node(cmp_limit, iff->in(0));
1312     register_new_node(bol, iff->in(0));
1313     new_limit = ConstraintCastNode::make_cast_for_basic_type(new_predicate_proj, new_limit,
1314                                                              TypeInteger::make(1, iters_limit_long, Type::WidenMin, bt),
1315                                                              ConstraintCastNode::DependencyType::NonFloatingNonNarrowing, bt);
1316     register_new_node(new_limit, new_predicate_proj);
1317 
1318 #ifndef PRODUCT
1319     if (TraceLoopLimitCheck) {
1320       tty->print_cr("Short Long Loop Check Predicate generated:");
1321       DEBUG_ONLY(bol->dump(2);)
1322     }
1323 #endif
1324     entry_control = head->skip_strip_mined()->in(LoopNode::EntryControl);
1325   } else if (bt == T_LONG) {
1326     // We're turning a long counted loop into a regular loop that will be converted into an int counted loop. That loop
1327     // won't need loop limit check predicates (iters_limit guarantees that). Add a cast to make sure that, whatever
1328     // transformation happens by the time the counted loop is created (in a subsequent pass of loop opts), C2 knows
1329     // enough about the loop's limit that it doesn't try to add loop limit check predicates.
1330     const Predicates predicates(entry_control);
1331     const TypeLong* new_limit_t = new_limit->Value(&_igvn)->is_long();
1332     new_limit = ConstraintCastNode::make_cast_for_basic_type(predicates.entry(), new_limit,
1333                                                              TypeLong::make(0, new_limit_t->_hi, new_limit_t->_widen),
1334                                                              ConstraintCastNode::DependencyType::NonFloatingNonNarrowing, bt);
1335     register_new_node(new_limit, predicates.entry());
1336   } else {
1337     assert(bt == T_INT && known_short_running_loop, "only CountedLoop statically known to be short running");
1338     PredicateIterator predicate_iterator(entry_control);
1339     Node* new_init = new_assertion_predicate_opaque_init(entry_control, init, int_zero);
1340     UpdateInitForTemplateAssertionPredicates update_init_for_template_assertion_predicates(new_init, this);
1341     predicate_iterator.for_each(update_init_for_template_assertion_predicates);
1342   }
1343   IfNode* exit_test = head->loopexit();
1344 
1345   if (bt == T_LONG) {
1346     // The loop is short running so new_limit fits into an int: either we determined that statically or added a guard
1347     new_limit = new ConvL2INode(new_limit);
1348     register_new_node(new_limit, entry_control);
1349   }
1350 
1351   if (stride_con < 0) {
1352     new_limit = new SubINode(int_zero, new_limit);
1353     register_new_node(new_limit, entry_control);
1354   }
1355 
1356   // Clone the iv data nodes as an integer iv
1357   Node* int_stride = intcon(stride_con);
1358   Node* inner_phi = new PhiNode(head, TypeInt::INT);
1359   Node* inner_incr = new AddINode(inner_phi, int_stride);
1360   Node* inner_cmp = new CmpINode(inner_incr, new_limit);
1361   Node* inner_bol = new BoolNode(inner_cmp, exit_test->in(1)->as_Bool()->_test._test);
1362   inner_phi->set_req(LoopNode::EntryControl, int_zero);
1363   inner_phi->set_req(LoopNode::LoopBackControl, inner_incr);
1364   register_new_node(inner_phi, head);
1365   register_new_node(inner_incr, head);
1366   register_new_node(inner_cmp, head);
1367   register_new_node(inner_bol, head);
1368 
1369   _igvn.replace_input_of(exit_test, 1, inner_bol);
1370 
1371   // Replace inner loop long iv phi as inner loop int iv phi + outer
1372   // loop iv phi
1373   Node* iv_add = loop_nest_replace_iv(phi, inner_phi, init, head, bt);
1374 
1375   LoopNode* inner_head = head;
1376   if (bt == T_LONG) {
1377     // Turn the loop back to a counted loop
1378     inner_head = create_inner_head(loop, head, exit_test);
1379   } else {
1380     // Use existing counted loop
1381     revert_to_normal_loop(head);
1382   }
1383 
1384   if (bt == T_INT) {
1385     init = new ConvI2LNode(init);
1386     register_new_node(init, entry_control);
1387   }
1388 
1389   transform_long_range_checks(stride_con, range_checks, init, new_limit,
1390                               inner_phi, iv_add, inner_head);
1391 
1392   inner_head->mark_loop_nest_inner_loop();
1393 
1394   return true;
1395 }
1396 
1397 int PhaseIdealLoop::extract_long_range_checks(const IdealLoopTree* loop, jint stride_con, int iters_limit, PhiNode* phi,
1398                                               Node_List& range_checks) {
1399   const jlong min_iters = 2;
1400   jlong reduced_iters_limit = iters_limit;
1401   jlong original_iters_limit = iters_limit;
1402   for (uint i = 0; i < loop->_body.size(); i++) {
1403     Node* c = loop->_body.at(i);
1404     if (c->is_IfProj() && c->in(0)->is_RangeCheck()) {
1405       IfProjNode* if_proj = c->as_IfProj();
1406       CallStaticJavaNode* call = if_proj->is_uncommon_trap_if_pattern();
1407       if (call != nullptr) {
1408         Node* range = nullptr;
1409         Node* offset = nullptr;
1410         jlong scale = 0;
1411         if (loop->is_range_check_if(if_proj, this, T_LONG, phi, range, offset, scale) &&
1412             loop->is_invariant(range) && loop->is_invariant(offset) &&
1413             scale != min_jlong &&
1414             original_iters_limit / ABS(scale) >= min_iters * ABS(stride_con)) {
1415           assert(scale == (jint)scale, "scale should be an int");
1416           reduced_iters_limit = MIN2(reduced_iters_limit, original_iters_limit/ABS(scale));
1417           range_checks.push(c);
1418         }
1419       }
1420     }
1421   }
1422 
1423   return checked_cast<int>(reduced_iters_limit);
1424 }
1425 
1426 // One execution of the inner loop covers a sub-range of the entire iteration range of the loop: [A,Z), aka [A=init,
1427 // Z=limit). If the loop has at least one trip (which is the case here), the iteration variable i always takes A as its
1428 // first value, followed by A+S (S is the stride), next A+2S, etc. The limit is exclusive, so that the final value B of
1429 // i is never Z.  It will be B=Z-1 if S=1, or B=Z+1 if S=-1.
1430 
1431 // If |S|>1 the formula for the last value B would require a floor operation, specifically B=floor((Z-sgn(S)-A)/S)*S+A,
1432 // which is B=Z-sgn(S)U for some U in [1,|S|].  So when S>0, i ranges as i:[A,Z) or i:[A,B=Z-U], or else (in reverse)
1433 // as i:(Z,A] or i:[B=Z+U,A].  It will become important to reason about this inclusive range [A,B] or [B,A].
1434 
1435 // Within the loop there may be many range checks.  Each such range check (R.C.) is of the form 0 <= i*K+L < R, where K
1436 // is a scale factor applied to the loop iteration variable i, and L is some offset; K, L, and R are loop-invariant.
1437 // Because R is never negative (see below), this check can always be simplified to an unsigned check i*K+L <u R.
1438 
1439 // When a long loop over a 64-bit variable i (outer_iv) is decomposed into a series of shorter sub-loops over a 32-bit
1440 // variable j (inner_iv), j ranges over a shorter interval j:[0,B_2] or [0,Z_2) (assuming S > 0), where the limit is
1441 // chosen to prevent various cases of 32-bit overflow (including multiplications j*K below).  In the sub-loop the
1442 // logical value i is offset from j by a 64-bit constant C, so i ranges in i:C+[0,Z_2).
1443 
1444 // For S<0, j ranges (in reverse!) through j:[-|B_2|,0] or (-|Z_2|,0].  For either sign of S, we can say i=j+C and j
1445 // ranges through 32-bit ranges [A_2,B_2] or [B_2,A_2] (A_2=0 of course).
1446 
1447 // The disjoint union of all the C+[A_2,B_2] ranges from the sub-loops must be identical to the whole range [A,B].
1448 // Assuming S>0, the first C must be A itself, and the next C value is the previous C+B_2, plus S.  If |S|=1, the next
1449 // C value is also the previous C+Z_2.  In each sub-loop, j counts from j=A_2=0 and i counts from C+0 and exits at
1450 // j=B_2 (i=C+B_2), just before it gets to i=C+Z_2.  Both i and j count up (from C and 0) if S>0; otherwise they count
1451 // down (from C and 0 again).
1452 
1453 // Returning to range checks, we see that each i*K+L <u R expands to (C+j)*K+L <u R, or j*K+Q <u R, where Q=(C*K+L).
1454 // (Recall that K and L and R are loop-invariant scale, offset and range values for a particular R.C.)  This is still a
1455 // 64-bit comparison, so the range check elimination logic will not apply to it.  (The R.C.E. transforms operate only on
1456 // 32-bit indexes and comparisons, because they use 64-bit temporary values to avoid overflow; see
1457 // PhaseIdealLoop::add_constraint.)
1458 
1459 // We must transform this comparison so that it gets the same answer, but by means of a 32-bit R.C. (using j not i) of
1460 // the form j*K+L_2 <u32 R_2.  Note that L_2 and R_2 must be loop-invariant, but only with respect to the sub-loop.  Thus, the
1461 // problem reduces to computing values for L_2 and R_2 (for each R.C. in the loop) in the loop header for the sub-loop.
1462 // Then the standard R.C.E. transforms can take those as inputs and further compute the necessary minimum and maximum
1463 // values for the 32-bit counter j within which the range checks can be eliminated.
1464 
1465 // So, given j*K+Q <u R, we need to find some j*K+L_2 <u32 R_2, where L_2 and R_2 fit in 32 bits, and the 32-bit operations do
1466 // not overflow. We also need to cover the cases where i*K+L (= j*K+Q) overflows to a 64-bit negative, since that is
1467 // allowed as an input to the R.C., as long as the R.C. as a whole fails.
1468 
1469 // If 32-bit multiplication j*K might overflow, we adjust the sub-loop limit Z_2 closer to zero to reduce j's range.
1470 
1471 // For each R.C. j*K+Q <u32 R, the range of mathematical values of j*K+Q in the sub-loop is [Q_min, Q_max], where
1472 // Q_min=Q and Q_max=B_2*K+Q (if S>0 and K>0), Q_min=A_2*K+Q and Q_max=Q (if S<0 and K>0),
1473 // Q_min=B_2*K+Q and Q_max=Q if (S>0 and K<0), Q_min=Q and Q_max=A_2*K+Q (if S<0 and K<0)
1474 
1475 // Note that the first R.C. value is always Q=(S*K>0 ? Q_min : Q_max).  Also Q_{min,max} = Q + {min,max}(A_2*K,B_2*K).
1476 // If S*K>0 then, as the loop iterations progress, each R.C. value i*K+L = j*K+Q goes up from Q=Q_min towards Q_max.
1477 // If S*K<0 then j*K+Q starts at Q=Q_max and goes down towards Q_min.
1478 
1479 // Case A: Some Negatives (but no overflow).
1480 // Number line:
1481 // |s64_min   .    .    .    0    .    .    .   s64_max|
1482 // |    .  Q_min..Q_max .    0    .    .    .     .    |  s64 negative
1483 // |    .     .    .    .    R=0  R<   R<   R<    R<   |  (against R values)
1484 // |    .     .    .  Q_min..0..Q_max  .    .     .    |  small mixed
1485 // |    .     .    .    .    R    R    R<   R<    R<   |  (against R values)
1486 //
1487 // R values which are out of range (>Q_max+1) are reduced to max(0,Q_max+1).  They are marked on the number line as R<.
1488 //
1489 // So, if Q_min <s64 0, then use this test:
1490 // j*K + s32_trunc(Q_min) <u32 clamp(R, 0, Q_max+1) if S*K>0 (R.C.E. steps upward)
1491 // j*K + s32_trunc(Q_max) <u32 clamp(R, 0, Q_max+1) if S*K<0 (R.C.E. steps downward)
1492 // Both formulas reduce to adding j*K to the 32-bit truncated value of the first R.C. expression value, Q:
1493 // j*K + s32_trunc(Q) <u32 clamp(R, 0, Q_max+1) for all S,K
1494 
1495 // If the 32-bit truncation loses information, no harm is done, since certainly the clamp also will return R_2=zero.
1496 
1497 // Case B: No Negatives.
1498 // Number line:
1499 // |s64_min   .    .    .    0    .    .    .   s64_max|
1500 // |    .     .    .    .    0 Q_min..Q_max .     .    |  small positive
1501 // |    .     .    .    .    R>   R    R    R<    R<   |  (against R values)
1502 // |    .     .    .    .    0    . Q_min..Q_max  .    |  s64 positive
1503 // |    .     .    .    .    R>   R>   R    R     R<   |  (against R values)
1504 //
1505 // R values which are out of range (<Q_min or >Q_max+1) are reduced as marked: R> up to Q_min, R< down to Q_max+1.
1506 // Then the whole comparison is shifted left by Q_min, so it can take place at zero, which is a nice 32-bit value.
1507 //
1508 // So, if both Q_min, Q_max+1 >=s64 0, then use this test:
1509 // j*K + 0         <u32 clamp(R, Q_min, Q_max+1) - Q_min if S*K>0
1510 // More generally:
1511 // j*K + Q - Q_min <u32 clamp(R, Q_min, Q_max+1) - Q_min for all S,K
1512 
1513 // Case C: Overflow in the 64-bit domain
1514 // Number line:
1515 // |..Q_max-2^64   .    .    0    .    .    .   Q_min..|  s64 overflow
1516 // |    .     .    .    .    R>   R>   R>   R>    R    |  (against R values)
1517 //
1518 // In this case, Q_min >s64 Q_max+1, even though the mathematical values of Q_min and Q_max+1 are correctly ordered.
1519 // The formulas from the previous case can be used, except that the bad upper bound Q_max is replaced by max_jlong.
1520 // (In fact, we could use any replacement bound from R to max_jlong inclusive, as the input to the clamp function.)
1521 //
1522 // So if Q_min >=s64 0 but Q_max+1 <s64 0, use this test:
1523 // j*K + 0         <u32 clamp(R, Q_min, max_jlong) - Q_min if S*K>0
1524 // More generally:
1525 // j*K + Q - Q_min <u32 clamp(R, Q_min, max_jlong) - Q_min for all S,K
1526 //
1527 // Dropping the bad bound means only Q_min is used to reduce the range of R:
1528 // j*K + Q - Q_min <u32 max(Q_min, R) - Q_min for all S,K
1529 //
1530 // Here the clamp function is a 64-bit min/max that reduces the dynamic range of its R operand to the required [L,H]:
1531 //     clamp(X, L, H) := max(L, min(X, H))
1532 // When degenerately L > H, it returns L not H.
1533 //
1534 // All of the formulas above can be merged into a single one:
1535 //     L_clamp = Q_min < 0 ? 0 : Q_min        --whether and how far to left-shift
1536 //     H_clamp = Q_max+1 < Q_min ? max_jlong : Q_max+1
1537 //             = Q_max+1 < 0 && Q_min >= 0 ? max_jlong : Q_max+1
1538 //     Q_first = Q = (S*K>0 ? Q_min : Q_max) = (C*K+L)
1539 //     R_clamp = clamp(R, L_clamp, H_clamp)   --reduced dynamic range
1540 //     replacement R.C.:
1541 //       j*K + Q_first - L_clamp <u32 R_clamp - L_clamp
1542 //     or equivalently:
1543 //       j*K + L_2 <u32 R_2
1544 //     where
1545 //       L_2 = Q_first - L_clamp
1546 //       R_2 = R_clamp - L_clamp
1547 //
1548 // Note on why R is never negative:
1549 //
1550 // Various details of this transformation would break badly if R could be negative, so this transformation only
1551 // operates after obtaining hard evidence that R<0 is impossible.  For example, if R comes from a LoadRange node, we
1552 // know R cannot be negative.  For explicit checks (of both int and long) a proof is constructed in
1553 // inline_preconditions_checkIndex, which triggers an uncommon trap if R<0, then wraps R in a ConstraintCastNode with a
1554 // non-negative type.  Later on, when IdealLoopTree::is_range_check_if looks for an optimizable R.C., it checks that
1555 // the type of that R node is non-negative.  Any "wild" R node that could be negative is not treated as an optimizable
1556 // R.C., but R values from a.length and inside checkIndex are good to go.
1557 //
1558 void PhaseIdealLoop::transform_long_range_checks(int stride_con, const Node_List &range_checks, Node* outer_phi,
1559                                                  Node* inner_iters_actual_int, Node* inner_phi,
1560                                                  Node* iv_add, LoopNode* inner_head) {
1561   Node* long_zero = longcon(0);
1562   Node* int_zero = intcon(0);
1563   Node* long_one = longcon(1);
1564   Node* int_stride = intcon(checked_cast<int>(stride_con));
1565 
1566   for (uint i = 0; i < range_checks.size(); i++) {
1567     ProjNode* proj = range_checks.at(i)->as_Proj();
1568     RangeCheckNode* rc = proj->in(0)->as_RangeCheck();
1569     jlong scale = 0;
1570     Node* offset = nullptr;
1571     Node* rc_bol = rc->in(1);
1572     Node* rc_cmp = rc_bol->in(1);
1573     if (rc_cmp->Opcode() == Op_CmpU) {
1574       // could be shared and have already been taken care of
1575       continue;
1576     }
1577     bool short_scale = false;
1578     bool ok = is_scaled_iv_plus_offset(rc_cmp->in(1), iv_add, T_LONG, &scale, &offset, &short_scale);
1579     assert(ok, "inconsistent: was tested before");
1580     Node* range = rc_cmp->in(2);
1581     Node* c = rc->in(0);
1582     Node* entry_control = inner_head->in(LoopNode::EntryControl);
1583 
1584     Node* R = range;
1585     Node* K = longcon(scale);
1586 
1587     Node* L = offset;
1588 
1589     if (short_scale) {
1590       // This converts:
1591       // (int)i*K + L <u64 R
1592       // with K an int into:
1593       // i*(long)K + L <u64 unsigned_min((long)max_jint + L + 1, R)
1594       // to protect against an overflow of (int)i*K
1595       //
1596       // Because if (int)i*K overflows, there are K,L where:
1597       // (int)i*K + L <u64 R is false because (int)i*K+L overflows to a negative which becomes a huge u64 value.
1598       // But if i*(long)K + L is >u64 (long)max_jint and still is <u64 R, then
1599       // i*(long)K + L <u64 R is true.
1600       //
1601       // As a consequence simply converting i*K + L <u64 R to i*(long)K + L <u64 R could cause incorrect execution.
1602       //
1603       // It's always true that:
1604       // (int)i*K <u64 (long)max_jint + 1
1605       // which implies (int)i*K + L <u64 (long)max_jint + 1 + L
1606       // As a consequence:
1607       // i*(long)K + L <u64 unsigned_min((long)max_jint + L + 1, R)
1608       // is always false in case of overflow of i*K
1609       //
1610       // Note, there are also K,L where i*K overflows and
1611       // i*K + L <u64 R is true, but
1612       // i*(long)K + L <u64 unsigned_min((long)max_jint + L + 1, R) is false
1613       // So this transformation could cause spurious deoptimizations and failed range check elimination
1614       // (but not incorrect execution) for unlikely corner cases with overflow.
1615       // If this causes problems in practice, we could maybe direct execution to a post-loop, instead of deoptimizing.
1616       Node* max_jint_plus_one_long = longcon((jlong)max_jint + 1);
1617       Node* max_range = new AddLNode(max_jint_plus_one_long, L);
1618       register_new_node(max_range, entry_control);
1619       R = MinMaxNode::unsigned_min(R, max_range, TypeLong::POS, _igvn);
1620       set_subtree_ctrl(R, true);
1621     }
1622 
1623     Node* C = outer_phi;
1624 
1625     // Start with 64-bit values:
1626     //   i*K + L <u64 R
1627     //   (C+j)*K + L <u64 R
1628     //   j*K + Q <u64 R    where Q = Q_first = C*K+L
1629     Node* Q_first = new MulLNode(C, K);
1630     register_new_node(Q_first, entry_control);
1631     Q_first = new AddLNode(Q_first, L);
1632     register_new_node(Q_first, entry_control);
1633 
1634     // Compute endpoints of the range of values j*K + Q.
1635     //  Q_min = (j=0)*K + Q;  Q_max = (j=B_2)*K + Q
1636     Node* Q_min = Q_first;
1637 
1638     // Compute the exact ending value B_2 (which is really A_2 if S < 0)
1639     Node* B_2 = new LoopLimitNode(this->C, int_zero, inner_iters_actual_int, int_stride);
1640     register_new_node(B_2, entry_control);
1641     B_2 = new SubINode(B_2, int_stride);
1642     register_new_node(B_2, entry_control);
1643     B_2 = new ConvI2LNode(B_2);
1644     register_new_node(B_2, entry_control);
1645 
1646     Node* Q_max = new MulLNode(B_2, K);
1647     register_new_node(Q_max, entry_control);
1648     Q_max = new AddLNode(Q_max, Q_first);
1649     register_new_node(Q_max, entry_control);
1650 
1651     if (scale * stride_con < 0) {
1652       swap(Q_min, Q_max);
1653     }
1654     // Now, mathematically, Q_max > Q_min, and they are close enough so that (Q_max-Q_min) fits in 32 bits.
1655 
1656     // L_clamp = Q_min < 0 ? 0 : Q_min
1657     Node* Q_min_cmp = new CmpLNode(Q_min, long_zero);
1658     register_new_node(Q_min_cmp, entry_control);
1659     Node* Q_min_bool = new BoolNode(Q_min_cmp, BoolTest::lt);
1660     register_new_node(Q_min_bool, entry_control);
1661     Node* L_clamp = new CMoveLNode(Q_min_bool, Q_min, long_zero, TypeLong::LONG);
1662     register_new_node(L_clamp, entry_control);
1663     // (This could also be coded bitwise as L_clamp = Q_min & ~(Q_min>>63).)
1664 
1665     Node* Q_max_plus_one = new AddLNode(Q_max, long_one);
1666     register_new_node(Q_max_plus_one, entry_control);
1667 
1668     // H_clamp = Q_max+1 < Q_min ? max_jlong : Q_max+1
1669     // (Because Q_min and Q_max are close, the overflow check could also be encoded as Q_max+1 < 0 & Q_min >= 0.)
1670     Node* max_jlong_long = longcon(max_jlong);
1671     Node* Q_max_cmp = new CmpLNode(Q_max_plus_one, Q_min);
1672     register_new_node(Q_max_cmp, entry_control);
1673     Node* Q_max_bool = new BoolNode(Q_max_cmp, BoolTest::lt);
1674     register_new_node(Q_max_bool, entry_control);
1675     Node* H_clamp = new CMoveLNode(Q_max_bool, Q_max_plus_one, max_jlong_long, TypeLong::LONG);
1676     register_new_node(H_clamp, entry_control);
1677     // (This could also be coded bitwise as H_clamp = ((Q_max+1)<<1 | M)>>>1 where M = (Q_max+1)>>63 & ~Q_min>>63.)
1678 
1679     // R_2 = clamp(R, L_clamp, H_clamp) - L_clamp
1680     // that is:  R_2 = clamp(R, L_clamp=0, H_clamp=Q_max)      if Q_min < 0
1681     // or else:  R_2 = clamp(R, L_clamp,   H_clamp) - Q_min    if Q_min >= 0
1682     // and also: R_2 = clamp(R, L_clamp,   Q_max+1) - L_clamp  if Q_min < Q_max+1 (no overflow)
1683     // or else:  R_2 = clamp(R, L_clamp, *no limit*)- L_clamp  if Q_max+1 < Q_min (overflow)
1684     Node* R_2 = clamp(R, L_clamp, H_clamp);
1685     R_2 = new SubLNode(R_2, L_clamp);
1686     register_new_node(R_2, entry_control);
1687     R_2 = new ConvL2INode(R_2, TypeInt::POS);
1688     register_new_node(R_2, entry_control);
1689 
1690     // L_2 = Q_first - L_clamp
1691     // We are subtracting L_clamp from both sides of the <u32 comparison.
1692     // If S*K>0, then Q_first == 0 and the R.C. expression at -L_clamp and steps upward to Q_max-L_clamp.
1693     // If S*K<0, then Q_first != 0 and the R.C. expression starts high and steps downward to Q_min-L_clamp.
1694     Node* L_2 = new SubLNode(Q_first, L_clamp);
1695     register_new_node(L_2, entry_control);
1696     L_2 = new ConvL2INode(L_2, TypeInt::INT);
1697     register_new_node(L_2, entry_control);
1698 
1699     // Transform the range check using the computed values L_2/R_2
1700     // from:   i*K + L   <u64 R
1701     // to:     j*K + L_2 <u32 R_2
1702     // that is:
1703     //   (j*K + Q_first) - L_clamp <u32 clamp(R, L_clamp, H_clamp) - L_clamp
1704     K = intcon(checked_cast<int>(scale));
1705     Node* scaled_iv = new MulINode(inner_phi, K);
1706     register_new_node(scaled_iv, c);
1707     Node* scaled_iv_plus_offset = new AddINode(scaled_iv, L_2);
1708     register_new_node(scaled_iv_plus_offset, c);
1709 
1710     Node* new_rc_cmp = new CmpUNode(scaled_iv_plus_offset, R_2);
1711     register_new_node(new_rc_cmp, c);
1712 
1713     _igvn.replace_input_of(rc_bol, 1, new_rc_cmp);
1714   }
1715 }
1716 
1717 Node* PhaseIdealLoop::clamp(Node* R, Node* L, Node* H) {
1718   Node* min = MinMaxNode::signed_min(R, H, TypeLong::LONG, _igvn);
1719   set_subtree_ctrl(min, true);
1720   Node* max = MinMaxNode::signed_max(L, min, TypeLong::LONG, _igvn);
1721   set_subtree_ctrl(max, true);
1722   return max;
1723 }
1724 
1725 LoopNode* PhaseIdealLoop::create_inner_head(IdealLoopTree* loop, BaseCountedLoopNode* head,
1726                                             IfNode* exit_test) {
1727   LoopNode* new_inner_head = new LoopNode(head->in(1), head->in(2));
1728   IfNode* new_inner_exit = new IfNode(exit_test->in(0), exit_test->in(1), exit_test->_prob, exit_test->_fcnt);
1729   _igvn.register_new_node_with_optimizer(new_inner_head);
1730   _igvn.register_new_node_with_optimizer(new_inner_exit);
1731   loop->_body.push(new_inner_head);
1732   loop->_body.push(new_inner_exit);
1733   loop->_body.yank(head);
1734   loop->_body.yank(exit_test);
1735   set_loop(new_inner_head, loop);
1736   set_loop(new_inner_exit, loop);
1737   set_idom(new_inner_head, idom(head), dom_depth(head));
1738   set_idom(new_inner_exit, idom(exit_test), dom_depth(exit_test));
1739   replace_node_and_forward_ctrl(head, new_inner_head);
1740   replace_node_and_forward_ctrl(exit_test, new_inner_exit);
1741   loop->_head = new_inner_head;
1742   return new_inner_head;
1743 }
1744 
1745 #ifdef ASSERT
1746 void PhaseIdealLoop::check_counted_loop_shape(IdealLoopTree* loop, Node* x, BasicType bt) {
1747   Node* back_control = loop_exit_control(x, loop);
1748   assert(back_control != nullptr, "no back control");
1749 
1750   BoolTest::mask mask = BoolTest::illegal;
1751   float cl_prob = 0;
1752   Node* incr = nullptr;
1753   Node* limit = nullptr;
1754 
1755   Node* cmp = loop_exit_test(back_control, loop, incr, limit, mask, cl_prob);
1756   assert(cmp != nullptr && cmp->Opcode() == Op_Cmp(bt), "no exit test");
1757 
1758   Node* phi_incr = nullptr;
1759   incr = loop_iv_incr(incr, x, loop, phi_incr);
1760   assert(incr != nullptr && incr->Opcode() == Op_Add(bt), "no incr");
1761 
1762   Node* xphi = nullptr;
1763   Node* stride = loop_iv_stride(incr, xphi);
1764 
1765   assert(stride != nullptr, "no stride");
1766 
1767   PhiNode* phi = loop_iv_phi(xphi, phi_incr, x);
1768 
1769   assert(phi != nullptr && phi->in(LoopNode::LoopBackControl) == incr, "No phi");
1770 
1771   jlong stride_con = stride->get_integer_as_long(bt);
1772 
1773   assert(condition_stride_ok(mask, stride_con), "illegal condition");
1774 
1775   assert(mask != BoolTest::ne, "unexpected condition");
1776   assert(phi_incr == nullptr, "bad loop shape");
1777   assert(cmp->in(1) == incr, "bad exit test shape");
1778 
1779   // Safepoint on backedge not supported
1780   assert(x->in(LoopNode::LoopBackControl)->Opcode() != Op_SafePoint, "no safepoint on backedge");
1781 }
1782 #endif
1783 
1784 #ifdef ASSERT
1785 // convert an int counted loop to a long counted to stress handling of
1786 // long counted loops
1787 bool PhaseIdealLoop::convert_to_long_loop(Node* cmp, Node* phi, IdealLoopTree* loop) {
1788   Unique_Node_List iv_nodes;
1789   Node_List old_new;
1790   iv_nodes.push(cmp);
1791   bool failed = false;
1792 
1793   for (uint i = 0; i < iv_nodes.size() && !failed; i++) {
1794     Node* n = iv_nodes.at(i);
1795     switch(n->Opcode()) {
1796       case Op_Phi: {
1797         Node* clone = new PhiNode(n->in(0), TypeLong::LONG);
1798         old_new.map(n->_idx, clone);
1799         break;
1800       }
1801       case Op_CmpI: {
1802         Node* clone = new CmpLNode(nullptr, nullptr);
1803         old_new.map(n->_idx, clone);
1804         break;
1805       }
1806       case Op_AddI: {
1807         Node* clone = new AddLNode(nullptr, nullptr);
1808         old_new.map(n->_idx, clone);
1809         break;
1810       }
1811       case Op_CastII: {
1812         failed = true;
1813         break;
1814       }
1815       default:
1816         DEBUG_ONLY(n->dump());
1817         fatal("unexpected");
1818     }
1819 
1820     for (uint i = 1; i < n->req(); i++) {
1821       Node* in = n->in(i);
1822       if (in == nullptr) {
1823         continue;
1824       }
1825       if (ctrl_is_member(loop, in)) {
1826         iv_nodes.push(in);
1827       }
1828     }
1829   }
1830 
1831   if (failed) {
1832     for (uint i = 0; i < iv_nodes.size(); i++) {
1833       Node* n = iv_nodes.at(i);
1834       Node* clone = old_new[n->_idx];
1835       if (clone != nullptr) {
1836         _igvn.remove_dead_node(clone);
1837       }
1838     }
1839     return false;
1840   }
1841 
1842   for (uint i = 0; i < iv_nodes.size(); i++) {
1843     Node* n = iv_nodes.at(i);
1844     Node* clone = old_new[n->_idx];
1845     for (uint i = 1; i < n->req(); i++) {
1846       Node* in = n->in(i);
1847       if (in == nullptr) {
1848         continue;
1849       }
1850       Node* in_clone = old_new[in->_idx];
1851       if (in_clone == nullptr) {
1852         assert(_igvn.type(in)->isa_int(), "");
1853         in_clone = new ConvI2LNode(in);
1854         _igvn.register_new_node_with_optimizer(in_clone);
1855         set_subtree_ctrl(in_clone, false);
1856       }
1857       if (in_clone->in(0) == nullptr) {
1858         in_clone->set_req(0, C->top());
1859         clone->set_req(i, in_clone);
1860         in_clone->set_req(0, nullptr);
1861       } else {
1862         clone->set_req(i, in_clone);
1863       }
1864     }
1865     _igvn.register_new_node_with_optimizer(clone);
1866   }
1867   set_ctrl(old_new[phi->_idx], phi->in(0));
1868 
1869   for (uint i = 0; i < iv_nodes.size(); i++) {
1870     Node* n = iv_nodes.at(i);
1871     Node* clone = old_new[n->_idx];
1872     set_subtree_ctrl(clone, false);
1873     Node* m = n->Opcode() == Op_CmpI ? clone : nullptr;
1874     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1875       Node* u = n->fast_out(i);
1876       if (iv_nodes.member(u)) {
1877         continue;
1878       }
1879       if (m == nullptr) {
1880         m = new ConvL2INode(clone);
1881         _igvn.register_new_node_with_optimizer(m);
1882         set_subtree_ctrl(m, false);
1883       }
1884       _igvn.rehash_node_delayed(u);
1885       int nb = u->replace_edge(n, m, &_igvn);
1886       --i, imax -= nb;
1887     }
1888   }
1889   return true;
1890 }
1891 #endif
1892 
1893 //------------------------------is_counted_loop--------------------------------
1894 bool PhaseIdealLoop::is_counted_loop(Node* x, IdealLoopTree*& loop, BasicType iv_bt) {
1895   PhaseGVN *gvn = &_igvn;
1896 
1897   Node* back_control = loop_exit_control(x, loop);
1898   if (back_control == nullptr) {
1899     return false;
1900   }
1901 
1902   BoolTest::mask bt = BoolTest::illegal;
1903   float cl_prob = 0;
1904   Node* incr = nullptr;
1905   Node* limit = nullptr;
1906   Node* cmp = loop_exit_test(back_control, loop, incr, limit, bt, cl_prob);
1907   if (cmp == nullptr || cmp->Opcode() != Op_Cmp(iv_bt)) {
1908     return false; // Avoid pointer & float & 64-bit compares
1909   }
1910 
1911   // Trip-counter increment must be commutative & associative.
1912   if (incr->Opcode() == Op_Cast(iv_bt)) {
1913     incr = incr->in(1);
1914   }
1915 
1916   Node* phi_incr = nullptr;
1917   incr = loop_iv_incr(incr, x, loop, phi_incr);
1918   if (incr == nullptr) {
1919     return false;
1920   }
1921 
1922   Node* trunc1 = nullptr;
1923   Node* trunc2 = nullptr;
1924   const TypeInteger* iv_trunc_t = nullptr;
1925   Node* orig_incr = incr;
1926   if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t, iv_bt))) {
1927     return false; // Funny increment opcode
1928   }
1929   assert(incr->Opcode() == Op_Add(iv_bt), "wrong increment code");
1930 
1931   Node* xphi = nullptr;
1932   Node* stride = loop_iv_stride(incr, xphi);
1933 
1934   if (stride == nullptr) {
1935     return false;
1936   }
1937 
1938   // Iteratively uncast the loop induction variable
1939   // until no more CastII/CastLL nodes are found.
1940   while (xphi->Opcode() == Op_Cast(iv_bt)) {
1941     xphi = xphi->in(1);
1942   }
1943 
1944   // Stride must be constant
1945   jlong stride_con = stride->get_integer_as_long(iv_bt);
1946   assert(stride_con != 0, "missed some peephole opt");
1947 
1948   PhiNode* phi = loop_iv_phi(xphi, phi_incr, x);
1949 
1950   if (phi == nullptr ||
1951       (trunc1 == nullptr && phi->in(LoopNode::LoopBackControl) != incr) ||
1952       (trunc1 != nullptr && phi->in(LoopNode::LoopBackControl) != trunc1)) {
1953     return false;
1954   }
1955 
1956   Node* iftrue = back_control;
1957   uint iftrue_op = iftrue->Opcode();
1958   Node* iff = iftrue->in(0);
1959   BoolNode* test = iff->in(1)->as_Bool();
1960 
1961   const TypeInteger* limit_t = gvn->type(limit)->is_integer(iv_bt);
1962   if (trunc1 != nullptr) {
1963     // When there is a truncation, we must be sure that after the truncation
1964     // the trip counter will end up higher than the limit, otherwise we are looking
1965     // at an endless loop. Can happen with range checks.
1966 
1967     // Example:
1968     // int i = 0;
1969     // while (true)
1970     //    sum + = array[i];
1971     //    i++;
1972     //    i = i && 0x7fff;
1973     //  }
1974     //
1975     // If the array is shorter than 0x8000 this exits through a AIOOB
1976     //  - Counted loop transformation is ok
1977     // If the array is longer then this is an endless loop
1978     //  - No transformation can be done.
1979 
1980     const TypeInteger* incr_t = gvn->type(orig_incr)->is_integer(iv_bt);
1981     if (limit_t->hi_as_long() > incr_t->hi_as_long()) {
1982       // if the limit can have a higher value than the increment (before the phi)
1983       return false;
1984     }
1985   }
1986 
1987   Node *init_trip = phi->in(LoopNode::EntryControl);
1988 
1989   // If iv trunc type is smaller than int, check for possible wrap.
1990   if (!TypeInteger::bottom(iv_bt)->higher_equal(iv_trunc_t)) {
1991     assert(trunc1 != nullptr, "must have found some truncation");
1992 
1993     // Get a better type for the phi (filtered thru if's)
1994     const TypeInteger* phi_ft = filtered_type(phi);
1995 
1996     // Can iv take on a value that will wrap?
1997     //
1998     // Ensure iv's limit is not within "stride" of the wrap value.
1999     //
2000     // Example for "short" type
2001     //    Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
2002     //    If the stride is +10, then the last value of the induction
2003     //    variable before the increment (phi_ft->_hi) must be
2004     //    <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
2005     //    ensure no truncation occurs after the increment.
2006 
2007     if (stride_con > 0) {
2008       if (iv_trunc_t->hi_as_long() - phi_ft->hi_as_long() < stride_con ||
2009           iv_trunc_t->lo_as_long() > phi_ft->lo_as_long()) {
2010         return false;  // truncation may occur
2011       }
2012     } else if (stride_con < 0) {
2013       if (iv_trunc_t->lo_as_long() - phi_ft->lo_as_long() > stride_con ||
2014           iv_trunc_t->hi_as_long() < phi_ft->hi_as_long()) {
2015         return false;  // truncation may occur
2016       }
2017     }
2018     // No possibility of wrap so truncation can be discarded
2019     // Promote iv type to Int
2020   } else {
2021     assert(trunc1 == nullptr && trunc2 == nullptr, "no truncation for int");
2022   }
2023 
2024   if (!condition_stride_ok(bt, stride_con)) {
2025     return false;
2026   }
2027 
2028   const TypeInteger* init_t = gvn->type(init_trip)->is_integer(iv_bt);
2029 
2030   if (stride_con > 0) {
2031     if (init_t->lo_as_long() > max_signed_integer(iv_bt) - stride_con) {
2032       return false; // cyclic loop
2033     }
2034   } else {
2035     if (init_t->hi_as_long() < min_signed_integer(iv_bt) - stride_con) {
2036       return false; // cyclic loop
2037     }
2038   }
2039 
2040   if (phi_incr != nullptr && bt != BoolTest::ne) {
2041     // check if there is a possibility of IV overflowing after the first increment
2042     if (stride_con > 0) {
2043       if (init_t->hi_as_long() > max_signed_integer(iv_bt) - stride_con) {
2044         return false;
2045       }
2046     } else {
2047       if (init_t->lo_as_long() < min_signed_integer(iv_bt) - stride_con) {
2048         return false;
2049       }
2050     }
2051   }
2052 
2053   // =================================================
2054   // ---- SUCCESS!   Found A Trip-Counted Loop!  -----
2055   //
2056 
2057   if (x->Opcode() == Op_Region) {
2058     // x has not yet been transformed to Loop or LongCountedLoop.
2059     // This should only happen if we are inside an infinite loop.
2060     // It happens like this:
2061     //   build_loop_tree -> do not attach infinite loop and nested loops
2062     //   beautify_loops  -> does not transform the infinite and nested loops to LoopNode, because not attached yet
2063     //   build_loop_tree -> find and attach infinite and nested loops
2064     //   counted_loop    -> nested Regions are not yet transformed to LoopNodes, we land here
2065     assert(x->as_Region()->is_in_infinite_subgraph(),
2066            "x can only be a Region and not Loop if inside infinite loop");
2067     // Come back later when Region is transformed to LoopNode
2068     return false;
2069   }
2070 
2071   assert(x->Opcode() == Op_Loop || x->Opcode() == Op_LongCountedLoop, "regular loops only");
2072   C->print_method(PHASE_BEFORE_CLOOPS, 3, x);
2073 
2074   // ===================================================
2075   // We can only convert this loop to a counted loop if we can guarantee that the iv phi will never overflow at runtime.
2076   // This is an implicit assumption taken by some loop optimizations. We therefore must ensure this property at all cost.
2077   // At this point, we've already excluded some trivial cases where an overflow could have been proven statically.
2078   // But even though we cannot prove that an overflow will *not* happen, we still want to speculatively convert this loop
2079   // to a counted loop. This can be achieved by adding additional iv phi overflow checks before the loop. If they fail,
2080   // we trap and resume execution before the loop without having executed any iteration of the loop, yet.
2081   //
2082   // These additional iv phi overflow checks can be inserted as Loop Limit Check Predicates above the Loop Limit Check
2083   // Parse Predicate which captures a JVM state just before the entry of the loop. If there is no such Parse Predicate,
2084   // we cannot generate a Loop Limit Check Predicate and thus cannot speculatively convert the loop to a counted loop.
2085   //
2086   // In the following, we only focus on int loops with stride > 0 to keep things simple. The argumentation and proof
2087   // for stride < 0 is analogously. For long loops, we would replace max_int with max_long.
2088   //
2089   //
2090   // The loop to be converted does not always need to have the often used shape:
2091   //
2092   //                                                 i = init
2093   //     i = init                                loop:
2094   //     do {                                        ...
2095   //         // ...               equivalent         i+=stride
2096   //         i+=stride               <==>            if (i < limit)
2097   //     } while (i < limit);                          goto loop
2098   //                                             exit:
2099   //                                                 ...
2100   //
2101   // where the loop exit check uses the post-incremented iv phi and a '<'-operator.
2102   //
2103   // We could also have '<='-operator (or '>='-operator for negative strides) or use the pre-incremented iv phi value
2104   // in the loop exit check:
2105   //
2106   //         i = init
2107   //     loop:
2108   //         ...
2109   //         if (i <= limit)
2110   //             i+=stride
2111   //             goto loop
2112   //     exit:
2113   //         ...
2114   //
2115   // Let's define the following terms:
2116   // - iv_pre_i: The pre-incremented iv phi before the i-th iteration.
2117   // - iv_post_i: The post-incremented iv phi after the i-th iteration.
2118   //
2119   // The iv_pre_i and iv_post_i have the following relation:
2120   //      iv_pre_i + stride = iv_post_i
2121   //
2122   // When converting a loop to a counted loop, we want to have a canonicalized loop exit check of the form:
2123   //     iv_post_i < adjusted_limit
2124   //
2125   // If that is not the case, we need to canonicalize the loop exit check by using different values for adjusted_limit:
2126   // (LE1) iv_post_i < limit: Already canonicalized. We can directly use limit as adjusted_limit.
2127   //           -> adjusted_limit = limit.
2128   // (LE2) iv_post_i <= limit:
2129   //           iv_post_i < limit + 1
2130   //           -> adjusted limit = limit + 1
2131   // (LE3) iv_pre_i < limit:
2132   //           iv_pre_i + stride < limit + stride
2133   //           iv_post_i < limit + stride
2134   //           -> adjusted_limit = limit + stride
2135   // (LE4) iv_pre_i <= limit:
2136   //           iv_pre_i < limit + 1
2137   //           iv_pre_i + stride < limit + stride + 1
2138   //           iv_post_i < limit + stride + 1
2139   //           -> adjusted_limit = limit + stride + 1
2140   //
2141   // Note that:
2142   //     (AL) limit <= adjusted_limit.
2143   //
2144   // The following loop invariant has to hold for counted loops with n iterations (i.e. loop exit check true after n-th
2145   // loop iteration) and a canonicalized loop exit check to guarantee that no iv_post_i over- or underflows:
2146   // (INV) For i = 1..n, min_int <= iv_post_i <= max_int
2147   //
2148   // To prove (INV), we require the following two conditions/assumptions:
2149   // (i): adjusted_limit - 1 + stride <= max_int
2150   // (ii): init < limit
2151   //
2152   // If we can prove (INV), we know that there can be no over- or underflow of any iv phi value. We prove (INV) by
2153   // induction by assuming (i) and (ii).
2154   //
2155   // Proof by Induction
2156   // ------------------
2157   // > Base case (i = 1): We show that (INV) holds after the first iteration:
2158   //     min_int <= iv_post_1 = init + stride <= max_int
2159   // Proof:
2160   //     First, we note that (ii) implies
2161   //         (iii) init <= limit - 1
2162   //     max_int >= adjusted_limit - 1 + stride   [using (i)]
2163   //             >= limit - 1 + stride            [using (AL)]
2164   //             >= init + stride                 [using (iii)]
2165   //             >= min_int                       [using stride > 0, no underflow]
2166   // Thus, no overflow happens after the first iteration and (INV) holds for i = 1.
2167   //
2168   // Note that to prove the base case we need (i) and (ii).
2169   //
2170   // > Induction Hypothesis (i = j, j > 1): Assume that (INV) holds after the j-th iteration:
2171   //     min_int <= iv_post_j <= max_int
2172   // > Step case (i = j + 1): We show that (INV) also holds after the j+1-th iteration:
2173   //     min_int <= iv_post_{j+1} = iv_post_j + stride <= max_int
2174   // Proof:
2175   // If iv_post_j >= adjusted_limit:
2176   //     We exit the loop after the j-th iteration, and we don't execute the j+1-th iteration anymore. Thus, there is
2177   //     also no iv_{j+1}. Since (INV) holds for iv_j, there is nothing left to prove.
2178   // If iv_post_j < adjusted_limit:
2179   //     First, we note that:
2180   //         (iv) iv_post_j <= adjusted_limit - 1
2181   //     max_int >= adjusted_limit - 1 + stride    [using (i)]
2182   //             >= iv_post_j + stride             [using (iv)]
2183   //             >= min_int                        [using stride > 0, no underflow]
2184   //
2185   // Note that to prove the step case we only need (i).
2186   //
2187   // Thus, by assuming (i) and (ii), we proved (INV).
2188   //
2189   //
2190   // It is therefore enough to add the following two Loop Limit Check Predicates to check assumptions (i) and (ii):
2191   //
2192   // (1) Loop Limit Check Predicate for (i):
2193   //     Using (i): adjusted_limit - 1 + stride <= max_int
2194   //
2195   //     This condition is now restated to use limit instead of adjusted_limit:
2196   //
2197   //     To prevent an overflow of adjusted_limit -1 + stride itself, we rewrite this check to
2198   //         max_int - stride + 1 >= adjusted_limit
2199   //     We can merge the two constants into
2200   //         canonicalized_correction = stride - 1
2201   //     which gives us
2202   //        max_int - canonicalized_correction >= adjusted_limit
2203   //
2204   //     To directly use limit instead of adjusted_limit in the predicate condition, we split adjusted_limit into:
2205   //         adjusted_limit = limit + limit_correction
2206   //     Since stride > 0 and limit_correction <= stride + 1, we can restate this with no over- or underflow into:
2207   //         max_int - canonicalized_correction - limit_correction >= limit
2208   //     Since canonicalized_correction and limit_correction are both constants, we can replace them with a new constant:
2209   //         (v) final_correction = canonicalized_correction + limit_correction
2210   //
2211   //     which gives us:
2212   //
2213   //     Final predicate condition:
2214   //         max_int - final_correction >= limit
2215   //
2216   //     However, we need to be careful that (v) does not over- or underflow.
2217   //     We know that:
2218   //         canonicalized_correction = stride - 1
2219   //     and
2220   //         limit_correction <= stride + 1
2221   //     and thus
2222   //         canonicalized_correction + limit_correction <= 2 * stride
2223   //     To prevent an over- or underflow of (v), we must ensure that
2224   //         2 * stride <= max_int
2225   //     which can safely be checked without over- or underflow with
2226   //         (vi) stride != min_int AND abs(stride) <= max_int / 2
2227   //
2228   //     We could try to further optimize the cases where (vi) does not hold but given that such large strides are
2229   //     very uncommon and the loop would only run for a very few iterations anyway, we simply bail out if (vi) fails.
2230   //
2231   // (2) Loop Limit Check Predicate for (ii):
2232   //     Using (ii): init < limit
2233   //
2234   //     This Loop Limit Check Predicate is not required if we can prove at compile time that either:
2235   //        (2.1) type(init) < type(limit)
2236   //             In this case, we know:
2237   //                 all possible values of init < all possible values of limit
2238   //             and we can skip the predicate.
2239   //
2240   //        (2.2) init < limit is already checked before (i.e. found as a dominating check)
2241   //            In this case, we do not need to re-check the condition and can skip the predicate.
2242   //            This is often found for while- and for-loops which have the following shape:
2243   //
2244   //                if (init < limit) { // Dominating test. Do not need the Loop Limit Check Predicate below.
2245   //                    i = init;
2246   //                    if (init >= limit) { trap(); } // Here we would insert the Loop Limit Check Predicate
2247   //                    do {
2248   //                        i += stride;
2249   //                    } while (i < limit);
2250   //                }
2251   //
2252   //        (2.3) init + stride <= max_int
2253   //            In this case, there is no overflow of the iv phi after the first loop iteration.
2254   //            In the proof of the base case above we showed that init + stride <= max_int by using assumption (ii):
2255   //                init < limit
2256   //            In the proof of the step case above, we did not need (ii) anymore. Therefore, if we already know at
2257   //            compile time that init + stride <= max_int then we have trivially proven the base case and that
2258   //            there is no overflow of the iv phi after the first iteration. In this case, we don't need to check (ii)
2259   //            again and can skip the predicate.
2260 
2261   // Check (vi) and bail out if the stride is too big.
2262   if (stride_con == min_signed_integer(iv_bt) || (ABS(stride_con) > max_signed_integer(iv_bt) / 2)) {
2263     return false;
2264   }
2265 
2266   // Accounting for (LE3) and (LE4) where we use pre-incremented phis in the loop exit check.
2267   const jlong limit_correction_for_pre_iv_exit_check = (phi_incr != nullptr) ? stride_con : 0;
2268 
2269   // Accounting for (LE2) and (LE4) where we use <= or >= in the loop exit check.
2270   const bool includes_limit = (bt == BoolTest::le || bt == BoolTest::ge);
2271   const jlong limit_correction_for_le_ge_exit_check = (includes_limit ? (stride_con > 0 ? 1 : -1) : 0);
2272 
2273   const jlong limit_correction = limit_correction_for_pre_iv_exit_check + limit_correction_for_le_ge_exit_check;
2274   const jlong canonicalized_correction = stride_con + (stride_con > 0 ? -1 : 1);
2275   const jlong final_correction = canonicalized_correction + limit_correction;
2276 
2277   int sov = check_stride_overflow(final_correction, limit_t, iv_bt);
2278   Node* init_control = x->in(LoopNode::EntryControl);
2279 
2280   // If sov==0, limit's type always satisfies the condition, for
2281   // example, when it is an array length.
2282   if (sov != 0) {
2283     if (sov < 0) {
2284       return false;  // Bailout: integer overflow is certain.
2285     }
2286     // (1) Loop Limit Check Predicate is required because we could not statically prove that
2287     //     limit + final_correction = adjusted_limit - 1 + stride <= max_int
2288     assert(!x->as_Loop()->is_loop_nest_inner_loop(), "loop was transformed");
2289     const Predicates predicates(init_control);
2290     const PredicateBlock* loop_limit_check_predicate_block = predicates.loop_limit_check_predicate_block();
2291     if (!loop_limit_check_predicate_block->has_parse_predicate()) {
2292       // The Loop Limit Check Parse Predicate is not generated if this method trapped here before.
2293 #ifdef ASSERT
2294       if (TraceLoopLimitCheck) {
2295         tty->print("Missing Loop Limit Check Parse Predicate:");
2296         loop->dump_head();
2297         x->dump(1);
2298       }
2299 #endif
2300       return false;
2301     }
2302 
2303     ParsePredicateNode* loop_limit_check_parse_predicate = loop_limit_check_predicate_block->parse_predicate();
2304     if (!is_dominator(get_ctrl(limit), loop_limit_check_parse_predicate->in(0))) {
2305       return false;
2306     }
2307 
2308     Node* cmp_limit;
2309     Node* bol;
2310 
2311     if (stride_con > 0) {
2312       cmp_limit = CmpNode::make(limit, _igvn.integercon(max_signed_integer(iv_bt) - final_correction, iv_bt), iv_bt);
2313       bol = new BoolNode(cmp_limit, BoolTest::le);
2314     } else {
2315       cmp_limit = CmpNode::make(limit, _igvn.integercon(min_signed_integer(iv_bt) - final_correction, iv_bt), iv_bt);
2316       bol = new BoolNode(cmp_limit, BoolTest::ge);
2317     }
2318 
2319     insert_loop_limit_check_predicate(init_control->as_IfTrue(), cmp_limit, bol);
2320   }
2321 
2322   // (2.3)
2323   const bool init_plus_stride_could_overflow =
2324           (stride_con > 0 && init_t->hi_as_long() > max_signed_integer(iv_bt) - stride_con) ||
2325           (stride_con < 0 && init_t->lo_as_long() < min_signed_integer(iv_bt) - stride_con);
2326   // (2.1)
2327   const bool init_gte_limit = (stride_con > 0 && init_t->hi_as_long() >= limit_t->lo_as_long()) ||
2328                               (stride_con < 0 && init_t->lo_as_long() <= limit_t->hi_as_long());
2329 
2330   if (init_gte_limit && // (2.1)
2331      ((bt == BoolTest::ne || init_plus_stride_could_overflow) && // (2.3)
2332       !has_dominating_loop_limit_check(init_trip, limit, stride_con, iv_bt, init_control))) { // (2.2)
2333     // (2) Iteration Loop Limit Check Predicate is required because neither (2.1), (2.2), nor (2.3) holds.
2334     // We use the following condition:
2335     // - stride > 0: init < limit
2336     // - stride < 0: init > limit
2337     //
2338     // This predicate is always required if we have a non-equal-operator in the loop exit check (where stride = 1 is
2339     // a requirement). We transform the loop exit check by using a less-than-operator. By doing so, we must always
2340     // check that init < limit. Otherwise, we could have a different number of iterations at runtime.
2341 
2342     const Predicates predicates(init_control);
2343     const PredicateBlock* loop_limit_check_predicate_block = predicates.loop_limit_check_predicate_block();
2344     if (!loop_limit_check_predicate_block->has_parse_predicate()) {
2345       // The Loop Limit Check Parse Predicate is not generated if this method trapped here before.
2346 #ifdef ASSERT
2347       if (TraceLoopLimitCheck) {
2348         tty->print("Missing Loop Limit Check Parse Predicate:");
2349         loop->dump_head();
2350         x->dump(1);
2351       }
2352 #endif
2353       return false;
2354     }
2355 
2356     ParsePredicateNode* loop_limit_check_parse_predicate = loop_limit_check_predicate_block->parse_predicate();
2357     Node* parse_predicate_entry = loop_limit_check_parse_predicate->in(0);
2358     if (!is_dominator(get_ctrl(limit), parse_predicate_entry) ||
2359         !is_dominator(get_ctrl(init_trip), parse_predicate_entry)) {
2360       return false;
2361     }
2362 
2363     Node* cmp_limit;
2364     Node* bol;
2365 
2366     if (stride_con > 0) {
2367       cmp_limit = CmpNode::make(init_trip, limit, iv_bt);
2368       bol = new BoolNode(cmp_limit, BoolTest::lt);
2369     } else {
2370       cmp_limit = CmpNode::make(init_trip, limit, iv_bt);
2371       bol = new BoolNode(cmp_limit, BoolTest::gt);
2372     }
2373 
2374     insert_loop_limit_check_predicate(init_control->as_IfTrue(), cmp_limit, bol);
2375   }
2376 
2377   if (bt == BoolTest::ne) {
2378     // Now we need to canonicalize the loop condition if it is 'ne'.
2379     assert(stride_con == 1 || stride_con == -1, "simple increment only - checked before");
2380     if (stride_con > 0) {
2381       // 'ne' can be replaced with 'lt' only when init < limit. This is ensured by the inserted predicate above.
2382       bt = BoolTest::lt;
2383     } else {
2384       assert(stride_con < 0, "must be");
2385       // 'ne' can be replaced with 'gt' only when init > limit. This is ensured by the inserted predicate above.
2386       bt = BoolTest::gt;
2387     }
2388   }
2389 
2390   Node* sfpt = nullptr;
2391   if (loop->_child == nullptr) {
2392     sfpt = find_safepoint(back_control, x, loop);
2393   } else {
2394     sfpt = iff->in(0);
2395     if (sfpt->Opcode() != Op_SafePoint) {
2396       sfpt = nullptr;
2397     }
2398   }
2399 
2400   if (x->in(LoopNode::LoopBackControl)->Opcode() == Op_SafePoint) {
2401     Node* backedge_sfpt = x->in(LoopNode::LoopBackControl);
2402     if (((iv_bt == T_INT && LoopStripMiningIter != 0) ||
2403          iv_bt == T_LONG) &&
2404         sfpt == nullptr) {
2405       // Leaving the safepoint on the backedge and creating a
2406       // CountedLoop will confuse optimizations. We can't move the
2407       // safepoint around because its jvm state wouldn't match a new
2408       // location. Give up on that loop.
2409       return false;
2410     }
2411     if (is_deleteable_safept(backedge_sfpt)) {
2412       replace_node_and_forward_ctrl(backedge_sfpt, iftrue);
2413       if (loop->_safepts != nullptr) {
2414         loop->_safepts->yank(backedge_sfpt);
2415       }
2416       loop->_tail = iftrue;
2417     }
2418   }
2419 
2420 
2421 #ifdef ASSERT
2422   if (iv_bt == T_INT &&
2423       !x->as_Loop()->is_loop_nest_inner_loop() &&
2424       StressLongCountedLoop > 0 &&
2425       trunc1 == nullptr &&
2426       convert_to_long_loop(cmp, phi, loop)) {
2427     return false;
2428   }
2429 #endif
2430 
2431   Node* adjusted_limit = limit;
2432   if (phi_incr != nullptr) {
2433     // If compare points directly to the phi we need to adjust
2434     // the compare so that it points to the incr. Limit have
2435     // to be adjusted to keep trip count the same and we
2436     // should avoid int overflow.
2437     //
2438     //   i = init; do {} while(i++ < limit);
2439     // is converted to
2440     //   i = init; do {} while(++i < limit+1);
2441     //
2442     adjusted_limit = gvn->transform(AddNode::make(limit, stride, iv_bt));
2443   }
2444 
2445   if (includes_limit) {
2446     // The limit check guaranties that 'limit <= (max_jint - stride)' so
2447     // we can convert 'i <= limit' to 'i < limit+1' since stride != 0.
2448     //
2449     Node* one = (stride_con > 0) ? gvn->integercon( 1, iv_bt) : gvn->integercon(-1, iv_bt);
2450     adjusted_limit = gvn->transform(AddNode::make(adjusted_limit, one, iv_bt));
2451     if (bt == BoolTest::le)
2452       bt = BoolTest::lt;
2453     else if (bt == BoolTest::ge)
2454       bt = BoolTest::gt;
2455     else
2456       ShouldNotReachHere();
2457   }
2458   set_subtree_ctrl(adjusted_limit, false);
2459 
2460   // Build a canonical trip test.
2461   // Clone code, as old values may be in use.
2462   incr = incr->clone();
2463   incr->set_req(1,phi);
2464   incr->set_req(2,stride);
2465   incr = _igvn.register_new_node_with_optimizer(incr);
2466   set_early_ctrl(incr, false);
2467   _igvn.rehash_node_delayed(phi);
2468   phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn );
2469 
2470   // If phi type is more restrictive than Int, raise to
2471   // Int to prevent (almost) infinite recursion in igvn
2472   // which can only handle integer types for constants or minint..maxint.
2473   if (!TypeInteger::bottom(iv_bt)->higher_equal(phi->bottom_type())) {
2474     Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInteger::bottom(iv_bt));
2475     nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl));
2476     nphi = _igvn.register_new_node_with_optimizer(nphi);
2477     set_ctrl(nphi, get_ctrl(phi));
2478     _igvn.replace_node(phi, nphi);
2479     phi = nphi->as_Phi();
2480   }
2481   cmp = cmp->clone();
2482   cmp->set_req(1,incr);
2483   cmp->set_req(2, adjusted_limit);
2484   cmp = _igvn.register_new_node_with_optimizer(cmp);
2485   set_ctrl(cmp, iff->in(0));
2486 
2487   test = test->clone()->as_Bool();
2488   (*(BoolTest*)&test->_test)._test = bt;
2489   test->set_req(1,cmp);
2490   _igvn.register_new_node_with_optimizer(test);
2491   set_ctrl(test, iff->in(0));
2492 
2493   // Replace the old IfNode with a new LoopEndNode
2494   Node *lex = _igvn.register_new_node_with_optimizer(BaseCountedLoopEndNode::make(iff->in(0), test, cl_prob, iff->as_If()->_fcnt, iv_bt));
2495   IfNode *le = lex->as_If();
2496   uint dd = dom_depth(iff);
2497   set_idom(le, le->in(0), dd); // Update dominance for loop exit
2498   set_loop(le, loop);
2499 
2500   // Get the loop-exit control
2501   Node *iffalse = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
2502 
2503   // Need to swap loop-exit and loop-back control?
2504   if (iftrue_op == Op_IfFalse) {
2505     Node *ift2=_igvn.register_new_node_with_optimizer(new IfTrueNode (le));
2506     Node *iff2=_igvn.register_new_node_with_optimizer(new IfFalseNode(le));
2507 
2508     loop->_tail = back_control = ift2;
2509     set_loop(ift2, loop);
2510     set_loop(iff2, get_loop(iffalse));
2511 
2512     // Lazy update of 'get_ctrl' mechanism.
2513     replace_node_and_forward_ctrl(iffalse, iff2);
2514     replace_node_and_forward_ctrl(iftrue,  ift2);
2515 
2516     // Swap names
2517     iffalse = iff2;
2518     iftrue  = ift2;
2519   } else {
2520     _igvn.rehash_node_delayed(iffalse);
2521     _igvn.rehash_node_delayed(iftrue);
2522     iffalse->set_req_X( 0, le, &_igvn );
2523     iftrue ->set_req_X( 0, le, &_igvn );
2524   }
2525 
2526   set_idom(iftrue,  le, dd+1);
2527   set_idom(iffalse, le, dd+1);
2528   assert(iff->outcnt() == 0, "should be dead now");
2529   replace_node_and_forward_ctrl(iff, le); // fix 'get_ctrl'
2530 
2531   Node* entry_control = init_control;
2532   bool strip_mine_loop = iv_bt == T_INT &&
2533                          loop->_child == nullptr &&
2534                          sfpt != nullptr &&
2535                          !loop->_has_call &&
2536                          is_deleteable_safept(sfpt);
2537   IdealLoopTree* outer_ilt = nullptr;
2538   if (strip_mine_loop) {
2539     outer_ilt = create_outer_strip_mined_loop(init_control, loop, cl_prob, le->_fcnt,
2540                                               entry_control, iffalse);
2541   }
2542 
2543   // Now setup a new CountedLoopNode to replace the existing LoopNode
2544   BaseCountedLoopNode *l = BaseCountedLoopNode::make(entry_control, back_control, iv_bt);
2545   l->set_unswitch_count(x->as_Loop()->unswitch_count()); // Preserve
2546   // The following assert is approximately true, and defines the intention
2547   // of can_be_counted_loop.  It fails, however, because phase->type
2548   // is not yet initialized for this loop and its parts.
2549   //assert(l->can_be_counted_loop(this), "sanity");
2550   _igvn.register_new_node_with_optimizer(l);
2551   set_loop(l, loop);
2552   loop->_head = l;
2553   // Fix all data nodes placed at the old loop head.
2554   // Uses the lazy-update mechanism of 'get_ctrl'.
2555   replace_node_and_forward_ctrl(x, l);
2556   set_idom(l, entry_control, dom_depth(entry_control) + 1);
2557 
2558   if (iv_bt == T_INT && (LoopStripMiningIter == 0 || strip_mine_loop)) {
2559     // Check for immediately preceding SafePoint and remove
2560     if (sfpt != nullptr && (strip_mine_loop || is_deleteable_safept(sfpt))) {
2561       if (strip_mine_loop) {
2562         Node* outer_le = outer_ilt->_tail->in(0);
2563         Node* sfpt_clone = sfpt->clone();
2564         sfpt_clone->set_req(0, iffalse);
2565         outer_le->set_req(0, sfpt_clone);
2566 
2567         Node* polladdr = sfpt_clone->in(TypeFunc::Parms);
2568         if (polladdr != nullptr && polladdr->is_Load()) {
2569           // Polling load should be pinned outside inner loop.
2570           Node* new_polladdr = polladdr->clone();
2571           new_polladdr->set_req(0, iffalse);
2572           _igvn.register_new_node_with_optimizer(new_polladdr, polladdr);
2573           set_ctrl(new_polladdr, iffalse);
2574           sfpt_clone->set_req(TypeFunc::Parms, new_polladdr);
2575         }
2576         // When this code runs, loop bodies have not yet been populated.
2577         const bool body_populated = false;
2578         register_control(sfpt_clone, outer_ilt, iffalse, body_populated);
2579         set_idom(outer_le, sfpt_clone, dom_depth(sfpt_clone));
2580       }
2581       replace_node_and_forward_ctrl(sfpt, sfpt->in(TypeFunc::Control));
2582       if (loop->_safepts != nullptr) {
2583         loop->_safepts->yank(sfpt);
2584       }
2585     }
2586   }
2587 
2588 #ifdef ASSERT
2589   assert(l->is_valid_counted_loop(iv_bt), "counted loop shape is messed up");
2590   assert(l == loop->_head && l->phi() == phi && l->loopexit_or_null() == lex, "" );
2591 #endif
2592 #ifndef PRODUCT
2593   if (TraceLoopOpts) {
2594     tty->print("Counted      ");
2595     loop->dump_head();
2596   }
2597 #endif
2598 
2599   C->print_method(PHASE_AFTER_CLOOPS, 3, l);
2600 
2601   // Capture bounds of the loop in the induction variable Phi before
2602   // subsequent transformation (iteration splitting) obscures the
2603   // bounds
2604   l->phi()->as_Phi()->set_type(l->phi()->Value(&_igvn));
2605 
2606   if (strip_mine_loop) {
2607     l->mark_strip_mined();
2608     l->verify_strip_mined(1);
2609     outer_ilt->_head->as_Loop()->verify_strip_mined(1);
2610     loop = outer_ilt;
2611   }
2612 
2613 #ifndef PRODUCT
2614   if (x->as_Loop()->is_loop_nest_inner_loop() && iv_bt == T_LONG) {
2615     AtomicAccess::inc(&_long_loop_counted_loops);
2616   }
2617 #endif
2618   if (iv_bt == T_LONG && x->as_Loop()->is_loop_nest_outer_loop()) {
2619     l->mark_loop_nest_outer_loop();
2620   }
2621 
2622   return true;
2623 }
2624 
2625 // Check if there is a dominating loop limit check of the form 'init < limit' starting at the loop entry.
2626 // If there is one, then we do not need to create an additional Loop Limit Check Predicate.
2627 bool PhaseIdealLoop::has_dominating_loop_limit_check(Node* init_trip, Node* limit, const jlong stride_con,
2628                                                      const BasicType iv_bt, Node* loop_entry) {
2629   // Eagerly call transform() on the Cmp and Bool node to common them up if possible. This is required in order to
2630   // successfully find a dominated test with the If node below.
2631   Node* cmp_limit;
2632   Node* bol;
2633   if (stride_con > 0) {
2634     cmp_limit = _igvn.transform(CmpNode::make(init_trip, limit, iv_bt));
2635     bol = _igvn.transform(new BoolNode(cmp_limit, BoolTest::lt));
2636   } else {
2637     cmp_limit = _igvn.transform(CmpNode::make(init_trip, limit, iv_bt));
2638     bol = _igvn.transform(new BoolNode(cmp_limit, BoolTest::gt));
2639   }
2640 
2641   // Check if there is already a dominating init < limit check. If so, we do not need a Loop Limit Check Predicate.
2642   IfNode* iff = new IfNode(loop_entry, bol, PROB_MIN, COUNT_UNKNOWN);
2643   // Also add fake IfProj nodes in order to call transform() on the newly created IfNode.
2644   IfFalseNode* if_false = new IfFalseNode(iff);
2645   IfTrueNode* if_true = new IfTrueNode(iff);
2646   Node* dominated_iff = _igvn.transform(iff);
2647   // ConI node? Found dominating test (IfNode::dominated_by() returns a ConI node).
2648   const bool found_dominating_test = dominated_iff != nullptr && dominated_iff->is_ConI();
2649 
2650   // Kill the If with its projections again in the next IGVN round by cutting it off from the graph.
2651   _igvn.replace_input_of(iff, 0, C->top());
2652   _igvn.replace_input_of(iff, 1, C->top());
2653   return found_dominating_test;
2654 }
2655 
2656 //----------------------exact_limit-------------------------------------------
2657 Node* PhaseIdealLoop::exact_limit( IdealLoopTree *loop ) {
2658   assert(loop->_head->is_CountedLoop(), "");
2659   CountedLoopNode *cl = loop->_head->as_CountedLoop();
2660   assert(cl->is_valid_counted_loop(T_INT), "");
2661 
2662   if (cl->stride_con() == 1 ||
2663       cl->stride_con() == -1 ||
2664       cl->limit()->Opcode() == Op_LoopLimit) {
2665     // Old code has exact limit (it could be incorrect in case of int overflow).
2666     // Loop limit is exact with stride == 1. And loop may already have exact limit.
2667     return cl->limit();
2668   }
2669   Node *limit = nullptr;
2670 #ifdef ASSERT
2671   BoolTest::mask bt = cl->loopexit()->test_trip();
2672   assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
2673 #endif
2674   if (cl->has_exact_trip_count()) {
2675     // Simple case: loop has constant boundaries.
2676     // Use jlongs to avoid integer overflow.
2677     int stride_con = cl->stride_con();
2678     jlong  init_con = cl->init_trip()->get_int();
2679     jlong limit_con = cl->limit()->get_int();
2680     julong trip_cnt = cl->trip_count();
2681     jlong final_con = init_con + trip_cnt*stride_con;
2682     int final_int = (int)final_con;
2683     // The final value should be in integer range since the loop
2684     // is counted and the limit was checked for overflow.
2685     assert(final_con == (jlong)final_int, "final value should be integer");
2686     limit = _igvn.intcon(final_int);
2687   } else {
2688     // Create new LoopLimit node to get exact limit (final iv value).
2689     limit = new LoopLimitNode(C, cl->init_trip(), cl->limit(), cl->stride());
2690     register_new_node(limit, cl->in(LoopNode::EntryControl));
2691   }
2692   assert(limit != nullptr, "sanity");
2693   return limit;
2694 }
2695 
2696 //------------------------------Ideal------------------------------------------
2697 // Return a node which is more "ideal" than the current node.
2698 // Attempt to convert into a counted-loop.
2699 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2700   if (!can_be_counted_loop(phase) && !is_OuterStripMinedLoop()) {
2701     phase->C->set_major_progress();
2702   }
2703   return RegionNode::Ideal(phase, can_reshape);
2704 }
2705 
2706 #ifdef ASSERT
2707 void LoopNode::verify_strip_mined(int expect_skeleton) const {
2708   const OuterStripMinedLoopNode* outer = nullptr;
2709   const CountedLoopNode* inner = nullptr;
2710   if (is_strip_mined()) {
2711     if (!is_valid_counted_loop(T_INT)) {
2712       return; // Skip malformed counted loop
2713     }
2714     assert(is_CountedLoop(), "no Loop should be marked strip mined");
2715     inner = as_CountedLoop();
2716     outer = inner->in(LoopNode::EntryControl)->as_OuterStripMinedLoop();
2717   } else if (is_OuterStripMinedLoop()) {
2718     outer = this->as_OuterStripMinedLoop();
2719     inner = outer->unique_ctrl_out()->as_CountedLoop();
2720     assert(inner->is_valid_counted_loop(T_INT) && inner->is_strip_mined(), "OuterStripMinedLoop should have been removed");
2721     assert(!is_strip_mined(), "outer loop shouldn't be marked strip mined");
2722   }
2723   if (inner != nullptr || outer != nullptr) {
2724     assert(inner != nullptr && outer != nullptr, "missing loop in strip mined nest");
2725     Node* outer_tail = outer->in(LoopNode::LoopBackControl);
2726     Node* outer_le = outer_tail->in(0);
2727     assert(outer_le->Opcode() == Op_OuterStripMinedLoopEnd, "tail of outer loop should be an If");
2728     Node* sfpt = outer_le->in(0);
2729     assert(sfpt->Opcode() == Op_SafePoint, "where's the safepoint?");
2730     Node* inner_out = sfpt->in(0);
2731     CountedLoopEndNode* cle = inner_out->in(0)->as_CountedLoopEnd();
2732     assert(cle == inner->loopexit_or_null(), "mismatch");
2733     bool has_skeleton = outer_le->in(1)->bottom_type()->singleton() && outer_le->in(1)->bottom_type()->is_int()->get_con() == 0;
2734     if (has_skeleton) {
2735       assert(expect_skeleton == 1 || expect_skeleton == -1, "unexpected skeleton node");
2736       assert(outer->outcnt() == 2, "only control nodes");
2737     } else {
2738       assert(expect_skeleton == 0 || expect_skeleton == -1, "no skeleton node?");
2739       uint phis = 0;
2740       uint be_loads = 0;
2741       Node* be = inner->in(LoopNode::LoopBackControl);
2742       for (DUIterator_Fast imax, i = inner->fast_outs(imax); i < imax; i++) {
2743         Node* u = inner->fast_out(i);
2744         if (u->is_Phi()) {
2745           phis++;
2746           for (DUIterator_Fast jmax, j = be->fast_outs(jmax); j < jmax; j++) {
2747             Node* n = be->fast_out(j);
2748             if (n->is_Load()) {
2749               assert(n->in(0) == be || n->find_prec_edge(be) > 0, "should be on the backedge");
2750               do {
2751                 n = n->raw_out(0);
2752               } while (!n->is_Phi());
2753               if (n == u) {
2754                 be_loads++;
2755                 break;
2756               }
2757             }
2758           }
2759         }
2760       }
2761       assert(be_loads <= phis, "wrong number phis that depends on a pinned load");
2762       for (DUIterator_Fast imax, i = outer->fast_outs(imax); i < imax; i++) {
2763         Node* u = outer->fast_out(i);
2764         assert(u == outer || u == inner || u->is_Phi(), "nothing between inner and outer loop");
2765       }
2766       uint stores = 0;
2767       for (DUIterator_Fast imax, i = inner_out->fast_outs(imax); i < imax; i++) {
2768         Node* u = inner_out->fast_out(i);
2769         if (u->is_Store()) {
2770           stores++;
2771         }
2772       }
2773       // Late optimization of loads on backedge can cause Phi of outer loop to be eliminated but Phi of inner loop is
2774       // not guaranteed to be optimized out.
2775       assert(outer->outcnt() >= phis + 2 - be_loads && outer->outcnt() <= phis + 2 + stores + 1, "only phis");
2776     }
2777     assert(sfpt->outcnt() == 1, "no data node");
2778     assert(outer_tail->outcnt() == 1 || !has_skeleton, "no data node");
2779   }
2780 }
2781 #endif
2782 
2783 //=============================================================================
2784 //------------------------------Ideal------------------------------------------
2785 // Return a node which is more "ideal" than the current node.
2786 // Attempt to convert into a counted-loop.
2787 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2788   return RegionNode::Ideal(phase, can_reshape);
2789 }
2790 
2791 //------------------------------dump_spec--------------------------------------
2792 // Dump special per-node info
2793 #ifndef PRODUCT
2794 void CountedLoopNode::dump_spec(outputStream *st) const {
2795   LoopNode::dump_spec(st);
2796   if (stride_is_con()) {
2797     st->print("stride: %d ",stride_con());
2798   }
2799   if (is_pre_loop ()) st->print("pre of N%d" , _main_idx);
2800   if (is_main_loop()) st->print("main of N%d", _idx);
2801   if (is_post_loop()) st->print("post of N%d", _main_idx);
2802   if (is_strip_mined()) st->print(" strip mined");
2803   if (is_multiversion_fast_loop())         { st->print(" multiversion_fast"); }
2804   if (is_multiversion_slow_loop())         { st->print(" multiversion_slow"); }
2805   if (is_multiversion_delayed_slow_loop()) { st->print(" multiversion_delayed_slow"); }
2806 }
2807 #endif
2808 
2809 //=============================================================================
2810 jlong BaseCountedLoopEndNode::stride_con() const {
2811   return stride()->bottom_type()->is_integer(bt())->get_con_as_long(bt());
2812 }
2813 
2814 
2815 BaseCountedLoopEndNode* BaseCountedLoopEndNode::make(Node* control, Node* test, float prob, float cnt, BasicType bt) {
2816   if (bt == T_INT) {
2817     return new CountedLoopEndNode(control, test, prob, cnt);
2818   }
2819   assert(bt == T_LONG, "unsupported");
2820   return new LongCountedLoopEndNode(control, test, prob, cnt);
2821 }
2822 
2823 //=============================================================================
2824 //------------------------------Value-----------------------------------------
2825 const Type* LoopLimitNode::Value(PhaseGVN* phase) const {
2826   const Type* init_t   = phase->type(in(Init));
2827   const Type* limit_t  = phase->type(in(Limit));
2828   const Type* stride_t = phase->type(in(Stride));
2829   // Either input is TOP ==> the result is TOP
2830   if (init_t   == Type::TOP) return Type::TOP;
2831   if (limit_t  == Type::TOP) return Type::TOP;
2832   if (stride_t == Type::TOP) return Type::TOP;
2833 
2834   int stride_con = stride_t->is_int()->get_con();
2835   if (stride_con == 1)
2836     return bottom_type();  // Identity
2837 
2838   if (init_t->is_int()->is_con() && limit_t->is_int()->is_con()) {
2839     // Use jlongs to avoid integer overflow.
2840     jlong init_con   =  init_t->is_int()->get_con();
2841     jlong limit_con  = limit_t->is_int()->get_con();
2842     int  stride_m   = stride_con - (stride_con > 0 ? 1 : -1);
2843     jlong trip_count = (limit_con - init_con + stride_m)/stride_con;
2844     jlong final_con  = init_con + stride_con*trip_count;
2845     int final_int = (int)final_con;
2846     // The final value should be in integer range in almost all cases,
2847     // since the loop is counted and the limit was checked for overflow.
2848     // There some exceptions, for example:
2849     // - During CCP, there might be a temporary overflow from PhiNodes, see JDK-8309266.
2850     // - During PhaseIdealLoop::split_thru_phi, the LoopLimitNode floats possibly far above
2851     //   the loop and its predicates, and we might get constants on one side of the phi that
2852     //   would lead to overflows. Such a code path would never lead us to enter the loop
2853     //   because of the loop limit overflow check that happens after the LoopLimitNode
2854     //   computation with overflow, but before we enter the loop, see JDK-8335747.
2855     if (final_con == (jlong)final_int) {
2856       return TypeInt::make(final_int);
2857     } else {
2858       return bottom_type();
2859     }
2860   }
2861 
2862   return bottom_type(); // TypeInt::INT
2863 }
2864 
2865 //------------------------------Ideal------------------------------------------
2866 // Return a node which is more "ideal" than the current node.
2867 Node *LoopLimitNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2868   if (phase->type(in(Init))   == Type::TOP ||
2869       phase->type(in(Limit))  == Type::TOP ||
2870       phase->type(in(Stride)) == Type::TOP)
2871     return nullptr;  // Dead
2872 
2873   int stride_con = phase->type(in(Stride))->is_int()->get_con();
2874   if (stride_con == 1)
2875     return nullptr;  // Identity
2876 
2877   // Delay following optimizations until all loop optimizations
2878   // done to keep Ideal graph simple.
2879   if (!can_reshape || !phase->C->post_loop_opts_phase()) {
2880     phase->C->record_for_post_loop_opts_igvn(this);
2881     return nullptr;
2882   }
2883 
2884   const TypeInt* init_t  = phase->type(in(Init) )->is_int();
2885   const TypeInt* limit_t = phase->type(in(Limit))->is_int();
2886   jlong stride_p;
2887   jlong lim, ini;
2888   julong max;
2889   if (stride_con > 0) {
2890     stride_p = stride_con;
2891     lim = limit_t->_hi;
2892     ini = init_t->_lo;
2893     max = (julong)max_jint;
2894   } else {
2895     stride_p = -(jlong)stride_con;
2896     lim = init_t->_hi;
2897     ini = limit_t->_lo;
2898     max = (julong)(juint)min_jint; // double cast to get 0x0000000080000000, not 0xffffffff80000000
2899   }
2900   julong range = lim - ini + stride_p;
2901   if (range <= max) {
2902     // Convert to integer expression if it is not overflow.
2903     Node* stride_m = phase->intcon(stride_con - (stride_con > 0 ? 1 : -1));
2904     Node *range = phase->transform(new SubINode(in(Limit), in(Init)));
2905     Node *bias  = phase->transform(new AddINode(range, stride_m));
2906     Node *trip  = phase->transform(new DivINode(nullptr, bias, in(Stride)));
2907     Node *span  = phase->transform(new MulINode(trip, in(Stride)));
2908     return new AddINode(span, in(Init)); // exact limit
2909   }
2910 
2911   if (is_power_of_2(stride_p) ||                // divisor is 2^n
2912       !Matcher::has_match_rule(Op_LoopLimit)) { // or no specialized Mach node?
2913     // Convert to long expression to avoid integer overflow
2914     // and let igvn optimizer convert this division.
2915     //
2916     Node*   init   = phase->transform( new ConvI2LNode(in(Init)));
2917     Node*  limit   = phase->transform( new ConvI2LNode(in(Limit)));
2918     Node* stride   = phase->longcon(stride_con);
2919     Node* stride_m = phase->longcon(stride_con - (stride_con > 0 ? 1 : -1));
2920 
2921     Node *range = phase->transform(new SubLNode(limit, init));
2922     Node *bias  = phase->transform(new AddLNode(range, stride_m));
2923     Node *span;
2924     if (stride_con > 0 && is_power_of_2(stride_p)) {
2925       // bias >= 0 if stride >0, so if stride is 2^n we can use &(-stride)
2926       // and avoid generating rounding for division. Zero trip guard should
2927       // guarantee that init < limit but sometimes the guard is missing and
2928       // we can get situation when init > limit. Note, for the empty loop
2929       // optimization zero trip guard is generated explicitly which leaves
2930       // only RCE predicate where exact limit is used and the predicate
2931       // will simply fail forcing recompilation.
2932       Node* neg_stride   = phase->longcon(-stride_con);
2933       span = phase->transform(new AndLNode(bias, neg_stride));
2934     } else {
2935       Node *trip  = phase->transform(new DivLNode(nullptr, bias, stride));
2936       span = phase->transform(new MulLNode(trip, stride));
2937     }
2938     // Convert back to int
2939     Node *span_int = phase->transform(new ConvL2INode(span));
2940     return new AddINode(span_int, in(Init)); // exact limit
2941   }
2942 
2943   return nullptr;    // No progress
2944 }
2945 
2946 //------------------------------Identity---------------------------------------
2947 // If stride == 1 return limit node.
2948 Node* LoopLimitNode::Identity(PhaseGVN* phase) {
2949   int stride_con = phase->type(in(Stride))->is_int()->get_con();
2950   if (stride_con == 1 || stride_con == -1)
2951     return in(Limit);
2952   return this;
2953 }
2954 
2955 //=============================================================================
2956 //----------------------match_incr_with_optional_truncation--------------------
2957 // Match increment with optional truncation:
2958 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
2959 // Return null for failure. Success returns the increment node.
2960 Node* CountedLoopNode::match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2,
2961                                                            const TypeInteger** trunc_type,
2962                                                            BasicType bt) {
2963   // Quick cutouts:
2964   if (expr == nullptr || expr->req() != 3)  return nullptr;
2965 
2966   Node *t1 = nullptr;
2967   Node *t2 = nullptr;
2968   Node* n1 = expr;
2969   int   n1op = n1->Opcode();
2970   const TypeInteger* trunc_t = TypeInteger::bottom(bt);
2971 
2972   if (bt == T_INT) {
2973     // Try to strip (n1 & M) or (n1 << N >> N) from n1.
2974     if (n1op == Op_AndI &&
2975         n1->in(2)->is_Con() &&
2976         n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
2977       // %%% This check should match any mask of 2**K-1.
2978       t1 = n1;
2979       n1 = t1->in(1);
2980       n1op = n1->Opcode();
2981       trunc_t = TypeInt::CHAR;
2982     } else if (n1op == Op_RShiftI &&
2983                n1->in(1) != nullptr &&
2984                n1->in(1)->Opcode() == Op_LShiftI &&
2985                n1->in(2) == n1->in(1)->in(2) &&
2986                n1->in(2)->is_Con()) {
2987       jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
2988       // %%% This check should match any shift in [1..31].
2989       if (shift == 16 || shift == 8) {
2990         t1 = n1;
2991         t2 = t1->in(1);
2992         n1 = t2->in(1);
2993         n1op = n1->Opcode();
2994         if (shift == 16) {
2995           trunc_t = TypeInt::SHORT;
2996         } else if (shift == 8) {
2997           trunc_t = TypeInt::BYTE;
2998         }
2999       }
3000     }
3001   }
3002 
3003   // If (maybe after stripping) it is an AddI, we won:
3004   if (n1op == Op_Add(bt)) {
3005     *trunc1 = t1;
3006     *trunc2 = t2;
3007     *trunc_type = trunc_t;
3008     return n1;
3009   }
3010 
3011   // failed
3012   return nullptr;
3013 }
3014 
3015 IfNode* CountedLoopNode::find_multiversion_if_from_multiversion_fast_main_loop() {
3016   assert(is_main_loop() && is_multiversion_fast_loop(), "must be multiversion fast main loop");
3017   CountedLoopEndNode* pre_end = find_pre_loop_end();
3018   if (pre_end == nullptr) { return nullptr; }
3019   Node* pre_entry = pre_end->loopnode()->in(LoopNode::EntryControl);
3020   const Predicates predicates(pre_entry);
3021   IfTrueNode* before_predicates = predicates.entry()->isa_IfTrue();
3022   if (before_predicates != nullptr &&
3023       before_predicates->in(0)->in(1)->is_OpaqueMultiversioning()) {
3024     return before_predicates->in(0)->as_If();
3025   }
3026   return nullptr;
3027 }
3028 
3029 LoopNode* CountedLoopNode::skip_strip_mined(int expect_skeleton) {
3030   if (is_strip_mined() && in(EntryControl) != nullptr && in(EntryControl)->is_OuterStripMinedLoop()) {
3031     verify_strip_mined(expect_skeleton);
3032     return in(EntryControl)->as_Loop();
3033   }
3034   return this;
3035 }
3036 
3037 OuterStripMinedLoopNode* CountedLoopNode::outer_loop() const {
3038   assert(is_strip_mined(), "not a strip mined loop");
3039   Node* c = in(EntryControl);
3040   if (c == nullptr || c->is_top() || !c->is_OuterStripMinedLoop()) {
3041     return nullptr;
3042   }
3043   return c->as_OuterStripMinedLoop();
3044 }
3045 
3046 IfTrueNode* OuterStripMinedLoopNode::outer_loop_tail() const {
3047   Node* c = in(LoopBackControl);
3048   if (c == nullptr || c->is_top()) {
3049     return nullptr;
3050   }
3051   return c->as_IfTrue();
3052 }
3053 
3054 IfTrueNode* CountedLoopNode::outer_loop_tail() const {
3055   LoopNode* l = outer_loop();
3056   if (l == nullptr) {
3057     return nullptr;
3058   }
3059   return l->outer_loop_tail();
3060 }
3061 
3062 OuterStripMinedLoopEndNode* OuterStripMinedLoopNode::outer_loop_end() const {
3063   IfTrueNode* proj = outer_loop_tail();
3064   if (proj == nullptr) {
3065     return nullptr;
3066   }
3067   Node* c = proj->in(0);
3068   if (c == nullptr || c->is_top() || c->outcnt() != 2) {
3069     return nullptr;
3070   }
3071   return c->as_OuterStripMinedLoopEnd();
3072 }
3073 
3074 OuterStripMinedLoopEndNode* CountedLoopNode::outer_loop_end() const {
3075   LoopNode* l = outer_loop();
3076   if (l == nullptr) {
3077     return nullptr;
3078   }
3079   return l->outer_loop_end();
3080 }
3081 
3082 IfFalseNode* OuterStripMinedLoopNode::outer_loop_exit() const {
3083   IfNode* le = outer_loop_end();
3084   if (le == nullptr) {
3085     return nullptr;
3086   }
3087   IfFalseNode* c = le->false_proj_or_null();
3088   if (c == nullptr) {
3089     return nullptr;
3090   }
3091   return c->as_IfFalse();
3092 }
3093 
3094 IfFalseNode* CountedLoopNode::outer_loop_exit() const {
3095   LoopNode* l = outer_loop();
3096   if (l == nullptr) {
3097     return nullptr;
3098   }
3099   return l->outer_loop_exit();
3100 }
3101 
3102 SafePointNode* OuterStripMinedLoopNode::outer_safepoint() const {
3103   IfNode* le = outer_loop_end();
3104   if (le == nullptr) {
3105     return nullptr;
3106   }
3107   Node* c = le->in(0);
3108   if (c == nullptr || c->is_top()) {
3109     return nullptr;
3110   }
3111   assert(c->Opcode() == Op_SafePoint, "broken outer loop");
3112   return c->as_SafePoint();
3113 }
3114 
3115 SafePointNode* CountedLoopNode::outer_safepoint() const {
3116   LoopNode* l = outer_loop();
3117   if (l == nullptr) {
3118     return nullptr;
3119   }
3120   return l->outer_safepoint();
3121 }
3122 
3123 Node* CountedLoopNode::skip_assertion_predicates_with_halt() {
3124   Node* ctrl = in(LoopNode::EntryControl);
3125   if (ctrl == nullptr) {
3126     // Dying loop.
3127     return nullptr;
3128   }
3129   if (is_main_loop()) {
3130     ctrl = skip_strip_mined()->in(LoopNode::EntryControl);
3131   }
3132   if (is_main_loop() || is_post_loop()) {
3133     AssertionPredicates assertion_predicates(ctrl);
3134     return assertion_predicates.entry();
3135   }
3136   return ctrl;
3137 }
3138 
3139 
3140 int CountedLoopNode::stride_con() const {
3141   CountedLoopEndNode* cle = loopexit_or_null();
3142   return cle != nullptr ? cle->stride_con() : 0;
3143 }
3144 
3145 BaseCountedLoopNode* BaseCountedLoopNode::make(Node* entry, Node* backedge, BasicType bt) {
3146   if (bt == T_INT) {
3147     return new CountedLoopNode(entry, backedge);
3148   }
3149   assert(bt == T_LONG, "unsupported");
3150   return new LongCountedLoopNode(entry, backedge);
3151 }
3152 
3153 void OuterStripMinedLoopNode::fix_sunk_stores_when_back_to_counted_loop(PhaseIterGVN* igvn,
3154                                                                         PhaseIdealLoop* iloop) const {
3155   CountedLoopNode* inner_cl = inner_counted_loop();
3156   IfFalseNode* cle_out = inner_loop_exit();
3157 
3158   if (cle_out->outcnt() > 1) {
3159     // Look for chains of stores that were sunk
3160     // out of the inner loop and are in the outer loop
3161     for (DUIterator_Fast imax, i = cle_out->fast_outs(imax); i < imax; i++) {
3162       Node* u = cle_out->fast_out(i);
3163       if (u->is_Store()) {
3164         int alias_idx = igvn->C->get_alias_index(u->adr_type());
3165         Node* first = u;
3166         for (;;) {
3167           Node* next = first->in(MemNode::Memory);
3168           if (!next->is_Store() || next->in(0) != cle_out) {
3169             break;
3170           }
3171           assert(igvn->C->get_alias_index(next->adr_type()) == alias_idx, "");
3172           first = next;
3173         }
3174         Node* last = u;
3175         for (;;) {
3176           Node* next = nullptr;
3177           for (DUIterator_Fast jmax, j = last->fast_outs(jmax); j < jmax; j++) {
3178             Node* uu = last->fast_out(j);
3179             if (uu->is_Store() && uu->in(0) == cle_out) {
3180               assert(next == nullptr, "only one in the outer loop");
3181               next = uu;
3182               assert(igvn->C->get_alias_index(next->adr_type()) == alias_idx, "");
3183             }
3184           }
3185           if (next == nullptr) {
3186             break;
3187           }
3188           last = next;
3189         }
3190         Node* phi = nullptr;
3191         for (DUIterator_Fast jmax, j = inner_cl->fast_outs(jmax); j < jmax; j++) {
3192           Node* uu = inner_cl->fast_out(j);
3193           if (uu->is_Phi()) {
3194             Node* be = uu->in(LoopNode::LoopBackControl);
3195             if (be->is_Store() && be->in(0) == inner_cl->in(LoopNode::LoopBackControl)) {
3196               assert(igvn->C->get_alias_index(uu->adr_type()) != alias_idx && igvn->C->get_alias_index(uu->adr_type()) != Compile::AliasIdxBot, "unexpected store");
3197             }
3198             if (be == last || be == first->in(MemNode::Memory)) {
3199               assert(igvn->C->get_alias_index(uu->adr_type()) == alias_idx || igvn->C->get_alias_index(uu->adr_type()) == Compile::AliasIdxBot, "unexpected alias");
3200               assert(phi == nullptr, "only one phi");
3201               phi = uu;
3202             }
3203           }
3204         }
3205 #ifdef ASSERT
3206         for (DUIterator_Fast jmax, j = inner_cl->fast_outs(jmax); j < jmax; j++) {
3207           Node* uu = inner_cl->fast_out(j);
3208           if (uu->is_memory_phi()) {
3209             if (uu->adr_type() == igvn->C->get_adr_type(igvn->C->get_alias_index(u->adr_type()))) {
3210               assert(phi == uu, "what's that phi?");
3211             } else if (uu->adr_type() == TypePtr::BOTTOM) {
3212               Node* n = uu->in(LoopNode::LoopBackControl);
3213               uint limit = igvn->C->live_nodes();
3214               uint i = 0;
3215               while (n != uu) {
3216                 i++;
3217                 assert(i < limit, "infinite loop");
3218                 if (n->is_Proj()) {
3219                   n = n->in(0);
3220                 } else if (n->is_SafePoint() || n->is_MemBar()) {
3221                   n = n->in(TypeFunc::Memory);
3222                 } else if (n->is_Phi()) {
3223                   n = n->in(1);
3224                 } else if (n->is_MergeMem()) {
3225                   n = n->as_MergeMem()->memory_at(igvn->C->get_alias_index(u->adr_type()));
3226                 } else if (n->is_Store() || n->is_LoadStore() || n->is_ClearArray()) {
3227                   n = n->in(MemNode::Memory);
3228                 } else {
3229                   n->dump();
3230                   ShouldNotReachHere();
3231                 }
3232               }
3233             }
3234           }
3235         }
3236 #endif
3237         if (phi == nullptr) {
3238           // If an entire chains was sunk, the
3239           // inner loop has no phi for that memory
3240           // slice, create one for the outer loop
3241           phi = PhiNode::make(inner_cl, first->in(MemNode::Memory), Type::MEMORY,
3242                               igvn->C->get_adr_type(igvn->C->get_alias_index(u->adr_type())));
3243           phi->set_req(LoopNode::LoopBackControl, last);
3244           phi = register_new_node(phi, inner_cl, igvn, iloop);
3245           igvn->replace_input_of(first, MemNode::Memory, phi);
3246         } else {
3247           // Or fix the outer loop fix to include
3248           // that chain of stores.
3249           Node* be = phi->in(LoopNode::LoopBackControl);
3250           assert(!(be->is_Store() && be->in(0) == inner_cl->in(LoopNode::LoopBackControl)), "store on the backedge + sunk stores: unsupported");
3251           if (be == first->in(MemNode::Memory)) {
3252             if (be == phi->in(LoopNode::LoopBackControl)) {
3253               igvn->replace_input_of(phi, LoopNode::LoopBackControl, last);
3254             } else {
3255               igvn->replace_input_of(be, MemNode::Memory, last);
3256             }
3257           } else {
3258 #ifdef ASSERT
3259             if (be == phi->in(LoopNode::LoopBackControl)) {
3260               assert(phi->in(LoopNode::LoopBackControl) == last, "");
3261             } else {
3262               assert(be->in(MemNode::Memory) == last, "");
3263             }
3264 #endif
3265           }
3266         }
3267       }
3268     }
3269   }
3270 }
3271 
3272 // The outer strip mined loop is initially only partially constructed. In particular Phis are omitted.
3273 // See comment above: PhaseIdealLoop::create_outer_strip_mined_loop()
3274 // We're now in the process of finishing the construction of the outer loop. For each Phi in the inner loop, a Phi in
3275 // the outer loop was just now created. However, Sunk Stores cause an extra challenge:
3276 // 1) If all Stores in the inner loop were sunk for a particular memory slice, there's no Phi left for that memory slice
3277 //    in the inner loop anymore, and hence we did not yet add a Phi for the outer loop. So an extra Phi must now be
3278 //    added for each chain of sunk Stores for a particular memory slice.
3279 // 2) If some Stores were sunk and some left in the inner loop, a Phi was already created in the outer loop but
3280 //    its backedge input wasn't wired correctly to the last Store of the chain: the backedge input was set to the
3281 //    backedge of the inner loop Phi instead, but it needs to be the last Store of the chain in the outer loop. We now
3282 //    have to fix that too.
3283 void OuterStripMinedLoopNode::handle_sunk_stores_when_finishing_construction(PhaseIterGVN* igvn) {
3284   IfFalseNode* cle_exit_proj = inner_loop_exit();
3285 
3286   // Find Sunk stores: Sunk stores are pinned on the loop exit projection of the inner loop. Indeed, because Sunk Stores
3287   // modify the memory state captured by the SafePoint in the outer strip mined loop, they must be above it. The
3288   // SafePoint's control input is the loop exit projection. It's also the only control out of the inner loop above the
3289   // SafePoint.
3290 #ifdef ASSERT
3291   int stores_in_outer_loop_cnt = 0;
3292   for (DUIterator_Fast imax, i = cle_exit_proj->fast_outs(imax); i < imax; i++) {
3293     Node* u = cle_exit_proj->fast_out(i);
3294     if (u->is_Store()) {
3295       stores_in_outer_loop_cnt++;
3296     }
3297   }
3298 #endif
3299 
3300   // Sunk stores are reachable from the memory state of the outer loop safepoint
3301   SafePointNode* safepoint = outer_safepoint();
3302   MergeMemNode* mm = safepoint->in(TypeFunc::Memory)->isa_MergeMem();
3303   if (mm == nullptr) {
3304     // There is no MergeMem, which should only happen if there was no memory node
3305     // sunk out of the loop.
3306     assert(stores_in_outer_loop_cnt == 0, "inconsistent");
3307     return;
3308   }
3309   DEBUG_ONLY(int stores_in_outer_loop_cnt2 = 0);
3310   for (MergeMemStream mms(mm); mms.next_non_empty();) {
3311     Node* mem = mms.memory();
3312     // Traverse up the chain of stores to find the first store pinned
3313     // at the loop exit projection.
3314     Node* last = mem;
3315     Node* first = nullptr;
3316     while (mem->is_Store() && mem->in(0) == cle_exit_proj) {
3317       DEBUG_ONLY(stores_in_outer_loop_cnt2++);
3318       first = mem;
3319       mem = mem->in(MemNode::Memory);
3320     }
3321     if (first != nullptr) {
3322       // Found a chain of Stores that were sunk
3323       // Do we already have a memory Phi for that slice on the outer loop? If that is the case, that Phi was created
3324       // by cloning an inner loop Phi. The inner loop Phi should have mem, the memory state of the first Store out of
3325       // the inner loop, as input on the backedge. So does the outer loop Phi given it's a clone.
3326       Node* phi = nullptr;
3327       for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
3328         Node* u = mem->fast_out(i);
3329         if (u->is_Phi() && u->in(0) == this && u->in(LoopBackControl) == mem) {
3330           assert(phi == nullptr, "there should be only one");
3331           phi = u;
3332           PRODUCT_ONLY(break);
3333         }
3334       }
3335       if (phi == nullptr) {
3336         // No outer loop Phi? create one
3337         phi = PhiNode::make(this, last);
3338         phi->set_req(EntryControl, mem);
3339         phi = igvn->transform(phi);
3340         igvn->replace_input_of(first, MemNode::Memory, phi);
3341       } else {
3342         // Fix memory state along the backedge: it should be the last sunk Store of the chain
3343         igvn->replace_input_of(phi, LoopBackControl, last);
3344       }
3345     }
3346   }
3347   assert(stores_in_outer_loop_cnt == stores_in_outer_loop_cnt2, "inconsistent");
3348 }
3349 
3350 void OuterStripMinedLoopNode::adjust_strip_mined_loop(PhaseIterGVN* igvn) {
3351   verify_strip_mined(1);
3352   // Look for the outer & inner strip mined loop, reduce number of
3353   // iterations of the inner loop, set exit condition of outer loop,
3354   // construct required phi nodes for outer loop.
3355   CountedLoopNode* inner_cl = inner_counted_loop();
3356   assert(inner_cl->is_strip_mined(), "inner loop should be strip mined");
3357   if (LoopStripMiningIter == 0) {
3358     remove_outer_loop_and_safepoint(igvn);
3359     return;
3360   }
3361   if (LoopStripMiningIter == 1) {
3362     transform_to_counted_loop(igvn, nullptr);
3363     return;
3364   }
3365   Node* inner_iv_phi = inner_cl->phi();
3366   if (inner_iv_phi == nullptr) {
3367     IfNode* outer_le = outer_loop_end();
3368     Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
3369     igvn->replace_node(outer_le, iff);
3370     inner_cl->clear_strip_mined();
3371     return;
3372   }
3373   CountedLoopEndNode* inner_cle = inner_counted_loop_end();
3374 
3375   int stride = inner_cl->stride_con();
3376   // For a min int stride, LoopStripMiningIter * stride overflows the int range for all values of LoopStripMiningIter
3377   // except 0 or 1. Those values are handled early on in this method and causes the method to return. So for a min int
3378   // stride, the method is guaranteed to return at the next check below.
3379   jlong scaled_iters_long = ((jlong)LoopStripMiningIter) * ABS((jlong)stride);
3380   int scaled_iters = (int)scaled_iters_long;
3381   if ((jlong)scaled_iters != scaled_iters_long) {
3382     // Remove outer loop and safepoint (too few iterations)
3383     remove_outer_loop_and_safepoint(igvn);
3384     return;
3385   }
3386   jlong short_scaled_iters = LoopStripMiningIterShortLoop * ABS(stride);
3387   const TypeInt* inner_iv_t = igvn->type(inner_iv_phi)->is_int();
3388   jlong iter_estimate = (jlong)inner_iv_t->_hi - (jlong)inner_iv_t->_lo;
3389   assert(iter_estimate > 0, "broken");
3390   if (iter_estimate <= short_scaled_iters) {
3391     // Remove outer loop and safepoint: loop executes less than LoopStripMiningIterShortLoop
3392     remove_outer_loop_and_safepoint(igvn);
3393     return;
3394   }
3395   if (iter_estimate <= scaled_iters_long) {
3396     // We would only go through one iteration of
3397     // the outer loop: drop the outer loop but
3398     // keep the safepoint so we don't run for
3399     // too long without a safepoint
3400     IfNode* outer_le = outer_loop_end();
3401     Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
3402     igvn->replace_node(outer_le, iff);
3403     inner_cl->clear_strip_mined();
3404     return;
3405   }
3406 
3407   IfTrueNode* cle_tail = inner_cle->true_proj();
3408   ResourceMark rm;
3409   Node_List old_new;
3410   if (cle_tail->outcnt() > 1) {
3411     // Look for nodes on backedge of inner loop and clone them
3412     Unique_Node_List backedge_nodes;
3413     for (DUIterator_Fast imax, i = cle_tail->fast_outs(imax); i < imax; i++) {
3414       Node* u = cle_tail->fast_out(i);
3415       if (u != inner_cl) {
3416         assert(!u->is_CFG(), "control flow on the backedge?");
3417         backedge_nodes.push(u);
3418       }
3419     }
3420     uint last = igvn->C->unique();
3421     for (uint next = 0; next < backedge_nodes.size(); next++) {
3422       Node* n = backedge_nodes.at(next);
3423       old_new.map(n->_idx, n->clone());
3424       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3425         Node* u = n->fast_out(i);
3426         assert(!u->is_CFG(), "broken");
3427         if (u->_idx >= last) {
3428           continue;
3429         }
3430         if (!u->is_Phi()) {
3431           backedge_nodes.push(u);
3432         } else {
3433           assert(u->in(0) == inner_cl, "strange phi on the backedge");
3434         }
3435       }
3436     }
3437     // Put the clones on the outer loop backedge
3438     Node* le_tail = outer_loop_tail();
3439     for (uint next = 0; next < backedge_nodes.size(); next++) {
3440       Node *n = old_new[backedge_nodes.at(next)->_idx];
3441       for (uint i = 1; i < n->req(); i++) {
3442         if (n->in(i) != nullptr && old_new[n->in(i)->_idx] != nullptr) {
3443           n->set_req(i, old_new[n->in(i)->_idx]);
3444         }
3445       }
3446       if (n->in(0) != nullptr && n->in(0) == cle_tail) {
3447         n->set_req(0, le_tail);
3448       }
3449       igvn->register_new_node_with_optimizer(n);
3450     }
3451   }
3452 
3453   Node* iv_phi = nullptr;
3454   // Make a clone of each phi in the inner loop for the outer loop
3455   // When Stores were Sunk, after this step, a Phi may still be missing or its backedge incorrectly wired. See
3456   // handle_sunk_stores_when_finishing_construction()
3457   for (uint i = 0; i < inner_cl->outcnt(); i++) {
3458     Node* u = inner_cl->raw_out(i);
3459     if (u->is_Phi()) {
3460       assert(u->in(0) == inner_cl, "inconsistent");
3461       Node* phi = u->clone();
3462       phi->set_req(0, this);
3463       Node* be = old_new[phi->in(LoopNode::LoopBackControl)->_idx];
3464       if (be != nullptr) {
3465         phi->set_req(LoopNode::LoopBackControl, be);
3466       }
3467       phi = igvn->transform(phi);
3468       igvn->replace_input_of(u, LoopNode::EntryControl, phi);
3469       if (u == inner_iv_phi) {
3470         iv_phi = phi;
3471       }
3472     }
3473   }
3474 
3475   handle_sunk_stores_when_finishing_construction(igvn);
3476 
3477   if (iv_phi != nullptr) {
3478     // Now adjust the inner loop's exit condition
3479     Node* limit = inner_cl->limit();
3480     // If limit < init for stride > 0 (or limit > init for stride < 0),
3481     // the loop body is run only once. Given limit - init (init - limit resp.)
3482     // would be negative, the unsigned comparison below would cause
3483     // the loop body to be run for LoopStripMiningIter.
3484     Node* max = nullptr;
3485     if (stride > 0) {
3486       max = MinMaxNode::max_diff_with_zero(limit, iv_phi, TypeInt::INT, *igvn);
3487     } else {
3488       max = MinMaxNode::max_diff_with_zero(iv_phi, limit, TypeInt::INT, *igvn);
3489     }
3490     // sub is positive and can be larger than the max signed int
3491     // value. Use an unsigned min.
3492     Node* const_iters = igvn->intcon(scaled_iters);
3493     Node* min = MinMaxNode::unsigned_min(max, const_iters, TypeInt::make(0, scaled_iters, Type::WidenMin), *igvn);
3494     // min is the number of iterations for the next inner loop execution:
3495     // unsigned_min(max(limit - iv_phi, 0), scaled_iters) if stride > 0
3496     // unsigned_min(max(iv_phi - limit, 0), scaled_iters) if stride < 0
3497 
3498     Node* new_limit = nullptr;
3499     if (stride > 0) {
3500       new_limit = igvn->transform(new AddINode(min, iv_phi));
3501     } else {
3502       new_limit = igvn->transform(new SubINode(iv_phi, min));
3503     }
3504     Node* inner_cmp = inner_cle->cmp_node();
3505     Node* inner_bol = inner_cle->in(CountedLoopEndNode::TestValue);
3506     Node* outer_bol = inner_bol;
3507     // cmp node for inner loop may be shared
3508     inner_cmp = inner_cmp->clone();
3509     inner_cmp->set_req(2, new_limit);
3510     inner_bol = inner_bol->clone();
3511     inner_bol->set_req(1, igvn->transform(inner_cmp));
3512     igvn->replace_input_of(inner_cle, CountedLoopEndNode::TestValue, igvn->transform(inner_bol));
3513     // Set the outer loop's exit condition too
3514     igvn->replace_input_of(outer_loop_end(), 1, outer_bol);
3515   } else {
3516     assert(false, "should be able to adjust outer loop");
3517     IfNode* outer_le = outer_loop_end();
3518     Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
3519     igvn->replace_node(outer_le, iff);
3520     inner_cl->clear_strip_mined();
3521   }
3522 }
3523 
3524 void OuterStripMinedLoopNode::transform_to_counted_loop(PhaseIterGVN* igvn, PhaseIdealLoop* iloop) {
3525   CountedLoopNode* inner_cl = unique_ctrl_out()->as_CountedLoop();
3526   CountedLoopEndNode* cle = inner_cl->loopexit();
3527   Node* inner_test = cle->in(1);
3528   IfNode* outer_le = outer_loop_end();
3529   Node* safepoint = outer_safepoint();
3530 
3531   fix_sunk_stores_when_back_to_counted_loop(igvn, iloop);
3532 
3533   // make counted loop exit test always fail
3534   ConINode* zero = igvn->intcon(0);
3535   if (iloop != nullptr) {
3536     iloop->set_root_as_ctrl(zero);
3537   }
3538   igvn->replace_input_of(cle, 1, zero);
3539   // replace outer loop end with CountedLoopEndNode with formers' CLE's exit test
3540   Node* new_end = new CountedLoopEndNode(outer_le->in(0), inner_test, cle->_prob, cle->_fcnt);
3541   register_control(new_end, inner_cl, outer_le->in(0), igvn, iloop);
3542   if (iloop == nullptr) {
3543     igvn->replace_node(outer_le, new_end);
3544   } else {
3545     iloop->replace_node_and_forward_ctrl(outer_le, new_end);
3546   }
3547   // the backedge of the inner loop must be rewired to the new loop end
3548   IfTrueNode* backedge = cle->true_proj();
3549   igvn->replace_input_of(backedge, 0, new_end);
3550   if (iloop != nullptr) {
3551     iloop->set_idom(backedge, new_end, iloop->dom_depth(new_end) + 1);
3552   }
3553   // make the outer loop go away
3554   igvn->replace_input_of(in(LoopBackControl), 0, igvn->C->top());
3555   igvn->replace_input_of(this, LoopBackControl, igvn->C->top());
3556   inner_cl->clear_strip_mined();
3557   if (iloop != nullptr) {
3558     Unique_Node_List wq;
3559     wq.push(safepoint);
3560 
3561     IdealLoopTree* outer_loop_ilt = iloop->get_loop(this);
3562     IdealLoopTree* loop = iloop->get_loop(inner_cl);
3563 
3564     for (uint i = 0; i < wq.size(); i++) {
3565       Node* n = wq.at(i);
3566       for (uint j = 0; j < n->req(); ++j) {
3567         Node* in = n->in(j);
3568         if (in == nullptr || in->is_CFG()) {
3569           continue;
3570         }
3571         if (iloop->get_loop(iloop->get_ctrl(in)) != outer_loop_ilt) {
3572           continue;
3573         }
3574         wq.push(in);
3575       }
3576       assert(!loop->_body.contains(n), "Shouldn't append node to body twice");
3577       loop->_body.push(n);
3578     }
3579     iloop->set_loop(safepoint, loop);
3580     loop->_body.push(safepoint);
3581     iloop->set_loop(safepoint->in(0), loop);
3582     loop->_body.push(safepoint->in(0));
3583     outer_loop_ilt->_tail = igvn->C->top();
3584   }
3585 }
3586 
3587 void OuterStripMinedLoopNode::remove_outer_loop_and_safepoint(PhaseIterGVN* igvn) const {
3588   CountedLoopNode* inner_cl = unique_ctrl_out()->as_CountedLoop();
3589   Node* outer_sfpt = outer_safepoint();
3590   Node* outer_out = outer_loop_exit();
3591   igvn->replace_node(outer_out, outer_sfpt->in(0));
3592   igvn->replace_input_of(outer_sfpt, 0, igvn->C->top());
3593   inner_cl->clear_strip_mined();
3594 }
3595 
3596 Node* OuterStripMinedLoopNode::register_new_node(Node* node, LoopNode* ctrl, PhaseIterGVN* igvn, PhaseIdealLoop* iloop) {
3597   if (iloop == nullptr) {
3598     return igvn->transform(node);
3599   }
3600   iloop->register_new_node(node, ctrl);
3601   return node;
3602 }
3603 
3604 Node* OuterStripMinedLoopNode::register_control(Node* node, Node* loop, Node* idom, PhaseIterGVN* igvn,
3605                                                 PhaseIdealLoop* iloop) {
3606   if (iloop == nullptr) {
3607     return igvn->transform(node);
3608   }
3609   iloop->register_control(node, iloop->get_loop(loop), idom);
3610   return node;
3611 }
3612 
3613 const Type* OuterStripMinedLoopEndNode::Value(PhaseGVN* phase) const {
3614   if (!in(0)) return Type::TOP;
3615   if (phase->type(in(0)) == Type::TOP)
3616     return Type::TOP;
3617 
3618   // Until expansion, the loop end condition is not set so this should not constant fold.
3619   if (is_expanded(phase)) {
3620     return IfNode::Value(phase);
3621   }
3622 
3623   return TypeTuple::IFBOTH;
3624 }
3625 
3626 bool OuterStripMinedLoopEndNode::is_expanded(PhaseGVN *phase) const {
3627   // The outer strip mined loop head only has Phi uses after expansion
3628   if (phase->is_IterGVN()) {
3629     IfTrueNode* backedge = true_proj_or_null();
3630     if (backedge != nullptr) {
3631       Node* head = backedge->unique_ctrl_out_or_null();
3632       if (head != nullptr && head->is_OuterStripMinedLoop()) {
3633         if (head->find_out_with(Op_Phi) != nullptr) {
3634           return true;
3635         }
3636       }
3637     }
3638   }
3639   return false;
3640 }
3641 
3642 Node *OuterStripMinedLoopEndNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3643   if (remove_dead_region(phase, can_reshape))  return this;
3644 
3645   return nullptr;
3646 }
3647 
3648 //------------------------------filtered_type--------------------------------
3649 // Return a type based on condition control flow
3650 // A successful return will be a type that is restricted due
3651 // to a series of dominating if-tests, such as:
3652 //    if (i < 10) {
3653 //       if (i > 0) {
3654 //          here: "i" type is [1..10)
3655 //       }
3656 //    }
3657 // or a control flow merge
3658 //    if (i < 10) {
3659 //       do {
3660 //          phi( , ) -- at top of loop type is [min_int..10)
3661 //         i = ?
3662 //       } while ( i < 10)
3663 //
3664 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
3665   assert(n && n->bottom_type()->is_int(), "must be int");
3666   const TypeInt* filtered_t = nullptr;
3667   if (!n->is_Phi()) {
3668     assert(n_ctrl != nullptr || n_ctrl == C->top(), "valid control");
3669     filtered_t = filtered_type_from_dominators(n, n_ctrl);
3670 
3671   } else {
3672     Node* phi    = n->as_Phi();
3673     Node* region = phi->in(0);
3674     assert(n_ctrl == nullptr || n_ctrl == region, "ctrl parameter must be region");
3675     if (region && region != C->top()) {
3676       for (uint i = 1; i < phi->req(); i++) {
3677         Node* val   = phi->in(i);
3678         Node* use_c = region->in(i);
3679         const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
3680         if (val_t != nullptr) {
3681           if (filtered_t == nullptr) {
3682             filtered_t = val_t;
3683           } else {
3684             filtered_t = filtered_t->meet(val_t)->is_int();
3685           }
3686         }
3687       }
3688     }
3689   }
3690   const TypeInt* n_t = _igvn.type(n)->is_int();
3691   if (filtered_t != nullptr) {
3692     n_t = n_t->join(filtered_t)->is_int();
3693   }
3694   return n_t;
3695 }
3696 
3697 
3698 //------------------------------filtered_type_from_dominators--------------------------------
3699 // Return a possibly more restrictive type for val based on condition control flow of dominators
3700 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
3701   if (val->is_Con()) {
3702      return val->bottom_type()->is_int();
3703   }
3704   uint if_limit = 10; // Max number of dominating if's visited
3705   const TypeInt* rtn_t = nullptr;
3706 
3707   if (use_ctrl && use_ctrl != C->top()) {
3708     Node* val_ctrl = get_ctrl(val);
3709     uint val_dom_depth = dom_depth(val_ctrl);
3710     Node* pred = use_ctrl;
3711     uint if_cnt = 0;
3712     while (if_cnt < if_limit) {
3713       if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
3714         if_cnt++;
3715         const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
3716         if (if_t != nullptr) {
3717           if (rtn_t == nullptr) {
3718             rtn_t = if_t;
3719           } else {
3720             rtn_t = rtn_t->join(if_t)->is_int();
3721           }
3722         }
3723       }
3724       pred = idom(pred);
3725       if (pred == nullptr || pred == C->top()) {
3726         break;
3727       }
3728       // Stop if going beyond definition block of val
3729       if (dom_depth(pred) < val_dom_depth) {
3730         break;
3731       }
3732     }
3733   }
3734   return rtn_t;
3735 }
3736 
3737 
3738 //------------------------------dump_spec--------------------------------------
3739 // Dump special per-node info
3740 #ifndef PRODUCT
3741 void CountedLoopEndNode::dump_spec(outputStream *st) const {
3742   if( in(TestValue) != nullptr && in(TestValue)->is_Bool() ) {
3743     BoolTest bt( test_trip()); // Added this for g++.
3744 
3745     st->print("[");
3746     bt.dump_on(st);
3747     st->print("]");
3748   }
3749   st->print(" ");
3750   IfNode::dump_spec(st);
3751 }
3752 #endif
3753 
3754 IdealLoopTree::IdealLoopTree(PhaseIdealLoop* phase, Node* head, Node* tail): _parent(nullptr), _next(nullptr), _child(nullptr),
3755                                                                              _head(head), _tail(tail),
3756                                                                              _phase(phase),
3757                                                                              _local_loop_unroll_limit(0), _local_loop_unroll_factor(0),
3758                                                                              _body(phase->arena()),
3759                                                                              _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0),
3760                                                                              _has_range_checks(0), _has_range_checks_computed(0),
3761                                                                              _safepts(nullptr),
3762                                                                              _required_safept(nullptr),
3763                                                                              _allow_optimizations(true) {
3764   precond(_head != nullptr);
3765   precond(_tail != nullptr);
3766 }
3767 
3768 //=============================================================================
3769 //------------------------------is_member--------------------------------------
3770 // Is 'l' a member of 'this'?
3771 bool IdealLoopTree::is_member(const IdealLoopTree *l) const {
3772   while( l->_nest > _nest ) l = l->_parent;
3773   return l == this;
3774 }
3775 
3776 //------------------------------set_nest---------------------------------------
3777 // Set loop tree nesting depth.  Accumulate _has_call bits.
3778 int IdealLoopTree::set_nest( uint depth ) {
3779   assert(depth <= SHRT_MAX, "sanity");
3780   _nest = depth;
3781   int bits = _has_call;
3782   if( _child ) bits |= _child->set_nest(depth+1);
3783   if( bits ) _has_call = 1;
3784   if( _next  ) bits |= _next ->set_nest(depth  );
3785   return bits;
3786 }
3787 
3788 //------------------------------split_fall_in----------------------------------
3789 // Split out multiple fall-in edges from the loop header.  Move them to a
3790 // private RegionNode before the loop.  This becomes the loop landing pad.
3791 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
3792   PhaseIterGVN &igvn = phase->_igvn;
3793   uint i;
3794 
3795   // Make a new RegionNode to be the landing pad.
3796   RegionNode* landing_pad = new RegionNode(fall_in_cnt + 1);
3797   phase->set_loop(landing_pad,_parent);
3798   // If _head was irreducible loop entry, landing_pad may now be too
3799   landing_pad->set_loop_status(_head->as_Region()->loop_status());
3800   // Gather all the fall-in control paths into the landing pad
3801   uint icnt = fall_in_cnt;
3802   uint oreq = _head->req();
3803   for( i = oreq-1; i>0; i-- )
3804     if( !phase->is_member( this, _head->in(i) ) )
3805       landing_pad->set_req(icnt--,_head->in(i));
3806 
3807   // Peel off PhiNode edges as well
3808   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
3809     Node *oj = _head->fast_out(j);
3810     if( oj->is_Phi() ) {
3811       PhiNode* old_phi = oj->as_Phi();
3812       assert( old_phi->region() == _head, "" );
3813       igvn.hash_delete(old_phi);   // Yank from hash before hacking edges
3814       Node *p = PhiNode::make_blank(landing_pad, old_phi);
3815       uint icnt = fall_in_cnt;
3816       for( i = oreq-1; i>0; i-- ) {
3817         if( !phase->is_member( this, _head->in(i) ) ) {
3818           p->init_req(icnt--, old_phi->in(i));
3819           // Go ahead and clean out old edges from old phi
3820           old_phi->del_req(i);
3821         }
3822       }
3823       // Search for CSE's here, because ZKM.jar does a lot of
3824       // loop hackery and we need to be a little incremental
3825       // with the CSE to avoid O(N^2) node blow-up.
3826       Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
3827       if( p2 ) {                // Found CSE
3828         p->destruct(&igvn);     // Recover useless new node
3829         p = p2;                 // Use old node
3830       } else {
3831         igvn.register_new_node_with_optimizer(p, old_phi);
3832       }
3833       // Make old Phi refer to new Phi.
3834       old_phi->add_req(p);
3835       // Check for the special case of making the old phi useless and
3836       // disappear it.  In JavaGrande I have a case where this useless
3837       // Phi is the loop limit and prevents recognizing a CountedLoop
3838       // which in turn prevents removing an empty loop.
3839       Node *id_old_phi = old_phi->Identity(&igvn);
3840       if( id_old_phi != old_phi ) { // Found a simple identity?
3841         // Note that I cannot call 'replace_node' here, because
3842         // that will yank the edge from old_phi to the Region and
3843         // I'm mid-iteration over the Region's uses.
3844         for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
3845           Node* use = old_phi->last_out(i);
3846           igvn.rehash_node_delayed(use);
3847           uint uses_found = 0;
3848           for (uint j = 0; j < use->len(); j++) {
3849             if (use->in(j) == old_phi) {
3850               if (j < use->req()) use->set_req (j, id_old_phi);
3851               else                use->set_prec(j, id_old_phi);
3852               uses_found++;
3853             }
3854           }
3855           i -= uses_found;    // we deleted 1 or more copies of this edge
3856         }
3857       }
3858       igvn._worklist.push(old_phi);
3859     }
3860   }
3861   // Finally clean out the fall-in edges from the RegionNode
3862   for( i = oreq-1; i>0; i-- ) {
3863     if( !phase->is_member( this, _head->in(i) ) ) {
3864       _head->del_req(i);
3865     }
3866   }
3867   igvn.rehash_node_delayed(_head);
3868   // Transform landing pad
3869   igvn.register_new_node_with_optimizer(landing_pad, _head);
3870   // Insert landing pad into the header
3871   _head->add_req(landing_pad);
3872 }
3873 
3874 //------------------------------split_outer_loop-------------------------------
3875 // Split out the outermost loop from this shared header.
3876 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
3877   PhaseIterGVN &igvn = phase->_igvn;
3878 
3879   // Find index of outermost loop; it should also be my tail.
3880   uint outer_idx = 1;
3881   while( _head->in(outer_idx) != _tail ) outer_idx++;
3882 
3883   // Make a LoopNode for the outermost loop.
3884   Node *ctl = _head->in(LoopNode::EntryControl);
3885   Node *outer = new LoopNode( ctl, _head->in(outer_idx) );
3886   outer = igvn.register_new_node_with_optimizer(outer, _head);
3887   phase->set_created_loop_node();
3888 
3889   // Outermost loop falls into '_head' loop
3890   _head->set_req(LoopNode::EntryControl, outer);
3891   _head->del_req(outer_idx);
3892   // Split all the Phis up between '_head' loop and 'outer' loop.
3893   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
3894     Node *out = _head->fast_out(j);
3895     if( out->is_Phi() ) {
3896       PhiNode *old_phi = out->as_Phi();
3897       assert( old_phi->region() == _head, "" );
3898       Node *phi = PhiNode::make_blank(outer, old_phi);
3899       phi->init_req(LoopNode::EntryControl,    old_phi->in(LoopNode::EntryControl));
3900       phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
3901       phi = igvn.register_new_node_with_optimizer(phi, old_phi);
3902       // Make old Phi point to new Phi on the fall-in path
3903       igvn.replace_input_of(old_phi, LoopNode::EntryControl, phi);
3904       old_phi->del_req(outer_idx);
3905     }
3906   }
3907 
3908   // Use the new loop head instead of the old shared one
3909   _head = outer;
3910   phase->set_loop(_head, this);
3911 }
3912 
3913 //------------------------------fix_parent-------------------------------------
3914 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
3915   loop->_parent = parent;
3916   if( loop->_child ) fix_parent( loop->_child, loop   );
3917   if( loop->_next  ) fix_parent( loop->_next , parent );
3918 }
3919 
3920 //------------------------------estimate_path_freq-----------------------------
3921 static float estimate_path_freq( Node *n ) {
3922   // Try to extract some path frequency info
3923   IfNode *iff;
3924   for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
3925     uint nop = n->Opcode();
3926     if( nop == Op_SafePoint ) {   // Skip any safepoint
3927       n = n->in(0);
3928       continue;
3929     }
3930     if( nop == Op_CatchProj ) {   // Get count from a prior call
3931       // Assume call does not always throw exceptions: means the call-site
3932       // count is also the frequency of the fall-through path.
3933       assert( n->is_CatchProj(), "" );
3934       if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
3935         return 0.0f;            // Assume call exception path is rare
3936       Node *call = n->in(0)->in(0)->in(0);
3937       assert( call->is_Call(), "expect a call here" );
3938       const JVMState *jvms = ((CallNode*)call)->jvms();
3939       ciMethodData* methodData = jvms->method()->method_data();
3940       if (!methodData->is_mature())  return 0.0f; // No call-site data
3941       ciProfileData* data = methodData->bci_to_data(jvms->bci());
3942       if ((data == nullptr) || !data->is_CounterData()) {
3943         // no call profile available, try call's control input
3944         n = n->in(0);
3945         continue;
3946       }
3947       return data->as_CounterData()->count()/FreqCountInvocations;
3948     }
3949     // See if there's a gating IF test
3950     Node *n_c = n->in(0);
3951     if( !n_c->is_If() ) break;       // No estimate available
3952     iff = n_c->as_If();
3953     if( iff->_fcnt != COUNT_UNKNOWN )   // Have a valid count?
3954       // Compute how much count comes on this path
3955       return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
3956     // Have no count info.  Skip dull uncommon-trap like branches.
3957     if( (nop == Op_IfTrue  && iff->_prob < PROB_LIKELY_MAG(5)) ||
3958         (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
3959       break;
3960     // Skip through never-taken branch; look for a real loop exit.
3961     n = iff->in(0);
3962   }
3963   return 0.0f;                  // No estimate available
3964 }
3965 
3966 //------------------------------merge_many_backedges---------------------------
3967 // Merge all the backedges from the shared header into a private Region.
3968 // Feed that region as the one backedge to this loop.
3969 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
3970   uint i;
3971 
3972   // Scan for the top 2 hottest backedges
3973   float hotcnt = 0.0f;
3974   float warmcnt = 0.0f;
3975   uint hot_idx = 0;
3976   // Loop starts at 2 because slot 1 is the fall-in path
3977   for( i = 2; i < _head->req(); i++ ) {
3978     float cnt = estimate_path_freq(_head->in(i));
3979     if( cnt > hotcnt ) {       // Grab hottest path
3980       warmcnt = hotcnt;
3981       hotcnt = cnt;
3982       hot_idx = i;
3983     } else if( cnt > warmcnt ) { // And 2nd hottest path
3984       warmcnt = cnt;
3985     }
3986   }
3987 
3988   // See if the hottest backedge is worthy of being an inner loop
3989   // by being much hotter than the next hottest backedge.
3990   if( hotcnt <= 0.0001 ||
3991       hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
3992 
3993   // Peel out the backedges into a private merge point; peel
3994   // them all except optionally hot_idx.
3995   PhaseIterGVN &igvn = phase->_igvn;
3996 
3997   Node *hot_tail = nullptr;
3998   // Make a Region for the merge point
3999   Node *r = new RegionNode(1);
4000   for( i = 2; i < _head->req(); i++ ) {
4001     if( i != hot_idx )
4002       r->add_req( _head->in(i) );
4003     else hot_tail = _head->in(i);
4004   }
4005   igvn.register_new_node_with_optimizer(r, _head);
4006   // Plug region into end of loop _head, followed by hot_tail
4007   while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
4008   igvn.replace_input_of(_head, 2, r);
4009   if( hot_idx ) _head->add_req(hot_tail);
4010 
4011   // Split all the Phis up between '_head' loop and the Region 'r'
4012   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
4013     Node *out = _head->fast_out(j);
4014     if( out->is_Phi() ) {
4015       PhiNode* n = out->as_Phi();
4016       igvn.hash_delete(n);      // Delete from hash before hacking edges
4017       Node *hot_phi = nullptr;
4018       Node *phi = new PhiNode(r, n->type(), n->adr_type());
4019       // Check all inputs for the ones to peel out
4020       uint j = 1;
4021       for( uint i = 2; i < n->req(); i++ ) {
4022         if( i != hot_idx )
4023           phi->set_req( j++, n->in(i) );
4024         else hot_phi = n->in(i);
4025       }
4026       // Register the phi but do not transform until whole place transforms
4027       igvn.register_new_node_with_optimizer(phi, n);
4028       // Add the merge phi to the old Phi
4029       while( n->req() > 3 ) n->del_req( n->req()-1 );
4030       igvn.replace_input_of(n, 2, phi);
4031       if( hot_idx ) n->add_req(hot_phi);
4032     }
4033   }
4034 
4035 
4036   // Insert a new IdealLoopTree inserted below me.  Turn it into a clone
4037   // of self loop tree.  Turn self into a loop headed by _head and with
4038   // tail being the new merge point.
4039   IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
4040   phase->set_loop(_tail,ilt);   // Adjust tail
4041   _tail = r;                    // Self's tail is new merge point
4042   phase->set_loop(r,this);
4043   ilt->_child = _child;         // New guy has my children
4044   _child = ilt;                 // Self has new guy as only child
4045   ilt->_parent = this;          // new guy has self for parent
4046   ilt->_nest = _nest;           // Same nesting depth (for now)
4047 
4048   // Starting with 'ilt', look for child loop trees using the same shared
4049   // header.  Flatten these out; they will no longer be loops in the end.
4050   IdealLoopTree **pilt = &_child;
4051   while( ilt ) {
4052     if( ilt->_head == _head ) {
4053       uint i;
4054       for( i = 2; i < _head->req(); i++ )
4055         if( _head->in(i) == ilt->_tail )
4056           break;                // Still a loop
4057       if( i == _head->req() ) { // No longer a loop
4058         // Flatten ilt.  Hang ilt's "_next" list from the end of
4059         // ilt's '_child' list.  Move the ilt's _child up to replace ilt.
4060         IdealLoopTree **cp = &ilt->_child;
4061         while( *cp ) cp = &(*cp)->_next;   // Find end of child list
4062         *cp = ilt->_next;       // Hang next list at end of child list
4063         *pilt = ilt->_child;    // Move child up to replace ilt
4064         ilt->_head = nullptr;   // Flag as a loop UNIONED into parent
4065         ilt = ilt->_child;      // Repeat using new ilt
4066         continue;               // do not advance over ilt->_child
4067       }
4068       assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
4069       phase->set_loop(_head,ilt);
4070     }
4071     pilt = &ilt->_child;        // Advance to next
4072     ilt = *pilt;
4073   }
4074 
4075   if( _child ) fix_parent( _child, this );
4076 }
4077 
4078 //------------------------------beautify_loops---------------------------------
4079 // Split shared headers and insert loop landing pads.
4080 // Insert a LoopNode to replace the RegionNode.
4081 // Return TRUE if loop tree is structurally changed.
4082 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
4083   bool result = false;
4084   // Cache parts in locals for easy
4085   PhaseIterGVN &igvn = phase->_igvn;
4086 
4087   igvn.hash_delete(_head);      // Yank from hash before hacking edges
4088 
4089   // Check for multiple fall-in paths.  Peel off a landing pad if need be.
4090   int fall_in_cnt = 0;
4091   for( uint i = 1; i < _head->req(); i++ )
4092     if( !phase->is_member( this, _head->in(i) ) )
4093       fall_in_cnt++;
4094   assert( fall_in_cnt, "at least 1 fall-in path" );
4095   if( fall_in_cnt > 1 )         // Need a loop landing pad to merge fall-ins
4096     split_fall_in( phase, fall_in_cnt );
4097 
4098   // Swap inputs to the _head and all Phis to move the fall-in edge to
4099   // the left.
4100   fall_in_cnt = 1;
4101   while( phase->is_member( this, _head->in(fall_in_cnt) ) )
4102     fall_in_cnt++;
4103   if( fall_in_cnt > 1 ) {
4104     // Since I am just swapping inputs I do not need to update def-use info
4105     Node *tmp = _head->in(1);
4106     igvn.rehash_node_delayed(_head);
4107     _head->set_req( 1, _head->in(fall_in_cnt) );
4108     _head->set_req( fall_in_cnt, tmp );
4109     // Swap also all Phis
4110     for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
4111       Node* phi = _head->fast_out(i);
4112       if( phi->is_Phi() ) {
4113         igvn.rehash_node_delayed(phi); // Yank from hash before hacking edges
4114         tmp = phi->in(1);
4115         phi->set_req( 1, phi->in(fall_in_cnt) );
4116         phi->set_req( fall_in_cnt, tmp );
4117       }
4118     }
4119   }
4120   assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
4121   assert(  phase->is_member( this, _head->in(2) ), "right edge is loop" );
4122 
4123   // If I am a shared header (multiple backedges), peel off the many
4124   // backedges into a private merge point and use the merge point as
4125   // the one true backedge.
4126   if (_head->req() > 3) {
4127     // Merge the many backedges into a single backedge but leave
4128     // the hottest backedge as separate edge for the following peel.
4129     if (!_irreducible) {
4130       merge_many_backedges( phase );
4131     }
4132 
4133     // When recursively beautify my children, split_fall_in can change
4134     // loop tree structure when I am an irreducible loop. Then the head
4135     // of my children has a req() not bigger than 3. Here we need to set
4136     // result to true to catch that case in order to tell the caller to
4137     // rebuild loop tree. See issue JDK-8244407 for details.
4138     result = true;
4139   }
4140 
4141   // If I have one hot backedge, peel off myself loop.
4142   // I better be the outermost loop.
4143   if (_head->req() > 3 && !_irreducible) {
4144     split_outer_loop( phase );
4145     result = true;
4146 
4147   } else if (!_head->is_Loop() && !_irreducible) {
4148     // Make a new LoopNode to replace the old loop head
4149     Node *l = new LoopNode( _head->in(1), _head->in(2) );
4150     l = igvn.register_new_node_with_optimizer(l, _head);
4151     phase->set_created_loop_node();
4152     // Go ahead and replace _head
4153     phase->_igvn.replace_node( _head, l );
4154     _head = l;
4155     phase->set_loop(_head, this);
4156   }
4157 
4158   // Now recursively beautify nested loops
4159   if( _child ) result |= _child->beautify_loops( phase );
4160   if( _next  ) result |= _next ->beautify_loops( phase );
4161   return result;
4162 }
4163 
4164 //------------------------------allpaths_check_safepts----------------------------
4165 // Allpaths backwards scan. Starting at the head, traversing all backedges, and the body. Terminating each path at first
4166 // safepoint encountered.  Helper for check_safepts.
4167 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
4168   assert(stack.size() == 0, "empty stack");
4169   stack.push(_head);
4170   visited.clear();
4171   visited.set(_head->_idx);
4172   while (stack.size() > 0) {
4173     Node* n = stack.pop();
4174     if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
4175       // Terminate this path
4176     } else if (n->Opcode() == Op_SafePoint) {
4177       if (_phase->get_loop(n) != this) {
4178         if (_required_safept == nullptr) _required_safept = new Node_List();
4179         // save the first we run into on that path: closest to the tail if the head has a single backedge
4180         _required_safept->push(n);
4181       }
4182       // Terminate this path
4183     } else {
4184       uint start = n->is_Region() ? 1 : 0;
4185       uint end   = n->is_Region() && (!n->is_Loop() || n == _head) ? n->req() : start + 1;
4186       for (uint i = start; i < end; i++) {
4187         Node* in = n->in(i);
4188         assert(in->is_CFG(), "must be");
4189         if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
4190           stack.push(in);
4191         }
4192       }
4193     }
4194   }
4195 }
4196 
4197 //------------------------------check_safepts----------------------------
4198 // Given dominators, try to find loops with calls that must always be
4199 // executed (call dominates loop tail).  These loops do not need non-call
4200 // safepoints (ncsfpt).
4201 //
4202 // A complication is that a safepoint in a inner loop may be needed
4203 // by an outer loop. In the following, the inner loop sees it has a
4204 // call (block 3) on every path from the head (block 2) to the
4205 // backedge (arc 3->2).  So it deletes the ncsfpt (non-call safepoint)
4206 // in block 2, _but_ this leaves the outer loop without a safepoint.
4207 //
4208 //             entry  0
4209 //                    |
4210 //                    v
4211 //   outer 1,2,4  +-> 1
4212 //                |    \
4213 //                |     v
4214 //    inner 2,3   |     2 <---+  ncsfpt in 2
4215 //                |    / \    |
4216 //                |   v   v   |
4217 //                |  4     3  |  call in 3
4218 //                |_/ \     \_|
4219 //                     |
4220 //                     v
4221 //               exit  5
4222 //
4223 // This method maintains a list (_required_safept) of ncsfpts that must
4224 // be protected for each loop. It only marks ncsfpts for prevervation,
4225 // and does not actually delete any of them.
4226 //
4227 // If some other method needs to delete a ncsfpt later, it will make sure
4228 // the ncsfpt is not in the list of all outer loops of the current loop.
4229 // See `PhaseIdealLoop::is_deleteable_safept`.
4230 //
4231 // The insights into the problem:
4232 //  A) Counted loops are okay (i.e. do not need to preserve ncsfpts),
4233 //     they will be handled in `IdealLoopTree::counted_loop`
4234 //  B) Innermost loops are okay because there's no inner loops that can
4235 //     delete their ncsfpts. Only outer loops need to mark safepoints for
4236 //     protection, because only loops further in can accidentally delete
4237 //     their ncsfpts
4238 //  C) If an outer loop has a call that's guaranteed to execute (on the
4239 //     idom-path), then that loop is okay. Because the call will always
4240 //     perform a safepoint poll, regardless of what safepoints are deleted
4241 //     from its inner loops
4242 //  D) Similarly, if an outer loop has a ncsfpt on the idom-path that isn't
4243 //     inside any nested loop, then that loop is okay
4244 //  E) Otherwise, if an outer loop's ncsfpt on the idom-path is nested in
4245 //     an inner loop, we need to prevent the inner loop from deleting it
4246 //
4247 // There are two analyses:
4248 //  1) The first, and cheaper one, scans the loop body from
4249 //     tail to head following the idom (immediate dominator)
4250 //     chain, looking for the cases (C,D,E) above.
4251 //     Since inner loops are scanned before outer loops, there is summary
4252 //     information about inner loops.  Inner loops can be skipped over
4253 //     when the tail of an inner loop is encountered.
4254 //
4255 //  2) The second, invoked if the first fails to find a call or ncsfpt on
4256 //     the idom path (which is rare), scans all predecessor control paths
4257 //     from the tail to the head, terminating a path when a call or sfpt
4258 //     is encountered, to find the ncsfpt's that are closest to the tail.
4259 //
4260 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
4261   // Bottom up traversal
4262   IdealLoopTree* ch = _child;
4263   if (_child) _child->check_safepts(visited, stack);
4264   if (_next)  _next ->check_safepts(visited, stack);
4265 
4266   if (!_head->is_CountedLoop() && !_has_sfpt && _parent != nullptr) {
4267     bool  has_call         = false;    // call on dom-path
4268     bool  has_local_ncsfpt = false;    // ncsfpt on dom-path at this loop depth
4269     Node* nonlocal_ncsfpt  = nullptr;  // ncsfpt on dom-path at a deeper depth
4270     if (!_irreducible) {
4271       // Scan the dom-path nodes from tail to head
4272       for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
4273         if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
4274           has_call = true;
4275           _has_sfpt = 1;          // Then no need for a safept!
4276           break;
4277         } else if (n->Opcode() == Op_SafePoint) {
4278           if (_phase->get_loop(n) == this) {
4279             // We found a local ncsfpt.
4280             // Continue searching for a call that is guaranteed to be a safepoint.
4281             has_local_ncsfpt = true;
4282           } else if (nonlocal_ncsfpt == nullptr) {
4283             nonlocal_ncsfpt = n; // save the one closest to the tail
4284           }
4285         } else {
4286           IdealLoopTree* nlpt = _phase->get_loop(n);
4287           if (this != nlpt) {
4288             // If at an inner loop tail, see if the inner loop has already
4289             // recorded seeing a call on the dom-path (and stop.)  If not,
4290             // jump to the head of the inner loop.
4291             assert(is_member(nlpt), "nested loop");
4292             Node* tail = nlpt->_tail;
4293             if (tail->in(0)->is_If()) tail = tail->in(0);
4294             if (n == tail) {
4295               // If inner loop has call on dom-path, so does outer loop
4296               if (nlpt->_has_sfpt) {
4297                 has_call = true;
4298                 _has_sfpt = 1;
4299                 break;
4300               }
4301               // Skip to head of inner loop
4302               assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
4303               n = nlpt->_head;
4304               if (_head == n) {
4305                 // this and nlpt (inner loop) have the same loop head. This should not happen because
4306                 // during beautify_loops we call merge_many_backedges. However, infinite loops may not
4307                 // have been attached to the loop-tree during build_loop_tree before beautify_loops,
4308                 // but then attached in the build_loop_tree afterwards, and so still have unmerged
4309                 // backedges. Check if we are indeed in an infinite subgraph, and terminate the scan,
4310                 // since we have reached the loop head of this.
4311                 assert(_head->as_Region()->is_in_infinite_subgraph(),
4312                        "only expect unmerged backedges in infinite loops");
4313                 break;
4314               }
4315             }
4316           }
4317         }
4318       }
4319     }
4320     // Record safept's that this loop needs preserved when an
4321     // inner loop attempts to delete it's safepoints.
4322     if (_child != nullptr && !has_call && !has_local_ncsfpt) {
4323       if (nonlocal_ncsfpt != nullptr) {
4324         if (_required_safept == nullptr) _required_safept = new Node_List();
4325         _required_safept->push(nonlocal_ncsfpt);
4326       } else {
4327         // Failed to find a suitable safept on the dom-path.  Now use
4328         // an all paths walk from tail to head, looking for safepoints to preserve.
4329         allpaths_check_safepts(visited, stack);
4330       }
4331     }
4332   }
4333 }
4334 
4335 //---------------------------is_deleteable_safept----------------------------
4336 // Is safept not required by an outer loop?
4337 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
4338   assert(sfpt->Opcode() == Op_SafePoint, "");
4339   IdealLoopTree* lp = get_loop(sfpt)->_parent;
4340   while (lp != nullptr) {
4341     Node_List* sfpts = lp->_required_safept;
4342     if (sfpts != nullptr) {
4343       for (uint i = 0; i < sfpts->size(); i++) {
4344         if (sfpt == sfpts->at(i))
4345           return false;
4346       }
4347     }
4348     lp = lp->_parent;
4349   }
4350   return true;
4351 }
4352 
4353 //---------------------------replace_parallel_iv-------------------------------
4354 // Replace parallel induction variable (parallel to trip counter)
4355 // This optimization looks for patterns similar to:
4356 //
4357 //    int a = init2;
4358 //    for (int iv = init; iv < limit; iv += stride_con) {
4359 //      a += stride_con2;
4360 //    }
4361 //
4362 // and transforms it to:
4363 //
4364 //    int iv2 = init2
4365 //    int iv = init
4366 //    loop:
4367 //      if (iv >= limit) goto exit
4368 //      iv += stride_con
4369 //      iv2 = init2 + (iv - init) * (stride_con2 / stride_con)
4370 //      goto loop
4371 //    exit:
4372 //    ...
4373 //
4374 // Such transformation introduces more optimization opportunities. In this
4375 // particular example, the loop can be eliminated entirely given that
4376 // `stride_con2 / stride_con` is exact  (i.e., no remainder). Checks are in
4377 // place to only perform this optimization if such a division is exact. This
4378 // example will be transformed into its semantic equivalence:
4379 //
4380 //     int iv2 = (iv * stride_con2 / stride_con) + (init2 - (init * stride_con2 / stride_con))
4381 //
4382 // which corresponds to the structure of transformed subgraph.
4383 //
4384 // However, if there is a mismatch between types of the loop and the parallel
4385 // induction variable (e.g., a long-typed IV in an int-typed loop), type
4386 // conversions are required:
4387 //
4388 //     long iv2 = ((long) iv * stride_con2 / stride_con) + (init2 - ((long) init * stride_con2 / stride_con))
4389 //
4390 void PhaseIdealLoop::replace_parallel_iv(IdealLoopTree *loop) {
4391   assert(loop->_head->is_CountedLoop(), "");
4392   CountedLoopNode *cl = loop->_head->as_CountedLoop();
4393   if (!cl->is_valid_counted_loop(T_INT)) {
4394     return;         // skip malformed counted loop
4395   }
4396   Node *incr = cl->incr();
4397   if (incr == nullptr) {
4398     return;         // Dead loop?
4399   }
4400   Node *init = cl->init_trip();
4401   Node *phi  = cl->phi();
4402   jlong stride_con = cl->stride_con();
4403 
4404   // Visit all children, looking for Phis
4405   for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
4406     Node *out = cl->out(i);
4407     // Look for other phis (secondary IVs). Skip dead ones
4408     if (!out->is_Phi() || out == phi || !has_node(out)) {
4409       continue;
4410     }
4411 
4412     PhiNode* phi2 = out->as_Phi();
4413     Node* incr2 = phi2->in(LoopNode::LoopBackControl);
4414     // Look for induction variables of the form:  X += constant
4415     if (phi2->region() != loop->_head ||
4416         incr2->req() != 3 ||
4417         incr2->in(1)->uncast() != phi2 ||
4418         incr2 == incr ||
4419         (incr2->Opcode() != Op_AddI && incr2->Opcode() != Op_AddL) ||
4420         !incr2->in(2)->is_Con()) {
4421       continue;
4422     }
4423 
4424     if (incr2->in(1)->is_ConstraintCast() &&
4425         !(incr2->in(1)->in(0)->is_IfProj() && incr2->in(1)->in(0)->in(0)->is_RangeCheck())) {
4426       // Skip AddI->CastII->Phi case if CastII is not controlled by local RangeCheck
4427       continue;
4428     }
4429     // Check for parallel induction variable (parallel to trip counter)
4430     // via an affine function.  In particular, count-down loops with
4431     // count-up array indices are common. We only RCE references off
4432     // the trip-counter, so we need to convert all these to trip-counter
4433     // expressions.
4434     Node* init2 = phi2->in(LoopNode::EntryControl);
4435 
4436     // Determine the basic type of the stride constant (and the iv being incremented).
4437     BasicType stride_con2_bt = incr2->Opcode() == Op_AddI ? T_INT : T_LONG;
4438     jlong stride_con2 = incr2->in(2)->get_integer_as_long(stride_con2_bt);
4439 
4440     // The ratio of the two strides cannot be represented as an int
4441     // if stride_con2 is min_jint (or min_jlong, respectively) and
4442     // stride_con is -1.
4443     if (stride_con2 == min_signed_integer(stride_con2_bt) && stride_con == -1) {
4444       continue;
4445     }
4446 
4447     // The general case here gets a little tricky.  We want to find the
4448     // GCD of all possible parallel IV's and make a new IV using this
4449     // GCD for the loop.  Then all possible IVs are simple multiples of
4450     // the GCD.  In practice, this will cover very few extra loops.
4451     // Instead we require 'stride_con2' to be a multiple of 'stride_con',
4452     // where +/-1 is the common case, but other integer multiples are
4453     // also easy to handle.
4454     jlong ratio_con = stride_con2 / stride_con;
4455 
4456     if ((ratio_con * stride_con) != stride_con2) { // Check for exact (no remainder)
4457         continue;
4458     }
4459 
4460 #ifndef PRODUCT
4461     if (TraceLoopOpts) {
4462       tty->print("Parallel IV: %d ", phi2->_idx);
4463       loop->dump_head();
4464     }
4465 #endif
4466 
4467     // Convert to using the trip counter.  The parallel induction
4468     // variable differs from the trip counter by a loop-invariant
4469     // amount, the difference between their respective initial values.
4470     // It is scaled by the 'ratio_con'.
4471     Node* ratio = integercon(ratio_con, stride_con2_bt);
4472 
4473     Node* init_converted = insert_convert_node_if_needed(stride_con2_bt, init);
4474     Node* phi_converted = insert_convert_node_if_needed(stride_con2_bt, phi);
4475 
4476     Node* ratio_init = MulNode::make(init_converted, ratio, stride_con2_bt);
4477     _igvn.register_new_node_with_optimizer(ratio_init, init_converted);
4478     set_early_ctrl(ratio_init, false);
4479 
4480     Node* diff = SubNode::make(init2, ratio_init, stride_con2_bt);
4481     _igvn.register_new_node_with_optimizer(diff, init2);
4482     set_early_ctrl(diff, false);
4483 
4484     Node* ratio_idx = MulNode::make(phi_converted, ratio, stride_con2_bt);
4485     _igvn.register_new_node_with_optimizer(ratio_idx, phi_converted);
4486     set_ctrl(ratio_idx, cl);
4487 
4488     Node* add = AddNode::make(ratio_idx, diff, stride_con2_bt);
4489     _igvn.register_new_node_with_optimizer(add);
4490     set_ctrl(add, cl);
4491 
4492     _igvn.replace_node( phi2, add );
4493     // Sometimes an induction variable is unused
4494     if (add->outcnt() == 0) {
4495       _igvn.remove_dead_node(add);
4496     }
4497     --i; // deleted this phi; rescan starting with next position
4498   }
4499 }
4500 
4501 Node* PhaseIdealLoop::insert_convert_node_if_needed(BasicType target, Node* input) {
4502   BasicType source = _igvn.type(input)->basic_type();
4503   if (source == target) {
4504     return input;
4505   }
4506 
4507   Node* converted = ConvertNode::create_convert(source, target, input);
4508   _igvn.register_new_node_with_optimizer(converted, input);
4509   set_early_ctrl(converted, false);
4510 
4511   return converted;
4512 }
4513 
4514 void IdealLoopTree::remove_safepoints(PhaseIdealLoop* phase, bool keep_one) {
4515   Node* keep = nullptr;
4516   if (keep_one) {
4517     // Look for a safepoint on the idom-path.
4518     for (Node* i = tail(); i != _head; i = phase->idom(i)) {
4519       if (i->Opcode() == Op_SafePoint && phase->get_loop(i) == this) {
4520         keep = i;
4521         break; // Found one
4522       }
4523     }
4524   }
4525 
4526   // Don't remove any safepoints if it is requested to keep a single safepoint and
4527   // no safepoint was found on idom-path. It is not safe to remove any safepoint
4528   // in this case since there's no safepoint dominating all paths in the loop body.
4529   bool prune = !keep_one || keep != nullptr;
4530 
4531   // Delete other safepoints in this loop.
4532   Node_List* sfpts = _safepts;
4533   if (prune && sfpts != nullptr) {
4534     assert(keep == nullptr || keep->Opcode() == Op_SafePoint, "not safepoint");
4535     for (uint i = 0; i < sfpts->size(); i++) {
4536       Node* n = sfpts->at(i);
4537       assert(phase->get_loop(n) == this, "");
4538       if (n != keep && phase->is_deleteable_safept(n)) {
4539         phase->replace_node_and_forward_ctrl(n, n->in(TypeFunc::Control));
4540       }
4541     }
4542   }
4543 }
4544 
4545 //------------------------------counted_loop-----------------------------------
4546 // Convert to counted loops where possible
4547 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
4548 
4549   // For grins, set the inner-loop flag here
4550   if (!_child) {
4551     if (_head->is_Loop()) _head->as_Loop()->set_inner_loop();
4552   }
4553 
4554   IdealLoopTree* loop = this;
4555   if (_head->is_CountedLoop() ||
4556       phase->is_counted_loop(_head, loop, T_INT)) {
4557 
4558     if (LoopStripMiningIter == 0 || _head->as_CountedLoop()->is_strip_mined()) {
4559       // Indicate we do not need a safepoint here
4560       _has_sfpt = 1;
4561     }
4562 
4563     // Remove safepoints
4564     bool keep_one_sfpt = !(_has_call || _has_sfpt);
4565     remove_safepoints(phase, keep_one_sfpt);
4566 
4567     // Look for induction variables
4568     phase->replace_parallel_iv(this);
4569   } else if (_head->is_LongCountedLoop() ||
4570              phase->is_counted_loop(_head, loop, T_LONG)) {
4571     remove_safepoints(phase, true);
4572   } else {
4573     assert(!_head->is_Loop() || !_head->as_Loop()->is_loop_nest_inner_loop(), "transformation to counted loop should not fail");
4574     if (_parent != nullptr && !_irreducible) {
4575       // Not a counted loop. Keep one safepoint.
4576       bool keep_one_sfpt = true;
4577       remove_safepoints(phase, keep_one_sfpt);
4578     }
4579   }
4580 
4581   // Recursively
4582   assert(loop->_child != this || (loop->_head->as_Loop()->is_OuterStripMinedLoop() && _head->as_CountedLoop()->is_strip_mined()), "what kind of loop was added?");
4583   assert(loop->_child != this || (loop->_child->_child == nullptr && loop->_child->_next == nullptr), "would miss some loops");
4584   if (loop->_child && loop->_child != this) loop->_child->counted_loop(phase);
4585   if (loop->_next)  loop->_next ->counted_loop(phase);
4586 }
4587 
4588 
4589 // The Estimated Loop Clone Size:
4590 //   CloneFactor * (~112% * BodySize + BC) + CC + FanOutTerm,
4591 // where  BC and  CC are  totally ad-hoc/magic  "body" and "clone" constants,
4592 // respectively, used to ensure that the node usage estimates made are on the
4593 // safe side, for the most part. The FanOutTerm is an attempt to estimate the
4594 // possible additional/excessive nodes generated due to data and control flow
4595 // merging, for edges reaching outside the loop.
4596 uint IdealLoopTree::est_loop_clone_sz(uint factor) const {
4597 
4598   precond(0 < factor && factor < 16);
4599 
4600   uint const bc = 13;
4601   uint const cc = 17;
4602   uint const sz = _body.size() + (_body.size() + 7) / 2;
4603   uint estimate = factor * (sz + bc) + cc;
4604 
4605   assert((estimate - cc) / factor == sz + bc, "overflow");
4606 
4607   return estimate + est_loop_flow_merge_sz();
4608 }
4609 
4610 // The Estimated Loop (full-) Unroll Size:
4611 //   UnrollFactor * (~106% * BodySize) + CC + FanOutTerm,
4612 // where CC is a (totally) ad-hoc/magic "clone" constant, used to ensure that
4613 // node usage estimates made are on the safe side, for the most part. This is
4614 // a "light" version of the loop clone size calculation (above), based on the
4615 // assumption that most of the loop-construct overhead will be unraveled when
4616 // (fully) unrolled. Defined for unroll factors larger or equal to one (>=1),
4617 // including an overflow check and returning UINT_MAX in case of an overflow.
4618 uint IdealLoopTree::est_loop_unroll_sz(uint factor) const {
4619 
4620   precond(factor > 0);
4621 
4622   // Take into account that after unroll conjoined heads and tails will fold.
4623   uint const b0 = _body.size() - EMPTY_LOOP_SIZE;
4624   uint const cc = 7;
4625   uint const sz = b0 + (b0 + 15) / 16;
4626   uint estimate = factor * sz + cc;
4627 
4628   if ((estimate - cc) / factor != sz) {
4629     return UINT_MAX;
4630   }
4631 
4632   return estimate + est_loop_flow_merge_sz();
4633 }
4634 
4635 // Estimate the growth effect (in nodes) of merging control and data flow when
4636 // cloning a loop body, based on the amount of  control and data flow reaching
4637 // outside of the (current) loop body.
4638 uint IdealLoopTree::est_loop_flow_merge_sz() const {
4639 
4640   uint ctrl_edge_out_cnt = 0;
4641   uint data_edge_out_cnt = 0;
4642 
4643   for (uint i = 0; i < _body.size(); i++) {
4644     Node* node = _body.at(i);
4645     uint outcnt = node->outcnt();
4646 
4647     for (uint k = 0; k < outcnt; k++) {
4648       Node* out = node->raw_out(k);
4649       if (out == nullptr) continue;
4650       if (out->is_CFG()) {
4651         if (!is_member(_phase->get_loop(out))) {
4652           ctrl_edge_out_cnt++;
4653         }
4654       } else if (_phase->has_ctrl(out)) {
4655         Node* ctrl = _phase->get_ctrl(out);
4656         assert(ctrl != nullptr, "must be");
4657         assert(ctrl->is_CFG(), "must be");
4658         if (!is_member(_phase->get_loop(ctrl))) {
4659           data_edge_out_cnt++;
4660         }
4661       }
4662     }
4663   }
4664   // Use data and control count (x2.0) in estimate iff both are > 0. This is
4665   // a rather pessimistic estimate for the most part, in particular for some
4666   // complex loops, but still not enough to capture all loops.
4667   if (ctrl_edge_out_cnt > 0 && data_edge_out_cnt > 0) {
4668     return 2 * (ctrl_edge_out_cnt + data_edge_out_cnt);
4669   }
4670   return 0;
4671 }
4672 
4673 #ifndef PRODUCT
4674 //------------------------------dump_head--------------------------------------
4675 // Dump 1 liner for loop header info
4676 void IdealLoopTree::dump_head() {
4677   tty->sp(2 * _nest);
4678   tty->print("Loop: N%d/N%d ", _head->_idx, _tail->_idx);
4679   if (_irreducible) tty->print(" IRREDUCIBLE");
4680   Node* entry = _head->is_Loop() ? _head->as_Loop()->skip_strip_mined(-1)->in(LoopNode::EntryControl)
4681                                  : _head->in(LoopNode::EntryControl);
4682   const Predicates predicates(entry);
4683   if (predicates.loop_limit_check_predicate_block()->is_non_empty()) {
4684     tty->print(" limit_check");
4685   }
4686   if (predicates.short_running_long_loop_predicate_block()->is_non_empty()) {
4687     tty->print(" short_running");
4688   }
4689   if (UseLoopPredicate) {
4690     if (UseProfiledLoopPredicate && predicates.profiled_loop_predicate_block()->is_non_empty()) {
4691       tty->print(" profile_predicated");
4692     }
4693     if (predicates.loop_predicate_block()->is_non_empty()) {
4694       tty->print(" predicated");
4695     }
4696   }
4697   if (UseAutoVectorizationPredicate && predicates.auto_vectorization_check_block()->is_non_empty()) {
4698     tty->print(" auto_vectorization_check_predicate");
4699   }
4700   if (_head->is_CountedLoop()) {
4701     CountedLoopNode *cl = _head->as_CountedLoop();
4702     tty->print(" counted");
4703 
4704     Node* init_n = cl->init_trip();
4705     if (init_n  != nullptr &&  init_n->is_Con())
4706       tty->print(" [%d,", cl->init_trip()->get_int());
4707     else
4708       tty->print(" [int,");
4709     Node* limit_n = cl->limit();
4710     if (limit_n  != nullptr &&  limit_n->is_Con())
4711       tty->print("%d),", cl->limit()->get_int());
4712     else
4713       tty->print("int),");
4714     int stride_con  = cl->stride_con();
4715     if (stride_con > 0) tty->print("+");
4716     tty->print("%d", stride_con);
4717 
4718     tty->print(" (%0.f iters) ", cl->profile_trip_cnt());
4719 
4720     if (cl->is_pre_loop ()) tty->print(" pre" );
4721     if (cl->is_main_loop()) tty->print(" main");
4722     if (cl->is_post_loop()) tty->print(" post");
4723     if (cl->is_vectorized_loop()) tty->print(" vector");
4724     if (range_checks_present()) tty->print(" rc ");
4725     if (cl->is_multiversion_fast_loop())         { tty->print(" multiversion_fast"); }
4726     if (cl->is_multiversion_slow_loop())         { tty->print(" multiversion_slow"); }
4727     if (cl->is_multiversion_delayed_slow_loop()) { tty->print(" multiversion_delayed_slow"); }
4728   }
4729   if (_has_call) tty->print(" has_call");
4730   if (_has_sfpt) tty->print(" has_sfpt");
4731   if (_rce_candidate) tty->print(" rce");
4732   if (_safepts != nullptr && _safepts->size() > 0) {
4733     tty->print(" sfpts={"); _safepts->dump_simple(); tty->print(" }");
4734   }
4735   if (_required_safept != nullptr && _required_safept->size() > 0) {
4736     tty->print(" req={"); _required_safept->dump_simple(); tty->print(" }");
4737   }
4738   if (Verbose) {
4739     tty->print(" body={"); _body.dump_simple(); tty->print(" }");
4740   }
4741   if (_head->is_Loop() && _head->as_Loop()->is_strip_mined()) {
4742     tty->print(" strip_mined");
4743   }
4744   tty->cr();
4745 }
4746 
4747 //------------------------------dump-------------------------------------------
4748 // Dump loops by loop tree
4749 void IdealLoopTree::dump() {
4750   dump_head();
4751   if (_child) _child->dump();
4752   if (_next)  _next ->dump();
4753 }
4754 
4755 #endif
4756 
4757 static void log_loop_tree_helper(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
4758   if (loop == root) {
4759     if (loop->_child != nullptr) {
4760       log->begin_head("loop_tree");
4761       log->end_head();
4762       log_loop_tree_helper(root, loop->_child, log);
4763       log->tail("loop_tree");
4764       assert(loop->_next == nullptr, "what?");
4765     }
4766   } else if (loop != nullptr) {
4767     Node* head = loop->_head;
4768     log->begin_head("loop");
4769     log->print(" idx='%d' ", head->_idx);
4770     if (loop->_irreducible) log->print("irreducible='1' ");
4771     if (head->is_Loop()) {
4772       if (head->as_Loop()->is_inner_loop())        log->print("inner_loop='1' ");
4773       if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' ");
4774     } else if (head->is_CountedLoop()) {
4775       CountedLoopNode* cl = head->as_CountedLoop();
4776       if (cl->is_pre_loop())  log->print("pre_loop='%d' ",  cl->main_idx());
4777       if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx);
4778       if (cl->is_post_loop()) log->print("post_loop='%d' ", cl->main_idx());
4779     }
4780     log->end_head();
4781     log_loop_tree_helper(root, loop->_child, log);
4782     log->tail("loop");
4783     log_loop_tree_helper(root, loop->_next, log);
4784   }
4785 }
4786 
4787 void PhaseIdealLoop::log_loop_tree() {
4788   if (C->log() != nullptr) {
4789     log_loop_tree_helper(_ltree_root, _ltree_root, C->log());
4790   }
4791 }
4792 
4793 // Eliminate all Parse and Template Assertion Predicates that are not associated with a loop anymore. The eliminated
4794 // predicates will be removed during the next round of IGVN.
4795 void PhaseIdealLoop::eliminate_useless_predicates() const {
4796   if (C->parse_predicate_count() == 0 && C->template_assertion_predicate_count() == 0) {
4797     return; // No predicates left.
4798   }
4799 
4800   EliminateUselessPredicates eliminate_useless_predicates(_igvn, _ltree_root);
4801   eliminate_useless_predicates.eliminate();
4802 }
4803 
4804 // If a post or main loop is removed due to an assert predicate, the opaque that guards the loop is not needed anymore
4805 void PhaseIdealLoop::eliminate_useless_zero_trip_guard() {
4806   if (_zero_trip_guard_opaque_nodes.size() == 0) {
4807     return;
4808   }
4809   Unique_Node_List useful_zero_trip_guard_opaques_nodes;
4810   for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
4811     IdealLoopTree* lpt = iter.current();
4812     if (lpt->_child == nullptr && lpt->is_counted()) {
4813       CountedLoopNode* head = lpt->_head->as_CountedLoop();
4814       Node* opaque = head->is_canonical_loop_entry();
4815       if (opaque != nullptr) {
4816         useful_zero_trip_guard_opaques_nodes.push(opaque);
4817 #ifdef ASSERT
4818         // See PhaseIdealLoop::do_unroll
4819         // This property is required in do_unroll, but it may not hold after cloning a loop.
4820         // In such a case, we bail out from unrolling, and rely on IGVN to clean up the graph.
4821         // We are here before loop cloning (before iteration_split), so if this property
4822         // does not hold, it must come from the previous round of loop optimizations, meaning
4823         // that IGVN failed to clean it: we will catch that here.
4824         // On the other hand, if this assert passes, a bailout in do_unroll means that
4825         // this property was broken in the current round of loop optimization (between here
4826         // and do_unroll), so we give a chance to IGVN to make the property true again.
4827         if (head->is_main_loop()) {
4828           assert(opaque->outcnt() == 1, "opaque node should not be shared");
4829           assert(opaque->in(1) == head->limit(), "After IGVN cleanup, input of opaque node must be the limit.");
4830         }
4831         if (head->is_post_loop()) {
4832           assert(opaque->outcnt() == 1, "opaque node should not be shared");
4833         }
4834 #endif
4835       }
4836     }
4837   }
4838   for (uint i = 0; i < _zero_trip_guard_opaque_nodes.size(); ++i) {
4839     OpaqueZeroTripGuardNode* opaque = ((OpaqueZeroTripGuardNode*)_zero_trip_guard_opaque_nodes.at(i));
4840     DEBUG_ONLY(CountedLoopNode* guarded_loop = opaque->guarded_loop());
4841     if (!useful_zero_trip_guard_opaques_nodes.member(opaque)) {
4842       IfNode* iff = opaque->if_node();
4843       IdealLoopTree* loop = get_loop(iff);
4844       while (loop != _ltree_root && loop != nullptr) {
4845         loop = loop->_parent;
4846       }
4847       if (loop == nullptr) {
4848         // unreachable from _ltree_root: zero trip guard is in a newly discovered infinite loop.
4849         // We can't tell if the opaque node is useful or not
4850         assert(guarded_loop == nullptr || guarded_loop->is_in_infinite_subgraph(), "");
4851       } else {
4852         assert(guarded_loop == nullptr, "");
4853         this->_igvn.replace_node(opaque, opaque->in(1));
4854       }
4855     } else {
4856       assert(guarded_loop != nullptr, "");
4857     }
4858   }
4859 }
4860 
4861 void PhaseIdealLoop::eliminate_useless_multiversion_if() {
4862   if (_multiversion_opaque_nodes.size() == 0) {
4863     return;
4864   }
4865 
4866   ResourceMark rm;
4867   Unique_Node_List useful_multiversioning_opaque_nodes;
4868 
4869   // The OpaqueMultiversioning is only used from the fast main loop in AutoVectorization, to add
4870   // speculative runtime-checks to the multiversion_if. Thus, a OpaqueMultiversioning is only
4871   // useful if it can be found from a fast main loop. If it can not be found from a fast main loop,
4872   // then we cannot ever use that multiversion_if to add more speculative runtime-checks, and hence
4873   // it is useless. If it is still in delayed mode, i.e. has not yet had any runtime-checks added,
4874   // then we can let it constant fold towards the fast loop.
4875   for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
4876     IdealLoopTree* lpt = iter.current();
4877     if (lpt->_child == nullptr && lpt->is_counted()) {
4878       CountedLoopNode* head = lpt->_head->as_CountedLoop();
4879       if (head->is_main_loop() && head->is_multiversion_fast_loop()) {
4880         // There are fast_loop pre/main/post loops, but the finding traversal starts at the main
4881         // loop, and traverses via the fast pre loop to the multiversion_if.
4882         IfNode* multiversion_if = head->find_multiversion_if_from_multiversion_fast_main_loop();
4883         if (multiversion_if != nullptr) {
4884             useful_multiversioning_opaque_nodes.push(multiversion_if->in(1)->as_OpaqueMultiversioning());
4885         } else {
4886           // We could not find the multiversion_if, and would never find it again. Remove the
4887           // multiversion marking for consistency.
4888           head->set_no_multiversion();
4889         }
4890       }
4891     }
4892   }
4893 
4894   for (uint i = 0; i < _multiversion_opaque_nodes.size(); i++) {
4895     OpaqueMultiversioningNode* opaque = _multiversion_opaque_nodes.at(i)->as_OpaqueMultiversioning();
4896     if (!useful_multiversioning_opaque_nodes.member(opaque)) {
4897       if (opaque->is_delayed_slow_loop()) {
4898         // We cannot hack the node directly, otherwise the slow_loop will complain that it cannot
4899         // find the multiversioning opaque node. Instead, we mark the opaque node as useless, and
4900         // it can be constant folded during IGVN.
4901         opaque->mark_useless(_igvn);
4902       }
4903     }
4904   }
4905 }
4906 
4907 //------------------------process_expensive_nodes-----------------------------
4908 // Expensive nodes have their control input set to prevent the GVN
4909 // from commoning them and as a result forcing the resulting node to
4910 // be in a more frequent path. Use CFG information here, to change the
4911 // control inputs so that some expensive nodes can be commoned while
4912 // not executed more frequently.
4913 bool PhaseIdealLoop::process_expensive_nodes() {
4914   assert(OptimizeExpensiveOps, "optimization off?");
4915 
4916   // Sort nodes to bring similar nodes together
4917   C->sort_expensive_nodes();
4918 
4919   bool progress = false;
4920 
4921   for (int i = 0; i < C->expensive_count(); ) {
4922     Node* n = C->expensive_node(i);
4923     int start = i;
4924     // Find nodes similar to n
4925     i++;
4926     for (; i < C->expensive_count() && Compile::cmp_expensive_nodes(n, C->expensive_node(i)) == 0; i++);
4927     int end = i;
4928     // And compare them two by two
4929     for (int j = start; j < end; j++) {
4930       Node* n1 = C->expensive_node(j);
4931       if (is_node_unreachable(n1)) {
4932         continue;
4933       }
4934       for (int k = j+1; k < end; k++) {
4935         Node* n2 = C->expensive_node(k);
4936         if (is_node_unreachable(n2)) {
4937           continue;
4938         }
4939 
4940         assert(n1 != n2, "should be pair of nodes");
4941 
4942         Node* c1 = n1->in(0);
4943         Node* c2 = n2->in(0);
4944 
4945         Node* parent_c1 = c1;
4946         Node* parent_c2 = c2;
4947 
4948         // The call to get_early_ctrl_for_expensive() moves the
4949         // expensive nodes up but stops at loops that are in a if
4950         // branch. See whether we can exit the loop and move above the
4951         // If.
4952         if (c1->is_Loop()) {
4953           parent_c1 = c1->in(1);
4954         }
4955         if (c2->is_Loop()) {
4956           parent_c2 = c2->in(1);
4957         }
4958 
4959         if (parent_c1 == parent_c2) {
4960           _igvn._worklist.push(n1);
4961           _igvn._worklist.push(n2);
4962           continue;
4963         }
4964 
4965         // Look for identical expensive node up the dominator chain.
4966         if (is_dominator(c1, c2)) {
4967           c2 = c1;
4968         } else if (is_dominator(c2, c1)) {
4969           c1 = c2;
4970         } else if (parent_c1->is_Proj() && parent_c1->in(0)->is_If() &&
4971                    parent_c2->is_Proj() && parent_c1->in(0) == parent_c2->in(0)) {
4972           // Both branches have the same expensive node so move it up
4973           // before the if.
4974           c1 = c2 = idom(parent_c1->in(0));
4975         }
4976         // Do the actual moves
4977         if (n1->in(0) != c1) {
4978           _igvn.replace_input_of(n1, 0, c1);
4979           progress = true;
4980         }
4981         if (n2->in(0) != c2) {
4982           _igvn.replace_input_of(n2, 0, c2);
4983           progress = true;
4984         }
4985       }
4986     }
4987   }
4988 
4989   return progress;
4990 }
4991 
4992 //=============================================================================
4993 //----------------------------build_and_optimize-------------------------------
4994 // Create a PhaseLoop.  Build the ideal Loop tree.  Map each Ideal Node to
4995 // its corresponding LoopNode.  If 'optimize' is true, do some loop cleanups.
4996 void PhaseIdealLoop::build_and_optimize() {
4997   assert(!C->post_loop_opts_phase(), "no loop opts allowed");
4998 
4999   bool do_split_ifs = (_mode == LoopOptsDefault);
5000   bool skip_loop_opts = (_mode == LoopOptsNone);
5001   bool do_max_unroll = (_mode == LoopOptsMaxUnroll);
5002 
5003 
5004   bool old_progress = C->major_progress();
5005   uint orig_worklist_size = _igvn._worklist.size();
5006 
5007   // Reset major-progress flag for the driver's heuristics
5008   C->clear_major_progress();
5009 
5010 #ifndef PRODUCT
5011   // Capture for later assert
5012   uint unique = C->unique();
5013   _loop_invokes++;
5014   _loop_work += unique;
5015 #endif
5016 
5017   // True if the method has at least 1 irreducible loop
5018   _has_irreducible_loops = false;
5019 
5020   _created_loop_node = false;
5021 
5022   VectorSet visited;
5023   // Pre-grow the mapping from Nodes to IdealLoopTrees.
5024   _loop_or_ctrl.map(C->unique(), nullptr);
5025   memset(_loop_or_ctrl.adr(), 0, wordSize * C->unique());
5026 
5027   // Pre-build the top-level outermost loop tree entry
5028   _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
5029   // Do not need a safepoint at the top level
5030   _ltree_root->_has_sfpt = 1;
5031 
5032   // Initialize Dominators.
5033   // Checked in clone_loop_predicate() during beautify_loops().
5034   _idom_size = 0;
5035   _idom      = nullptr;
5036   _dom_depth = nullptr;
5037   _dom_stk   = nullptr;
5038 
5039   // Empty pre-order array
5040   allocate_preorders();
5041 
5042   // Build a loop tree on the fly.  Build a mapping from CFG nodes to
5043   // IdealLoopTree entries.  Data nodes are NOT walked.
5044   build_loop_tree();
5045   // Check for bailout, and return
5046   if (C->failing()) {
5047     return;
5048   }
5049 
5050   // Verify that the has_loops() flag set at parse time is consistent with the just built loop tree. When the back edge
5051   // is an exception edge, parsing doesn't set has_loops().
5052   assert(_ltree_root->_child == nullptr || C->has_loops() || C->has_exception_backedge(), "parsing found no loops but there are some");
5053   // No loops after all
5054   if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false);
5055 
5056   // There should always be an outer loop containing the Root and Return nodes.
5057   // If not, we have a degenerate empty program.  Bail out in this case.
5058   if (!has_node(C->root())) {
5059     if (!_verify_only) {
5060       C->clear_major_progress();
5061       assert(false, "empty program detected during loop optimization");
5062       C->record_method_not_compilable("empty program detected during loop optimization");
5063     }
5064     return;
5065   }
5066 
5067   // Nothing to do, so get out
5068   bool stop_early = !C->has_loops() && !skip_loop_opts && !do_split_ifs && !do_max_unroll && !_verify_me &&
5069           !_verify_only;
5070   bool do_expensive_nodes = C->should_optimize_expensive_nodes(_igvn);
5071   if (stop_early && !do_expensive_nodes) {
5072     return;
5073   }
5074 
5075   // Set loop nesting depth
5076   _ltree_root->set_nest( 0 );
5077 
5078   // Split shared headers and insert loop landing pads.
5079   // Do not bother doing this on the Root loop of course.
5080   if( !_verify_me && !_verify_only && _ltree_root->_child ) {
5081     C->print_method(PHASE_BEFORE_BEAUTIFY_LOOPS, 3);
5082     if( _ltree_root->_child->beautify_loops( this ) ) {
5083       // Re-build loop tree!
5084       _ltree_root->_child = nullptr;
5085       _loop_or_ctrl.clear();
5086       reallocate_preorders();
5087       build_loop_tree();
5088       // Check for bailout, and return
5089       if (C->failing()) {
5090         return;
5091       }
5092       // Reset loop nesting depth
5093       _ltree_root->set_nest( 0 );
5094 
5095       C->print_method(PHASE_AFTER_BEAUTIFY_LOOPS, 3);
5096     }
5097   }
5098 
5099   // Build Dominators for elision of null checks & loop finding.
5100   // Since nodes do not have a slot for immediate dominator, make
5101   // a persistent side array for that info indexed on node->_idx.
5102   _idom_size = C->unique();
5103   _idom      = NEW_ARENA_ARRAY(&_arena, Node*, _idom_size);
5104   _dom_depth = NEW_ARENA_ARRAY(&_arena, uint,  _idom_size);
5105   _dom_stk   = nullptr; // Allocated on demand in recompute_dom_depth
5106   memset( _dom_depth, 0, _idom_size * sizeof(uint) );
5107 
5108   Dominators();
5109 
5110   if (!_verify_only) {
5111     // As a side effect, Dominators removed any unreachable CFG paths
5112     // into RegionNodes.  It doesn't do this test against Root, so
5113     // we do it here.
5114     for( uint i = 1; i < C->root()->req(); i++ ) {
5115       if (!_loop_or_ctrl[C->root()->in(i)->_idx]) { // Dead path into Root?
5116         _igvn.delete_input_of(C->root(), i);
5117         i--;                      // Rerun same iteration on compressed edges
5118       }
5119     }
5120 
5121     // Given dominators, try to find inner loops with calls that must
5122     // always be executed (call dominates loop tail).  These loops do
5123     // not need a separate safepoint.
5124     Node_List cisstack;
5125     _ltree_root->check_safepts(visited, cisstack);
5126   }
5127 
5128   // Walk the DATA nodes and place into loops.  Find earliest control
5129   // node.  For CFG nodes, the _loop_or_ctrl array starts out and remains
5130   // holding the associated IdealLoopTree pointer.  For DATA nodes, the
5131   // _loop_or_ctrl array holds the earliest legal controlling CFG node.
5132 
5133   // Allocate stack with enough space to avoid frequent realloc
5134   int stack_size = (C->live_nodes() >> 1) + 16; // (live_nodes>>1)+16 from Java2D stats
5135   Node_Stack nstack(stack_size);
5136 
5137   visited.clear();
5138   Node_List worklist;
5139   // Don't need C->root() on worklist since
5140   // it will be processed among C->top() inputs
5141   worklist.push(C->top());
5142   visited.set(C->top()->_idx); // Set C->top() as visited now
5143   build_loop_early( visited, worklist, nstack );
5144 
5145   // Given early legal placement, try finding counted loops.  This placement
5146   // is good enough to discover most loop invariants.
5147   if (!_verify_me && !_verify_only) {
5148     _ltree_root->counted_loop( this );
5149   }
5150 
5151   // Find latest loop placement.  Find ideal loop placement.
5152   visited.clear();
5153   init_dom_lca_tags();
5154   // Need C->root() on worklist when processing outs
5155   worklist.push(C->root());
5156   NOT_PRODUCT( C->verify_graph_edges(); )
5157   worklist.push(C->top());
5158   build_loop_late( visited, worklist, nstack );
5159   if (C->failing()) { return; }
5160 
5161   if (_verify_only) {
5162     C->restore_major_progress(old_progress);
5163     assert(C->unique() == unique, "verification _mode made Nodes? ? ?");
5164     assert(_igvn._worklist.size() == orig_worklist_size, "shouldn't push anything");
5165     return;
5166   }
5167 
5168   // clear out the dead code after build_loop_late
5169   while (_deadlist.size()) {
5170     _igvn.remove_globally_dead_node(_deadlist.pop());
5171   }
5172 
5173   eliminate_useless_zero_trip_guard();
5174   eliminate_useless_multiversion_if();
5175 
5176   if (stop_early) {
5177     assert(do_expensive_nodes, "why are we here?");
5178     if (process_expensive_nodes()) {
5179       // If we made some progress when processing expensive nodes then
5180       // the IGVN may modify the graph in a way that will allow us to
5181       // make some more progress: we need to try processing expensive
5182       // nodes again.
5183       C->set_major_progress();
5184     }
5185     return;
5186   }
5187 
5188   // Some parser-inserted loop predicates could never be used by loop
5189   // predication or they were moved away from loop during some optimizations.
5190   // For example, peeling. Eliminate them before next loop optimizations.
5191   eliminate_useless_predicates();
5192 
5193 #ifndef PRODUCT
5194   C->verify_graph_edges();
5195   if (_verify_me) {             // Nested verify pass?
5196     // Check to see if the verify _mode is broken
5197     assert(C->unique() == unique, "non-optimize _mode made Nodes? ? ?");
5198     return;
5199   }
5200   DEBUG_ONLY( if (VerifyLoopOptimizations) { verify(); } );
5201   if (TraceLoopOpts && C->has_loops()) {
5202     _ltree_root->dump();
5203   }
5204 #endif
5205 
5206   if (skip_loop_opts) {
5207     C->restore_major_progress(old_progress);
5208     return;
5209   }
5210 
5211   if (do_max_unroll) {
5212     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
5213       IdealLoopTree* lpt = iter.current();
5214       if (lpt->is_innermost() && lpt->_allow_optimizations && !lpt->_has_call && lpt->is_counted()) {
5215         lpt->compute_trip_count(this, T_INT);
5216         if (!lpt->do_one_iteration_loop(this) &&
5217             !lpt->do_remove_empty_loop(this)) {
5218           AutoNodeBudget node_budget(this);
5219           if (lpt->_head->as_CountedLoop()->is_normal_loop() &&
5220               lpt->policy_maximally_unroll(this)) {
5221             memset( worklist.adr(), 0, worklist.max()*sizeof(Node*) );
5222             do_maximally_unroll(lpt, worklist);
5223           }
5224         }
5225       }
5226     }
5227 
5228     C->restore_major_progress(old_progress);
5229     return;
5230   }
5231 
5232   if (ReassociateInvariants && !C->major_progress()) {
5233     // Reassociate invariants and prep for split_thru_phi
5234     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
5235       IdealLoopTree* lpt = iter.current();
5236       if (!lpt->is_loop()) {
5237         continue;
5238       }
5239       Node* head = lpt->_head;
5240       if (!lpt->is_innermost()) continue;
5241 
5242       // check for vectorized loops, any reassociation of invariants was already done
5243       if (head->is_CountedLoop() && head->as_CountedLoop()->is_unroll_only()) {
5244         continue;
5245       } else {
5246         AutoNodeBudget node_budget(this);
5247         lpt->reassociate_invariants(this);
5248       }
5249       // Because RCE opportunities can be masked by split_thru_phi,
5250       // look for RCE candidates and inhibit split_thru_phi
5251       // on just their loop-phi's for this pass of loop opts
5252       if (SplitIfBlocks && do_split_ifs &&
5253           head->is_BaseCountedLoop() &&
5254           head->as_BaseCountedLoop()->is_valid_counted_loop(head->as_BaseCountedLoop()->bt()) &&
5255           (lpt->policy_range_check(this, true, T_LONG) ||
5256            (head->is_CountedLoop() && lpt->policy_range_check(this, true, T_INT)))) {
5257         lpt->_rce_candidate = 1; // = true
5258       }
5259     }
5260   }
5261 
5262   // Check for aggressive application of split-if and other transforms
5263   // that require basic-block info (like cloning through Phi's)
5264   if (!C->major_progress() && SplitIfBlocks && do_split_ifs) {
5265     visited.clear();
5266     split_if_with_blocks(visited, nstack);
5267     if (C->failing()) {
5268       return;
5269     }
5270     DEBUG_ONLY( if (VerifyLoopOptimizations) { verify(); } );
5271   }
5272 
5273   if (!C->major_progress() && do_expensive_nodes && process_expensive_nodes()) {
5274     C->set_major_progress();
5275   }
5276 
5277   // Perform loop predication before iteration splitting
5278   if (UseLoopPredicate && C->has_loops() && !C->major_progress() && (C->parse_predicate_count() > 0)) {
5279     _ltree_root->_child->loop_predication(this);
5280   }
5281 
5282   if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) {
5283     if (do_intrinsify_fill()) {
5284       C->set_major_progress();
5285     }
5286   }
5287 
5288   // Perform iteration-splitting on inner loops.  Split iterations to avoid
5289   // range checks or one-shot null checks.
5290 
5291   // If split-if's didn't hack the graph too bad (no CFG changes)
5292   // then do loop opts.
5293   if (C->has_loops() && !C->major_progress()) {
5294     memset( worklist.adr(), 0, worklist.max()*sizeof(Node*) );
5295     _ltree_root->_child->iteration_split( this, worklist );
5296     // No verify after peeling!  GCM has hoisted code out of the loop.
5297     // After peeling, the hoisted code could sink inside the peeled area.
5298     // The peeling code does not try to recompute the best location for
5299     // all the code before the peeled area, so the verify pass will always
5300     // complain about it.
5301   }
5302 
5303   // Check for bailout, and return
5304   if (C->failing()) {
5305     return;
5306   }
5307 
5308   // Do verify graph edges in any case
5309   NOT_PRODUCT( C->verify_graph_edges(); );
5310 
5311   if (!do_split_ifs) {
5312     // We saw major progress in Split-If to get here.  We forced a
5313     // pass with unrolling and not split-if, however more split-if's
5314     // might make progress.  If the unrolling didn't make progress
5315     // then the major-progress flag got cleared and we won't try
5316     // another round of Split-If.  In particular the ever-common
5317     // instance-of/check-cast pattern requires at least 2 rounds of
5318     // Split-If to clear out.
5319     C->set_major_progress();
5320   }
5321 
5322   // Repeat loop optimizations if new loops were seen
5323   if (created_loop_node()) {
5324     C->set_major_progress();
5325   }
5326 
5327   // Auto-vectorize main-loop
5328   if (C->do_superword() && C->has_loops() && !C->major_progress()) {
5329     Compile::TracePhase tp(_t_autoVectorize);
5330 
5331     // Shared data structures for all AutoVectorizations, to reduce allocations
5332     // of large arrays.
5333     VSharedData vshared;
5334     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
5335       IdealLoopTree* lpt = iter.current();
5336       AutoVectorizeStatus status = auto_vectorize(lpt, vshared);
5337 
5338       if (status == AutoVectorizeStatus::TriedAndFailed) {
5339         // We tried vectorization, but failed. From now on only unroll the loop.
5340         CountedLoopNode* cl = lpt->_head->as_CountedLoop();
5341         if (cl->has_passed_slp()) {
5342           C->set_major_progress();
5343           cl->set_notpassed_slp();
5344           cl->mark_do_unroll_only();
5345         }
5346       }
5347     }
5348   }
5349 
5350   // Keep loop predicates and perform optimizations with them
5351   // until no more loop optimizations could be done.
5352   // After that switch predicates off and do more loop optimizations.
5353   if (!C->major_progress() && (C->parse_predicate_count() > 0)) {
5354     C->mark_parse_predicate_nodes_useless(_igvn);
5355     assert(C->parse_predicate_count() == 0, "should be zero now");
5356     if (TraceLoopOpts) {
5357       tty->print_cr("PredicatesOff");
5358     }
5359     C->set_major_progress();
5360   }
5361 }
5362 
5363 #ifndef PRODUCT
5364 //------------------------------print_statistics-------------------------------
5365 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
5366 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
5367 volatile int PhaseIdealLoop::_long_loop_candidates=0; // Number of long loops seen
5368 volatile int PhaseIdealLoop::_long_loop_nests=0; // Number of long loops successfully transformed to a nest
5369 volatile int PhaseIdealLoop::_long_loop_counted_loops=0; // Number of long loops successfully transformed to a counted loop
5370 void PhaseIdealLoop::print_statistics() {
5371   tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d, long loops=%d/%d/%d", _loop_invokes, _loop_work, _long_loop_counted_loops, _long_loop_nests, _long_loop_candidates);
5372 }
5373 #endif
5374 
5375 #ifdef ASSERT
5376 // Build a verify-only PhaseIdealLoop, and see that it agrees with "this".
5377 void PhaseIdealLoop::verify() const {
5378   ResourceMark rm;
5379   bool old_progress = C->major_progress();
5380   bool success = true;
5381 
5382   PhaseIdealLoop phase_verify(_igvn, this);
5383   if (C->failing_internal()) {
5384     return;
5385   }
5386 
5387   // Verify ctrl and idom of every node.
5388   success &= verify_idom_and_nodes(C->root(), &phase_verify);
5389 
5390   // Verify loop-tree.
5391   success &= _ltree_root->verify_tree(phase_verify._ltree_root);
5392 
5393   assert(success, "VerifyLoopOptimizations failed");
5394 
5395   // Major progress was cleared by creating a verify version of PhaseIdealLoop.
5396   C->restore_major_progress(old_progress);
5397 }
5398 
5399 // Perform a BFS starting at n, through all inputs.
5400 // Call verify_idom and verify_node on all nodes of BFS traversal.
5401 bool PhaseIdealLoop::verify_idom_and_nodes(Node* root, const PhaseIdealLoop* phase_verify) const {
5402   Unique_Node_List worklist;
5403   worklist.push(root);
5404   bool success = true;
5405   for (uint i = 0; i < worklist.size(); i++) {
5406     Node* n = worklist.at(i);
5407     // process node
5408     success &= verify_idom(n, phase_verify);
5409     success &= verify_loop_ctrl(n, phase_verify);
5410     // visit inputs
5411     for (uint j = 0; j < n->req(); j++) {
5412       if (n->in(j) != nullptr) {
5413         worklist.push(n->in(j));
5414       }
5415     }
5416   }
5417   return success;
5418 }
5419 
5420 // Verify dominator structure (IDOM).
5421 bool PhaseIdealLoop::verify_idom(Node* n, const PhaseIdealLoop* phase_verify) const {
5422   // Verify IDOM for all CFG nodes (except root).
5423   if (!n->is_CFG() || n->is_Root()) {
5424     return true; // pass
5425   }
5426 
5427   if (n->_idx >= _idom_size) {
5428     tty->print("CFG Node with no idom: ");
5429     n->dump();
5430     return false; // fail
5431   }
5432 
5433   Node* id = idom_no_update(n);
5434   Node* id_verify = phase_verify->idom_no_update(n);
5435   if (id != id_verify) {
5436     tty->print("Mismatching idom for node: ");
5437     n->dump();
5438     tty->print("  We have idom: ");
5439     id->dump();
5440     tty->print("  Verify has idom: ");
5441     id_verify->dump();
5442     tty->cr();
5443     return false; // fail
5444   }
5445   return true; // pass
5446 }
5447 
5448 // Verify "_loop_or_ctrl": control and loop membership.
5449 //  (0) _loop_or_ctrl[i] == nullptr -> node not reachable.
5450 //  (1) has_ctrl -> check lowest bit. 1 -> data node. 0 -> ctrl node.
5451 //  (2) has_ctrl true: get_ctrl_no_update returns ctrl of data node.
5452 //  (3) has_ctrl false: get_loop_idx returns IdealLoopTree for ctrl node.
5453 bool PhaseIdealLoop::verify_loop_ctrl(Node* n, const PhaseIdealLoop* phase_verify) const {
5454   const uint i = n->_idx;
5455   // The loop-tree was built from def to use (top-down).
5456   // The verification happens from use to def (bottom-up).
5457   // We may thus find nodes during verification that are not in the loop-tree.
5458   if (_loop_or_ctrl[i] == nullptr || phase_verify->_loop_or_ctrl[i] == nullptr) {
5459     if (_loop_or_ctrl[i] != nullptr || phase_verify->_loop_or_ctrl[i] != nullptr) {
5460       tty->print_cr("Was reachable in only one. this %d, verify %d.",
5461                  _loop_or_ctrl[i] != nullptr, phase_verify->_loop_or_ctrl[i] != nullptr);
5462       n->dump();
5463       return false; // fail
5464     }
5465     // Not reachable for both.
5466     return true; // pass
5467   }
5468 
5469   if (n->is_CFG() == has_ctrl(n)) {
5470     tty->print_cr("Exactly one should be true: %d for is_CFG, %d for has_ctrl.", n->is_CFG(), has_ctrl(n));
5471     n->dump();
5472     return false; // fail
5473   }
5474 
5475   if (has_ctrl(n) != phase_verify->has_ctrl(n)) {
5476     tty->print_cr("Mismatch has_ctrl: %d for this, %d for verify.", has_ctrl(n), phase_verify->has_ctrl(n));
5477     n->dump();
5478     return false; // fail
5479   } else if (has_ctrl(n)) {
5480     assert(phase_verify->has_ctrl(n), "sanity");
5481     // n is a data node.
5482     // Verify that its ctrl is the same.
5483 
5484     // Broken part of VerifyLoopOptimizations (A)
5485     // Reason:
5486     //   BUG, wrong control set for example in
5487     //   PhaseIdealLoop::split_if_with_blocks
5488     //   at "set_ctrl(x, new_ctrl);"
5489     /*
5490     if( _loop_or_ctrl[i] != loop_verify->_loop_or_ctrl[i] &&
5491         get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
5492       tty->print("Mismatched control setting for: ");
5493       n->dump();
5494       if( fail++ > 10 ) return;
5495       Node *c = get_ctrl_no_update(n);
5496       tty->print("We have it as: ");
5497       if( c->in(0) ) c->dump();
5498         else tty->print_cr("N%d",c->_idx);
5499       tty->print("Verify thinks: ");
5500       if( loop_verify->has_ctrl(n) )
5501         loop_verify->get_ctrl_no_update(n)->dump();
5502       else
5503         loop_verify->get_loop_idx(n)->dump();
5504       tty->cr();
5505     }
5506     */
5507     return true; // pass
5508   } else {
5509     assert(!phase_verify->has_ctrl(n), "sanity");
5510     // n is a ctrl node.
5511     // Verify that not has_ctrl, and that get_loop_idx is the same.
5512 
5513     // Broken part of VerifyLoopOptimizations (B)
5514     // Reason:
5515     //   NeverBranch node for example is added to loop outside its scope.
5516     //   Once we run build_loop_tree again, it is added to the correct loop.
5517     /*
5518     if (!C->major_progress()) {
5519       // Loop selection can be messed up if we did a major progress
5520       // operation, like split-if.  Do not verify in that case.
5521       IdealLoopTree *us = get_loop_idx(n);
5522       IdealLoopTree *them = loop_verify->get_loop_idx(n);
5523       if( us->_head != them->_head ||  us->_tail != them->_tail ) {
5524         tty->print("Unequals loops for: ");
5525         n->dump();
5526         if( fail++ > 10 ) return;
5527         tty->print("We have it as: ");
5528         us->dump();
5529         tty->print("Verify thinks: ");
5530         them->dump();
5531         tty->cr();
5532       }
5533     }
5534     */
5535     return true; // pass
5536   }
5537 }
5538 
5539 static int compare_tree(IdealLoopTree* const& a, IdealLoopTree* const& b) {
5540   assert(a != nullptr && b != nullptr, "must be");
5541   return a->_head->_idx - b->_head->_idx;
5542 }
5543 
5544 GrowableArray<IdealLoopTree*> IdealLoopTree::collect_sorted_children() const {
5545   GrowableArray<IdealLoopTree*> children;
5546   IdealLoopTree* child = _child;
5547   while (child != nullptr) {
5548     assert(child->_parent == this, "all must be children of this");
5549     children.insert_sorted<compare_tree>(child);
5550     child = child->_next;
5551   }
5552   return children;
5553 }
5554 
5555 // Verify that tree structures match. Because the CFG can change, siblings
5556 // within the loop tree can be reordered. We attempt to deal with that by
5557 // reordering the verify's loop tree if possible.
5558 bool IdealLoopTree::verify_tree(IdealLoopTree* loop_verify) const {
5559   assert(_head == loop_verify->_head, "mismatched loop head");
5560   assert(this->_parent != nullptr || this->_next == nullptr, "is_root_loop implies has_no_sibling");
5561 
5562   // Collect the children
5563   GrowableArray<IdealLoopTree*> children = collect_sorted_children();
5564   GrowableArray<IdealLoopTree*> children_verify = loop_verify->collect_sorted_children();
5565 
5566   bool success = true;
5567 
5568   // Compare the two children lists
5569   for (int i = 0, j = 0; i < children.length() || j < children_verify.length(); ) {
5570     IdealLoopTree* child        = nullptr;
5571     IdealLoopTree* child_verify = nullptr;
5572     // Read from both lists, if possible.
5573     if (i < children.length()) {
5574       child = children.at(i);
5575     }
5576     if (j < children_verify.length()) {
5577       child_verify = children_verify.at(j);
5578     }
5579     assert(child != nullptr || child_verify != nullptr, "must find at least one");
5580     if (child != nullptr && child_verify != nullptr && child->_head != child_verify->_head) {
5581       // We found two non-equal children. Select the smaller one.
5582       if (child->_head->_idx < child_verify->_head->_idx) {
5583         child_verify = nullptr;
5584       } else {
5585         child = nullptr;
5586       }
5587     }
5588     // Process the two children, or potentially log the failure if we only found one.
5589     if (child_verify == nullptr) {
5590       if (child->_irreducible && Compile::current()->major_progress()) {
5591         // Irreducible loops can pick a different header (one of its entries).
5592       } else {
5593         tty->print_cr("We have a loop that verify does not have");
5594         child->dump();
5595         success = false;
5596       }
5597       i++; // step for this
5598     } else if (child == nullptr) {
5599       if (child_verify->_irreducible && Compile::current()->major_progress()) {
5600         // Irreducible loops can pick a different header (one of its entries).
5601       } else if (child_verify->_head->as_Region()->is_in_infinite_subgraph()) {
5602         // Infinite loops do not get attached to the loop-tree on their first visit.
5603         // "this" runs before "loop_verify". It is thus possible that we find the
5604         // infinite loop only for "child_verify". Only finding it with "child" would
5605         // mean that we lost it, which is not ok.
5606       } else {
5607         tty->print_cr("Verify has a loop that we do not have");
5608         child_verify->dump();
5609         success = false;
5610       }
5611       j++; // step for verify
5612     } else {
5613       assert(child->_head == child_verify->_head, "We have both and they are equal");
5614       success &= child->verify_tree(child_verify); // Recursion
5615       i++; // step for this
5616       j++; // step for verify
5617     }
5618   }
5619 
5620   // Broken part of VerifyLoopOptimizations (D)
5621   // Reason:
5622   //   split_if has to update the _tail, if it is modified. But that is done by
5623   //   checking to what loop the iff belongs to. That info can be wrong, and then
5624   //   we do not update the _tail correctly.
5625   /*
5626   Node *tail = _tail;           // Inline a non-updating version of
5627   while( !tail->in(0) )         // the 'tail()' call.
5628     tail = tail->in(1);
5629   assert( tail == loop->_tail, "mismatched loop tail" );
5630   */
5631 
5632   if (_head->is_CountedLoop()) {
5633     CountedLoopNode *cl = _head->as_CountedLoop();
5634 
5635     Node* ctrl     = cl->init_control();
5636     Node* back     = cl->back_control();
5637     assert(ctrl != nullptr && ctrl->is_CFG(), "sane loop in-ctrl");
5638     assert(back != nullptr && back->is_CFG(), "sane loop backedge");
5639     cl->loopexit(); // assert implied
5640   }
5641 
5642   // Broken part of VerifyLoopOptimizations (E)
5643   // Reason:
5644   //   PhaseIdealLoop::split_thru_region creates new nodes for loop that are not added
5645   //   to the loop body. Or maybe they are not added to the correct loop.
5646   //   at "Node* x = n->clone();"
5647   /*
5648   // Innermost loops need to verify loop bodies,
5649   // but only if no 'major_progress'
5650   int fail = 0;
5651   if (!Compile::current()->major_progress() && _child == nullptr) {
5652     for( uint i = 0; i < _body.size(); i++ ) {
5653       Node *n = _body.at(i);
5654       if (n->outcnt() == 0)  continue; // Ignore dead
5655       uint j;
5656       for( j = 0; j < loop->_body.size(); j++ )
5657         if( loop->_body.at(j) == n )
5658           break;
5659       if( j == loop->_body.size() ) { // Not found in loop body
5660         // Last ditch effort to avoid assertion: Its possible that we
5661         // have some users (so outcnt not zero) but are still dead.
5662         // Try to find from root.
5663         if (Compile::current()->root()->find(n->_idx)) {
5664           fail++;
5665           tty->print("We have that verify does not: ");
5666           n->dump();
5667         }
5668       }
5669     }
5670     for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
5671       Node *n = loop->_body.at(i2);
5672       if (n->outcnt() == 0)  continue; // Ignore dead
5673       uint j;
5674       for( j = 0; j < _body.size(); j++ )
5675         if( _body.at(j) == n )
5676           break;
5677       if( j == _body.size() ) { // Not found in loop body
5678         // Last ditch effort to avoid assertion: Its possible that we
5679         // have some users (so outcnt not zero) but are still dead.
5680         // Try to find from root.
5681         if (Compile::current()->root()->find(n->_idx)) {
5682           fail++;
5683           tty->print("Verify has that we do not: ");
5684           n->dump();
5685         }
5686       }
5687     }
5688     assert( !fail, "loop body mismatch" );
5689   }
5690   */
5691   return success;
5692 }
5693 #endif
5694 
5695 //------------------------------set_idom---------------------------------------
5696 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
5697   _nesting.check(); // Check if a potential reallocation in the resource arena is safe
5698   uint idx = d->_idx;
5699   if (idx >= _idom_size) {
5700     uint newsize = next_power_of_2(idx);
5701     _idom      = REALLOC_ARENA_ARRAY(&_arena, Node*,     _idom,_idom_size,newsize);
5702     _dom_depth = REALLOC_ARENA_ARRAY(&_arena,  uint, _dom_depth,_idom_size,newsize);
5703     memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
5704     _idom_size = newsize;
5705   }
5706   _idom[idx] = n;
5707   _dom_depth[idx] = dom_depth;
5708 }
5709 
5710 //------------------------------recompute_dom_depth---------------------------------------
5711 // The dominator tree is constructed with only parent pointers.
5712 // This recomputes the depth in the tree by first tagging all
5713 // nodes as "no depth yet" marker.  The next pass then runs up
5714 // the dom tree from each node marked "no depth yet", and computes
5715 // the depth on the way back down.
5716 void PhaseIdealLoop::recompute_dom_depth() {
5717   uint no_depth_marker = C->unique();
5718   uint i;
5719   // Initialize depth to "no depth yet" and realize all lazy updates
5720   for (i = 0; i < _idom_size; i++) {
5721     // Only indices with a _dom_depth has a Node* or null (otherwise uninitialized).
5722     if (_dom_depth[i] > 0 && _idom[i] != nullptr) {
5723       _dom_depth[i] = no_depth_marker;
5724 
5725       // heal _idom if it has a fwd mapping in _loop_or_ctrl
5726       if (_idom[i]->in(0) == nullptr) {
5727         idom(i);
5728       }
5729     }
5730   }
5731   if (_dom_stk == nullptr) {
5732     uint init_size = C->live_nodes() / 100; // Guess that 1/100 is a reasonable initial size.
5733     if (init_size < 10) init_size = 10;
5734     _dom_stk = new GrowableArray<uint>(init_size);
5735   }
5736   // Compute new depth for each node.
5737   for (i = 0; i < _idom_size; i++) {
5738     uint j = i;
5739     // Run up the dom tree to find a node with a depth
5740     while (_dom_depth[j] == no_depth_marker) {
5741       _dom_stk->push(j);
5742       j = _idom[j]->_idx;
5743     }
5744     // Compute the depth on the way back down this tree branch
5745     uint dd = _dom_depth[j] + 1;
5746     while (_dom_stk->length() > 0) {
5747       uint j = _dom_stk->pop();
5748       _dom_depth[j] = dd;
5749       dd++;
5750     }
5751   }
5752 }
5753 
5754 //------------------------------sort-------------------------------------------
5755 // Insert 'loop' into the existing loop tree.  'innermost' is a leaf of the
5756 // loop tree, not the root.
5757 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
5758   if( !innermost ) return loop; // New innermost loop
5759 
5760   int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
5761   assert( loop_preorder, "not yet post-walked loop" );
5762   IdealLoopTree **pp = &innermost;      // Pointer to previous next-pointer
5763   IdealLoopTree *l = *pp;               // Do I go before or after 'l'?
5764 
5765   // Insert at start of list
5766   while( l ) {                  // Insertion sort based on pre-order
5767     if( l == loop ) return innermost; // Already on list!
5768     int l_preorder = get_preorder(l->_head); // Cache pre-order number
5769     assert( l_preorder, "not yet post-walked l" );
5770     // Check header pre-order number to figure proper nesting
5771     if( loop_preorder > l_preorder )
5772       break;                    // End of insertion
5773     // If headers tie (e.g., shared headers) check tail pre-order numbers.
5774     // Since I split shared headers, you'd think this could not happen.
5775     // BUT: I must first do the preorder numbering before I can discover I
5776     // have shared headers, so the split headers all get the same preorder
5777     // number as the RegionNode they split from.
5778     if( loop_preorder == l_preorder &&
5779         get_preorder(loop->_tail) < get_preorder(l->_tail) )
5780       break;                    // Also check for shared headers (same pre#)
5781     pp = &l->_parent;           // Chain up list
5782     l = *pp;
5783   }
5784   // Link into list
5785   // Point predecessor to me
5786   *pp = loop;
5787   // Point me to successor
5788   IdealLoopTree *p = loop->_parent;
5789   loop->_parent = l;            // Point me to successor
5790   if( p ) sort( p, innermost ); // Insert my parents into list as well
5791   return innermost;
5792 }
5793 
5794 //------------------------------build_loop_tree--------------------------------
5795 // I use a modified Vick/Tarjan algorithm.  I need pre- and a post- visit
5796 // bits.  The _loop_or_ctrl[] array is mapped by Node index and holds a null for
5797 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
5798 // tightest enclosing IdealLoopTree for post-walked.
5799 //
5800 // During my forward walk I do a short 1-layer lookahead to see if I can find
5801 // a loop backedge with that doesn't have any work on the backedge.  This
5802 // helps me construct nested loops with shared headers better.
5803 //
5804 // Once I've done the forward recursion, I do the post-work.  For each child
5805 // I check to see if there is a backedge.  Backedges define a loop!  I
5806 // insert an IdealLoopTree at the target of the backedge.
5807 //
5808 // During the post-work I also check to see if I have several children
5809 // belonging to different loops.  If so, then this Node is a decision point
5810 // where control flow can choose to change loop nests.  It is at this
5811 // decision point where I can figure out how loops are nested.  At this
5812 // time I can properly order the different loop nests from my children.
5813 // Note that there may not be any backedges at the decision point!
5814 //
5815 // Since the decision point can be far removed from the backedges, I can't
5816 // order my loops at the time I discover them.  Thus at the decision point
5817 // I need to inspect loop header pre-order numbers to properly nest my
5818 // loops.  This means I need to sort my childrens' loops by pre-order.
5819 // The sort is of size number-of-control-children, which generally limits
5820 // it to size 2 (i.e., I just choose between my 2 target loops).
5821 void PhaseIdealLoop::build_loop_tree() {
5822   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
5823   GrowableArray <Node *> bltstack(C->live_nodes() >> 1);
5824   Node *n = C->root();
5825   bltstack.push(n);
5826   int pre_order = 1;
5827   int stack_size;
5828 
5829   while ( ( stack_size = bltstack.length() ) != 0 ) {
5830     n = bltstack.top(); // Leave node on stack
5831     if ( !is_visited(n) ) {
5832       // ---- Pre-pass Work ----
5833       // Pre-walked but not post-walked nodes need a pre_order number.
5834 
5835       set_preorder_visited( n, pre_order ); // set as visited
5836 
5837       // ---- Scan over children ----
5838       // Scan first over control projections that lead to loop headers.
5839       // This helps us find inner-to-outer loops with shared headers better.
5840 
5841       // Scan children's children for loop headers.
5842       for ( int i = n->outcnt() - 1; i >= 0; --i ) {
5843         Node* m = n->raw_out(i);       // Child
5844         if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
5845           // Scan over children's children to find loop
5846           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
5847             Node* l = m->fast_out(j);
5848             if( is_visited(l) &&       // Been visited?
5849                 !is_postvisited(l) &&  // But not post-visited
5850                 get_preorder(l) < pre_order ) { // And smaller pre-order
5851               // Found!  Scan the DFS down this path before doing other paths
5852               bltstack.push(m);
5853               break;
5854             }
5855           }
5856         }
5857       }
5858       pre_order++;
5859     }
5860     else if ( !is_postvisited(n) ) {
5861       // Note: build_loop_tree_impl() adds out edges on rare occasions,
5862       // such as com.sun.rsasign.am::a.
5863       // For non-recursive version, first, process current children.
5864       // On next iteration, check if additional children were added.
5865       for ( int k = n->outcnt() - 1; k >= 0; --k ) {
5866         Node* u = n->raw_out(k);
5867         if ( u->is_CFG() && !is_visited(u) ) {
5868           bltstack.push(u);
5869         }
5870       }
5871       if ( bltstack.length() == stack_size ) {
5872         // There were no additional children, post visit node now
5873         (void)bltstack.pop(); // Remove node from stack
5874         pre_order = build_loop_tree_impl(n, pre_order);
5875         // Check for bailout
5876         if (C->failing()) {
5877           return;
5878         }
5879         // Check to grow _preorders[] array for the case when
5880         // build_loop_tree_impl() adds new nodes.
5881         check_grow_preorders();
5882       }
5883     }
5884     else {
5885       (void)bltstack.pop(); // Remove post-visited node from stack
5886     }
5887   }
5888   DEBUG_ONLY(verify_regions_in_irreducible_loops();)
5889 }
5890 
5891 //------------------------------build_loop_tree_impl---------------------------
5892 int PhaseIdealLoop::build_loop_tree_impl(Node* n, int pre_order) {
5893   // ---- Post-pass Work ----
5894   // Pre-walked but not post-walked nodes need a pre_order number.
5895 
5896   // Tightest enclosing loop for this Node
5897   IdealLoopTree *innermost = nullptr;
5898 
5899   // For all children, see if any edge is a backedge.  If so, make a loop
5900   // for it.  Then find the tightest enclosing loop for the self Node.
5901   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
5902     Node* m = n->fast_out(i);   // Child
5903     if (n == m) continue;      // Ignore control self-cycles
5904     if (!m->is_CFG()) continue;// Ignore non-CFG edges
5905 
5906     IdealLoopTree *l;           // Child's loop
5907     if (!is_postvisited(m)) {  // Child visited but not post-visited?
5908       // Found a backedge
5909       assert(get_preorder(m) < pre_order, "should be backedge");
5910       // Check for the RootNode, which is already a LoopNode and is allowed
5911       // to have multiple "backedges".
5912       if (m == C->root()) {     // Found the root?
5913         l = _ltree_root;        // Root is the outermost LoopNode
5914       } else {                  // Else found a nested loop
5915         // Insert a LoopNode to mark this loop.
5916         l = new IdealLoopTree(this, m, n);
5917       } // End of Else found a nested loop
5918       if (!has_loop(m)) {        // If 'm' does not already have a loop set
5919         set_loop(m, l);         // Set loop header to loop now
5920       }
5921     } else {                    // Else not a nested loop
5922       if (!_loop_or_ctrl[m->_idx]) continue; // Dead code has no loop
5923       IdealLoopTree* m_loop = get_loop(m);
5924       l = m_loop;          // Get previously determined loop
5925       // If successor is header of a loop (nest), move up-loop till it
5926       // is a member of some outer enclosing loop.  Since there are no
5927       // shared headers (I've split them already) I only need to go up
5928       // at most 1 level.
5929       while (l && l->_head == m) { // Successor heads loop?
5930         l = l->_parent;         // Move up 1 for me
5931       }
5932       // If this loop is not properly parented, then this loop
5933       // has no exit path out, i.e. its an infinite loop.
5934       if (!l) {
5935         // Make loop "reachable" from root so the CFG is reachable.  Basically
5936         // insert a bogus loop exit that is never taken.  'm', the loop head,
5937         // points to 'n', one (of possibly many) fall-in paths.  There may be
5938         // many backedges as well.
5939 
5940         if (!_verify_only) {
5941           // Insert the NeverBranch between 'm' and it's control user.
5942           NeverBranchNode *iff = new NeverBranchNode( m );
5943           _igvn.register_new_node_with_optimizer(iff);
5944           set_loop(iff, m_loop);
5945           Node *if_t = new CProjNode( iff, 0 );
5946           _igvn.register_new_node_with_optimizer(if_t);
5947           set_loop(if_t, m_loop);
5948 
5949           Node* cfg = nullptr;       // Find the One True Control User of m
5950           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
5951             Node* x = m->fast_out(j);
5952             if (x->is_CFG() && x != m && x != iff)
5953               { cfg = x; break; }
5954           }
5955           assert(cfg != nullptr, "must find the control user of m");
5956           uint k = 0;             // Probably cfg->in(0)
5957           while( cfg->in(k) != m ) k++; // But check in case cfg is a Region
5958           _igvn.replace_input_of(cfg, k, if_t); // Now point to NeverBranch
5959 
5960           // Now create the never-taken loop exit
5961           Node *if_f = new CProjNode( iff, 1 );
5962           _igvn.register_new_node_with_optimizer(if_f);
5963           set_loop(if_f, _ltree_root);
5964           // Find frame ptr for Halt.  Relies on the optimizer
5965           // V-N'ing.  Easier and quicker than searching through
5966           // the program structure.
5967           Node *frame = new ParmNode( C->start(), TypeFunc::FramePtr );
5968           _igvn.register_new_node_with_optimizer(frame);
5969           // Halt & Catch Fire
5970           Node* halt = new HaltNode(if_f, frame, "never-taken loop exit reached");
5971           _igvn.register_new_node_with_optimizer(halt);
5972           set_loop(halt, _ltree_root);
5973           _igvn.add_input_to(C->root(), halt);
5974         }
5975         set_loop(C->root(), _ltree_root);
5976         // move to outer most loop with same header
5977         l = m_loop;
5978         while (true) {
5979           IdealLoopTree* next = l->_parent;
5980           if (next == nullptr || next->_head != m) {
5981             break;
5982           }
5983           l = next;
5984         }
5985         // properly insert infinite loop in loop tree
5986         sort(_ltree_root, l);
5987         // fix child link from parent
5988         IdealLoopTree* p = l->_parent;
5989         l->_next = p->_child;
5990         p->_child = l;
5991         // code below needs enclosing loop
5992         l = l->_parent;
5993       }
5994     }
5995     if (is_postvisited(l->_head)) {
5996       // We are currently visiting l, but its head has already been post-visited.
5997       // l is irreducible: we just found a second entry m.
5998       _has_irreducible_loops = true;
5999       RegionNode* secondary_entry = m->as_Region();
6000 
6001       if (!secondary_entry->can_be_irreducible_entry()) {
6002         assert(!VerifyNoNewIrreducibleLoops, "A new irreducible loop was created after parsing.");
6003         C->record_method_not_compilable("A new irreducible loop was created after parsing.");
6004         return pre_order;
6005       }
6006 
6007       // Walk up the loop-tree, mark all loops that are already post-visited as irreducible
6008       // Since m is a secondary entry to them all.
6009       while( is_postvisited(l->_head) ) {
6010         l->_irreducible = 1; // = true
6011         RegionNode* head = l->_head->as_Region();
6012         if (!head->can_be_irreducible_entry()) {
6013           assert(!VerifyNoNewIrreducibleLoops, "A new irreducible loop was created after parsing.");
6014           C->record_method_not_compilable("A new irreducible loop was created after parsing.");
6015           return pre_order;
6016         }
6017         l = l->_parent;
6018         // Check for bad CFG here to prevent crash, and bailout of compile
6019         if (l == nullptr) {
6020 #ifndef PRODUCT
6021           if (TraceLoopOpts) {
6022             tty->print_cr("bailout: unhandled CFG: infinite irreducible loop");
6023             m->dump();
6024           }
6025 #endif
6026           // This is a rare case that we do not want to handle in C2.
6027           C->record_method_not_compilable("unhandled CFG detected during loop optimization");
6028           return pre_order;
6029         }
6030       }
6031     }
6032     if (!_verify_only) {
6033       C->set_has_irreducible_loop(_has_irreducible_loops);
6034     }
6035 
6036     // This Node might be a decision point for loops.  It is only if
6037     // it's children belong to several different loops.  The sort call
6038     // does a trivial amount of work if there is only 1 child or all
6039     // children belong to the same loop.  If however, the children
6040     // belong to different loops, the sort call will properly set the
6041     // _parent pointers to show how the loops nest.
6042     //
6043     // In any case, it returns the tightest enclosing loop.
6044     innermost = sort( l, innermost );
6045   }
6046 
6047   // Def-use info will have some dead stuff; dead stuff will have no
6048   // loop decided on.
6049 
6050   // Am I a loop header?  If so fix up my parent's child and next ptrs.
6051   if( innermost && innermost->_head == n ) {
6052     assert( get_loop(n) == innermost, "" );
6053     IdealLoopTree *p = innermost->_parent;
6054     IdealLoopTree *l = innermost;
6055     while (p && l->_head == n) {
6056       l->_next = p->_child;     // Put self on parents 'next child'
6057       p->_child = l;            // Make self as first child of parent
6058       l = p;                    // Now walk up the parent chain
6059       p = l->_parent;
6060     }
6061   } else {
6062     // Note that it is possible for a LoopNode to reach here, if the
6063     // backedge has been made unreachable (hence the LoopNode no longer
6064     // denotes a Loop, and will eventually be removed).
6065 
6066     // Record tightest enclosing loop for self.  Mark as post-visited.
6067     set_loop(n, innermost);
6068     // Also record has_call flag early on
6069     if (innermost) {
6070       if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
6071         // Do not count uncommon calls
6072         if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
6073           Node *iff = n->in(0)->in(0);
6074           // No any calls for vectorized loops.
6075           if (C->do_superword() ||
6076               !iff->is_If() ||
6077               (n->in(0)->Opcode() == Op_IfFalse && (1.0 - iff->as_If()->_prob) >= 0.01) ||
6078               iff->as_If()->_prob >= 0.01) {
6079             innermost->_has_call = 1;
6080           }
6081         }
6082       } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
6083         // Disable loop optimizations if the loop has a scalar replaceable
6084         // allocation. This disabling may cause a potential performance lost
6085         // if the allocation is not eliminated for some reason.
6086         innermost->_allow_optimizations = false;
6087         innermost->_has_call = 1; // = true
6088       } else if (n->Opcode() == Op_SafePoint) {
6089         // Record all safepoints in this loop.
6090         if (innermost->_safepts == nullptr) innermost->_safepts = new Node_List();
6091         innermost->_safepts->push(n);
6092       }
6093     }
6094   }
6095 
6096   // Flag as post-visited now
6097   set_postvisited(n);
6098   return pre_order;
6099 }
6100 
6101 #ifdef ASSERT
6102 //--------------------------verify_regions_in_irreducible_loops----------------
6103 // Iterate down from Root through CFG, verify for every region:
6104 // if it is in an irreducible loop it must be marked as such
6105 void PhaseIdealLoop::verify_regions_in_irreducible_loops() {
6106   ResourceMark rm;
6107   if (!_has_irreducible_loops) {
6108     // last build_loop_tree has not found any irreducible loops
6109     // hence no region has to be marked is_in_irreduible_loop
6110     return;
6111   }
6112 
6113   RootNode* root = C->root();
6114   Unique_Node_List worklist; // visit all nodes once
6115   worklist.push(root);
6116   bool failure = false;
6117   for (uint i = 0; i < worklist.size(); i++) {
6118     Node* n = worklist.at(i);
6119     if (n->is_Region()) {
6120       RegionNode* region = n->as_Region();
6121       if (is_in_irreducible_loop(region) &&
6122           region->loop_status() == RegionNode::LoopStatus::Reducible) {
6123         failure = true;
6124         tty->print("irreducible! ");
6125         region->dump();
6126       }
6127     }
6128     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
6129       Node* use = n->fast_out(j);
6130       if (use->is_CFG()) {
6131         worklist.push(use); // push if was not pushed before
6132       }
6133     }
6134   }
6135   assert(!failure, "region in irreducible loop was marked as reducible");
6136 }
6137 
6138 //---------------------------is_in_irreducible_loop-------------------------
6139 // Analogous to ciTypeFlow::Block::is_in_irreducible_loop
6140 bool PhaseIdealLoop::is_in_irreducible_loop(RegionNode* region) {
6141   if (!_has_irreducible_loops) {
6142     return false; // no irreducible loop in graph
6143   }
6144   IdealLoopTree* l = get_loop(region); // l: innermost loop that contains region
6145   do {
6146     if (l->_irreducible) {
6147       return true; // found it
6148     }
6149     if (l == _ltree_root) {
6150       return false; // reached root, terimnate
6151     }
6152     l = l->_parent;
6153   } while (l != nullptr);
6154   assert(region->is_in_infinite_subgraph(), "must be in infinite subgraph");
6155   // We have "l->_parent == nullptr", which happens only for infinite loops,
6156   // where no parent is attached to the loop. We did not find any irreducible
6157   // loop from this block out to lp. Thus lp only has one entry, and no exit
6158   // (it is infinite and reducible). We can always rewrite an infinite loop
6159   // that is nested inside other loops:
6160   // while(condition) { infinite_loop; }
6161   // with an equivalent program where the infinite loop is an outermost loop
6162   // that is not nested in any loop:
6163   // while(condition) { break; } infinite_loop;
6164   // Thus, we can understand lp as an outermost loop, and can terminate and
6165   // conclude: this block is in no irreducible loop.
6166   return false;
6167 }
6168 #endif
6169 
6170 //------------------------------build_loop_early-------------------------------
6171 // Put Data nodes into some loop nest, by setting the _loop_or_ctrl[]->loop mapping.
6172 // First pass computes the earliest controlling node possible.  This is the
6173 // controlling input with the deepest dominating depth.
6174 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
6175   while (worklist.size() != 0) {
6176     // Use local variables nstack_top_n & nstack_top_i to cache values
6177     // on nstack's top.
6178     Node *nstack_top_n = worklist.pop();
6179     uint  nstack_top_i = 0;
6180 //while_nstack_nonempty:
6181     while (true) {
6182       // Get parent node and next input's index from stack's top.
6183       Node  *n = nstack_top_n;
6184       uint   i = nstack_top_i;
6185       uint cnt = n->req(); // Count of inputs
6186       if (i == 0) {        // Pre-process the node.
6187         if( has_node(n) &&            // Have either loop or control already?
6188             !has_ctrl(n) ) {          // Have loop picked out already?
6189           // During "merge_many_backedges" we fold up several nested loops
6190           // into a single loop.  This makes the members of the original
6191           // loop bodies pointing to dead loops; they need to move up
6192           // to the new UNION'd larger loop.  I set the _head field of these
6193           // dead loops to null and the _parent field points to the owning
6194           // loop.  Shades of UNION-FIND algorithm.
6195           IdealLoopTree *ilt;
6196           while( !(ilt = get_loop(n))->_head ) {
6197             // Normally I would use a set_loop here.  But in this one special
6198             // case, it is legal (and expected) to change what loop a Node
6199             // belongs to.
6200             _loop_or_ctrl.map(n->_idx, (Node*)(ilt->_parent));
6201           }
6202           // Remove safepoints ONLY if I've already seen I don't need one.
6203           // (the old code here would yank a 2nd safepoint after seeing a
6204           // first one, even though the 1st did not dominate in the loop body
6205           // and thus could be avoided indefinitely)
6206           if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
6207               is_deleteable_safept(n)) {
6208             Node *in = n->in(TypeFunc::Control);
6209             replace_node_and_forward_ctrl(n, in); // Pull safepoint now
6210             if (ilt->_safepts != nullptr) {
6211               ilt->_safepts->yank(n);
6212             }
6213             // Carry on with the recursion "as if" we are walking
6214             // only the control input
6215             if( !visited.test_set( in->_idx ) ) {
6216               worklist.push(in);      // Visit this guy later, using worklist
6217             }
6218             // Get next node from nstack:
6219             // - skip n's inputs processing by setting i > cnt;
6220             // - we also will not call set_early_ctrl(n) since
6221             //   has_node(n) == true (see the condition above).
6222             i = cnt + 1;
6223           }
6224         }
6225       } // if (i == 0)
6226 
6227       // Visit all inputs
6228       bool done = true;       // Assume all n's inputs will be processed
6229       while (i < cnt) {
6230         Node *in = n->in(i);
6231         ++i;
6232         if (in == nullptr) continue;
6233         if (in->pinned() && !in->is_CFG())
6234           set_ctrl(in, in->in(0));
6235         int is_visited = visited.test_set( in->_idx );
6236         if (!has_node(in)) {  // No controlling input yet?
6237           assert( !in->is_CFG(), "CFG Node with no controlling input?" );
6238           assert( !is_visited, "visit only once" );
6239           nstack.push(n, i);  // Save parent node and next input's index.
6240           nstack_top_n = in;  // Process current input now.
6241           nstack_top_i = 0;
6242           done = false;       // Not all n's inputs processed.
6243           break; // continue while_nstack_nonempty;
6244         } else if (!is_visited) {
6245           // This guy has a location picked out for him, but has not yet
6246           // been visited.  Happens to all CFG nodes, for instance.
6247           // Visit him using the worklist instead of recursion, to break
6248           // cycles.  Since he has a location already we do not need to
6249           // find his location before proceeding with the current Node.
6250           worklist.push(in);  // Visit this guy later, using worklist
6251         }
6252       }
6253       if (done) {
6254         // All of n's inputs have been processed, complete post-processing.
6255 
6256         // Compute earliest point this Node can go.
6257         // CFG, Phi, pinned nodes already know their controlling input.
6258         if (!has_node(n)) {
6259           // Record earliest legal location
6260           set_early_ctrl(n, false);
6261         }
6262         if (nstack.is_empty()) {
6263           // Finished all nodes on stack.
6264           // Process next node on the worklist.
6265           break;
6266         }
6267         // Get saved parent node and next input's index.
6268         nstack_top_n = nstack.node();
6269         nstack_top_i = nstack.index();
6270         nstack.pop();
6271       }
6272     } // while (true)
6273   }
6274 }
6275 
6276 //------------------------------dom_lca_internal--------------------------------
6277 // Pair-wise LCA
6278 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
6279   if( !n1 ) return n2;          // Handle null original LCA
6280   assert( n1->is_CFG(), "" );
6281   assert( n2->is_CFG(), "" );
6282   // find LCA of all uses
6283   uint d1 = dom_depth(n1);
6284   uint d2 = dom_depth(n2);
6285   while (n1 != n2) {
6286     if (d1 > d2) {
6287       n1 =      idom(n1);
6288       d1 = dom_depth(n1);
6289     } else if (d1 < d2) {
6290       n2 =      idom(n2);
6291       d2 = dom_depth(n2);
6292     } else {
6293       // Here d1 == d2.  Due to edits of the dominator-tree, sections
6294       // of the tree might have the same depth.  These sections have
6295       // to be searched more carefully.
6296 
6297       // Scan up all the n1's with equal depth, looking for n2.
6298       Node *t1 = idom(n1);
6299       while (dom_depth(t1) == d1) {
6300         if (t1 == n2)  return n2;
6301         t1 = idom(t1);
6302       }
6303       // Scan up all the n2's with equal depth, looking for n1.
6304       Node *t2 = idom(n2);
6305       while (dom_depth(t2) == d2) {
6306         if (t2 == n1)  return n1;
6307         t2 = idom(t2);
6308       }
6309       // Move up to a new dominator-depth value as well as up the dom-tree.
6310       n1 = t1;
6311       n2 = t2;
6312       d1 = dom_depth(n1);
6313       d2 = dom_depth(n2);
6314     }
6315   }
6316   return n1;
6317 }
6318 
6319 //------------------------------compute_idom-----------------------------------
6320 // Locally compute IDOM using dom_lca call.  Correct only if the incoming
6321 // IDOMs are correct.
6322 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
6323   assert( region->is_Region(), "" );
6324   Node *LCA = nullptr;
6325   for( uint i = 1; i < region->req(); i++ ) {
6326     if( region->in(i) != C->top() )
6327       LCA = dom_lca( LCA, region->in(i) );
6328   }
6329   return LCA;
6330 }
6331 
6332 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) {
6333   bool had_error = false;
6334 #ifdef ASSERT
6335   if (early != C->root()) {
6336     // Make sure that there's a dominance path from LCA to early
6337     Node* d = LCA;
6338     while (d != early) {
6339       if (d == C->root()) {
6340         dump_bad_graph("Bad graph detected in compute_lca_of_uses", n, early, LCA);
6341         tty->print_cr("*** Use %d isn't dominated by def %d ***", use->_idx, n->_idx);
6342         had_error = true;
6343         break;
6344       }
6345       d = idom(d);
6346     }
6347   }
6348 #endif
6349   return had_error;
6350 }
6351 
6352 
6353 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
6354   // Compute LCA over list of uses
6355   bool had_error = false;
6356   Node *LCA = nullptr;
6357   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
6358     Node* c = n->fast_out(i);
6359     if (_loop_or_ctrl[c->_idx] == nullptr)
6360       continue;                 // Skip the occasional dead node
6361     if( c->is_Phi() ) {         // For Phis, we must land above on the path
6362       for( uint j=1; j<c->req(); j++ ) {// For all inputs
6363         if( c->in(j) == n ) {   // Found matching input?
6364           Node *use = c->in(0)->in(j);
6365           if (_verify_only && use->is_top()) continue;
6366           LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
6367           if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
6368         }
6369       }
6370     } else {
6371       // For CFG data-users, use is in the block just prior
6372       Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
6373       LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
6374       if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
6375     }
6376   }
6377   assert(!had_error, "bad dominance");
6378   return LCA;
6379 }
6380 
6381 // Check the shape of the graph at the loop entry. In some cases,
6382 // the shape of the graph does not match the shape outlined below.
6383 // That is caused by the Opaque1 node "protecting" the shape of
6384 // the graph being removed by, for example, the IGVN performed
6385 // in PhaseIdealLoop::build_and_optimize().
6386 //
6387 // After the Opaque1 node has been removed, optimizations (e.g., split-if,
6388 // loop unswitching, and IGVN, or a combination of them) can freely change
6389 // the graph's shape. As a result, the graph shape outlined below cannot
6390 // be guaranteed anymore.
6391 Node* CountedLoopNode::is_canonical_loop_entry() {
6392   if (!is_main_loop() && !is_post_loop()) {
6393     return nullptr;
6394   }
6395   Node* ctrl = skip_assertion_predicates_with_halt();
6396 
6397   if (ctrl == nullptr || (!ctrl->is_IfTrue() && !ctrl->is_IfFalse())) {
6398     return nullptr;
6399   }
6400   Node* iffm = ctrl->in(0);
6401   if (iffm == nullptr || iffm->Opcode() != Op_If) {
6402     return nullptr;
6403   }
6404   Node* bolzm = iffm->in(1);
6405   if (bolzm == nullptr || !bolzm->is_Bool()) {
6406     return nullptr;
6407   }
6408   Node* cmpzm = bolzm->in(1);
6409   if (cmpzm == nullptr || !cmpzm->is_Cmp()) {
6410     return nullptr;
6411   }
6412 
6413   uint input = is_main_loop() ? 2 : 1;
6414   if (input >= cmpzm->req() || cmpzm->in(input) == nullptr) {
6415     return nullptr;
6416   }
6417   bool res = cmpzm->in(input)->Opcode() == Op_OpaqueZeroTripGuard;
6418 #ifdef ASSERT
6419   bool found_opaque = false;
6420   for (uint i = 1; i < cmpzm->req(); i++) {
6421     Node* opnd = cmpzm->in(i);
6422     if (opnd && opnd->is_Opaque1()) {
6423       found_opaque = true;
6424       break;
6425     }
6426   }
6427   assert(found_opaque == res, "wrong pattern");
6428 #endif
6429   return res ? cmpzm->in(input) : nullptr;
6430 }
6431 
6432 // Find pre loop end from main loop. Returns nullptr if none.
6433 CountedLoopEndNode* CountedLoopNode::find_pre_loop_end() {
6434   assert(is_main_loop(), "Can only find pre-loop from main-loop");
6435   // The loop cannot be optimized if the graph shape at the loop entry is
6436   // inappropriate.
6437   if (is_canonical_loop_entry() == nullptr) {
6438     return nullptr;
6439   }
6440 
6441   Node* p_f = skip_assertion_predicates_with_halt()->in(0)->in(0);
6442   if (!p_f->is_IfFalse() || !p_f->in(0)->is_CountedLoopEnd()) {
6443     return nullptr;
6444   }
6445   CountedLoopEndNode* pre_end = p_f->in(0)->as_CountedLoopEnd();
6446   CountedLoopNode* loop_node = pre_end->loopnode();
6447   if (loop_node == nullptr || !loop_node->is_pre_loop()) {
6448     return nullptr;
6449   }
6450   return pre_end;
6451 }
6452 
6453 Node* CountedLoopNode::uncasted_init_trip(bool uncast) {
6454   Node* init = init_trip();
6455   if (uncast && init->is_CastII()) {
6456     // skip over the cast added by PhaseIdealLoop::cast_incr_before_loop() when pre/post/main loops are created because
6457     // it can get in the way of type propagation. For instance, the index tested by an Assertion Predicate, if the cast
6458     // is not skipped over, could be (1):
6459     // (AddI (CastII (AddI pre_loop_iv -2) int) 1)
6460     // while without the cast, it is (2):
6461     // (AddI (AddI pre_loop_iv -2) 1)
6462     // which is be transformed to (3):
6463     // (AddI pre_loop_iv -1)
6464     // The compiler may be able to constant fold the Assertion Predicate condition for (3) but not (1)
6465     assert(init->as_CastII()->carry_dependency() && skip_assertion_predicates_with_halt() == init->in(0), "casted iv phi from pre loop expected");
6466     init = init->in(1);
6467   }
6468   return init;
6469 }
6470 
6471 //------------------------------get_late_ctrl----------------------------------
6472 // Compute latest legal control.
6473 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
6474   assert(early != nullptr, "early control should not be null");
6475 
6476   Node* LCA = compute_lca_of_uses(n, early);
6477 #ifdef ASSERT
6478   if (LCA == C->root() && LCA != early) {
6479     // def doesn't dominate uses so print some useful debugging output
6480     compute_lca_of_uses(n, early, true);
6481   }
6482 #endif
6483 
6484   if (n->is_Load() && LCA != early) {
6485     LCA = get_late_ctrl_with_anti_dep(n->as_Load(), early, LCA);
6486   }
6487 
6488   assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
6489   return LCA;
6490 }
6491 
6492 // if this is a load, check for anti-dependent stores
6493 // We use a conservative algorithm to identify potential interfering
6494 // instructions and for rescheduling the load.  The users of the memory
6495 // input of this load are examined.  Any use which is not a load and is
6496 // dominated by early is considered a potentially interfering store.
6497 // This can produce false positives.
6498 Node* PhaseIdealLoop::get_late_ctrl_with_anti_dep(LoadNode* n, Node* early, Node* LCA) {
6499   int load_alias_idx = C->get_alias_index(n->adr_type());
6500   if (C->alias_type(load_alias_idx)->is_rewritable()) {
6501     Unique_Node_List worklist;
6502 
6503     Node* mem = n->in(MemNode::Memory);
6504     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
6505       Node* s = mem->fast_out(i);
6506       worklist.push(s);
6507     }
6508     for (uint i = 0; i < worklist.size() && LCA != early; i++) {
6509       Node* s = worklist.at(i);
6510       if (s->is_Load() || s->Opcode() == Op_SafePoint ||
6511           (s->is_CallStaticJava() && s->as_CallStaticJava()->uncommon_trap_request() != 0) ||
6512           s->is_Phi()) {
6513         continue;
6514       } else if (s->is_MergeMem()) {
6515         for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
6516           Node* s1 = s->fast_out(i);
6517           worklist.push(s1);
6518         }
6519       } else {
6520         Node* sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
6521         assert(sctrl != nullptr || !s->is_reachable_from_root(), "must have control");
6522         if (sctrl != nullptr && !sctrl->is_top() && is_dominator(early, sctrl)) {
6523           const TypePtr* adr_type = s->adr_type();
6524           if (s->is_ArrayCopy()) {
6525             // Copy to known instance needs destination type to test for aliasing
6526             const TypePtr* dest_type = s->as_ArrayCopy()->_dest_type;
6527             if (dest_type != TypeOopPtr::BOTTOM) {
6528               adr_type = dest_type;
6529             }
6530           }
6531           if (C->can_alias(adr_type, load_alias_idx)) {
6532             LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
6533           } else if (s->is_CFG() && s->is_Multi()) {
6534             // Look for the memory use of s (that is the use of its memory projection)
6535             for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
6536               Node* s1 = s->fast_out(i);
6537               assert(s1->is_Proj(), "projection expected");
6538               if (_igvn.type(s1) == Type::MEMORY) {
6539                 for (DUIterator_Fast jmax, j = s1->fast_outs(jmax); j < jmax; j++) {
6540                   Node* s2 = s1->fast_out(j);
6541                   worklist.push(s2);
6542                 }
6543               }
6544             }
6545           }
6546         }
6547       }
6548     }
6549     // For Phis only consider Region's inputs that were reached by following the memory edges
6550     if (LCA != early) {
6551       for (uint i = 0; i < worklist.size(); i++) {
6552         Node* s = worklist.at(i);
6553         if (s->is_Phi() && C->can_alias(s->adr_type(), load_alias_idx)) {
6554           Node* r = s->in(0);
6555           for (uint j = 1; j < s->req(); j++) {
6556             Node* in = s->in(j);
6557             Node* r_in = r->in(j);
6558             // We can't reach any node from a Phi because we don't enqueue Phi's uses above
6559             if (((worklist.member(in) && !in->is_Phi()) || in == mem) && is_dominator(early, r_in)) {
6560               LCA = dom_lca_for_get_late_ctrl(LCA, r_in, n);
6561             }
6562           }
6563         }
6564       }
6565     }
6566   }
6567   return LCA;
6568 }
6569 
6570 // Is CFG node 'dominator' dominating node 'n'?
6571 bool PhaseIdealLoop::is_dominator(Node* dominator, Node* n) {
6572   if (dominator == n) {
6573     return true;
6574   }
6575   assert(dominator->is_CFG() && n->is_CFG(), "must have CFG nodes");
6576   uint dd = dom_depth(dominator);
6577   while (dom_depth(n) >= dd) {
6578     if (n == dominator) {
6579       return true;
6580     }
6581     n = idom(n);
6582   }
6583   return false;
6584 }
6585 
6586 // Is CFG node 'dominator' strictly dominating node 'n'?
6587 bool PhaseIdealLoop::is_strict_dominator(Node* dominator, Node* n) {
6588   return dominator != n && is_dominator(dominator, n);
6589 }
6590 
6591 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
6592 // Pair-wise LCA with tags.
6593 // Tag each index with the node 'tag' currently being processed
6594 // before advancing up the dominator chain using idom().
6595 // Later calls that find a match to 'tag' know that this path has already
6596 // been considered in the current LCA (which is input 'n1' by convention).
6597 // Since get_late_ctrl() is only called once for each node, the tag array
6598 // does not need to be cleared between calls to get_late_ctrl().
6599 // Algorithm trades a larger constant factor for better asymptotic behavior
6600 //
6601 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal(Node *n1, Node *n2, Node *tag_node) {
6602   uint d1 = dom_depth(n1);
6603   uint d2 = dom_depth(n2);
6604   jlong tag = tag_node->_idx | (((jlong)_dom_lca_tags_round) << 32);
6605 
6606   do {
6607     if (d1 > d2) {
6608       // current lca is deeper than n2
6609       _dom_lca_tags.at_put_grow(n1->_idx, tag);
6610       n1 =      idom(n1);
6611       d1 = dom_depth(n1);
6612     } else if (d1 < d2) {
6613       // n2 is deeper than current lca
6614       jlong memo = _dom_lca_tags.at_grow(n2->_idx, 0);
6615       if (memo == tag) {
6616         return n1;    // Return the current LCA
6617       }
6618       _dom_lca_tags.at_put_grow(n2->_idx, tag);
6619       n2 =      idom(n2);
6620       d2 = dom_depth(n2);
6621     } else {
6622       // Here d1 == d2.  Due to edits of the dominator-tree, sections
6623       // of the tree might have the same depth.  These sections have
6624       // to be searched more carefully.
6625 
6626       // Scan up all the n1's with equal depth, looking for n2.
6627       _dom_lca_tags.at_put_grow(n1->_idx, tag);
6628       Node *t1 = idom(n1);
6629       while (dom_depth(t1) == d1) {
6630         if (t1 == n2)  return n2;
6631         _dom_lca_tags.at_put_grow(t1->_idx, tag);
6632         t1 = idom(t1);
6633       }
6634       // Scan up all the n2's with equal depth, looking for n1.
6635       _dom_lca_tags.at_put_grow(n2->_idx, tag);
6636       Node *t2 = idom(n2);
6637       while (dom_depth(t2) == d2) {
6638         if (t2 == n1)  return n1;
6639         _dom_lca_tags.at_put_grow(t2->_idx, tag);
6640         t2 = idom(t2);
6641       }
6642       // Move up to a new dominator-depth value as well as up the dom-tree.
6643       n1 = t1;
6644       n2 = t2;
6645       d1 = dom_depth(n1);
6646       d2 = dom_depth(n2);
6647     }
6648   } while (n1 != n2);
6649   return n1;
6650 }
6651 
6652 //------------------------------init_dom_lca_tags------------------------------
6653 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
6654 // Intended use does not involve any growth for the array, so it could
6655 // be of fixed size.
6656 void PhaseIdealLoop::init_dom_lca_tags() {
6657   uint limit = C->unique() + 1;
6658   _dom_lca_tags.at_grow(limit, 0);
6659   _dom_lca_tags_round = 0;
6660 #ifdef ASSERT
6661   for (uint i = 0; i < limit; ++i) {
6662     assert(_dom_lca_tags.at(i) == 0, "Must be distinct from each node pointer");
6663   }
6664 #endif // ASSERT
6665 }
6666 
6667 //------------------------------build_loop_late--------------------------------
6668 // Put Data nodes into some loop nest, by setting the _loop_or_ctrl[]->loop mapping.
6669 // Second pass finds latest legal placement, and ideal loop placement.
6670 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
6671   while (worklist.size() != 0) {
6672     Node *n = worklist.pop();
6673     // Only visit once
6674     if (visited.test_set(n->_idx)) continue;
6675     uint cnt = n->outcnt();
6676     uint   i = 0;
6677     while (true) {
6678       assert(_loop_or_ctrl[n->_idx], "no dead nodes");
6679       // Visit all children
6680       if (i < cnt) {
6681         Node* use = n->raw_out(i);
6682         ++i;
6683         // Check for dead uses.  Aggressively prune such junk.  It might be
6684         // dead in the global sense, but still have local uses so I cannot
6685         // easily call 'remove_dead_node'.
6686         if (_loop_or_ctrl[use->_idx] != nullptr || use->is_top()) { // Not dead?
6687           // Due to cycles, we might not hit the same fixed point in the verify
6688           // pass as we do in the regular pass.  Instead, visit such phis as
6689           // simple uses of the loop head.
6690           if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
6691             if( !visited.test(use->_idx) )
6692               worklist.push(use);
6693           } else if( !visited.test_set(use->_idx) ) {
6694             nstack.push(n, i); // Save parent and next use's index.
6695             n   = use;         // Process all children of current use.
6696             cnt = use->outcnt();
6697             i   = 0;
6698           }
6699         } else {
6700           // Do not visit around the backedge of loops via data edges.
6701           // push dead code onto a worklist
6702           _deadlist.push(use);
6703         }
6704       } else {
6705         // All of n's children have been processed, complete post-processing.
6706         build_loop_late_post(n);
6707         if (C->failing()) { return; }
6708         if (nstack.is_empty()) {
6709           // Finished all nodes on stack.
6710           // Process next node on the worklist.
6711           break;
6712         }
6713         // Get saved parent node and next use's index. Visit the rest of uses.
6714         n   = nstack.node();
6715         cnt = n->outcnt();
6716         i   = nstack.index();
6717         nstack.pop();
6718       }
6719     }
6720   }
6721 }
6722 
6723 // Verify that no data node is scheduled in the outer loop of a strip
6724 // mined loop.
6725 void PhaseIdealLoop::verify_strip_mined_scheduling(Node *n, Node* least) {
6726 #ifdef ASSERT
6727   if (get_loop(least)->_nest == 0) {
6728     return;
6729   }
6730   IdealLoopTree* loop = get_loop(least);
6731   Node* head = loop->_head;
6732   if (head->is_OuterStripMinedLoop() &&
6733       // Verification can't be applied to fully built strip mined loops
6734       head->as_Loop()->outer_loop_end()->in(1)->find_int_con(-1) == 0) {
6735     Node* sfpt = head->as_Loop()->outer_safepoint();
6736     ResourceMark rm;
6737     Unique_Node_List wq;
6738     wq.push(sfpt);
6739     for (uint i = 0; i < wq.size(); i++) {
6740       Node *m = wq.at(i);
6741       for (uint i = 1; i < m->req(); i++) {
6742         Node* nn = m->in(i);
6743         if (nn == n) {
6744           return;
6745         }
6746         if (nn != nullptr && has_ctrl(nn) && get_loop(get_ctrl(nn)) == loop) {
6747           wq.push(nn);
6748         }
6749       }
6750     }
6751     ShouldNotReachHere();
6752   }
6753 #endif
6754 }
6755 
6756 
6757 //------------------------------build_loop_late_post---------------------------
6758 // Put Data nodes into some loop nest, by setting the _loop_or_ctrl[]->loop mapping.
6759 // Second pass finds latest legal placement, and ideal loop placement.
6760 void PhaseIdealLoop::build_loop_late_post(Node *n) {
6761   build_loop_late_post_work(n, true);
6762 }
6763 
6764 // Class to visit all predicates in a predicate chain to find out which are dominated by a given node. Keeps track of
6765 // the entry to the earliest predicate that is still dominated by the given dominator. This class is used when trying to
6766 // legally skip all predicates when figuring out the latest placement such that a node does not interfere with Loop
6767 // Predication or creating a Loop Limit Check Predicate later.
6768 class DominatedPredicates : public UnifiedPredicateVisitor {
6769   Node* const _dominator;
6770   Node* _earliest_dominated_predicate_entry;
6771   bool _should_continue;
6772   PhaseIdealLoop* const _phase;
6773 
6774  public:
6775   DominatedPredicates(Node* dominator, Node* start_node, PhaseIdealLoop* phase)
6776       : _dominator(dominator),
6777         _earliest_dominated_predicate_entry(start_node),
6778         _should_continue(true),
6779         _phase(phase) {}
6780   NONCOPYABLE(DominatedPredicates);
6781 
6782   bool should_continue() const override {
6783     return _should_continue;
6784   }
6785 
6786   // Returns the entry to the earliest predicate that is still dominated by the given dominator (all could be dominated).
6787   Node* earliest_dominated_predicate_entry() const {
6788     return _earliest_dominated_predicate_entry;
6789   }
6790 
6791   void visit_predicate(const Predicate& predicate) override {
6792     Node* entry = predicate.entry();
6793     if (_phase->is_strict_dominator(entry, _dominator)) {
6794       _should_continue = false;
6795     } else {
6796       _earliest_dominated_predicate_entry = entry;
6797     }
6798   }
6799 };
6800 
6801 void PhaseIdealLoop::build_loop_late_post_work(Node *n, bool pinned) {
6802 
6803   if (n->req() == 2 && (n->Opcode() == Op_ConvI2L || n->Opcode() == Op_CastII) && !C->major_progress() && !_verify_only) {
6804     _igvn._worklist.push(n);  // Maybe we'll normalize it, if no more loops.
6805   }
6806 
6807 #ifdef ASSERT
6808   if (_verify_only && !n->is_CFG()) {
6809     // Check def-use domination.
6810     // We would like to expose this check in product but it appears to be expensive.
6811     compute_lca_of_uses(n, get_ctrl(n), true /* verify */);
6812   }
6813 #endif
6814 
6815   // CFG and pinned nodes already handled
6816   if( n->in(0) ) {
6817     if( n->in(0)->is_top() ) return; // Dead?
6818 
6819     // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
6820     // _must_ be pinned (they have to observe their control edge of course).
6821     // Unlike Stores (which modify an unallocable resource, the memory
6822     // state), Mods/Loads can float around.  So free them up.
6823     switch( n->Opcode() ) {
6824     case Op_DivI:
6825     case Op_DivF:
6826     case Op_DivD:
6827     case Op_ModI:
6828     case Op_LoadB:              // Same with Loads; they can sink
6829     case Op_LoadUB:             // during loop optimizations.
6830     case Op_LoadUS:
6831     case Op_LoadD:
6832     case Op_LoadF:
6833     case Op_LoadI:
6834     case Op_LoadKlass:
6835     case Op_LoadNKlass:
6836     case Op_LoadL:
6837     case Op_LoadS:
6838     case Op_LoadP:
6839     case Op_LoadN:
6840     case Op_LoadRange:
6841     case Op_LoadD_unaligned:
6842     case Op_LoadL_unaligned:
6843     case Op_StrComp:            // Does a bunch of load-like effects
6844     case Op_StrEquals:
6845     case Op_StrIndexOf:
6846     case Op_StrIndexOfChar:
6847     case Op_AryEq:
6848     case Op_VectorizedHashCode:
6849     case Op_CountPositives:
6850       pinned = false;
6851     }
6852     if (n->is_CMove() || n->is_ConstraintCast()) {
6853       pinned = false;
6854     }
6855     if( pinned ) {
6856       IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
6857       if( !chosen_loop->_child )       // Inner loop?
6858         chosen_loop->_body.push(n); // Collect inner loops
6859       return;
6860     }
6861   } else {                      // No slot zero
6862     if( n->is_CFG() ) {         // CFG with no slot 0 is dead
6863       _loop_or_ctrl.map(n->_idx,nullptr); // No block setting, it's globally dead
6864       return;
6865     }
6866     assert(!n->is_CFG() || n->outcnt() == 0, "");
6867   }
6868 
6869   // Do I have a "safe range" I can select over?
6870   Node *early = get_ctrl(n);// Early location already computed
6871 
6872   // Compute latest point this Node can go
6873   Node *LCA = get_late_ctrl( n, early );
6874   // LCA is null due to uses being dead
6875   if( LCA == nullptr ) {
6876 #ifdef ASSERT
6877     for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
6878       assert(_loop_or_ctrl[n->out(i1)->_idx] == nullptr, "all uses must also be dead");
6879     }
6880 #endif
6881     _loop_or_ctrl.map(n->_idx, nullptr); // This node is useless
6882     _deadlist.push(n);
6883     return;
6884   }
6885   assert(LCA != nullptr && !LCA->is_top(), "no dead nodes");
6886 
6887   Node *legal = LCA;            // Walk 'legal' up the IDOM chain
6888   Node *least = legal;          // Best legal position so far
6889   while( early != legal ) {     // While not at earliest legal
6890     if (legal->is_Start() && !early->is_Root()) {
6891 #ifdef ASSERT
6892       // Bad graph. Print idom path and fail.
6893       dump_bad_graph("Bad graph detected in build_loop_late", n, early, LCA);
6894       assert(false, "Bad graph detected in build_loop_late");
6895 #endif
6896       C->record_method_not_compilable("Bad graph detected in build_loop_late");
6897       return;
6898     }
6899     // Find least loop nesting depth
6900     legal = idom(legal);        // Bump up the IDOM tree
6901     // Check for lower nesting depth
6902     if( get_loop(legal)->_nest < get_loop(least)->_nest )
6903       least = legal;
6904   }
6905   assert(early == legal || legal != C->root(), "bad dominance of inputs");
6906 
6907   if (least != early) {
6908     // Move the node above predicates as far up as possible so a
6909     // following pass of Loop Predication doesn't hoist a predicate
6910     // that depends on it above that node.
6911     const PredicateIterator predicate_iterator(least);
6912     DominatedPredicates dominated_predicates(early, least, this);
6913     predicate_iterator.for_each(dominated_predicates);
6914     least = dominated_predicates.earliest_dominated_predicate_entry();
6915   }
6916   // Try not to place code on a loop entry projection
6917   // which can inhibit range check elimination.
6918   if (least != early) {
6919     Node* ctrl_out = least->unique_ctrl_out_or_null();
6920     if (ctrl_out != nullptr && ctrl_out->is_Loop() &&
6921         least == ctrl_out->in(LoopNode::EntryControl) &&
6922         (ctrl_out->is_CountedLoop() || ctrl_out->is_OuterStripMinedLoop())) {
6923       Node* least_dom = idom(least);
6924       if (get_loop(least_dom)->is_member(get_loop(least))) {
6925         least = least_dom;
6926       }
6927     }
6928   }
6929   // Don't extend live ranges of raw oops
6930   if (least != early && n->is_ConstraintCast() && n->in(1)->bottom_type()->isa_rawptr() &&
6931       !n->bottom_type()->isa_rawptr()) {
6932     least = early;
6933   }
6934 
6935 #ifdef ASSERT
6936   // Broken part of VerifyLoopOptimizations (F)
6937   // Reason:
6938   //   _verify_me->get_ctrl_no_update(n) seems to return wrong result
6939   /*
6940   // If verifying, verify that 'verify_me' has a legal location
6941   // and choose it as our location.
6942   if( _verify_me ) {
6943     Node *v_ctrl = _verify_me->get_ctrl_no_update(n);
6944     Node *legal = LCA;
6945     while( early != legal ) {   // While not at earliest legal
6946       if( legal == v_ctrl ) break;  // Check for prior good location
6947       legal = idom(legal)      ;// Bump up the IDOM tree
6948     }
6949     // Check for prior good location
6950     if( legal == v_ctrl ) least = legal; // Keep prior if found
6951   }
6952   */
6953 #endif
6954 
6955   // Assign discovered "here or above" point
6956   least = find_non_split_ctrl(least);
6957   verify_strip_mined_scheduling(n, least);
6958   set_ctrl(n, least);
6959 
6960   // Collect inner loop bodies
6961   IdealLoopTree *chosen_loop = get_loop(least);
6962   if( !chosen_loop->_child )   // Inner loop?
6963     chosen_loop->_body.push(n);// Collect inner loops
6964 
6965   if (!_verify_only && n->Opcode() == Op_OpaqueZeroTripGuard) {
6966     _zero_trip_guard_opaque_nodes.push(n);
6967   }
6968 
6969   if (!_verify_only && n->Opcode() == Op_OpaqueMultiversioning) {
6970     _multiversion_opaque_nodes.push(n);
6971   }
6972 }
6973 
6974 #ifdef ASSERT
6975 void PhaseIdealLoop::dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA) {
6976   tty->print_cr("%s", msg);
6977   tty->print("n: "); n->dump();
6978   tty->print("early(n): "); early->dump();
6979   if (n->in(0) != nullptr  && !n->in(0)->is_top() &&
6980       n->in(0) != early && !n->in(0)->is_Root()) {
6981     tty->print("n->in(0): "); n->in(0)->dump();
6982   }
6983   for (uint i = 1; i < n->req(); i++) {
6984     Node* in1 = n->in(i);
6985     if (in1 != nullptr && in1 != n && !in1->is_top()) {
6986       tty->print("n->in(%d): ", i); in1->dump();
6987       Node* in1_early = get_ctrl(in1);
6988       tty->print("early(n->in(%d)): ", i); in1_early->dump();
6989       if (in1->in(0) != nullptr     && !in1->in(0)->is_top() &&
6990           in1->in(0) != in1_early && !in1->in(0)->is_Root()) {
6991         tty->print("n->in(%d)->in(0): ", i); in1->in(0)->dump();
6992       }
6993       for (uint j = 1; j < in1->req(); j++) {
6994         Node* in2 = in1->in(j);
6995         if (in2 != nullptr && in2 != n && in2 != in1 && !in2->is_top()) {
6996           tty->print("n->in(%d)->in(%d): ", i, j); in2->dump();
6997           Node* in2_early = get_ctrl(in2);
6998           tty->print("early(n->in(%d)->in(%d)): ", i, j); in2_early->dump();
6999           if (in2->in(0) != nullptr     && !in2->in(0)->is_top() &&
7000               in2->in(0) != in2_early && !in2->in(0)->is_Root()) {
7001             tty->print("n->in(%d)->in(%d)->in(0): ", i, j); in2->in(0)->dump();
7002           }
7003         }
7004       }
7005     }
7006   }
7007   tty->cr();
7008   tty->print("LCA(n): "); LCA->dump();
7009   for (uint i = 0; i < n->outcnt(); i++) {
7010     Node* u1 = n->raw_out(i);
7011     if (u1 == n)
7012       continue;
7013     tty->print("n->out(%d): ", i); u1->dump();
7014     if (u1->is_CFG()) {
7015       for (uint j = 0; j < u1->outcnt(); j++) {
7016         Node* u2 = u1->raw_out(j);
7017         if (u2 != u1 && u2 != n && u2->is_CFG()) {
7018           tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
7019         }
7020       }
7021     } else {
7022       Node* u1_later = get_ctrl(u1);
7023       tty->print("later(n->out(%d)): ", i); u1_later->dump();
7024       if (u1->in(0) != nullptr     && !u1->in(0)->is_top() &&
7025           u1->in(0) != u1_later && !u1->in(0)->is_Root()) {
7026         tty->print("n->out(%d)->in(0): ", i); u1->in(0)->dump();
7027       }
7028       for (uint j = 0; j < u1->outcnt(); j++) {
7029         Node* u2 = u1->raw_out(j);
7030         if (u2 == n || u2 == u1)
7031           continue;
7032         tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
7033         if (!u2->is_CFG()) {
7034           Node* u2_later = get_ctrl(u2);
7035           tty->print("later(n->out(%d)->out(%d)): ", i, j); u2_later->dump();
7036           if (u2->in(0) != nullptr     && !u2->in(0)->is_top() &&
7037               u2->in(0) != u2_later && !u2->in(0)->is_Root()) {
7038             tty->print("n->out(%d)->in(0): ", i); u2->in(0)->dump();
7039           }
7040         }
7041       }
7042     }
7043   }
7044   dump_idoms(early, LCA);
7045   tty->cr();
7046 }
7047 
7048 // Class to compute the real LCA given an early node and a wrong LCA in a bad graph.
7049 class RealLCA {
7050   const PhaseIdealLoop* _phase;
7051   Node* _early;
7052   Node* _wrong_lca;
7053   uint _early_index;
7054   int _wrong_lca_index;
7055 
7056   // Given idom chains of early and wrong LCA: Walk through idoms starting at StartNode and find the first node which
7057   // is different: Return the previously visited node which must be the real LCA.
7058   // The node lists also contain _early and _wrong_lca, respectively.
7059   Node* find_real_lca(Unique_Node_List& early_with_idoms, Unique_Node_List& wrong_lca_with_idoms) {
7060     int early_index = early_with_idoms.size() - 1;
7061     int wrong_lca_index = wrong_lca_with_idoms.size() - 1;
7062     bool found_difference = false;
7063     do {
7064       if (early_with_idoms[early_index] != wrong_lca_with_idoms[wrong_lca_index]) {
7065         // First time early and wrong LCA idoms differ. Real LCA must be at the previous index.
7066         found_difference = true;
7067         break;
7068       }
7069       early_index--;
7070       wrong_lca_index--;
7071     } while (wrong_lca_index >= 0);
7072 
7073     assert(early_index >= 0, "must always find an LCA - cannot be early");
7074     _early_index = early_index;
7075     _wrong_lca_index = wrong_lca_index;
7076     Node* real_lca = early_with_idoms[_early_index + 1]; // Plus one to skip _early.
7077     assert(found_difference || real_lca == _wrong_lca, "wrong LCA dominates early and is therefore the real LCA");
7078     return real_lca;
7079   }
7080 
7081   void dump(Node* real_lca) {
7082     tty->cr();
7083     tty->print_cr("idoms of early \"%d %s\":", _early->_idx, _early->Name());
7084     _phase->dump_idom(_early, _early_index + 1);
7085 
7086     tty->cr();
7087     tty->print_cr("idoms of (wrong) LCA \"%d %s\":", _wrong_lca->_idx, _wrong_lca->Name());
7088     _phase->dump_idom(_wrong_lca, _wrong_lca_index + 1);
7089 
7090     tty->cr();
7091     tty->print("Real LCA of early \"%d %s\" (idom[%d]) and wrong LCA \"%d %s\"",
7092                _early->_idx, _early->Name(), _early_index, _wrong_lca->_idx, _wrong_lca->Name());
7093     if (_wrong_lca_index >= 0) {
7094       tty->print(" (idom[%d])", _wrong_lca_index);
7095     }
7096     tty->print_cr(":");
7097     real_lca->dump();
7098   }
7099 
7100  public:
7101   RealLCA(const PhaseIdealLoop* phase, Node* early, Node* wrong_lca)
7102       : _phase(phase), _early(early), _wrong_lca(wrong_lca), _early_index(0), _wrong_lca_index(0) {
7103     assert(!wrong_lca->is_Start(), "StartNode is always a common dominator");
7104   }
7105 
7106   void compute_and_dump() {
7107     ResourceMark rm;
7108     Unique_Node_List early_with_idoms;
7109     Unique_Node_List wrong_lca_with_idoms;
7110     early_with_idoms.push(_early);
7111     wrong_lca_with_idoms.push(_wrong_lca);
7112     _phase->get_idoms(_early, 10000, early_with_idoms);
7113     _phase->get_idoms(_wrong_lca, 10000, wrong_lca_with_idoms);
7114     Node* real_lca = find_real_lca(early_with_idoms, wrong_lca_with_idoms);
7115     dump(real_lca);
7116   }
7117 };
7118 
7119 // Dump the idom chain of early, of the wrong LCA and dump the real LCA of early and wrong LCA.
7120 void PhaseIdealLoop::dump_idoms(Node* early, Node* wrong_lca) {
7121   assert(!is_dominator(early, wrong_lca), "sanity check that early does not dominate wrong lca");
7122   assert(!has_ctrl(early) && !has_ctrl(wrong_lca), "sanity check, no data nodes");
7123 
7124   RealLCA real_lca(this, early, wrong_lca);
7125   real_lca.compute_and_dump();
7126 }
7127 #endif // ASSERT
7128 
7129 #ifndef PRODUCT
7130 //------------------------------dump-------------------------------------------
7131 void PhaseIdealLoop::dump() const {
7132   ResourceMark rm;
7133   Node_Stack stack(C->live_nodes() >> 2);
7134   Node_List rpo_list;
7135   VectorSet visited;
7136   visited.set(C->top()->_idx);
7137   rpo(C->root(), stack, visited, rpo_list);
7138   // Dump root loop indexed by last element in PO order
7139   dump(_ltree_root, rpo_list.size(), rpo_list);
7140 }
7141 
7142 void PhaseIdealLoop::dump(IdealLoopTree* loop, uint idx, Node_List &rpo_list) const {
7143   loop->dump_head();
7144 
7145   // Now scan for CFG nodes in the same loop
7146   for (uint j = idx; j > 0; j--) {
7147     Node* n = rpo_list[j-1];
7148     if (!_loop_or_ctrl[n->_idx])      // Skip dead nodes
7149       continue;
7150 
7151     if (get_loop(n) != loop) { // Wrong loop nest
7152       if (get_loop(n)->_head == n &&    // Found nested loop?
7153           get_loop(n)->_parent == loop)
7154         dump(get_loop(n), rpo_list.size(), rpo_list);     // Print it nested-ly
7155       continue;
7156     }
7157 
7158     // Dump controlling node
7159     tty->sp(2 * loop->_nest);
7160     tty->print("C");
7161     if (n == C->root()) {
7162       n->dump();
7163     } else {
7164       Node* cached_idom   = idom_no_update(n);
7165       Node* computed_idom = n->in(0);
7166       if (n->is_Region()) {
7167         computed_idom = compute_idom(n);
7168         // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
7169         // any MultiBranch ctrl node), so apply a similar transform to
7170         // the cached idom returned from idom_no_update.
7171         cached_idom = find_non_split_ctrl(cached_idom);
7172       }
7173       tty->print(" ID:%d", computed_idom->_idx);
7174       n->dump();
7175       if (cached_idom != computed_idom) {
7176         tty->print_cr("*** BROKEN IDOM!  Computed as: %d, cached as: %d",
7177                       computed_idom->_idx, cached_idom->_idx);
7178       }
7179     }
7180     // Dump nodes it controls
7181     for (uint k = 0; k < _loop_or_ctrl.max(); k++) {
7182       // (k < C->unique() && get_ctrl(find(k)) == n)
7183       if (k < C->unique() && _loop_or_ctrl[k] == (Node*)((intptr_t)n + 1)) {
7184         Node* m = C->root()->find(k);
7185         if (m && m->outcnt() > 0) {
7186           if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
7187             tty->print_cr("*** BROKEN CTRL ACCESSOR!  _loop_or_ctrl[k] is %p, ctrl is %p",
7188                           _loop_or_ctrl[k], has_ctrl(m) ? get_ctrl_no_update(m) : nullptr);
7189           }
7190           tty->sp(2 * loop->_nest + 1);
7191           m->dump();
7192         }
7193       }
7194     }
7195   }
7196 }
7197 
7198 void PhaseIdealLoop::dump_idom(Node* n, const uint count) const {
7199   if (has_ctrl(n)) {
7200     tty->print_cr("No idom for data nodes");
7201   } else {
7202     ResourceMark rm;
7203     Unique_Node_List idoms;
7204     get_idoms(n, count, idoms);
7205     dump_idoms_in_reverse(n, idoms);
7206   }
7207 }
7208 
7209 void PhaseIdealLoop::get_idoms(Node* n, const uint count, Unique_Node_List& idoms) const {
7210   Node* next = n;
7211   for (uint i = 0; !next->is_Start() && i < count; i++) {
7212     next = idom(next);
7213     assert(!idoms.member(next), "duplicated idom is not possible");
7214     idoms.push(next);
7215   }
7216 }
7217 
7218 void PhaseIdealLoop::dump_idoms_in_reverse(const Node* n, const Node_List& idom_list) const {
7219   Node* next;
7220   uint padding = 3;
7221   uint node_index_padding_width = (C->unique() == 0 ? 0 : static_cast<int>(log10(static_cast<double>(C->unique())))) + 1;
7222   for (int i = idom_list.size() - 1; i >= 0; i--) {
7223     if (i == 9 || i == 99) {
7224       padding++;
7225     }
7226     next = idom_list[i];
7227     tty->print_cr("idom[%d]:%*c%*d  %s", i, padding, ' ', node_index_padding_width, next->_idx, next->Name());
7228   }
7229   tty->print_cr("n:      %*c%*d  %s", padding, ' ', node_index_padding_width, n->_idx, n->Name());
7230 }
7231 #endif // NOT PRODUCT
7232 
7233 // Collect a R-P-O for the whole CFG.
7234 // Result list is in post-order (scan backwards for RPO)
7235 void PhaseIdealLoop::rpo(Node* start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list) const {
7236   stk.push(start, 0);
7237   visited.set(start->_idx);
7238 
7239   while (stk.is_nonempty()) {
7240     Node* m   = stk.node();
7241     uint  idx = stk.index();
7242     if (idx < m->outcnt()) {
7243       stk.set_index(idx + 1);
7244       Node* n = m->raw_out(idx);
7245       if (n->is_CFG() && !visited.test_set(n->_idx)) {
7246         stk.push(n, 0);
7247       }
7248     } else {
7249       rpo_list.push(m);
7250       stk.pop();
7251     }
7252   }
7253 }
7254 
7255 ConINode* PhaseIdealLoop::intcon(jint i) {
7256   ConINode* node = _igvn.intcon(i);
7257   set_root_as_ctrl(node);
7258   return node;
7259 }
7260 
7261 ConLNode* PhaseIdealLoop::longcon(jlong i) {
7262   ConLNode* node = _igvn.longcon(i);
7263   set_root_as_ctrl(node);
7264   return node;
7265 }
7266 
7267 ConNode* PhaseIdealLoop::makecon(const Type* t) {
7268   ConNode* node = _igvn.makecon(t);
7269   set_root_as_ctrl(node);
7270   return node;
7271 }
7272 
7273 ConNode* PhaseIdealLoop::integercon(jlong l, BasicType bt) {
7274   ConNode* node = _igvn.integercon(l, bt);
7275   set_root_as_ctrl(node);
7276   return node;
7277 }
7278 
7279 ConNode* PhaseIdealLoop::zerocon(BasicType bt) {
7280   ConNode* node = _igvn.zerocon(bt);
7281   set_root_as_ctrl(node);
7282   return node;
7283 }
7284 
7285 
7286 //=============================================================================
7287 //------------------------------LoopTreeIterator-------------------------------
7288 
7289 // Advance to next loop tree using a preorder, left-to-right traversal.
7290 void LoopTreeIterator::next() {
7291   assert(!done(), "must not be done.");
7292   if (_curnt->_child != nullptr) {
7293     _curnt = _curnt->_child;
7294   } else if (_curnt->_next != nullptr) {
7295     _curnt = _curnt->_next;
7296   } else {
7297     while (_curnt != _root && _curnt->_next == nullptr) {
7298       _curnt = _curnt->_parent;
7299     }
7300     if (_curnt == _root) {
7301       _curnt = nullptr;
7302       assert(done(), "must be done.");
7303     } else {
7304       assert(_curnt->_next != nullptr, "must be more to do");
7305       _curnt = _curnt->_next;
7306     }
7307   }
7308 }