1 /*
   2  * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/ciMethodData.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "gc/shared/barrierSet.hpp"
  28 #include "gc/shared/c2/barrierSetC2.hpp"
  29 #include "libadt/vectset.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/arraycopynode.hpp"
  34 #include "opto/c2_globals.hpp"
  35 #include "opto/callnode.hpp"
  36 #include "opto/castnode.hpp"
  37 #include "opto/connode.hpp"
  38 #include "opto/convertnode.hpp"
  39 #include "opto/divnode.hpp"
  40 #include "opto/idealGraphPrinter.hpp"
  41 #include "opto/loopnode.hpp"
  42 #include "opto/movenode.hpp"
  43 #include "opto/mulnode.hpp"
  44 #include "opto/opaquenode.hpp"
  45 #include "opto/opcodes.hpp"
  46 #include "opto/predicates.hpp"
  47 #include "opto/rootnode.hpp"
  48 #include "opto/runtime.hpp"
  49 #include "opto/vectorization.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #include "utilities/checkedCast.hpp"
  52 #include "utilities/powerOfTwo.hpp"
  53 
  54 //=============================================================================
  55 //--------------------------is_cloop_ind_var-----------------------------------
  56 // Determine if a node is a counted loop induction variable.
  57 // NOTE: The method is declared in "node.hpp".
  58 bool Node::is_cloop_ind_var() const {
  59   return (is_Phi() &&
  60           as_Phi()->region()->is_CountedLoop() &&
  61           as_Phi()->region()->as_CountedLoop()->phi() == this);
  62 }
  63 
  64 //=============================================================================
  65 //------------------------------dump_spec--------------------------------------
  66 // Dump special per-node info
  67 #ifndef PRODUCT
  68 void LoopNode::dump_spec(outputStream *st) const {
  69   RegionNode::dump_spec(st);
  70   if (is_inner_loop()) st->print( "inner " );
  71   if (is_partial_peel_loop()) st->print( "partial_peel " );
  72   if (partial_peel_has_failed()) st->print( "partial_peel_failed " );
  73 }
  74 #endif
  75 
  76 //------------------------------is_valid_counted_loop-------------------------
  77 bool LoopNode::is_valid_counted_loop(BasicType bt) const {
  78   if (is_BaseCountedLoop() && as_BaseCountedLoop()->bt() == bt) {
  79     BaseCountedLoopNode*    l  = as_BaseCountedLoop();
  80     BaseCountedLoopEndNode* le = l->loopexit_or_null();
  81     if (le != nullptr &&
  82         le->proj_out_or_null(1 /* true */) == l->in(LoopNode::LoopBackControl)) {
  83       Node* phi  = l->phi();
  84       Node* exit = le->proj_out_or_null(0 /* false */);
  85       if (exit != nullptr && exit->Opcode() == Op_IfFalse &&
  86           phi != nullptr && phi->is_Phi() &&
  87           phi->in(LoopNode::LoopBackControl) == l->incr() &&
  88           le->loopnode() == l && le->stride_is_con()) {
  89         return true;
  90       }
  91     }
  92   }
  93   return false;
  94 }
  95 
  96 //------------------------------get_early_ctrl---------------------------------
  97 // Compute earliest legal control
  98 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
  99   assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
 100   uint i;
 101   Node *early;
 102   if (n->in(0) && !n->is_expensive()) {
 103     early = n->in(0);
 104     if (!early->is_CFG()) // Might be a non-CFG multi-def
 105       early = get_ctrl(early);        // So treat input as a straight data input
 106     i = 1;
 107   } else {
 108     early = get_ctrl(n->in(1));
 109     i = 2;
 110   }
 111   uint e_d = dom_depth(early);
 112   assert( early, "" );
 113   for (; i < n->req(); i++) {
 114     Node *cin = get_ctrl(n->in(i));
 115     assert( cin, "" );
 116     // Keep deepest dominator depth
 117     uint c_d = dom_depth(cin);
 118     if (c_d > e_d) {           // Deeper guy?
 119       early = cin;              // Keep deepest found so far
 120       e_d = c_d;
 121     } else if (c_d == e_d &&    // Same depth?
 122                early != cin) { // If not equal, must use slower algorithm
 123       // If same depth but not equal, one _must_ dominate the other
 124       // and we want the deeper (i.e., dominated) guy.
 125       Node *n1 = early;
 126       Node *n2 = cin;
 127       while (1) {
 128         n1 = idom(n1);          // Walk up until break cycle
 129         n2 = idom(n2);
 130         if (n1 == cin ||        // Walked early up to cin
 131             dom_depth(n2) < c_d)
 132           break;                // early is deeper; keep him
 133         if (n2 == early ||      // Walked cin up to early
 134             dom_depth(n1) < c_d) {
 135           early = cin;          // cin is deeper; keep him
 136           break;
 137         }
 138       }
 139       e_d = dom_depth(early);   // Reset depth register cache
 140     }
 141   }
 142 
 143   // Return earliest legal location
 144   assert(early == find_non_split_ctrl(early), "unexpected early control");
 145 
 146   if (n->is_expensive() && !_verify_only && !_verify_me) {
 147     assert(n->in(0), "should have control input");
 148     early = get_early_ctrl_for_expensive(n, early);
 149   }
 150 
 151   return early;
 152 }
 153 
 154 //------------------------------get_early_ctrl_for_expensive---------------------------------
 155 // Move node up the dominator tree as high as legal while still beneficial
 156 Node *PhaseIdealLoop::get_early_ctrl_for_expensive(Node *n, Node* earliest) {
 157   assert(n->in(0) && n->is_expensive(), "expensive node with control input here");
 158   assert(OptimizeExpensiveOps, "optimization off?");
 159 
 160   Node* ctl = n->in(0);
 161   assert(ctl->is_CFG(), "expensive input 0 must be cfg");
 162   uint min_dom_depth = dom_depth(earliest);
 163 #ifdef ASSERT
 164   if (!is_dominator(ctl, earliest) && !is_dominator(earliest, ctl)) {
 165     dump_bad_graph("Bad graph detected in get_early_ctrl_for_expensive", n, earliest, ctl);
 166     assert(false, "Bad graph detected in get_early_ctrl_for_expensive");
 167   }
 168 #endif
 169   if (dom_depth(ctl) < min_dom_depth) {
 170     return earliest;
 171   }
 172 
 173   while (true) {
 174     Node* next = ctl;
 175     // Moving the node out of a loop on the projection of an If
 176     // confuses Loop Predication. So, once we hit a loop in an If branch
 177     // that doesn't branch to an UNC, we stop. The code that process
 178     // expensive nodes will notice the loop and skip over it to try to
 179     // move the node further up.
 180     if (ctl->is_CountedLoop() && ctl->in(1) != nullptr && ctl->in(1)->in(0) != nullptr && ctl->in(1)->in(0)->is_If()) {
 181       if (!ctl->in(1)->as_Proj()->is_uncommon_trap_if_pattern()) {
 182         break;
 183       }
 184       next = idom(ctl->in(1)->in(0));
 185     } else if (ctl->is_Proj()) {
 186       // We only move it up along a projection if the projection is
 187       // the single control projection for its parent: same code path,
 188       // if it's a If with UNC or fallthrough of a call.
 189       Node* parent_ctl = ctl->in(0);
 190       if (parent_ctl == nullptr) {
 191         break;
 192       } else if (parent_ctl->is_CountedLoopEnd() && parent_ctl->as_CountedLoopEnd()->loopnode() != nullptr) {
 193         next = parent_ctl->as_CountedLoopEnd()->loopnode()->init_control();
 194       } else if (parent_ctl->is_If()) {
 195         if (!ctl->as_Proj()->is_uncommon_trap_if_pattern()) {
 196           break;
 197         }
 198         assert(idom(ctl) == parent_ctl, "strange");
 199         next = idom(parent_ctl);
 200       } else if (ctl->is_CatchProj()) {
 201         if (ctl->as_Proj()->_con != CatchProjNode::fall_through_index) {
 202           break;
 203         }
 204         assert(parent_ctl->in(0)->in(0)->is_Call(), "strange graph");
 205         next = parent_ctl->in(0)->in(0)->in(0);
 206       } else {
 207         // Check if parent control has a single projection (this
 208         // control is the only possible successor of the parent
 209         // control). If so, we can try to move the node above the
 210         // parent control.
 211         int nb_ctl_proj = 0;
 212         for (DUIterator_Fast imax, i = parent_ctl->fast_outs(imax); i < imax; i++) {
 213           Node *p = parent_ctl->fast_out(i);
 214           if (p->is_Proj() && p->is_CFG()) {
 215             nb_ctl_proj++;
 216             if (nb_ctl_proj > 1) {
 217               break;
 218             }
 219           }
 220         }
 221 
 222         if (nb_ctl_proj > 1) {
 223           break;
 224         }
 225         assert(parent_ctl->is_Start() || parent_ctl->is_MemBar() || parent_ctl->is_Call() ||
 226                BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(parent_ctl), "unexpected node");
 227         assert(idom(ctl) == parent_ctl, "strange");
 228         next = idom(parent_ctl);
 229       }
 230     } else {
 231       next = idom(ctl);
 232     }
 233     if (next->is_Root() || next->is_Start() || dom_depth(next) < min_dom_depth) {
 234       break;
 235     }
 236     ctl = next;
 237   }
 238 
 239   if (ctl != n->in(0)) {
 240     _igvn.replace_input_of(n, 0, ctl);
 241     _igvn.hash_insert(n);
 242   }
 243 
 244   return ctl;
 245 }
 246 
 247 
 248 //------------------------------set_early_ctrl---------------------------------
 249 // Set earliest legal control
 250 void PhaseIdealLoop::set_early_ctrl(Node* n, bool update_body) {
 251   Node *early = get_early_ctrl(n);
 252 
 253   // Record earliest legal location
 254   set_ctrl(n, early);
 255   IdealLoopTree *loop = get_loop(early);
 256   if (update_body && loop->_child == nullptr) {
 257     loop->_body.push(n);
 258   }
 259 }
 260 
 261 //------------------------------set_subtree_ctrl-------------------------------
 262 // set missing _ctrl entries on new nodes
 263 void PhaseIdealLoop::set_subtree_ctrl(Node* n, bool update_body) {
 264   // Already set?  Get out.
 265   if (_loop_or_ctrl[n->_idx]) return;
 266   // Recursively set _loop_or_ctrl array to indicate where the Node goes
 267   uint i;
 268   for (i = 0; i < n->req(); ++i) {
 269     Node *m = n->in(i);
 270     if (m && m != C->root()) {
 271       set_subtree_ctrl(m, update_body);
 272     }
 273   }
 274 
 275   // Fixup self
 276   set_early_ctrl(n, update_body);
 277 }
 278 
 279 IdealLoopTree* PhaseIdealLoop::insert_outer_loop(IdealLoopTree* loop, LoopNode* outer_l, Node* outer_ift) {
 280   IdealLoopTree* outer_ilt = new IdealLoopTree(this, outer_l, outer_ift);
 281   IdealLoopTree* parent = loop->_parent;
 282   IdealLoopTree* sibling = parent->_child;
 283   if (sibling == loop) {
 284     parent->_child = outer_ilt;
 285   } else {
 286     while (sibling->_next != loop) {
 287       sibling = sibling->_next;
 288     }
 289     sibling->_next = outer_ilt;
 290   }
 291   outer_ilt->_next = loop->_next;
 292   outer_ilt->_parent = parent;
 293   outer_ilt->_child = loop;
 294   outer_ilt->_nest = loop->_nest;
 295   loop->_parent = outer_ilt;
 296   loop->_next = nullptr;
 297   loop->_nest++;
 298   assert(loop->_nest <= SHRT_MAX, "sanity");
 299   return outer_ilt;
 300 }
 301 
 302 // Create a skeleton strip mined outer loop: an OuterStripMinedLoop head before the inner strip mined CountedLoop, a
 303 // SafePoint on exit of the inner CountedLoopEnd and an OuterStripMinedLoopEnd test that can't constant fold until loop
 304 // optimizations are over. The inner strip mined loop is left as it is. Only once loop optimizations are over, do we
 305 // adjust the inner loop exit condition to limit its number of iterations, set the outer loop exit condition and add
 306 // Phis to the outer loop head. Some loop optimizations that operate on the inner strip mined loop need to be aware of
 307 // the outer strip mined loop: loop unswitching needs to clone the outer loop as well as the inner, unrolling needs to
 308 // only clone the inner loop etc. No optimizations need to change the outer strip mined loop as it is only a skeleton.
 309 //
 310 // Schematically:
 311 //
 312 // OuterStripMinedLoop -------|
 313 //       |                    |
 314 // CountedLoop ----------- |  |
 315 //     \- Phi (iv) -|      |  |
 316 //       /  \       |      |  |
 317 //     CmpI  AddI --|      |  |
 318 //       \                 |  |
 319 //        Bool             |  |
 320 //         \               |  |
 321 // CountedLoopEnd          |  |
 322 //       /  \              |  |
 323 // IfFalse   IfTrue--------|  |
 324 //      |                     |
 325 // SafePoint                  |
 326 //      |                     |
 327 // OuterStripMinedLoopEnd     |
 328 //       /   \                |
 329 // IfFalse   IfTrue-----------|
 330 //      |
 331 //
 332 //
 333 // As loop optimizations transform the inner loop, the outer strip mined loop stays mostly unchanged. The only exception
 334 // is nodes referenced from the SafePoint and sunk from the inner loop: they end up in the outer strip mined loop.
 335 //
 336 // Not adding Phis to the outer loop head from the beginning, and only adding them after loop optimizations does not
 337 // conform to C2's IR rules: any variable or memory slice that is mutated in a loop should have a Phi. The main
 338 // motivation for such a design that doesn't conform to C2's IR rules is to allow existing loop optimizations to be
 339 // mostly unaffected by the outer strip mined loop: the only extra step needed in most cases is to step over the
 340 // OuterStripMinedLoop. The main drawback is that once loop optimizations are over, an extra step is needed to finish
 341 // constructing the outer loop. This is handled by OuterStripMinedLoopNode::adjust_strip_mined_loop().
 342 //
 343 // Adding Phis to the outer loop is largely straightforward: there needs to be one Phi in the outer loop for every Phi
 344 // in the inner loop. Things may be more complicated for sunk Store nodes: there may not be any inner loop Phi left
 345 // after sinking for a particular memory slice but the outer loop needs a Phi. See
 346 // OuterStripMinedLoopNode::handle_sunk_stores_when_finishing_construction()
 347 IdealLoopTree* PhaseIdealLoop::create_outer_strip_mined_loop(Node* init_control,
 348                                                              IdealLoopTree* loop, float cl_prob, float le_fcnt,
 349                                                              Node*& entry_control, Node*& iffalse) {
 350   Node* outer_test = intcon(0);
 351   Node *orig = iffalse;
 352   iffalse = iffalse->clone();
 353   _igvn.register_new_node_with_optimizer(iffalse);
 354   set_idom(iffalse, idom(orig), dom_depth(orig));
 355 
 356   IfNode *outer_le = new OuterStripMinedLoopEndNode(iffalse, outer_test, cl_prob, le_fcnt);
 357   Node *outer_ift = new IfTrueNode (outer_le);
 358   Node* outer_iff = orig;
 359   _igvn.replace_input_of(outer_iff, 0, outer_le);
 360 
 361   LoopNode *outer_l = new OuterStripMinedLoopNode(C, init_control, outer_ift);
 362   entry_control = outer_l;
 363 
 364   IdealLoopTree* outer_ilt = insert_outer_loop(loop, outer_l, outer_ift);
 365 
 366   set_loop(iffalse, outer_ilt);
 367   // When this code runs, loop bodies have not yet been populated.
 368   const bool body_populated = false;
 369   register_control(outer_le, outer_ilt, iffalse, body_populated);
 370   register_control(outer_ift, outer_ilt, outer_le, body_populated);
 371   set_idom(outer_iff, outer_le, dom_depth(outer_le));
 372   _igvn.register_new_node_with_optimizer(outer_l);
 373   set_loop(outer_l, outer_ilt);
 374   set_idom(outer_l, init_control, dom_depth(init_control)+1);
 375 
 376   return outer_ilt;
 377 }
 378 
 379 void PhaseIdealLoop::insert_loop_limit_check_predicate(ParsePredicateSuccessProj* loop_limit_check_parse_proj,
 380                                                        Node* cmp_limit, Node* bol) {
 381   assert(loop_limit_check_parse_proj->in(0)->is_ParsePredicate(), "must be parse predicate");
 382   Node* new_predicate_proj = create_new_if_for_predicate(loop_limit_check_parse_proj, nullptr,
 383                                                          Deoptimization::Reason_loop_limit_check,
 384                                                          Op_If);
 385   Node* iff = new_predicate_proj->in(0);
 386   cmp_limit = _igvn.register_new_node_with_optimizer(cmp_limit);
 387   bol = _igvn.register_new_node_with_optimizer(bol);
 388   set_subtree_ctrl(bol, false);
 389   _igvn.replace_input_of(iff, 1, bol);
 390 
 391 #ifndef PRODUCT
 392   // report that the loop predication has been actually performed
 393   // for this loop
 394   if (TraceLoopLimitCheck) {
 395     tty->print_cr("Counted Loop Limit Check generated:");
 396     DEBUG_ONLY( bol->dump(2); )
 397   }
 398 #endif
 399 }
 400 
 401 Node* PhaseIdealLoop::loop_exit_control(Node* x, IdealLoopTree* loop) {
 402   // Counted loop head must be a good RegionNode with only 3 not null
 403   // control input edges: Self, Entry, LoopBack.
 404   if (x->in(LoopNode::Self) == nullptr || x->req() != 3 || loop->_irreducible) {
 405     return nullptr;
 406   }
 407   Node *init_control = x->in(LoopNode::EntryControl);
 408   Node *back_control = x->in(LoopNode::LoopBackControl);
 409   if (init_control == nullptr || back_control == nullptr) {   // Partially dead
 410     return nullptr;
 411   }
 412   // Must also check for TOP when looking for a dead loop
 413   if (init_control->is_top() || back_control->is_top()) {
 414     return nullptr;
 415   }
 416 
 417   // Allow funny placement of Safepoint
 418   if (back_control->Opcode() == Op_SafePoint) {
 419     back_control = back_control->in(TypeFunc::Control);
 420   }
 421 
 422   // Controlling test for loop
 423   Node *iftrue = back_control;
 424   uint iftrue_op = iftrue->Opcode();
 425   if (iftrue_op != Op_IfTrue &&
 426       iftrue_op != Op_IfFalse) {
 427     // I have a weird back-control.  Probably the loop-exit test is in
 428     // the middle of the loop and I am looking at some trailing control-flow
 429     // merge point.  To fix this I would have to partially peel the loop.
 430     return nullptr; // Obscure back-control
 431   }
 432 
 433   // Get boolean guarding loop-back test
 434   Node *iff = iftrue->in(0);
 435   if (get_loop(iff) != loop || !iff->in(1)->is_Bool()) {
 436     return nullptr;
 437   }
 438   return iftrue;
 439 }
 440 
 441 Node* PhaseIdealLoop::loop_exit_test(Node* back_control, IdealLoopTree* loop, Node*& incr, Node*& limit, BoolTest::mask& bt, float& cl_prob) {
 442   Node* iftrue = back_control;
 443   uint iftrue_op = iftrue->Opcode();
 444   Node* iff = iftrue->in(0);
 445   BoolNode* test = iff->in(1)->as_Bool();
 446   bt = test->_test._test;
 447   cl_prob = iff->as_If()->_prob;
 448   if (iftrue_op == Op_IfFalse) {
 449     bt = BoolTest(bt).negate();
 450     cl_prob = 1.0 - cl_prob;
 451   }
 452   // Get backedge compare
 453   Node* cmp = test->in(1);
 454   if (!cmp->is_Cmp()) {
 455     return nullptr;
 456   }
 457 
 458   // Find the trip-counter increment & limit.  Limit must be loop invariant.
 459   incr  = cmp->in(1);
 460   limit = cmp->in(2);
 461 
 462   // ---------
 463   // need 'loop()' test to tell if limit is loop invariant
 464   // ---------
 465 
 466   if (!ctrl_is_member(loop, incr)) { // Swapped trip counter and limit?
 467     Node* tmp = incr;            // Then reverse order into the CmpI
 468     incr = limit;
 469     limit = tmp;
 470     bt = BoolTest(bt).commute(); // And commute the exit test
 471   }
 472   if (ctrl_is_member(loop, limit)) { // Limit must be loop-invariant
 473     return nullptr;
 474   }
 475   if (!ctrl_is_member(loop, incr)) { // Trip counter must be loop-variant
 476     return nullptr;
 477   }
 478   return cmp;
 479 }
 480 
 481 Node* PhaseIdealLoop::loop_iv_incr(Node* incr, Node* x, IdealLoopTree* loop, Node*& phi_incr) {
 482   if (incr->is_Phi()) {
 483     if (incr->as_Phi()->region() != x || incr->req() != 3) {
 484       return nullptr; // Not simple trip counter expression
 485     }
 486     phi_incr = incr;
 487     incr = phi_incr->in(LoopNode::LoopBackControl); // Assume incr is on backedge of Phi
 488     if (!ctrl_is_member(loop, incr)) { // Trip counter must be loop-variant
 489       return nullptr;
 490     }
 491   }
 492   return incr;
 493 }
 494 
 495 Node* PhaseIdealLoop::loop_iv_stride(Node* incr, Node*& xphi) {
 496   assert(incr->Opcode() == Op_AddI || incr->Opcode() == Op_AddL, "caller resp.");
 497   // Get merge point
 498   xphi = incr->in(1);
 499   Node *stride = incr->in(2);
 500   if (!stride->is_Con()) {     // Oops, swap these
 501     if (!xphi->is_Con()) {     // Is the other guy a constant?
 502       return nullptr;          // Nope, unknown stride, bail out
 503     }
 504     Node *tmp = xphi;          // 'incr' is commutative, so ok to swap
 505     xphi = stride;
 506     stride = tmp;
 507   }
 508   return stride;
 509 }
 510 
 511 PhiNode* PhaseIdealLoop::loop_iv_phi(Node* xphi, Node* phi_incr, Node* x) {
 512   if (!xphi->is_Phi()) {
 513     return nullptr; // Too much math on the trip counter
 514   }
 515   if (phi_incr != nullptr && phi_incr != xphi) {
 516     return nullptr;
 517   }
 518   PhiNode *phi = xphi->as_Phi();
 519 
 520   // Phi must be of loop header; backedge must wrap to increment
 521   if (phi->region() != x) {
 522     return nullptr;
 523   }
 524   return phi;
 525 }
 526 
 527 static int check_stride_overflow(jlong final_correction, const TypeInteger* limit_t, BasicType bt) {
 528   if (final_correction > 0) {
 529     if (limit_t->lo_as_long() > (max_signed_integer(bt) - final_correction)) {
 530       return -1;
 531     }
 532     if (limit_t->hi_as_long() > (max_signed_integer(bt) - final_correction)) {
 533       return 1;
 534     }
 535   } else {
 536     if (limit_t->hi_as_long() < (min_signed_integer(bt) - final_correction)) {
 537       return -1;
 538     }
 539     if (limit_t->lo_as_long() < (min_signed_integer(bt) - final_correction)) {
 540       return 1;
 541     }
 542   }
 543   return 0;
 544 }
 545 
 546 static bool condition_stride_ok(BoolTest::mask bt, jlong stride_con) {
 547   // If the condition is inverted and we will be rolling
 548   // through MININT to MAXINT, then bail out.
 549   if (bt == BoolTest::eq || // Bail out, but this loop trips at most twice!
 550       // Odd stride
 551       (bt == BoolTest::ne && stride_con != 1 && stride_con != -1) ||
 552       // Count down loop rolls through MAXINT
 553       ((bt == BoolTest::le || bt == BoolTest::lt) && stride_con < 0) ||
 554       // Count up loop rolls through MININT
 555       ((bt == BoolTest::ge || bt == BoolTest::gt) && stride_con > 0)) {
 556     return false; // Bail out
 557   }
 558   return true;
 559 }
 560 
 561 Node* PhaseIdealLoop::loop_nest_replace_iv(Node* iv_to_replace, Node* inner_iv, Node* outer_phi, Node* inner_head,
 562                                            BasicType bt) {
 563   Node* iv_as_long;
 564   if (bt == T_LONG) {
 565     iv_as_long = new ConvI2LNode(inner_iv, TypeLong::INT);
 566     register_new_node(iv_as_long, inner_head);
 567   } else {
 568     iv_as_long = inner_iv;
 569   }
 570   Node* iv_replacement = AddNode::make(outer_phi, iv_as_long, bt);
 571   register_new_node(iv_replacement, inner_head);
 572   for (DUIterator_Last imin, i = iv_to_replace->last_outs(imin); i >= imin;) {
 573     Node* u = iv_to_replace->last_out(i);
 574 #ifdef ASSERT
 575     if (!is_dominator(inner_head, ctrl_or_self(u))) {
 576       assert(u->is_Phi(), "should be a Phi");
 577       for (uint j = 1; j < u->req(); j++) {
 578         if (u->in(j) == iv_to_replace) {
 579           assert(is_dominator(inner_head, u->in(0)->in(j)), "iv use above loop?");
 580         }
 581       }
 582     }
 583 #endif
 584     _igvn.rehash_node_delayed(u);
 585     int nb = u->replace_edge(iv_to_replace, iv_replacement, &_igvn);
 586     i -= nb;
 587   }
 588   return iv_replacement;
 589 }
 590 
 591 // Add a Parse Predicate with an uncommon trap on the failing/false path. Normal control will continue on the true path.
 592 void PhaseIdealLoop::add_parse_predicate(Deoptimization::DeoptReason reason, Node* inner_head, IdealLoopTree* loop,
 593                                          SafePointNode* sfpt) {
 594   if (!C->too_many_traps(reason)) {
 595     ParsePredicateNode* parse_predicate = new ParsePredicateNode(inner_head->in(LoopNode::EntryControl), reason, &_igvn);
 596     register_control(parse_predicate, loop, inner_head->in(LoopNode::EntryControl));
 597     Node* if_false = new IfFalseNode(parse_predicate);
 598     register_control(if_false, _ltree_root, parse_predicate);
 599     Node* if_true = new IfTrueNode(parse_predicate);
 600     register_control(if_true, loop, parse_predicate);
 601 
 602     int trap_request = Deoptimization::make_trap_request(reason, Deoptimization::Action_maybe_recompile);
 603     address call_addr = OptoRuntime::uncommon_trap_blob()->entry_point();
 604     const TypePtr* no_memory_effects = nullptr;
 605     CallNode* unc = new CallStaticJavaNode(OptoRuntime::uncommon_trap_Type(), call_addr, "uncommon_trap",
 606                                            no_memory_effects);
 607 
 608     Node* mem = nullptr;
 609     Node* i_o = nullptr;
 610     if (sfpt->is_Call()) {
 611       mem = sfpt->proj_out(TypeFunc::Memory);
 612       i_o = sfpt->proj_out(TypeFunc::I_O);
 613     } else {
 614       mem = sfpt->memory();
 615       i_o = sfpt->i_o();
 616     }
 617 
 618     Node *frame = new ParmNode(C->start(), TypeFunc::FramePtr);
 619     register_new_node(frame, C->start());
 620     Node *ret = new ParmNode(C->start(), TypeFunc::ReturnAdr);
 621     register_new_node(ret, C->start());
 622 
 623     unc->init_req(TypeFunc::Control, if_false);
 624     unc->init_req(TypeFunc::I_O, i_o);
 625     unc->init_req(TypeFunc::Memory, mem); // may gc ptrs
 626     unc->init_req(TypeFunc::FramePtr, frame);
 627     unc->init_req(TypeFunc::ReturnAdr, ret);
 628     unc->init_req(TypeFunc::Parms+0, _igvn.intcon(trap_request));
 629     unc->set_cnt(PROB_UNLIKELY_MAG(4));
 630     unc->copy_call_debug_info(&_igvn, sfpt);
 631 
 632     for (uint i = TypeFunc::Parms; i < unc->req(); i++) {
 633       set_subtree_ctrl(unc->in(i), false);
 634     }
 635     register_control(unc, _ltree_root, if_false);
 636 
 637     Node* ctrl = new ProjNode(unc, TypeFunc::Control);
 638     register_control(ctrl, _ltree_root, unc);
 639     Node* halt = new HaltNode(ctrl, frame, "uncommon trap returned which should never happen" PRODUCT_ONLY(COMMA /*reachable*/false));
 640     register_control(halt, _ltree_root, ctrl);
 641     _igvn.add_input_to(C->root(), halt);
 642 
 643     _igvn.replace_input_of(inner_head, LoopNode::EntryControl, if_true);
 644     set_idom(inner_head, if_true, dom_depth(inner_head));
 645   }
 646 }
 647 
 648 // Find a safepoint node that dominates the back edge. We need a
 649 // SafePointNode so we can use its jvm state to create empty
 650 // predicates.
 651 static bool no_side_effect_since_safepoint(Compile* C, Node* x, Node* mem, MergeMemNode* mm, PhaseIdealLoop* phase) {
 652   SafePointNode* safepoint = nullptr;
 653   for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
 654     Node* u = x->fast_out(i);
 655     if (u->is_memory_phi()) {
 656       Node* m = u->in(LoopNode::LoopBackControl);
 657       if (u->adr_type() == TypePtr::BOTTOM) {
 658         if (m->is_MergeMem() && mem->is_MergeMem()) {
 659           if (m != mem DEBUG_ONLY(|| true)) {
 660             // MergeMemStream can modify m, for example to adjust the length to mem.
 661             // This is unfortunate, and probably unnecessary. But as it is, we need
 662             // to add m to the igvn worklist, else we may have a modified node that
 663             // is not on the igvn worklist.
 664             phase->igvn()._worklist.push(m);
 665             for (MergeMemStream mms(m->as_MergeMem(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
 666               if (!mms.is_empty()) {
 667                 if (mms.memory() != mms.memory2()) {
 668                   return false;
 669                 }
 670 #ifdef ASSERT
 671                 if (mms.alias_idx() != Compile::AliasIdxBot) {
 672                   mm->set_memory_at(mms.alias_idx(), mem->as_MergeMem()->base_memory());
 673                 }
 674 #endif
 675               }
 676             }
 677           }
 678         } else if (mem->is_MergeMem()) {
 679           if (m != mem->as_MergeMem()->base_memory()) {
 680             return false;
 681           }
 682         } else {
 683           return false;
 684         }
 685       } else {
 686         if (mem->is_MergeMem()) {
 687           if (m != mem->as_MergeMem()->memory_at(C->get_alias_index(u->adr_type()))) {
 688             return false;
 689           }
 690 #ifdef ASSERT
 691           mm->set_memory_at(C->get_alias_index(u->adr_type()), mem->as_MergeMem()->base_memory());
 692 #endif
 693         } else {
 694           if (m != mem) {
 695             return false;
 696           }
 697         }
 698       }
 699     }
 700   }
 701   return true;
 702 }
 703 
 704 SafePointNode* PhaseIdealLoop::find_safepoint(Node* back_control, Node* x, IdealLoopTree* loop) {
 705   IfNode* exit_test = back_control->in(0)->as_If();
 706   SafePointNode* safepoint = nullptr;
 707   if (exit_test->in(0)->is_SafePoint() && exit_test->in(0)->outcnt() == 1) {
 708     safepoint = exit_test->in(0)->as_SafePoint();
 709   } else {
 710     Node* c = back_control;
 711     while (c != x && c->Opcode() != Op_SafePoint) {
 712       c = idom(c);
 713     }
 714 
 715     if (c->Opcode() == Op_SafePoint) {
 716       safepoint = c->as_SafePoint();
 717     }
 718 
 719     if (safepoint == nullptr) {
 720       return nullptr;
 721     }
 722 
 723     Node* mem = safepoint->in(TypeFunc::Memory);
 724 
 725     // We can only use that safepoint if there's no side effect between the backedge and the safepoint.
 726 
 727     // mm is the memory state at the safepoint (when it's a MergeMem)
 728     // no_side_effect_since_safepoint() goes over the memory state at the backedge. It resets the mm input for each
 729     // component of the memory state it encounters so it points to the base memory. Once no_side_effect_since_safepoint()
 730     // is done, if no side effect after the safepoint was found, mm should transform to the base memory: the states at
 731     // the backedge and safepoint are the same so all components of the memory state at the safepoint should have been
 732     // reset.
 733     MergeMemNode* mm = nullptr;
 734 #ifdef ASSERT
 735     if (mem->is_MergeMem()) {
 736       mm = mem->clone()->as_MergeMem();
 737       _igvn._worklist.push(mm);
 738       for (MergeMemStream mms(mem->as_MergeMem()); mms.next_non_empty(); ) {
 739         // Loop invariant memory state won't be reset by no_side_effect_since_safepoint(). Do it here.
 740         // Escape Analysis can add state to mm that it doesn't add to the backedge memory Phis, breaking verification
 741         // code that relies on mm. Clear that extra state here.
 742         if (mms.alias_idx() != Compile::AliasIdxBot &&
 743             (loop != get_loop(ctrl_or_self(mms.memory())) ||
 744              (mms.adr_type()->isa_oop_ptr() && mms.adr_type()->is_known_instance()))) {
 745           mm->set_memory_at(mms.alias_idx(), mem->as_MergeMem()->base_memory());
 746         }
 747       }
 748     }
 749 #endif
 750     if (!no_side_effect_since_safepoint(C, x, mem, mm, this)) {
 751       safepoint = nullptr;
 752     } else {
 753       assert(mm == nullptr|| _igvn.transform(mm) == mem->as_MergeMem()->base_memory(), "all memory state should have been processed");
 754     }
 755 #ifdef ASSERT
 756     if (mm != nullptr) {
 757       _igvn.remove_dead_node(mm);
 758     }
 759 #endif
 760   }
 761   return safepoint;
 762 }
 763 
 764 // If the loop has the shape of a counted loop but with a long
 765 // induction variable, transform the loop in a loop nest: an inner
 766 // loop that iterates for at most max int iterations with an integer
 767 // induction variable and an outer loop that iterates over the full
 768 // range of long values from the initial loop in (at most) max int
 769 // steps. That is:
 770 //
 771 // x: for (long phi = init; phi < limit; phi += stride) {
 772 //   // phi := Phi(L, init, incr)
 773 //   // incr := AddL(phi, longcon(stride))
 774 //   long incr = phi + stride;
 775 //   ... use phi and incr ...
 776 // }
 777 //
 778 // OR:
 779 //
 780 // x: for (long phi = init; (phi += stride) < limit; ) {
 781 //   // phi := Phi(L, AddL(init, stride), incr)
 782 //   // incr := AddL(phi, longcon(stride))
 783 //   long incr = phi + stride;
 784 //   ... use phi and (phi + stride) ...
 785 // }
 786 //
 787 // ==transform=>
 788 //
 789 // const ulong inner_iters_limit = INT_MAX - stride - 1;  //near 0x7FFFFFF0
 790 // assert(stride <= inner_iters_limit);  // else abort transform
 791 // assert((extralong)limit + stride <= LONG_MAX);  // else deopt
 792 // outer_head: for (long outer_phi = init;;) {
 793 //   // outer_phi := Phi(outer_head, init, AddL(outer_phi, I2L(inner_phi)))
 794 //   ulong inner_iters_max = (ulong) MAX(0, ((extralong)limit + stride - outer_phi));
 795 //   long inner_iters_actual = MIN(inner_iters_limit, inner_iters_max);
 796 //   assert(inner_iters_actual == (int)inner_iters_actual);
 797 //   int inner_phi, inner_incr;
 798 //   x: for (inner_phi = 0;; inner_phi = inner_incr) {
 799 //     // inner_phi := Phi(x, intcon(0), inner_incr)
 800 //     // inner_incr := AddI(inner_phi, intcon(stride))
 801 //     inner_incr = inner_phi + stride;
 802 //     if (inner_incr < inner_iters_actual) {
 803 //       ... use phi=>(outer_phi+inner_phi) ...
 804 //       continue;
 805 //     }
 806 //     else break;
 807 //   }
 808 //   if ((outer_phi+inner_phi) < limit)  //OR (outer_phi+inner_incr) < limit
 809 //     continue;
 810 //   else break;
 811 // }
 812 //
 813 // The same logic is used to transform an int counted loop that contains long range checks into a loop nest of 2 int
 814 // loops with long range checks transformed to int range checks in the inner loop.
 815 bool PhaseIdealLoop::create_loop_nest(IdealLoopTree* loop, Node_List &old_new) {
 816   Node* x = loop->_head;
 817   // Only for inner loops
 818   if (loop->_child != nullptr || !x->is_BaseCountedLoop() || x->as_Loop()->is_loop_nest_outer_loop()) {
 819     return false;
 820   }
 821 
 822   if (x->is_CountedLoop() && !x->as_CountedLoop()->is_main_loop() && !x->as_CountedLoop()->is_normal_loop()) {
 823     return false;
 824   }
 825 
 826   BaseCountedLoopNode* head = x->as_BaseCountedLoop();
 827   BasicType bt = x->as_BaseCountedLoop()->bt();
 828 
 829   check_counted_loop_shape(loop, x, bt);
 830 
 831 #ifndef PRODUCT
 832   if (bt == T_LONG) {
 833     AtomicAccess::inc(&_long_loop_candidates);
 834   }
 835 #endif
 836 
 837   jlong stride_con_long = head->stride_con();
 838   assert(stride_con_long != 0, "missed some peephole opt");
 839   // We can't iterate for more than max int at a time.
 840   if (stride_con_long != (jint)stride_con_long || stride_con_long == min_jint) {
 841     assert(bt == T_LONG, "only for long loops");
 842     return false;
 843   }
 844   jint stride_con = checked_cast<jint>(stride_con_long);
 845   // The number of iterations for the integer count loop: guarantee no
 846   // overflow: max_jint - stride_con max. -1 so there's no need for a
 847   // loop limit check if the exit test is <= or >=.
 848   int iters_limit = max_jint - ABS(stride_con) - 1;
 849 #ifdef ASSERT
 850   if (bt == T_LONG && StressLongCountedLoop > 0) {
 851     iters_limit = iters_limit / StressLongCountedLoop;
 852   }
 853 #endif
 854   // At least 2 iterations so counted loop construction doesn't fail
 855   if (iters_limit/ABS(stride_con) < 2) {
 856     return false;
 857   }
 858 
 859   assert(iters_limit > 0, "can't be negative");
 860 
 861   PhiNode* phi = head->phi()->as_Phi();
 862 
 863   Node* back_control = head->in(LoopNode::LoopBackControl);
 864 
 865   // data nodes on back branch not supported
 866   if (back_control->outcnt() > 1) {
 867     return false;
 868   }
 869 
 870   Node* limit = head->limit();
 871   // We'll need to use the loop limit before the inner loop is entered
 872   if (!is_dominator(get_ctrl(limit), x)) {
 873     return false;
 874   }
 875 
 876   IfNode* exit_test = head->loopexit();
 877 
 878   assert(back_control->Opcode() == Op_IfTrue, "wrong projection for back edge");
 879 
 880   Node_List range_checks;
 881   iters_limit = extract_long_range_checks(loop, stride_con, iters_limit, phi, range_checks);
 882 
 883   if (bt == T_INT) {
 884     // The only purpose of creating a loop nest is to handle long range checks. If there are none, do not proceed further.
 885     if (range_checks.size() == 0) {
 886       return false;
 887     }
 888   }
 889 
 890   // Take what we know about the number of iterations of the long counted loop into account when computing the limit of
 891   // the inner loop.
 892   Node* init = head->init_trip();
 893   const TypeInteger* lo = _igvn.type(init)->is_integer(bt);
 894   const TypeInteger* hi = _igvn.type(limit)->is_integer(bt);
 895   if (stride_con < 0) {
 896     swap(lo, hi);
 897   }
 898   if (hi->hi_as_long() <= lo->lo_as_long()) {
 899     // not a loop after all
 900     return false;
 901   }
 902 
 903   if (range_checks.size() > 0) {
 904     // This transformation requires peeling one iteration. Also, if it has range checks and they are eliminated by Loop
 905     // Predication, then 2 Hoisted Check Predicates are added for one range check. Finally, transforming a long range
 906     // check requires extra logic to be executed before the loop is entered and for the outer loop. As a result, the
 907     // transformations can't pay off for a small number of iterations: roughly, if the loop runs for 3 iterations, it's
 908     // going to execute as many range checks once transformed with range checks eliminated (1 peeled iteration with
 909     // range checks + 2 predicates per range checks) as it would have not transformed. It also has to pay for the extra
 910     // logic on loop entry and for the outer loop.
 911     loop->compute_trip_count(this, bt);
 912     if (head->is_CountedLoop() && head->as_CountedLoop()->has_exact_trip_count()) {
 913       if (head->as_CountedLoop()->trip_count() <= 3) {
 914         return false;
 915       }
 916     } else {
 917       loop->compute_profile_trip_cnt(this);
 918       if (!head->is_profile_trip_failed() && head->profile_trip_cnt() <= 3) {
 919         return false;
 920       }
 921     }
 922   }
 923 
 924   if (try_make_short_running_loop(loop, stride_con, range_checks, iters_limit)) {
 925     C->set_major_progress();
 926     return true;
 927   }
 928 
 929   julong orig_iters = (julong)hi->hi_as_long() - lo->lo_as_long();
 930   iters_limit = checked_cast<int>(MIN2((julong)iters_limit, orig_iters));
 931 
 932   // We need a safepoint to insert Parse Predicates for the inner loop.
 933   SafePointNode* safepoint;
 934   if (bt == T_INT && head->as_CountedLoop()->is_strip_mined()) {
 935     // Loop is strip mined: use the safepoint of the outer strip mined loop
 936     OuterStripMinedLoopNode* outer_loop = head->as_CountedLoop()->outer_loop();
 937     assert(outer_loop != nullptr, "no outer loop");
 938     safepoint = outer_loop->outer_safepoint();
 939     outer_loop->transform_to_counted_loop(&_igvn, this);
 940     exit_test = head->loopexit();
 941   } else {
 942     safepoint = find_safepoint(back_control, x, loop);
 943   }
 944 
 945   Node* exit_branch = exit_test->proj_out(false);
 946   Node* entry_control = head->in(LoopNode::EntryControl);
 947 
 948   // Clone the control flow of the loop to build an outer loop
 949   Node* outer_back_branch = back_control->clone();
 950   Node* outer_exit_test = new IfNode(exit_test->in(0), exit_test->in(1), exit_test->_prob, exit_test->_fcnt);
 951   Node* inner_exit_branch = exit_branch->clone();
 952 
 953   LoopNode* outer_head = new LoopNode(entry_control, outer_back_branch);
 954   IdealLoopTree* outer_ilt = insert_outer_loop(loop, outer_head, outer_back_branch);
 955 
 956   const bool body_populated = true;
 957   register_control(outer_head, outer_ilt, entry_control, body_populated);
 958 
 959   _igvn.register_new_node_with_optimizer(inner_exit_branch);
 960   set_loop(inner_exit_branch, outer_ilt);
 961   set_idom(inner_exit_branch, exit_test, dom_depth(exit_branch));
 962 
 963   outer_exit_test->set_req(0, inner_exit_branch);
 964   register_control(outer_exit_test, outer_ilt, inner_exit_branch, body_populated);
 965 
 966   _igvn.replace_input_of(exit_branch, 0, outer_exit_test);
 967   set_idom(exit_branch, outer_exit_test, dom_depth(exit_branch));
 968 
 969   outer_back_branch->set_req(0, outer_exit_test);
 970   register_control(outer_back_branch, outer_ilt, outer_exit_test, body_populated);
 971 
 972   _igvn.replace_input_of(x, LoopNode::EntryControl, outer_head);
 973   set_idom(x, outer_head, dom_depth(x));
 974 
 975   // add an iv phi to the outer loop and use it to compute the inner
 976   // loop iteration limit
 977   Node* outer_phi = phi->clone();
 978   outer_phi->set_req(0, outer_head);
 979   register_new_node(outer_phi, outer_head);
 980 
 981   Node* inner_iters_max = nullptr;
 982   if (stride_con > 0) {
 983     inner_iters_max = MaxNode::max_diff_with_zero(limit, outer_phi, TypeInteger::bottom(bt), _igvn);
 984   } else {
 985     inner_iters_max = MaxNode::max_diff_with_zero(outer_phi, limit, TypeInteger::bottom(bt), _igvn);
 986   }
 987 
 988   Node* inner_iters_limit = _igvn.integercon(iters_limit, bt);
 989   // inner_iters_max may not fit in a signed integer (iterating from
 990   // Long.MIN_VALUE to Long.MAX_VALUE for instance). Use an unsigned
 991   // min.
 992   const TypeInteger* inner_iters_actual_range = TypeInteger::make(0, iters_limit, Type::WidenMin, bt);
 993   Node* inner_iters_actual = MaxNode::unsigned_min(inner_iters_max, inner_iters_limit, inner_iters_actual_range, _igvn);
 994 
 995   Node* inner_iters_actual_int;
 996   if (bt == T_LONG) {
 997     inner_iters_actual_int = new ConvL2INode(inner_iters_actual);
 998     _igvn.register_new_node_with_optimizer(inner_iters_actual_int);
 999     // When the inner loop is transformed to a counted loop, a loop limit check is not expected to be needed because
1000     // the loop limit is less or equal to max_jint - stride - 1 (if stride is positive but a similar argument exists for
1001     // a negative stride). We add a CastII here to guarantee that, when the counted loop is created in a subsequent loop
1002     // opts pass, an accurate range of values for the limits is found.
1003     const TypeInt* inner_iters_actual_int_range = TypeInt::make(0, iters_limit, Type::WidenMin);
1004     inner_iters_actual_int = new CastIINode(outer_head, inner_iters_actual_int, inner_iters_actual_int_range, ConstraintCastNode::DependencyType::NonFloatingNonNarrowing);
1005     _igvn.register_new_node_with_optimizer(inner_iters_actual_int);
1006   } else {
1007     inner_iters_actual_int = inner_iters_actual;
1008   }
1009 
1010   Node* int_zero = intcon(0);
1011   if (stride_con < 0) {
1012     inner_iters_actual_int = new SubINode(int_zero, inner_iters_actual_int);
1013     _igvn.register_new_node_with_optimizer(inner_iters_actual_int);
1014   }
1015 
1016   // Clone the iv data nodes as an integer iv
1017   Node* int_stride = intcon(stride_con);
1018   Node* inner_phi = new PhiNode(x->in(0), TypeInt::INT);
1019   Node* inner_incr = new AddINode(inner_phi, int_stride);
1020   Node* inner_cmp = nullptr;
1021   inner_cmp = new CmpINode(inner_incr, inner_iters_actual_int);
1022   Node* inner_bol = new BoolNode(inner_cmp, exit_test->in(1)->as_Bool()->_test._test);
1023   inner_phi->set_req(LoopNode::EntryControl, int_zero);
1024   inner_phi->set_req(LoopNode::LoopBackControl, inner_incr);
1025   register_new_node(inner_phi, x);
1026   register_new_node(inner_incr, x);
1027   register_new_node(inner_cmp, x);
1028   register_new_node(inner_bol, x);
1029 
1030   _igvn.replace_input_of(exit_test, 1, inner_bol);
1031 
1032   // Clone inner loop phis to outer loop
1033   for (uint i = 0; i < head->outcnt(); i++) {
1034     Node* u = head->raw_out(i);
1035     if (u->is_Phi() && u != inner_phi && u != phi) {
1036       assert(u->in(0) == head, "inconsistent");
1037       Node* clone = u->clone();
1038       clone->set_req(0, outer_head);
1039       register_new_node(clone, outer_head);
1040       _igvn.replace_input_of(u, LoopNode::EntryControl, clone);
1041     }
1042   }
1043 
1044   // Replace inner loop long iv phi as inner loop int iv phi + outer
1045   // loop iv phi
1046   Node* iv_add = loop_nest_replace_iv(phi, inner_phi, outer_phi, head, bt);
1047 
1048   set_subtree_ctrl(inner_iters_actual_int, body_populated);
1049 
1050   LoopNode* inner_head = create_inner_head(loop, head, exit_test);
1051 
1052   // Summary of steps from initial loop to loop nest:
1053   //
1054   // == old IR nodes =>
1055   //
1056   // entry_control: {...}
1057   // x:
1058   // for (long phi = init;;) {
1059   //   // phi := Phi(x, init, incr)
1060   //   // incr := AddL(phi, longcon(stride))
1061   //   exit_test:
1062   //   if (phi < limit)
1063   //     back_control: fallthrough;
1064   //   else
1065   //     exit_branch: break;
1066   //   long incr = phi + stride;
1067   //   ... use phi and incr ...
1068   //   phi = incr;
1069   // }
1070   //
1071   // == new IR nodes (just before final peel) =>
1072   //
1073   // entry_control: {...}
1074   // long adjusted_limit = limit + stride;  //because phi_incr != nullptr
1075   // assert(!limit_check_required || (extralong)limit + stride == adjusted_limit);  // else deopt
1076   // ulong inner_iters_limit = max_jint - ABS(stride) - 1;  //near 0x7FFFFFF0
1077   // outer_head:
1078   // for (long outer_phi = init;;) {
1079   //   // outer_phi := phi->clone(), in(0):=outer_head, => Phi(outer_head, init, incr)
1080   //   // REPLACE phi  => AddL(outer_phi, I2L(inner_phi))
1081   //   // REPLACE incr => AddL(outer_phi, I2L(inner_incr))
1082   //   // SO THAT outer_phi := Phi(outer_head, init, AddL(outer_phi, I2L(inner_incr)))
1083   //   ulong inner_iters_max = (ulong) MAX(0, ((extralong)adjusted_limit - outer_phi) * SGN(stride));
1084   //   int inner_iters_actual_int = (int) MIN(inner_iters_limit, inner_iters_max) * SGN(stride);
1085   //   inner_head: x: //in(1) := outer_head
1086   //   int inner_phi;
1087   //   for (inner_phi = 0;;) {
1088   //     // inner_phi := Phi(x, intcon(0), inner_phi + stride)
1089   //     int inner_incr = inner_phi + stride;
1090   //     bool inner_bol = (inner_incr < inner_iters_actual_int);
1091   //     exit_test: //exit_test->in(1) := inner_bol;
1092   //     if (inner_bol) // WAS (phi < limit)
1093   //       back_control: fallthrough;
1094   //     else
1095   //       inner_exit_branch: break;  //exit_branch->clone()
1096   //     ... use phi=>(outer_phi+inner_phi) ...
1097   //     inner_phi = inner_phi + stride;  // inner_incr
1098   //   }
1099   //   outer_exit_test:  //exit_test->clone(), in(0):=inner_exit_branch
1100   //   if ((outer_phi+inner_phi) < limit)  // WAS (phi < limit)
1101   //     outer_back_branch: fallthrough;  //back_control->clone(), in(0):=outer_exit_test
1102   //   else
1103   //     exit_branch: break;  //in(0) := outer_exit_test
1104   // }
1105 
1106   if (bt == T_INT) {
1107     outer_phi = new ConvI2LNode(outer_phi);
1108     register_new_node(outer_phi, outer_head);
1109   }
1110 
1111   transform_long_range_checks(stride_con, range_checks, outer_phi, inner_iters_actual_int,
1112                               inner_phi, iv_add, inner_head);
1113   // Peel one iteration of the loop and use the safepoint at the end
1114   // of the peeled iteration to insert Parse Predicates. If no well
1115   // positioned safepoint peel to guarantee a safepoint in the outer
1116   // loop.
1117   if (safepoint != nullptr || !loop->_has_call) {
1118     old_new.clear();
1119     do_peeling(loop, old_new);
1120   } else {
1121     C->set_major_progress();
1122   }
1123 
1124   if (safepoint != nullptr) {
1125     SafePointNode* cloned_sfpt = old_new[safepoint->_idx]->as_SafePoint();
1126 
1127     if (ShortRunningLongLoop) {
1128       add_parse_predicate(Deoptimization::Reason_short_running_long_loop, inner_head, outer_ilt, cloned_sfpt);
1129     }
1130     if (UseLoopPredicate) {
1131       add_parse_predicate(Deoptimization::Reason_predicate, inner_head, outer_ilt, cloned_sfpt);
1132       if (UseProfiledLoopPredicate) {
1133         add_parse_predicate(Deoptimization::Reason_profile_predicate, inner_head, outer_ilt, cloned_sfpt);
1134       }
1135     }
1136 
1137     if (UseAutoVectorizationPredicate) {
1138       // We only want to use the auto-vectorization check as a trap once per bci. And
1139       // PhaseIdealLoop::add_parse_predicate only checks trap limits per method, so
1140       // we do a custom check here.
1141       if (!C->too_many_traps(cloned_sfpt->jvms()->method(), cloned_sfpt->jvms()->bci(), Deoptimization::Reason_auto_vectorization_check)) {
1142         add_parse_predicate(Deoptimization::Reason_auto_vectorization_check, inner_head, outer_ilt, cloned_sfpt);
1143       }
1144     }
1145 
1146     add_parse_predicate(Deoptimization::Reason_loop_limit_check, inner_head, outer_ilt, cloned_sfpt);
1147   }
1148 
1149 #ifndef PRODUCT
1150   if (bt == T_LONG) {
1151     AtomicAccess::inc(&_long_loop_nests);
1152   }
1153 #endif
1154 
1155   inner_head->mark_loop_nest_inner_loop();
1156   outer_head->mark_loop_nest_outer_loop();
1157 
1158   return true;
1159 }
1160 
1161 // Make a copy of Parse/Template Assertion predicates below existing predicates at the loop passed as argument
1162 class CloneShortLoopPredicateVisitor : public PredicateVisitor {
1163   ClonePredicateToTargetLoop _clone_predicate_to_loop;
1164   PhaseIdealLoop* const _phase;
1165   Node* const _new_init;
1166 
1167 public:
1168   CloneShortLoopPredicateVisitor(LoopNode* target_loop_head,
1169                                  Node* new_init,
1170                                  const NodeInSingleLoopBody &node_in_loop_body,
1171                                  PhaseIdealLoop* phase)
1172     : _clone_predicate_to_loop(target_loop_head, node_in_loop_body, phase),
1173       _phase(phase),
1174       _new_init(new_init) {
1175   }
1176   NONCOPYABLE(CloneShortLoopPredicateVisitor);
1177 
1178   using PredicateVisitor::visit;
1179 
1180   void visit(const ParsePredicate& parse_predicate) override {
1181     _clone_predicate_to_loop.clone_parse_predicate(parse_predicate, true);
1182     parse_predicate.kill(_phase->igvn());
1183   }
1184 
1185   void visit(const TemplateAssertionPredicate& template_assertion_predicate) override {
1186     _clone_predicate_to_loop.clone_template_assertion_predicate_and_replace_init(template_assertion_predicate, _new_init);
1187     template_assertion_predicate.kill(_phase->igvn());
1188   }
1189 };
1190 
1191 // For an int counted loop, try_make_short_running_loop() transforms the loop from:
1192 //     for (int = start; i < stop; i+= stride) { ... }
1193 // to
1194 //     for (int = 0; i < stop - start; i+= stride) { ... }
1195 // Template Assertion Predicates added so far were with an init value of start. They need to be updated with the new
1196 // init value of 0 (otherwise when a template assertion predicate is turned into an initialized assertion predicate, it
1197 // performs an incorrect check):
1198 //                                zero
1199 //        init                     |
1200 //         |           ===>   OpaqueLoopInit   init
1201 //  OpaqueLoopInit                         \   /
1202 //                                          AddI
1203 //
1204 Node* PhaseIdealLoop::new_assertion_predicate_opaque_init(Node* entry_control, Node* init, Node* int_zero) {
1205   OpaqueLoopInitNode* new_opaque_init = new OpaqueLoopInitNode(C, int_zero);
1206   register_new_node(new_opaque_init, entry_control);
1207   Node* new_init = new AddINode(new_opaque_init, init);
1208   register_new_node(new_init, entry_control);
1209   return new_init;
1210 }
1211 
1212 // If the loop is either statically known to run for a small enough number of iterations or if profile data indicates
1213 // that, we don't want an outer loop because the overhead of having an outer loop whose backedge is never taken, has a
1214 // measurable cost. Furthermore, creating the loop nest usually causes one iteration of the loop to be peeled so
1215 // predicates can be set up. If the loop is short running, then it's an extra iteration that's run with range checks
1216 // (compared to an int counted loop with int range checks).
1217 //
1218 // In the short running case, turn the loop into a regular loop again and transform the long range checks:
1219 // - LongCountedLoop: Create LoopNode but keep the loop limit type with a CastLL node to avoid that we later try to
1220 //                    create a Loop Limit Check when turning the LoopNode into a CountedLoopNode.
1221 // - CountedLoop: Can be reused.
1222 bool PhaseIdealLoop::try_make_short_running_loop(IdealLoopTree* loop, jint stride_con, const Node_List &range_checks,
1223                                                  const uint iters_limit) {
1224   if (!ShortRunningLongLoop) {
1225     return false;
1226   }
1227   BaseCountedLoopNode* head = loop->_head->as_BaseCountedLoop();
1228   BasicType bt = head->bt();
1229   Node* entry_control = head->skip_strip_mined()->in(LoopNode::EntryControl);
1230 
1231   loop->compute_trip_count(this, bt);
1232   // Loop must run for no more than iter_limits as it guarantees no overflow of scale * iv in long range checks (see
1233   // comment above PhaseIdealLoop::transform_long_range_checks()).
1234   // iters_limit / ABS(stride_con) is the largest trip count for which we know it's correct to not create a loop nest:
1235   // it's always beneficial to have a single loop rather than a loop nest, so we try to apply this transformation as
1236   // often as possible.
1237   bool known_short_running_loop = head->trip_count() <= iters_limit / ABS(stride_con);
1238   bool profile_short_running_loop = false;
1239   if (!known_short_running_loop) {
1240     loop->compute_profile_trip_cnt(this);
1241     if (StressShortRunningLongLoop) {
1242       profile_short_running_loop = true;
1243     } else {
1244       profile_short_running_loop = !head->is_profile_trip_failed() && head->profile_trip_cnt() <= iters_limit / ABS(stride_con);
1245     }
1246   }
1247 
1248   if (!known_short_running_loop && !profile_short_running_loop) {
1249     return false;
1250   }
1251 
1252   Node* limit = head->limit();
1253   Node* init = head->init_trip();
1254 
1255   Node* new_limit;
1256   if (stride_con > 0) {
1257     new_limit = SubNode::make(limit, init, bt);
1258   } else {
1259     new_limit = SubNode::make(init, limit, bt);
1260   }
1261   register_new_node(new_limit, entry_control);
1262 
1263   Node* int_zero = intcon(0);
1264   PhiNode* phi = head->phi()->as_Phi();
1265   if (profile_short_running_loop) {
1266     // Add a Short Running Long Loop Predicate. It's the first predicate in the predicate chain before entering a loop
1267     // because a cast that's control dependent on the Short Running Long Loop Predicate is added to narrow the limit and
1268     // future predicates may be dependent on the new limit (so have to be between the loop and Short Running Long Loop
1269     // Predicate). The current limit could, itself, be dependent on an existing predicate. Clone parse and template
1270     // assertion predicates below existing predicates to get proper ordering of predicates when walking from the loop
1271     // up: future predicates, Short Running Long Loop Predicate, existing predicates.
1272     //
1273     //        Existing Hoisted
1274     //        Check Predicates
1275     //               |
1276     //     New Short Running Long
1277     //         Loop Predicate
1278     //               |
1279     //   Cloned Parse Predicates and
1280     //  Template Assertion Predicates
1281     //  (future predicates added here)
1282     //               |
1283     //             Loop
1284     const Predicates predicates_before_cloning(entry_control);
1285     const PredicateBlock* short_running_long_loop_predicate_block = predicates_before_cloning.short_running_long_loop_predicate_block();
1286     if (!short_running_long_loop_predicate_block->has_parse_predicate()) { // already trapped
1287       return false;
1288     }
1289     Node* new_init = new_assertion_predicate_opaque_init(entry_control, init, int_zero);
1290 
1291     PredicateIterator predicate_iterator(entry_control);
1292     NodeInSingleLoopBody node_in_short_loop_body(this, loop);
1293     CloneShortLoopPredicateVisitor clone_short_loop_predicates_visitor(head, new_init, node_in_short_loop_body, this);
1294     predicate_iterator.for_each(clone_short_loop_predicates_visitor);
1295 
1296     entry_control = head->skip_strip_mined()->in(LoopNode::EntryControl);
1297 
1298     const Predicates predicates_after_cloning(entry_control);
1299 
1300     ParsePredicateSuccessProj* short_running_loop_predicate_proj = predicates_after_cloning.
1301         short_running_long_loop_predicate_block()->
1302         parse_predicate_success_proj();
1303     assert(short_running_loop_predicate_proj->in(0)->is_ParsePredicate(), "must be parse predicate");
1304 
1305     const jlong iters_limit_long = iters_limit;
1306     Node* cmp_limit = CmpNode::make(new_limit, _igvn.integercon(iters_limit_long, bt), bt);
1307     Node* bol = new BoolNode(cmp_limit, BoolTest::le);
1308     Node* new_predicate_proj = create_new_if_for_predicate(short_running_loop_predicate_proj,
1309                                                            nullptr,
1310                                                            Deoptimization::Reason_short_running_long_loop,
1311                                                            Op_If);
1312     Node* iff = new_predicate_proj->in(0);
1313     _igvn.replace_input_of(iff, 1, bol);
1314     register_new_node(cmp_limit, iff->in(0));
1315     register_new_node(bol, iff->in(0));
1316     new_limit = ConstraintCastNode::make_cast_for_basic_type(new_predicate_proj, new_limit,
1317                                                              TypeInteger::make(1, iters_limit_long, Type::WidenMin, bt),
1318                                                              ConstraintCastNode::DependencyType::NonFloatingNonNarrowing, bt);
1319     register_new_node(new_limit, new_predicate_proj);
1320 
1321 #ifndef PRODUCT
1322     if (TraceLoopLimitCheck) {
1323       tty->print_cr("Short Long Loop Check Predicate generated:");
1324       DEBUG_ONLY(bol->dump(2);)
1325     }
1326 #endif
1327     entry_control = head->skip_strip_mined()->in(LoopNode::EntryControl);
1328   } else if (bt == T_LONG) {
1329     // We're turning a long counted loop into a regular loop that will be converted into an int counted loop. That loop
1330     // won't need loop limit check predicates (iters_limit guarantees that). Add a cast to make sure that, whatever
1331     // transformation happens by the time the counted loop is created (in a subsequent pass of loop opts), C2 knows
1332     // enough about the loop's limit that it doesn't try to add loop limit check predicates.
1333     const Predicates predicates(entry_control);
1334     const TypeLong* new_limit_t = new_limit->Value(&_igvn)->is_long();
1335     new_limit = ConstraintCastNode::make_cast_for_basic_type(predicates.entry(), new_limit,
1336                                                              TypeLong::make(0, new_limit_t->_hi, new_limit_t->_widen),
1337                                                              ConstraintCastNode::DependencyType::NonFloatingNonNarrowing, bt);
1338     register_new_node(new_limit, predicates.entry());
1339   } else {
1340     assert(bt == T_INT && known_short_running_loop, "only CountedLoop statically known to be short running");
1341     PredicateIterator predicate_iterator(entry_control);
1342     Node* new_init = new_assertion_predicate_opaque_init(entry_control, init, int_zero);
1343     UpdateInitForTemplateAssertionPredicates update_init_for_template_assertion_predicates(new_init, this);
1344     predicate_iterator.for_each(update_init_for_template_assertion_predicates);
1345   }
1346   IfNode* exit_test = head->loopexit();
1347 
1348   if (bt == T_LONG) {
1349     // The loop is short running so new_limit fits into an int: either we determined that statically or added a guard
1350     new_limit = new ConvL2INode(new_limit);
1351     register_new_node(new_limit, entry_control);
1352   }
1353 
1354   if (stride_con < 0) {
1355     new_limit = new SubINode(int_zero, new_limit);
1356     register_new_node(new_limit, entry_control);
1357   }
1358 
1359   // Clone the iv data nodes as an integer iv
1360   Node* int_stride = intcon(stride_con);
1361   Node* inner_phi = new PhiNode(head, TypeInt::INT);
1362   Node* inner_incr = new AddINode(inner_phi, int_stride);
1363   Node* inner_cmp = new CmpINode(inner_incr, new_limit);
1364   Node* inner_bol = new BoolNode(inner_cmp, exit_test->in(1)->as_Bool()->_test._test);
1365   inner_phi->set_req(LoopNode::EntryControl, int_zero);
1366   inner_phi->set_req(LoopNode::LoopBackControl, inner_incr);
1367   register_new_node(inner_phi, head);
1368   register_new_node(inner_incr, head);
1369   register_new_node(inner_cmp, head);
1370   register_new_node(inner_bol, head);
1371 
1372   _igvn.replace_input_of(exit_test, 1, inner_bol);
1373 
1374   // Replace inner loop long iv phi as inner loop int iv phi + outer
1375   // loop iv phi
1376   Node* iv_add = loop_nest_replace_iv(phi, inner_phi, init, head, bt);
1377 
1378   LoopNode* inner_head = head;
1379   if (bt == T_LONG) {
1380     // Turn the loop back to a counted loop
1381     inner_head = create_inner_head(loop, head, exit_test);
1382   } else {
1383     // Use existing counted loop
1384     revert_to_normal_loop(head);
1385   }
1386 
1387   if (bt == T_INT) {
1388     init = new ConvI2LNode(init);
1389     register_new_node(init, entry_control);
1390   }
1391 
1392   transform_long_range_checks(stride_con, range_checks, init, new_limit,
1393                               inner_phi, iv_add, inner_head);
1394 
1395   inner_head->mark_loop_nest_inner_loop();
1396 
1397   return true;
1398 }
1399 
1400 int PhaseIdealLoop::extract_long_range_checks(const IdealLoopTree* loop, jint stride_con, int iters_limit, PhiNode* phi,
1401                                               Node_List& range_checks) {
1402   const jlong min_iters = 2;
1403   jlong reduced_iters_limit = iters_limit;
1404   jlong original_iters_limit = iters_limit;
1405   for (uint i = 0; i < loop->_body.size(); i++) {
1406     Node* c = loop->_body.at(i);
1407     if (c->is_IfProj() && c->in(0)->is_RangeCheck()) {
1408       IfProjNode* if_proj = c->as_IfProj();
1409       CallStaticJavaNode* call = if_proj->is_uncommon_trap_if_pattern();
1410       if (call != nullptr) {
1411         Node* range = nullptr;
1412         Node* offset = nullptr;
1413         jlong scale = 0;
1414         if (loop->is_range_check_if(if_proj, this, T_LONG, phi, range, offset, scale) &&
1415             loop->is_invariant(range) && loop->is_invariant(offset) &&
1416             scale != min_jlong &&
1417             original_iters_limit / ABS(scale) >= min_iters * ABS(stride_con)) {
1418           assert(scale == (jint)scale, "scale should be an int");
1419           reduced_iters_limit = MIN2(reduced_iters_limit, original_iters_limit/ABS(scale));
1420           range_checks.push(c);
1421         }
1422       }
1423     }
1424   }
1425 
1426   return checked_cast<int>(reduced_iters_limit);
1427 }
1428 
1429 // One execution of the inner loop covers a sub-range of the entire iteration range of the loop: [A,Z), aka [A=init,
1430 // Z=limit). If the loop has at least one trip (which is the case here), the iteration variable i always takes A as its
1431 // first value, followed by A+S (S is the stride), next A+2S, etc. The limit is exclusive, so that the final value B of
1432 // i is never Z.  It will be B=Z-1 if S=1, or B=Z+1 if S=-1.
1433 
1434 // If |S|>1 the formula for the last value B would require a floor operation, specifically B=floor((Z-sgn(S)-A)/S)*S+A,
1435 // which is B=Z-sgn(S)U for some U in [1,|S|].  So when S>0, i ranges as i:[A,Z) or i:[A,B=Z-U], or else (in reverse)
1436 // as i:(Z,A] or i:[B=Z+U,A].  It will become important to reason about this inclusive range [A,B] or [B,A].
1437 
1438 // Within the loop there may be many range checks.  Each such range check (R.C.) is of the form 0 <= i*K+L < R, where K
1439 // is a scale factor applied to the loop iteration variable i, and L is some offset; K, L, and R are loop-invariant.
1440 // Because R is never negative (see below), this check can always be simplified to an unsigned check i*K+L <u R.
1441 
1442 // When a long loop over a 64-bit variable i (outer_iv) is decomposed into a series of shorter sub-loops over a 32-bit
1443 // variable j (inner_iv), j ranges over a shorter interval j:[0,B_2] or [0,Z_2) (assuming S > 0), where the limit is
1444 // chosen to prevent various cases of 32-bit overflow (including multiplications j*K below).  In the sub-loop the
1445 // logical value i is offset from j by a 64-bit constant C, so i ranges in i:C+[0,Z_2).
1446 
1447 // For S<0, j ranges (in reverse!) through j:[-|B_2|,0] or (-|Z_2|,0].  For either sign of S, we can say i=j+C and j
1448 // ranges through 32-bit ranges [A_2,B_2] or [B_2,A_2] (A_2=0 of course).
1449 
1450 // The disjoint union of all the C+[A_2,B_2] ranges from the sub-loops must be identical to the whole range [A,B].
1451 // Assuming S>0, the first C must be A itself, and the next C value is the previous C+B_2, plus S.  If |S|=1, the next
1452 // C value is also the previous C+Z_2.  In each sub-loop, j counts from j=A_2=0 and i counts from C+0 and exits at
1453 // j=B_2 (i=C+B_2), just before it gets to i=C+Z_2.  Both i and j count up (from C and 0) if S>0; otherwise they count
1454 // down (from C and 0 again).
1455 
1456 // Returning to range checks, we see that each i*K+L <u R expands to (C+j)*K+L <u R, or j*K+Q <u R, where Q=(C*K+L).
1457 // (Recall that K and L and R are loop-invariant scale, offset and range values for a particular R.C.)  This is still a
1458 // 64-bit comparison, so the range check elimination logic will not apply to it.  (The R.C.E. transforms operate only on
1459 // 32-bit indexes and comparisons, because they use 64-bit temporary values to avoid overflow; see
1460 // PhaseIdealLoop::add_constraint.)
1461 
1462 // We must transform this comparison so that it gets the same answer, but by means of a 32-bit R.C. (using j not i) of
1463 // the form j*K+L_2 <u32 R_2.  Note that L_2 and R_2 must be loop-invariant, but only with respect to the sub-loop.  Thus, the
1464 // problem reduces to computing values for L_2 and R_2 (for each R.C. in the loop) in the loop header for the sub-loop.
1465 // Then the standard R.C.E. transforms can take those as inputs and further compute the necessary minimum and maximum
1466 // values for the 32-bit counter j within which the range checks can be eliminated.
1467 
1468 // So, given j*K+Q <u R, we need to find some j*K+L_2 <u32 R_2, where L_2 and R_2 fit in 32 bits, and the 32-bit operations do
1469 // not overflow. We also need to cover the cases where i*K+L (= j*K+Q) overflows to a 64-bit negative, since that is
1470 // allowed as an input to the R.C., as long as the R.C. as a whole fails.
1471 
1472 // If 32-bit multiplication j*K might overflow, we adjust the sub-loop limit Z_2 closer to zero to reduce j's range.
1473 
1474 // For each R.C. j*K+Q <u32 R, the range of mathematical values of j*K+Q in the sub-loop is [Q_min, Q_max], where
1475 // Q_min=Q and Q_max=B_2*K+Q (if S>0 and K>0), Q_min=A_2*K+Q and Q_max=Q (if S<0 and K>0),
1476 // Q_min=B_2*K+Q and Q_max=Q if (S>0 and K<0), Q_min=Q and Q_max=A_2*K+Q (if S<0 and K<0)
1477 
1478 // Note that the first R.C. value is always Q=(S*K>0 ? Q_min : Q_max).  Also Q_{min,max} = Q + {min,max}(A_2*K,B_2*K).
1479 // If S*K>0 then, as the loop iterations progress, each R.C. value i*K+L = j*K+Q goes up from Q=Q_min towards Q_max.
1480 // If S*K<0 then j*K+Q starts at Q=Q_max and goes down towards Q_min.
1481 
1482 // Case A: Some Negatives (but no overflow).
1483 // Number line:
1484 // |s64_min   .    .    .    0    .    .    .   s64_max|
1485 // |    .  Q_min..Q_max .    0    .    .    .     .    |  s64 negative
1486 // |    .     .    .    .    R=0  R<   R<   R<    R<   |  (against R values)
1487 // |    .     .    .  Q_min..0..Q_max  .    .     .    |  small mixed
1488 // |    .     .    .    .    R    R    R<   R<    R<   |  (against R values)
1489 //
1490 // R values which are out of range (>Q_max+1) are reduced to max(0,Q_max+1).  They are marked on the number line as R<.
1491 //
1492 // So, if Q_min <s64 0, then use this test:
1493 // j*K + s32_trunc(Q_min) <u32 clamp(R, 0, Q_max+1) if S*K>0 (R.C.E. steps upward)
1494 // j*K + s32_trunc(Q_max) <u32 clamp(R, 0, Q_max+1) if S*K<0 (R.C.E. steps downward)
1495 // Both formulas reduce to adding j*K to the 32-bit truncated value of the first R.C. expression value, Q:
1496 // j*K + s32_trunc(Q) <u32 clamp(R, 0, Q_max+1) for all S,K
1497 
1498 // If the 32-bit truncation loses information, no harm is done, since certainly the clamp also will return R_2=zero.
1499 
1500 // Case B: No Negatives.
1501 // Number line:
1502 // |s64_min   .    .    .    0    .    .    .   s64_max|
1503 // |    .     .    .    .    0 Q_min..Q_max .     .    |  small positive
1504 // |    .     .    .    .    R>   R    R    R<    R<   |  (against R values)
1505 // |    .     .    .    .    0    . Q_min..Q_max  .    |  s64 positive
1506 // |    .     .    .    .    R>   R>   R    R     R<   |  (against R values)
1507 //
1508 // R values which are out of range (<Q_min or >Q_max+1) are reduced as marked: R> up to Q_min, R< down to Q_max+1.
1509 // Then the whole comparison is shifted left by Q_min, so it can take place at zero, which is a nice 32-bit value.
1510 //
1511 // So, if both Q_min, Q_max+1 >=s64 0, then use this test:
1512 // j*K + 0         <u32 clamp(R, Q_min, Q_max+1) - Q_min if S*K>0
1513 // More generally:
1514 // j*K + Q - Q_min <u32 clamp(R, Q_min, Q_max+1) - Q_min for all S,K
1515 
1516 // Case C: Overflow in the 64-bit domain
1517 // Number line:
1518 // |..Q_max-2^64   .    .    0    .    .    .   Q_min..|  s64 overflow
1519 // |    .     .    .    .    R>   R>   R>   R>    R    |  (against R values)
1520 //
1521 // In this case, Q_min >s64 Q_max+1, even though the mathematical values of Q_min and Q_max+1 are correctly ordered.
1522 // The formulas from the previous case can be used, except that the bad upper bound Q_max is replaced by max_jlong.
1523 // (In fact, we could use any replacement bound from R to max_jlong inclusive, as the input to the clamp function.)
1524 //
1525 // So if Q_min >=s64 0 but Q_max+1 <s64 0, use this test:
1526 // j*K + 0         <u32 clamp(R, Q_min, max_jlong) - Q_min if S*K>0
1527 // More generally:
1528 // j*K + Q - Q_min <u32 clamp(R, Q_min, max_jlong) - Q_min for all S,K
1529 //
1530 // Dropping the bad bound means only Q_min is used to reduce the range of R:
1531 // j*K + Q - Q_min <u32 max(Q_min, R) - Q_min for all S,K
1532 //
1533 // Here the clamp function is a 64-bit min/max that reduces the dynamic range of its R operand to the required [L,H]:
1534 //     clamp(X, L, H) := max(L, min(X, H))
1535 // When degenerately L > H, it returns L not H.
1536 //
1537 // All of the formulas above can be merged into a single one:
1538 //     L_clamp = Q_min < 0 ? 0 : Q_min        --whether and how far to left-shift
1539 //     H_clamp = Q_max+1 < Q_min ? max_jlong : Q_max+1
1540 //             = Q_max+1 < 0 && Q_min >= 0 ? max_jlong : Q_max+1
1541 //     Q_first = Q = (S*K>0 ? Q_min : Q_max) = (C*K+L)
1542 //     R_clamp = clamp(R, L_clamp, H_clamp)   --reduced dynamic range
1543 //     replacement R.C.:
1544 //       j*K + Q_first - L_clamp <u32 R_clamp - L_clamp
1545 //     or equivalently:
1546 //       j*K + L_2 <u32 R_2
1547 //     where
1548 //       L_2 = Q_first - L_clamp
1549 //       R_2 = R_clamp - L_clamp
1550 //
1551 // Note on why R is never negative:
1552 //
1553 // Various details of this transformation would break badly if R could be negative, so this transformation only
1554 // operates after obtaining hard evidence that R<0 is impossible.  For example, if R comes from a LoadRange node, we
1555 // know R cannot be negative.  For explicit checks (of both int and long) a proof is constructed in
1556 // inline_preconditions_checkIndex, which triggers an uncommon trap if R<0, then wraps R in a ConstraintCastNode with a
1557 // non-negative type.  Later on, when IdealLoopTree::is_range_check_if looks for an optimizable R.C., it checks that
1558 // the type of that R node is non-negative.  Any "wild" R node that could be negative is not treated as an optimizable
1559 // R.C., but R values from a.length and inside checkIndex are good to go.
1560 //
1561 void PhaseIdealLoop::transform_long_range_checks(int stride_con, const Node_List &range_checks, Node* outer_phi,
1562                                                  Node* inner_iters_actual_int, Node* inner_phi,
1563                                                  Node* iv_add, LoopNode* inner_head) {
1564   Node* long_zero = longcon(0);
1565   Node* int_zero = intcon(0);
1566   Node* long_one = longcon(1);
1567   Node* int_stride = intcon(checked_cast<int>(stride_con));
1568 
1569   for (uint i = 0; i < range_checks.size(); i++) {
1570     ProjNode* proj = range_checks.at(i)->as_Proj();
1571     RangeCheckNode* rc = proj->in(0)->as_RangeCheck();
1572     jlong scale = 0;
1573     Node* offset = nullptr;
1574     Node* rc_bol = rc->in(1);
1575     Node* rc_cmp = rc_bol->in(1);
1576     if (rc_cmp->Opcode() == Op_CmpU) {
1577       // could be shared and have already been taken care of
1578       continue;
1579     }
1580     bool short_scale = false;
1581     bool ok = is_scaled_iv_plus_offset(rc_cmp->in(1), iv_add, T_LONG, &scale, &offset, &short_scale);
1582     assert(ok, "inconsistent: was tested before");
1583     Node* range = rc_cmp->in(2);
1584     Node* c = rc->in(0);
1585     Node* entry_control = inner_head->in(LoopNode::EntryControl);
1586 
1587     Node* R = range;
1588     Node* K = longcon(scale);
1589 
1590     Node* L = offset;
1591 
1592     if (short_scale) {
1593       // This converts:
1594       // (int)i*K + L <u64 R
1595       // with K an int into:
1596       // i*(long)K + L <u64 unsigned_min((long)max_jint + L + 1, R)
1597       // to protect against an overflow of (int)i*K
1598       //
1599       // Because if (int)i*K overflows, there are K,L where:
1600       // (int)i*K + L <u64 R is false because (int)i*K+L overflows to a negative which becomes a huge u64 value.
1601       // But if i*(long)K + L is >u64 (long)max_jint and still is <u64 R, then
1602       // i*(long)K + L <u64 R is true.
1603       //
1604       // As a consequence simply converting i*K + L <u64 R to i*(long)K + L <u64 R could cause incorrect execution.
1605       //
1606       // It's always true that:
1607       // (int)i*K <u64 (long)max_jint + 1
1608       // which implies (int)i*K + L <u64 (long)max_jint + 1 + L
1609       // As a consequence:
1610       // i*(long)K + L <u64 unsigned_min((long)max_jint + L + 1, R)
1611       // is always false in case of overflow of i*K
1612       //
1613       // Note, there are also K,L where i*K overflows and
1614       // i*K + L <u64 R is true, but
1615       // i*(long)K + L <u64 unsigned_min((long)max_jint + L + 1, R) is false
1616       // So this transformation could cause spurious deoptimizations and failed range check elimination
1617       // (but not incorrect execution) for unlikely corner cases with overflow.
1618       // If this causes problems in practice, we could maybe direct execution to a post-loop, instead of deoptimizing.
1619       Node* max_jint_plus_one_long = longcon((jlong)max_jint + 1);
1620       Node* max_range = new AddLNode(max_jint_plus_one_long, L);
1621       register_new_node(max_range, entry_control);
1622       R = MaxNode::unsigned_min(R, max_range, TypeLong::POS, _igvn);
1623       set_subtree_ctrl(R, true);
1624     }
1625 
1626     Node* C = outer_phi;
1627 
1628     // Start with 64-bit values:
1629     //   i*K + L <u64 R
1630     //   (C+j)*K + L <u64 R
1631     //   j*K + Q <u64 R    where Q = Q_first = C*K+L
1632     Node* Q_first = new MulLNode(C, K);
1633     register_new_node(Q_first, entry_control);
1634     Q_first = new AddLNode(Q_first, L);
1635     register_new_node(Q_first, entry_control);
1636 
1637     // Compute endpoints of the range of values j*K + Q.
1638     //  Q_min = (j=0)*K + Q;  Q_max = (j=B_2)*K + Q
1639     Node* Q_min = Q_first;
1640 
1641     // Compute the exact ending value B_2 (which is really A_2 if S < 0)
1642     Node* B_2 = new LoopLimitNode(this->C, int_zero, inner_iters_actual_int, int_stride);
1643     register_new_node(B_2, entry_control);
1644     B_2 = new SubINode(B_2, int_stride);
1645     register_new_node(B_2, entry_control);
1646     B_2 = new ConvI2LNode(B_2);
1647     register_new_node(B_2, entry_control);
1648 
1649     Node* Q_max = new MulLNode(B_2, K);
1650     register_new_node(Q_max, entry_control);
1651     Q_max = new AddLNode(Q_max, Q_first);
1652     register_new_node(Q_max, entry_control);
1653 
1654     if (scale * stride_con < 0) {
1655       swap(Q_min, Q_max);
1656     }
1657     // Now, mathematically, Q_max > Q_min, and they are close enough so that (Q_max-Q_min) fits in 32 bits.
1658 
1659     // L_clamp = Q_min < 0 ? 0 : Q_min
1660     Node* Q_min_cmp = new CmpLNode(Q_min, long_zero);
1661     register_new_node(Q_min_cmp, entry_control);
1662     Node* Q_min_bool = new BoolNode(Q_min_cmp, BoolTest::lt);
1663     register_new_node(Q_min_bool, entry_control);
1664     Node* L_clamp = new CMoveLNode(Q_min_bool, Q_min, long_zero, TypeLong::LONG);
1665     register_new_node(L_clamp, entry_control);
1666     // (This could also be coded bitwise as L_clamp = Q_min & ~(Q_min>>63).)
1667 
1668     Node* Q_max_plus_one = new AddLNode(Q_max, long_one);
1669     register_new_node(Q_max_plus_one, entry_control);
1670 
1671     // H_clamp = Q_max+1 < Q_min ? max_jlong : Q_max+1
1672     // (Because Q_min and Q_max are close, the overflow check could also be encoded as Q_max+1 < 0 & Q_min >= 0.)
1673     Node* max_jlong_long = longcon(max_jlong);
1674     Node* Q_max_cmp = new CmpLNode(Q_max_plus_one, Q_min);
1675     register_new_node(Q_max_cmp, entry_control);
1676     Node* Q_max_bool = new BoolNode(Q_max_cmp, BoolTest::lt);
1677     register_new_node(Q_max_bool, entry_control);
1678     Node* H_clamp = new CMoveLNode(Q_max_bool, Q_max_plus_one, max_jlong_long, TypeLong::LONG);
1679     register_new_node(H_clamp, entry_control);
1680     // (This could also be coded bitwise as H_clamp = ((Q_max+1)<<1 | M)>>>1 where M = (Q_max+1)>>63 & ~Q_min>>63.)
1681 
1682     // R_2 = clamp(R, L_clamp, H_clamp) - L_clamp
1683     // that is:  R_2 = clamp(R, L_clamp=0, H_clamp=Q_max)      if Q_min < 0
1684     // or else:  R_2 = clamp(R, L_clamp,   H_clamp) - Q_min    if Q_min >= 0
1685     // and also: R_2 = clamp(R, L_clamp,   Q_max+1) - L_clamp  if Q_min < Q_max+1 (no overflow)
1686     // or else:  R_2 = clamp(R, L_clamp, *no limit*)- L_clamp  if Q_max+1 < Q_min (overflow)
1687     Node* R_2 = clamp(R, L_clamp, H_clamp);
1688     R_2 = new SubLNode(R_2, L_clamp);
1689     register_new_node(R_2, entry_control);
1690     R_2 = new ConvL2INode(R_2, TypeInt::POS);
1691     register_new_node(R_2, entry_control);
1692 
1693     // L_2 = Q_first - L_clamp
1694     // We are subtracting L_clamp from both sides of the <u32 comparison.
1695     // If S*K>0, then Q_first == 0 and the R.C. expression at -L_clamp and steps upward to Q_max-L_clamp.
1696     // If S*K<0, then Q_first != 0 and the R.C. expression starts high and steps downward to Q_min-L_clamp.
1697     Node* L_2 = new SubLNode(Q_first, L_clamp);
1698     register_new_node(L_2, entry_control);
1699     L_2 = new ConvL2INode(L_2, TypeInt::INT);
1700     register_new_node(L_2, entry_control);
1701 
1702     // Transform the range check using the computed values L_2/R_2
1703     // from:   i*K + L   <u64 R
1704     // to:     j*K + L_2 <u32 R_2
1705     // that is:
1706     //   (j*K + Q_first) - L_clamp <u32 clamp(R, L_clamp, H_clamp) - L_clamp
1707     K = intcon(checked_cast<int>(scale));
1708     Node* scaled_iv = new MulINode(inner_phi, K);
1709     register_new_node(scaled_iv, c);
1710     Node* scaled_iv_plus_offset = new AddINode(scaled_iv, L_2);
1711     register_new_node(scaled_iv_plus_offset, c);
1712 
1713     Node* new_rc_cmp = new CmpUNode(scaled_iv_plus_offset, R_2);
1714     register_new_node(new_rc_cmp, c);
1715 
1716     _igvn.replace_input_of(rc_bol, 1, new_rc_cmp);
1717   }
1718 }
1719 
1720 Node* PhaseIdealLoop::clamp(Node* R, Node* L, Node* H) {
1721   Node* min = MaxNode::signed_min(R, H, TypeLong::LONG, _igvn);
1722   set_subtree_ctrl(min, true);
1723   Node* max = MaxNode::signed_max(L, min, TypeLong::LONG, _igvn);
1724   set_subtree_ctrl(max, true);
1725   return max;
1726 }
1727 
1728 LoopNode* PhaseIdealLoop::create_inner_head(IdealLoopTree* loop, BaseCountedLoopNode* head,
1729                                             IfNode* exit_test) {
1730   LoopNode* new_inner_head = new LoopNode(head->in(1), head->in(2));
1731   IfNode* new_inner_exit = new IfNode(exit_test->in(0), exit_test->in(1), exit_test->_prob, exit_test->_fcnt);
1732   _igvn.register_new_node_with_optimizer(new_inner_head);
1733   _igvn.register_new_node_with_optimizer(new_inner_exit);
1734   loop->_body.push(new_inner_head);
1735   loop->_body.push(new_inner_exit);
1736   loop->_body.yank(head);
1737   loop->_body.yank(exit_test);
1738   set_loop(new_inner_head, loop);
1739   set_loop(new_inner_exit, loop);
1740   set_idom(new_inner_head, idom(head), dom_depth(head));
1741   set_idom(new_inner_exit, idom(exit_test), dom_depth(exit_test));
1742   replace_node_and_forward_ctrl(head, new_inner_head);
1743   replace_node_and_forward_ctrl(exit_test, new_inner_exit);
1744   loop->_head = new_inner_head;
1745   return new_inner_head;
1746 }
1747 
1748 #ifdef ASSERT
1749 void PhaseIdealLoop::check_counted_loop_shape(IdealLoopTree* loop, Node* x, BasicType bt) {
1750   Node* back_control = loop_exit_control(x, loop);
1751   assert(back_control != nullptr, "no back control");
1752 
1753   BoolTest::mask mask = BoolTest::illegal;
1754   float cl_prob = 0;
1755   Node* incr = nullptr;
1756   Node* limit = nullptr;
1757 
1758   Node* cmp = loop_exit_test(back_control, loop, incr, limit, mask, cl_prob);
1759   assert(cmp != nullptr && cmp->Opcode() == Op_Cmp(bt), "no exit test");
1760 
1761   Node* phi_incr = nullptr;
1762   incr = loop_iv_incr(incr, x, loop, phi_incr);
1763   assert(incr != nullptr && incr->Opcode() == Op_Add(bt), "no incr");
1764 
1765   Node* xphi = nullptr;
1766   Node* stride = loop_iv_stride(incr, xphi);
1767 
1768   assert(stride != nullptr, "no stride");
1769 
1770   PhiNode* phi = loop_iv_phi(xphi, phi_incr, x);
1771 
1772   assert(phi != nullptr && phi->in(LoopNode::LoopBackControl) == incr, "No phi");
1773 
1774   jlong stride_con = stride->get_integer_as_long(bt);
1775 
1776   assert(condition_stride_ok(mask, stride_con), "illegal condition");
1777 
1778   assert(mask != BoolTest::ne, "unexpected condition");
1779   assert(phi_incr == nullptr, "bad loop shape");
1780   assert(cmp->in(1) == incr, "bad exit test shape");
1781 
1782   // Safepoint on backedge not supported
1783   assert(x->in(LoopNode::LoopBackControl)->Opcode() != Op_SafePoint, "no safepoint on backedge");
1784 }
1785 #endif
1786 
1787 #ifdef ASSERT
1788 // convert an int counted loop to a long counted to stress handling of
1789 // long counted loops
1790 bool PhaseIdealLoop::convert_to_long_loop(Node* cmp, Node* phi, IdealLoopTree* loop) {
1791   Unique_Node_List iv_nodes;
1792   Node_List old_new;
1793   iv_nodes.push(cmp);
1794   bool failed = false;
1795 
1796   for (uint i = 0; i < iv_nodes.size() && !failed; i++) {
1797     Node* n = iv_nodes.at(i);
1798     switch(n->Opcode()) {
1799       case Op_Phi: {
1800         Node* clone = new PhiNode(n->in(0), TypeLong::LONG);
1801         old_new.map(n->_idx, clone);
1802         break;
1803       }
1804       case Op_CmpI: {
1805         Node* clone = new CmpLNode(nullptr, nullptr);
1806         old_new.map(n->_idx, clone);
1807         break;
1808       }
1809       case Op_AddI: {
1810         Node* clone = new AddLNode(nullptr, nullptr);
1811         old_new.map(n->_idx, clone);
1812         break;
1813       }
1814       case Op_CastII: {
1815         failed = true;
1816         break;
1817       }
1818       default:
1819         DEBUG_ONLY(n->dump());
1820         fatal("unexpected");
1821     }
1822 
1823     for (uint i = 1; i < n->req(); i++) {
1824       Node* in = n->in(i);
1825       if (in == nullptr) {
1826         continue;
1827       }
1828       if (ctrl_is_member(loop, in)) {
1829         iv_nodes.push(in);
1830       }
1831     }
1832   }
1833 
1834   if (failed) {
1835     for (uint i = 0; i < iv_nodes.size(); i++) {
1836       Node* n = iv_nodes.at(i);
1837       Node* clone = old_new[n->_idx];
1838       if (clone != nullptr) {
1839         _igvn.remove_dead_node(clone);
1840       }
1841     }
1842     return false;
1843   }
1844 
1845   for (uint i = 0; i < iv_nodes.size(); i++) {
1846     Node* n = iv_nodes.at(i);
1847     Node* clone = old_new[n->_idx];
1848     for (uint i = 1; i < n->req(); i++) {
1849       Node* in = n->in(i);
1850       if (in == nullptr) {
1851         continue;
1852       }
1853       Node* in_clone = old_new[in->_idx];
1854       if (in_clone == nullptr) {
1855         assert(_igvn.type(in)->isa_int(), "");
1856         in_clone = new ConvI2LNode(in);
1857         _igvn.register_new_node_with_optimizer(in_clone);
1858         set_subtree_ctrl(in_clone, false);
1859       }
1860       if (in_clone->in(0) == nullptr) {
1861         in_clone->set_req(0, C->top());
1862         clone->set_req(i, in_clone);
1863         in_clone->set_req(0, nullptr);
1864       } else {
1865         clone->set_req(i, in_clone);
1866       }
1867     }
1868     _igvn.register_new_node_with_optimizer(clone);
1869   }
1870   set_ctrl(old_new[phi->_idx], phi->in(0));
1871 
1872   for (uint i = 0; i < iv_nodes.size(); i++) {
1873     Node* n = iv_nodes.at(i);
1874     Node* clone = old_new[n->_idx];
1875     set_subtree_ctrl(clone, false);
1876     Node* m = n->Opcode() == Op_CmpI ? clone : nullptr;
1877     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1878       Node* u = n->fast_out(i);
1879       if (iv_nodes.member(u)) {
1880         continue;
1881       }
1882       if (m == nullptr) {
1883         m = new ConvL2INode(clone);
1884         _igvn.register_new_node_with_optimizer(m);
1885         set_subtree_ctrl(m, false);
1886       }
1887       _igvn.rehash_node_delayed(u);
1888       int nb = u->replace_edge(n, m, &_igvn);
1889       --i, imax -= nb;
1890     }
1891   }
1892   return true;
1893 }
1894 #endif
1895 
1896 //------------------------------is_counted_loop--------------------------------
1897 bool PhaseIdealLoop::is_counted_loop(Node* x, IdealLoopTree*&loop, BasicType iv_bt) {
1898   PhaseGVN *gvn = &_igvn;
1899 
1900   Node* back_control = loop_exit_control(x, loop);
1901   if (back_control == nullptr) {
1902     return false;
1903   }
1904 
1905   BoolTest::mask bt = BoolTest::illegal;
1906   float cl_prob = 0;
1907   Node* incr = nullptr;
1908   Node* limit = nullptr;
1909   Node* cmp = loop_exit_test(back_control, loop, incr, limit, bt, cl_prob);
1910   if (cmp == nullptr || cmp->Opcode() != Op_Cmp(iv_bt)) {
1911     return false; // Avoid pointer & float & 64-bit compares
1912   }
1913 
1914   // Trip-counter increment must be commutative & associative.
1915   if (incr->Opcode() == Op_Cast(iv_bt)) {
1916     incr = incr->in(1);
1917   }
1918 
1919   Node* phi_incr = nullptr;
1920   incr = loop_iv_incr(incr, x, loop, phi_incr);
1921   if (incr == nullptr) {
1922     return false;
1923   }
1924 
1925   Node* trunc1 = nullptr;
1926   Node* trunc2 = nullptr;
1927   const TypeInteger* iv_trunc_t = nullptr;
1928   Node* orig_incr = incr;
1929   if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t, iv_bt))) {
1930     return false; // Funny increment opcode
1931   }
1932   assert(incr->Opcode() == Op_Add(iv_bt), "wrong increment code");
1933 
1934   Node* xphi = nullptr;
1935   Node* stride = loop_iv_stride(incr, xphi);
1936 
1937   if (stride == nullptr) {
1938     return false;
1939   }
1940 
1941   // Iteratively uncast the loop induction variable
1942   // until no more CastII/CastLL nodes are found.
1943   while (xphi->Opcode() == Op_Cast(iv_bt)) {
1944     xphi = xphi->in(1);
1945   }
1946 
1947   // Stride must be constant
1948   jlong stride_con = stride->get_integer_as_long(iv_bt);
1949   assert(stride_con != 0, "missed some peephole opt");
1950 
1951   PhiNode* phi = loop_iv_phi(xphi, phi_incr, x);
1952 
1953   if (phi == nullptr ||
1954       (trunc1 == nullptr && phi->in(LoopNode::LoopBackControl) != incr) ||
1955       (trunc1 != nullptr && phi->in(LoopNode::LoopBackControl) != trunc1)) {
1956     return false;
1957   }
1958 
1959   Node* iftrue = back_control;
1960   uint iftrue_op = iftrue->Opcode();
1961   Node* iff = iftrue->in(0);
1962   BoolNode* test = iff->in(1)->as_Bool();
1963 
1964   const TypeInteger* limit_t = gvn->type(limit)->is_integer(iv_bt);
1965   if (trunc1 != nullptr) {
1966     // When there is a truncation, we must be sure that after the truncation
1967     // the trip counter will end up higher than the limit, otherwise we are looking
1968     // at an endless loop. Can happen with range checks.
1969 
1970     // Example:
1971     // int i = 0;
1972     // while (true)
1973     //    sum + = array[i];
1974     //    i++;
1975     //    i = i && 0x7fff;
1976     //  }
1977     //
1978     // If the array is shorter than 0x8000 this exits through a AIOOB
1979     //  - Counted loop transformation is ok
1980     // If the array is longer then this is an endless loop
1981     //  - No transformation can be done.
1982 
1983     const TypeInteger* incr_t = gvn->type(orig_incr)->is_integer(iv_bt);
1984     if (limit_t->hi_as_long() > incr_t->hi_as_long()) {
1985       // if the limit can have a higher value than the increment (before the phi)
1986       return false;
1987     }
1988   }
1989 
1990   Node *init_trip = phi->in(LoopNode::EntryControl);
1991 
1992   // If iv trunc type is smaller than int, check for possible wrap.
1993   if (!TypeInteger::bottom(iv_bt)->higher_equal(iv_trunc_t)) {
1994     assert(trunc1 != nullptr, "must have found some truncation");
1995 
1996     // Get a better type for the phi (filtered thru if's)
1997     const TypeInteger* phi_ft = filtered_type(phi);
1998 
1999     // Can iv take on a value that will wrap?
2000     //
2001     // Ensure iv's limit is not within "stride" of the wrap value.
2002     //
2003     // Example for "short" type
2004     //    Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
2005     //    If the stride is +10, then the last value of the induction
2006     //    variable before the increment (phi_ft->_hi) must be
2007     //    <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
2008     //    ensure no truncation occurs after the increment.
2009 
2010     if (stride_con > 0) {
2011       if (iv_trunc_t->hi_as_long() - phi_ft->hi_as_long() < stride_con ||
2012           iv_trunc_t->lo_as_long() > phi_ft->lo_as_long()) {
2013         return false;  // truncation may occur
2014       }
2015     } else if (stride_con < 0) {
2016       if (iv_trunc_t->lo_as_long() - phi_ft->lo_as_long() > stride_con ||
2017           iv_trunc_t->hi_as_long() < phi_ft->hi_as_long()) {
2018         return false;  // truncation may occur
2019       }
2020     }
2021     // No possibility of wrap so truncation can be discarded
2022     // Promote iv type to Int
2023   } else {
2024     assert(trunc1 == nullptr && trunc2 == nullptr, "no truncation for int");
2025   }
2026 
2027   if (!condition_stride_ok(bt, stride_con)) {
2028     return false;
2029   }
2030 
2031   const TypeInteger* init_t = gvn->type(init_trip)->is_integer(iv_bt);
2032 
2033   if (stride_con > 0) {
2034     if (init_t->lo_as_long() > max_signed_integer(iv_bt) - stride_con) {
2035       return false; // cyclic loop
2036     }
2037   } else {
2038     if (init_t->hi_as_long() < min_signed_integer(iv_bt) - stride_con) {
2039       return false; // cyclic loop
2040     }
2041   }
2042 
2043   if (phi_incr != nullptr && bt != BoolTest::ne) {
2044     // check if there is a possibility of IV overflowing after the first increment
2045     if (stride_con > 0) {
2046       if (init_t->hi_as_long() > max_signed_integer(iv_bt) - stride_con) {
2047         return false;
2048       }
2049     } else {
2050       if (init_t->lo_as_long() < min_signed_integer(iv_bt) - stride_con) {
2051         return false;
2052       }
2053     }
2054   }
2055 
2056   // =================================================
2057   // ---- SUCCESS!   Found A Trip-Counted Loop!  -----
2058   //
2059 
2060   if (x->Opcode() == Op_Region) {
2061     // x has not yet been transformed to Loop or LongCountedLoop.
2062     // This should only happen if we are inside an infinite loop.
2063     // It happens like this:
2064     //   build_loop_tree -> do not attach infinite loop and nested loops
2065     //   beautify_loops  -> does not transform the infinite and nested loops to LoopNode, because not attached yet
2066     //   build_loop_tree -> find and attach infinite and nested loops
2067     //   counted_loop    -> nested Regions are not yet transformed to LoopNodes, we land here
2068     assert(x->as_Region()->is_in_infinite_subgraph(),
2069            "x can only be a Region and not Loop if inside infinite loop");
2070     // Come back later when Region is transformed to LoopNode
2071     return false;
2072   }
2073 
2074   assert(x->Opcode() == Op_Loop || x->Opcode() == Op_LongCountedLoop, "regular loops only");
2075   C->print_method(PHASE_BEFORE_CLOOPS, 3, x);
2076 
2077   // ===================================================
2078   // We can only convert this loop to a counted loop if we can guarantee that the iv phi will never overflow at runtime.
2079   // This is an implicit assumption taken by some loop optimizations. We therefore must ensure this property at all cost.
2080   // At this point, we've already excluded some trivial cases where an overflow could have been proven statically.
2081   // But even though we cannot prove that an overflow will *not* happen, we still want to speculatively convert this loop
2082   // to a counted loop. This can be achieved by adding additional iv phi overflow checks before the loop. If they fail,
2083   // we trap and resume execution before the loop without having executed any iteration of the loop, yet.
2084   //
2085   // These additional iv phi overflow checks can be inserted as Loop Limit Check Predicates above the Loop Limit Check
2086   // Parse Predicate which captures a JVM state just before the entry of the loop. If there is no such Parse Predicate,
2087   // we cannot generate a Loop Limit Check Predicate and thus cannot speculatively convert the loop to a counted loop.
2088   //
2089   // In the following, we only focus on int loops with stride > 0 to keep things simple. The argumentation and proof
2090   // for stride < 0 is analogously. For long loops, we would replace max_int with max_long.
2091   //
2092   //
2093   // The loop to be converted does not always need to have the often used shape:
2094   //
2095   //                                                 i = init
2096   //     i = init                                loop:
2097   //     do {                                        ...
2098   //         // ...               equivalent         i+=stride
2099   //         i+=stride               <==>            if (i < limit)
2100   //     } while (i < limit);                          goto loop
2101   //                                             exit:
2102   //                                                 ...
2103   //
2104   // where the loop exit check uses the post-incremented iv phi and a '<'-operator.
2105   //
2106   // We could also have '<='-operator (or '>='-operator for negative strides) or use the pre-incremented iv phi value
2107   // in the loop exit check:
2108   //
2109   //         i = init
2110   //     loop:
2111   //         ...
2112   //         if (i <= limit)
2113   //             i+=stride
2114   //             goto loop
2115   //     exit:
2116   //         ...
2117   //
2118   // Let's define the following terms:
2119   // - iv_pre_i: The pre-incremented iv phi before the i-th iteration.
2120   // - iv_post_i: The post-incremented iv phi after the i-th iteration.
2121   //
2122   // The iv_pre_i and iv_post_i have the following relation:
2123   //      iv_pre_i + stride = iv_post_i
2124   //
2125   // When converting a loop to a counted loop, we want to have a canonicalized loop exit check of the form:
2126   //     iv_post_i < adjusted_limit
2127   //
2128   // If that is not the case, we need to canonicalize the loop exit check by using different values for adjusted_limit:
2129   // (LE1) iv_post_i < limit: Already canonicalized. We can directly use limit as adjusted_limit.
2130   //           -> adjusted_limit = limit.
2131   // (LE2) iv_post_i <= limit:
2132   //           iv_post_i < limit + 1
2133   //           -> adjusted limit = limit + 1
2134   // (LE3) iv_pre_i < limit:
2135   //           iv_pre_i + stride < limit + stride
2136   //           iv_post_i < limit + stride
2137   //           -> adjusted_limit = limit + stride
2138   // (LE4) iv_pre_i <= limit:
2139   //           iv_pre_i < limit + 1
2140   //           iv_pre_i + stride < limit + stride + 1
2141   //           iv_post_i < limit + stride + 1
2142   //           -> adjusted_limit = limit + stride + 1
2143   //
2144   // Note that:
2145   //     (AL) limit <= adjusted_limit.
2146   //
2147   // The following loop invariant has to hold for counted loops with n iterations (i.e. loop exit check true after n-th
2148   // loop iteration) and a canonicalized loop exit check to guarantee that no iv_post_i over- or underflows:
2149   // (INV) For i = 1..n, min_int <= iv_post_i <= max_int
2150   //
2151   // To prove (INV), we require the following two conditions/assumptions:
2152   // (i): adjusted_limit - 1 + stride <= max_int
2153   // (ii): init < limit
2154   //
2155   // If we can prove (INV), we know that there can be no over- or underflow of any iv phi value. We prove (INV) by
2156   // induction by assuming (i) and (ii).
2157   //
2158   // Proof by Induction
2159   // ------------------
2160   // > Base case (i = 1): We show that (INV) holds after the first iteration:
2161   //     min_int <= iv_post_1 = init + stride <= max_int
2162   // Proof:
2163   //     First, we note that (ii) implies
2164   //         (iii) init <= limit - 1
2165   //     max_int >= adjusted_limit - 1 + stride   [using (i)]
2166   //             >= limit - 1 + stride            [using (AL)]
2167   //             >= init + stride                 [using (iii)]
2168   //             >= min_int                       [using stride > 0, no underflow]
2169   // Thus, no overflow happens after the first iteration and (INV) holds for i = 1.
2170   //
2171   // Note that to prove the base case we need (i) and (ii).
2172   //
2173   // > Induction Hypothesis (i = j, j > 1): Assume that (INV) holds after the j-th iteration:
2174   //     min_int <= iv_post_j <= max_int
2175   // > Step case (i = j + 1): We show that (INV) also holds after the j+1-th iteration:
2176   //     min_int <= iv_post_{j+1} = iv_post_j + stride <= max_int
2177   // Proof:
2178   // If iv_post_j >= adjusted_limit:
2179   //     We exit the loop after the j-th iteration, and we don't execute the j+1-th iteration anymore. Thus, there is
2180   //     also no iv_{j+1}. Since (INV) holds for iv_j, there is nothing left to prove.
2181   // If iv_post_j < adjusted_limit:
2182   //     First, we note that:
2183   //         (iv) iv_post_j <= adjusted_limit - 1
2184   //     max_int >= adjusted_limit - 1 + stride    [using (i)]
2185   //             >= iv_post_j + stride             [using (iv)]
2186   //             >= min_int                        [using stride > 0, no underflow]
2187   //
2188   // Note that to prove the step case we only need (i).
2189   //
2190   // Thus, by assuming (i) and (ii), we proved (INV).
2191   //
2192   //
2193   // It is therefore enough to add the following two Loop Limit Check Predicates to check assumptions (i) and (ii):
2194   //
2195   // (1) Loop Limit Check Predicate for (i):
2196   //     Using (i): adjusted_limit - 1 + stride <= max_int
2197   //
2198   //     This condition is now restated to use limit instead of adjusted_limit:
2199   //
2200   //     To prevent an overflow of adjusted_limit -1 + stride itself, we rewrite this check to
2201   //         max_int - stride + 1 >= adjusted_limit
2202   //     We can merge the two constants into
2203   //         canonicalized_correction = stride - 1
2204   //     which gives us
2205   //        max_int - canonicalized_correction >= adjusted_limit
2206   //
2207   //     To directly use limit instead of adjusted_limit in the predicate condition, we split adjusted_limit into:
2208   //         adjusted_limit = limit + limit_correction
2209   //     Since stride > 0 and limit_correction <= stride + 1, we can restate this with no over- or underflow into:
2210   //         max_int - canonicalized_correction - limit_correction >= limit
2211   //     Since canonicalized_correction and limit_correction are both constants, we can replace them with a new constant:
2212   //         (v) final_correction = canonicalized_correction + limit_correction
2213   //
2214   //     which gives us:
2215   //
2216   //     Final predicate condition:
2217   //         max_int - final_correction >= limit
2218   //
2219   //     However, we need to be careful that (v) does not over- or underflow.
2220   //     We know that:
2221   //         canonicalized_correction = stride - 1
2222   //     and
2223   //         limit_correction <= stride + 1
2224   //     and thus
2225   //         canonicalized_correction + limit_correction <= 2 * stride
2226   //     To prevent an over- or underflow of (v), we must ensure that
2227   //         2 * stride <= max_int
2228   //     which can safely be checked without over- or underflow with
2229   //         (vi) stride != min_int AND abs(stride) <= max_int / 2
2230   //
2231   //     We could try to further optimize the cases where (vi) does not hold but given that such large strides are
2232   //     very uncommon and the loop would only run for a very few iterations anyway, we simply bail out if (vi) fails.
2233   //
2234   // (2) Loop Limit Check Predicate for (ii):
2235   //     Using (ii): init < limit
2236   //
2237   //     This Loop Limit Check Predicate is not required if we can prove at compile time that either:
2238   //        (2.1) type(init) < type(limit)
2239   //             In this case, we know:
2240   //                 all possible values of init < all possible values of limit
2241   //             and we can skip the predicate.
2242   //
2243   //        (2.2) init < limit is already checked before (i.e. found as a dominating check)
2244   //            In this case, we do not need to re-check the condition and can skip the predicate.
2245   //            This is often found for while- and for-loops which have the following shape:
2246   //
2247   //                if (init < limit) { // Dominating test. Do not need the Loop Limit Check Predicate below.
2248   //                    i = init;
2249   //                    if (init >= limit) { trap(); } // Here we would insert the Loop Limit Check Predicate
2250   //                    do {
2251   //                        i += stride;
2252   //                    } while (i < limit);
2253   //                }
2254   //
2255   //        (2.3) init + stride <= max_int
2256   //            In this case, there is no overflow of the iv phi after the first loop iteration.
2257   //            In the proof of the base case above we showed that init + stride <= max_int by using assumption (ii):
2258   //                init < limit
2259   //            In the proof of the step case above, we did not need (ii) anymore. Therefore, if we already know at
2260   //            compile time that init + stride <= max_int then we have trivially proven the base case and that
2261   //            there is no overflow of the iv phi after the first iteration. In this case, we don't need to check (ii)
2262   //            again and can skip the predicate.
2263 
2264   // Check (vi) and bail out if the stride is too big.
2265   if (stride_con == min_signed_integer(iv_bt) || (ABS(stride_con) > max_signed_integer(iv_bt) / 2)) {
2266     return false;
2267   }
2268 
2269   // Accounting for (LE3) and (LE4) where we use pre-incremented phis in the loop exit check.
2270   const jlong limit_correction_for_pre_iv_exit_check = (phi_incr != nullptr) ? stride_con : 0;
2271 
2272   // Accounting for (LE2) and (LE4) where we use <= or >= in the loop exit check.
2273   const bool includes_limit = (bt == BoolTest::le || bt == BoolTest::ge);
2274   const jlong limit_correction_for_le_ge_exit_check = (includes_limit ? (stride_con > 0 ? 1 : -1) : 0);
2275 
2276   const jlong limit_correction = limit_correction_for_pre_iv_exit_check + limit_correction_for_le_ge_exit_check;
2277   const jlong canonicalized_correction = stride_con + (stride_con > 0 ? -1 : 1);
2278   const jlong final_correction = canonicalized_correction + limit_correction;
2279 
2280   int sov = check_stride_overflow(final_correction, limit_t, iv_bt);
2281   Node* init_control = x->in(LoopNode::EntryControl);
2282 
2283   // If sov==0, limit's type always satisfies the condition, for
2284   // example, when it is an array length.
2285   if (sov != 0) {
2286     if (sov < 0) {
2287       return false;  // Bailout: integer overflow is certain.
2288     }
2289     // (1) Loop Limit Check Predicate is required because we could not statically prove that
2290     //     limit + final_correction = adjusted_limit - 1 + stride <= max_int
2291     assert(!x->as_Loop()->is_loop_nest_inner_loop(), "loop was transformed");
2292     const Predicates predicates(init_control);
2293     const PredicateBlock* loop_limit_check_predicate_block = predicates.loop_limit_check_predicate_block();
2294     if (!loop_limit_check_predicate_block->has_parse_predicate()) {
2295       // The Loop Limit Check Parse Predicate is not generated if this method trapped here before.
2296 #ifdef ASSERT
2297       if (TraceLoopLimitCheck) {
2298         tty->print("Missing Loop Limit Check Parse Predicate:");
2299         loop->dump_head();
2300         x->dump(1);
2301       }
2302 #endif
2303       return false;
2304     }
2305 
2306     ParsePredicateNode* loop_limit_check_parse_predicate = loop_limit_check_predicate_block->parse_predicate();
2307     if (!is_dominator(get_ctrl(limit), loop_limit_check_parse_predicate->in(0))) {
2308       return false;
2309     }
2310 
2311     Node* cmp_limit;
2312     Node* bol;
2313 
2314     if (stride_con > 0) {
2315       cmp_limit = CmpNode::make(limit, _igvn.integercon(max_signed_integer(iv_bt) - final_correction, iv_bt), iv_bt);
2316       bol = new BoolNode(cmp_limit, BoolTest::le);
2317     } else {
2318       cmp_limit = CmpNode::make(limit, _igvn.integercon(min_signed_integer(iv_bt) - final_correction, iv_bt), iv_bt);
2319       bol = new BoolNode(cmp_limit, BoolTest::ge);
2320     }
2321 
2322     insert_loop_limit_check_predicate(init_control->as_IfTrue(), cmp_limit, bol);
2323   }
2324 
2325   // (2.3)
2326   const bool init_plus_stride_could_overflow =
2327           (stride_con > 0 && init_t->hi_as_long() > max_signed_integer(iv_bt) - stride_con) ||
2328           (stride_con < 0 && init_t->lo_as_long() < min_signed_integer(iv_bt) - stride_con);
2329   // (2.1)
2330   const bool init_gte_limit = (stride_con > 0 && init_t->hi_as_long() >= limit_t->lo_as_long()) ||
2331                               (stride_con < 0 && init_t->lo_as_long() <= limit_t->hi_as_long());
2332 
2333   if (init_gte_limit && // (2.1)
2334      ((bt == BoolTest::ne || init_plus_stride_could_overflow) && // (2.3)
2335       !has_dominating_loop_limit_check(init_trip, limit, stride_con, iv_bt, init_control))) { // (2.2)
2336     // (2) Iteration Loop Limit Check Predicate is required because neither (2.1), (2.2), nor (2.3) holds.
2337     // We use the following condition:
2338     // - stride > 0: init < limit
2339     // - stride < 0: init > limit
2340     //
2341     // This predicate is always required if we have a non-equal-operator in the loop exit check (where stride = 1 is
2342     // a requirement). We transform the loop exit check by using a less-than-operator. By doing so, we must always
2343     // check that init < limit. Otherwise, we could have a different number of iterations at runtime.
2344 
2345     const Predicates predicates(init_control);
2346     const PredicateBlock* loop_limit_check_predicate_block = predicates.loop_limit_check_predicate_block();
2347     if (!loop_limit_check_predicate_block->has_parse_predicate()) {
2348       // The Loop Limit Check Parse Predicate is not generated if this method trapped here before.
2349 #ifdef ASSERT
2350       if (TraceLoopLimitCheck) {
2351         tty->print("Missing Loop Limit Check Parse Predicate:");
2352         loop->dump_head();
2353         x->dump(1);
2354       }
2355 #endif
2356       return false;
2357     }
2358 
2359     ParsePredicateNode* loop_limit_check_parse_predicate = loop_limit_check_predicate_block->parse_predicate();
2360     Node* parse_predicate_entry = loop_limit_check_parse_predicate->in(0);
2361     if (!is_dominator(get_ctrl(limit), parse_predicate_entry) ||
2362         !is_dominator(get_ctrl(init_trip), parse_predicate_entry)) {
2363       return false;
2364     }
2365 
2366     Node* cmp_limit;
2367     Node* bol;
2368 
2369     if (stride_con > 0) {
2370       cmp_limit = CmpNode::make(init_trip, limit, iv_bt);
2371       bol = new BoolNode(cmp_limit, BoolTest::lt);
2372     } else {
2373       cmp_limit = CmpNode::make(init_trip, limit, iv_bt);
2374       bol = new BoolNode(cmp_limit, BoolTest::gt);
2375     }
2376 
2377     insert_loop_limit_check_predicate(init_control->as_IfTrue(), cmp_limit, bol);
2378   }
2379 
2380   if (bt == BoolTest::ne) {
2381     // Now we need to canonicalize the loop condition if it is 'ne'.
2382     assert(stride_con == 1 || stride_con == -1, "simple increment only - checked before");
2383     if (stride_con > 0) {
2384       // 'ne' can be replaced with 'lt' only when init < limit. This is ensured by the inserted predicate above.
2385       bt = BoolTest::lt;
2386     } else {
2387       assert(stride_con < 0, "must be");
2388       // 'ne' can be replaced with 'gt' only when init > limit. This is ensured by the inserted predicate above.
2389       bt = BoolTest::gt;
2390     }
2391   }
2392 
2393   Node* sfpt = nullptr;
2394   if (loop->_child == nullptr) {
2395     sfpt = find_safepoint(back_control, x, loop);
2396   } else {
2397     sfpt = iff->in(0);
2398     if (sfpt->Opcode() != Op_SafePoint) {
2399       sfpt = nullptr;
2400     }
2401   }
2402 
2403   if (x->in(LoopNode::LoopBackControl)->Opcode() == Op_SafePoint) {
2404     Node* backedge_sfpt = x->in(LoopNode::LoopBackControl);
2405     if (((iv_bt == T_INT && LoopStripMiningIter != 0) ||
2406          iv_bt == T_LONG) &&
2407         sfpt == nullptr) {
2408       // Leaving the safepoint on the backedge and creating a
2409       // CountedLoop will confuse optimizations. We can't move the
2410       // safepoint around because its jvm state wouldn't match a new
2411       // location. Give up on that loop.
2412       return false;
2413     }
2414     if (is_deleteable_safept(backedge_sfpt)) {
2415       replace_node_and_forward_ctrl(backedge_sfpt, iftrue);
2416       if (loop->_safepts != nullptr) {
2417         loop->_safepts->yank(backedge_sfpt);
2418       }
2419       loop->_tail = iftrue;
2420     }
2421   }
2422 
2423 
2424 #ifdef ASSERT
2425   if (iv_bt == T_INT &&
2426       !x->as_Loop()->is_loop_nest_inner_loop() &&
2427       StressLongCountedLoop > 0 &&
2428       trunc1 == nullptr &&
2429       convert_to_long_loop(cmp, phi, loop)) {
2430     return false;
2431   }
2432 #endif
2433 
2434   Node* adjusted_limit = limit;
2435   if (phi_incr != nullptr) {
2436     // If compare points directly to the phi we need to adjust
2437     // the compare so that it points to the incr. Limit have
2438     // to be adjusted to keep trip count the same and we
2439     // should avoid int overflow.
2440     //
2441     //   i = init; do {} while(i++ < limit);
2442     // is converted to
2443     //   i = init; do {} while(++i < limit+1);
2444     //
2445     adjusted_limit = gvn->transform(AddNode::make(limit, stride, iv_bt));
2446   }
2447 
2448   if (includes_limit) {
2449     // The limit check guaranties that 'limit <= (max_jint - stride)' so
2450     // we can convert 'i <= limit' to 'i < limit+1' since stride != 0.
2451     //
2452     Node* one = (stride_con > 0) ? gvn->integercon( 1, iv_bt) : gvn->integercon(-1, iv_bt);
2453     adjusted_limit = gvn->transform(AddNode::make(adjusted_limit, one, iv_bt));
2454     if (bt == BoolTest::le)
2455       bt = BoolTest::lt;
2456     else if (bt == BoolTest::ge)
2457       bt = BoolTest::gt;
2458     else
2459       ShouldNotReachHere();
2460   }
2461   set_subtree_ctrl(adjusted_limit, false);
2462 
2463   // Build a canonical trip test.
2464   // Clone code, as old values may be in use.
2465   incr = incr->clone();
2466   incr->set_req(1,phi);
2467   incr->set_req(2,stride);
2468   incr = _igvn.register_new_node_with_optimizer(incr);
2469   set_early_ctrl(incr, false);
2470   _igvn.rehash_node_delayed(phi);
2471   phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn );
2472 
2473   // If phi type is more restrictive than Int, raise to
2474   // Int to prevent (almost) infinite recursion in igvn
2475   // which can only handle integer types for constants or minint..maxint.
2476   if (!TypeInteger::bottom(iv_bt)->higher_equal(phi->bottom_type())) {
2477     Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInteger::bottom(iv_bt));
2478     nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl));
2479     nphi = _igvn.register_new_node_with_optimizer(nphi);
2480     set_ctrl(nphi, get_ctrl(phi));
2481     _igvn.replace_node(phi, nphi);
2482     phi = nphi->as_Phi();
2483   }
2484   cmp = cmp->clone();
2485   cmp->set_req(1,incr);
2486   cmp->set_req(2, adjusted_limit);
2487   cmp = _igvn.register_new_node_with_optimizer(cmp);
2488   set_ctrl(cmp, iff->in(0));
2489 
2490   test = test->clone()->as_Bool();
2491   (*(BoolTest*)&test->_test)._test = bt;
2492   test->set_req(1,cmp);
2493   _igvn.register_new_node_with_optimizer(test);
2494   set_ctrl(test, iff->in(0));
2495 
2496   // Replace the old IfNode with a new LoopEndNode
2497   Node *lex = _igvn.register_new_node_with_optimizer(BaseCountedLoopEndNode::make(iff->in(0), test, cl_prob, iff->as_If()->_fcnt, iv_bt));
2498   IfNode *le = lex->as_If();
2499   uint dd = dom_depth(iff);
2500   set_idom(le, le->in(0), dd); // Update dominance for loop exit
2501   set_loop(le, loop);
2502 
2503   // Get the loop-exit control
2504   Node *iffalse = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
2505 
2506   // Need to swap loop-exit and loop-back control?
2507   if (iftrue_op == Op_IfFalse) {
2508     Node *ift2=_igvn.register_new_node_with_optimizer(new IfTrueNode (le));
2509     Node *iff2=_igvn.register_new_node_with_optimizer(new IfFalseNode(le));
2510 
2511     loop->_tail = back_control = ift2;
2512     set_loop(ift2, loop);
2513     set_loop(iff2, get_loop(iffalse));
2514 
2515     // Lazy update of 'get_ctrl' mechanism.
2516     replace_node_and_forward_ctrl(iffalse, iff2);
2517     replace_node_and_forward_ctrl(iftrue,  ift2);
2518 
2519     // Swap names
2520     iffalse = iff2;
2521     iftrue  = ift2;
2522   } else {
2523     _igvn.rehash_node_delayed(iffalse);
2524     _igvn.rehash_node_delayed(iftrue);
2525     iffalse->set_req_X( 0, le, &_igvn );
2526     iftrue ->set_req_X( 0, le, &_igvn );
2527   }
2528 
2529   set_idom(iftrue,  le, dd+1);
2530   set_idom(iffalse, le, dd+1);
2531   assert(iff->outcnt() == 0, "should be dead now");
2532   replace_node_and_forward_ctrl(iff, le); // fix 'get_ctrl'
2533 
2534   Node* entry_control = init_control;
2535   bool strip_mine_loop = iv_bt == T_INT &&
2536                          loop->_child == nullptr &&
2537                          sfpt != nullptr &&
2538                          !loop->_has_call &&
2539                          is_deleteable_safept(sfpt);
2540   IdealLoopTree* outer_ilt = nullptr;
2541   if (strip_mine_loop) {
2542     outer_ilt = create_outer_strip_mined_loop(init_control, loop, cl_prob, le->_fcnt,
2543                                               entry_control, iffalse);
2544   }
2545 
2546   // Now setup a new CountedLoopNode to replace the existing LoopNode
2547   BaseCountedLoopNode *l = BaseCountedLoopNode::make(entry_control, back_control, iv_bt);
2548   l->set_unswitch_count(x->as_Loop()->unswitch_count()); // Preserve
2549   // The following assert is approximately true, and defines the intention
2550   // of can_be_counted_loop.  It fails, however, because phase->type
2551   // is not yet initialized for this loop and its parts.
2552   //assert(l->can_be_counted_loop(this), "sanity");
2553   _igvn.register_new_node_with_optimizer(l);
2554   set_loop(l, loop);
2555   loop->_head = l;
2556   // Fix all data nodes placed at the old loop head.
2557   // Uses the lazy-update mechanism of 'get_ctrl'.
2558   replace_node_and_forward_ctrl(x, l);
2559   set_idom(l, entry_control, dom_depth(entry_control) + 1);
2560 
2561   if (iv_bt == T_INT && (LoopStripMiningIter == 0 || strip_mine_loop)) {
2562     // Check for immediately preceding SafePoint and remove
2563     if (sfpt != nullptr && (strip_mine_loop || is_deleteable_safept(sfpt))) {
2564       if (strip_mine_loop) {
2565         Node* outer_le = outer_ilt->_tail->in(0);
2566         Node* sfpt_clone = sfpt->clone();
2567         sfpt_clone->set_req(0, iffalse);
2568         outer_le->set_req(0, sfpt_clone);
2569 
2570         Node* polladdr = sfpt_clone->in(TypeFunc::Parms);
2571         if (polladdr != nullptr && polladdr->is_Load()) {
2572           // Polling load should be pinned outside inner loop.
2573           Node* new_polladdr = polladdr->clone();
2574           new_polladdr->set_req(0, iffalse);
2575           _igvn.register_new_node_with_optimizer(new_polladdr, polladdr);
2576           set_ctrl(new_polladdr, iffalse);
2577           sfpt_clone->set_req(TypeFunc::Parms, new_polladdr);
2578         }
2579         // When this code runs, loop bodies have not yet been populated.
2580         const bool body_populated = false;
2581         register_control(sfpt_clone, outer_ilt, iffalse, body_populated);
2582         set_idom(outer_le, sfpt_clone, dom_depth(sfpt_clone));
2583       }
2584       replace_node_and_forward_ctrl(sfpt, sfpt->in(TypeFunc::Control));
2585       if (loop->_safepts != nullptr) {
2586         loop->_safepts->yank(sfpt);
2587       }
2588     }
2589   }
2590 
2591 #ifdef ASSERT
2592   assert(l->is_valid_counted_loop(iv_bt), "counted loop shape is messed up");
2593   assert(l == loop->_head && l->phi() == phi && l->loopexit_or_null() == lex, "" );
2594 #endif
2595 #ifndef PRODUCT
2596   if (TraceLoopOpts) {
2597     tty->print("Counted      ");
2598     loop->dump_head();
2599   }
2600 #endif
2601 
2602   C->print_method(PHASE_AFTER_CLOOPS, 3, l);
2603 
2604   // Capture bounds of the loop in the induction variable Phi before
2605   // subsequent transformation (iteration splitting) obscures the
2606   // bounds
2607   l->phi()->as_Phi()->set_type(l->phi()->Value(&_igvn));
2608 
2609   if (strip_mine_loop) {
2610     l->mark_strip_mined();
2611     l->verify_strip_mined(1);
2612     outer_ilt->_head->as_Loop()->verify_strip_mined(1);
2613     loop = outer_ilt;
2614   }
2615 
2616 #ifndef PRODUCT
2617   if (x->as_Loop()->is_loop_nest_inner_loop() && iv_bt == T_LONG) {
2618     AtomicAccess::inc(&_long_loop_counted_loops);
2619   }
2620 #endif
2621   if (iv_bt == T_LONG && x->as_Loop()->is_loop_nest_outer_loop()) {
2622     l->mark_loop_nest_outer_loop();
2623   }
2624 
2625   return true;
2626 }
2627 
2628 // Check if there is a dominating loop limit check of the form 'init < limit' starting at the loop entry.
2629 // If there is one, then we do not need to create an additional Loop Limit Check Predicate.
2630 bool PhaseIdealLoop::has_dominating_loop_limit_check(Node* init_trip, Node* limit, const jlong stride_con,
2631                                                      const BasicType iv_bt, Node* loop_entry) {
2632   // Eagerly call transform() on the Cmp and Bool node to common them up if possible. This is required in order to
2633   // successfully find a dominated test with the If node below.
2634   Node* cmp_limit;
2635   Node* bol;
2636   if (stride_con > 0) {
2637     cmp_limit = _igvn.transform(CmpNode::make(init_trip, limit, iv_bt));
2638     bol = _igvn.transform(new BoolNode(cmp_limit, BoolTest::lt));
2639   } else {
2640     cmp_limit = _igvn.transform(CmpNode::make(init_trip, limit, iv_bt));
2641     bol = _igvn.transform(new BoolNode(cmp_limit, BoolTest::gt));
2642   }
2643 
2644   // Check if there is already a dominating init < limit check. If so, we do not need a Loop Limit Check Predicate.
2645   IfNode* iff = new IfNode(loop_entry, bol, PROB_MIN, COUNT_UNKNOWN);
2646   // Also add fake IfProj nodes in order to call transform() on the newly created IfNode.
2647   IfFalseNode* if_false = new IfFalseNode(iff);
2648   IfTrueNode* if_true = new IfTrueNode(iff);
2649   Node* dominated_iff = _igvn.transform(iff);
2650   // ConI node? Found dominating test (IfNode::dominated_by() returns a ConI node).
2651   const bool found_dominating_test = dominated_iff != nullptr && dominated_iff->is_ConI();
2652 
2653   // Kill the If with its projections again in the next IGVN round by cutting it off from the graph.
2654   _igvn.replace_input_of(iff, 0, C->top());
2655   _igvn.replace_input_of(iff, 1, C->top());
2656   return found_dominating_test;
2657 }
2658 
2659 //----------------------exact_limit-------------------------------------------
2660 Node* PhaseIdealLoop::exact_limit( IdealLoopTree *loop ) {
2661   assert(loop->_head->is_CountedLoop(), "");
2662   CountedLoopNode *cl = loop->_head->as_CountedLoop();
2663   assert(cl->is_valid_counted_loop(T_INT), "");
2664 
2665   if (cl->stride_con() == 1 ||
2666       cl->stride_con() == -1 ||
2667       cl->limit()->Opcode() == Op_LoopLimit) {
2668     // Old code has exact limit (it could be incorrect in case of int overflow).
2669     // Loop limit is exact with stride == 1. And loop may already have exact limit.
2670     return cl->limit();
2671   }
2672   Node *limit = nullptr;
2673 #ifdef ASSERT
2674   BoolTest::mask bt = cl->loopexit()->test_trip();
2675   assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
2676 #endif
2677   if (cl->has_exact_trip_count()) {
2678     // Simple case: loop has constant boundaries.
2679     // Use jlongs to avoid integer overflow.
2680     int stride_con = cl->stride_con();
2681     jlong  init_con = cl->init_trip()->get_int();
2682     jlong limit_con = cl->limit()->get_int();
2683     julong trip_cnt = cl->trip_count();
2684     jlong final_con = init_con + trip_cnt*stride_con;
2685     int final_int = (int)final_con;
2686     // The final value should be in integer range since the loop
2687     // is counted and the limit was checked for overflow.
2688     assert(final_con == (jlong)final_int, "final value should be integer");
2689     limit = _igvn.intcon(final_int);
2690   } else {
2691     // Create new LoopLimit node to get exact limit (final iv value).
2692     limit = new LoopLimitNode(C, cl->init_trip(), cl->limit(), cl->stride());
2693     register_new_node(limit, cl->in(LoopNode::EntryControl));
2694   }
2695   assert(limit != nullptr, "sanity");
2696   return limit;
2697 }
2698 
2699 //------------------------------Ideal------------------------------------------
2700 // Return a node which is more "ideal" than the current node.
2701 // Attempt to convert into a counted-loop.
2702 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2703   if (!can_be_counted_loop(phase) && !is_OuterStripMinedLoop()) {
2704     phase->C->set_major_progress();
2705   }
2706   return RegionNode::Ideal(phase, can_reshape);
2707 }
2708 
2709 #ifdef ASSERT
2710 void LoopNode::verify_strip_mined(int expect_skeleton) const {
2711   const OuterStripMinedLoopNode* outer = nullptr;
2712   const CountedLoopNode* inner = nullptr;
2713   if (is_strip_mined()) {
2714     if (!is_valid_counted_loop(T_INT)) {
2715       return; // Skip malformed counted loop
2716     }
2717     assert(is_CountedLoop(), "no Loop should be marked strip mined");
2718     inner = as_CountedLoop();
2719     outer = inner->in(LoopNode::EntryControl)->as_OuterStripMinedLoop();
2720   } else if (is_OuterStripMinedLoop()) {
2721     outer = this->as_OuterStripMinedLoop();
2722     inner = outer->unique_ctrl_out()->as_CountedLoop();
2723     assert(inner->is_valid_counted_loop(T_INT) && inner->is_strip_mined(), "OuterStripMinedLoop should have been removed");
2724     assert(!is_strip_mined(), "outer loop shouldn't be marked strip mined");
2725   }
2726   if (inner != nullptr || outer != nullptr) {
2727     assert(inner != nullptr && outer != nullptr, "missing loop in strip mined nest");
2728     Node* outer_tail = outer->in(LoopNode::LoopBackControl);
2729     Node* outer_le = outer_tail->in(0);
2730     assert(outer_le->Opcode() == Op_OuterStripMinedLoopEnd, "tail of outer loop should be an If");
2731     Node* sfpt = outer_le->in(0);
2732     assert(sfpt->Opcode() == Op_SafePoint, "where's the safepoint?");
2733     Node* inner_out = sfpt->in(0);
2734     CountedLoopEndNode* cle = inner_out->in(0)->as_CountedLoopEnd();
2735     assert(cle == inner->loopexit_or_null(), "mismatch");
2736     bool has_skeleton = outer_le->in(1)->bottom_type()->singleton() && outer_le->in(1)->bottom_type()->is_int()->get_con() == 0;
2737     if (has_skeleton) {
2738       assert(expect_skeleton == 1 || expect_skeleton == -1, "unexpected skeleton node");
2739       assert(outer->outcnt() == 2, "only control nodes");
2740     } else {
2741       assert(expect_skeleton == 0 || expect_skeleton == -1, "no skeleton node?");
2742       uint phis = 0;
2743       uint be_loads = 0;
2744       Node* be = inner->in(LoopNode::LoopBackControl);
2745       for (DUIterator_Fast imax, i = inner->fast_outs(imax); i < imax; i++) {
2746         Node* u = inner->fast_out(i);
2747         if (u->is_Phi()) {
2748           phis++;
2749           for (DUIterator_Fast jmax, j = be->fast_outs(jmax); j < jmax; j++) {
2750             Node* n = be->fast_out(j);
2751             if (n->is_Load()) {
2752               assert(n->in(0) == be || n->find_prec_edge(be) > 0, "should be on the backedge");
2753               do {
2754                 n = n->raw_out(0);
2755               } while (!n->is_Phi());
2756               if (n == u) {
2757                 be_loads++;
2758                 break;
2759               }
2760             }
2761           }
2762         }
2763       }
2764       assert(be_loads <= phis, "wrong number phis that depends on a pinned load");
2765       for (DUIterator_Fast imax, i = outer->fast_outs(imax); i < imax; i++) {
2766         Node* u = outer->fast_out(i);
2767         assert(u == outer || u == inner || u->is_Phi(), "nothing between inner and outer loop");
2768       }
2769       uint stores = 0;
2770       for (DUIterator_Fast imax, i = inner_out->fast_outs(imax); i < imax; i++) {
2771         Node* u = inner_out->fast_out(i);
2772         if (u->is_Store()) {
2773           stores++;
2774         }
2775       }
2776       // Late optimization of loads on backedge can cause Phi of outer loop to be eliminated but Phi of inner loop is
2777       // not guaranteed to be optimized out.
2778       assert(outer->outcnt() >= phis + 2 - be_loads && outer->outcnt() <= phis + 2 + stores + 1, "only phis");
2779     }
2780     assert(sfpt->outcnt() == 1, "no data node");
2781     assert(outer_tail->outcnt() == 1 || !has_skeleton, "no data node");
2782   }
2783 }
2784 #endif
2785 
2786 //=============================================================================
2787 //------------------------------Ideal------------------------------------------
2788 // Return a node which is more "ideal" than the current node.
2789 // Attempt to convert into a counted-loop.
2790 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2791   return RegionNode::Ideal(phase, can_reshape);
2792 }
2793 
2794 //------------------------------dump_spec--------------------------------------
2795 // Dump special per-node info
2796 #ifndef PRODUCT
2797 void CountedLoopNode::dump_spec(outputStream *st) const {
2798   LoopNode::dump_spec(st);
2799   if (stride_is_con()) {
2800     st->print("stride: %d ",stride_con());
2801   }
2802   if (is_pre_loop ()) st->print("pre of N%d" , _main_idx);
2803   if (is_main_loop()) st->print("main of N%d", _idx);
2804   if (is_post_loop()) st->print("post of N%d", _main_idx);
2805   if (is_strip_mined()) st->print(" strip mined");
2806   if (is_multiversion_fast_loop())         { st->print(" multiversion_fast"); }
2807   if (is_multiversion_slow_loop())         { st->print(" multiversion_slow"); }
2808   if (is_multiversion_delayed_slow_loop()) { st->print(" multiversion_delayed_slow"); }
2809 }
2810 #endif
2811 
2812 //=============================================================================
2813 jlong BaseCountedLoopEndNode::stride_con() const {
2814   return stride()->bottom_type()->is_integer(bt())->get_con_as_long(bt());
2815 }
2816 
2817 
2818 BaseCountedLoopEndNode* BaseCountedLoopEndNode::make(Node* control, Node* test, float prob, float cnt, BasicType bt) {
2819   if (bt == T_INT) {
2820     return new CountedLoopEndNode(control, test, prob, cnt);
2821   }
2822   assert(bt == T_LONG, "unsupported");
2823   return new LongCountedLoopEndNode(control, test, prob, cnt);
2824 }
2825 
2826 //=============================================================================
2827 //------------------------------Value-----------------------------------------
2828 const Type* LoopLimitNode::Value(PhaseGVN* phase) const {
2829   const Type* init_t   = phase->type(in(Init));
2830   const Type* limit_t  = phase->type(in(Limit));
2831   const Type* stride_t = phase->type(in(Stride));
2832   // Either input is TOP ==> the result is TOP
2833   if (init_t   == Type::TOP) return Type::TOP;
2834   if (limit_t  == Type::TOP) return Type::TOP;
2835   if (stride_t == Type::TOP) return Type::TOP;
2836 
2837   int stride_con = stride_t->is_int()->get_con();
2838   if (stride_con == 1)
2839     return bottom_type();  // Identity
2840 
2841   if (init_t->is_int()->is_con() && limit_t->is_int()->is_con()) {
2842     // Use jlongs to avoid integer overflow.
2843     jlong init_con   =  init_t->is_int()->get_con();
2844     jlong limit_con  = limit_t->is_int()->get_con();
2845     int  stride_m   = stride_con - (stride_con > 0 ? 1 : -1);
2846     jlong trip_count = (limit_con - init_con + stride_m)/stride_con;
2847     jlong final_con  = init_con + stride_con*trip_count;
2848     int final_int = (int)final_con;
2849     // The final value should be in integer range in almost all cases,
2850     // since the loop is counted and the limit was checked for overflow.
2851     // There some exceptions, for example:
2852     // - During CCP, there might be a temporary overflow from PhiNodes, see JDK-8309266.
2853     // - During PhaseIdealLoop::split_thru_phi, the LoopLimitNode floats possibly far above
2854     //   the loop and its predicates, and we might get constants on one side of the phi that
2855     //   would lead to overflows. Such a code path would never lead us to enter the loop
2856     //   because of the loop limit overflow check that happens after the LoopLimitNode
2857     //   computation with overflow, but before we enter the loop, see JDK-8335747.
2858     if (final_con == (jlong)final_int) {
2859       return TypeInt::make(final_int);
2860     } else {
2861       return bottom_type();
2862     }
2863   }
2864 
2865   return bottom_type(); // TypeInt::INT
2866 }
2867 
2868 //------------------------------Ideal------------------------------------------
2869 // Return a node which is more "ideal" than the current node.
2870 Node *LoopLimitNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2871   if (phase->type(in(Init))   == Type::TOP ||
2872       phase->type(in(Limit))  == Type::TOP ||
2873       phase->type(in(Stride)) == Type::TOP)
2874     return nullptr;  // Dead
2875 
2876   int stride_con = phase->type(in(Stride))->is_int()->get_con();
2877   if (stride_con == 1)
2878     return nullptr;  // Identity
2879 
2880   // Delay following optimizations until all loop optimizations
2881   // done to keep Ideal graph simple.
2882   if (!can_reshape || !phase->C->post_loop_opts_phase()) {
2883     phase->C->record_for_post_loop_opts_igvn(this);
2884     return nullptr;
2885   }
2886 
2887   const TypeInt* init_t  = phase->type(in(Init) )->is_int();
2888   const TypeInt* limit_t = phase->type(in(Limit))->is_int();
2889   jlong stride_p;
2890   jlong lim, ini;
2891   julong max;
2892   if (stride_con > 0) {
2893     stride_p = stride_con;
2894     lim = limit_t->_hi;
2895     ini = init_t->_lo;
2896     max = (julong)max_jint;
2897   } else {
2898     stride_p = -(jlong)stride_con;
2899     lim = init_t->_hi;
2900     ini = limit_t->_lo;
2901     max = (julong)(juint)min_jint; // double cast to get 0x0000000080000000, not 0xffffffff80000000
2902   }
2903   julong range = lim - ini + stride_p;
2904   if (range <= max) {
2905     // Convert to integer expression if it is not overflow.
2906     Node* stride_m = phase->intcon(stride_con - (stride_con > 0 ? 1 : -1));
2907     Node *range = phase->transform(new SubINode(in(Limit), in(Init)));
2908     Node *bias  = phase->transform(new AddINode(range, stride_m));
2909     Node *trip  = phase->transform(new DivINode(nullptr, bias, in(Stride)));
2910     Node *span  = phase->transform(new MulINode(trip, in(Stride)));
2911     return new AddINode(span, in(Init)); // exact limit
2912   }
2913 
2914   if (is_power_of_2(stride_p) ||                // divisor is 2^n
2915       !Matcher::has_match_rule(Op_LoopLimit)) { // or no specialized Mach node?
2916     // Convert to long expression to avoid integer overflow
2917     // and let igvn optimizer convert this division.
2918     //
2919     Node*   init   = phase->transform( new ConvI2LNode(in(Init)));
2920     Node*  limit   = phase->transform( new ConvI2LNode(in(Limit)));
2921     Node* stride   = phase->longcon(stride_con);
2922     Node* stride_m = phase->longcon(stride_con - (stride_con > 0 ? 1 : -1));
2923 
2924     Node *range = phase->transform(new SubLNode(limit, init));
2925     Node *bias  = phase->transform(new AddLNode(range, stride_m));
2926     Node *span;
2927     if (stride_con > 0 && is_power_of_2(stride_p)) {
2928       // bias >= 0 if stride >0, so if stride is 2^n we can use &(-stride)
2929       // and avoid generating rounding for division. Zero trip guard should
2930       // guarantee that init < limit but sometimes the guard is missing and
2931       // we can get situation when init > limit. Note, for the empty loop
2932       // optimization zero trip guard is generated explicitly which leaves
2933       // only RCE predicate where exact limit is used and the predicate
2934       // will simply fail forcing recompilation.
2935       Node* neg_stride   = phase->longcon(-stride_con);
2936       span = phase->transform(new AndLNode(bias, neg_stride));
2937     } else {
2938       Node *trip  = phase->transform(new DivLNode(nullptr, bias, stride));
2939       span = phase->transform(new MulLNode(trip, stride));
2940     }
2941     // Convert back to int
2942     Node *span_int = phase->transform(new ConvL2INode(span));
2943     return new AddINode(span_int, in(Init)); // exact limit
2944   }
2945 
2946   return nullptr;    // No progress
2947 }
2948 
2949 //------------------------------Identity---------------------------------------
2950 // If stride == 1 return limit node.
2951 Node* LoopLimitNode::Identity(PhaseGVN* phase) {
2952   int stride_con = phase->type(in(Stride))->is_int()->get_con();
2953   if (stride_con == 1 || stride_con == -1)
2954     return in(Limit);
2955   return this;
2956 }
2957 
2958 //=============================================================================
2959 //----------------------match_incr_with_optional_truncation--------------------
2960 // Match increment with optional truncation:
2961 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
2962 // Return null for failure. Success returns the increment node.
2963 Node* CountedLoopNode::match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2,
2964                                                            const TypeInteger** trunc_type,
2965                                                            BasicType bt) {
2966   // Quick cutouts:
2967   if (expr == nullptr || expr->req() != 3)  return nullptr;
2968 
2969   Node *t1 = nullptr;
2970   Node *t2 = nullptr;
2971   Node* n1 = expr;
2972   int   n1op = n1->Opcode();
2973   const TypeInteger* trunc_t = TypeInteger::bottom(bt);
2974 
2975   if (bt == T_INT) {
2976     // Try to strip (n1 & M) or (n1 << N >> N) from n1.
2977     if (n1op == Op_AndI &&
2978         n1->in(2)->is_Con() &&
2979         n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
2980       // %%% This check should match any mask of 2**K-1.
2981       t1 = n1;
2982       n1 = t1->in(1);
2983       n1op = n1->Opcode();
2984       trunc_t = TypeInt::CHAR;
2985     } else if (n1op == Op_RShiftI &&
2986                n1->in(1) != nullptr &&
2987                n1->in(1)->Opcode() == Op_LShiftI &&
2988                n1->in(2) == n1->in(1)->in(2) &&
2989                n1->in(2)->is_Con()) {
2990       jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
2991       // %%% This check should match any shift in [1..31].
2992       if (shift == 16 || shift == 8) {
2993         t1 = n1;
2994         t2 = t1->in(1);
2995         n1 = t2->in(1);
2996         n1op = n1->Opcode();
2997         if (shift == 16) {
2998           trunc_t = TypeInt::SHORT;
2999         } else if (shift == 8) {
3000           trunc_t = TypeInt::BYTE;
3001         }
3002       }
3003     }
3004   }
3005 
3006   // If (maybe after stripping) it is an AddI, we won:
3007   if (n1op == Op_Add(bt)) {
3008     *trunc1 = t1;
3009     *trunc2 = t2;
3010     *trunc_type = trunc_t;
3011     return n1;
3012   }
3013 
3014   // failed
3015   return nullptr;
3016 }
3017 
3018 IfNode* CountedLoopNode::find_multiversion_if_from_multiversion_fast_main_loop() {
3019   assert(is_main_loop() && is_multiversion_fast_loop(), "must be multiversion fast main loop");
3020   CountedLoopEndNode* pre_end = find_pre_loop_end();
3021   if (pre_end == nullptr) { return nullptr; }
3022   Node* pre_entry = pre_end->loopnode()->in(LoopNode::EntryControl);
3023   const Predicates predicates(pre_entry);
3024   IfTrueNode* before_predicates = predicates.entry()->isa_IfTrue();
3025   if (before_predicates != nullptr &&
3026       before_predicates->in(0)->in(1)->is_OpaqueMultiversioning()) {
3027     return before_predicates->in(0)->as_If();
3028   }
3029   return nullptr;
3030 }
3031 
3032 LoopNode* CountedLoopNode::skip_strip_mined(int expect_skeleton) {
3033   if (is_strip_mined() && in(EntryControl) != nullptr && in(EntryControl)->is_OuterStripMinedLoop()) {
3034     verify_strip_mined(expect_skeleton);
3035     return in(EntryControl)->as_Loop();
3036   }
3037   return this;
3038 }
3039 
3040 OuterStripMinedLoopNode* CountedLoopNode::outer_loop() const {
3041   assert(is_strip_mined(), "not a strip mined loop");
3042   Node* c = in(EntryControl);
3043   if (c == nullptr || c->is_top() || !c->is_OuterStripMinedLoop()) {
3044     return nullptr;
3045   }
3046   return c->as_OuterStripMinedLoop();
3047 }
3048 
3049 IfTrueNode* OuterStripMinedLoopNode::outer_loop_tail() const {
3050   Node* c = in(LoopBackControl);
3051   if (c == nullptr || c->is_top()) {
3052     return nullptr;
3053   }
3054   return c->as_IfTrue();
3055 }
3056 
3057 IfTrueNode* CountedLoopNode::outer_loop_tail() const {
3058   LoopNode* l = outer_loop();
3059   if (l == nullptr) {
3060     return nullptr;
3061   }
3062   return l->outer_loop_tail();
3063 }
3064 
3065 OuterStripMinedLoopEndNode* OuterStripMinedLoopNode::outer_loop_end() const {
3066   IfTrueNode* proj = outer_loop_tail();
3067   if (proj == nullptr) {
3068     return nullptr;
3069   }
3070   Node* c = proj->in(0);
3071   if (c == nullptr || c->is_top() || c->outcnt() != 2) {
3072     return nullptr;
3073   }
3074   return c->as_OuterStripMinedLoopEnd();
3075 }
3076 
3077 OuterStripMinedLoopEndNode* CountedLoopNode::outer_loop_end() const {
3078   LoopNode* l = outer_loop();
3079   if (l == nullptr) {
3080     return nullptr;
3081   }
3082   return l->outer_loop_end();
3083 }
3084 
3085 IfFalseNode* OuterStripMinedLoopNode::outer_loop_exit() const {
3086   IfNode* le = outer_loop_end();
3087   if (le == nullptr) {
3088     return nullptr;
3089   }
3090   Node* c = le->proj_out_or_null(false);
3091   if (c == nullptr) {
3092     return nullptr;
3093   }
3094   return c->as_IfFalse();
3095 }
3096 
3097 IfFalseNode* CountedLoopNode::outer_loop_exit() const {
3098   LoopNode* l = outer_loop();
3099   if (l == nullptr) {
3100     return nullptr;
3101   }
3102   return l->outer_loop_exit();
3103 }
3104 
3105 SafePointNode* OuterStripMinedLoopNode::outer_safepoint() const {
3106   IfNode* le = outer_loop_end();
3107   if (le == nullptr) {
3108     return nullptr;
3109   }
3110   Node* c = le->in(0);
3111   if (c == nullptr || c->is_top()) {
3112     return nullptr;
3113   }
3114   assert(c->Opcode() == Op_SafePoint, "broken outer loop");
3115   return c->as_SafePoint();
3116 }
3117 
3118 SafePointNode* CountedLoopNode::outer_safepoint() const {
3119   LoopNode* l = outer_loop();
3120   if (l == nullptr) {
3121     return nullptr;
3122   }
3123   return l->outer_safepoint();
3124 }
3125 
3126 Node* CountedLoopNode::skip_assertion_predicates_with_halt() {
3127   Node* ctrl = in(LoopNode::EntryControl);
3128   if (ctrl == nullptr) {
3129     // Dying loop.
3130     return nullptr;
3131   }
3132   if (is_main_loop()) {
3133     ctrl = skip_strip_mined()->in(LoopNode::EntryControl);
3134   }
3135   if (is_main_loop() || is_post_loop()) {
3136     AssertionPredicates assertion_predicates(ctrl);
3137     return assertion_predicates.entry();
3138   }
3139   return ctrl;
3140 }
3141 
3142 
3143 int CountedLoopNode::stride_con() const {
3144   CountedLoopEndNode* cle = loopexit_or_null();
3145   return cle != nullptr ? cle->stride_con() : 0;
3146 }
3147 
3148 BaseCountedLoopNode* BaseCountedLoopNode::make(Node* entry, Node* backedge, BasicType bt) {
3149   if (bt == T_INT) {
3150     return new CountedLoopNode(entry, backedge);
3151   }
3152   assert(bt == T_LONG, "unsupported");
3153   return new LongCountedLoopNode(entry, backedge);
3154 }
3155 
3156 void OuterStripMinedLoopNode::fix_sunk_stores_when_back_to_counted_loop(PhaseIterGVN* igvn,
3157                                                                         PhaseIdealLoop* iloop) const {
3158   CountedLoopNode* inner_cl = inner_counted_loop();
3159   IfFalseNode* cle_out = inner_loop_exit();
3160 
3161   if (cle_out->outcnt() > 1) {
3162     // Look for chains of stores that were sunk
3163     // out of the inner loop and are in the outer loop
3164     for (DUIterator_Fast imax, i = cle_out->fast_outs(imax); i < imax; i++) {
3165       Node* u = cle_out->fast_out(i);
3166       if (u->is_Store()) {
3167         int alias_idx = igvn->C->get_alias_index(u->adr_type());
3168         Node* first = u;
3169         for (;;) {
3170           Node* next = first->in(MemNode::Memory);
3171           if (!next->is_Store() || next->in(0) != cle_out) {
3172             break;
3173           }
3174           assert(igvn->C->get_alias_index(next->adr_type()) == alias_idx, "");
3175           first = next;
3176         }
3177         Node* last = u;
3178         for (;;) {
3179           Node* next = nullptr;
3180           for (DUIterator_Fast jmax, j = last->fast_outs(jmax); j < jmax; j++) {
3181             Node* uu = last->fast_out(j);
3182             if (uu->is_Store() && uu->in(0) == cle_out) {
3183               assert(next == nullptr, "only one in the outer loop");
3184               next = uu;
3185               assert(igvn->C->get_alias_index(next->adr_type()) == alias_idx, "");
3186             }
3187           }
3188           if (next == nullptr) {
3189             break;
3190           }
3191           last = next;
3192         }
3193         Node* phi = nullptr;
3194         for (DUIterator_Fast jmax, j = inner_cl->fast_outs(jmax); j < jmax; j++) {
3195           Node* uu = inner_cl->fast_out(j);
3196           if (uu->is_Phi()) {
3197             Node* be = uu->in(LoopNode::LoopBackControl);
3198             if (be->is_Store() && be->in(0) == inner_cl->in(LoopNode::LoopBackControl)) {
3199               assert(igvn->C->get_alias_index(uu->adr_type()) != alias_idx && igvn->C->get_alias_index(uu->adr_type()) != Compile::AliasIdxBot, "unexpected store");
3200             }
3201             if (be == last || be == first->in(MemNode::Memory)) {
3202               assert(igvn->C->get_alias_index(uu->adr_type()) == alias_idx || igvn->C->get_alias_index(uu->adr_type()) == Compile::AliasIdxBot, "unexpected alias");
3203               assert(phi == nullptr, "only one phi");
3204               phi = uu;
3205             }
3206           }
3207         }
3208 #ifdef ASSERT
3209         for (DUIterator_Fast jmax, j = inner_cl->fast_outs(jmax); j < jmax; j++) {
3210           Node* uu = inner_cl->fast_out(j);
3211           if (uu->is_memory_phi()) {
3212             if (uu->adr_type() == igvn->C->get_adr_type(igvn->C->get_alias_index(u->adr_type()))) {
3213               assert(phi == uu, "what's that phi?");
3214             } else if (uu->adr_type() == TypePtr::BOTTOM) {
3215               Node* n = uu->in(LoopNode::LoopBackControl);
3216               uint limit = igvn->C->live_nodes();
3217               uint i = 0;
3218               while (n != uu) {
3219                 i++;
3220                 assert(i < limit, "infinite loop");
3221                 if (n->is_Proj()) {
3222                   n = n->in(0);
3223                 } else if (n->is_SafePoint() || n->is_MemBar()) {
3224                   n = n->in(TypeFunc::Memory);
3225                 } else if (n->is_Phi()) {
3226                   n = n->in(1);
3227                 } else if (n->is_MergeMem()) {
3228                   n = n->as_MergeMem()->memory_at(igvn->C->get_alias_index(u->adr_type()));
3229                 } else if (n->is_Store() || n->is_LoadStore() || n->is_ClearArray()) {
3230                   n = n->in(MemNode::Memory);
3231                 } else {
3232                   n->dump();
3233                   ShouldNotReachHere();
3234                 }
3235               }
3236             }
3237           }
3238         }
3239 #endif
3240         if (phi == nullptr) {
3241           // If an entire chains was sunk, the
3242           // inner loop has no phi for that memory
3243           // slice, create one for the outer loop
3244           phi = PhiNode::make(inner_cl, first->in(MemNode::Memory), Type::MEMORY,
3245                               igvn->C->get_adr_type(igvn->C->get_alias_index(u->adr_type())));
3246           phi->set_req(LoopNode::LoopBackControl, last);
3247           phi = register_new_node(phi, inner_cl, igvn, iloop);
3248           igvn->replace_input_of(first, MemNode::Memory, phi);
3249         } else {
3250           // Or fix the outer loop fix to include
3251           // that chain of stores.
3252           Node* be = phi->in(LoopNode::LoopBackControl);
3253           assert(!(be->is_Store() && be->in(0) == inner_cl->in(LoopNode::LoopBackControl)), "store on the backedge + sunk stores: unsupported");
3254           if (be == first->in(MemNode::Memory)) {
3255             if (be == phi->in(LoopNode::LoopBackControl)) {
3256               igvn->replace_input_of(phi, LoopNode::LoopBackControl, last);
3257             } else {
3258               igvn->replace_input_of(be, MemNode::Memory, last);
3259             }
3260           } else {
3261 #ifdef ASSERT
3262             if (be == phi->in(LoopNode::LoopBackControl)) {
3263               assert(phi->in(LoopNode::LoopBackControl) == last, "");
3264             } else {
3265               assert(be->in(MemNode::Memory) == last, "");
3266             }
3267 #endif
3268           }
3269         }
3270       }
3271     }
3272   }
3273 }
3274 
3275 // The outer strip mined loop is initially only partially constructed. In particular Phis are omitted.
3276 // See comment above: PhaseIdealLoop::create_outer_strip_mined_loop()
3277 // We're now in the process of finishing the construction of the outer loop. For each Phi in the inner loop, a Phi in
3278 // the outer loop was just now created. However, Sunk Stores cause an extra challenge:
3279 // 1) If all Stores in the inner loop were sunk for a particular memory slice, there's no Phi left for that memory slice
3280 //    in the inner loop anymore, and hence we did not yet add a Phi for the outer loop. So an extra Phi must now be
3281 //    added for each chain of sunk Stores for a particular memory slice.
3282 // 2) If some Stores were sunk and some left in the inner loop, a Phi was already created in the outer loop but
3283 //    its backedge input wasn't wired correctly to the last Store of the chain: the backedge input was set to the
3284 //    backedge of the inner loop Phi instead, but it needs to be the last Store of the chain in the outer loop. We now
3285 //    have to fix that too.
3286 void OuterStripMinedLoopNode::handle_sunk_stores_when_finishing_construction(PhaseIterGVN* igvn) {
3287   IfFalseNode* cle_exit_proj = inner_loop_exit();
3288 
3289   // Find Sunk stores: Sunk stores are pinned on the loop exit projection of the inner loop. Indeed, because Sunk Stores
3290   // modify the memory state captured by the SafePoint in the outer strip mined loop, they must be above it. The
3291   // SafePoint's control input is the loop exit projection. It's also the only control out of the inner loop above the
3292   // SafePoint.
3293 #ifdef ASSERT
3294   int stores_in_outer_loop_cnt = 0;
3295   for (DUIterator_Fast imax, i = cle_exit_proj->fast_outs(imax); i < imax; i++) {
3296     Node* u = cle_exit_proj->fast_out(i);
3297     if (u->is_Store()) {
3298       stores_in_outer_loop_cnt++;
3299     }
3300   }
3301 #endif
3302 
3303   // Sunk stores are reachable from the memory state of the outer loop safepoint
3304   SafePointNode* safepoint = outer_safepoint();
3305   MergeMemNode* mm = safepoint->in(TypeFunc::Memory)->isa_MergeMem();
3306   if (mm == nullptr) {
3307     // There is no MergeMem, which should only happen if there was no memory node
3308     // sunk out of the loop.
3309     assert(stores_in_outer_loop_cnt == 0, "inconsistent");
3310     return;
3311   }
3312   DEBUG_ONLY(int stores_in_outer_loop_cnt2 = 0);
3313   for (MergeMemStream mms(mm); mms.next_non_empty();) {
3314     Node* mem = mms.memory();
3315     // Traverse up the chain of stores to find the first store pinned
3316     // at the loop exit projection.
3317     Node* last = mem;
3318     Node* first = nullptr;
3319     while (mem->is_Store() && mem->in(0) == cle_exit_proj) {
3320       DEBUG_ONLY(stores_in_outer_loop_cnt2++);
3321       first = mem;
3322       mem = mem->in(MemNode::Memory);
3323     }
3324     if (first != nullptr) {
3325       // Found a chain of Stores that were sunk
3326       // Do we already have a memory Phi for that slice on the outer loop? If that is the case, that Phi was created
3327       // by cloning an inner loop Phi. The inner loop Phi should have mem, the memory state of the first Store out of
3328       // the inner loop, as input on the backedge. So does the outer loop Phi given it's a clone.
3329       Node* phi = nullptr;
3330       for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
3331         Node* u = mem->fast_out(i);
3332         if (u->is_Phi() && u->in(0) == this && u->in(LoopBackControl) == mem) {
3333           assert(phi == nullptr, "there should be only one");
3334           phi = u;
3335           PRODUCT_ONLY(break);
3336         }
3337       }
3338       if (phi == nullptr) {
3339         // No outer loop Phi? create one
3340         phi = PhiNode::make(this, last);
3341         phi->set_req(EntryControl, mem);
3342         phi = igvn->transform(phi);
3343         igvn->replace_input_of(first, MemNode::Memory, phi);
3344       } else {
3345         // Fix memory state along the backedge: it should be the last sunk Store of the chain
3346         igvn->replace_input_of(phi, LoopBackControl, last);
3347       }
3348     }
3349   }
3350   assert(stores_in_outer_loop_cnt == stores_in_outer_loop_cnt2, "inconsistent");
3351 }
3352 
3353 void OuterStripMinedLoopNode::adjust_strip_mined_loop(PhaseIterGVN* igvn) {
3354   verify_strip_mined(1);
3355   // Look for the outer & inner strip mined loop, reduce number of
3356   // iterations of the inner loop, set exit condition of outer loop,
3357   // construct required phi nodes for outer loop.
3358   CountedLoopNode* inner_cl = inner_counted_loop();
3359   assert(inner_cl->is_strip_mined(), "inner loop should be strip mined");
3360   if (LoopStripMiningIter == 0) {
3361     remove_outer_loop_and_safepoint(igvn);
3362     return;
3363   }
3364   if (LoopStripMiningIter == 1) {
3365     transform_to_counted_loop(igvn, nullptr);
3366     return;
3367   }
3368   Node* inner_iv_phi = inner_cl->phi();
3369   if (inner_iv_phi == nullptr) {
3370     IfNode* outer_le = outer_loop_end();
3371     Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
3372     igvn->replace_node(outer_le, iff);
3373     inner_cl->clear_strip_mined();
3374     return;
3375   }
3376   CountedLoopEndNode* inner_cle = inner_counted_loop_end();
3377 
3378   int stride = inner_cl->stride_con();
3379   // For a min int stride, LoopStripMiningIter * stride overflows the int range for all values of LoopStripMiningIter
3380   // except 0 or 1. Those values are handled early on in this method and causes the method to return. So for a min int
3381   // stride, the method is guaranteed to return at the next check below.
3382   jlong scaled_iters_long = ((jlong)LoopStripMiningIter) * ABS((jlong)stride);
3383   int scaled_iters = (int)scaled_iters_long;
3384   if ((jlong)scaled_iters != scaled_iters_long) {
3385     // Remove outer loop and safepoint (too few iterations)
3386     remove_outer_loop_and_safepoint(igvn);
3387     return;
3388   }
3389   jlong short_scaled_iters = LoopStripMiningIterShortLoop * ABS(stride);
3390   const TypeInt* inner_iv_t = igvn->type(inner_iv_phi)->is_int();
3391   jlong iter_estimate = (jlong)inner_iv_t->_hi - (jlong)inner_iv_t->_lo;
3392   assert(iter_estimate > 0, "broken");
3393   if (iter_estimate <= short_scaled_iters) {
3394     // Remove outer loop and safepoint: loop executes less than LoopStripMiningIterShortLoop
3395     remove_outer_loop_and_safepoint(igvn);
3396     return;
3397   }
3398   if (iter_estimate <= scaled_iters_long) {
3399     // We would only go through one iteration of
3400     // the outer loop: drop the outer loop but
3401     // keep the safepoint so we don't run for
3402     // too long without a safepoint
3403     IfNode* outer_le = outer_loop_end();
3404     Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
3405     igvn->replace_node(outer_le, iff);
3406     inner_cl->clear_strip_mined();
3407     return;
3408   }
3409 
3410   Node* cle_tail = inner_cle->proj_out(true);
3411   ResourceMark rm;
3412   Node_List old_new;
3413   if (cle_tail->outcnt() > 1) {
3414     // Look for nodes on backedge of inner loop and clone them
3415     Unique_Node_List backedge_nodes;
3416     for (DUIterator_Fast imax, i = cle_tail->fast_outs(imax); i < imax; i++) {
3417       Node* u = cle_tail->fast_out(i);
3418       if (u != inner_cl) {
3419         assert(!u->is_CFG(), "control flow on the backedge?");
3420         backedge_nodes.push(u);
3421       }
3422     }
3423     uint last = igvn->C->unique();
3424     for (uint next = 0; next < backedge_nodes.size(); next++) {
3425       Node* n = backedge_nodes.at(next);
3426       old_new.map(n->_idx, n->clone());
3427       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3428         Node* u = n->fast_out(i);
3429         assert(!u->is_CFG(), "broken");
3430         if (u->_idx >= last) {
3431           continue;
3432         }
3433         if (!u->is_Phi()) {
3434           backedge_nodes.push(u);
3435         } else {
3436           assert(u->in(0) == inner_cl, "strange phi on the backedge");
3437         }
3438       }
3439     }
3440     // Put the clones on the outer loop backedge
3441     Node* le_tail = outer_loop_tail();
3442     for (uint next = 0; next < backedge_nodes.size(); next++) {
3443       Node *n = old_new[backedge_nodes.at(next)->_idx];
3444       for (uint i = 1; i < n->req(); i++) {
3445         if (n->in(i) != nullptr && old_new[n->in(i)->_idx] != nullptr) {
3446           n->set_req(i, old_new[n->in(i)->_idx]);
3447         }
3448       }
3449       if (n->in(0) != nullptr && n->in(0) == cle_tail) {
3450         n->set_req(0, le_tail);
3451       }
3452       igvn->register_new_node_with_optimizer(n);
3453     }
3454   }
3455 
3456   Node* iv_phi = nullptr;
3457   // Make a clone of each phi in the inner loop for the outer loop
3458   // When Stores were Sunk, after this step, a Phi may still be missing or its backedge incorrectly wired. See
3459   // handle_sunk_stores_when_finishing_construction()
3460   for (uint i = 0; i < inner_cl->outcnt(); i++) {
3461     Node* u = inner_cl->raw_out(i);
3462     if (u->is_Phi()) {
3463       assert(u->in(0) == inner_cl, "inconsistent");
3464       Node* phi = u->clone();
3465       phi->set_req(0, this);
3466       Node* be = old_new[phi->in(LoopNode::LoopBackControl)->_idx];
3467       if (be != nullptr) {
3468         phi->set_req(LoopNode::LoopBackControl, be);
3469       }
3470       phi = igvn->transform(phi);
3471       igvn->replace_input_of(u, LoopNode::EntryControl, phi);
3472       if (u == inner_iv_phi) {
3473         iv_phi = phi;
3474       }
3475     }
3476   }
3477 
3478   handle_sunk_stores_when_finishing_construction(igvn);
3479 
3480   if (iv_phi != nullptr) {
3481     // Now adjust the inner loop's exit condition
3482     Node* limit = inner_cl->limit();
3483     // If limit < init for stride > 0 (or limit > init for stride < 0),
3484     // the loop body is run only once. Given limit - init (init - limit resp.)
3485     // would be negative, the unsigned comparison below would cause
3486     // the loop body to be run for LoopStripMiningIter.
3487     Node* max = nullptr;
3488     if (stride > 0) {
3489       max = MaxNode::max_diff_with_zero(limit, iv_phi, TypeInt::INT, *igvn);
3490     } else {
3491       max = MaxNode::max_diff_with_zero(iv_phi, limit, TypeInt::INT, *igvn);
3492     }
3493     // sub is positive and can be larger than the max signed int
3494     // value. Use an unsigned min.
3495     Node* const_iters = igvn->intcon(scaled_iters);
3496     Node* min = MaxNode::unsigned_min(max, const_iters, TypeInt::make(0, scaled_iters, Type::WidenMin), *igvn);
3497     // min is the number of iterations for the next inner loop execution:
3498     // unsigned_min(max(limit - iv_phi, 0), scaled_iters) if stride > 0
3499     // unsigned_min(max(iv_phi - limit, 0), scaled_iters) if stride < 0
3500 
3501     Node* new_limit = nullptr;
3502     if (stride > 0) {
3503       new_limit = igvn->transform(new AddINode(min, iv_phi));
3504     } else {
3505       new_limit = igvn->transform(new SubINode(iv_phi, min));
3506     }
3507     Node* inner_cmp = inner_cle->cmp_node();
3508     Node* inner_bol = inner_cle->in(CountedLoopEndNode::TestValue);
3509     Node* outer_bol = inner_bol;
3510     // cmp node for inner loop may be shared
3511     inner_cmp = inner_cmp->clone();
3512     inner_cmp->set_req(2, new_limit);
3513     inner_bol = inner_bol->clone();
3514     inner_bol->set_req(1, igvn->transform(inner_cmp));
3515     igvn->replace_input_of(inner_cle, CountedLoopEndNode::TestValue, igvn->transform(inner_bol));
3516     // Set the outer loop's exit condition too
3517     igvn->replace_input_of(outer_loop_end(), 1, outer_bol);
3518   } else {
3519     assert(false, "should be able to adjust outer loop");
3520     IfNode* outer_le = outer_loop_end();
3521     Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt));
3522     igvn->replace_node(outer_le, iff);
3523     inner_cl->clear_strip_mined();
3524   }
3525 }
3526 
3527 void OuterStripMinedLoopNode::transform_to_counted_loop(PhaseIterGVN* igvn, PhaseIdealLoop* iloop) {
3528   CountedLoopNode* inner_cl = unique_ctrl_out()->as_CountedLoop();
3529   CountedLoopEndNode* cle = inner_cl->loopexit();
3530   Node* inner_test = cle->in(1);
3531   IfNode* outer_le = outer_loop_end();
3532   CountedLoopEndNode* inner_cle = inner_cl->loopexit();
3533   Node* safepoint = outer_safepoint();
3534 
3535   fix_sunk_stores_when_back_to_counted_loop(igvn, iloop);
3536 
3537   // make counted loop exit test always fail
3538   ConINode* zero = igvn->intcon(0);
3539   if (iloop != nullptr) {
3540     iloop->set_root_as_ctrl(zero);
3541   }
3542   igvn->replace_input_of(cle, 1, zero);
3543   // replace outer loop end with CountedLoopEndNode with formers' CLE's exit test
3544   Node* new_end = new CountedLoopEndNode(outer_le->in(0), inner_test, cle->_prob, cle->_fcnt);
3545   register_control(new_end, inner_cl, outer_le->in(0), igvn, iloop);
3546   if (iloop == nullptr) {
3547     igvn->replace_node(outer_le, new_end);
3548   } else {
3549     iloop->replace_node_and_forward_ctrl(outer_le, new_end);
3550   }
3551   // the backedge of the inner loop must be rewired to the new loop end
3552   Node* backedge = cle->proj_out(true);
3553   igvn->replace_input_of(backedge, 0, new_end);
3554   if (iloop != nullptr) {
3555     iloop->set_idom(backedge, new_end, iloop->dom_depth(new_end) + 1);
3556   }
3557   // make the outer loop go away
3558   igvn->replace_input_of(in(LoopBackControl), 0, igvn->C->top());
3559   igvn->replace_input_of(this, LoopBackControl, igvn->C->top());
3560   inner_cl->clear_strip_mined();
3561   if (iloop != nullptr) {
3562     Unique_Node_List wq;
3563     wq.push(safepoint);
3564 
3565     IdealLoopTree* outer_loop_ilt = iloop->get_loop(this);
3566     IdealLoopTree* loop = iloop->get_loop(inner_cl);
3567 
3568     for (uint i = 0; i < wq.size(); i++) {
3569       Node* n = wq.at(i);
3570       for (uint j = 0; j < n->req(); ++j) {
3571         Node* in = n->in(j);
3572         if (in == nullptr || in->is_CFG()) {
3573           continue;
3574         }
3575         if (iloop->get_loop(iloop->get_ctrl(in)) != outer_loop_ilt) {
3576           continue;
3577         }
3578         wq.push(in);
3579       }
3580       assert(!loop->_body.contains(n), "Shouldn't append node to body twice");
3581       loop->_body.push(n);
3582     }
3583     iloop->set_loop(safepoint, loop);
3584     loop->_body.push(safepoint);
3585     iloop->set_loop(safepoint->in(0), loop);
3586     loop->_body.push(safepoint->in(0));
3587     outer_loop_ilt->_tail = igvn->C->top();
3588   }
3589 }
3590 
3591 void OuterStripMinedLoopNode::remove_outer_loop_and_safepoint(PhaseIterGVN* igvn) const {
3592   CountedLoopNode* inner_cl = unique_ctrl_out()->as_CountedLoop();
3593   Node* outer_sfpt = outer_safepoint();
3594   Node* outer_out = outer_loop_exit();
3595   igvn->replace_node(outer_out, outer_sfpt->in(0));
3596   igvn->replace_input_of(outer_sfpt, 0, igvn->C->top());
3597   inner_cl->clear_strip_mined();
3598 }
3599 
3600 Node* OuterStripMinedLoopNode::register_new_node(Node* node, LoopNode* ctrl, PhaseIterGVN* igvn, PhaseIdealLoop* iloop) {
3601   if (iloop == nullptr) {
3602     return igvn->transform(node);
3603   }
3604   iloop->register_new_node(node, ctrl);
3605   return node;
3606 }
3607 
3608 Node* OuterStripMinedLoopNode::register_control(Node* node, Node* loop, Node* idom, PhaseIterGVN* igvn,
3609                                                 PhaseIdealLoop* iloop) {
3610   if (iloop == nullptr) {
3611     return igvn->transform(node);
3612   }
3613   iloop->register_control(node, iloop->get_loop(loop), idom);
3614   return node;
3615 }
3616 
3617 const Type* OuterStripMinedLoopEndNode::Value(PhaseGVN* phase) const {
3618   if (!in(0)) return Type::TOP;
3619   if (phase->type(in(0)) == Type::TOP)
3620     return Type::TOP;
3621 
3622   // Until expansion, the loop end condition is not set so this should not constant fold.
3623   if (is_expanded(phase)) {
3624     return IfNode::Value(phase);
3625   }
3626 
3627   return TypeTuple::IFBOTH;
3628 }
3629 
3630 bool OuterStripMinedLoopEndNode::is_expanded(PhaseGVN *phase) const {
3631   // The outer strip mined loop head only has Phi uses after expansion
3632   if (phase->is_IterGVN()) {
3633     Node* backedge = proj_out_or_null(true);
3634     if (backedge != nullptr) {
3635       Node* head = backedge->unique_ctrl_out_or_null();
3636       if (head != nullptr && head->is_OuterStripMinedLoop()) {
3637         if (head->find_out_with(Op_Phi) != nullptr) {
3638           return true;
3639         }
3640       }
3641     }
3642   }
3643   return false;
3644 }
3645 
3646 Node *OuterStripMinedLoopEndNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3647   if (remove_dead_region(phase, can_reshape))  return this;
3648 
3649   return nullptr;
3650 }
3651 
3652 //------------------------------filtered_type--------------------------------
3653 // Return a type based on condition control flow
3654 // A successful return will be a type that is restricted due
3655 // to a series of dominating if-tests, such as:
3656 //    if (i < 10) {
3657 //       if (i > 0) {
3658 //          here: "i" type is [1..10)
3659 //       }
3660 //    }
3661 // or a control flow merge
3662 //    if (i < 10) {
3663 //       do {
3664 //          phi( , ) -- at top of loop type is [min_int..10)
3665 //         i = ?
3666 //       } while ( i < 10)
3667 //
3668 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
3669   assert(n && n->bottom_type()->is_int(), "must be int");
3670   const TypeInt* filtered_t = nullptr;
3671   if (!n->is_Phi()) {
3672     assert(n_ctrl != nullptr || n_ctrl == C->top(), "valid control");
3673     filtered_t = filtered_type_from_dominators(n, n_ctrl);
3674 
3675   } else {
3676     Node* phi    = n->as_Phi();
3677     Node* region = phi->in(0);
3678     assert(n_ctrl == nullptr || n_ctrl == region, "ctrl parameter must be region");
3679     if (region && region != C->top()) {
3680       for (uint i = 1; i < phi->req(); i++) {
3681         Node* val   = phi->in(i);
3682         Node* use_c = region->in(i);
3683         const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
3684         if (val_t != nullptr) {
3685           if (filtered_t == nullptr) {
3686             filtered_t = val_t;
3687           } else {
3688             filtered_t = filtered_t->meet(val_t)->is_int();
3689           }
3690         }
3691       }
3692     }
3693   }
3694   const TypeInt* n_t = _igvn.type(n)->is_int();
3695   if (filtered_t != nullptr) {
3696     n_t = n_t->join(filtered_t)->is_int();
3697   }
3698   return n_t;
3699 }
3700 
3701 
3702 //------------------------------filtered_type_from_dominators--------------------------------
3703 // Return a possibly more restrictive type for val based on condition control flow of dominators
3704 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
3705   if (val->is_Con()) {
3706      return val->bottom_type()->is_int();
3707   }
3708   uint if_limit = 10; // Max number of dominating if's visited
3709   const TypeInt* rtn_t = nullptr;
3710 
3711   if (use_ctrl && use_ctrl != C->top()) {
3712     Node* val_ctrl = get_ctrl(val);
3713     uint val_dom_depth = dom_depth(val_ctrl);
3714     Node* pred = use_ctrl;
3715     uint if_cnt = 0;
3716     while (if_cnt < if_limit) {
3717       if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
3718         if_cnt++;
3719         const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
3720         if (if_t != nullptr) {
3721           if (rtn_t == nullptr) {
3722             rtn_t = if_t;
3723           } else {
3724             rtn_t = rtn_t->join(if_t)->is_int();
3725           }
3726         }
3727       }
3728       pred = idom(pred);
3729       if (pred == nullptr || pred == C->top()) {
3730         break;
3731       }
3732       // Stop if going beyond definition block of val
3733       if (dom_depth(pred) < val_dom_depth) {
3734         break;
3735       }
3736     }
3737   }
3738   return rtn_t;
3739 }
3740 
3741 
3742 //------------------------------dump_spec--------------------------------------
3743 // Dump special per-node info
3744 #ifndef PRODUCT
3745 void CountedLoopEndNode::dump_spec(outputStream *st) const {
3746   if( in(TestValue) != nullptr && in(TestValue)->is_Bool() ) {
3747     BoolTest bt( test_trip()); // Added this for g++.
3748 
3749     st->print("[");
3750     bt.dump_on(st);
3751     st->print("]");
3752   }
3753   st->print(" ");
3754   IfNode::dump_spec(st);
3755 }
3756 #endif
3757 
3758 //=============================================================================
3759 //------------------------------is_member--------------------------------------
3760 // Is 'l' a member of 'this'?
3761 bool IdealLoopTree::is_member(const IdealLoopTree *l) const {
3762   while( l->_nest > _nest ) l = l->_parent;
3763   return l == this;
3764 }
3765 
3766 //------------------------------set_nest---------------------------------------
3767 // Set loop tree nesting depth.  Accumulate _has_call bits.
3768 int IdealLoopTree::set_nest( uint depth ) {
3769   assert(depth <= SHRT_MAX, "sanity");
3770   _nest = depth;
3771   int bits = _has_call;
3772   if( _child ) bits |= _child->set_nest(depth+1);
3773   if( bits ) _has_call = 1;
3774   if( _next  ) bits |= _next ->set_nest(depth  );
3775   return bits;
3776 }
3777 
3778 //------------------------------split_fall_in----------------------------------
3779 // Split out multiple fall-in edges from the loop header.  Move them to a
3780 // private RegionNode before the loop.  This becomes the loop landing pad.
3781 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
3782   PhaseIterGVN &igvn = phase->_igvn;
3783   uint i;
3784 
3785   // Make a new RegionNode to be the landing pad.
3786   RegionNode* landing_pad = new RegionNode(fall_in_cnt + 1);
3787   phase->set_loop(landing_pad,_parent);
3788   // If _head was irreducible loop entry, landing_pad may now be too
3789   landing_pad->set_loop_status(_head->as_Region()->loop_status());
3790   // Gather all the fall-in control paths into the landing pad
3791   uint icnt = fall_in_cnt;
3792   uint oreq = _head->req();
3793   for( i = oreq-1; i>0; i-- )
3794     if( !phase->is_member( this, _head->in(i) ) )
3795       landing_pad->set_req(icnt--,_head->in(i));
3796 
3797   // Peel off PhiNode edges as well
3798   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
3799     Node *oj = _head->fast_out(j);
3800     if( oj->is_Phi() ) {
3801       PhiNode* old_phi = oj->as_Phi();
3802       assert( old_phi->region() == _head, "" );
3803       igvn.hash_delete(old_phi);   // Yank from hash before hacking edges
3804       Node *p = PhiNode::make_blank(landing_pad, old_phi);
3805       uint icnt = fall_in_cnt;
3806       for( i = oreq-1; i>0; i-- ) {
3807         if( !phase->is_member( this, _head->in(i) ) ) {
3808           p->init_req(icnt--, old_phi->in(i));
3809           // Go ahead and clean out old edges from old phi
3810           old_phi->del_req(i);
3811         }
3812       }
3813       // Search for CSE's here, because ZKM.jar does a lot of
3814       // loop hackery and we need to be a little incremental
3815       // with the CSE to avoid O(N^2) node blow-up.
3816       Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
3817       if( p2 ) {                // Found CSE
3818         p->destruct(&igvn);     // Recover useless new node
3819         p = p2;                 // Use old node
3820       } else {
3821         igvn.register_new_node_with_optimizer(p, old_phi);
3822       }
3823       // Make old Phi refer to new Phi.
3824       old_phi->add_req(p);
3825       // Check for the special case of making the old phi useless and
3826       // disappear it.  In JavaGrande I have a case where this useless
3827       // Phi is the loop limit and prevents recognizing a CountedLoop
3828       // which in turn prevents removing an empty loop.
3829       Node *id_old_phi = old_phi->Identity(&igvn);
3830       if( id_old_phi != old_phi ) { // Found a simple identity?
3831         // Note that I cannot call 'replace_node' here, because
3832         // that will yank the edge from old_phi to the Region and
3833         // I'm mid-iteration over the Region's uses.
3834         for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
3835           Node* use = old_phi->last_out(i);
3836           igvn.rehash_node_delayed(use);
3837           uint uses_found = 0;
3838           for (uint j = 0; j < use->len(); j++) {
3839             if (use->in(j) == old_phi) {
3840               if (j < use->req()) use->set_req (j, id_old_phi);
3841               else                use->set_prec(j, id_old_phi);
3842               uses_found++;
3843             }
3844           }
3845           i -= uses_found;    // we deleted 1 or more copies of this edge
3846         }
3847       }
3848       igvn._worklist.push(old_phi);
3849     }
3850   }
3851   // Finally clean out the fall-in edges from the RegionNode
3852   for( i = oreq-1; i>0; i-- ) {
3853     if( !phase->is_member( this, _head->in(i) ) ) {
3854       _head->del_req(i);
3855     }
3856   }
3857   igvn.rehash_node_delayed(_head);
3858   // Transform landing pad
3859   igvn.register_new_node_with_optimizer(landing_pad, _head);
3860   // Insert landing pad into the header
3861   _head->add_req(landing_pad);
3862 }
3863 
3864 //------------------------------split_outer_loop-------------------------------
3865 // Split out the outermost loop from this shared header.
3866 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
3867   PhaseIterGVN &igvn = phase->_igvn;
3868 
3869   // Find index of outermost loop; it should also be my tail.
3870   uint outer_idx = 1;
3871   while( _head->in(outer_idx) != _tail ) outer_idx++;
3872 
3873   // Make a LoopNode for the outermost loop.
3874   Node *ctl = _head->in(LoopNode::EntryControl);
3875   Node *outer = new LoopNode( ctl, _head->in(outer_idx) );
3876   outer = igvn.register_new_node_with_optimizer(outer, _head);
3877   phase->set_created_loop_node();
3878 
3879   // Outermost loop falls into '_head' loop
3880   _head->set_req(LoopNode::EntryControl, outer);
3881   _head->del_req(outer_idx);
3882   // Split all the Phis up between '_head' loop and 'outer' loop.
3883   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
3884     Node *out = _head->fast_out(j);
3885     if( out->is_Phi() ) {
3886       PhiNode *old_phi = out->as_Phi();
3887       assert( old_phi->region() == _head, "" );
3888       Node *phi = PhiNode::make_blank(outer, old_phi);
3889       phi->init_req(LoopNode::EntryControl,    old_phi->in(LoopNode::EntryControl));
3890       phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
3891       phi = igvn.register_new_node_with_optimizer(phi, old_phi);
3892       // Make old Phi point to new Phi on the fall-in path
3893       igvn.replace_input_of(old_phi, LoopNode::EntryControl, phi);
3894       old_phi->del_req(outer_idx);
3895     }
3896   }
3897 
3898   // Use the new loop head instead of the old shared one
3899   _head = outer;
3900   phase->set_loop(_head, this);
3901 }
3902 
3903 //------------------------------fix_parent-------------------------------------
3904 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
3905   loop->_parent = parent;
3906   if( loop->_child ) fix_parent( loop->_child, loop   );
3907   if( loop->_next  ) fix_parent( loop->_next , parent );
3908 }
3909 
3910 //------------------------------estimate_path_freq-----------------------------
3911 static float estimate_path_freq( Node *n ) {
3912   // Try to extract some path frequency info
3913   IfNode *iff;
3914   for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
3915     uint nop = n->Opcode();
3916     if( nop == Op_SafePoint ) {   // Skip any safepoint
3917       n = n->in(0);
3918       continue;
3919     }
3920     if( nop == Op_CatchProj ) {   // Get count from a prior call
3921       // Assume call does not always throw exceptions: means the call-site
3922       // count is also the frequency of the fall-through path.
3923       assert( n->is_CatchProj(), "" );
3924       if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
3925         return 0.0f;            // Assume call exception path is rare
3926       Node *call = n->in(0)->in(0)->in(0);
3927       assert( call->is_Call(), "expect a call here" );
3928       const JVMState *jvms = ((CallNode*)call)->jvms();
3929       ciMethodData* methodData = jvms->method()->method_data();
3930       if (!methodData->is_mature())  return 0.0f; // No call-site data
3931       ciProfileData* data = methodData->bci_to_data(jvms->bci());
3932       if ((data == nullptr) || !data->is_CounterData()) {
3933         // no call profile available, try call's control input
3934         n = n->in(0);
3935         continue;
3936       }
3937       return data->as_CounterData()->count()/FreqCountInvocations;
3938     }
3939     // See if there's a gating IF test
3940     Node *n_c = n->in(0);
3941     if( !n_c->is_If() ) break;       // No estimate available
3942     iff = n_c->as_If();
3943     if( iff->_fcnt != COUNT_UNKNOWN )   // Have a valid count?
3944       // Compute how much count comes on this path
3945       return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
3946     // Have no count info.  Skip dull uncommon-trap like branches.
3947     if( (nop == Op_IfTrue  && iff->_prob < PROB_LIKELY_MAG(5)) ||
3948         (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
3949       break;
3950     // Skip through never-taken branch; look for a real loop exit.
3951     n = iff->in(0);
3952   }
3953   return 0.0f;                  // No estimate available
3954 }
3955 
3956 //------------------------------merge_many_backedges---------------------------
3957 // Merge all the backedges from the shared header into a private Region.
3958 // Feed that region as the one backedge to this loop.
3959 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
3960   uint i;
3961 
3962   // Scan for the top 2 hottest backedges
3963   float hotcnt = 0.0f;
3964   float warmcnt = 0.0f;
3965   uint hot_idx = 0;
3966   // Loop starts at 2 because slot 1 is the fall-in path
3967   for( i = 2; i < _head->req(); i++ ) {
3968     float cnt = estimate_path_freq(_head->in(i));
3969     if( cnt > hotcnt ) {       // Grab hottest path
3970       warmcnt = hotcnt;
3971       hotcnt = cnt;
3972       hot_idx = i;
3973     } else if( cnt > warmcnt ) { // And 2nd hottest path
3974       warmcnt = cnt;
3975     }
3976   }
3977 
3978   // See if the hottest backedge is worthy of being an inner loop
3979   // by being much hotter than the next hottest backedge.
3980   if( hotcnt <= 0.0001 ||
3981       hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
3982 
3983   // Peel out the backedges into a private merge point; peel
3984   // them all except optionally hot_idx.
3985   PhaseIterGVN &igvn = phase->_igvn;
3986 
3987   Node *hot_tail = nullptr;
3988   // Make a Region for the merge point
3989   Node *r = new RegionNode(1);
3990   for( i = 2; i < _head->req(); i++ ) {
3991     if( i != hot_idx )
3992       r->add_req( _head->in(i) );
3993     else hot_tail = _head->in(i);
3994   }
3995   igvn.register_new_node_with_optimizer(r, _head);
3996   // Plug region into end of loop _head, followed by hot_tail
3997   while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
3998   igvn.replace_input_of(_head, 2, r);
3999   if( hot_idx ) _head->add_req(hot_tail);
4000 
4001   // Split all the Phis up between '_head' loop and the Region 'r'
4002   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
4003     Node *out = _head->fast_out(j);
4004     if( out->is_Phi() ) {
4005       PhiNode* n = out->as_Phi();
4006       igvn.hash_delete(n);      // Delete from hash before hacking edges
4007       Node *hot_phi = nullptr;
4008       Node *phi = new PhiNode(r, n->type(), n->adr_type());
4009       // Check all inputs for the ones to peel out
4010       uint j = 1;
4011       for( uint i = 2; i < n->req(); i++ ) {
4012         if( i != hot_idx )
4013           phi->set_req( j++, n->in(i) );
4014         else hot_phi = n->in(i);
4015       }
4016       // Register the phi but do not transform until whole place transforms
4017       igvn.register_new_node_with_optimizer(phi, n);
4018       // Add the merge phi to the old Phi
4019       while( n->req() > 3 ) n->del_req( n->req()-1 );
4020       igvn.replace_input_of(n, 2, phi);
4021       if( hot_idx ) n->add_req(hot_phi);
4022     }
4023   }
4024 
4025 
4026   // Insert a new IdealLoopTree inserted below me.  Turn it into a clone
4027   // of self loop tree.  Turn self into a loop headed by _head and with
4028   // tail being the new merge point.
4029   IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
4030   phase->set_loop(_tail,ilt);   // Adjust tail
4031   _tail = r;                    // Self's tail is new merge point
4032   phase->set_loop(r,this);
4033   ilt->_child = _child;         // New guy has my children
4034   _child = ilt;                 // Self has new guy as only child
4035   ilt->_parent = this;          // new guy has self for parent
4036   ilt->_nest = _nest;           // Same nesting depth (for now)
4037 
4038   // Starting with 'ilt', look for child loop trees using the same shared
4039   // header.  Flatten these out; they will no longer be loops in the end.
4040   IdealLoopTree **pilt = &_child;
4041   while( ilt ) {
4042     if( ilt->_head == _head ) {
4043       uint i;
4044       for( i = 2; i < _head->req(); i++ )
4045         if( _head->in(i) == ilt->_tail )
4046           break;                // Still a loop
4047       if( i == _head->req() ) { // No longer a loop
4048         // Flatten ilt.  Hang ilt's "_next" list from the end of
4049         // ilt's '_child' list.  Move the ilt's _child up to replace ilt.
4050         IdealLoopTree **cp = &ilt->_child;
4051         while( *cp ) cp = &(*cp)->_next;   // Find end of child list
4052         *cp = ilt->_next;       // Hang next list at end of child list
4053         *pilt = ilt->_child;    // Move child up to replace ilt
4054         ilt->_head = nullptr;   // Flag as a loop UNIONED into parent
4055         ilt = ilt->_child;      // Repeat using new ilt
4056         continue;               // do not advance over ilt->_child
4057       }
4058       assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
4059       phase->set_loop(_head,ilt);
4060     }
4061     pilt = &ilt->_child;        // Advance to next
4062     ilt = *pilt;
4063   }
4064 
4065   if( _child ) fix_parent( _child, this );
4066 }
4067 
4068 //------------------------------beautify_loops---------------------------------
4069 // Split shared headers and insert loop landing pads.
4070 // Insert a LoopNode to replace the RegionNode.
4071 // Return TRUE if loop tree is structurally changed.
4072 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
4073   bool result = false;
4074   // Cache parts in locals for easy
4075   PhaseIterGVN &igvn = phase->_igvn;
4076 
4077   igvn.hash_delete(_head);      // Yank from hash before hacking edges
4078 
4079   // Check for multiple fall-in paths.  Peel off a landing pad if need be.
4080   int fall_in_cnt = 0;
4081   for( uint i = 1; i < _head->req(); i++ )
4082     if( !phase->is_member( this, _head->in(i) ) )
4083       fall_in_cnt++;
4084   assert( fall_in_cnt, "at least 1 fall-in path" );
4085   if( fall_in_cnt > 1 )         // Need a loop landing pad to merge fall-ins
4086     split_fall_in( phase, fall_in_cnt );
4087 
4088   // Swap inputs to the _head and all Phis to move the fall-in edge to
4089   // the left.
4090   fall_in_cnt = 1;
4091   while( phase->is_member( this, _head->in(fall_in_cnt) ) )
4092     fall_in_cnt++;
4093   if( fall_in_cnt > 1 ) {
4094     // Since I am just swapping inputs I do not need to update def-use info
4095     Node *tmp = _head->in(1);
4096     igvn.rehash_node_delayed(_head);
4097     _head->set_req( 1, _head->in(fall_in_cnt) );
4098     _head->set_req( fall_in_cnt, tmp );
4099     // Swap also all Phis
4100     for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
4101       Node* phi = _head->fast_out(i);
4102       if( phi->is_Phi() ) {
4103         igvn.rehash_node_delayed(phi); // Yank from hash before hacking edges
4104         tmp = phi->in(1);
4105         phi->set_req( 1, phi->in(fall_in_cnt) );
4106         phi->set_req( fall_in_cnt, tmp );
4107       }
4108     }
4109   }
4110   assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
4111   assert(  phase->is_member( this, _head->in(2) ), "right edge is loop" );
4112 
4113   // If I am a shared header (multiple backedges), peel off the many
4114   // backedges into a private merge point and use the merge point as
4115   // the one true backedge.
4116   if (_head->req() > 3) {
4117     // Merge the many backedges into a single backedge but leave
4118     // the hottest backedge as separate edge for the following peel.
4119     if (!_irreducible) {
4120       merge_many_backedges( phase );
4121     }
4122 
4123     // When recursively beautify my children, split_fall_in can change
4124     // loop tree structure when I am an irreducible loop. Then the head
4125     // of my children has a req() not bigger than 3. Here we need to set
4126     // result to true to catch that case in order to tell the caller to
4127     // rebuild loop tree. See issue JDK-8244407 for details.
4128     result = true;
4129   }
4130 
4131   // If I have one hot backedge, peel off myself loop.
4132   // I better be the outermost loop.
4133   if (_head->req() > 3 && !_irreducible) {
4134     split_outer_loop( phase );
4135     result = true;
4136 
4137   } else if (!_head->is_Loop() && !_irreducible) {
4138     // Make a new LoopNode to replace the old loop head
4139     Node *l = new LoopNode( _head->in(1), _head->in(2) );
4140     l = igvn.register_new_node_with_optimizer(l, _head);
4141     phase->set_created_loop_node();
4142     // Go ahead and replace _head
4143     phase->_igvn.replace_node( _head, l );
4144     _head = l;
4145     phase->set_loop(_head, this);
4146   }
4147 
4148   // Now recursively beautify nested loops
4149   if( _child ) result |= _child->beautify_loops( phase );
4150   if( _next  ) result |= _next ->beautify_loops( phase );
4151   return result;
4152 }
4153 
4154 //------------------------------allpaths_check_safepts----------------------------
4155 // Allpaths backwards scan. Starting at the head, traversing all backedges, and the body. Terminating each path at first
4156 // safepoint encountered.  Helper for check_safepts.
4157 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
4158   assert(stack.size() == 0, "empty stack");
4159   stack.push(_head);
4160   visited.clear();
4161   visited.set(_head->_idx);
4162   while (stack.size() > 0) {
4163     Node* n = stack.pop();
4164     if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
4165       // Terminate this path
4166     } else if (n->Opcode() == Op_SafePoint) {
4167       if (_phase->get_loop(n) != this) {
4168         if (_required_safept == nullptr) _required_safept = new Node_List();
4169         // save the first we run into on that path: closest to the tail if the head has a single backedge
4170         _required_safept->push(n);
4171       }
4172       // Terminate this path
4173     } else {
4174       uint start = n->is_Region() ? 1 : 0;
4175       uint end   = n->is_Region() && (!n->is_Loop() || n == _head) ? n->req() : start + 1;
4176       for (uint i = start; i < end; i++) {
4177         Node* in = n->in(i);
4178         assert(in->is_CFG(), "must be");
4179         if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
4180           stack.push(in);
4181         }
4182       }
4183     }
4184   }
4185 }
4186 
4187 //------------------------------check_safepts----------------------------
4188 // Given dominators, try to find loops with calls that must always be
4189 // executed (call dominates loop tail).  These loops do not need non-call
4190 // safepoints (ncsfpt).
4191 //
4192 // A complication is that a safepoint in a inner loop may be needed
4193 // by an outer loop. In the following, the inner loop sees it has a
4194 // call (block 3) on every path from the head (block 2) to the
4195 // backedge (arc 3->2).  So it deletes the ncsfpt (non-call safepoint)
4196 // in block 2, _but_ this leaves the outer loop without a safepoint.
4197 //
4198 //             entry  0
4199 //                    |
4200 //                    v
4201 //   outer 1,2,4  +-> 1
4202 //                |    \
4203 //                |     v
4204 //    inner 2,3   |     2 <---+  ncsfpt in 2
4205 //                |    / \    |
4206 //                |   v   v   |
4207 //                |  4     3  |  call in 3
4208 //                |_/ \     \_|
4209 //                     |
4210 //                     v
4211 //               exit  5
4212 //
4213 // This method maintains a list (_required_safept) of ncsfpts that must
4214 // be protected for each loop. It only marks ncsfpts for prevervation,
4215 // and does not actually delete any of them.
4216 //
4217 // If some other method needs to delete a ncsfpt later, it will make sure
4218 // the ncsfpt is not in the list of all outer loops of the current loop.
4219 // See `PhaseIdealLoop::is_deleteable_safept`.
4220 //
4221 // The insights into the problem:
4222 //  A) Counted loops are okay (i.e. do not need to preserve ncsfpts),
4223 //     they will be handled in `IdealLoopTree::counted_loop`
4224 //  B) Innermost loops are okay because there's no inner loops that can
4225 //     delete their ncsfpts. Only outer loops need to mark safepoints for
4226 //     protection, because only loops further in can accidentally delete
4227 //     their ncsfpts
4228 //  C) If an outer loop has a call that's guaranteed to execute (on the
4229 //     idom-path), then that loop is okay. Because the call will always
4230 //     perform a safepoint poll, regardless of what safepoints are deleted
4231 //     from its inner loops
4232 //  D) Similarly, if an outer loop has a ncsfpt on the idom-path that isn't
4233 //     inside any nested loop, then that loop is okay
4234 //  E) Otherwise, if an outer loop's ncsfpt on the idom-path is nested in
4235 //     an inner loop, we need to prevent the inner loop from deleting it
4236 //
4237 // There are two analyses:
4238 //  1) The first, and cheaper one, scans the loop body from
4239 //     tail to head following the idom (immediate dominator)
4240 //     chain, looking for the cases (C,D,E) above.
4241 //     Since inner loops are scanned before outer loops, there is summary
4242 //     information about inner loops.  Inner loops can be skipped over
4243 //     when the tail of an inner loop is encountered.
4244 //
4245 //  2) The second, invoked if the first fails to find a call or ncsfpt on
4246 //     the idom path (which is rare), scans all predecessor control paths
4247 //     from the tail to the head, terminating a path when a call or sfpt
4248 //     is encountered, to find the ncsfpt's that are closest to the tail.
4249 //
4250 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
4251   // Bottom up traversal
4252   IdealLoopTree* ch = _child;
4253   if (_child) _child->check_safepts(visited, stack);
4254   if (_next)  _next ->check_safepts(visited, stack);
4255 
4256   if (!_head->is_CountedLoop() && !_has_sfpt && _parent != nullptr) {
4257     bool  has_call         = false;    // call on dom-path
4258     bool  has_local_ncsfpt = false;    // ncsfpt on dom-path at this loop depth
4259     Node* nonlocal_ncsfpt  = nullptr;  // ncsfpt on dom-path at a deeper depth
4260     if (!_irreducible) {
4261       // Scan the dom-path nodes from tail to head
4262       for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
4263         if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
4264           has_call = true;
4265           _has_sfpt = 1;          // Then no need for a safept!
4266           break;
4267         } else if (n->Opcode() == Op_SafePoint) {
4268           if (_phase->get_loop(n) == this) {
4269             // We found a local ncsfpt.
4270             // Continue searching for a call that is guaranteed to be a safepoint.
4271             has_local_ncsfpt = true;
4272           } else if (nonlocal_ncsfpt == nullptr) {
4273             nonlocal_ncsfpt = n; // save the one closest to the tail
4274           }
4275         } else {
4276           IdealLoopTree* nlpt = _phase->get_loop(n);
4277           if (this != nlpt) {
4278             // If at an inner loop tail, see if the inner loop has already
4279             // recorded seeing a call on the dom-path (and stop.)  If not,
4280             // jump to the head of the inner loop.
4281             assert(is_member(nlpt), "nested loop");
4282             Node* tail = nlpt->_tail;
4283             if (tail->in(0)->is_If()) tail = tail->in(0);
4284             if (n == tail) {
4285               // If inner loop has call on dom-path, so does outer loop
4286               if (nlpt->_has_sfpt) {
4287                 has_call = true;
4288                 _has_sfpt = 1;
4289                 break;
4290               }
4291               // Skip to head of inner loop
4292               assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
4293               n = nlpt->_head;
4294               if (_head == n) {
4295                 // this and nlpt (inner loop) have the same loop head. This should not happen because
4296                 // during beautify_loops we call merge_many_backedges. However, infinite loops may not
4297                 // have been attached to the loop-tree during build_loop_tree before beautify_loops,
4298                 // but then attached in the build_loop_tree afterwards, and so still have unmerged
4299                 // backedges. Check if we are indeed in an infinite subgraph, and terminate the scan,
4300                 // since we have reached the loop head of this.
4301                 assert(_head->as_Region()->is_in_infinite_subgraph(),
4302                        "only expect unmerged backedges in infinite loops");
4303                 break;
4304               }
4305             }
4306           }
4307         }
4308       }
4309     }
4310     // Record safept's that this loop needs preserved when an
4311     // inner loop attempts to delete it's safepoints.
4312     if (_child != nullptr && !has_call && !has_local_ncsfpt) {
4313       if (nonlocal_ncsfpt != nullptr) {
4314         if (_required_safept == nullptr) _required_safept = new Node_List();
4315         _required_safept->push(nonlocal_ncsfpt);
4316       } else {
4317         // Failed to find a suitable safept on the dom-path.  Now use
4318         // an all paths walk from tail to head, looking for safepoints to preserve.
4319         allpaths_check_safepts(visited, stack);
4320       }
4321     }
4322   }
4323 }
4324 
4325 //---------------------------is_deleteable_safept----------------------------
4326 // Is safept not required by an outer loop?
4327 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
4328   assert(sfpt->Opcode() == Op_SafePoint, "");
4329   IdealLoopTree* lp = get_loop(sfpt)->_parent;
4330   while (lp != nullptr) {
4331     Node_List* sfpts = lp->_required_safept;
4332     if (sfpts != nullptr) {
4333       for (uint i = 0; i < sfpts->size(); i++) {
4334         if (sfpt == sfpts->at(i))
4335           return false;
4336       }
4337     }
4338     lp = lp->_parent;
4339   }
4340   return true;
4341 }
4342 
4343 //---------------------------replace_parallel_iv-------------------------------
4344 // Replace parallel induction variable (parallel to trip counter)
4345 // This optimization looks for patterns similar to:
4346 //
4347 //    int a = init2;
4348 //    for (int iv = init; iv < limit; iv += stride_con) {
4349 //      a += stride_con2;
4350 //    }
4351 //
4352 // and transforms it to:
4353 //
4354 //    int iv2 = init2
4355 //    int iv = init
4356 //    loop:
4357 //      if (iv >= limit) goto exit
4358 //      iv += stride_con
4359 //      iv2 = init2 + (iv - init) * (stride_con2 / stride_con)
4360 //      goto loop
4361 //    exit:
4362 //    ...
4363 //
4364 // Such transformation introduces more optimization opportunities. In this
4365 // particular example, the loop can be eliminated entirely given that
4366 // `stride_con2 / stride_con` is exact  (i.e., no remainder). Checks are in
4367 // place to only perform this optimization if such a division is exact. This
4368 // example will be transformed into its semantic equivalence:
4369 //
4370 //     int iv2 = (iv * stride_con2 / stride_con) + (init2 - (init * stride_con2 / stride_con))
4371 //
4372 // which corresponds to the structure of transformed subgraph.
4373 //
4374 // However, if there is a mismatch between types of the loop and the parallel
4375 // induction variable (e.g., a long-typed IV in an int-typed loop), type
4376 // conversions are required:
4377 //
4378 //     long iv2 = ((long) iv * stride_con2 / stride_con) + (init2 - ((long) init * stride_con2 / stride_con))
4379 //
4380 void PhaseIdealLoop::replace_parallel_iv(IdealLoopTree *loop) {
4381   assert(loop->_head->is_CountedLoop(), "");
4382   CountedLoopNode *cl = loop->_head->as_CountedLoop();
4383   if (!cl->is_valid_counted_loop(T_INT)) {
4384     return;         // skip malformed counted loop
4385   }
4386   Node *incr = cl->incr();
4387   if (incr == nullptr) {
4388     return;         // Dead loop?
4389   }
4390   Node *init = cl->init_trip();
4391   Node *phi  = cl->phi();
4392   jlong stride_con = cl->stride_con();
4393 
4394   // Visit all children, looking for Phis
4395   for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
4396     Node *out = cl->out(i);
4397     // Look for other phis (secondary IVs). Skip dead ones
4398     if (!out->is_Phi() || out == phi || !has_node(out)) {
4399       continue;
4400     }
4401 
4402     PhiNode* phi2 = out->as_Phi();
4403     Node* incr2 = phi2->in(LoopNode::LoopBackControl);
4404     // Look for induction variables of the form:  X += constant
4405     if (phi2->region() != loop->_head ||
4406         incr2->req() != 3 ||
4407         incr2->in(1)->uncast() != phi2 ||
4408         incr2 == incr ||
4409         (incr2->Opcode() != Op_AddI && incr2->Opcode() != Op_AddL) ||
4410         !incr2->in(2)->is_Con()) {
4411       continue;
4412     }
4413 
4414     if (incr2->in(1)->is_ConstraintCast() &&
4415         !(incr2->in(1)->in(0)->is_IfProj() && incr2->in(1)->in(0)->in(0)->is_RangeCheck())) {
4416       // Skip AddI->CastII->Phi case if CastII is not controlled by local RangeCheck
4417       continue;
4418     }
4419     // Check for parallel induction variable (parallel to trip counter)
4420     // via an affine function.  In particular, count-down loops with
4421     // count-up array indices are common. We only RCE references off
4422     // the trip-counter, so we need to convert all these to trip-counter
4423     // expressions.
4424     Node* init2 = phi2->in(LoopNode::EntryControl);
4425 
4426     // Determine the basic type of the stride constant (and the iv being incremented).
4427     BasicType stride_con2_bt = incr2->Opcode() == Op_AddI ? T_INT : T_LONG;
4428     jlong stride_con2 = incr2->in(2)->get_integer_as_long(stride_con2_bt);
4429 
4430     // The ratio of the two strides cannot be represented as an int
4431     // if stride_con2 is min_jint (or min_jlong, respectively) and
4432     // stride_con is -1.
4433     if (stride_con2 == min_signed_integer(stride_con2_bt) && stride_con == -1) {
4434       continue;
4435     }
4436 
4437     // The general case here gets a little tricky.  We want to find the
4438     // GCD of all possible parallel IV's and make a new IV using this
4439     // GCD for the loop.  Then all possible IVs are simple multiples of
4440     // the GCD.  In practice, this will cover very few extra loops.
4441     // Instead we require 'stride_con2' to be a multiple of 'stride_con',
4442     // where +/-1 is the common case, but other integer multiples are
4443     // also easy to handle.
4444     jlong ratio_con = stride_con2 / stride_con;
4445 
4446     if ((ratio_con * stride_con) != stride_con2) { // Check for exact (no remainder)
4447         continue;
4448     }
4449 
4450 #ifndef PRODUCT
4451     if (TraceLoopOpts) {
4452       tty->print("Parallel IV: %d ", phi2->_idx);
4453       loop->dump_head();
4454     }
4455 #endif
4456 
4457     // Convert to using the trip counter.  The parallel induction
4458     // variable differs from the trip counter by a loop-invariant
4459     // amount, the difference between their respective initial values.
4460     // It is scaled by the 'ratio_con'.
4461     Node* ratio = integercon(ratio_con, stride_con2_bt);
4462 
4463     Node* init_converted = insert_convert_node_if_needed(stride_con2_bt, init);
4464     Node* phi_converted = insert_convert_node_if_needed(stride_con2_bt, phi);
4465 
4466     Node* ratio_init = MulNode::make(init_converted, ratio, stride_con2_bt);
4467     _igvn.register_new_node_with_optimizer(ratio_init, init_converted);
4468     set_early_ctrl(ratio_init, false);
4469 
4470     Node* diff = SubNode::make(init2, ratio_init, stride_con2_bt);
4471     _igvn.register_new_node_with_optimizer(diff, init2);
4472     set_early_ctrl(diff, false);
4473 
4474     Node* ratio_idx = MulNode::make(phi_converted, ratio, stride_con2_bt);
4475     _igvn.register_new_node_with_optimizer(ratio_idx, phi_converted);
4476     set_ctrl(ratio_idx, cl);
4477 
4478     Node* add = AddNode::make(ratio_idx, diff, stride_con2_bt);
4479     _igvn.register_new_node_with_optimizer(add);
4480     set_ctrl(add, cl);
4481 
4482     _igvn.replace_node( phi2, add );
4483     // Sometimes an induction variable is unused
4484     if (add->outcnt() == 0) {
4485       _igvn.remove_dead_node(add);
4486     }
4487     --i; // deleted this phi; rescan starting with next position
4488   }
4489 }
4490 
4491 Node* PhaseIdealLoop::insert_convert_node_if_needed(BasicType target, Node* input) {
4492   BasicType source = _igvn.type(input)->basic_type();
4493   if (source == target) {
4494     return input;
4495   }
4496 
4497   Node* converted = ConvertNode::create_convert(source, target, input);
4498   _igvn.register_new_node_with_optimizer(converted, input);
4499   set_early_ctrl(converted, false);
4500 
4501   return converted;
4502 }
4503 
4504 void IdealLoopTree::remove_safepoints(PhaseIdealLoop* phase, bool keep_one) {
4505   Node* keep = nullptr;
4506   if (keep_one) {
4507     // Look for a safepoint on the idom-path.
4508     for (Node* i = tail(); i != _head; i = phase->idom(i)) {
4509       if (i->Opcode() == Op_SafePoint && phase->get_loop(i) == this) {
4510         keep = i;
4511         break; // Found one
4512       }
4513     }
4514   }
4515 
4516   // Don't remove any safepoints if it is requested to keep a single safepoint and
4517   // no safepoint was found on idom-path. It is not safe to remove any safepoint
4518   // in this case since there's no safepoint dominating all paths in the loop body.
4519   bool prune = !keep_one || keep != nullptr;
4520 
4521   // Delete other safepoints in this loop.
4522   Node_List* sfpts = _safepts;
4523   if (prune && sfpts != nullptr) {
4524     assert(keep == nullptr || keep->Opcode() == Op_SafePoint, "not safepoint");
4525     for (uint i = 0; i < sfpts->size(); i++) {
4526       Node* n = sfpts->at(i);
4527       assert(phase->get_loop(n) == this, "");
4528       if (n != keep && phase->is_deleteable_safept(n)) {
4529         phase->replace_node_and_forward_ctrl(n, n->in(TypeFunc::Control));
4530       }
4531     }
4532   }
4533 }
4534 
4535 //------------------------------counted_loop-----------------------------------
4536 // Convert to counted loops where possible
4537 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
4538 
4539   // For grins, set the inner-loop flag here
4540   if (!_child) {
4541     if (_head->is_Loop()) _head->as_Loop()->set_inner_loop();
4542   }
4543 
4544   IdealLoopTree* loop = this;
4545   if (_head->is_CountedLoop() ||
4546       phase->is_counted_loop(_head, loop, T_INT)) {
4547 
4548     if (LoopStripMiningIter == 0 || _head->as_CountedLoop()->is_strip_mined()) {
4549       // Indicate we do not need a safepoint here
4550       _has_sfpt = 1;
4551     }
4552 
4553     // Remove safepoints
4554     bool keep_one_sfpt = !(_has_call || _has_sfpt);
4555     remove_safepoints(phase, keep_one_sfpt);
4556 
4557     // Look for induction variables
4558     phase->replace_parallel_iv(this);
4559   } else if (_head->is_LongCountedLoop() ||
4560              phase->is_counted_loop(_head, loop, T_LONG)) {
4561     remove_safepoints(phase, true);
4562   } else {
4563     assert(!_head->is_Loop() || !_head->as_Loop()->is_loop_nest_inner_loop(), "transformation to counted loop should not fail");
4564     if (_parent != nullptr && !_irreducible) {
4565       // Not a counted loop. Keep one safepoint.
4566       bool keep_one_sfpt = true;
4567       remove_safepoints(phase, keep_one_sfpt);
4568     }
4569   }
4570 
4571   // Recursively
4572   assert(loop->_child != this || (loop->_head->as_Loop()->is_OuterStripMinedLoop() && _head->as_CountedLoop()->is_strip_mined()), "what kind of loop was added?");
4573   assert(loop->_child != this || (loop->_child->_child == nullptr && loop->_child->_next == nullptr), "would miss some loops");
4574   if (loop->_child && loop->_child != this) loop->_child->counted_loop(phase);
4575   if (loop->_next)  loop->_next ->counted_loop(phase);
4576 }
4577 
4578 
4579 // The Estimated Loop Clone Size:
4580 //   CloneFactor * (~112% * BodySize + BC) + CC + FanOutTerm,
4581 // where  BC and  CC are  totally ad-hoc/magic  "body" and "clone" constants,
4582 // respectively, used to ensure that the node usage estimates made are on the
4583 // safe side, for the most part. The FanOutTerm is an attempt to estimate the
4584 // possible additional/excessive nodes generated due to data and control flow
4585 // merging, for edges reaching outside the loop.
4586 uint IdealLoopTree::est_loop_clone_sz(uint factor) const {
4587 
4588   precond(0 < factor && factor < 16);
4589 
4590   uint const bc = 13;
4591   uint const cc = 17;
4592   uint const sz = _body.size() + (_body.size() + 7) / 2;
4593   uint estimate = factor * (sz + bc) + cc;
4594 
4595   assert((estimate - cc) / factor == sz + bc, "overflow");
4596 
4597   return estimate + est_loop_flow_merge_sz();
4598 }
4599 
4600 // The Estimated Loop (full-) Unroll Size:
4601 //   UnrollFactor * (~106% * BodySize) + CC + FanOutTerm,
4602 // where CC is a (totally) ad-hoc/magic "clone" constant, used to ensure that
4603 // node usage estimates made are on the safe side, for the most part. This is
4604 // a "light" version of the loop clone size calculation (above), based on the
4605 // assumption that most of the loop-construct overhead will be unraveled when
4606 // (fully) unrolled. Defined for unroll factors larger or equal to one (>=1),
4607 // including an overflow check and returning UINT_MAX in case of an overflow.
4608 uint IdealLoopTree::est_loop_unroll_sz(uint factor) const {
4609 
4610   precond(factor > 0);
4611 
4612   // Take into account that after unroll conjoined heads and tails will fold.
4613   uint const b0 = _body.size() - EMPTY_LOOP_SIZE;
4614   uint const cc = 7;
4615   uint const sz = b0 + (b0 + 15) / 16;
4616   uint estimate = factor * sz + cc;
4617 
4618   if ((estimate - cc) / factor != sz) {
4619     return UINT_MAX;
4620   }
4621 
4622   return estimate + est_loop_flow_merge_sz();
4623 }
4624 
4625 // Estimate the growth effect (in nodes) of merging control and data flow when
4626 // cloning a loop body, based on the amount of  control and data flow reaching
4627 // outside of the (current) loop body.
4628 uint IdealLoopTree::est_loop_flow_merge_sz() const {
4629 
4630   uint ctrl_edge_out_cnt = 0;
4631   uint data_edge_out_cnt = 0;
4632 
4633   for (uint i = 0; i < _body.size(); i++) {
4634     Node* node = _body.at(i);
4635     uint outcnt = node->outcnt();
4636 
4637     for (uint k = 0; k < outcnt; k++) {
4638       Node* out = node->raw_out(k);
4639       if (out == nullptr) continue;
4640       if (out->is_CFG()) {
4641         if (!is_member(_phase->get_loop(out))) {
4642           ctrl_edge_out_cnt++;
4643         }
4644       } else if (_phase->has_ctrl(out)) {
4645         Node* ctrl = _phase->get_ctrl(out);
4646         assert(ctrl != nullptr, "must be");
4647         assert(ctrl->is_CFG(), "must be");
4648         if (!is_member(_phase->get_loop(ctrl))) {
4649           data_edge_out_cnt++;
4650         }
4651       }
4652     }
4653   }
4654   // Use data and control count (x2.0) in estimate iff both are > 0. This is
4655   // a rather pessimistic estimate for the most part, in particular for some
4656   // complex loops, but still not enough to capture all loops.
4657   if (ctrl_edge_out_cnt > 0 && data_edge_out_cnt > 0) {
4658     return 2 * (ctrl_edge_out_cnt + data_edge_out_cnt);
4659   }
4660   return 0;
4661 }
4662 
4663 #ifndef PRODUCT
4664 //------------------------------dump_head--------------------------------------
4665 // Dump 1 liner for loop header info
4666 void IdealLoopTree::dump_head() {
4667   tty->sp(2 * _nest);
4668   tty->print("Loop: N%d/N%d ", _head->_idx, _tail->_idx);
4669   if (_irreducible) tty->print(" IRREDUCIBLE");
4670   Node* entry = _head->is_Loop() ? _head->as_Loop()->skip_strip_mined(-1)->in(LoopNode::EntryControl)
4671                                  : _head->in(LoopNode::EntryControl);
4672   const Predicates predicates(entry);
4673   if (predicates.loop_limit_check_predicate_block()->is_non_empty()) {
4674     tty->print(" limit_check");
4675   }
4676   if (predicates.short_running_long_loop_predicate_block()->is_non_empty()) {
4677     tty->print(" short_running");
4678   }
4679   if (UseLoopPredicate) {
4680     if (UseProfiledLoopPredicate && predicates.profiled_loop_predicate_block()->is_non_empty()) {
4681       tty->print(" profile_predicated");
4682     }
4683     if (predicates.loop_predicate_block()->is_non_empty()) {
4684       tty->print(" predicated");
4685     }
4686   }
4687   if (UseAutoVectorizationPredicate && predicates.auto_vectorization_check_block()->is_non_empty()) {
4688     tty->print(" auto_vectorization_check_predicate");
4689   }
4690   if (_head->is_CountedLoop()) {
4691     CountedLoopNode *cl = _head->as_CountedLoop();
4692     tty->print(" counted");
4693 
4694     Node* init_n = cl->init_trip();
4695     if (init_n  != nullptr &&  init_n->is_Con())
4696       tty->print(" [%d,", cl->init_trip()->get_int());
4697     else
4698       tty->print(" [int,");
4699     Node* limit_n = cl->limit();
4700     if (limit_n  != nullptr &&  limit_n->is_Con())
4701       tty->print("%d),", cl->limit()->get_int());
4702     else
4703       tty->print("int),");
4704     int stride_con  = cl->stride_con();
4705     if (stride_con > 0) tty->print("+");
4706     tty->print("%d", stride_con);
4707 
4708     tty->print(" (%0.f iters) ", cl->profile_trip_cnt());
4709 
4710     if (cl->is_pre_loop ()) tty->print(" pre" );
4711     if (cl->is_main_loop()) tty->print(" main");
4712     if (cl->is_post_loop()) tty->print(" post");
4713     if (cl->is_vectorized_loop()) tty->print(" vector");
4714     if (range_checks_present()) tty->print(" rc ");
4715     if (cl->is_multiversion_fast_loop())         { tty->print(" multiversion_fast"); }
4716     if (cl->is_multiversion_slow_loop())         { tty->print(" multiversion_slow"); }
4717     if (cl->is_multiversion_delayed_slow_loop()) { tty->print(" multiversion_delayed_slow"); }
4718   }
4719   if (_has_call) tty->print(" has_call");
4720   if (_has_sfpt) tty->print(" has_sfpt");
4721   if (_rce_candidate) tty->print(" rce");
4722   if (_safepts != nullptr && _safepts->size() > 0) {
4723     tty->print(" sfpts={"); _safepts->dump_simple(); tty->print(" }");
4724   }
4725   if (_required_safept != nullptr && _required_safept->size() > 0) {
4726     tty->print(" req={"); _required_safept->dump_simple(); tty->print(" }");
4727   }
4728   if (Verbose) {
4729     tty->print(" body={"); _body.dump_simple(); tty->print(" }");
4730   }
4731   if (_head->is_Loop() && _head->as_Loop()->is_strip_mined()) {
4732     tty->print(" strip_mined");
4733   }
4734   tty->cr();
4735 }
4736 
4737 //------------------------------dump-------------------------------------------
4738 // Dump loops by loop tree
4739 void IdealLoopTree::dump() {
4740   dump_head();
4741   if (_child) _child->dump();
4742   if (_next)  _next ->dump();
4743 }
4744 
4745 #endif
4746 
4747 static void log_loop_tree_helper(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
4748   if (loop == root) {
4749     if (loop->_child != nullptr) {
4750       log->begin_head("loop_tree");
4751       log->end_head();
4752       log_loop_tree_helper(root, loop->_child, log);
4753       log->tail("loop_tree");
4754       assert(loop->_next == nullptr, "what?");
4755     }
4756   } else if (loop != nullptr) {
4757     Node* head = loop->_head;
4758     log->begin_head("loop");
4759     log->print(" idx='%d' ", head->_idx);
4760     if (loop->_irreducible) log->print("irreducible='1' ");
4761     if (head->is_Loop()) {
4762       if (head->as_Loop()->is_inner_loop())        log->print("inner_loop='1' ");
4763       if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' ");
4764     } else if (head->is_CountedLoop()) {
4765       CountedLoopNode* cl = head->as_CountedLoop();
4766       if (cl->is_pre_loop())  log->print("pre_loop='%d' ",  cl->main_idx());
4767       if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx);
4768       if (cl->is_post_loop()) log->print("post_loop='%d' ", cl->main_idx());
4769     }
4770     log->end_head();
4771     log_loop_tree_helper(root, loop->_child, log);
4772     log->tail("loop");
4773     log_loop_tree_helper(root, loop->_next, log);
4774   }
4775 }
4776 
4777 void PhaseIdealLoop::log_loop_tree() {
4778   if (C->log() != nullptr) {
4779     log_loop_tree_helper(_ltree_root, _ltree_root, C->log());
4780   }
4781 }
4782 
4783 // Eliminate all Parse and Template Assertion Predicates that are not associated with a loop anymore. The eliminated
4784 // predicates will be removed during the next round of IGVN.
4785 void PhaseIdealLoop::eliminate_useless_predicates() const {
4786   if (C->parse_predicate_count() == 0 && C->template_assertion_predicate_count() == 0) {
4787     return; // No predicates left.
4788   }
4789 
4790   EliminateUselessPredicates eliminate_useless_predicates(_igvn, _ltree_root);
4791   eliminate_useless_predicates.eliminate();
4792 }
4793 
4794 // If a post or main loop is removed due to an assert predicate, the opaque that guards the loop is not needed anymore
4795 void PhaseIdealLoop::eliminate_useless_zero_trip_guard() {
4796   if (_zero_trip_guard_opaque_nodes.size() == 0) {
4797     return;
4798   }
4799   Unique_Node_List useful_zero_trip_guard_opaques_nodes;
4800   for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
4801     IdealLoopTree* lpt = iter.current();
4802     if (lpt->_child == nullptr && lpt->is_counted()) {
4803       CountedLoopNode* head = lpt->_head->as_CountedLoop();
4804       Node* opaque = head->is_canonical_loop_entry();
4805       if (opaque != nullptr) {
4806         useful_zero_trip_guard_opaques_nodes.push(opaque);
4807 #ifdef ASSERT
4808         // See PhaseIdealLoop::do_unroll
4809         // This property is required in do_unroll, but it may not hold after cloning a loop.
4810         // In such a case, we bail out from unrolling, and rely on IGVN to clean up the graph.
4811         // We are here before loop cloning (before iteration_split), so if this property
4812         // does not hold, it must come from the previous round of loop optimizations, meaning
4813         // that IGVN failed to clean it: we will catch that here.
4814         // On the other hand, if this assert passes, a bailout in do_unroll means that
4815         // this property was broken in the current round of loop optimization (between here
4816         // and do_unroll), so we give a chance to IGVN to make the property true again.
4817         if (head->is_main_loop()) {
4818           assert(opaque->outcnt() == 1, "opaque node should not be shared");
4819           assert(opaque->in(1) == head->limit(), "After IGVN cleanup, input of opaque node must be the limit.");
4820         }
4821         if (head->is_post_loop()) {
4822           assert(opaque->outcnt() == 1, "opaque node should not be shared");
4823         }
4824 #endif
4825       }
4826     }
4827   }
4828   for (uint i = 0; i < _zero_trip_guard_opaque_nodes.size(); ++i) {
4829     OpaqueZeroTripGuardNode* opaque = ((OpaqueZeroTripGuardNode*)_zero_trip_guard_opaque_nodes.at(i));
4830     DEBUG_ONLY(CountedLoopNode* guarded_loop = opaque->guarded_loop());
4831     if (!useful_zero_trip_guard_opaques_nodes.member(opaque)) {
4832       IfNode* iff = opaque->if_node();
4833       IdealLoopTree* loop = get_loop(iff);
4834       while (loop != _ltree_root && loop != nullptr) {
4835         loop = loop->_parent;
4836       }
4837       if (loop == nullptr) {
4838         // unreachable from _ltree_root: zero trip guard is in a newly discovered infinite loop.
4839         // We can't tell if the opaque node is useful or not
4840         assert(guarded_loop == nullptr || guarded_loop->is_in_infinite_subgraph(), "");
4841       } else {
4842         assert(guarded_loop == nullptr, "");
4843         this->_igvn.replace_node(opaque, opaque->in(1));
4844       }
4845     } else {
4846       assert(guarded_loop != nullptr, "");
4847     }
4848   }
4849 }
4850 
4851 void PhaseIdealLoop::eliminate_useless_multiversion_if() {
4852   if (_multiversion_opaque_nodes.size() == 0) {
4853     return;
4854   }
4855 
4856   ResourceMark rm;
4857   Unique_Node_List useful_multiversioning_opaque_nodes;
4858 
4859   // The OpaqueMultiversioning is only used from the fast main loop in AutoVectorization, to add
4860   // speculative runtime-checks to the multiversion_if. Thus, a OpaqueMultiversioning is only
4861   // useful if it can be found from a fast main loop. If it can not be found from a fast main loop,
4862   // then we cannot ever use that multiversion_if to add more speculative runtime-checks, and hence
4863   // it is useless. If it is still in delayed mode, i.e. has not yet had any runtime-checks added,
4864   // then we can let it constant fold towards the fast loop.
4865   for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
4866     IdealLoopTree* lpt = iter.current();
4867     if (lpt->_child == nullptr && lpt->is_counted()) {
4868       CountedLoopNode* head = lpt->_head->as_CountedLoop();
4869       if (head->is_main_loop() && head->is_multiversion_fast_loop()) {
4870         // There are fast_loop pre/main/post loops, but the finding traversal starts at the main
4871         // loop, and traverses via the fast pre loop to the multiversion_if.
4872         IfNode* multiversion_if = head->find_multiversion_if_from_multiversion_fast_main_loop();
4873         if (multiversion_if != nullptr) {
4874             useful_multiversioning_opaque_nodes.push(multiversion_if->in(1)->as_OpaqueMultiversioning());
4875         } else {
4876           // We could not find the multiversion_if, and would never find it again. Remove the
4877           // multiversion marking for consistency.
4878           head->set_no_multiversion();
4879         }
4880       }
4881     }
4882   }
4883 
4884   for (uint i = 0; i < _multiversion_opaque_nodes.size(); i++) {
4885     OpaqueMultiversioningNode* opaque = _multiversion_opaque_nodes.at(i)->as_OpaqueMultiversioning();
4886     if (!useful_multiversioning_opaque_nodes.member(opaque)) {
4887       if (opaque->is_delayed_slow_loop()) {
4888         // We cannot hack the node directly, otherwise the slow_loop will complain that it cannot
4889         // find the multiversioning opaque node. Instead, we mark the opaque node as useless, and
4890         // it can be constant folded during IGVN.
4891         opaque->mark_useless(_igvn);
4892       }
4893     }
4894   }
4895 }
4896 
4897 //------------------------process_expensive_nodes-----------------------------
4898 // Expensive nodes have their control input set to prevent the GVN
4899 // from commoning them and as a result forcing the resulting node to
4900 // be in a more frequent path. Use CFG information here, to change the
4901 // control inputs so that some expensive nodes can be commoned while
4902 // not executed more frequently.
4903 bool PhaseIdealLoop::process_expensive_nodes() {
4904   assert(OptimizeExpensiveOps, "optimization off?");
4905 
4906   // Sort nodes to bring similar nodes together
4907   C->sort_expensive_nodes();
4908 
4909   bool progress = false;
4910 
4911   for (int i = 0; i < C->expensive_count(); ) {
4912     Node* n = C->expensive_node(i);
4913     int start = i;
4914     // Find nodes similar to n
4915     i++;
4916     for (; i < C->expensive_count() && Compile::cmp_expensive_nodes(n, C->expensive_node(i)) == 0; i++);
4917     int end = i;
4918     // And compare them two by two
4919     for (int j = start; j < end; j++) {
4920       Node* n1 = C->expensive_node(j);
4921       if (is_node_unreachable(n1)) {
4922         continue;
4923       }
4924       for (int k = j+1; k < end; k++) {
4925         Node* n2 = C->expensive_node(k);
4926         if (is_node_unreachable(n2)) {
4927           continue;
4928         }
4929 
4930         assert(n1 != n2, "should be pair of nodes");
4931 
4932         Node* c1 = n1->in(0);
4933         Node* c2 = n2->in(0);
4934 
4935         Node* parent_c1 = c1;
4936         Node* parent_c2 = c2;
4937 
4938         // The call to get_early_ctrl_for_expensive() moves the
4939         // expensive nodes up but stops at loops that are in a if
4940         // branch. See whether we can exit the loop and move above the
4941         // If.
4942         if (c1->is_Loop()) {
4943           parent_c1 = c1->in(1);
4944         }
4945         if (c2->is_Loop()) {
4946           parent_c2 = c2->in(1);
4947         }
4948 
4949         if (parent_c1 == parent_c2) {
4950           _igvn._worklist.push(n1);
4951           _igvn._worklist.push(n2);
4952           continue;
4953         }
4954 
4955         // Look for identical expensive node up the dominator chain.
4956         if (is_dominator(c1, c2)) {
4957           c2 = c1;
4958         } else if (is_dominator(c2, c1)) {
4959           c1 = c2;
4960         } else if (parent_c1->is_Proj() && parent_c1->in(0)->is_If() &&
4961                    parent_c2->is_Proj() && parent_c1->in(0) == parent_c2->in(0)) {
4962           // Both branches have the same expensive node so move it up
4963           // before the if.
4964           c1 = c2 = idom(parent_c1->in(0));
4965         }
4966         // Do the actual moves
4967         if (n1->in(0) != c1) {
4968           _igvn.replace_input_of(n1, 0, c1);
4969           progress = true;
4970         }
4971         if (n2->in(0) != c2) {
4972           _igvn.replace_input_of(n2, 0, c2);
4973           progress = true;
4974         }
4975       }
4976     }
4977   }
4978 
4979   return progress;
4980 }
4981 
4982 //=============================================================================
4983 //----------------------------build_and_optimize-------------------------------
4984 // Create a PhaseLoop.  Build the ideal Loop tree.  Map each Ideal Node to
4985 // its corresponding LoopNode.  If 'optimize' is true, do some loop cleanups.
4986 void PhaseIdealLoop::build_and_optimize() {
4987   assert(!C->post_loop_opts_phase(), "no loop opts allowed");
4988 
4989   bool do_split_ifs = (_mode == LoopOptsDefault);
4990   bool skip_loop_opts = (_mode == LoopOptsNone);
4991   bool do_max_unroll = (_mode == LoopOptsMaxUnroll);
4992 
4993 
4994   bool old_progress = C->major_progress();
4995   uint orig_worklist_size = _igvn._worklist.size();
4996 
4997   // Reset major-progress flag for the driver's heuristics
4998   C->clear_major_progress();
4999 
5000 #ifndef PRODUCT
5001   // Capture for later assert
5002   uint unique = C->unique();
5003   _loop_invokes++;
5004   _loop_work += unique;
5005 #endif
5006 
5007   // True if the method has at least 1 irreducible loop
5008   _has_irreducible_loops = false;
5009 
5010   _created_loop_node = false;
5011 
5012   VectorSet visited;
5013   // Pre-grow the mapping from Nodes to IdealLoopTrees.
5014   _loop_or_ctrl.map(C->unique(), nullptr);
5015   memset(_loop_or_ctrl.adr(), 0, wordSize * C->unique());
5016 
5017   // Pre-build the top-level outermost loop tree entry
5018   _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
5019   // Do not need a safepoint at the top level
5020   _ltree_root->_has_sfpt = 1;
5021 
5022   // Initialize Dominators.
5023   // Checked in clone_loop_predicate() during beautify_loops().
5024   _idom_size = 0;
5025   _idom      = nullptr;
5026   _dom_depth = nullptr;
5027   _dom_stk   = nullptr;
5028 
5029   // Empty pre-order array
5030   allocate_preorders();
5031 
5032   // Build a loop tree on the fly.  Build a mapping from CFG nodes to
5033   // IdealLoopTree entries.  Data nodes are NOT walked.
5034   build_loop_tree();
5035   // Check for bailout, and return
5036   if (C->failing()) {
5037     return;
5038   }
5039 
5040   // Verify that the has_loops() flag set at parse time is consistent with the just built loop tree. When the back edge
5041   // is an exception edge, parsing doesn't set has_loops().
5042   assert(_ltree_root->_child == nullptr || C->has_loops() || C->has_exception_backedge(), "parsing found no loops but there are some");
5043   // No loops after all
5044   if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false);
5045 
5046   // There should always be an outer loop containing the Root and Return nodes.
5047   // If not, we have a degenerate empty program.  Bail out in this case.
5048   if (!has_node(C->root())) {
5049     if (!_verify_only) {
5050       C->clear_major_progress();
5051       assert(false, "empty program detected during loop optimization");
5052       C->record_method_not_compilable("empty program detected during loop optimization");
5053     }
5054     return;
5055   }
5056 
5057   // Nothing to do, so get out
5058   bool stop_early = !C->has_loops() && !skip_loop_opts && !do_split_ifs && !do_max_unroll && !_verify_me &&
5059           !_verify_only;
5060   bool do_expensive_nodes = C->should_optimize_expensive_nodes(_igvn);
5061   if (stop_early && !do_expensive_nodes) {
5062     return;
5063   }
5064 
5065   // Set loop nesting depth
5066   _ltree_root->set_nest( 0 );
5067 
5068   // Split shared headers and insert loop landing pads.
5069   // Do not bother doing this on the Root loop of course.
5070   if( !_verify_me && !_verify_only && _ltree_root->_child ) {
5071     C->print_method(PHASE_BEFORE_BEAUTIFY_LOOPS, 3);
5072     if( _ltree_root->_child->beautify_loops( this ) ) {
5073       // Re-build loop tree!
5074       _ltree_root->_child = nullptr;
5075       _loop_or_ctrl.clear();
5076       reallocate_preorders();
5077       build_loop_tree();
5078       // Check for bailout, and return
5079       if (C->failing()) {
5080         return;
5081       }
5082       // Reset loop nesting depth
5083       _ltree_root->set_nest( 0 );
5084 
5085       C->print_method(PHASE_AFTER_BEAUTIFY_LOOPS, 3);
5086     }
5087   }
5088 
5089   // Build Dominators for elision of null checks & loop finding.
5090   // Since nodes do not have a slot for immediate dominator, make
5091   // a persistent side array for that info indexed on node->_idx.
5092   _idom_size = C->unique();
5093   _idom      = NEW_RESOURCE_ARRAY( Node*, _idom_size );
5094   _dom_depth = NEW_RESOURCE_ARRAY( uint,  _idom_size );
5095   _dom_stk   = nullptr; // Allocated on demand in recompute_dom_depth
5096   memset( _dom_depth, 0, _idom_size * sizeof(uint) );
5097 
5098   Dominators();
5099 
5100   if (!_verify_only) {
5101     // As a side effect, Dominators removed any unreachable CFG paths
5102     // into RegionNodes.  It doesn't do this test against Root, so
5103     // we do it here.
5104     for( uint i = 1; i < C->root()->req(); i++ ) {
5105       if (!_loop_or_ctrl[C->root()->in(i)->_idx]) { // Dead path into Root?
5106         _igvn.delete_input_of(C->root(), i);
5107         i--;                      // Rerun same iteration on compressed edges
5108       }
5109     }
5110 
5111     // Given dominators, try to find inner loops with calls that must
5112     // always be executed (call dominates loop tail).  These loops do
5113     // not need a separate safepoint.
5114     Node_List cisstack;
5115     _ltree_root->check_safepts(visited, cisstack);
5116   }
5117 
5118   // Walk the DATA nodes and place into loops.  Find earliest control
5119   // node.  For CFG nodes, the _loop_or_ctrl array starts out and remains
5120   // holding the associated IdealLoopTree pointer.  For DATA nodes, the
5121   // _loop_or_ctrl array holds the earliest legal controlling CFG node.
5122 
5123   // Allocate stack with enough space to avoid frequent realloc
5124   int stack_size = (C->live_nodes() >> 1) + 16; // (live_nodes>>1)+16 from Java2D stats
5125   Node_Stack nstack(stack_size);
5126 
5127   visited.clear();
5128   Node_List worklist;
5129   // Don't need C->root() on worklist since
5130   // it will be processed among C->top() inputs
5131   worklist.push(C->top());
5132   visited.set(C->top()->_idx); // Set C->top() as visited now
5133   build_loop_early( visited, worklist, nstack );
5134 
5135   // Given early legal placement, try finding counted loops.  This placement
5136   // is good enough to discover most loop invariants.
5137   if (!_verify_me && !_verify_only) {
5138     _ltree_root->counted_loop( this );
5139   }
5140 
5141   // Find latest loop placement.  Find ideal loop placement.
5142   visited.clear();
5143   init_dom_lca_tags();
5144   // Need C->root() on worklist when processing outs
5145   worklist.push(C->root());
5146   NOT_PRODUCT( C->verify_graph_edges(); )
5147   worklist.push(C->top());
5148   build_loop_late( visited, worklist, nstack );
5149   if (C->failing()) { return; }
5150 
5151   if (_verify_only) {
5152     C->restore_major_progress(old_progress);
5153     assert(C->unique() == unique, "verification _mode made Nodes? ? ?");
5154     assert(_igvn._worklist.size() == orig_worklist_size, "shouldn't push anything");
5155     return;
5156   }
5157 
5158   // clear out the dead code after build_loop_late
5159   while (_deadlist.size()) {
5160     _igvn.remove_globally_dead_node(_deadlist.pop());
5161   }
5162 
5163   eliminate_useless_zero_trip_guard();
5164   eliminate_useless_multiversion_if();
5165 
5166   if (stop_early) {
5167     assert(do_expensive_nodes, "why are we here?");
5168     if (process_expensive_nodes()) {
5169       // If we made some progress when processing expensive nodes then
5170       // the IGVN may modify the graph in a way that will allow us to
5171       // make some more progress: we need to try processing expensive
5172       // nodes again.
5173       C->set_major_progress();
5174     }
5175     return;
5176   }
5177 
5178   // Some parser-inserted loop predicates could never be used by loop
5179   // predication or they were moved away from loop during some optimizations.
5180   // For example, peeling. Eliminate them before next loop optimizations.
5181   eliminate_useless_predicates();
5182 
5183 #ifndef PRODUCT
5184   C->verify_graph_edges();
5185   if (_verify_me) {             // Nested verify pass?
5186     // Check to see if the verify _mode is broken
5187     assert(C->unique() == unique, "non-optimize _mode made Nodes? ? ?");
5188     return;
5189   }
5190   DEBUG_ONLY( if (VerifyLoopOptimizations) { verify(); } );
5191   if (TraceLoopOpts && C->has_loops()) {
5192     _ltree_root->dump();
5193   }
5194 #endif
5195 
5196   if (skip_loop_opts) {
5197     C->restore_major_progress(old_progress);
5198     return;
5199   }
5200 
5201   if (do_max_unroll) {
5202     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
5203       IdealLoopTree* lpt = iter.current();
5204       if (lpt->is_innermost() && lpt->_allow_optimizations && !lpt->_has_call && lpt->is_counted()) {
5205         lpt->compute_trip_count(this, T_INT);
5206         if (!lpt->do_one_iteration_loop(this) &&
5207             !lpt->do_remove_empty_loop(this)) {
5208           AutoNodeBudget node_budget(this);
5209           if (lpt->_head->as_CountedLoop()->is_normal_loop() &&
5210               lpt->policy_maximally_unroll(this)) {
5211             memset( worklist.adr(), 0, worklist.max()*sizeof(Node*) );
5212             do_maximally_unroll(lpt, worklist);
5213           }
5214         }
5215       }
5216     }
5217 
5218     C->restore_major_progress(old_progress);
5219     return;
5220   }
5221 
5222   if (ReassociateInvariants && !C->major_progress()) {
5223     // Reassociate invariants and prep for split_thru_phi
5224     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
5225       IdealLoopTree* lpt = iter.current();
5226       if (!lpt->is_loop()) {
5227         continue;
5228       }
5229       Node* head = lpt->_head;
5230       if (!lpt->is_innermost()) continue;
5231 
5232       // check for vectorized loops, any reassociation of invariants was already done
5233       if (head->is_CountedLoop() && head->as_CountedLoop()->is_unroll_only()) {
5234         continue;
5235       } else {
5236         AutoNodeBudget node_budget(this);
5237         lpt->reassociate_invariants(this);
5238       }
5239       // Because RCE opportunities can be masked by split_thru_phi,
5240       // look for RCE candidates and inhibit split_thru_phi
5241       // on just their loop-phi's for this pass of loop opts
5242       if (SplitIfBlocks && do_split_ifs &&
5243           head->is_BaseCountedLoop() &&
5244           head->as_BaseCountedLoop()->is_valid_counted_loop(head->as_BaseCountedLoop()->bt()) &&
5245           (lpt->policy_range_check(this, true, T_LONG) ||
5246            (head->is_CountedLoop() && lpt->policy_range_check(this, true, T_INT)))) {
5247         lpt->_rce_candidate = 1; // = true
5248       }
5249     }
5250   }
5251 
5252   // Check for aggressive application of split-if and other transforms
5253   // that require basic-block info (like cloning through Phi's)
5254   if (!C->major_progress() && SplitIfBlocks && do_split_ifs) {
5255     visited.clear();
5256     split_if_with_blocks(visited, nstack);
5257     if (C->failing()) {
5258       return;
5259     }
5260     DEBUG_ONLY( if (VerifyLoopOptimizations) { verify(); } );
5261   }
5262 
5263   if (!C->major_progress() && do_expensive_nodes && process_expensive_nodes()) {
5264     C->set_major_progress();
5265   }
5266 
5267   // Perform loop predication before iteration splitting
5268   if (UseLoopPredicate && C->has_loops() && !C->major_progress() && (C->parse_predicate_count() > 0)) {
5269     _ltree_root->_child->loop_predication(this);
5270   }
5271 
5272   if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) {
5273     if (do_intrinsify_fill()) {
5274       C->set_major_progress();
5275     }
5276   }
5277 
5278   // Perform iteration-splitting on inner loops.  Split iterations to avoid
5279   // range checks or one-shot null checks.
5280 
5281   // If split-if's didn't hack the graph too bad (no CFG changes)
5282   // then do loop opts.
5283   if (C->has_loops() && !C->major_progress()) {
5284     memset( worklist.adr(), 0, worklist.max()*sizeof(Node*) );
5285     _ltree_root->_child->iteration_split( this, worklist );
5286     // No verify after peeling!  GCM has hoisted code out of the loop.
5287     // After peeling, the hoisted code could sink inside the peeled area.
5288     // The peeling code does not try to recompute the best location for
5289     // all the code before the peeled area, so the verify pass will always
5290     // complain about it.
5291   }
5292 
5293   // Check for bailout, and return
5294   if (C->failing()) {
5295     return;
5296   }
5297 
5298   // Do verify graph edges in any case
5299   NOT_PRODUCT( C->verify_graph_edges(); );
5300 
5301   if (!do_split_ifs) {
5302     // We saw major progress in Split-If to get here.  We forced a
5303     // pass with unrolling and not split-if, however more split-if's
5304     // might make progress.  If the unrolling didn't make progress
5305     // then the major-progress flag got cleared and we won't try
5306     // another round of Split-If.  In particular the ever-common
5307     // instance-of/check-cast pattern requires at least 2 rounds of
5308     // Split-If to clear out.
5309     C->set_major_progress();
5310   }
5311 
5312   // Repeat loop optimizations if new loops were seen
5313   if (created_loop_node()) {
5314     C->set_major_progress();
5315   }
5316 
5317   // Auto-vectorize main-loop
5318   if (C->do_superword() && C->has_loops() && !C->major_progress()) {
5319     Compile::TracePhase tp(_t_autoVectorize);
5320 
5321     // Shared data structures for all AutoVectorizations, to reduce allocations
5322     // of large arrays.
5323     VSharedData vshared;
5324     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
5325       IdealLoopTree* lpt = iter.current();
5326       AutoVectorizeStatus status = auto_vectorize(lpt, vshared);
5327 
5328       if (status == AutoVectorizeStatus::TriedAndFailed) {
5329         // We tried vectorization, but failed. From now on only unroll the loop.
5330         CountedLoopNode* cl = lpt->_head->as_CountedLoop();
5331         if (cl->has_passed_slp()) {
5332           C->set_major_progress();
5333           cl->set_notpassed_slp();
5334           cl->mark_do_unroll_only();
5335         }
5336       }
5337     }
5338   }
5339 
5340   // Keep loop predicates and perform optimizations with them
5341   // until no more loop optimizations could be done.
5342   // After that switch predicates off and do more loop optimizations.
5343   if (!C->major_progress() && (C->parse_predicate_count() > 0)) {
5344     C->mark_parse_predicate_nodes_useless(_igvn);
5345     assert(C->parse_predicate_count() == 0, "should be zero now");
5346     if (TraceLoopOpts) {
5347       tty->print_cr("PredicatesOff");
5348     }
5349     C->set_major_progress();
5350   }
5351 }
5352 
5353 #ifndef PRODUCT
5354 //------------------------------print_statistics-------------------------------
5355 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
5356 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
5357 volatile int PhaseIdealLoop::_long_loop_candidates=0; // Number of long loops seen
5358 volatile int PhaseIdealLoop::_long_loop_nests=0; // Number of long loops successfully transformed to a nest
5359 volatile int PhaseIdealLoop::_long_loop_counted_loops=0; // Number of long loops successfully transformed to a counted loop
5360 void PhaseIdealLoop::print_statistics() {
5361   tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d, long loops=%d/%d/%d", _loop_invokes, _loop_work, _long_loop_counted_loops, _long_loop_nests, _long_loop_candidates);
5362 }
5363 #endif
5364 
5365 #ifdef ASSERT
5366 // Build a verify-only PhaseIdealLoop, and see that it agrees with "this".
5367 void PhaseIdealLoop::verify() const {
5368   ResourceMark rm;
5369   bool old_progress = C->major_progress();
5370   bool success = true;
5371 
5372   PhaseIdealLoop phase_verify(_igvn, this);
5373   if (C->failing_internal()) {
5374     return;
5375   }
5376 
5377   // Verify ctrl and idom of every node.
5378   success &= verify_idom_and_nodes(C->root(), &phase_verify);
5379 
5380   // Verify loop-tree.
5381   success &= _ltree_root->verify_tree(phase_verify._ltree_root);
5382 
5383   assert(success, "VerifyLoopOptimizations failed");
5384 
5385   // Major progress was cleared by creating a verify version of PhaseIdealLoop.
5386   C->restore_major_progress(old_progress);
5387 }
5388 
5389 // Perform a BFS starting at n, through all inputs.
5390 // Call verify_idom and verify_node on all nodes of BFS traversal.
5391 bool PhaseIdealLoop::verify_idom_and_nodes(Node* root, const PhaseIdealLoop* phase_verify) const {
5392   Unique_Node_List worklist;
5393   worklist.push(root);
5394   bool success = true;
5395   for (uint i = 0; i < worklist.size(); i++) {
5396     Node* n = worklist.at(i);
5397     // process node
5398     success &= verify_idom(n, phase_verify);
5399     success &= verify_loop_ctrl(n, phase_verify);
5400     // visit inputs
5401     for (uint j = 0; j < n->req(); j++) {
5402       if (n->in(j) != nullptr) {
5403         worklist.push(n->in(j));
5404       }
5405     }
5406   }
5407   return success;
5408 }
5409 
5410 // Verify dominator structure (IDOM).
5411 bool PhaseIdealLoop::verify_idom(Node* n, const PhaseIdealLoop* phase_verify) const {
5412   // Verify IDOM for all CFG nodes (except root).
5413   if (!n->is_CFG() || n->is_Root()) {
5414     return true; // pass
5415   }
5416 
5417   if (n->_idx >= _idom_size) {
5418     tty->print("CFG Node with no idom: ");
5419     n->dump();
5420     return false; // fail
5421   }
5422 
5423   Node* id = idom_no_update(n);
5424   Node* id_verify = phase_verify->idom_no_update(n);
5425   if (id != id_verify) {
5426     tty->print("Mismatching idom for node: ");
5427     n->dump();
5428     tty->print("  We have idom: ");
5429     id->dump();
5430     tty->print("  Verify has idom: ");
5431     id_verify->dump();
5432     tty->cr();
5433     return false; // fail
5434   }
5435   return true; // pass
5436 }
5437 
5438 // Verify "_loop_or_ctrl": control and loop membership.
5439 //  (0) _loop_or_ctrl[i] == nullptr -> node not reachable.
5440 //  (1) has_ctrl -> check lowest bit. 1 -> data node. 0 -> ctrl node.
5441 //  (2) has_ctrl true: get_ctrl_no_update returns ctrl of data node.
5442 //  (3) has_ctrl false: get_loop_idx returns IdealLoopTree for ctrl node.
5443 bool PhaseIdealLoop::verify_loop_ctrl(Node* n, const PhaseIdealLoop* phase_verify) const {
5444   const uint i = n->_idx;
5445   // The loop-tree was built from def to use (top-down).
5446   // The verification happens from use to def (bottom-up).
5447   // We may thus find nodes during verification that are not in the loop-tree.
5448   if (_loop_or_ctrl[i] == nullptr || phase_verify->_loop_or_ctrl[i] == nullptr) {
5449     if (_loop_or_ctrl[i] != nullptr || phase_verify->_loop_or_ctrl[i] != nullptr) {
5450       tty->print_cr("Was reachable in only one. this %d, verify %d.",
5451                  _loop_or_ctrl[i] != nullptr, phase_verify->_loop_or_ctrl[i] != nullptr);
5452       n->dump();
5453       return false; // fail
5454     }
5455     // Not reachable for both.
5456     return true; // pass
5457   }
5458 
5459   if (n->is_CFG() == has_ctrl(n)) {
5460     tty->print_cr("Exactly one should be true: %d for is_CFG, %d for has_ctrl.", n->is_CFG(), has_ctrl(n));
5461     n->dump();
5462     return false; // fail
5463   }
5464 
5465   if (has_ctrl(n) != phase_verify->has_ctrl(n)) {
5466     tty->print_cr("Mismatch has_ctrl: %d for this, %d for verify.", has_ctrl(n), phase_verify->has_ctrl(n));
5467     n->dump();
5468     return false; // fail
5469   } else if (has_ctrl(n)) {
5470     assert(phase_verify->has_ctrl(n), "sanity");
5471     // n is a data node.
5472     // Verify that its ctrl is the same.
5473 
5474     // Broken part of VerifyLoopOptimizations (A)
5475     // Reason:
5476     //   BUG, wrong control set for example in
5477     //   PhaseIdealLoop::split_if_with_blocks
5478     //   at "set_ctrl(x, new_ctrl);"
5479     /*
5480     if( _loop_or_ctrl[i] != loop_verify->_loop_or_ctrl[i] &&
5481         get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
5482       tty->print("Mismatched control setting for: ");
5483       n->dump();
5484       if( fail++ > 10 ) return;
5485       Node *c = get_ctrl_no_update(n);
5486       tty->print("We have it as: ");
5487       if( c->in(0) ) c->dump();
5488         else tty->print_cr("N%d",c->_idx);
5489       tty->print("Verify thinks: ");
5490       if( loop_verify->has_ctrl(n) )
5491         loop_verify->get_ctrl_no_update(n)->dump();
5492       else
5493         loop_verify->get_loop_idx(n)->dump();
5494       tty->cr();
5495     }
5496     */
5497     return true; // pass
5498   } else {
5499     assert(!phase_verify->has_ctrl(n), "sanity");
5500     // n is a ctrl node.
5501     // Verify that not has_ctrl, and that get_loop_idx is the same.
5502 
5503     // Broken part of VerifyLoopOptimizations (B)
5504     // Reason:
5505     //   NeverBranch node for example is added to loop outside its scope.
5506     //   Once we run build_loop_tree again, it is added to the correct loop.
5507     /*
5508     if (!C->major_progress()) {
5509       // Loop selection can be messed up if we did a major progress
5510       // operation, like split-if.  Do not verify in that case.
5511       IdealLoopTree *us = get_loop_idx(n);
5512       IdealLoopTree *them = loop_verify->get_loop_idx(n);
5513       if( us->_head != them->_head ||  us->_tail != them->_tail ) {
5514         tty->print("Unequals loops for: ");
5515         n->dump();
5516         if( fail++ > 10 ) return;
5517         tty->print("We have it as: ");
5518         us->dump();
5519         tty->print("Verify thinks: ");
5520         them->dump();
5521         tty->cr();
5522       }
5523     }
5524     */
5525     return true; // pass
5526   }
5527 }
5528 
5529 static int compare_tree(IdealLoopTree* const& a, IdealLoopTree* const& b) {
5530   assert(a != nullptr && b != nullptr, "must be");
5531   return a->_head->_idx - b->_head->_idx;
5532 }
5533 
5534 GrowableArray<IdealLoopTree*> IdealLoopTree::collect_sorted_children() const {
5535   GrowableArray<IdealLoopTree*> children;
5536   IdealLoopTree* child = _child;
5537   while (child != nullptr) {
5538     assert(child->_parent == this, "all must be children of this");
5539     children.insert_sorted<compare_tree>(child);
5540     child = child->_next;
5541   }
5542   return children;
5543 }
5544 
5545 // Verify that tree structures match. Because the CFG can change, siblings
5546 // within the loop tree can be reordered. We attempt to deal with that by
5547 // reordering the verify's loop tree if possible.
5548 bool IdealLoopTree::verify_tree(IdealLoopTree* loop_verify) const {
5549   assert(_head == loop_verify->_head, "mismatched loop head");
5550   assert(this->_parent != nullptr || this->_next == nullptr, "is_root_loop implies has_no_sibling");
5551 
5552   // Collect the children
5553   GrowableArray<IdealLoopTree*> children = collect_sorted_children();
5554   GrowableArray<IdealLoopTree*> children_verify = loop_verify->collect_sorted_children();
5555 
5556   bool success = true;
5557 
5558   // Compare the two children lists
5559   for (int i = 0, j = 0; i < children.length() || j < children_verify.length(); ) {
5560     IdealLoopTree* child        = nullptr;
5561     IdealLoopTree* child_verify = nullptr;
5562     // Read from both lists, if possible.
5563     if (i < children.length()) {
5564       child = children.at(i);
5565     }
5566     if (j < children_verify.length()) {
5567       child_verify = children_verify.at(j);
5568     }
5569     assert(child != nullptr || child_verify != nullptr, "must find at least one");
5570     if (child != nullptr && child_verify != nullptr && child->_head != child_verify->_head) {
5571       // We found two non-equal children. Select the smaller one.
5572       if (child->_head->_idx < child_verify->_head->_idx) {
5573         child_verify = nullptr;
5574       } else {
5575         child = nullptr;
5576       }
5577     }
5578     // Process the two children, or potentially log the failure if we only found one.
5579     if (child_verify == nullptr) {
5580       if (child->_irreducible && Compile::current()->major_progress()) {
5581         // Irreducible loops can pick a different header (one of its entries).
5582       } else {
5583         tty->print_cr("We have a loop that verify does not have");
5584         child->dump();
5585         success = false;
5586       }
5587       i++; // step for this
5588     } else if (child == nullptr) {
5589       if (child_verify->_irreducible && Compile::current()->major_progress()) {
5590         // Irreducible loops can pick a different header (one of its entries).
5591       } else if (child_verify->_head->as_Region()->is_in_infinite_subgraph()) {
5592         // Infinite loops do not get attached to the loop-tree on their first visit.
5593         // "this" runs before "loop_verify". It is thus possible that we find the
5594         // infinite loop only for "child_verify". Only finding it with "child" would
5595         // mean that we lost it, which is not ok.
5596       } else {
5597         tty->print_cr("Verify has a loop that we do not have");
5598         child_verify->dump();
5599         success = false;
5600       }
5601       j++; // step for verify
5602     } else {
5603       assert(child->_head == child_verify->_head, "We have both and they are equal");
5604       success &= child->verify_tree(child_verify); // Recursion
5605       i++; // step for this
5606       j++; // step for verify
5607     }
5608   }
5609 
5610   // Broken part of VerifyLoopOptimizations (D)
5611   // Reason:
5612   //   split_if has to update the _tail, if it is modified. But that is done by
5613   //   checking to what loop the iff belongs to. That info can be wrong, and then
5614   //   we do not update the _tail correctly.
5615   /*
5616   Node *tail = _tail;           // Inline a non-updating version of
5617   while( !tail->in(0) )         // the 'tail()' call.
5618     tail = tail->in(1);
5619   assert( tail == loop->_tail, "mismatched loop tail" );
5620   */
5621 
5622   if (_head->is_CountedLoop()) {
5623     CountedLoopNode *cl = _head->as_CountedLoop();
5624 
5625     Node* ctrl     = cl->init_control();
5626     Node* back     = cl->back_control();
5627     assert(ctrl != nullptr && ctrl->is_CFG(), "sane loop in-ctrl");
5628     assert(back != nullptr && back->is_CFG(), "sane loop backedge");
5629     cl->loopexit(); // assert implied
5630   }
5631 
5632   // Broken part of VerifyLoopOptimizations (E)
5633   // Reason:
5634   //   PhaseIdealLoop::split_thru_region creates new nodes for loop that are not added
5635   //   to the loop body. Or maybe they are not added to the correct loop.
5636   //   at "Node* x = n->clone();"
5637   /*
5638   // Innermost loops need to verify loop bodies,
5639   // but only if no 'major_progress'
5640   int fail = 0;
5641   if (!Compile::current()->major_progress() && _child == nullptr) {
5642     for( uint i = 0; i < _body.size(); i++ ) {
5643       Node *n = _body.at(i);
5644       if (n->outcnt() == 0)  continue; // Ignore dead
5645       uint j;
5646       for( j = 0; j < loop->_body.size(); j++ )
5647         if( loop->_body.at(j) == n )
5648           break;
5649       if( j == loop->_body.size() ) { // Not found in loop body
5650         // Last ditch effort to avoid assertion: Its possible that we
5651         // have some users (so outcnt not zero) but are still dead.
5652         // Try to find from root.
5653         if (Compile::current()->root()->find(n->_idx)) {
5654           fail++;
5655           tty->print("We have that verify does not: ");
5656           n->dump();
5657         }
5658       }
5659     }
5660     for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
5661       Node *n = loop->_body.at(i2);
5662       if (n->outcnt() == 0)  continue; // Ignore dead
5663       uint j;
5664       for( j = 0; j < _body.size(); j++ )
5665         if( _body.at(j) == n )
5666           break;
5667       if( j == _body.size() ) { // Not found in loop body
5668         // Last ditch effort to avoid assertion: Its possible that we
5669         // have some users (so outcnt not zero) but are still dead.
5670         // Try to find from root.
5671         if (Compile::current()->root()->find(n->_idx)) {
5672           fail++;
5673           tty->print("Verify has that we do not: ");
5674           n->dump();
5675         }
5676       }
5677     }
5678     assert( !fail, "loop body mismatch" );
5679   }
5680   */
5681   return success;
5682 }
5683 #endif
5684 
5685 //------------------------------set_idom---------------------------------------
5686 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
5687   _nesting.check(); // Check if a potential reallocation in the resource arena is safe
5688   uint idx = d->_idx;
5689   if (idx >= _idom_size) {
5690     uint newsize = next_power_of_2(idx);
5691     _idom      = REALLOC_RESOURCE_ARRAY( Node*,     _idom,_idom_size,newsize);
5692     _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
5693     memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
5694     _idom_size = newsize;
5695   }
5696   _idom[idx] = n;
5697   _dom_depth[idx] = dom_depth;
5698 }
5699 
5700 //------------------------------recompute_dom_depth---------------------------------------
5701 // The dominator tree is constructed with only parent pointers.
5702 // This recomputes the depth in the tree by first tagging all
5703 // nodes as "no depth yet" marker.  The next pass then runs up
5704 // the dom tree from each node marked "no depth yet", and computes
5705 // the depth on the way back down.
5706 void PhaseIdealLoop::recompute_dom_depth() {
5707   uint no_depth_marker = C->unique();
5708   uint i;
5709   // Initialize depth to "no depth yet" and realize all lazy updates
5710   for (i = 0; i < _idom_size; i++) {
5711     // Only indices with a _dom_depth has a Node* or null (otherwise uninitialized).
5712     if (_dom_depth[i] > 0 && _idom[i] != nullptr) {
5713       _dom_depth[i] = no_depth_marker;
5714 
5715       // heal _idom if it has a fwd mapping in _loop_or_ctrl
5716       if (_idom[i]->in(0) == nullptr) {
5717         idom(i);
5718       }
5719     }
5720   }
5721   if (_dom_stk == nullptr) {
5722     uint init_size = C->live_nodes() / 100; // Guess that 1/100 is a reasonable initial size.
5723     if (init_size < 10) init_size = 10;
5724     _dom_stk = new GrowableArray<uint>(init_size);
5725   }
5726   // Compute new depth for each node.
5727   for (i = 0; i < _idom_size; i++) {
5728     uint j = i;
5729     // Run up the dom tree to find a node with a depth
5730     while (_dom_depth[j] == no_depth_marker) {
5731       _dom_stk->push(j);
5732       j = _idom[j]->_idx;
5733     }
5734     // Compute the depth on the way back down this tree branch
5735     uint dd = _dom_depth[j] + 1;
5736     while (_dom_stk->length() > 0) {
5737       uint j = _dom_stk->pop();
5738       _dom_depth[j] = dd;
5739       dd++;
5740     }
5741   }
5742 }
5743 
5744 //------------------------------sort-------------------------------------------
5745 // Insert 'loop' into the existing loop tree.  'innermost' is a leaf of the
5746 // loop tree, not the root.
5747 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
5748   if( !innermost ) return loop; // New innermost loop
5749 
5750   int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
5751   assert( loop_preorder, "not yet post-walked loop" );
5752   IdealLoopTree **pp = &innermost;      // Pointer to previous next-pointer
5753   IdealLoopTree *l = *pp;               // Do I go before or after 'l'?
5754 
5755   // Insert at start of list
5756   while( l ) {                  // Insertion sort based on pre-order
5757     if( l == loop ) return innermost; // Already on list!
5758     int l_preorder = get_preorder(l->_head); // Cache pre-order number
5759     assert( l_preorder, "not yet post-walked l" );
5760     // Check header pre-order number to figure proper nesting
5761     if( loop_preorder > l_preorder )
5762       break;                    // End of insertion
5763     // If headers tie (e.g., shared headers) check tail pre-order numbers.
5764     // Since I split shared headers, you'd think this could not happen.
5765     // BUT: I must first do the preorder numbering before I can discover I
5766     // have shared headers, so the split headers all get the same preorder
5767     // number as the RegionNode they split from.
5768     if( loop_preorder == l_preorder &&
5769         get_preorder(loop->_tail) < get_preorder(l->_tail) )
5770       break;                    // Also check for shared headers (same pre#)
5771     pp = &l->_parent;           // Chain up list
5772     l = *pp;
5773   }
5774   // Link into list
5775   // Point predecessor to me
5776   *pp = loop;
5777   // Point me to successor
5778   IdealLoopTree *p = loop->_parent;
5779   loop->_parent = l;            // Point me to successor
5780   if( p ) sort( p, innermost ); // Insert my parents into list as well
5781   return innermost;
5782 }
5783 
5784 //------------------------------build_loop_tree--------------------------------
5785 // I use a modified Vick/Tarjan algorithm.  I need pre- and a post- visit
5786 // bits.  The _loop_or_ctrl[] array is mapped by Node index and holds a null for
5787 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
5788 // tightest enclosing IdealLoopTree for post-walked.
5789 //
5790 // During my forward walk I do a short 1-layer lookahead to see if I can find
5791 // a loop backedge with that doesn't have any work on the backedge.  This
5792 // helps me construct nested loops with shared headers better.
5793 //
5794 // Once I've done the forward recursion, I do the post-work.  For each child
5795 // I check to see if there is a backedge.  Backedges define a loop!  I
5796 // insert an IdealLoopTree at the target of the backedge.
5797 //
5798 // During the post-work I also check to see if I have several children
5799 // belonging to different loops.  If so, then this Node is a decision point
5800 // where control flow can choose to change loop nests.  It is at this
5801 // decision point where I can figure out how loops are nested.  At this
5802 // time I can properly order the different loop nests from my children.
5803 // Note that there may not be any backedges at the decision point!
5804 //
5805 // Since the decision point can be far removed from the backedges, I can't
5806 // order my loops at the time I discover them.  Thus at the decision point
5807 // I need to inspect loop header pre-order numbers to properly nest my
5808 // loops.  This means I need to sort my childrens' loops by pre-order.
5809 // The sort is of size number-of-control-children, which generally limits
5810 // it to size 2 (i.e., I just choose between my 2 target loops).
5811 void PhaseIdealLoop::build_loop_tree() {
5812   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
5813   GrowableArray <Node *> bltstack(C->live_nodes() >> 1);
5814   Node *n = C->root();
5815   bltstack.push(n);
5816   int pre_order = 1;
5817   int stack_size;
5818 
5819   while ( ( stack_size = bltstack.length() ) != 0 ) {
5820     n = bltstack.top(); // Leave node on stack
5821     if ( !is_visited(n) ) {
5822       // ---- Pre-pass Work ----
5823       // Pre-walked but not post-walked nodes need a pre_order number.
5824 
5825       set_preorder_visited( n, pre_order ); // set as visited
5826 
5827       // ---- Scan over children ----
5828       // Scan first over control projections that lead to loop headers.
5829       // This helps us find inner-to-outer loops with shared headers better.
5830 
5831       // Scan children's children for loop headers.
5832       for ( int i = n->outcnt() - 1; i >= 0; --i ) {
5833         Node* m = n->raw_out(i);       // Child
5834         if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
5835           // Scan over children's children to find loop
5836           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
5837             Node* l = m->fast_out(j);
5838             if( is_visited(l) &&       // Been visited?
5839                 !is_postvisited(l) &&  // But not post-visited
5840                 get_preorder(l) < pre_order ) { // And smaller pre-order
5841               // Found!  Scan the DFS down this path before doing other paths
5842               bltstack.push(m);
5843               break;
5844             }
5845           }
5846         }
5847       }
5848       pre_order++;
5849     }
5850     else if ( !is_postvisited(n) ) {
5851       // Note: build_loop_tree_impl() adds out edges on rare occasions,
5852       // such as com.sun.rsasign.am::a.
5853       // For non-recursive version, first, process current children.
5854       // On next iteration, check if additional children were added.
5855       for ( int k = n->outcnt() - 1; k >= 0; --k ) {
5856         Node* u = n->raw_out(k);
5857         if ( u->is_CFG() && !is_visited(u) ) {
5858           bltstack.push(u);
5859         }
5860       }
5861       if ( bltstack.length() == stack_size ) {
5862         // There were no additional children, post visit node now
5863         (void)bltstack.pop(); // Remove node from stack
5864         pre_order = build_loop_tree_impl(n, pre_order);
5865         // Check for bailout
5866         if (C->failing()) {
5867           return;
5868         }
5869         // Check to grow _preorders[] array for the case when
5870         // build_loop_tree_impl() adds new nodes.
5871         check_grow_preorders();
5872       }
5873     }
5874     else {
5875       (void)bltstack.pop(); // Remove post-visited node from stack
5876     }
5877   }
5878   DEBUG_ONLY(verify_regions_in_irreducible_loops();)
5879 }
5880 
5881 //------------------------------build_loop_tree_impl---------------------------
5882 int PhaseIdealLoop::build_loop_tree_impl(Node* n, int pre_order) {
5883   // ---- Post-pass Work ----
5884   // Pre-walked but not post-walked nodes need a pre_order number.
5885 
5886   // Tightest enclosing loop for this Node
5887   IdealLoopTree *innermost = nullptr;
5888 
5889   // For all children, see if any edge is a backedge.  If so, make a loop
5890   // for it.  Then find the tightest enclosing loop for the self Node.
5891   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
5892     Node* m = n->fast_out(i);   // Child
5893     if (n == m) continue;      // Ignore control self-cycles
5894     if (!m->is_CFG()) continue;// Ignore non-CFG edges
5895 
5896     IdealLoopTree *l;           // Child's loop
5897     if (!is_postvisited(m)) {  // Child visited but not post-visited?
5898       // Found a backedge
5899       assert(get_preorder(m) < pre_order, "should be backedge");
5900       // Check for the RootNode, which is already a LoopNode and is allowed
5901       // to have multiple "backedges".
5902       if (m == C->root()) {     // Found the root?
5903         l = _ltree_root;        // Root is the outermost LoopNode
5904       } else {                  // Else found a nested loop
5905         // Insert a LoopNode to mark this loop.
5906         l = new IdealLoopTree(this, m, n);
5907       } // End of Else found a nested loop
5908       if (!has_loop(m)) {        // If 'm' does not already have a loop set
5909         set_loop(m, l);         // Set loop header to loop now
5910       }
5911     } else {                    // Else not a nested loop
5912       if (!_loop_or_ctrl[m->_idx]) continue; // Dead code has no loop
5913       IdealLoopTree* m_loop = get_loop(m);
5914       l = m_loop;          // Get previously determined loop
5915       // If successor is header of a loop (nest), move up-loop till it
5916       // is a member of some outer enclosing loop.  Since there are no
5917       // shared headers (I've split them already) I only need to go up
5918       // at most 1 level.
5919       while (l && l->_head == m) { // Successor heads loop?
5920         l = l->_parent;         // Move up 1 for me
5921       }
5922       // If this loop is not properly parented, then this loop
5923       // has no exit path out, i.e. its an infinite loop.
5924       if (!l) {
5925         // Make loop "reachable" from root so the CFG is reachable.  Basically
5926         // insert a bogus loop exit that is never taken.  'm', the loop head,
5927         // points to 'n', one (of possibly many) fall-in paths.  There may be
5928         // many backedges as well.
5929 
5930         if (!_verify_only) {
5931           // Insert the NeverBranch between 'm' and it's control user.
5932           NeverBranchNode *iff = new NeverBranchNode( m );
5933           _igvn.register_new_node_with_optimizer(iff);
5934           set_loop(iff, m_loop);
5935           Node *if_t = new CProjNode( iff, 0 );
5936           _igvn.register_new_node_with_optimizer(if_t);
5937           set_loop(if_t, m_loop);
5938 
5939           Node* cfg = nullptr;       // Find the One True Control User of m
5940           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
5941             Node* x = m->fast_out(j);
5942             if (x->is_CFG() && x != m && x != iff)
5943               { cfg = x; break; }
5944           }
5945           assert(cfg != nullptr, "must find the control user of m");
5946           uint k = 0;             // Probably cfg->in(0)
5947           while( cfg->in(k) != m ) k++; // But check in case cfg is a Region
5948           _igvn.replace_input_of(cfg, k, if_t); // Now point to NeverBranch
5949 
5950           // Now create the never-taken loop exit
5951           Node *if_f = new CProjNode( iff, 1 );
5952           _igvn.register_new_node_with_optimizer(if_f);
5953           set_loop(if_f, _ltree_root);
5954           // Find frame ptr for Halt.  Relies on the optimizer
5955           // V-N'ing.  Easier and quicker than searching through
5956           // the program structure.
5957           Node *frame = new ParmNode( C->start(), TypeFunc::FramePtr );
5958           _igvn.register_new_node_with_optimizer(frame);
5959           // Halt & Catch Fire
5960           Node* halt = new HaltNode(if_f, frame, "never-taken loop exit reached");
5961           _igvn.register_new_node_with_optimizer(halt);
5962           set_loop(halt, _ltree_root);
5963           _igvn.add_input_to(C->root(), halt);
5964         }
5965         set_loop(C->root(), _ltree_root);
5966         // move to outer most loop with same header
5967         l = m_loop;
5968         while (true) {
5969           IdealLoopTree* next = l->_parent;
5970           if (next == nullptr || next->_head != m) {
5971             break;
5972           }
5973           l = next;
5974         }
5975         // properly insert infinite loop in loop tree
5976         sort(_ltree_root, l);
5977         // fix child link from parent
5978         IdealLoopTree* p = l->_parent;
5979         l->_next = p->_child;
5980         p->_child = l;
5981         // code below needs enclosing loop
5982         l = l->_parent;
5983       }
5984     }
5985     if (is_postvisited(l->_head)) {
5986       // We are currently visiting l, but its head has already been post-visited.
5987       // l is irreducible: we just found a second entry m.
5988       _has_irreducible_loops = true;
5989       RegionNode* secondary_entry = m->as_Region();
5990 
5991       if (!secondary_entry->can_be_irreducible_entry()) {
5992         assert(!VerifyNoNewIrreducibleLoops, "A new irreducible loop was created after parsing.");
5993         C->record_method_not_compilable("A new irreducible loop was created after parsing.");
5994         return pre_order;
5995       }
5996 
5997       // Walk up the loop-tree, mark all loops that are already post-visited as irreducible
5998       // Since m is a secondary entry to them all.
5999       while( is_postvisited(l->_head) ) {
6000         l->_irreducible = 1; // = true
6001         RegionNode* head = l->_head->as_Region();
6002         if (!head->can_be_irreducible_entry()) {
6003           assert(!VerifyNoNewIrreducibleLoops, "A new irreducible loop was created after parsing.");
6004           C->record_method_not_compilable("A new irreducible loop was created after parsing.");
6005           return pre_order;
6006         }
6007         l = l->_parent;
6008         // Check for bad CFG here to prevent crash, and bailout of compile
6009         if (l == nullptr) {
6010 #ifndef PRODUCT
6011           if (TraceLoopOpts) {
6012             tty->print_cr("bailout: unhandled CFG: infinite irreducible loop");
6013             m->dump();
6014           }
6015 #endif
6016           // This is a rare case that we do not want to handle in C2.
6017           C->record_method_not_compilable("unhandled CFG detected during loop optimization");
6018           return pre_order;
6019         }
6020       }
6021     }
6022     if (!_verify_only) {
6023       C->set_has_irreducible_loop(_has_irreducible_loops);
6024     }
6025 
6026     // This Node might be a decision point for loops.  It is only if
6027     // it's children belong to several different loops.  The sort call
6028     // does a trivial amount of work if there is only 1 child or all
6029     // children belong to the same loop.  If however, the children
6030     // belong to different loops, the sort call will properly set the
6031     // _parent pointers to show how the loops nest.
6032     //
6033     // In any case, it returns the tightest enclosing loop.
6034     innermost = sort( l, innermost );
6035   }
6036 
6037   // Def-use info will have some dead stuff; dead stuff will have no
6038   // loop decided on.
6039 
6040   // Am I a loop header?  If so fix up my parent's child and next ptrs.
6041   if( innermost && innermost->_head == n ) {
6042     assert( get_loop(n) == innermost, "" );
6043     IdealLoopTree *p = innermost->_parent;
6044     IdealLoopTree *l = innermost;
6045     while (p && l->_head == n) {
6046       l->_next = p->_child;     // Put self on parents 'next child'
6047       p->_child = l;            // Make self as first child of parent
6048       l = p;                    // Now walk up the parent chain
6049       p = l->_parent;
6050     }
6051   } else {
6052     // Note that it is possible for a LoopNode to reach here, if the
6053     // backedge has been made unreachable (hence the LoopNode no longer
6054     // denotes a Loop, and will eventually be removed).
6055 
6056     // Record tightest enclosing loop for self.  Mark as post-visited.
6057     set_loop(n, innermost);
6058     // Also record has_call flag early on
6059     if (innermost) {
6060       if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
6061         // Do not count uncommon calls
6062         if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
6063           Node *iff = n->in(0)->in(0);
6064           // No any calls for vectorized loops.
6065           if (C->do_superword() ||
6066               !iff->is_If() ||
6067               (n->in(0)->Opcode() == Op_IfFalse && (1.0 - iff->as_If()->_prob) >= 0.01) ||
6068               iff->as_If()->_prob >= 0.01) {
6069             innermost->_has_call = 1;
6070           }
6071         }
6072       } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
6073         // Disable loop optimizations if the loop has a scalar replaceable
6074         // allocation. This disabling may cause a potential performance lost
6075         // if the allocation is not eliminated for some reason.
6076         innermost->_allow_optimizations = false;
6077         innermost->_has_call = 1; // = true
6078       } else if (n->Opcode() == Op_SafePoint) {
6079         // Record all safepoints in this loop.
6080         if (innermost->_safepts == nullptr) innermost->_safepts = new Node_List();
6081         innermost->_safepts->push(n);
6082       }
6083     }
6084   }
6085 
6086   // Flag as post-visited now
6087   set_postvisited(n);
6088   return pre_order;
6089 }
6090 
6091 #ifdef ASSERT
6092 //--------------------------verify_regions_in_irreducible_loops----------------
6093 // Iterate down from Root through CFG, verify for every region:
6094 // if it is in an irreducible loop it must be marked as such
6095 void PhaseIdealLoop::verify_regions_in_irreducible_loops() {
6096   ResourceMark rm;
6097   if (!_has_irreducible_loops) {
6098     // last build_loop_tree has not found any irreducible loops
6099     // hence no region has to be marked is_in_irreduible_loop
6100     return;
6101   }
6102 
6103   RootNode* root = C->root();
6104   Unique_Node_List worklist; // visit all nodes once
6105   worklist.push(root);
6106   bool failure = false;
6107   for (uint i = 0; i < worklist.size(); i++) {
6108     Node* n = worklist.at(i);
6109     if (n->is_Region()) {
6110       RegionNode* region = n->as_Region();
6111       if (is_in_irreducible_loop(region) &&
6112           region->loop_status() == RegionNode::LoopStatus::Reducible) {
6113         failure = true;
6114         tty->print("irreducible! ");
6115         region->dump();
6116       }
6117     }
6118     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
6119       Node* use = n->fast_out(j);
6120       if (use->is_CFG()) {
6121         worklist.push(use); // push if was not pushed before
6122       }
6123     }
6124   }
6125   assert(!failure, "region in irreducible loop was marked as reducible");
6126 }
6127 
6128 //---------------------------is_in_irreducible_loop-------------------------
6129 // Analogous to ciTypeFlow::Block::is_in_irreducible_loop
6130 bool PhaseIdealLoop::is_in_irreducible_loop(RegionNode* region) {
6131   if (!_has_irreducible_loops) {
6132     return false; // no irreducible loop in graph
6133   }
6134   IdealLoopTree* l = get_loop(region); // l: innermost loop that contains region
6135   do {
6136     if (l->_irreducible) {
6137       return true; // found it
6138     }
6139     if (l == _ltree_root) {
6140       return false; // reached root, terimnate
6141     }
6142     l = l->_parent;
6143   } while (l != nullptr);
6144   assert(region->is_in_infinite_subgraph(), "must be in infinite subgraph");
6145   // We have "l->_parent == nullptr", which happens only for infinite loops,
6146   // where no parent is attached to the loop. We did not find any irreducible
6147   // loop from this block out to lp. Thus lp only has one entry, and no exit
6148   // (it is infinite and reducible). We can always rewrite an infinite loop
6149   // that is nested inside other loops:
6150   // while(condition) { infinite_loop; }
6151   // with an equivalent program where the infinite loop is an outermost loop
6152   // that is not nested in any loop:
6153   // while(condition) { break; } infinite_loop;
6154   // Thus, we can understand lp as an outermost loop, and can terminate and
6155   // conclude: this block is in no irreducible loop.
6156   return false;
6157 }
6158 #endif
6159 
6160 //------------------------------build_loop_early-------------------------------
6161 // Put Data nodes into some loop nest, by setting the _loop_or_ctrl[]->loop mapping.
6162 // First pass computes the earliest controlling node possible.  This is the
6163 // controlling input with the deepest dominating depth.
6164 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
6165   while (worklist.size() != 0) {
6166     // Use local variables nstack_top_n & nstack_top_i to cache values
6167     // on nstack's top.
6168     Node *nstack_top_n = worklist.pop();
6169     uint  nstack_top_i = 0;
6170 //while_nstack_nonempty:
6171     while (true) {
6172       // Get parent node and next input's index from stack's top.
6173       Node  *n = nstack_top_n;
6174       uint   i = nstack_top_i;
6175       uint cnt = n->req(); // Count of inputs
6176       if (i == 0) {        // Pre-process the node.
6177         if( has_node(n) &&            // Have either loop or control already?
6178             !has_ctrl(n) ) {          // Have loop picked out already?
6179           // During "merge_many_backedges" we fold up several nested loops
6180           // into a single loop.  This makes the members of the original
6181           // loop bodies pointing to dead loops; they need to move up
6182           // to the new UNION'd larger loop.  I set the _head field of these
6183           // dead loops to null and the _parent field points to the owning
6184           // loop.  Shades of UNION-FIND algorithm.
6185           IdealLoopTree *ilt;
6186           while( !(ilt = get_loop(n))->_head ) {
6187             // Normally I would use a set_loop here.  But in this one special
6188             // case, it is legal (and expected) to change what loop a Node
6189             // belongs to.
6190             _loop_or_ctrl.map(n->_idx, (Node*)(ilt->_parent));
6191           }
6192           // Remove safepoints ONLY if I've already seen I don't need one.
6193           // (the old code here would yank a 2nd safepoint after seeing a
6194           // first one, even though the 1st did not dominate in the loop body
6195           // and thus could be avoided indefinitely)
6196           if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
6197               is_deleteable_safept(n)) {
6198             Node *in = n->in(TypeFunc::Control);
6199             replace_node_and_forward_ctrl(n, in); // Pull safepoint now
6200             if (ilt->_safepts != nullptr) {
6201               ilt->_safepts->yank(n);
6202             }
6203             // Carry on with the recursion "as if" we are walking
6204             // only the control input
6205             if( !visited.test_set( in->_idx ) ) {
6206               worklist.push(in);      // Visit this guy later, using worklist
6207             }
6208             // Get next node from nstack:
6209             // - skip n's inputs processing by setting i > cnt;
6210             // - we also will not call set_early_ctrl(n) since
6211             //   has_node(n) == true (see the condition above).
6212             i = cnt + 1;
6213           }
6214         }
6215       } // if (i == 0)
6216 
6217       // Visit all inputs
6218       bool done = true;       // Assume all n's inputs will be processed
6219       while (i < cnt) {
6220         Node *in = n->in(i);
6221         ++i;
6222         if (in == nullptr) continue;
6223         if (in->pinned() && !in->is_CFG())
6224           set_ctrl(in, in->in(0));
6225         int is_visited = visited.test_set( in->_idx );
6226         if (!has_node(in)) {  // No controlling input yet?
6227           assert( !in->is_CFG(), "CFG Node with no controlling input?" );
6228           assert( !is_visited, "visit only once" );
6229           nstack.push(n, i);  // Save parent node and next input's index.
6230           nstack_top_n = in;  // Process current input now.
6231           nstack_top_i = 0;
6232           done = false;       // Not all n's inputs processed.
6233           break; // continue while_nstack_nonempty;
6234         } else if (!is_visited) {
6235           // This guy has a location picked out for him, but has not yet
6236           // been visited.  Happens to all CFG nodes, for instance.
6237           // Visit him using the worklist instead of recursion, to break
6238           // cycles.  Since he has a location already we do not need to
6239           // find his location before proceeding with the current Node.
6240           worklist.push(in);  // Visit this guy later, using worklist
6241         }
6242       }
6243       if (done) {
6244         // All of n's inputs have been processed, complete post-processing.
6245 
6246         // Compute earliest point this Node can go.
6247         // CFG, Phi, pinned nodes already know their controlling input.
6248         if (!has_node(n)) {
6249           // Record earliest legal location
6250           set_early_ctrl(n, false);
6251         }
6252         if (nstack.is_empty()) {
6253           // Finished all nodes on stack.
6254           // Process next node on the worklist.
6255           break;
6256         }
6257         // Get saved parent node and next input's index.
6258         nstack_top_n = nstack.node();
6259         nstack_top_i = nstack.index();
6260         nstack.pop();
6261       }
6262     } // while (true)
6263   }
6264 }
6265 
6266 //------------------------------dom_lca_internal--------------------------------
6267 // Pair-wise LCA
6268 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
6269   if( !n1 ) return n2;          // Handle null original LCA
6270   assert( n1->is_CFG(), "" );
6271   assert( n2->is_CFG(), "" );
6272   // find LCA of all uses
6273   uint d1 = dom_depth(n1);
6274   uint d2 = dom_depth(n2);
6275   while (n1 != n2) {
6276     if (d1 > d2) {
6277       n1 =      idom(n1);
6278       d1 = dom_depth(n1);
6279     } else if (d1 < d2) {
6280       n2 =      idom(n2);
6281       d2 = dom_depth(n2);
6282     } else {
6283       // Here d1 == d2.  Due to edits of the dominator-tree, sections
6284       // of the tree might have the same depth.  These sections have
6285       // to be searched more carefully.
6286 
6287       // Scan up all the n1's with equal depth, looking for n2.
6288       Node *t1 = idom(n1);
6289       while (dom_depth(t1) == d1) {
6290         if (t1 == n2)  return n2;
6291         t1 = idom(t1);
6292       }
6293       // Scan up all the n2's with equal depth, looking for n1.
6294       Node *t2 = idom(n2);
6295       while (dom_depth(t2) == d2) {
6296         if (t2 == n1)  return n1;
6297         t2 = idom(t2);
6298       }
6299       // Move up to a new dominator-depth value as well as up the dom-tree.
6300       n1 = t1;
6301       n2 = t2;
6302       d1 = dom_depth(n1);
6303       d2 = dom_depth(n2);
6304     }
6305   }
6306   return n1;
6307 }
6308 
6309 //------------------------------compute_idom-----------------------------------
6310 // Locally compute IDOM using dom_lca call.  Correct only if the incoming
6311 // IDOMs are correct.
6312 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
6313   assert( region->is_Region(), "" );
6314   Node *LCA = nullptr;
6315   for( uint i = 1; i < region->req(); i++ ) {
6316     if( region->in(i) != C->top() )
6317       LCA = dom_lca( LCA, region->in(i) );
6318   }
6319   return LCA;
6320 }
6321 
6322 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) {
6323   bool had_error = false;
6324 #ifdef ASSERT
6325   if (early != C->root()) {
6326     // Make sure that there's a dominance path from LCA to early
6327     Node* d = LCA;
6328     while (d != early) {
6329       if (d == C->root()) {
6330         dump_bad_graph("Bad graph detected in compute_lca_of_uses", n, early, LCA);
6331         tty->print_cr("*** Use %d isn't dominated by def %d ***", use->_idx, n->_idx);
6332         had_error = true;
6333         break;
6334       }
6335       d = idom(d);
6336     }
6337   }
6338 #endif
6339   return had_error;
6340 }
6341 
6342 
6343 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
6344   // Compute LCA over list of uses
6345   bool had_error = false;
6346   Node *LCA = nullptr;
6347   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
6348     Node* c = n->fast_out(i);
6349     if (_loop_or_ctrl[c->_idx] == nullptr)
6350       continue;                 // Skip the occasional dead node
6351     if( c->is_Phi() ) {         // For Phis, we must land above on the path
6352       for( uint j=1; j<c->req(); j++ ) {// For all inputs
6353         if( c->in(j) == n ) {   // Found matching input?
6354           Node *use = c->in(0)->in(j);
6355           if (_verify_only && use->is_top()) continue;
6356           LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
6357           if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
6358         }
6359       }
6360     } else {
6361       // For CFG data-users, use is in the block just prior
6362       Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
6363       LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
6364       if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
6365     }
6366   }
6367   assert(!had_error, "bad dominance");
6368   return LCA;
6369 }
6370 
6371 // Check the shape of the graph at the loop entry. In some cases,
6372 // the shape of the graph does not match the shape outlined below.
6373 // That is caused by the Opaque1 node "protecting" the shape of
6374 // the graph being removed by, for example, the IGVN performed
6375 // in PhaseIdealLoop::build_and_optimize().
6376 //
6377 // After the Opaque1 node has been removed, optimizations (e.g., split-if,
6378 // loop unswitching, and IGVN, or a combination of them) can freely change
6379 // the graph's shape. As a result, the graph shape outlined below cannot
6380 // be guaranteed anymore.
6381 Node* CountedLoopNode::is_canonical_loop_entry() {
6382   if (!is_main_loop() && !is_post_loop()) {
6383     return nullptr;
6384   }
6385   Node* ctrl = skip_assertion_predicates_with_halt();
6386 
6387   if (ctrl == nullptr || (!ctrl->is_IfTrue() && !ctrl->is_IfFalse())) {
6388     return nullptr;
6389   }
6390   Node* iffm = ctrl->in(0);
6391   if (iffm == nullptr || iffm->Opcode() != Op_If) {
6392     return nullptr;
6393   }
6394   Node* bolzm = iffm->in(1);
6395   if (bolzm == nullptr || !bolzm->is_Bool()) {
6396     return nullptr;
6397   }
6398   Node* cmpzm = bolzm->in(1);
6399   if (cmpzm == nullptr || !cmpzm->is_Cmp()) {
6400     return nullptr;
6401   }
6402 
6403   uint input = is_main_loop() ? 2 : 1;
6404   if (input >= cmpzm->req() || cmpzm->in(input) == nullptr) {
6405     return nullptr;
6406   }
6407   bool res = cmpzm->in(input)->Opcode() == Op_OpaqueZeroTripGuard;
6408 #ifdef ASSERT
6409   bool found_opaque = false;
6410   for (uint i = 1; i < cmpzm->req(); i++) {
6411     Node* opnd = cmpzm->in(i);
6412     if (opnd && opnd->is_Opaque1()) {
6413       found_opaque = true;
6414       break;
6415     }
6416   }
6417   assert(found_opaque == res, "wrong pattern");
6418 #endif
6419   return res ? cmpzm->in(input) : nullptr;
6420 }
6421 
6422 // Find pre loop end from main loop. Returns nullptr if none.
6423 CountedLoopEndNode* CountedLoopNode::find_pre_loop_end() {
6424   assert(is_main_loop(), "Can only find pre-loop from main-loop");
6425   // The loop cannot be optimized if the graph shape at the loop entry is
6426   // inappropriate.
6427   if (is_canonical_loop_entry() == nullptr) {
6428     return nullptr;
6429   }
6430 
6431   Node* p_f = skip_assertion_predicates_with_halt()->in(0)->in(0);
6432   if (!p_f->is_IfFalse() || !p_f->in(0)->is_CountedLoopEnd()) {
6433     return nullptr;
6434   }
6435   CountedLoopEndNode* pre_end = p_f->in(0)->as_CountedLoopEnd();
6436   CountedLoopNode* loop_node = pre_end->loopnode();
6437   if (loop_node == nullptr || !loop_node->is_pre_loop()) {
6438     return nullptr;
6439   }
6440   return pre_end;
6441 }
6442 
6443 Node* CountedLoopNode::uncasted_init_trip(bool uncast) {
6444   Node* init = init_trip();
6445   if (uncast && init->is_CastII()) {
6446     // skip over the cast added by PhaseIdealLoop::cast_incr_before_loop() when pre/post/main loops are created because
6447     // it can get in the way of type propagation. For instance, the index tested by an Assertion Predicate, if the cast
6448     // is not skipped over, could be (1):
6449     // (AddI (CastII (AddI pre_loop_iv -2) int) 1)
6450     // while without the cast, it is (2):
6451     // (AddI (AddI pre_loop_iv -2) 1)
6452     // which is be transformed to (3):
6453     // (AddI pre_loop_iv -1)
6454     // The compiler may be able to constant fold the Assertion Predicate condition for (3) but not (1)
6455     assert(init->as_CastII()->carry_dependency() && skip_assertion_predicates_with_halt() == init->in(0), "casted iv phi from pre loop expected");
6456     init = init->in(1);
6457   }
6458   return init;
6459 }
6460 
6461 //------------------------------get_late_ctrl----------------------------------
6462 // Compute latest legal control.
6463 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
6464   assert(early != nullptr, "early control should not be null");
6465 
6466   Node* LCA = compute_lca_of_uses(n, early);
6467 #ifdef ASSERT
6468   if (LCA == C->root() && LCA != early) {
6469     // def doesn't dominate uses so print some useful debugging output
6470     compute_lca_of_uses(n, early, true);
6471   }
6472 #endif
6473 
6474   if (n->is_Load() && LCA != early) {
6475     LCA = get_late_ctrl_with_anti_dep(n->as_Load(), early, LCA);
6476   }
6477 
6478   assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
6479   return LCA;
6480 }
6481 
6482 // if this is a load, check for anti-dependent stores
6483 // We use a conservative algorithm to identify potential interfering
6484 // instructions and for rescheduling the load.  The users of the memory
6485 // input of this load are examined.  Any use which is not a load and is
6486 // dominated by early is considered a potentially interfering store.
6487 // This can produce false positives.
6488 Node* PhaseIdealLoop::get_late_ctrl_with_anti_dep(LoadNode* n, Node* early, Node* LCA) {
6489   int load_alias_idx = C->get_alias_index(n->adr_type());
6490   if (C->alias_type(load_alias_idx)->is_rewritable()) {
6491     Unique_Node_List worklist;
6492 
6493     Node* mem = n->in(MemNode::Memory);
6494     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
6495       Node* s = mem->fast_out(i);
6496       worklist.push(s);
6497     }
6498     for (uint i = 0; i < worklist.size() && LCA != early; i++) {
6499       Node* s = worklist.at(i);
6500       if (s->is_Load() || s->Opcode() == Op_SafePoint ||
6501           (s->is_CallStaticJava() && s->as_CallStaticJava()->uncommon_trap_request() != 0) ||
6502           s->is_Phi()) {
6503         continue;
6504       } else if (s->is_MergeMem()) {
6505         for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
6506           Node* s1 = s->fast_out(i);
6507           worklist.push(s1);
6508         }
6509       } else {
6510         Node* sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
6511         assert(sctrl != nullptr || !s->is_reachable_from_root(), "must have control");
6512         if (sctrl != nullptr && !sctrl->is_top() && is_dominator(early, sctrl)) {
6513           const TypePtr* adr_type = s->adr_type();
6514           if (s->is_ArrayCopy()) {
6515             // Copy to known instance needs destination type to test for aliasing
6516             const TypePtr* dest_type = s->as_ArrayCopy()->_dest_type;
6517             if (dest_type != TypeOopPtr::BOTTOM) {
6518               adr_type = dest_type;
6519             }
6520           }
6521           if (C->can_alias(adr_type, load_alias_idx)) {
6522             LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
6523           } else if (s->is_CFG() && s->is_Multi()) {
6524             // Look for the memory use of s (that is the use of its memory projection)
6525             for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
6526               Node* s1 = s->fast_out(i);
6527               assert(s1->is_Proj(), "projection expected");
6528               if (_igvn.type(s1) == Type::MEMORY) {
6529                 for (DUIterator_Fast jmax, j = s1->fast_outs(jmax); j < jmax; j++) {
6530                   Node* s2 = s1->fast_out(j);
6531                   worklist.push(s2);
6532                 }
6533               }
6534             }
6535           }
6536         }
6537       }
6538     }
6539     // For Phis only consider Region's inputs that were reached by following the memory edges
6540     if (LCA != early) {
6541       for (uint i = 0; i < worklist.size(); i++) {
6542         Node* s = worklist.at(i);
6543         if (s->is_Phi() && C->can_alias(s->adr_type(), load_alias_idx)) {
6544           Node* r = s->in(0);
6545           for (uint j = 1; j < s->req(); j++) {
6546             Node* in = s->in(j);
6547             Node* r_in = r->in(j);
6548             // We can't reach any node from a Phi because we don't enqueue Phi's uses above
6549             if (((worklist.member(in) && !in->is_Phi()) || in == mem) && is_dominator(early, r_in)) {
6550               LCA = dom_lca_for_get_late_ctrl(LCA, r_in, n);
6551             }
6552           }
6553         }
6554       }
6555     }
6556   }
6557   return LCA;
6558 }
6559 
6560 // Is CFG node 'dominator' dominating node 'n'?
6561 bool PhaseIdealLoop::is_dominator(Node* dominator, Node* n) {
6562   if (dominator == n) {
6563     return true;
6564   }
6565   assert(dominator->is_CFG() && n->is_CFG(), "must have CFG nodes");
6566   uint dd = dom_depth(dominator);
6567   while (dom_depth(n) >= dd) {
6568     if (n == dominator) {
6569       return true;
6570     }
6571     n = idom(n);
6572   }
6573   return false;
6574 }
6575 
6576 // Is CFG node 'dominator' strictly dominating node 'n'?
6577 bool PhaseIdealLoop::is_strict_dominator(Node* dominator, Node* n) {
6578   return dominator != n && is_dominator(dominator, n);
6579 }
6580 
6581 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
6582 // Pair-wise LCA with tags.
6583 // Tag each index with the node 'tag' currently being processed
6584 // before advancing up the dominator chain using idom().
6585 // Later calls that find a match to 'tag' know that this path has already
6586 // been considered in the current LCA (which is input 'n1' by convention).
6587 // Since get_late_ctrl() is only called once for each node, the tag array
6588 // does not need to be cleared between calls to get_late_ctrl().
6589 // Algorithm trades a larger constant factor for better asymptotic behavior
6590 //
6591 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal(Node *n1, Node *n2, Node *tag_node) {
6592   uint d1 = dom_depth(n1);
6593   uint d2 = dom_depth(n2);
6594   jlong tag = tag_node->_idx | (((jlong)_dom_lca_tags_round) << 32);
6595 
6596   do {
6597     if (d1 > d2) {
6598       // current lca is deeper than n2
6599       _dom_lca_tags.at_put_grow(n1->_idx, tag);
6600       n1 =      idom(n1);
6601       d1 = dom_depth(n1);
6602     } else if (d1 < d2) {
6603       // n2 is deeper than current lca
6604       jlong memo = _dom_lca_tags.at_grow(n2->_idx, 0);
6605       if (memo == tag) {
6606         return n1;    // Return the current LCA
6607       }
6608       _dom_lca_tags.at_put_grow(n2->_idx, tag);
6609       n2 =      idom(n2);
6610       d2 = dom_depth(n2);
6611     } else {
6612       // Here d1 == d2.  Due to edits of the dominator-tree, sections
6613       // of the tree might have the same depth.  These sections have
6614       // to be searched more carefully.
6615 
6616       // Scan up all the n1's with equal depth, looking for n2.
6617       _dom_lca_tags.at_put_grow(n1->_idx, tag);
6618       Node *t1 = idom(n1);
6619       while (dom_depth(t1) == d1) {
6620         if (t1 == n2)  return n2;
6621         _dom_lca_tags.at_put_grow(t1->_idx, tag);
6622         t1 = idom(t1);
6623       }
6624       // Scan up all the n2's with equal depth, looking for n1.
6625       _dom_lca_tags.at_put_grow(n2->_idx, tag);
6626       Node *t2 = idom(n2);
6627       while (dom_depth(t2) == d2) {
6628         if (t2 == n1)  return n1;
6629         _dom_lca_tags.at_put_grow(t2->_idx, tag);
6630         t2 = idom(t2);
6631       }
6632       // Move up to a new dominator-depth value as well as up the dom-tree.
6633       n1 = t1;
6634       n2 = t2;
6635       d1 = dom_depth(n1);
6636       d2 = dom_depth(n2);
6637     }
6638   } while (n1 != n2);
6639   return n1;
6640 }
6641 
6642 //------------------------------init_dom_lca_tags------------------------------
6643 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
6644 // Intended use does not involve any growth for the array, so it could
6645 // be of fixed size.
6646 void PhaseIdealLoop::init_dom_lca_tags() {
6647   uint limit = C->unique() + 1;
6648   _dom_lca_tags.at_grow(limit, 0);
6649   _dom_lca_tags_round = 0;
6650 #ifdef ASSERT
6651   for (uint i = 0; i < limit; ++i) {
6652     assert(_dom_lca_tags.at(i) == 0, "Must be distinct from each node pointer");
6653   }
6654 #endif // ASSERT
6655 }
6656 
6657 //------------------------------build_loop_late--------------------------------
6658 // Put Data nodes into some loop nest, by setting the _loop_or_ctrl[]->loop mapping.
6659 // Second pass finds latest legal placement, and ideal loop placement.
6660 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
6661   while (worklist.size() != 0) {
6662     Node *n = worklist.pop();
6663     // Only visit once
6664     if (visited.test_set(n->_idx)) continue;
6665     uint cnt = n->outcnt();
6666     uint   i = 0;
6667     while (true) {
6668       assert(_loop_or_ctrl[n->_idx], "no dead nodes");
6669       // Visit all children
6670       if (i < cnt) {
6671         Node* use = n->raw_out(i);
6672         ++i;
6673         // Check for dead uses.  Aggressively prune such junk.  It might be
6674         // dead in the global sense, but still have local uses so I cannot
6675         // easily call 'remove_dead_node'.
6676         if (_loop_or_ctrl[use->_idx] != nullptr || use->is_top()) { // Not dead?
6677           // Due to cycles, we might not hit the same fixed point in the verify
6678           // pass as we do in the regular pass.  Instead, visit such phis as
6679           // simple uses of the loop head.
6680           if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
6681             if( !visited.test(use->_idx) )
6682               worklist.push(use);
6683           } else if( !visited.test_set(use->_idx) ) {
6684             nstack.push(n, i); // Save parent and next use's index.
6685             n   = use;         // Process all children of current use.
6686             cnt = use->outcnt();
6687             i   = 0;
6688           }
6689         } else {
6690           // Do not visit around the backedge of loops via data edges.
6691           // push dead code onto a worklist
6692           _deadlist.push(use);
6693         }
6694       } else {
6695         // All of n's children have been processed, complete post-processing.
6696         build_loop_late_post(n);
6697         if (C->failing()) { return; }
6698         if (nstack.is_empty()) {
6699           // Finished all nodes on stack.
6700           // Process next node on the worklist.
6701           break;
6702         }
6703         // Get saved parent node and next use's index. Visit the rest of uses.
6704         n   = nstack.node();
6705         cnt = n->outcnt();
6706         i   = nstack.index();
6707         nstack.pop();
6708       }
6709     }
6710   }
6711 }
6712 
6713 // Verify that no data node is scheduled in the outer loop of a strip
6714 // mined loop.
6715 void PhaseIdealLoop::verify_strip_mined_scheduling(Node *n, Node* least) {
6716 #ifdef ASSERT
6717   if (get_loop(least)->_nest == 0) {
6718     return;
6719   }
6720   IdealLoopTree* loop = get_loop(least);
6721   Node* head = loop->_head;
6722   if (head->is_OuterStripMinedLoop() &&
6723       // Verification can't be applied to fully built strip mined loops
6724       head->as_Loop()->outer_loop_end()->in(1)->find_int_con(-1) == 0) {
6725     Node* sfpt = head->as_Loop()->outer_safepoint();
6726     ResourceMark rm;
6727     Unique_Node_List wq;
6728     wq.push(sfpt);
6729     for (uint i = 0; i < wq.size(); i++) {
6730       Node *m = wq.at(i);
6731       for (uint i = 1; i < m->req(); i++) {
6732         Node* nn = m->in(i);
6733         if (nn == n) {
6734           return;
6735         }
6736         if (nn != nullptr && has_ctrl(nn) && get_loop(get_ctrl(nn)) == loop) {
6737           wq.push(nn);
6738         }
6739       }
6740     }
6741     ShouldNotReachHere();
6742   }
6743 #endif
6744 }
6745 
6746 
6747 //------------------------------build_loop_late_post---------------------------
6748 // Put Data nodes into some loop nest, by setting the _loop_or_ctrl[]->loop mapping.
6749 // Second pass finds latest legal placement, and ideal loop placement.
6750 void PhaseIdealLoop::build_loop_late_post(Node *n) {
6751   build_loop_late_post_work(n, true);
6752 }
6753 
6754 // Class to visit all predicates in a predicate chain to find out which are dominated by a given node. Keeps track of
6755 // the entry to the earliest predicate that is still dominated by the given dominator. This class is used when trying to
6756 // legally skip all predicates when figuring out the latest placement such that a node does not interfere with Loop
6757 // Predication or creating a Loop Limit Check Predicate later.
6758 class DominatedPredicates : public UnifiedPredicateVisitor {
6759   Node* const _dominator;
6760   Node* _earliest_dominated_predicate_entry;
6761   bool _should_continue;
6762   PhaseIdealLoop* const _phase;
6763 
6764  public:
6765   DominatedPredicates(Node* dominator, Node* start_node, PhaseIdealLoop* phase)
6766       : _dominator(dominator),
6767         _earliest_dominated_predicate_entry(start_node),
6768         _should_continue(true),
6769         _phase(phase) {}
6770   NONCOPYABLE(DominatedPredicates);
6771 
6772   bool should_continue() const override {
6773     return _should_continue;
6774   }
6775 
6776   // Returns the entry to the earliest predicate that is still dominated by the given dominator (all could be dominated).
6777   Node* earliest_dominated_predicate_entry() const {
6778     return _earliest_dominated_predicate_entry;
6779   }
6780 
6781   void visit_predicate(const Predicate& predicate) override {
6782     Node* entry = predicate.entry();
6783     if (_phase->is_strict_dominator(entry, _dominator)) {
6784       _should_continue = false;
6785     } else {
6786       _earliest_dominated_predicate_entry = entry;
6787     }
6788   }
6789 };
6790 
6791 void PhaseIdealLoop::build_loop_late_post_work(Node *n, bool pinned) {
6792 
6793   if (n->req() == 2 && (n->Opcode() == Op_ConvI2L || n->Opcode() == Op_CastII) && !C->major_progress() && !_verify_only) {
6794     _igvn._worklist.push(n);  // Maybe we'll normalize it, if no more loops.
6795   }
6796 
6797 #ifdef ASSERT
6798   if (_verify_only && !n->is_CFG()) {
6799     // Check def-use domination.
6800     // We would like to expose this check in product but it appears to be expensive.
6801     compute_lca_of_uses(n, get_ctrl(n), true /* verify */);
6802   }
6803 #endif
6804 
6805   // CFG and pinned nodes already handled
6806   if( n->in(0) ) {
6807     if( n->in(0)->is_top() ) return; // Dead?
6808 
6809     // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
6810     // _must_ be pinned (they have to observe their control edge of course).
6811     // Unlike Stores (which modify an unallocable resource, the memory
6812     // state), Mods/Loads can float around.  So free them up.
6813     switch( n->Opcode() ) {
6814     case Op_DivI:
6815     case Op_DivF:
6816     case Op_DivD:
6817     case Op_ModI:
6818     case Op_LoadB:              // Same with Loads; they can sink
6819     case Op_LoadUB:             // during loop optimizations.
6820     case Op_LoadUS:
6821     case Op_LoadD:
6822     case Op_LoadF:
6823     case Op_LoadI:
6824     case Op_LoadKlass:
6825     case Op_LoadNKlass:
6826     case Op_LoadL:
6827     case Op_LoadS:
6828     case Op_LoadP:
6829     case Op_LoadN:
6830     case Op_LoadRange:
6831     case Op_LoadD_unaligned:
6832     case Op_LoadL_unaligned:
6833     case Op_StrComp:            // Does a bunch of load-like effects
6834     case Op_StrEquals:
6835     case Op_StrIndexOf:
6836     case Op_StrIndexOfChar:
6837     case Op_AryEq:
6838     case Op_VectorizedHashCode:
6839     case Op_CountPositives:
6840       pinned = false;
6841     }
6842     if (n->is_CMove() || n->is_ConstraintCast()) {
6843       pinned = false;
6844     }
6845     if( pinned ) {
6846       IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
6847       if( !chosen_loop->_child )       // Inner loop?
6848         chosen_loop->_body.push(n); // Collect inner loops
6849       return;
6850     }
6851   } else {                      // No slot zero
6852     if( n->is_CFG() ) {         // CFG with no slot 0 is dead
6853       _loop_or_ctrl.map(n->_idx,nullptr); // No block setting, it's globally dead
6854       return;
6855     }
6856     assert(!n->is_CFG() || n->outcnt() == 0, "");
6857   }
6858 
6859   // Do I have a "safe range" I can select over?
6860   Node *early = get_ctrl(n);// Early location already computed
6861 
6862   // Compute latest point this Node can go
6863   Node *LCA = get_late_ctrl( n, early );
6864   // LCA is null due to uses being dead
6865   if( LCA == nullptr ) {
6866 #ifdef ASSERT
6867     for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
6868       assert(_loop_or_ctrl[n->out(i1)->_idx] == nullptr, "all uses must also be dead");
6869     }
6870 #endif
6871     _loop_or_ctrl.map(n->_idx, nullptr); // This node is useless
6872     _deadlist.push(n);
6873     return;
6874   }
6875   assert(LCA != nullptr && !LCA->is_top(), "no dead nodes");
6876 
6877   Node *legal = LCA;            // Walk 'legal' up the IDOM chain
6878   Node *least = legal;          // Best legal position so far
6879   while( early != legal ) {     // While not at earliest legal
6880     if (legal->is_Start() && !early->is_Root()) {
6881 #ifdef ASSERT
6882       // Bad graph. Print idom path and fail.
6883       dump_bad_graph("Bad graph detected in build_loop_late", n, early, LCA);
6884       assert(false, "Bad graph detected in build_loop_late");
6885 #endif
6886       C->record_method_not_compilable("Bad graph detected in build_loop_late");
6887       return;
6888     }
6889     // Find least loop nesting depth
6890     legal = idom(legal);        // Bump up the IDOM tree
6891     // Check for lower nesting depth
6892     if( get_loop(legal)->_nest < get_loop(least)->_nest )
6893       least = legal;
6894   }
6895   assert(early == legal || legal != C->root(), "bad dominance of inputs");
6896 
6897   if (least != early) {
6898     // Move the node above predicates as far up as possible so a
6899     // following pass of Loop Predication doesn't hoist a predicate
6900     // that depends on it above that node.
6901     const PredicateIterator predicate_iterator(least);
6902     DominatedPredicates dominated_predicates(early, least, this);
6903     predicate_iterator.for_each(dominated_predicates);
6904     least = dominated_predicates.earliest_dominated_predicate_entry();
6905   }
6906   // Try not to place code on a loop entry projection
6907   // which can inhibit range check elimination.
6908   if (least != early) {
6909     Node* ctrl_out = least->unique_ctrl_out_or_null();
6910     if (ctrl_out != nullptr && ctrl_out->is_Loop() &&
6911         least == ctrl_out->in(LoopNode::EntryControl) &&
6912         (ctrl_out->is_CountedLoop() || ctrl_out->is_OuterStripMinedLoop())) {
6913       Node* least_dom = idom(least);
6914       if (get_loop(least_dom)->is_member(get_loop(least))) {
6915         least = least_dom;
6916       }
6917     }
6918   }
6919   // Don't extend live ranges of raw oops
6920   if (least != early && n->is_ConstraintCast() && n->in(1)->bottom_type()->isa_rawptr() &&
6921       !n->bottom_type()->isa_rawptr()) {
6922     least = early;
6923   }
6924 
6925 #ifdef ASSERT
6926   // Broken part of VerifyLoopOptimizations (F)
6927   // Reason:
6928   //   _verify_me->get_ctrl_no_update(n) seems to return wrong result
6929   /*
6930   // If verifying, verify that 'verify_me' has a legal location
6931   // and choose it as our location.
6932   if( _verify_me ) {
6933     Node *v_ctrl = _verify_me->get_ctrl_no_update(n);
6934     Node *legal = LCA;
6935     while( early != legal ) {   // While not at earliest legal
6936       if( legal == v_ctrl ) break;  // Check for prior good location
6937       legal = idom(legal)      ;// Bump up the IDOM tree
6938     }
6939     // Check for prior good location
6940     if( legal == v_ctrl ) least = legal; // Keep prior if found
6941   }
6942   */
6943 #endif
6944 
6945   // Assign discovered "here or above" point
6946   least = find_non_split_ctrl(least);
6947   verify_strip_mined_scheduling(n, least);
6948   set_ctrl(n, least);
6949 
6950   // Collect inner loop bodies
6951   IdealLoopTree *chosen_loop = get_loop(least);
6952   if( !chosen_loop->_child )   // Inner loop?
6953     chosen_loop->_body.push(n);// Collect inner loops
6954 
6955   if (!_verify_only && n->Opcode() == Op_OpaqueZeroTripGuard) {
6956     _zero_trip_guard_opaque_nodes.push(n);
6957   }
6958 
6959   if (!_verify_only && n->Opcode() == Op_OpaqueMultiversioning) {
6960     _multiversion_opaque_nodes.push(n);
6961   }
6962 }
6963 
6964 #ifdef ASSERT
6965 void PhaseIdealLoop::dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA) {
6966   tty->print_cr("%s", msg);
6967   tty->print("n: "); n->dump();
6968   tty->print("early(n): "); early->dump();
6969   if (n->in(0) != nullptr  && !n->in(0)->is_top() &&
6970       n->in(0) != early && !n->in(0)->is_Root()) {
6971     tty->print("n->in(0): "); n->in(0)->dump();
6972   }
6973   for (uint i = 1; i < n->req(); i++) {
6974     Node* in1 = n->in(i);
6975     if (in1 != nullptr && in1 != n && !in1->is_top()) {
6976       tty->print("n->in(%d): ", i); in1->dump();
6977       Node* in1_early = get_ctrl(in1);
6978       tty->print("early(n->in(%d)): ", i); in1_early->dump();
6979       if (in1->in(0) != nullptr     && !in1->in(0)->is_top() &&
6980           in1->in(0) != in1_early && !in1->in(0)->is_Root()) {
6981         tty->print("n->in(%d)->in(0): ", i); in1->in(0)->dump();
6982       }
6983       for (uint j = 1; j < in1->req(); j++) {
6984         Node* in2 = in1->in(j);
6985         if (in2 != nullptr && in2 != n && in2 != in1 && !in2->is_top()) {
6986           tty->print("n->in(%d)->in(%d): ", i, j); in2->dump();
6987           Node* in2_early = get_ctrl(in2);
6988           tty->print("early(n->in(%d)->in(%d)): ", i, j); in2_early->dump();
6989           if (in2->in(0) != nullptr     && !in2->in(0)->is_top() &&
6990               in2->in(0) != in2_early && !in2->in(0)->is_Root()) {
6991             tty->print("n->in(%d)->in(%d)->in(0): ", i, j); in2->in(0)->dump();
6992           }
6993         }
6994       }
6995     }
6996   }
6997   tty->cr();
6998   tty->print("LCA(n): "); LCA->dump();
6999   for (uint i = 0; i < n->outcnt(); i++) {
7000     Node* u1 = n->raw_out(i);
7001     if (u1 == n)
7002       continue;
7003     tty->print("n->out(%d): ", i); u1->dump();
7004     if (u1->is_CFG()) {
7005       for (uint j = 0; j < u1->outcnt(); j++) {
7006         Node* u2 = u1->raw_out(j);
7007         if (u2 != u1 && u2 != n && u2->is_CFG()) {
7008           tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
7009         }
7010       }
7011     } else {
7012       Node* u1_later = get_ctrl(u1);
7013       tty->print("later(n->out(%d)): ", i); u1_later->dump();
7014       if (u1->in(0) != nullptr     && !u1->in(0)->is_top() &&
7015           u1->in(0) != u1_later && !u1->in(0)->is_Root()) {
7016         tty->print("n->out(%d)->in(0): ", i); u1->in(0)->dump();
7017       }
7018       for (uint j = 0; j < u1->outcnt(); j++) {
7019         Node* u2 = u1->raw_out(j);
7020         if (u2 == n || u2 == u1)
7021           continue;
7022         tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
7023         if (!u2->is_CFG()) {
7024           Node* u2_later = get_ctrl(u2);
7025           tty->print("later(n->out(%d)->out(%d)): ", i, j); u2_later->dump();
7026           if (u2->in(0) != nullptr     && !u2->in(0)->is_top() &&
7027               u2->in(0) != u2_later && !u2->in(0)->is_Root()) {
7028             tty->print("n->out(%d)->in(0): ", i); u2->in(0)->dump();
7029           }
7030         }
7031       }
7032     }
7033   }
7034   dump_idoms(early, LCA);
7035   tty->cr();
7036 }
7037 
7038 // Class to compute the real LCA given an early node and a wrong LCA in a bad graph.
7039 class RealLCA {
7040   const PhaseIdealLoop* _phase;
7041   Node* _early;
7042   Node* _wrong_lca;
7043   uint _early_index;
7044   int _wrong_lca_index;
7045 
7046   // Given idom chains of early and wrong LCA: Walk through idoms starting at StartNode and find the first node which
7047   // is different: Return the previously visited node which must be the real LCA.
7048   // The node lists also contain _early and _wrong_lca, respectively.
7049   Node* find_real_lca(Unique_Node_List& early_with_idoms, Unique_Node_List& wrong_lca_with_idoms) {
7050     int early_index = early_with_idoms.size() - 1;
7051     int wrong_lca_index = wrong_lca_with_idoms.size() - 1;
7052     bool found_difference = false;
7053     do {
7054       if (early_with_idoms[early_index] != wrong_lca_with_idoms[wrong_lca_index]) {
7055         // First time early and wrong LCA idoms differ. Real LCA must be at the previous index.
7056         found_difference = true;
7057         break;
7058       }
7059       early_index--;
7060       wrong_lca_index--;
7061     } while (wrong_lca_index >= 0);
7062 
7063     assert(early_index >= 0, "must always find an LCA - cannot be early");
7064     _early_index = early_index;
7065     _wrong_lca_index = wrong_lca_index;
7066     Node* real_lca = early_with_idoms[_early_index + 1]; // Plus one to skip _early.
7067     assert(found_difference || real_lca == _wrong_lca, "wrong LCA dominates early and is therefore the real LCA");
7068     return real_lca;
7069   }
7070 
7071   void dump(Node* real_lca) {
7072     tty->cr();
7073     tty->print_cr("idoms of early \"%d %s\":", _early->_idx, _early->Name());
7074     _phase->dump_idom(_early, _early_index + 1);
7075 
7076     tty->cr();
7077     tty->print_cr("idoms of (wrong) LCA \"%d %s\":", _wrong_lca->_idx, _wrong_lca->Name());
7078     _phase->dump_idom(_wrong_lca, _wrong_lca_index + 1);
7079 
7080     tty->cr();
7081     tty->print("Real LCA of early \"%d %s\" (idom[%d]) and wrong LCA \"%d %s\"",
7082                _early->_idx, _early->Name(), _early_index, _wrong_lca->_idx, _wrong_lca->Name());
7083     if (_wrong_lca_index >= 0) {
7084       tty->print(" (idom[%d])", _wrong_lca_index);
7085     }
7086     tty->print_cr(":");
7087     real_lca->dump();
7088   }
7089 
7090  public:
7091   RealLCA(const PhaseIdealLoop* phase, Node* early, Node* wrong_lca)
7092       : _phase(phase), _early(early), _wrong_lca(wrong_lca), _early_index(0), _wrong_lca_index(0) {
7093     assert(!wrong_lca->is_Start(), "StartNode is always a common dominator");
7094   }
7095 
7096   void compute_and_dump() {
7097     ResourceMark rm;
7098     Unique_Node_List early_with_idoms;
7099     Unique_Node_List wrong_lca_with_idoms;
7100     early_with_idoms.push(_early);
7101     wrong_lca_with_idoms.push(_wrong_lca);
7102     _phase->get_idoms(_early, 10000, early_with_idoms);
7103     _phase->get_idoms(_wrong_lca, 10000, wrong_lca_with_idoms);
7104     Node* real_lca = find_real_lca(early_with_idoms, wrong_lca_with_idoms);
7105     dump(real_lca);
7106   }
7107 };
7108 
7109 // Dump the idom chain of early, of the wrong LCA and dump the real LCA of early and wrong LCA.
7110 void PhaseIdealLoop::dump_idoms(Node* early, Node* wrong_lca) {
7111   assert(!is_dominator(early, wrong_lca), "sanity check that early does not dominate wrong lca");
7112   assert(!has_ctrl(early) && !has_ctrl(wrong_lca), "sanity check, no data nodes");
7113 
7114   RealLCA real_lca(this, early, wrong_lca);
7115   real_lca.compute_and_dump();
7116 }
7117 #endif // ASSERT
7118 
7119 #ifndef PRODUCT
7120 //------------------------------dump-------------------------------------------
7121 void PhaseIdealLoop::dump() const {
7122   ResourceMark rm;
7123   Node_Stack stack(C->live_nodes() >> 2);
7124   Node_List rpo_list;
7125   VectorSet visited;
7126   visited.set(C->top()->_idx);
7127   rpo(C->root(), stack, visited, rpo_list);
7128   // Dump root loop indexed by last element in PO order
7129   dump(_ltree_root, rpo_list.size(), rpo_list);
7130 }
7131 
7132 void PhaseIdealLoop::dump(IdealLoopTree* loop, uint idx, Node_List &rpo_list) const {
7133   loop->dump_head();
7134 
7135   // Now scan for CFG nodes in the same loop
7136   for (uint j = idx; j > 0; j--) {
7137     Node* n = rpo_list[j-1];
7138     if (!_loop_or_ctrl[n->_idx])      // Skip dead nodes
7139       continue;
7140 
7141     if (get_loop(n) != loop) { // Wrong loop nest
7142       if (get_loop(n)->_head == n &&    // Found nested loop?
7143           get_loop(n)->_parent == loop)
7144         dump(get_loop(n), rpo_list.size(), rpo_list);     // Print it nested-ly
7145       continue;
7146     }
7147 
7148     // Dump controlling node
7149     tty->sp(2 * loop->_nest);
7150     tty->print("C");
7151     if (n == C->root()) {
7152       n->dump();
7153     } else {
7154       Node* cached_idom   = idom_no_update(n);
7155       Node* computed_idom = n->in(0);
7156       if (n->is_Region()) {
7157         computed_idom = compute_idom(n);
7158         // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
7159         // any MultiBranch ctrl node), so apply a similar transform to
7160         // the cached idom returned from idom_no_update.
7161         cached_idom = find_non_split_ctrl(cached_idom);
7162       }
7163       tty->print(" ID:%d", computed_idom->_idx);
7164       n->dump();
7165       if (cached_idom != computed_idom) {
7166         tty->print_cr("*** BROKEN IDOM!  Computed as: %d, cached as: %d",
7167                       computed_idom->_idx, cached_idom->_idx);
7168       }
7169     }
7170     // Dump nodes it controls
7171     for (uint k = 0; k < _loop_or_ctrl.max(); k++) {
7172       // (k < C->unique() && get_ctrl(find(k)) == n)
7173       if (k < C->unique() && _loop_or_ctrl[k] == (Node*)((intptr_t)n + 1)) {
7174         Node* m = C->root()->find(k);
7175         if (m && m->outcnt() > 0) {
7176           if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
7177             tty->print_cr("*** BROKEN CTRL ACCESSOR!  _loop_or_ctrl[k] is %p, ctrl is %p",
7178                           _loop_or_ctrl[k], has_ctrl(m) ? get_ctrl_no_update(m) : nullptr);
7179           }
7180           tty->sp(2 * loop->_nest + 1);
7181           m->dump();
7182         }
7183       }
7184     }
7185   }
7186 }
7187 
7188 void PhaseIdealLoop::dump_idom(Node* n, const uint count) const {
7189   if (has_ctrl(n)) {
7190     tty->print_cr("No idom for data nodes");
7191   } else {
7192     ResourceMark rm;
7193     Unique_Node_List idoms;
7194     get_idoms(n, count, idoms);
7195     dump_idoms_in_reverse(n, idoms);
7196   }
7197 }
7198 
7199 void PhaseIdealLoop::get_idoms(Node* n, const uint count, Unique_Node_List& idoms) const {
7200   Node* next = n;
7201   for (uint i = 0; !next->is_Start() && i < count; i++) {
7202     next = idom(next);
7203     assert(!idoms.member(next), "duplicated idom is not possible");
7204     idoms.push(next);
7205   }
7206 }
7207 
7208 void PhaseIdealLoop::dump_idoms_in_reverse(const Node* n, const Node_List& idom_list) const {
7209   Node* next;
7210   uint padding = 3;
7211   uint node_index_padding_width = (C->unique() == 0 ? 0 : static_cast<int>(log10(static_cast<double>(C->unique())))) + 1;
7212   for (int i = idom_list.size() - 1; i >= 0; i--) {
7213     if (i == 9 || i == 99) {
7214       padding++;
7215     }
7216     next = idom_list[i];
7217     tty->print_cr("idom[%d]:%*c%*d  %s", i, padding, ' ', node_index_padding_width, next->_idx, next->Name());
7218   }
7219   tty->print_cr("n:      %*c%*d  %s", padding, ' ', node_index_padding_width, n->_idx, n->Name());
7220 }
7221 #endif // NOT PRODUCT
7222 
7223 // Collect a R-P-O for the whole CFG.
7224 // Result list is in post-order (scan backwards for RPO)
7225 void PhaseIdealLoop::rpo(Node* start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list) const {
7226   stk.push(start, 0);
7227   visited.set(start->_idx);
7228 
7229   while (stk.is_nonempty()) {
7230     Node* m   = stk.node();
7231     uint  idx = stk.index();
7232     if (idx < m->outcnt()) {
7233       stk.set_index(idx + 1);
7234       Node* n = m->raw_out(idx);
7235       if (n->is_CFG() && !visited.test_set(n->_idx)) {
7236         stk.push(n, 0);
7237       }
7238     } else {
7239       rpo_list.push(m);
7240       stk.pop();
7241     }
7242   }
7243 }
7244 
7245 ConINode* PhaseIdealLoop::intcon(jint i) {
7246   ConINode* node = _igvn.intcon(i);
7247   set_root_as_ctrl(node);
7248   return node;
7249 }
7250 
7251 ConLNode* PhaseIdealLoop::longcon(jlong i) {
7252   ConLNode* node = _igvn.longcon(i);
7253   set_root_as_ctrl(node);
7254   return node;
7255 }
7256 
7257 ConNode* PhaseIdealLoop::makecon(const Type* t) {
7258   ConNode* node = _igvn.makecon(t);
7259   set_root_as_ctrl(node);
7260   return node;
7261 }
7262 
7263 ConNode* PhaseIdealLoop::integercon(jlong l, BasicType bt) {
7264   ConNode* node = _igvn.integercon(l, bt);
7265   set_root_as_ctrl(node);
7266   return node;
7267 }
7268 
7269 ConNode* PhaseIdealLoop::zerocon(BasicType bt) {
7270   ConNode* node = _igvn.zerocon(bt);
7271   set_root_as_ctrl(node);
7272   return node;
7273 }
7274 
7275 
7276 //=============================================================================
7277 //------------------------------LoopTreeIterator-------------------------------
7278 
7279 // Advance to next loop tree using a preorder, left-to-right traversal.
7280 void LoopTreeIterator::next() {
7281   assert(!done(), "must not be done.");
7282   if (_curnt->_child != nullptr) {
7283     _curnt = _curnt->_child;
7284   } else if (_curnt->_next != nullptr) {
7285     _curnt = _curnt->_next;
7286   } else {
7287     while (_curnt != _root && _curnt->_next == nullptr) {
7288       _curnt = _curnt->_parent;
7289     }
7290     if (_curnt == _root) {
7291       _curnt = nullptr;
7292       assert(done(), "must be done.");
7293     } else {
7294       assert(_curnt->_next != nullptr, "must be more to do");
7295       _curnt = _curnt->_next;
7296     }
7297   }
7298 }