1 /*
   2  * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "compiler/compileLog.hpp"
  26 #include "gc/shared/collectedHeap.inline.hpp"
  27 #include "gc/shared/tlab_globals.hpp"
  28 #include "libadt/vectset.hpp"
  29 #include "memory/universe.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/arraycopynode.hpp"
  32 #include "opto/callnode.hpp"
  33 #include "opto/castnode.hpp"
  34 #include "opto/cfgnode.hpp"
  35 #include "opto/compile.hpp"
  36 #include "opto/convertnode.hpp"
  37 #include "opto/graphKit.hpp"
  38 #include "opto/intrinsicnode.hpp"
  39 #include "opto/locknode.hpp"
  40 #include "opto/loopnode.hpp"
  41 #include "opto/macro.hpp"
  42 #include "opto/memnode.hpp"
  43 #include "opto/narrowptrnode.hpp"
  44 #include "opto/node.hpp"
  45 #include "opto/opaquenode.hpp"
  46 #include "opto/phaseX.hpp"
  47 #include "opto/rootnode.hpp"
  48 #include "opto/runtime.hpp"
  49 #include "opto/subnode.hpp"
  50 #include "opto/subtypenode.hpp"
  51 #include "opto/type.hpp"
  52 #include "prims/jvmtiExport.hpp"
  53 #include "runtime/continuation.hpp"
  54 #include "runtime/sharedRuntime.hpp"
  55 #include "utilities/macros.hpp"
  56 #include "utilities/powerOfTwo.hpp"
  57 #if INCLUDE_G1GC
  58 #include "gc/g1/g1ThreadLocalData.hpp"
  59 #endif // INCLUDE_G1GC
  60 
  61 
  62 //
  63 // Replace any references to "oldref" in inputs to "use" with "newref".
  64 // Returns the number of replacements made.
  65 //
  66 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
  67   int nreplacements = 0;
  68   uint req = use->req();
  69   for (uint j = 0; j < use->len(); j++) {
  70     Node *uin = use->in(j);
  71     if (uin == oldref) {
  72       if (j < req)
  73         use->set_req(j, newref);
  74       else
  75         use->set_prec(j, newref);
  76       nreplacements++;
  77     } else if (j >= req && uin == nullptr) {
  78       break;
  79     }
  80   }
  81   return nreplacements;
  82 }
  83 
  84 void PhaseMacroExpand::migrate_outs(Node *old, Node *target) {
  85   assert(old != nullptr, "sanity");
  86   for (DUIterator_Fast imax, i = old->fast_outs(imax); i < imax; i++) {
  87     Node* use = old->fast_out(i);
  88     _igvn.rehash_node_delayed(use);
  89     imax -= replace_input(use, old, target);
  90     // back up iterator
  91     --i;
  92   }
  93   assert(old->outcnt() == 0, "all uses must be deleted");
  94 }
  95 
  96 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word) {
  97   Node* cmp = word;
  98   Node* bol = transform_later(new BoolNode(cmp, BoolTest::ne));
  99   IfNode* iff = new IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
 100   transform_later(iff);
 101 
 102   // Fast path taken.
 103   Node *fast_taken = transform_later(new IfFalseNode(iff));
 104 
 105   // Fast path not-taken, i.e. slow path
 106   Node *slow_taken = transform_later(new IfTrueNode(iff));
 107 
 108     region->init_req(edge, fast_taken); // Capture fast-control
 109     return slow_taken;
 110 }
 111 
 112 //--------------------copy_predefined_input_for_runtime_call--------------------
 113 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
 114   // Set fixed predefined input arguments
 115   call->init_req( TypeFunc::Control, ctrl );
 116   call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
 117   call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
 118   call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
 119   call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
 120 }
 121 
 122 //------------------------------make_slow_call---------------------------------
 123 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type,
 124                                            address slow_call, const char* leaf_name, Node* slow_path,
 125                                            Node* parm0, Node* parm1, Node* parm2) {
 126 
 127   // Slow-path call
 128  CallNode *call = leaf_name
 129    ? (CallNode*)new CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
 130    : (CallNode*)new CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), TypeRawPtr::BOTTOM );
 131 
 132   // Slow path call has no side-effects, uses few values
 133   copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
 134   if (parm0 != nullptr)  call->init_req(TypeFunc::Parms+0, parm0);
 135   if (parm1 != nullptr)  call->init_req(TypeFunc::Parms+1, parm1);
 136   if (parm2 != nullptr)  call->init_req(TypeFunc::Parms+2, parm2);
 137   call->copy_call_debug_info(&_igvn, oldcall);
 138   call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
 139   _igvn.replace_node(oldcall, call);
 140   transform_later(call);
 141 
 142   return call;
 143 }
 144 
 145 void PhaseMacroExpand::eliminate_gc_barrier(Node* p2x) {
 146   BarrierSetC2 *bs = BarrierSet::barrier_set()->barrier_set_c2();
 147   bs->eliminate_gc_barrier(this, p2x);
 148 #ifndef PRODUCT
 149   if (PrintOptoStatistics) {
 150     AtomicAccess::inc(&PhaseMacroExpand::_GC_barriers_removed_counter);
 151   }
 152 #endif
 153 }
 154 
 155 // Search for a memory operation for the specified memory slice.
 156 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
 157   Node *orig_mem = mem;
 158   Node *alloc_mem = alloc->as_Allocate()->proj_out_or_null(TypeFunc::Memory, /*io_use:*/false);
 159   assert(alloc_mem != nullptr, "Allocation without a memory projection.");
 160   const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
 161   while (true) {
 162     if (mem == alloc_mem || mem == start_mem ) {
 163       return mem;  // hit one of our sentinels
 164     } else if (mem->is_MergeMem()) {
 165       mem = mem->as_MergeMem()->memory_at(alias_idx);
 166     } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
 167       Node *in = mem->in(0);
 168       // we can safely skip over safepoints, calls, locks and membars because we
 169       // already know that the object is safe to eliminate.
 170       if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
 171         return in;
 172       } else if (in->is_Call()) {
 173         CallNode *call = in->as_Call();
 174         if (call->may_modify(tinst, phase)) {
 175           assert(call->is_ArrayCopy(), "ArrayCopy is the only call node that doesn't make allocation escape");
 176           if (call->as_ArrayCopy()->modifies(offset, offset, phase, false)) {
 177             return in;
 178           }
 179         }
 180         mem = in->in(TypeFunc::Memory);
 181       } else if (in->is_MemBar()) {
 182         ArrayCopyNode* ac = nullptr;
 183         if (ArrayCopyNode::may_modify(tinst, in->as_MemBar(), phase, ac)) {
 184           if (ac != nullptr) {
 185             assert(ac->is_clonebasic(), "Only basic clone is a non escaping clone");
 186             return ac;
 187           }
 188         }
 189         mem = in->in(TypeFunc::Memory);
 190       } else {
 191 #ifdef ASSERT
 192         in->dump();
 193         mem->dump();
 194         assert(false, "unexpected projection");
 195 #endif
 196       }
 197     } else if (mem->is_Store()) {
 198       const TypePtr* atype = mem->as_Store()->adr_type();
 199       int adr_idx = phase->C->get_alias_index(atype);
 200       if (adr_idx == alias_idx) {
 201         assert(atype->isa_oopptr(), "address type must be oopptr");
 202         int adr_offset = atype->offset();
 203         uint adr_iid = atype->is_oopptr()->instance_id();
 204         // Array elements references have the same alias_idx
 205         // but different offset and different instance_id.
 206         if (adr_offset == offset && adr_iid == alloc->_idx) {
 207           return mem;
 208         }
 209       } else {
 210         assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
 211       }
 212       mem = mem->in(MemNode::Memory);
 213     } else if (mem->is_ClearArray()) {
 214       if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
 215         // Can not bypass initialization of the instance
 216         // we are looking.
 217         DEBUG_ONLY(intptr_t offset;)
 218         assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
 219         InitializeNode* init = alloc->as_Allocate()->initialization();
 220         // We are looking for stored value, return Initialize node
 221         // or memory edge from Allocate node.
 222         if (init != nullptr) {
 223           return init;
 224         } else {
 225           return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
 226         }
 227       }
 228       // Otherwise skip it (the call updated 'mem' value).
 229     } else if (mem->Opcode() == Op_SCMemProj) {
 230       mem = mem->in(0);
 231       Node* adr = nullptr;
 232       if (mem->is_LoadStore()) {
 233         adr = mem->in(MemNode::Address);
 234       } else {
 235         assert(mem->Opcode() == Op_EncodeISOArray ||
 236                mem->Opcode() == Op_StrCompressedCopy, "sanity");
 237         adr = mem->in(3); // Destination array
 238       }
 239       const TypePtr* atype = adr->bottom_type()->is_ptr();
 240       int adr_idx = phase->C->get_alias_index(atype);
 241       if (adr_idx == alias_idx) {
 242         DEBUG_ONLY(mem->dump();)
 243         assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
 244         return nullptr;
 245       }
 246       mem = mem->in(MemNode::Memory);
 247    } else if (mem->Opcode() == Op_StrInflatedCopy) {
 248       Node* adr = mem->in(3); // Destination array
 249       const TypePtr* atype = adr->bottom_type()->is_ptr();
 250       int adr_idx = phase->C->get_alias_index(atype);
 251       if (adr_idx == alias_idx) {
 252         DEBUG_ONLY(mem->dump();)
 253         assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
 254         return nullptr;
 255       }
 256       mem = mem->in(MemNode::Memory);
 257     } else {
 258       return mem;
 259     }
 260     assert(mem != orig_mem, "dead memory loop");
 261   }
 262 }
 263 
 264 // Generate loads from source of the arraycopy for fields of
 265 // destination needed at a deoptimization point
 266 Node* PhaseMacroExpand::make_arraycopy_load(ArrayCopyNode* ac, intptr_t offset, Node* ctl, Node* mem, BasicType ft, const Type *ftype, AllocateNode *alloc) {
 267   BasicType bt = ft;
 268   const Type *type = ftype;
 269   if (ft == T_NARROWOOP) {
 270     bt = T_OBJECT;
 271     type = ftype->make_oopptr();
 272   }
 273   Node* res = nullptr;
 274   if (ac->is_clonebasic()) {
 275     assert(ac->in(ArrayCopyNode::Src) != ac->in(ArrayCopyNode::Dest), "clone source equals destination");
 276     Node* base = ac->in(ArrayCopyNode::Src);
 277     Node* adr = _igvn.transform(new AddPNode(base, base, _igvn.MakeConX(offset)));
 278     const TypePtr* adr_type = _igvn.type(base)->is_ptr()->add_offset(offset);
 279     MergeMemNode* mergemen = _igvn.transform(MergeMemNode::make(mem))->as_MergeMem();
 280     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 281     res = ArrayCopyNode::load(bs, &_igvn, ctl, mergemen, adr, adr_type, type, bt);
 282   } else {
 283     if (ac->modifies(offset, offset, &_igvn, true)) {
 284       assert(ac->in(ArrayCopyNode::Dest) == alloc->result_cast(), "arraycopy destination should be allocation's result");
 285       uint shift = exact_log2(type2aelembytes(bt));
 286       Node* src_pos = ac->in(ArrayCopyNode::SrcPos);
 287       Node* dest_pos = ac->in(ArrayCopyNode::DestPos);
 288       const TypeInt* src_pos_t = _igvn.type(src_pos)->is_int();
 289       const TypeInt* dest_pos_t = _igvn.type(dest_pos)->is_int();
 290 
 291       Node* adr = nullptr;
 292       const TypePtr* adr_type = nullptr;
 293       if (src_pos_t->is_con() && dest_pos_t->is_con()) {
 294         intptr_t off = ((src_pos_t->get_con() - dest_pos_t->get_con()) << shift) + offset;
 295         Node* base = ac->in(ArrayCopyNode::Src);
 296         adr = _igvn.transform(new AddPNode(base, base, _igvn.MakeConX(off)));
 297         adr_type = _igvn.type(base)->is_ptr()->add_offset(off);
 298         if (ac->in(ArrayCopyNode::Src) == ac->in(ArrayCopyNode::Dest)) {
 299           // Don't emit a new load from src if src == dst but try to get the value from memory instead
 300           return value_from_mem(ac->in(TypeFunc::Memory), ctl, ft, ftype, adr_type->isa_oopptr(), alloc);
 301         }
 302       } else {
 303         Node* diff = _igvn.transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
 304 #ifdef _LP64
 305         diff = _igvn.transform(new ConvI2LNode(diff));
 306 #endif
 307         diff = _igvn.transform(new LShiftXNode(diff, _igvn.intcon(shift)));
 308 
 309         Node* off = _igvn.transform(new AddXNode(_igvn.MakeConX(offset), diff));
 310         Node* base = ac->in(ArrayCopyNode::Src);
 311         adr = _igvn.transform(new AddPNode(base, base, off));
 312         adr_type = _igvn.type(base)->is_ptr()->add_offset(Type::OffsetBot);
 313         if (ac->in(ArrayCopyNode::Src) == ac->in(ArrayCopyNode::Dest)) {
 314           // Non constant offset in the array: we can't statically
 315           // determine the value
 316           return nullptr;
 317         }
 318       }
 319       MergeMemNode* mergemen = _igvn.transform(MergeMemNode::make(mem))->as_MergeMem();
 320       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 321       res = ArrayCopyNode::load(bs, &_igvn, ctl, mergemen, adr, adr_type, type, bt);
 322     }
 323   }
 324   if (res != nullptr) {
 325     if (ftype->isa_narrowoop()) {
 326       // PhaseMacroExpand::scalar_replacement adds DecodeN nodes
 327       res = _igvn.transform(new EncodePNode(res, ftype));
 328     }
 329     return res;
 330   }
 331   return nullptr;
 332 }
 333 
 334 //
 335 // Given a Memory Phi, compute a value Phi containing the values from stores
 336 // on the input paths.
 337 // Note: this function is recursive, its depth is limited by the "level" argument
 338 // Returns the computed Phi, or null if it cannot compute it.
 339 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, AllocateNode *alloc, Node_Stack *value_phis, int level) {
 340   assert(mem->is_Phi(), "sanity");
 341   int alias_idx = C->get_alias_index(adr_t);
 342   int offset = adr_t->offset();
 343   int instance_id = adr_t->instance_id();
 344 
 345   // Check if an appropriate value phi already exists.
 346   Node* region = mem->in(0);
 347   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
 348     Node* phi = region->fast_out(k);
 349     if (phi->is_Phi() && phi != mem &&
 350         phi->as_Phi()->is_same_inst_field(phi_type, (int)mem->_idx, instance_id, alias_idx, offset)) {
 351       return phi;
 352     }
 353   }
 354   // Check if an appropriate new value phi already exists.
 355   Node* new_phi = value_phis->find(mem->_idx);
 356   if (new_phi != nullptr)
 357     return new_phi;
 358 
 359   if (level <= 0) {
 360     return nullptr; // Give up: phi tree too deep
 361   }
 362   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
 363   Node *alloc_mem = alloc->proj_out_or_null(TypeFunc::Memory, /*io_use:*/false);
 364   assert(alloc_mem != nullptr, "Allocation without a memory projection.");
 365 
 366   uint length = mem->req();
 367   GrowableArray <Node *> values(length, length, nullptr);
 368 
 369   // create a new Phi for the value
 370   PhiNode *phi = new PhiNode(mem->in(0), phi_type, nullptr, mem->_idx, instance_id, alias_idx, offset);
 371   transform_later(phi);
 372   value_phis->push(phi, mem->_idx);
 373 
 374   for (uint j = 1; j < length; j++) {
 375     Node *in = mem->in(j);
 376     if (in == nullptr || in->is_top()) {
 377       values.at_put(j, in);
 378     } else  {
 379       Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
 380       if (val == start_mem || val == alloc_mem) {
 381         // hit a sentinel, return appropriate 0 value
 382         values.at_put(j, _igvn.zerocon(ft));
 383         continue;
 384       }
 385       if (val->is_Initialize()) {
 386         val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 387       }
 388       if (val == nullptr) {
 389         return nullptr;  // can't find a value on this path
 390       }
 391       if (val == mem) {
 392         values.at_put(j, mem);
 393       } else if (val->is_Store()) {
 394         Node* n = val->in(MemNode::ValueIn);
 395         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 396         n = bs->step_over_gc_barrier(n);
 397         if (is_subword_type(ft)) {
 398           n = Compile::narrow_value(ft, n, phi_type, &_igvn, true);
 399         }
 400         values.at_put(j, n);
 401       } else if(val->is_Proj() && val->in(0) == alloc) {
 402         values.at_put(j, _igvn.zerocon(ft));
 403       } else if (val->is_Phi()) {
 404         val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
 405         if (val == nullptr) {
 406           return nullptr;
 407         }
 408         values.at_put(j, val);
 409       } else if (val->Opcode() == Op_SCMemProj) {
 410         assert(val->in(0)->is_LoadStore() ||
 411                val->in(0)->Opcode() == Op_EncodeISOArray ||
 412                val->in(0)->Opcode() == Op_StrCompressedCopy, "sanity");
 413         assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
 414         return nullptr;
 415       } else if (val->is_ArrayCopy()) {
 416         Node* res = make_arraycopy_load(val->as_ArrayCopy(), offset, val->in(0), val->in(TypeFunc::Memory), ft, phi_type, alloc);
 417         if (res == nullptr) {
 418           return nullptr;
 419         }
 420         values.at_put(j, res);
 421       } else if (val->is_top()) {
 422         // This indicates that this path into the phi is dead. Top will eventually also propagate into the Region.
 423         // IGVN will clean this up later.
 424         values.at_put(j, val);
 425       } else {
 426         DEBUG_ONLY( val->dump(); )
 427         assert(false, "unknown node on this path");
 428         return nullptr;  // unknown node on this path
 429       }
 430     }
 431   }
 432   // Set Phi's inputs
 433   for (uint j = 1; j < length; j++) {
 434     if (values.at(j) == mem) {
 435       phi->init_req(j, phi);
 436     } else {
 437       phi->init_req(j, values.at(j));
 438     }
 439   }
 440   return phi;
 441 }
 442 
 443 // Search the last value stored into the object's field.
 444 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, Node *sfpt_ctl, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, AllocateNode *alloc) {
 445   assert(adr_t->is_known_instance_field(), "instance required");
 446   int instance_id = adr_t->instance_id();
 447   assert((uint)instance_id == alloc->_idx, "wrong allocation");
 448 
 449   int alias_idx = C->get_alias_index(adr_t);
 450   int offset = adr_t->offset();
 451   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
 452   Node *alloc_ctrl = alloc->in(TypeFunc::Control);
 453   Node *alloc_mem = alloc->proj_out_or_null(TypeFunc::Memory, /*io_use:*/false);
 454   assert(alloc_mem != nullptr, "Allocation without a memory projection.");
 455   VectorSet visited;
 456 
 457   bool done = sfpt_mem == alloc_mem;
 458   Node *mem = sfpt_mem;
 459   while (!done) {
 460     if (visited.test_set(mem->_idx)) {
 461       return nullptr;  // found a loop, give up
 462     }
 463     mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
 464     if (mem == start_mem || mem == alloc_mem) {
 465       done = true;  // hit a sentinel, return appropriate 0 value
 466     } else if (mem->is_Initialize()) {
 467       mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 468       if (mem == nullptr) {
 469         done = true; // Something go wrong.
 470       } else if (mem->is_Store()) {
 471         const TypePtr* atype = mem->as_Store()->adr_type();
 472         assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
 473         done = true;
 474       }
 475     } else if (mem->is_Store()) {
 476       const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
 477       assert(atype != nullptr, "address type must be oopptr");
 478       assert(C->get_alias_index(atype) == alias_idx &&
 479              atype->is_known_instance_field() && atype->offset() == offset &&
 480              atype->instance_id() == instance_id, "store is correct memory slice");
 481       done = true;
 482     } else if (mem->is_Phi()) {
 483       // try to find a phi's unique input
 484       Node *unique_input = nullptr;
 485       Node *top = C->top();
 486       for (uint i = 1; i < mem->req(); i++) {
 487         Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
 488         if (n == nullptr || n == top || n == mem) {
 489           continue;
 490         } else if (unique_input == nullptr) {
 491           unique_input = n;
 492         } else if (unique_input != n) {
 493           unique_input = top;
 494           break;
 495         }
 496       }
 497       if (unique_input != nullptr && unique_input != top) {
 498         mem = unique_input;
 499       } else {
 500         done = true;
 501       }
 502     } else if (mem->is_ArrayCopy()) {
 503       done = true;
 504     } else if (mem->is_top()) {
 505       // The slice is on a dead path. Returning nullptr would lead to elimination
 506       // bailout, but we want to prevent that. Just forwarding the top is also legal,
 507       // and IGVN can just clean things up, and remove whatever receives top.
 508       return mem;
 509     } else {
 510       DEBUG_ONLY( mem->dump(); )
 511       assert(false, "unexpected node");
 512     }
 513   }
 514   if (mem != nullptr) {
 515     if (mem == start_mem || mem == alloc_mem) {
 516       // hit a sentinel, return appropriate 0 value
 517       return _igvn.zerocon(ft);
 518     } else if (mem->is_Store()) {
 519       Node* n = mem->in(MemNode::ValueIn);
 520       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 521       n = bs->step_over_gc_barrier(n);
 522       return n;
 523     } else if (mem->is_Phi()) {
 524       // attempt to produce a Phi reflecting the values on the input paths of the Phi
 525       Node_Stack value_phis(8);
 526       Node* phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
 527       if (phi != nullptr) {
 528         return phi;
 529       } else {
 530         // Kill all new Phis
 531         while(value_phis.is_nonempty()) {
 532           Node* n = value_phis.node();
 533           _igvn.replace_node(n, C->top());
 534           value_phis.pop();
 535         }
 536       }
 537     } else if (mem->is_ArrayCopy()) {
 538       Node* ctl = mem->in(0);
 539       Node* m = mem->in(TypeFunc::Memory);
 540       if (sfpt_ctl->is_Proj() && sfpt_ctl->as_Proj()->is_uncommon_trap_proj()) {
 541         // pin the loads in the uncommon trap path
 542         ctl = sfpt_ctl;
 543         m = sfpt_mem;
 544       }
 545       return make_arraycopy_load(mem->as_ArrayCopy(), offset, ctl, m, ft, ftype, alloc);
 546     }
 547   }
 548   // Something go wrong.
 549   return nullptr;
 550 }
 551 
 552 // Check the possibility of scalar replacement.
 553 bool PhaseMacroExpand::can_eliminate_allocation(PhaseIterGVN* igvn, AllocateNode *alloc, GrowableArray <SafePointNode *>* safepoints) {
 554   //  Scan the uses of the allocation to check for anything that would
 555   //  prevent us from eliminating it.
 556   NOT_PRODUCT( const char* fail_eliminate = nullptr; )
 557   DEBUG_ONLY( Node* disq_node = nullptr; )
 558   bool can_eliminate = true;
 559   bool reduce_merge_precheck = (safepoints == nullptr);
 560 
 561   Node* res = alloc->result_cast();
 562   const TypeOopPtr* res_type = nullptr;
 563   if (res == nullptr) {
 564     // All users were eliminated.
 565   } else if (!res->is_CheckCastPP()) {
 566     NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
 567     can_eliminate = false;
 568   } else {
 569     res_type = igvn->type(res)->isa_oopptr();
 570     if (res_type == nullptr) {
 571       NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
 572       can_eliminate = false;
 573     } else if (!res_type->klass_is_exact()) {
 574       NOT_PRODUCT(fail_eliminate = "Not an exact type.";)
 575       can_eliminate = false;
 576     } else if (res_type->isa_aryptr()) {
 577       int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 578       if (length < 0) {
 579         NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
 580         can_eliminate = false;
 581       }
 582     }
 583   }
 584 
 585   if (can_eliminate && res != nullptr) {
 586     BarrierSetC2 *bs = BarrierSet::barrier_set()->barrier_set_c2();
 587     for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
 588                                j < jmax && can_eliminate; j++) {
 589       Node* use = res->fast_out(j);
 590 
 591       if (use->is_AddP()) {
 592         const TypePtr* addp_type = igvn->type(use)->is_ptr();
 593         int offset = addp_type->offset();
 594 
 595         if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
 596           NOT_PRODUCT(fail_eliminate = "Undefined field reference";)
 597           can_eliminate = false;
 598           break;
 599         }
 600         for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
 601                                    k < kmax && can_eliminate; k++) {
 602           Node* n = use->fast_out(k);
 603           if (n->is_Mem() && n->as_Mem()->is_mismatched_access()) {
 604             DEBUG_ONLY(disq_node = n);
 605             NOT_PRODUCT(fail_eliminate = "Mismatched access");
 606             can_eliminate = false;
 607           }
 608           if (!n->is_Store() && n->Opcode() != Op_CastP2X && !bs->is_gc_pre_barrier_node(n) && !reduce_merge_precheck) {
 609             DEBUG_ONLY(disq_node = n;)
 610             if (n->is_Load() || n->is_LoadStore()) {
 611               NOT_PRODUCT(fail_eliminate = "Field load";)
 612             } else {
 613               NOT_PRODUCT(fail_eliminate = "Not store field reference";)
 614             }
 615             can_eliminate = false;
 616           }
 617         }
 618       } else if (use->is_ArrayCopy() &&
 619                  (use->as_ArrayCopy()->is_clonebasic() ||
 620                   use->as_ArrayCopy()->is_arraycopy_validated() ||
 621                   use->as_ArrayCopy()->is_copyof_validated() ||
 622                   use->as_ArrayCopy()->is_copyofrange_validated()) &&
 623                  use->in(ArrayCopyNode::Dest) == res) {
 624         // ok to eliminate
 625       } else if (use->is_SafePoint()) {
 626         SafePointNode* sfpt = use->as_SafePoint();
 627         if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
 628           // Object is passed as argument.
 629           DEBUG_ONLY(disq_node = use;)
 630           NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
 631           can_eliminate = false;
 632         }
 633         Node* sfptMem = sfpt->memory();
 634         if (sfptMem == nullptr || sfptMem->is_top()) {
 635           DEBUG_ONLY(disq_node = use;)
 636           NOT_PRODUCT(fail_eliminate = "null or TOP memory";)
 637           can_eliminate = false;
 638         } else if (!reduce_merge_precheck) {
 639           safepoints->append_if_missing(sfpt);
 640         }
 641       } else if (reduce_merge_precheck &&
 642                  (use->is_Phi() || use->is_EncodeP() ||
 643                   use->Opcode() == Op_MemBarRelease ||
 644                   (UseStoreStoreForCtor && use->Opcode() == Op_MemBarStoreStore))) {
 645         // Nothing to do
 646       } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
 647         if (use->is_Phi()) {
 648           if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
 649             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 650           } else {
 651             NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
 652           }
 653           DEBUG_ONLY(disq_node = use;)
 654         } else {
 655           if (use->Opcode() == Op_Return) {
 656             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 657           } else {
 658             NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
 659           }
 660           DEBUG_ONLY(disq_node = use;)
 661         }
 662         can_eliminate = false;
 663       }
 664     }
 665   }
 666 
 667 #ifndef PRODUCT
 668   if (PrintEliminateAllocations && safepoints != nullptr) {
 669     if (can_eliminate) {
 670       tty->print("Scalar ");
 671       if (res == nullptr)
 672         alloc->dump();
 673       else
 674         res->dump();
 675     } else if (alloc->_is_scalar_replaceable) {
 676       tty->print("NotScalar (%s)", fail_eliminate);
 677       if (res == nullptr)
 678         alloc->dump();
 679       else
 680         res->dump();
 681 #ifdef ASSERT
 682       if (disq_node != nullptr) {
 683           tty->print("  >>>> ");
 684           disq_node->dump();
 685       }
 686 #endif /*ASSERT*/
 687     }
 688   }
 689 
 690   if (TraceReduceAllocationMerges && !can_eliminate && reduce_merge_precheck) {
 691     tty->print_cr("\tCan't eliminate allocation because '%s': ", fail_eliminate != nullptr ? fail_eliminate : "");
 692     DEBUG_ONLY(if (disq_node != nullptr) disq_node->dump();)
 693   }
 694 #endif
 695   return can_eliminate;
 696 }
 697 
 698 void PhaseMacroExpand::undo_previous_scalarizations(GrowableArray <SafePointNode *> safepoints_done, AllocateNode* alloc) {
 699   Node* res = alloc->result_cast();
 700   int nfields = 0;
 701   assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result");
 702 
 703   if (res != nullptr) {
 704     const TypeOopPtr* res_type = _igvn.type(res)->isa_oopptr();
 705 
 706     if (res_type->isa_instptr()) {
 707       // find the fields of the class which will be needed for safepoint debug information
 708       ciInstanceKlass* iklass = res_type->is_instptr()->instance_klass();
 709       nfields = iklass->nof_nonstatic_fields();
 710     } else {
 711       // find the array's elements which will be needed for safepoint debug information
 712       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 713       assert(nfields >= 0, "must be an array klass.");
 714     }
 715   }
 716 
 717   // rollback processed safepoints
 718   while (safepoints_done.length() > 0) {
 719     SafePointNode* sfpt_done = safepoints_done.pop();
 720     // remove any extra entries we added to the safepoint
 721     uint last = sfpt_done->req() - 1;
 722     for (int k = 0;  k < nfields; k++) {
 723       sfpt_done->del_req(last--);
 724     }
 725     JVMState *jvms = sfpt_done->jvms();
 726     jvms->set_endoff(sfpt_done->req());
 727     // Now make a pass over the debug information replacing any references
 728     // to SafePointScalarObjectNode with the allocated object.
 729     int start = jvms->debug_start();
 730     int end   = jvms->debug_end();
 731     for (int i = start; i < end; i++) {
 732       if (sfpt_done->in(i)->is_SafePointScalarObject()) {
 733         SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
 734         if (scobj->first_index(jvms) == sfpt_done->req() &&
 735             scobj->n_fields() == (uint)nfields) {
 736           assert(scobj->alloc() == alloc, "sanity");
 737           sfpt_done->set_req(i, res);
 738         }
 739       }
 740     }
 741     _igvn._worklist.push(sfpt_done);
 742   }
 743 }
 744 
 745 #ifdef ASSERT
 746   // Verify if a value can be written into a field.
 747   void verify_type_compatability(const Type* value_type, const Type* field_type) {
 748     BasicType value_bt = value_type->basic_type();
 749     BasicType field_bt = field_type->basic_type();
 750 
 751     // Primitive types must match.
 752     if (is_java_primitive(value_bt) && value_bt == field_bt) { return; }
 753 
 754     // I have been struggling to make a similar assert for non-primitive
 755     // types. I we can add one in the future. For now, I just let them
 756     // pass without checks.
 757     // In particular, I was struggling with a value that came from a call,
 758     // and had only a non-null check CastPP. There was also a checkcast
 759     // in the graph to verify the interface, but the corresponding
 760     // CheckCastPP result was not updated in the stack slot, and so
 761     // we ended up using the CastPP. That means that the field knows
 762     // that it should get an oop from an interface, but the value lost
 763     // that information, and so it is not a subtype.
 764     // There may be other issues, feel free to investigate further!
 765     if (!is_java_primitive(value_bt)) { return; }
 766 
 767     tty->print_cr("value not compatible for field: %s vs %s",
 768                   type2name(value_bt),
 769                   type2name(field_bt));
 770     tty->print("value_type: ");
 771     value_type->dump();
 772     tty->cr();
 773     tty->print("field_type: ");
 774     field_type->dump();
 775     tty->cr();
 776     assert(false, "value_type does not fit field_type");
 777   }
 778 #endif
 779 
 780 SafePointScalarObjectNode* PhaseMacroExpand::create_scalarized_object_description(AllocateNode *alloc, SafePointNode* sfpt) {
 781   // Fields of scalar objs are referenced only at the end
 782   // of regular debuginfo at the last (youngest) JVMS.
 783   // Record relative start index.
 784   ciInstanceKlass* iklass    = nullptr;
 785   BasicType basic_elem_type  = T_ILLEGAL;
 786   const Type* field_type     = nullptr;
 787   const TypeOopPtr* res_type = nullptr;
 788   int nfields                = 0;
 789   int array_base             = 0;
 790   int element_size           = 0;
 791   uint first_ind             = (sfpt->req() - sfpt->jvms()->scloff());
 792   Node* res                  = alloc->result_cast();
 793 
 794   assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result");
 795   assert(sfpt->jvms() != nullptr, "missed JVMS");
 796 
 797   if (res != nullptr) { // Could be null when there are no users
 798     res_type = _igvn.type(res)->isa_oopptr();
 799 
 800     if (res_type->isa_instptr()) {
 801       // find the fields of the class which will be needed for safepoint debug information
 802       iklass = res_type->is_instptr()->instance_klass();
 803       nfields = iklass->nof_nonstatic_fields();
 804     } else {
 805       // find the array's elements which will be needed for safepoint debug information
 806       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 807       assert(nfields >= 0, "must be an array klass.");
 808       basic_elem_type = res_type->is_aryptr()->elem()->array_element_basic_type();
 809       array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
 810       element_size = type2aelembytes(basic_elem_type);
 811       field_type = res_type->is_aryptr()->elem();
 812     }
 813   }
 814 
 815   SafePointScalarObjectNode* sobj = new SafePointScalarObjectNode(res_type, alloc, first_ind, sfpt->jvms()->depth(), nfields);
 816   sobj->init_req(0, C->root());
 817   transform_later(sobj);
 818 
 819   // Scan object's fields adding an input to the safepoint for each field.
 820   for (int j = 0; j < nfields; j++) {
 821     intptr_t offset;
 822     ciField* field = nullptr;
 823     if (iklass != nullptr) {
 824       field = iklass->nonstatic_field_at(j);
 825       offset = field->offset_in_bytes();
 826       ciType* elem_type = field->type();
 827       basic_elem_type = field->layout_type();
 828 
 829       // The next code is taken from Parse::do_get_xxx().
 830       if (is_reference_type(basic_elem_type)) {
 831         if (!elem_type->is_loaded()) {
 832           field_type = TypeInstPtr::BOTTOM;
 833         } else if (field != nullptr && field->is_static_constant()) {
 834           ciObject* con = field->constant_value().as_object();
 835           // Do not "join" in the previous type; it doesn't add value,
 836           // and may yield a vacuous result if the field is of interface type.
 837           field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
 838           assert(field_type != nullptr, "field singleton type must be consistent");
 839         } else {
 840           field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
 841         }
 842         if (UseCompressedOops) {
 843           field_type = field_type->make_narrowoop();
 844           basic_elem_type = T_NARROWOOP;
 845         }
 846       } else {
 847         field_type = Type::get_const_basic_type(basic_elem_type);
 848       }
 849     } else {
 850       offset = array_base + j * (intptr_t)element_size;
 851     }
 852 
 853     const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
 854 
 855     Node *field_val = value_from_mem(sfpt->memory(), sfpt->control(), basic_elem_type, field_type, field_addr_type, alloc);
 856 
 857     // We weren't able to find a value for this field,
 858     // give up on eliminating this allocation.
 859     if (field_val == nullptr) {
 860       uint last = sfpt->req() - 1;
 861       for (int k = 0;  k < j; k++) {
 862         sfpt->del_req(last--);
 863       }
 864       _igvn._worklist.push(sfpt);
 865 
 866 #ifndef PRODUCT
 867       if (PrintEliminateAllocations) {
 868         if (field != nullptr) {
 869           tty->print("=== At SafePoint node %d can't find value of field: ", sfpt->_idx);
 870           field->print();
 871           int field_idx = C->get_alias_index(field_addr_type);
 872           tty->print(" (alias_idx=%d)", field_idx);
 873         } else { // Array's element
 874           tty->print("=== At SafePoint node %d can't find value of array element [%d]", sfpt->_idx, j);
 875         }
 876         tty->print(", which prevents elimination of: ");
 877         if (res == nullptr)
 878           alloc->dump();
 879         else
 880           res->dump();
 881       }
 882 #endif
 883 
 884       return nullptr;
 885     }
 886 
 887     if (UseCompressedOops && field_type->isa_narrowoop()) {
 888       // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
 889       // to be able scalar replace the allocation.
 890       if (field_val->is_EncodeP()) {
 891         field_val = field_val->in(1);
 892       } else {
 893         field_val = transform_later(new DecodeNNode(field_val, field_val->get_ptr_type()));
 894       }
 895     }
 896     DEBUG_ONLY(verify_type_compatability(field_val->bottom_type(), field_type);)
 897     sfpt->add_req(field_val);
 898   }
 899 
 900   sfpt->jvms()->set_endoff(sfpt->req());
 901 
 902   return sobj;
 903 }
 904 
 905 // Do scalar replacement.
 906 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
 907   GrowableArray <SafePointNode *> safepoints_done;
 908   Node* res = alloc->result_cast();
 909   assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result");
 910 
 911   // Process the safepoint uses
 912   while (safepoints.length() > 0) {
 913     SafePointNode* sfpt = safepoints.pop();
 914     SafePointScalarObjectNode* sobj = create_scalarized_object_description(alloc, sfpt);
 915 
 916     if (sobj == nullptr) {
 917       undo_previous_scalarizations(safepoints_done, alloc);
 918       return false;
 919     }
 920 
 921     // Now make a pass over the debug information replacing any references
 922     // to the allocated object with "sobj"
 923     JVMState *jvms = sfpt->jvms();
 924     sfpt->replace_edges_in_range(res, sobj, jvms->debug_start(), jvms->debug_end(), &_igvn);
 925     _igvn._worklist.push(sfpt);
 926 
 927     // keep it for rollback
 928     safepoints_done.append_if_missing(sfpt);
 929   }
 930 
 931   return true;
 932 }
 933 
 934 static void disconnect_projections(MultiNode* n, PhaseIterGVN& igvn) {
 935   Node* ctl_proj = n->proj_out_or_null(TypeFunc::Control);
 936   Node* mem_proj = n->proj_out_or_null(TypeFunc::Memory);
 937   if (ctl_proj != nullptr) {
 938     igvn.replace_node(ctl_proj, n->in(0));
 939   }
 940   if (mem_proj != nullptr) {
 941     igvn.replace_node(mem_proj, n->in(TypeFunc::Memory));
 942   }
 943 }
 944 
 945 // Process users of eliminated allocation.
 946 void PhaseMacroExpand::process_users_of_allocation(CallNode *alloc) {
 947   Node* res = alloc->result_cast();
 948   if (res != nullptr) {
 949     for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
 950       Node *use = res->last_out(j);
 951       uint oc1 = res->outcnt();
 952 
 953       if (use->is_AddP()) {
 954         for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
 955           Node *n = use->last_out(k);
 956           uint oc2 = use->outcnt();
 957           if (n->is_Store()) {
 958 #ifdef ASSERT
 959             // Verify that there is no dependent MemBarVolatile nodes,
 960             // they should be removed during IGVN, see MemBarNode::Ideal().
 961             for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
 962                                        p < pmax; p++) {
 963               Node* mb = n->fast_out(p);
 964               assert(mb->is_Initialize() || !mb->is_MemBar() ||
 965                      mb->req() <= MemBarNode::Precedent ||
 966                      mb->in(MemBarNode::Precedent) != n,
 967                      "MemBarVolatile should be eliminated for non-escaping object");
 968             }
 969 #endif
 970             _igvn.replace_node(n, n->in(MemNode::Memory));
 971           } else {
 972             eliminate_gc_barrier(n);
 973           }
 974           k -= (oc2 - use->outcnt());
 975         }
 976         _igvn.remove_dead_node(use);
 977       } else if (use->is_ArrayCopy()) {
 978         // Disconnect ArrayCopy node
 979         ArrayCopyNode* ac = use->as_ArrayCopy();
 980         if (ac->is_clonebasic()) {
 981           Node* membar_after = ac->proj_out(TypeFunc::Control)->unique_ctrl_out();
 982           disconnect_projections(ac, _igvn);
 983           assert(alloc->in(TypeFunc::Memory)->is_Proj() && alloc->in(TypeFunc::Memory)->in(0)->Opcode() == Op_MemBarCPUOrder, "mem barrier expected before allocation");
 984           Node* membar_before = alloc->in(TypeFunc::Memory)->in(0);
 985           disconnect_projections(membar_before->as_MemBar(), _igvn);
 986           if (membar_after->is_MemBar()) {
 987             disconnect_projections(membar_after->as_MemBar(), _igvn);
 988           }
 989         } else {
 990           assert(ac->is_arraycopy_validated() ||
 991                  ac->is_copyof_validated() ||
 992                  ac->is_copyofrange_validated(), "unsupported");
 993           CallProjections callprojs;
 994           ac->extract_projections(&callprojs, true);
 995 
 996           _igvn.replace_node(callprojs.fallthrough_ioproj, ac->in(TypeFunc::I_O));
 997           _igvn.replace_node(callprojs.fallthrough_memproj, ac->in(TypeFunc::Memory));
 998           _igvn.replace_node(callprojs.fallthrough_catchproj, ac->in(TypeFunc::Control));
 999 
1000           // Set control to top. IGVN will remove the remaining projections
1001           ac->set_req(0, top());
1002           ac->replace_edge(res, top(), &_igvn);
1003 
1004           // Disconnect src right away: it can help find new
1005           // opportunities for allocation elimination
1006           Node* src = ac->in(ArrayCopyNode::Src);
1007           ac->replace_edge(src, top(), &_igvn);
1008           // src can be top at this point if src and dest of the
1009           // arraycopy were the same
1010           if (src->outcnt() == 0 && !src->is_top()) {
1011             _igvn.remove_dead_node(src);
1012           }
1013         }
1014         _igvn._worklist.push(ac);
1015       } else {
1016         eliminate_gc_barrier(use);
1017       }
1018       j -= (oc1 - res->outcnt());
1019     }
1020     assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
1021     _igvn.remove_dead_node(res);
1022   }
1023 
1024   //
1025   // Process other users of allocation's projections
1026   //
1027   if (_callprojs.resproj != nullptr && _callprojs.resproj->outcnt() != 0) {
1028     // First disconnect stores captured by Initialize node.
1029     // If Initialize node is eliminated first in the following code,
1030     // it will kill such stores and DUIterator_Last will assert.
1031     for (DUIterator_Fast jmax, j = _callprojs.resproj->fast_outs(jmax);  j < jmax; j++) {
1032       Node* use = _callprojs.resproj->fast_out(j);
1033       if (use->is_AddP()) {
1034         // raw memory addresses used only by the initialization
1035         _igvn.replace_node(use, C->top());
1036         --j; --jmax;
1037       }
1038     }
1039     for (DUIterator_Last jmin, j = _callprojs.resproj->last_outs(jmin); j >= jmin; ) {
1040       Node* use = _callprojs.resproj->last_out(j);
1041       uint oc1 = _callprojs.resproj->outcnt();
1042       if (use->is_Initialize()) {
1043         // Eliminate Initialize node.
1044         InitializeNode *init = use->as_Initialize();
1045         Node *ctrl_proj = init->proj_out_or_null(TypeFunc::Control);
1046         if (ctrl_proj != nullptr) {
1047           _igvn.replace_node(ctrl_proj, init->in(TypeFunc::Control));
1048 #ifdef ASSERT
1049           // If the InitializeNode has no memory out, it will die, and tmp will become null
1050           Node* tmp = init->in(TypeFunc::Control);
1051           assert(tmp == nullptr || tmp == _callprojs.fallthrough_catchproj, "allocation control projection");
1052 #endif
1053         }
1054         Node* mem = init->in(TypeFunc::Memory);
1055 #ifdef ASSERT
1056         if (init->number_of_projs(TypeFunc::Memory) > 0) {
1057           if (mem->is_MergeMem()) {
1058             assert(mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw) == _callprojs.fallthrough_memproj, "allocation memory projection");
1059           } else {
1060             assert(mem == _callprojs.fallthrough_memproj, "allocation memory projection");
1061           }
1062         }
1063 #endif
1064         init->replace_mem_projs_by(mem, &_igvn);
1065         assert(init->outcnt() == 0, "should only have had a control and some memory projections, and we removed them");
1066       } else  {
1067         assert(false, "only Initialize or AddP expected");
1068       }
1069       j -= (oc1 - _callprojs.resproj->outcnt());
1070     }
1071   }
1072   if (_callprojs.fallthrough_catchproj != nullptr) {
1073     _igvn.replace_node(_callprojs.fallthrough_catchproj, alloc->in(TypeFunc::Control));
1074   }
1075   if (_callprojs.fallthrough_memproj != nullptr) {
1076     _igvn.replace_node(_callprojs.fallthrough_memproj, alloc->in(TypeFunc::Memory));
1077   }
1078   if (_callprojs.catchall_memproj != nullptr) {
1079     _igvn.replace_node(_callprojs.catchall_memproj, C->top());
1080   }
1081   if (_callprojs.fallthrough_ioproj != nullptr) {
1082     _igvn.replace_node(_callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
1083   }
1084   if (_callprojs.catchall_ioproj != nullptr) {
1085     _igvn.replace_node(_callprojs.catchall_ioproj, C->top());
1086   }
1087   if (_callprojs.catchall_catchproj != nullptr) {
1088     _igvn.replace_node(_callprojs.catchall_catchproj, C->top());
1089   }
1090 }
1091 
1092 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
1093   // If reallocation fails during deoptimization we'll pop all
1094   // interpreter frames for this compiled frame and that won't play
1095   // nice with JVMTI popframe.
1096   // We avoid this issue by eager reallocation when the popframe request
1097   // is received.
1098   if (!EliminateAllocations || !alloc->_is_non_escaping) {
1099     return false;
1100   }
1101   Node* klass = alloc->in(AllocateNode::KlassNode);
1102   const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
1103   Node* res = alloc->result_cast();
1104   // Eliminate boxing allocations which are not used
1105   // regardless scalar replaceable status.
1106   bool boxing_alloc = C->eliminate_boxing() &&
1107                       tklass->isa_instklassptr() &&
1108                       tklass->is_instklassptr()->instance_klass()->is_box_klass();
1109   if (!alloc->_is_scalar_replaceable && (!boxing_alloc || (res != nullptr))) {
1110     return false;
1111   }
1112 
1113   alloc->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/);
1114 
1115   GrowableArray <SafePointNode *> safepoints;
1116   if (!can_eliminate_allocation(&_igvn, alloc, &safepoints)) {
1117     return false;
1118   }
1119 
1120   if (!alloc->_is_scalar_replaceable) {
1121     assert(res == nullptr, "sanity");
1122     // We can only eliminate allocation if all debug info references
1123     // are already replaced with SafePointScalarObject because
1124     // we can't search for a fields value without instance_id.
1125     if (safepoints.length() > 0) {
1126       return false;
1127     }
1128   }
1129 
1130   if (!scalar_replacement(alloc, safepoints)) {
1131     return false;
1132   }
1133 
1134   CompileLog* log = C->log();
1135   if (log != nullptr) {
1136     log->head("eliminate_allocation type='%d'",
1137               log->identify(tklass->exact_klass()));
1138     JVMState* p = alloc->jvms();
1139     while (p != nullptr) {
1140       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1141       p = p->caller();
1142     }
1143     log->tail("eliminate_allocation");
1144   }
1145 
1146   process_users_of_allocation(alloc);
1147 
1148 #ifndef PRODUCT
1149   if (PrintEliminateAllocations) {
1150     if (alloc->is_AllocateArray())
1151       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
1152     else
1153       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
1154   }
1155 #endif
1156 
1157   return true;
1158 }
1159 
1160 bool PhaseMacroExpand::eliminate_boxing_node(CallStaticJavaNode *boxing) {
1161   // EA should remove all uses of non-escaping boxing node.
1162   if (!C->eliminate_boxing() || boxing->proj_out_or_null(TypeFunc::Parms) != nullptr) {
1163     return false;
1164   }
1165 
1166   assert(boxing->result_cast() == nullptr, "unexpected boxing node result");
1167 
1168   boxing->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/);
1169 
1170   const TypeTuple* r = boxing->tf()->range();
1171   assert(r->cnt() > TypeFunc::Parms, "sanity");
1172   const TypeInstPtr* t = r->field_at(TypeFunc::Parms)->isa_instptr();
1173   assert(t != nullptr, "sanity");
1174 
1175   CompileLog* log = C->log();
1176   if (log != nullptr) {
1177     log->head("eliminate_boxing type='%d'",
1178               log->identify(t->instance_klass()));
1179     JVMState* p = boxing->jvms();
1180     while (p != nullptr) {
1181       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1182       p = p->caller();
1183     }
1184     log->tail("eliminate_boxing");
1185   }
1186 
1187   process_users_of_allocation(boxing);
1188 
1189 #ifndef PRODUCT
1190   if (PrintEliminateAllocations) {
1191     tty->print("++++ Eliminated: %d ", boxing->_idx);
1192     boxing->method()->print_short_name(tty);
1193     tty->cr();
1194   }
1195 #endif
1196 
1197   return true;
1198 }
1199 
1200 
1201 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
1202   Node* adr = basic_plus_adr(base, offset);
1203   const TypePtr* adr_type = adr->bottom_type()->is_ptr();
1204   Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt, MemNode::unordered);
1205   transform_later(value);
1206   return value;
1207 }
1208 
1209 
1210 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
1211   Node* adr = basic_plus_adr(base, offset);
1212   mem = StoreNode::make(_igvn, ctl, mem, adr, nullptr, value, bt, MemNode::unordered);
1213   transform_later(mem);
1214   return mem;
1215 }
1216 
1217 //=============================================================================
1218 //
1219 //                              A L L O C A T I O N
1220 //
1221 // Allocation attempts to be fast in the case of frequent small objects.
1222 // It breaks down like this:
1223 //
1224 // 1) Size in doublewords is computed.  This is a constant for objects and
1225 // variable for most arrays.  Doubleword units are used to avoid size
1226 // overflow of huge doubleword arrays.  We need doublewords in the end for
1227 // rounding.
1228 //
1229 // 2) Size is checked for being 'too large'.  Too-large allocations will go
1230 // the slow path into the VM.  The slow path can throw any required
1231 // exceptions, and does all the special checks for very large arrays.  The
1232 // size test can constant-fold away for objects.  For objects with
1233 // finalizers it constant-folds the otherway: you always go slow with
1234 // finalizers.
1235 //
1236 // 3) If NOT using TLABs, this is the contended loop-back point.
1237 // Load-Locked the heap top.  If using TLABs normal-load the heap top.
1238 //
1239 // 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
1240 // NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
1241 // "size*8" we always enter the VM, where "largish" is a constant picked small
1242 // enough that there's always space between the eden max and 4Gig (old space is
1243 // there so it's quite large) and large enough that the cost of entering the VM
1244 // is dwarfed by the cost to initialize the space.
1245 //
1246 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
1247 // down.  If contended, repeat at step 3.  If using TLABs normal-store
1248 // adjusted heap top back down; there is no contention.
1249 //
1250 // 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
1251 // fields.
1252 //
1253 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
1254 // oop flavor.
1255 //
1256 //=============================================================================
1257 // FastAllocateSizeLimit value is in DOUBLEWORDS.
1258 // Allocations bigger than this always go the slow route.
1259 // This value must be small enough that allocation attempts that need to
1260 // trigger exceptions go the slow route.  Also, it must be small enough so
1261 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
1262 //=============================================================================j//
1263 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
1264 // The allocator will coalesce int->oop copies away.  See comment in
1265 // coalesce.cpp about how this works.  It depends critically on the exact
1266 // code shape produced here, so if you are changing this code shape
1267 // make sure the GC info for the heap-top is correct in and around the
1268 // slow-path call.
1269 //
1270 
1271 void PhaseMacroExpand::expand_allocate_common(
1272             AllocateNode* alloc, // allocation node to be expanded
1273             Node* length,  // array length for an array allocation
1274             const TypeFunc* slow_call_type, // Type of slow call
1275             address slow_call_address,  // Address of slow call
1276             Node* valid_length_test // whether length is valid or not
1277     )
1278 {
1279   Node* ctrl = alloc->in(TypeFunc::Control);
1280   Node* mem  = alloc->in(TypeFunc::Memory);
1281   Node* i_o  = alloc->in(TypeFunc::I_O);
1282   Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
1283   Node* klass_node        = alloc->in(AllocateNode::KlassNode);
1284   Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
1285   assert(ctrl != nullptr, "must have control");
1286 
1287   // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
1288   // they will not be used if "always_slow" is set
1289   enum { slow_result_path = 1, fast_result_path = 2 };
1290   Node *result_region = nullptr;
1291   Node *result_phi_rawmem = nullptr;
1292   Node *result_phi_rawoop = nullptr;
1293   Node *result_phi_i_o = nullptr;
1294 
1295   // The initial slow comparison is a size check, the comparison
1296   // we want to do is a BoolTest::gt
1297   bool expand_fast_path = true;
1298   int tv = _igvn.find_int_con(initial_slow_test, -1);
1299   if (tv >= 0) {
1300     // InitialTest has constant result
1301     //   0 - can fit in TLAB
1302     //   1 - always too big or negative
1303     assert(tv <= 1, "0 or 1 if a constant");
1304     expand_fast_path = (tv == 0);
1305     initial_slow_test = nullptr;
1306   } else {
1307     initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
1308   }
1309 
1310   if (!UseTLAB) {
1311     // Force slow-path allocation
1312     expand_fast_path = false;
1313     initial_slow_test = nullptr;
1314   }
1315 
1316   bool allocation_has_use = (alloc->result_cast() != nullptr);
1317   if (!allocation_has_use) {
1318     InitializeNode* init = alloc->initialization();
1319     if (init != nullptr) {
1320       init->remove(&_igvn);
1321     }
1322     if (expand_fast_path && (initial_slow_test == nullptr)) {
1323       // Remove allocation node and return.
1324       // Size is a non-negative constant -> no initial check needed -> directly to fast path.
1325       // Also, no usages -> empty fast path -> no fall out to slow path -> nothing left.
1326 #ifndef PRODUCT
1327       if (PrintEliminateAllocations) {
1328         tty->print("NotUsed ");
1329         Node* res = alloc->proj_out_or_null(TypeFunc::Parms);
1330         if (res != nullptr) {
1331           res->dump();
1332         } else {
1333           alloc->dump();
1334         }
1335       }
1336 #endif
1337       yank_alloc_node(alloc);
1338       return;
1339     }
1340   }
1341 
1342   enum { too_big_or_final_path = 1, need_gc_path = 2 };
1343   Node *slow_region = nullptr;
1344   Node *toobig_false = ctrl;
1345 
1346   // generate the initial test if necessary
1347   if (initial_slow_test != nullptr ) {
1348     assert (expand_fast_path, "Only need test if there is a fast path");
1349     slow_region = new RegionNode(3);
1350 
1351     // Now make the initial failure test.  Usually a too-big test but
1352     // might be a TRUE for finalizers.
1353     IfNode *toobig_iff = new IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
1354     transform_later(toobig_iff);
1355     // Plug the failing-too-big test into the slow-path region
1356     Node *toobig_true = new IfTrueNode( toobig_iff );
1357     transform_later(toobig_true);
1358     slow_region    ->init_req( too_big_or_final_path, toobig_true );
1359     toobig_false = new IfFalseNode( toobig_iff );
1360     transform_later(toobig_false);
1361   } else {
1362     // No initial test, just fall into next case
1363     assert(allocation_has_use || !expand_fast_path, "Should already have been handled");
1364     toobig_false = ctrl;
1365     DEBUG_ONLY(slow_region = NodeSentinel);
1366   }
1367 
1368   // If we are here there are several possibilities
1369   // - expand_fast_path is false - then only a slow path is expanded. That's it.
1370   // no_initial_check means a constant allocation.
1371   // - If check always evaluates to false -> expand_fast_path is false (see above)
1372   // - If check always evaluates to true -> directly into fast path (but may bailout to slowpath)
1373   // if !allocation_has_use the fast path is empty
1374   // if !allocation_has_use && no_initial_check
1375   // - Then there are no fastpath that can fall out to slowpath -> no allocation code at all.
1376   //   removed by yank_alloc_node above.
1377 
1378   Node *slow_mem = mem;  // save the current memory state for slow path
1379   // generate the fast allocation code unless we know that the initial test will always go slow
1380   if (expand_fast_path) {
1381     // Fast path modifies only raw memory.
1382     if (mem->is_MergeMem()) {
1383       mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
1384     }
1385 
1386     // allocate the Region and Phi nodes for the result
1387     result_region = new RegionNode(3);
1388     result_phi_rawmem = new PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1389     result_phi_i_o    = new PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch
1390 
1391     // Grab regular I/O before optional prefetch may change it.
1392     // Slow-path does no I/O so just set it to the original I/O.
1393     result_phi_i_o->init_req(slow_result_path, i_o);
1394 
1395     // Name successful fast-path variables
1396     Node* fast_oop_ctrl;
1397     Node* fast_oop_rawmem;
1398     if (allocation_has_use) {
1399       Node* needgc_ctrl = nullptr;
1400       result_phi_rawoop = new PhiNode(result_region, TypeRawPtr::BOTTOM);
1401 
1402       intx prefetch_lines = length != nullptr ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
1403       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1404       Node* fast_oop = bs->obj_allocate(this, mem, toobig_false, size_in_bytes, i_o, needgc_ctrl,
1405                                         fast_oop_ctrl, fast_oop_rawmem,
1406                                         prefetch_lines);
1407 
1408       if (initial_slow_test != nullptr) {
1409         // This completes all paths into the slow merge point
1410         slow_region->init_req(need_gc_path, needgc_ctrl);
1411         transform_later(slow_region);
1412       } else {
1413         // No initial slow path needed!
1414         // Just fall from the need-GC path straight into the VM call.
1415         slow_region = needgc_ctrl;
1416       }
1417 
1418       InitializeNode* init = alloc->initialization();
1419       fast_oop_rawmem = initialize_object(alloc,
1420                                           fast_oop_ctrl, fast_oop_rawmem, fast_oop,
1421                                           klass_node, length, size_in_bytes);
1422       expand_initialize_membar(alloc, init, fast_oop_ctrl, fast_oop_rawmem);
1423       expand_dtrace_alloc_probe(alloc, fast_oop, fast_oop_ctrl, fast_oop_rawmem);
1424 
1425       result_phi_rawoop->init_req(fast_result_path, fast_oop);
1426     } else {
1427       assert (initial_slow_test != nullptr, "sanity");
1428       fast_oop_ctrl   = toobig_false;
1429       fast_oop_rawmem = mem;
1430       transform_later(slow_region);
1431     }
1432 
1433     // Plug in the successful fast-path into the result merge point
1434     result_region    ->init_req(fast_result_path, fast_oop_ctrl);
1435     result_phi_i_o   ->init_req(fast_result_path, i_o);
1436     result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem);
1437   } else {
1438     slow_region = ctrl;
1439     result_phi_i_o = i_o; // Rename it to use in the following code.
1440   }
1441 
1442   // Generate slow-path call
1443   CallNode *call = new CallStaticJavaNode(slow_call_type, slow_call_address,
1444                                OptoRuntime::stub_name(slow_call_address),
1445                                TypePtr::BOTTOM);
1446   call->init_req(TypeFunc::Control,   slow_region);
1447   call->init_req(TypeFunc::I_O,       top());    // does no i/o
1448   call->init_req(TypeFunc::Memory,    slow_mem); // may gc ptrs
1449   call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
1450   call->init_req(TypeFunc::FramePtr,  alloc->in(TypeFunc::FramePtr));
1451 
1452   call->init_req(TypeFunc::Parms+0, klass_node);
1453   if (length != nullptr) {
1454     call->init_req(TypeFunc::Parms+1, length);
1455   }
1456 
1457   // Copy debug information and adjust JVMState information, then replace
1458   // allocate node with the call
1459   call->copy_call_debug_info(&_igvn, alloc);
1460   // For array allocations, copy the valid length check to the call node so Compile::final_graph_reshaping() can verify
1461   // that the call has the expected number of CatchProj nodes (in case the allocation always fails and the fallthrough
1462   // path dies).
1463   if (valid_length_test != nullptr) {
1464     call->add_req(valid_length_test);
1465   }
1466   if (expand_fast_path) {
1467     call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
1468   } else {
1469     // Hook i_o projection to avoid its elimination during allocation
1470     // replacement (when only a slow call is generated).
1471     call->set_req(TypeFunc::I_O, result_phi_i_o);
1472   }
1473   _igvn.replace_node(alloc, call);
1474   transform_later(call);
1475 
1476   // Identify the output projections from the allocate node and
1477   // adjust any references to them.
1478   // The control and io projections look like:
1479   //
1480   //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
1481   //  Allocate                   Catch
1482   //        ^---Proj(io) <-------+   ^---CatchProj(io)
1483   //
1484   //  We are interested in the CatchProj nodes.
1485   //
1486   call->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/);
1487 
1488   // An allocate node has separate memory projections for the uses on
1489   // the control and i_o paths. Replace the control memory projection with
1490   // result_phi_rawmem (unless we are only generating a slow call when
1491   // both memory projections are combined)
1492   if (expand_fast_path && _callprojs.fallthrough_memproj != nullptr) {
1493     migrate_outs(_callprojs.fallthrough_memproj, result_phi_rawmem);
1494   }
1495   // Now change uses of catchall_memproj to use fallthrough_memproj and delete
1496   // catchall_memproj so we end up with a call that has only 1 memory projection.
1497   if (_callprojs.catchall_memproj != nullptr ) {
1498     if (_callprojs.fallthrough_memproj == nullptr) {
1499       _callprojs.fallthrough_memproj = new ProjNode(call, TypeFunc::Memory);
1500       transform_later(_callprojs.fallthrough_memproj);
1501     }
1502     migrate_outs(_callprojs.catchall_memproj, _callprojs.fallthrough_memproj);
1503     _igvn.remove_dead_node(_callprojs.catchall_memproj);
1504   }
1505 
1506   // An allocate node has separate i_o projections for the uses on the control
1507   // and i_o paths. Always replace the control i_o projection with result i_o
1508   // otherwise incoming i_o become dead when only a slow call is generated
1509   // (it is different from memory projections where both projections are
1510   // combined in such case).
1511   if (_callprojs.fallthrough_ioproj != nullptr) {
1512     migrate_outs(_callprojs.fallthrough_ioproj, result_phi_i_o);
1513   }
1514   // Now change uses of catchall_ioproj to use fallthrough_ioproj and delete
1515   // catchall_ioproj so we end up with a call that has only 1 i_o projection.
1516   if (_callprojs.catchall_ioproj != nullptr ) {
1517     if (_callprojs.fallthrough_ioproj == nullptr) {
1518       _callprojs.fallthrough_ioproj = new ProjNode(call, TypeFunc::I_O);
1519       transform_later(_callprojs.fallthrough_ioproj);
1520     }
1521     migrate_outs(_callprojs.catchall_ioproj, _callprojs.fallthrough_ioproj);
1522     _igvn.remove_dead_node(_callprojs.catchall_ioproj);
1523   }
1524 
1525   // if we generated only a slow call, we are done
1526   if (!expand_fast_path) {
1527     // Now we can unhook i_o.
1528     if (result_phi_i_o->outcnt() > 1) {
1529       call->set_req(TypeFunc::I_O, top());
1530     } else {
1531       assert(result_phi_i_o->unique_ctrl_out() == call, "sanity");
1532       // Case of new array with negative size known during compilation.
1533       // AllocateArrayNode::Ideal() optimization disconnect unreachable
1534       // following code since call to runtime will throw exception.
1535       // As result there will be no users of i_o after the call.
1536       // Leave i_o attached to this call to avoid problems in preceding graph.
1537     }
1538     return;
1539   }
1540 
1541   if (_callprojs.fallthrough_catchproj != nullptr) {
1542     ctrl = _callprojs.fallthrough_catchproj->clone();
1543     transform_later(ctrl);
1544     _igvn.replace_node(_callprojs.fallthrough_catchproj, result_region);
1545   } else {
1546     ctrl = top();
1547   }
1548   Node *slow_result;
1549   if (_callprojs.resproj == nullptr) {
1550     // no uses of the allocation result
1551     slow_result = top();
1552   } else {
1553     slow_result = _callprojs.resproj->clone();
1554     transform_later(slow_result);
1555     _igvn.replace_node(_callprojs.resproj, result_phi_rawoop);
1556   }
1557 
1558   // Plug slow-path into result merge point
1559   result_region->init_req( slow_result_path, ctrl);
1560   transform_later(result_region);
1561   if (allocation_has_use) {
1562     result_phi_rawoop->init_req(slow_result_path, slow_result);
1563     transform_later(result_phi_rawoop);
1564   }
1565   result_phi_rawmem->init_req(slow_result_path, _callprojs.fallthrough_memproj);
1566   transform_later(result_phi_rawmem);
1567   transform_later(result_phi_i_o);
1568   // This completes all paths into the result merge point
1569 }
1570 
1571 // Remove alloc node that has no uses.
1572 void PhaseMacroExpand::yank_alloc_node(AllocateNode* alloc) {
1573   Node* ctrl = alloc->in(TypeFunc::Control);
1574   Node* mem  = alloc->in(TypeFunc::Memory);
1575   Node* i_o  = alloc->in(TypeFunc::I_O);
1576 
1577   alloc->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/);
1578   if (_callprojs.resproj != nullptr) {
1579     for (DUIterator_Fast imax, i = _callprojs.resproj->fast_outs(imax); i < imax; i++) {
1580       Node* use = _callprojs.resproj->fast_out(i);
1581       use->isa_MemBar()->remove(&_igvn);
1582       --imax;
1583       --i; // back up iterator
1584     }
1585     assert(_callprojs.resproj->outcnt() == 0, "all uses must be deleted");
1586     _igvn.remove_dead_node(_callprojs.resproj);
1587   }
1588   if (_callprojs.fallthrough_catchproj != nullptr) {
1589     migrate_outs(_callprojs.fallthrough_catchproj, ctrl);
1590     _igvn.remove_dead_node(_callprojs.fallthrough_catchproj);
1591   }
1592   if (_callprojs.catchall_catchproj != nullptr) {
1593     _igvn.rehash_node_delayed(_callprojs.catchall_catchproj);
1594     _callprojs.catchall_catchproj->set_req(0, top());
1595   }
1596   if (_callprojs.fallthrough_proj != nullptr) {
1597     Node* catchnode = _callprojs.fallthrough_proj->unique_ctrl_out();
1598     _igvn.remove_dead_node(catchnode);
1599     _igvn.remove_dead_node(_callprojs.fallthrough_proj);
1600   }
1601   if (_callprojs.fallthrough_memproj != nullptr) {
1602     migrate_outs(_callprojs.fallthrough_memproj, mem);
1603     _igvn.remove_dead_node(_callprojs.fallthrough_memproj);
1604   }
1605   if (_callprojs.fallthrough_ioproj != nullptr) {
1606     migrate_outs(_callprojs.fallthrough_ioproj, i_o);
1607     _igvn.remove_dead_node(_callprojs.fallthrough_ioproj);
1608   }
1609   if (_callprojs.catchall_memproj != nullptr) {
1610     _igvn.rehash_node_delayed(_callprojs.catchall_memproj);
1611     _callprojs.catchall_memproj->set_req(0, top());
1612   }
1613   if (_callprojs.catchall_ioproj != nullptr) {
1614     _igvn.rehash_node_delayed(_callprojs.catchall_ioproj);
1615     _callprojs.catchall_ioproj->set_req(0, top());
1616   }
1617 #ifndef PRODUCT
1618   if (PrintEliminateAllocations) {
1619     if (alloc->is_AllocateArray()) {
1620       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
1621     } else {
1622       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
1623     }
1624   }
1625 #endif
1626   _igvn.remove_dead_node(alloc);
1627 }
1628 
1629 void PhaseMacroExpand::expand_initialize_membar(AllocateNode* alloc, InitializeNode* init,
1630                                                 Node*& fast_oop_ctrl, Node*& fast_oop_rawmem) {
1631   // If initialization is performed by an array copy, any required
1632   // MemBarStoreStore was already added. If the object does not
1633   // escape no need for a MemBarStoreStore. If the object does not
1634   // escape in its initializer and memory barrier (MemBarStoreStore or
1635   // stronger) is already added at exit of initializer, also no need
1636   // for a MemBarStoreStore. Otherwise we need a MemBarStoreStore
1637   // so that stores that initialize this object can't be reordered
1638   // with a subsequent store that makes this object accessible by
1639   // other threads.
1640   // Other threads include java threads and JVM internal threads
1641   // (for example concurrent GC threads). Current concurrent GC
1642   // implementation: G1 will not scan newly created object,
1643   // so it's safe to skip storestore barrier when allocation does
1644   // not escape.
1645   if (!alloc->does_not_escape_thread() &&
1646     !alloc->is_allocation_MemBar_redundant() &&
1647     (init == nullptr || !init->is_complete_with_arraycopy())) {
1648     if (init == nullptr || init->req() < InitializeNode::RawStores) {
1649       // No InitializeNode or no stores captured by zeroing
1650       // elimination. Simply add the MemBarStoreStore after object
1651       // initialization.
1652       // What we want is to prevent the compiler and the CPU from re-ordering the stores that initialize this object
1653       // with subsequent stores to any slice. As a consequence, this MemBar should capture the entire memory state at
1654       // this point in the IR and produce a new memory state that should cover all slices. However, the Initialize node
1655       // only captures/produces a partial memory state making it complicated to insert such a MemBar. Because
1656       // re-ordering by the compiler can't happen by construction (a later Store that publishes the just allocated
1657       // object reference is indirectly control dependent on the Initialize node), preventing reordering by the CPU is
1658       // sufficient. For that a MemBar on the raw memory slice is good enough.
1659       // If init is null, this allocation does have an InitializeNode but this logic can't locate it (see comment in
1660       // PhaseMacroExpand::initialize_object()).
1661       MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxRaw);
1662       transform_later(mb);
1663 
1664       mb->init_req(TypeFunc::Memory, fast_oop_rawmem);
1665       mb->init_req(TypeFunc::Control, fast_oop_ctrl);
1666       fast_oop_ctrl = new ProjNode(mb, TypeFunc::Control);
1667       transform_later(fast_oop_ctrl);
1668       fast_oop_rawmem = new ProjNode(mb, TypeFunc::Memory);
1669       transform_later(fast_oop_rawmem);
1670     } else {
1671       // Add the MemBarStoreStore after the InitializeNode so that
1672       // all stores performing the initialization that were moved
1673       // before the InitializeNode happen before the storestore
1674       // barrier.
1675 
1676       Node* init_ctrl = init->proj_out_or_null(TypeFunc::Control);
1677 
1678       // See comment above that explains why a raw memory MemBar is good enough.
1679       MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxRaw);
1680       transform_later(mb);
1681 
1682       Node* ctrl = new ProjNode(init, TypeFunc::Control);
1683       transform_later(ctrl);
1684       Node* old_raw_mem_proj = nullptr;
1685       auto find_raw_mem = [&](ProjNode* proj) {
1686         if (C->get_alias_index(proj->adr_type()) == Compile::AliasIdxRaw) {
1687           assert(old_raw_mem_proj == nullptr, "only one expected");
1688           old_raw_mem_proj = proj;
1689         }
1690       };
1691       init->for_each_proj(find_raw_mem, TypeFunc::Memory);
1692       assert(old_raw_mem_proj != nullptr, "should have found raw mem Proj");
1693       Node* raw_mem_proj = new ProjNode(init, TypeFunc::Memory);
1694       transform_later(raw_mem_proj);
1695 
1696       // The MemBarStoreStore depends on control and memory coming
1697       // from the InitializeNode
1698       mb->init_req(TypeFunc::Memory, raw_mem_proj);
1699       mb->init_req(TypeFunc::Control, ctrl);
1700 
1701       ctrl = new ProjNode(mb, TypeFunc::Control);
1702       transform_later(ctrl);
1703       Node* mem = new ProjNode(mb, TypeFunc::Memory);
1704       transform_later(mem);
1705 
1706       // All nodes that depended on the InitializeNode for control
1707       // and memory must now depend on the MemBarNode that itself
1708       // depends on the InitializeNode
1709       if (init_ctrl != nullptr) {
1710         _igvn.replace_node(init_ctrl, ctrl);
1711       }
1712       _igvn.replace_node(old_raw_mem_proj, mem);
1713     }
1714   }
1715 }
1716 
1717 void PhaseMacroExpand::expand_dtrace_alloc_probe(AllocateNode* alloc, Node* oop,
1718                                                 Node*& ctrl, Node*& rawmem) {
1719   if (C->env()->dtrace_alloc_probes()) {
1720     // Slow-path call
1721     int size = TypeFunc::Parms + 2;
1722     CallLeafNode *call = new CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
1723                                           CAST_FROM_FN_PTR(address,
1724                                           static_cast<int (*)(JavaThread*, oopDesc*)>(SharedRuntime::dtrace_object_alloc)),
1725                                           "dtrace_object_alloc",
1726                                           TypeRawPtr::BOTTOM);
1727 
1728     // Get base of thread-local storage area
1729     Node* thread = new ThreadLocalNode();
1730     transform_later(thread);
1731 
1732     call->init_req(TypeFunc::Parms + 0, thread);
1733     call->init_req(TypeFunc::Parms + 1, oop);
1734     call->init_req(TypeFunc::Control, ctrl);
1735     call->init_req(TypeFunc::I_O    , top()); // does no i/o
1736     call->init_req(TypeFunc::Memory , rawmem);
1737     call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
1738     call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
1739     transform_later(call);
1740     ctrl = new ProjNode(call, TypeFunc::Control);
1741     transform_later(ctrl);
1742     rawmem = new ProjNode(call, TypeFunc::Memory);
1743     transform_later(rawmem);
1744   }
1745 }
1746 
1747 // Helper for PhaseMacroExpand::expand_allocate_common.
1748 // Initializes the newly-allocated storage.
1749 Node*
1750 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
1751                                     Node* control, Node* rawmem, Node* object,
1752                                     Node* klass_node, Node* length,
1753                                     Node* size_in_bytes) {
1754   InitializeNode* init = alloc->initialization();
1755   // Store the klass & mark bits
1756   Node* mark_node = alloc->make_ideal_mark(&_igvn, object, control, rawmem);
1757   if (!mark_node->is_Con()) {
1758     transform_later(mark_node);
1759   }
1760   rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, TypeX_X->basic_type());
1761 
1762   if (!UseCompactObjectHeaders) {
1763     rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA);
1764   }
1765   int header_size = alloc->minimum_header_size();  // conservatively small
1766 
1767   // Array length
1768   if (length != nullptr) {         // Arrays need length field
1769     rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
1770     // conservatively small header size:
1771     header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1772     if (_igvn.type(klass_node)->isa_aryklassptr()) {   // we know the exact header size in most cases:
1773       BasicType elem = _igvn.type(klass_node)->is_klassptr()->as_instance_type()->isa_aryptr()->elem()->array_element_basic_type();
1774       if (is_reference_type(elem, true)) {
1775         elem = T_OBJECT;
1776       }
1777       header_size = Klass::layout_helper_header_size(Klass::array_layout_helper(elem));
1778     }
1779   }
1780 
1781   // Clear the object body, if necessary.
1782   if (init == nullptr) {
1783     // The init has somehow disappeared; be cautious and clear everything.
1784     //
1785     // This can happen if a node is allocated but an uncommon trap occurs
1786     // immediately.  In this case, the Initialize gets associated with the
1787     // trap, and may be placed in a different (outer) loop, if the Allocate
1788     // is in a loop.  If (this is rare) the inner loop gets unrolled, then
1789     // there can be two Allocates to one Initialize.  The answer in all these
1790     // edge cases is safety first.  It is always safe to clear immediately
1791     // within an Allocate, and then (maybe or maybe not) clear some more later.
1792     if (!(UseTLAB && ZeroTLAB)) {
1793       rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
1794                                             header_size, size_in_bytes,
1795                                             &_igvn);
1796     }
1797   } else {
1798     if (!init->is_complete()) {
1799       // Try to win by zeroing only what the init does not store.
1800       // We can also try to do some peephole optimizations,
1801       // such as combining some adjacent subword stores.
1802       rawmem = init->complete_stores(control, rawmem, object,
1803                                      header_size, size_in_bytes, &_igvn);
1804     }
1805     // We have no more use for this link, since the AllocateNode goes away:
1806     init->set_req(InitializeNode::RawAddress, top());
1807     // (If we keep the link, it just confuses the register allocator,
1808     // who thinks he sees a real use of the address by the membar.)
1809   }
1810 
1811   return rawmem;
1812 }
1813 
1814 // Generate prefetch instructions for next allocations.
1815 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
1816                                         Node*& contended_phi_rawmem,
1817                                         Node* old_eden_top, Node* new_eden_top,
1818                                         intx lines) {
1819    enum { fall_in_path = 1, pf_path = 2 };
1820    if( UseTLAB && AllocatePrefetchStyle == 2 ) {
1821       // Generate prefetch allocation with watermark check.
1822       // As an allocation hits the watermark, we will prefetch starting
1823       // at a "distance" away from watermark.
1824 
1825       Node *pf_region = new RegionNode(3);
1826       Node *pf_phi_rawmem = new PhiNode( pf_region, Type::MEMORY,
1827                                                 TypeRawPtr::BOTTOM );
1828       // I/O is used for Prefetch
1829       Node *pf_phi_abio = new PhiNode( pf_region, Type::ABIO );
1830 
1831       Node *thread = new ThreadLocalNode();
1832       transform_later(thread);
1833 
1834       Node *eden_pf_adr = new AddPNode( top()/*not oop*/, thread,
1835                    _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
1836       transform_later(eden_pf_adr);
1837 
1838       Node *old_pf_wm = new LoadPNode(needgc_false,
1839                                    contended_phi_rawmem, eden_pf_adr,
1840                                    TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,
1841                                    MemNode::unordered);
1842       transform_later(old_pf_wm);
1843 
1844       // check against new_eden_top
1845       Node *need_pf_cmp = new CmpPNode( new_eden_top, old_pf_wm );
1846       transform_later(need_pf_cmp);
1847       Node *need_pf_bol = new BoolNode( need_pf_cmp, BoolTest::ge );
1848       transform_later(need_pf_bol);
1849       IfNode *need_pf_iff = new IfNode( needgc_false, need_pf_bol,
1850                                        PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
1851       transform_later(need_pf_iff);
1852 
1853       // true node, add prefetchdistance
1854       Node *need_pf_true = new IfTrueNode( need_pf_iff );
1855       transform_later(need_pf_true);
1856 
1857       Node *need_pf_false = new IfFalseNode( need_pf_iff );
1858       transform_later(need_pf_false);
1859 
1860       Node *new_pf_wmt = new AddPNode( top(), old_pf_wm,
1861                                     _igvn.MakeConX(AllocatePrefetchDistance) );
1862       transform_later(new_pf_wmt );
1863       new_pf_wmt->set_req(0, need_pf_true);
1864 
1865       Node *store_new_wmt = new StorePNode(need_pf_true,
1866                                        contended_phi_rawmem, eden_pf_adr,
1867                                        TypeRawPtr::BOTTOM, new_pf_wmt,
1868                                        MemNode::unordered);
1869       transform_later(store_new_wmt);
1870 
1871       // adding prefetches
1872       pf_phi_abio->init_req( fall_in_path, i_o );
1873 
1874       Node *prefetch_adr;
1875       Node *prefetch;
1876       uint step_size = AllocatePrefetchStepSize;
1877       uint distance = 0;
1878 
1879       for ( intx i = 0; i < lines; i++ ) {
1880         prefetch_adr = new AddPNode( old_pf_wm, new_pf_wmt,
1881                                             _igvn.MakeConX(distance) );
1882         transform_later(prefetch_adr);
1883         prefetch = new PrefetchAllocationNode( i_o, prefetch_adr );
1884         transform_later(prefetch);
1885         distance += step_size;
1886         i_o = prefetch;
1887       }
1888       pf_phi_abio->set_req( pf_path, i_o );
1889 
1890       pf_region->init_req( fall_in_path, need_pf_false );
1891       pf_region->init_req( pf_path, need_pf_true );
1892 
1893       pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
1894       pf_phi_rawmem->init_req( pf_path, store_new_wmt );
1895 
1896       transform_later(pf_region);
1897       transform_later(pf_phi_rawmem);
1898       transform_later(pf_phi_abio);
1899 
1900       needgc_false = pf_region;
1901       contended_phi_rawmem = pf_phi_rawmem;
1902       i_o = pf_phi_abio;
1903    } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
1904       // Insert a prefetch instruction for each allocation.
1905       // This code is used to generate 1 prefetch instruction per cache line.
1906 
1907       // Generate several prefetch instructions.
1908       uint step_size = AllocatePrefetchStepSize;
1909       uint distance = AllocatePrefetchDistance;
1910 
1911       // Next cache address.
1912       Node *cache_adr = new AddPNode(old_eden_top, old_eden_top,
1913                                      _igvn.MakeConX(step_size + distance));
1914       transform_later(cache_adr);
1915       cache_adr = new CastP2XNode(needgc_false, cache_adr);
1916       transform_later(cache_adr);
1917       // Address is aligned to execute prefetch to the beginning of cache line size.
1918       Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
1919       cache_adr = new AndXNode(cache_adr, mask);
1920       transform_later(cache_adr);
1921       cache_adr = new CastX2PNode(cache_adr);
1922       transform_later(cache_adr);
1923 
1924       // Prefetch
1925       Node *prefetch = new PrefetchAllocationNode( contended_phi_rawmem, cache_adr );
1926       prefetch->set_req(0, needgc_false);
1927       transform_later(prefetch);
1928       contended_phi_rawmem = prefetch;
1929       Node *prefetch_adr;
1930       distance = step_size;
1931       for ( intx i = 1; i < lines; i++ ) {
1932         prefetch_adr = new AddPNode( cache_adr, cache_adr,
1933                                             _igvn.MakeConX(distance) );
1934         transform_later(prefetch_adr);
1935         prefetch = new PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr );
1936         transform_later(prefetch);
1937         distance += step_size;
1938         contended_phi_rawmem = prefetch;
1939       }
1940    } else if( AllocatePrefetchStyle > 0 ) {
1941       // Insert a prefetch for each allocation only on the fast-path
1942       Node *prefetch_adr;
1943       Node *prefetch;
1944       // Generate several prefetch instructions.
1945       uint step_size = AllocatePrefetchStepSize;
1946       uint distance = AllocatePrefetchDistance;
1947       for ( intx i = 0; i < lines; i++ ) {
1948         prefetch_adr = new AddPNode( old_eden_top, new_eden_top,
1949                                             _igvn.MakeConX(distance) );
1950         transform_later(prefetch_adr);
1951         prefetch = new PrefetchAllocationNode( i_o, prefetch_adr );
1952         // Do not let it float too high, since if eden_top == eden_end,
1953         // both might be null.
1954         if( i == 0 ) { // Set control for first prefetch, next follows it
1955           prefetch->init_req(0, needgc_false);
1956         }
1957         transform_later(prefetch);
1958         distance += step_size;
1959         i_o = prefetch;
1960       }
1961    }
1962    return i_o;
1963 }
1964 
1965 
1966 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
1967   expand_allocate_common(alloc, nullptr,
1968                          OptoRuntime::new_instance_Type(),
1969                          OptoRuntime::new_instance_Java(), nullptr);
1970 }
1971 
1972 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
1973   Node* length = alloc->in(AllocateNode::ALength);
1974   Node* valid_length_test = alloc->in(AllocateNode::ValidLengthTest);
1975   InitializeNode* init = alloc->initialization();
1976   Node* klass_node = alloc->in(AllocateNode::KlassNode);
1977   const TypeAryKlassPtr* ary_klass_t = _igvn.type(klass_node)->isa_aryklassptr();
1978   address slow_call_address;  // Address of slow call
1979   if (init != nullptr && init->is_complete_with_arraycopy() &&
1980       ary_klass_t && ary_klass_t->elem()->isa_klassptr() == nullptr) {
1981     // Don't zero type array during slow allocation in VM since
1982     // it will be initialized later by arraycopy in compiled code.
1983     slow_call_address = OptoRuntime::new_array_nozero_Java();
1984   } else {
1985     slow_call_address = OptoRuntime::new_array_Java();
1986   }
1987   expand_allocate_common(alloc, length,
1988                          OptoRuntime::new_array_Type(),
1989                          slow_call_address, valid_length_test);
1990 }
1991 
1992 //-------------------mark_eliminated_box----------------------------------
1993 //
1994 // During EA obj may point to several objects but after few ideal graph
1995 // transformations (CCP) it may point to only one non escaping object
1996 // (but still using phi), corresponding locks and unlocks will be marked
1997 // for elimination. Later obj could be replaced with a new node (new phi)
1998 // and which does not have escape information. And later after some graph
1999 // reshape other locks and unlocks (which were not marked for elimination
2000 // before) are connected to this new obj (phi) but they still will not be
2001 // marked for elimination since new obj has no escape information.
2002 // Mark all associated (same box and obj) lock and unlock nodes for
2003 // elimination if some of them marked already.
2004 void PhaseMacroExpand::mark_eliminated_box(Node* box, Node* obj) {
2005   BoxLockNode* oldbox = box->as_BoxLock();
2006   if (oldbox->is_eliminated()) {
2007     return; // This BoxLock node was processed already.
2008   }
2009   assert(!oldbox->is_unbalanced(), "this should not be called for unbalanced region");
2010   // New implementation (EliminateNestedLocks) has separate BoxLock
2011   // node for each locked region so mark all associated locks/unlocks as
2012   // eliminated even if different objects are referenced in one locked region
2013   // (for example, OSR compilation of nested loop inside locked scope).
2014   if (EliminateNestedLocks ||
2015       oldbox->as_BoxLock()->is_simple_lock_region(nullptr, obj, nullptr)) {
2016     // Box is used only in one lock region. Mark this box as eliminated.
2017     oldbox->set_local();      // This verifies correct state of BoxLock
2018     _igvn.hash_delete(oldbox);
2019     oldbox->set_eliminated(); // This changes box's hash value
2020      _igvn.hash_insert(oldbox);
2021 
2022     for (uint i = 0; i < oldbox->outcnt(); i++) {
2023       Node* u = oldbox->raw_out(i);
2024       if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) {
2025         AbstractLockNode* alock = u->as_AbstractLock();
2026         // Check lock's box since box could be referenced by Lock's debug info.
2027         if (alock->box_node() == oldbox) {
2028           // Mark eliminated all related locks and unlocks.
2029 #ifdef ASSERT
2030           alock->log_lock_optimization(C, "eliminate_lock_set_non_esc4");
2031 #endif
2032           alock->set_non_esc_obj();
2033         }
2034       }
2035     }
2036     return;
2037   }
2038 
2039   // Create new "eliminated" BoxLock node and use it in monitor debug info
2040   // instead of oldbox for the same object.
2041   BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
2042 
2043   // Note: BoxLock node is marked eliminated only here and it is used
2044   // to indicate that all associated lock and unlock nodes are marked
2045   // for elimination.
2046   newbox->set_local(); // This verifies correct state of BoxLock
2047   newbox->set_eliminated();
2048   transform_later(newbox);
2049 
2050   // Replace old box node with new box for all users of the same object.
2051   for (uint i = 0; i < oldbox->outcnt();) {
2052     bool next_edge = true;
2053 
2054     Node* u = oldbox->raw_out(i);
2055     if (u->is_AbstractLock()) {
2056       AbstractLockNode* alock = u->as_AbstractLock();
2057       if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) {
2058         // Replace Box and mark eliminated all related locks and unlocks.
2059 #ifdef ASSERT
2060         alock->log_lock_optimization(C, "eliminate_lock_set_non_esc5");
2061 #endif
2062         alock->set_non_esc_obj();
2063         _igvn.rehash_node_delayed(alock);
2064         alock->set_box_node(newbox);
2065         next_edge = false;
2066       }
2067     }
2068     if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) {
2069       FastLockNode* flock = u->as_FastLock();
2070       assert(flock->box_node() == oldbox, "sanity");
2071       _igvn.rehash_node_delayed(flock);
2072       flock->set_box_node(newbox);
2073       next_edge = false;
2074     }
2075 
2076     // Replace old box in monitor debug info.
2077     if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
2078       SafePointNode* sfn = u->as_SafePoint();
2079       JVMState* youngest_jvms = sfn->jvms();
2080       int max_depth = youngest_jvms->depth();
2081       for (int depth = 1; depth <= max_depth; depth++) {
2082         JVMState* jvms = youngest_jvms->of_depth(depth);
2083         int num_mon  = jvms->nof_monitors();
2084         // Loop over monitors
2085         for (int idx = 0; idx < num_mon; idx++) {
2086           Node* obj_node = sfn->monitor_obj(jvms, idx);
2087           Node* box_node = sfn->monitor_box(jvms, idx);
2088           if (box_node == oldbox && obj_node->eqv_uncast(obj)) {
2089             int j = jvms->monitor_box_offset(idx);
2090             _igvn.replace_input_of(u, j, newbox);
2091             next_edge = false;
2092           }
2093         }
2094       }
2095     }
2096     if (next_edge) i++;
2097   }
2098 }
2099 
2100 //-----------------------mark_eliminated_locking_nodes-----------------------
2101 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) {
2102   if (!alock->is_balanced()) {
2103     return; // Can't do any more elimination for this locking region
2104   }
2105   if (EliminateNestedLocks) {
2106     if (alock->is_nested()) {
2107        assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity");
2108        return;
2109     } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened
2110       // Only Lock node has JVMState needed here.
2111       // Not that preceding claim is documented anywhere else.
2112       if (alock->jvms() != nullptr) {
2113         if (alock->as_Lock()->is_nested_lock_region()) {
2114           // Mark eliminated related nested locks and unlocks.
2115           Node* obj = alock->obj_node();
2116           BoxLockNode* box_node = alock->box_node()->as_BoxLock();
2117           assert(!box_node->is_eliminated(), "should not be marked yet");
2118           // Note: BoxLock node is marked eliminated only here
2119           // and it is used to indicate that all associated lock
2120           // and unlock nodes are marked for elimination.
2121           box_node->set_eliminated(); // Box's hash is always NO_HASH here
2122           for (uint i = 0; i < box_node->outcnt(); i++) {
2123             Node* u = box_node->raw_out(i);
2124             if (u->is_AbstractLock()) {
2125               alock = u->as_AbstractLock();
2126               if (alock->box_node() == box_node) {
2127                 // Verify that this Box is referenced only by related locks.
2128                 assert(alock->obj_node()->eqv_uncast(obj), "");
2129                 // Mark all related locks and unlocks.
2130 #ifdef ASSERT
2131                 alock->log_lock_optimization(C, "eliminate_lock_set_nested");
2132 #endif
2133                 alock->set_nested();
2134               }
2135             }
2136           }
2137         } else {
2138 #ifdef ASSERT
2139           alock->log_lock_optimization(C, "eliminate_lock_NOT_nested_lock_region");
2140           if (C->log() != nullptr)
2141             alock->as_Lock()->is_nested_lock_region(C); // rerun for debugging output
2142 #endif
2143         }
2144       }
2145       return;
2146     }
2147     // Process locks for non escaping object
2148     assert(alock->is_non_esc_obj(), "");
2149   } // EliminateNestedLocks
2150 
2151   if (alock->is_non_esc_obj()) { // Lock is used for non escaping object
2152     // Look for all locks of this object and mark them and
2153     // corresponding BoxLock nodes as eliminated.
2154     Node* obj = alock->obj_node();
2155     for (uint j = 0; j < obj->outcnt(); j++) {
2156       Node* o = obj->raw_out(j);
2157       if (o->is_AbstractLock() &&
2158           o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) {
2159         alock = o->as_AbstractLock();
2160         Node* box = alock->box_node();
2161         // Replace old box node with new eliminated box for all users
2162         // of the same object and mark related locks as eliminated.
2163         mark_eliminated_box(box, obj);
2164       }
2165     }
2166   }
2167 }
2168 
2169 // we have determined that this lock/unlock can be eliminated, we simply
2170 // eliminate the node without expanding it.
2171 //
2172 // Note:  The membar's associated with the lock/unlock are currently not
2173 //        eliminated.  This should be investigated as a future enhancement.
2174 //
2175 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
2176 
2177   if (!alock->is_eliminated()) {
2178     return false;
2179   }
2180 #ifdef ASSERT
2181   if (!alock->is_coarsened()) {
2182     // Check that new "eliminated" BoxLock node is created.
2183     BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
2184     assert(oldbox->is_eliminated(), "should be done already");
2185   }
2186 #endif
2187 
2188   alock->log_lock_optimization(C, "eliminate_lock");
2189 
2190 #ifndef PRODUCT
2191   if (PrintEliminateLocks) {
2192     tty->print_cr("++++ Eliminated: %d %s '%s'", alock->_idx, (alock->is_Lock() ? "Lock" : "Unlock"), alock->kind_as_string());
2193   }
2194 #endif
2195 
2196   Node* mem  = alock->in(TypeFunc::Memory);
2197   Node* ctrl = alock->in(TypeFunc::Control);
2198   guarantee(ctrl != nullptr, "missing control projection, cannot replace_node() with null");
2199 
2200   alock->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/);
2201   // There are 2 projections from the lock.  The lock node will
2202   // be deleted when its last use is subsumed below.
2203   assert(alock->outcnt() == 2 &&
2204          _callprojs.fallthrough_proj != nullptr &&
2205          _callprojs.fallthrough_memproj != nullptr,
2206          "Unexpected projections from Lock/Unlock");
2207 
2208   Node* fallthroughproj = _callprojs.fallthrough_proj;
2209   Node* memproj_fallthrough = _callprojs.fallthrough_memproj;
2210 
2211   // The memory projection from a lock/unlock is RawMem
2212   // The input to a Lock is merged memory, so extract its RawMem input
2213   // (unless the MergeMem has been optimized away.)
2214   if (alock->is_Lock()) {
2215     // Search for MemBarAcquireLock node and delete it also.
2216     MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
2217     assert(membar != nullptr && membar->Opcode() == Op_MemBarAcquireLock, "");
2218     Node* ctrlproj = membar->proj_out(TypeFunc::Control);
2219     Node* memproj = membar->proj_out(TypeFunc::Memory);
2220     _igvn.replace_node(ctrlproj, fallthroughproj);
2221     _igvn.replace_node(memproj, memproj_fallthrough);
2222 
2223     // Delete FastLock node also if this Lock node is unique user
2224     // (a loop peeling may clone a Lock node).
2225     Node* flock = alock->as_Lock()->fastlock_node();
2226     if (flock->outcnt() == 1) {
2227       assert(flock->unique_out() == alock, "sanity");
2228       _igvn.replace_node(flock, top());
2229     }
2230   }
2231 
2232   // Search for MemBarReleaseLock node and delete it also.
2233   if (alock->is_Unlock() && ctrl->is_Proj() && ctrl->in(0)->is_MemBar()) {
2234     MemBarNode* membar = ctrl->in(0)->as_MemBar();
2235     assert(membar->Opcode() == Op_MemBarReleaseLock &&
2236            mem->is_Proj() && membar == mem->in(0), "");
2237     _igvn.replace_node(fallthroughproj, ctrl);
2238     _igvn.replace_node(memproj_fallthrough, mem);
2239     fallthroughproj = ctrl;
2240     memproj_fallthrough = mem;
2241     ctrl = membar->in(TypeFunc::Control);
2242     mem  = membar->in(TypeFunc::Memory);
2243   }
2244 
2245   _igvn.replace_node(fallthroughproj, ctrl);
2246   _igvn.replace_node(memproj_fallthrough, mem);
2247   return true;
2248 }
2249 
2250 
2251 //------------------------------expand_lock_node----------------------
2252 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
2253 
2254   Node* ctrl = lock->in(TypeFunc::Control);
2255   Node* mem = lock->in(TypeFunc::Memory);
2256   Node* obj = lock->obj_node();
2257   Node* box = lock->box_node();
2258   Node* flock = lock->fastlock_node();
2259 
2260   assert(!box->as_BoxLock()->is_eliminated(), "sanity");
2261 
2262   // Make the merge point
2263   Node *region;
2264   Node *mem_phi;
2265   Node *slow_path;
2266 
2267   region  = new RegionNode(3);
2268   // create a Phi for the memory state
2269   mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2270 
2271   // Optimize test; set region slot 2
2272   slow_path = opt_bits_test(ctrl, region, 2, flock);
2273   mem_phi->init_req(2, mem);
2274 
2275   // Make slow path call
2276   CallNode* call = make_slow_call(lock, OptoRuntime::complete_monitor_enter_Type(),
2277                                   OptoRuntime::complete_monitor_locking_Java(), nullptr, slow_path,
2278                                   obj, box, nullptr);
2279 
2280   call->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/);
2281 
2282   // Slow path can only throw asynchronous exceptions, which are always
2283   // de-opted.  So the compiler thinks the slow-call can never throw an
2284   // exception.  If it DOES throw an exception we would need the debug
2285   // info removed first (since if it throws there is no monitor).
2286   assert(_callprojs.fallthrough_ioproj == nullptr && _callprojs.catchall_ioproj == nullptr &&
2287          _callprojs.catchall_memproj == nullptr && _callprojs.catchall_catchproj == nullptr, "Unexpected projection from Lock");
2288 
2289   // Capture slow path
2290   // disconnect fall-through projection from call and create a new one
2291   // hook up users of fall-through projection to region
2292   Node *slow_ctrl = _callprojs.fallthrough_proj->clone();
2293   transform_later(slow_ctrl);
2294   _igvn.hash_delete(_callprojs.fallthrough_proj);
2295   _callprojs.fallthrough_proj->disconnect_inputs(C);
2296   region->init_req(1, slow_ctrl);
2297   // region inputs are now complete
2298   transform_later(region);
2299   _igvn.replace_node(_callprojs.fallthrough_proj, region);
2300 
2301   Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory));
2302 
2303   mem_phi->init_req(1, memproj);
2304 
2305   transform_later(mem_phi);
2306 
2307   _igvn.replace_node(_callprojs.fallthrough_memproj, mem_phi);
2308 }
2309 
2310 //------------------------------expand_unlock_node----------------------
2311 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
2312 
2313   Node* ctrl = unlock->in(TypeFunc::Control);
2314   Node* mem = unlock->in(TypeFunc::Memory);
2315   Node* obj = unlock->obj_node();
2316   Node* box = unlock->box_node();
2317 
2318   assert(!box->as_BoxLock()->is_eliminated(), "sanity");
2319 
2320   // No need for a null check on unlock
2321 
2322   // Make the merge point
2323   Node *region;
2324   Node *mem_phi;
2325 
2326   region  = new RegionNode(3);
2327   // create a Phi for the memory state
2328   mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2329 
2330   FastUnlockNode *funlock = new FastUnlockNode( ctrl, obj, box );
2331   funlock = transform_later( funlock )->as_FastUnlock();
2332   // Optimize test; set region slot 2
2333   Node *slow_path = opt_bits_test(ctrl, region, 2, funlock);
2334   Node *thread = transform_later(new ThreadLocalNode());
2335 
2336   CallNode *call = make_slow_call((CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(),
2337                                   CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C),
2338                                   "complete_monitor_unlocking_C", slow_path, obj, box, thread);
2339 
2340   call->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/);
2341   assert(_callprojs.fallthrough_ioproj == nullptr && _callprojs.catchall_ioproj == nullptr &&
2342          _callprojs.catchall_memproj == nullptr && _callprojs.catchall_catchproj == nullptr, "Unexpected projection from Lock");
2343 
2344   // No exceptions for unlocking
2345   // Capture slow path
2346   // disconnect fall-through projection from call and create a new one
2347   // hook up users of fall-through projection to region
2348   Node *slow_ctrl = _callprojs.fallthrough_proj->clone();
2349   transform_later(slow_ctrl);
2350   _igvn.hash_delete(_callprojs.fallthrough_proj);
2351   _callprojs.fallthrough_proj->disconnect_inputs(C);
2352   region->init_req(1, slow_ctrl);
2353   // region inputs are now complete
2354   transform_later(region);
2355   _igvn.replace_node(_callprojs.fallthrough_proj, region);
2356 
2357   Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory) );
2358   mem_phi->init_req(1, memproj );
2359   mem_phi->init_req(2, mem);
2360   transform_later(mem_phi);
2361 
2362   _igvn.replace_node(_callprojs.fallthrough_memproj, mem_phi);
2363 }
2364 
2365 void PhaseMacroExpand::expand_subtypecheck_node(SubTypeCheckNode *check) {
2366   assert(check->in(SubTypeCheckNode::Control) == nullptr, "should be pinned");
2367   Node* bol = check->unique_out();
2368   Node* obj_or_subklass = check->in(SubTypeCheckNode::ObjOrSubKlass);
2369   Node* superklass = check->in(SubTypeCheckNode::SuperKlass);
2370   assert(bol->is_Bool() && bol->as_Bool()->_test._test == BoolTest::ne, "unexpected bool node");
2371 
2372   for (DUIterator_Last imin, i = bol->last_outs(imin); i >= imin; --i) {
2373     Node* iff = bol->last_out(i);
2374     assert(iff->is_If(), "where's the if?");
2375 
2376     if (iff->in(0)->is_top()) {
2377       _igvn.replace_input_of(iff, 1, C->top());
2378       continue;
2379     }
2380 
2381     Node* iftrue = iff->as_If()->proj_out(1);
2382     Node* iffalse = iff->as_If()->proj_out(0);
2383     Node* ctrl = iff->in(0);
2384 
2385     Node* subklass = nullptr;
2386     if (_igvn.type(obj_or_subklass)->isa_klassptr()) {
2387       subklass = obj_or_subklass;
2388     } else {
2389       Node* k_adr = basic_plus_adr(obj_or_subklass, oopDesc::klass_offset_in_bytes());
2390       subklass = _igvn.transform(LoadKlassNode::make(_igvn, C->immutable_memory(), k_adr, TypeInstPtr::KLASS));
2391     }
2392 
2393     Node* not_subtype_ctrl = Phase::gen_subtype_check(subklass, superklass, &ctrl, nullptr, _igvn, check->method(), check->bci());
2394 
2395     _igvn.replace_input_of(iff, 0, C->top());
2396     _igvn.replace_node(iftrue, not_subtype_ctrl);
2397     _igvn.replace_node(iffalse, ctrl);
2398   }
2399   _igvn.replace_node(check, C->top());
2400 }
2401 
2402 // Perform refining of strip mined loop nodes in the macro nodes list.
2403 void PhaseMacroExpand::refine_strip_mined_loop_macro_nodes() {
2404    for (int i = C->macro_count(); i > 0; i--) {
2405     Node* n = C->macro_node(i - 1);
2406     if (n->is_OuterStripMinedLoop()) {
2407       n->as_OuterStripMinedLoop()->adjust_strip_mined_loop(&_igvn);
2408     }
2409   }
2410 }
2411 
2412 //---------------------------eliminate_macro_nodes----------------------
2413 // Eliminate scalar replaced allocations and associated locks.
2414 void PhaseMacroExpand::eliminate_macro_nodes() {
2415   if (C->macro_count() == 0)
2416     return;
2417 
2418   if (StressMacroElimination) {
2419     C->shuffle_macro_nodes();
2420   }
2421   NOT_PRODUCT(int membar_before = count_MemBar(C);)
2422 
2423   // Before elimination may re-mark (change to Nested or NonEscObj)
2424   // all associated (same box and obj) lock and unlock nodes.
2425   int cnt = C->macro_count();
2426   for (int i=0; i < cnt; i++) {
2427     Node *n = C->macro_node(i);
2428     if (n->is_AbstractLock()) { // Lock and Unlock nodes
2429       mark_eliminated_locking_nodes(n->as_AbstractLock());
2430     }
2431   }
2432   // Re-marking may break consistency of Coarsened locks.
2433   if (!C->coarsened_locks_consistent()) {
2434     return; // recompile without Coarsened locks if broken
2435   } else {
2436     // After coarsened locks are eliminated locking regions
2437     // become unbalanced. We should not execute any more
2438     // locks elimination optimizations on them.
2439     C->mark_unbalanced_boxes();
2440   }
2441 
2442   // First, attempt to eliminate locks
2443   bool progress = true;
2444   while (progress) {
2445     progress = false;
2446     for (int i = C->macro_count(); i > 0; i = MIN2(i - 1, C->macro_count())) { // more than 1 element can be eliminated at once
2447       Node* n = C->macro_node(i - 1);
2448       bool success = false;
2449       DEBUG_ONLY(int old_macro_count = C->macro_count();)
2450       if (n->is_AbstractLock()) {
2451         success = eliminate_locking_node(n->as_AbstractLock());
2452 #ifndef PRODUCT
2453         if (success && PrintOptoStatistics) {
2454           AtomicAccess::inc(&PhaseMacroExpand::_monitor_objects_removed_counter);
2455         }
2456 #endif
2457       }
2458       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2459       progress = progress || success;
2460       if (success) {
2461         C->print_method(PHASE_AFTER_MACRO_ELIMINATION_STEP, 5, n);
2462       }
2463     }
2464   }
2465   // Next, attempt to eliminate allocations
2466   progress = true;
2467   while (progress) {
2468     progress = false;
2469     for (int i = C->macro_count(); i > 0; i = MIN2(i - 1, C->macro_count())) { // more than 1 element can be eliminated at once
2470       Node* n = C->macro_node(i - 1);
2471       bool success = false;
2472       DEBUG_ONLY(int old_macro_count = C->macro_count();)
2473       switch (n->class_id()) {
2474       case Node::Class_Allocate:
2475       case Node::Class_AllocateArray:
2476         success = eliminate_allocate_node(n->as_Allocate());
2477 #ifndef PRODUCT
2478         if (success && PrintOptoStatistics) {
2479           AtomicAccess::inc(&PhaseMacroExpand::_objs_scalar_replaced_counter);
2480         }
2481 #endif
2482         break;
2483       case Node::Class_CallStaticJava:
2484         success = eliminate_boxing_node(n->as_CallStaticJava());
2485         break;
2486       case Node::Class_Lock:
2487       case Node::Class_Unlock:
2488         assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
2489         break;
2490       case Node::Class_ArrayCopy:
2491         break;
2492       case Node::Class_OuterStripMinedLoop:
2493         break;
2494       case Node::Class_SubTypeCheck:
2495         break;
2496       case Node::Class_Opaque1:
2497         break;
2498       default:
2499         assert(n->Opcode() == Op_LoopLimit ||
2500                n->Opcode() == Op_ModD ||
2501                n->Opcode() == Op_ModF ||
2502                n->is_OpaqueNotNull()       ||
2503                n->is_OpaqueInitializedAssertionPredicate() ||
2504                n->Opcode() == Op_MaxL      ||
2505                n->Opcode() == Op_MinL      ||
2506                BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(n),
2507                "unknown node type in macro list");
2508       }
2509       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2510       progress = progress || success;
2511       if (success) {
2512         C->print_method(PHASE_AFTER_MACRO_ELIMINATION_STEP, 5, n);
2513       }
2514     }
2515   }
2516 #ifndef PRODUCT
2517   if (PrintOptoStatistics) {
2518     int membar_after = count_MemBar(C);
2519     AtomicAccess::add(&PhaseMacroExpand::_memory_barriers_removed_counter, membar_before - membar_after);
2520   }
2521 #endif
2522 }
2523 
2524 void PhaseMacroExpand::eliminate_opaque_looplimit_macro_nodes() {
2525   if (C->macro_count() == 0) {
2526     return;
2527   }
2528   refine_strip_mined_loop_macro_nodes();
2529   // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations.
2530   bool progress = true;
2531   while (progress) {
2532     progress = false;
2533     for (int i = C->macro_count(); i > 0; i--) {
2534       Node* n = C->macro_node(i-1);
2535       bool success = false;
2536       DEBUG_ONLY(int old_macro_count = C->macro_count();)
2537       if (n->Opcode() == Op_LoopLimit) {
2538         // Remove it from macro list and put on IGVN worklist to optimize.
2539         C->remove_macro_node(n);
2540         _igvn._worklist.push(n);
2541         success = true;
2542       } else if (n->Opcode() == Op_CallStaticJava) {
2543         // Remove it from macro list and put on IGVN worklist to optimize.
2544         C->remove_macro_node(n);
2545         _igvn._worklist.push(n);
2546         success = true;
2547       } else if (n->is_Opaque1()) {
2548         _igvn.replace_node(n, n->in(1));
2549         success = true;
2550       } else if (n->is_OpaqueNotNull()) {
2551         // Tests with OpaqueNotNull nodes are implicitly known to be true. Replace the node with true. In debug builds,
2552         // we leave the test in the graph to have an additional sanity check at runtime. If the test fails (i.e. a bug),
2553         // we will execute a Halt node.
2554 #ifdef ASSERT
2555         _igvn.replace_node(n, n->in(1));
2556 #else
2557         _igvn.replace_node(n, _igvn.intcon(1));
2558 #endif
2559         success = true;
2560       } else if (n->is_OpaqueInitializedAssertionPredicate()) {
2561           // Initialized Assertion Predicates must always evaluate to true. Therefore, we get rid of them in product
2562           // builds as they are useless. In debug builds we keep them as additional verification code. Even though
2563           // loop opts are already over, we want to keep Initialized Assertion Predicates alive as long as possible to
2564           // enable folding of dead control paths within which cast nodes become top after due to impossible types -
2565           // even after loop opts are over. Therefore, we delay the removal of these opaque nodes until now.
2566 #ifdef ASSERT
2567         _igvn.replace_node(n, n->in(1));
2568 #else
2569         _igvn.replace_node(n, _igvn.intcon(1));
2570 #endif // ASSERT
2571       } else if (n->Opcode() == Op_OuterStripMinedLoop) {
2572         C->remove_macro_node(n);
2573         success = true;
2574       } else if (n->Opcode() == Op_MaxL) {
2575         // Since MaxL and MinL are not implemented in the backend, we expand them to
2576         // a CMoveL construct now. At least until here, the type could be computed
2577         // precisely. CMoveL is not so smart, but we can give it at least the best
2578         // type we know abouot n now.
2579         Node* repl = MaxNode::signed_max(n->in(1), n->in(2), _igvn.type(n), _igvn);
2580         _igvn.replace_node(n, repl);
2581         success = true;
2582       } else if (n->Opcode() == Op_MinL) {
2583         Node* repl = MaxNode::signed_min(n->in(1), n->in(2), _igvn.type(n), _igvn);
2584         _igvn.replace_node(n, repl);
2585         success = true;
2586       }
2587       assert(!success || (C->macro_count() == (old_macro_count - 1)), "elimination must have deleted one node from macro list");
2588       progress = progress || success;
2589       if (success) {
2590         C->print_method(PHASE_AFTER_MACRO_ELIMINATION_STEP, 5, n);
2591       }
2592     }
2593   }
2594 }
2595 
2596 //------------------------------expand_macro_nodes----------------------
2597 //  Returns true if a failure occurred.
2598 bool PhaseMacroExpand::expand_macro_nodes() {
2599   if (StressMacroExpansion) {
2600     C->shuffle_macro_nodes();
2601   }
2602 
2603   // Clean up the graph so we're less likely to hit the maximum node
2604   // limit
2605   _igvn.set_delay_transform(false);
2606   _igvn.optimize();
2607   if (C->failing())  return true;
2608   _igvn.set_delay_transform(true);
2609 
2610 
2611   // Because we run IGVN after each expansion, some macro nodes may go
2612   // dead and be removed from the list as we iterate over it. Move
2613   // Allocate nodes (processed in a second pass) at the beginning of
2614   // the list and then iterate from the last element of the list until
2615   // an Allocate node is seen. This is robust to random deletion in
2616   // the list due to nodes going dead.
2617   C->sort_macro_nodes();
2618 
2619   // expand arraycopy "macro" nodes first
2620   // For ReduceBulkZeroing, we must first process all arraycopy nodes
2621   // before the allocate nodes are expanded.
2622   while (C->macro_count() > 0) {
2623     int macro_count = C->macro_count();
2624     Node * n = C->macro_node(macro_count-1);
2625     assert(n->is_macro(), "only macro nodes expected here");
2626     if (_igvn.type(n) == Type::TOP || (n->in(0) != nullptr && n->in(0)->is_top())) {
2627       // node is unreachable, so don't try to expand it
2628       C->remove_macro_node(n);
2629       continue;
2630     }
2631     if (n->is_Allocate()) {
2632       break;
2633     }
2634     // Make sure expansion will not cause node limit to be exceeded.
2635     // Worst case is a macro node gets expanded into about 200 nodes.
2636     // Allow 50% more for optimization.
2637     if (C->check_node_count(300, "out of nodes before macro expansion")) {
2638       return true;
2639     }
2640 
2641     DEBUG_ONLY(int old_macro_count = C->macro_count();)
2642     switch (n->class_id()) {
2643     case Node::Class_Lock:
2644       expand_lock_node(n->as_Lock());
2645       break;
2646     case Node::Class_Unlock:
2647       expand_unlock_node(n->as_Unlock());
2648       break;
2649     case Node::Class_ArrayCopy:
2650       expand_arraycopy_node(n->as_ArrayCopy());
2651       break;
2652     case Node::Class_SubTypeCheck:
2653       expand_subtypecheck_node(n->as_SubTypeCheck());
2654       break;
2655     default:
2656       switch (n->Opcode()) {
2657       case Op_ModD:
2658       case Op_ModF: {
2659         CallNode* mod_macro = n->as_Call();
2660         CallNode* call = new CallLeafPureNode(mod_macro->tf(), mod_macro->entry_point(),
2661                                               mod_macro->_name, TypeRawPtr::BOTTOM);
2662         call->init_req(TypeFunc::Control, mod_macro->in(TypeFunc::Control));
2663         call->init_req(TypeFunc::I_O, C->top());
2664         call->init_req(TypeFunc::Memory, C->top());
2665         call->init_req(TypeFunc::ReturnAdr, C->top());
2666         call->init_req(TypeFunc::FramePtr, C->top());
2667         for (unsigned int i = 0; i < mod_macro->tf()->domain()->cnt() - TypeFunc::Parms; i++) {
2668           call->init_req(TypeFunc::Parms + i, mod_macro->in(TypeFunc::Parms + i));
2669         }
2670         _igvn.replace_node(mod_macro, call);
2671         transform_later(call);
2672         break;
2673       }
2674       default:
2675         assert(false, "unknown node type in macro list");
2676       }
2677     }
2678     assert(C->macro_count() == (old_macro_count - 1), "expansion must have deleted one node from macro list");
2679     if (C->failing())  return true;
2680     C->print_method(PHASE_AFTER_MACRO_EXPANSION_STEP, 5, n);
2681 
2682     // Clean up the graph so we're less likely to hit the maximum node
2683     // limit
2684     _igvn.set_delay_transform(false);
2685     _igvn.optimize();
2686     if (C->failing())  return true;
2687     _igvn.set_delay_transform(true);
2688   }
2689 
2690   // All nodes except Allocate nodes are expanded now. There could be
2691   // new optimization opportunities (such as folding newly created
2692   // load from a just allocated object). Run IGVN.
2693 
2694   // expand "macro" nodes
2695   // nodes are removed from the macro list as they are processed
2696   while (C->macro_count() > 0) {
2697     int macro_count = C->macro_count();
2698     Node * n = C->macro_node(macro_count-1);
2699     assert(n->is_macro(), "only macro nodes expected here");
2700     if (_igvn.type(n) == Type::TOP || (n->in(0) != nullptr && n->in(0)->is_top())) {
2701       // node is unreachable, so don't try to expand it
2702       C->remove_macro_node(n);
2703       continue;
2704     }
2705     // Make sure expansion will not cause node limit to be exceeded.
2706     // Worst case is a macro node gets expanded into about 200 nodes.
2707     // Allow 50% more for optimization.
2708     if (C->check_node_count(300, "out of nodes before macro expansion")) {
2709       return true;
2710     }
2711     switch (n->class_id()) {
2712     case Node::Class_Allocate:
2713       expand_allocate(n->as_Allocate());
2714       break;
2715     case Node::Class_AllocateArray:
2716       expand_allocate_array(n->as_AllocateArray());
2717       break;
2718     default:
2719       assert(false, "unknown node type in macro list");
2720     }
2721     assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
2722     if (C->failing())  return true;
2723     C->print_method(PHASE_AFTER_MACRO_EXPANSION_STEP, 5, n);
2724 
2725     // Clean up the graph so we're less likely to hit the maximum node
2726     // limit
2727     _igvn.set_delay_transform(false);
2728     _igvn.optimize();
2729     if (C->failing())  return true;
2730     _igvn.set_delay_transform(true);
2731   }
2732 
2733   _igvn.set_delay_transform(false);
2734   return false;
2735 }
2736 
2737 #ifndef PRODUCT
2738 int PhaseMacroExpand::_objs_scalar_replaced_counter = 0;
2739 int PhaseMacroExpand::_monitor_objects_removed_counter = 0;
2740 int PhaseMacroExpand::_GC_barriers_removed_counter = 0;
2741 int PhaseMacroExpand::_memory_barriers_removed_counter = 0;
2742 
2743 void PhaseMacroExpand::print_statistics() {
2744   tty->print("Objects scalar replaced = %d, ", AtomicAccess::load(&_objs_scalar_replaced_counter));
2745   tty->print("Monitor objects removed = %d, ", AtomicAccess::load(&_monitor_objects_removed_counter));
2746   tty->print("GC barriers removed = %d, ", AtomicAccess::load(&_GC_barriers_removed_counter));
2747   tty->print_cr("Memory barriers removed = %d", AtomicAccess::load(&_memory_barriers_removed_counter));
2748 }
2749 
2750 int PhaseMacroExpand::count_MemBar(Compile *C) {
2751   if (!PrintOptoStatistics) {
2752     return 0;
2753   }
2754   Unique_Node_List ideal_nodes;
2755   int total = 0;
2756   ideal_nodes.map(C->live_nodes(), nullptr);
2757   ideal_nodes.push(C->root());
2758   for (uint next = 0; next < ideal_nodes.size(); ++next) {
2759     Node* n = ideal_nodes.at(next);
2760     if (n->is_MemBar()) {
2761       total++;
2762     }
2763     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2764       Node* m = n->fast_out(i);
2765       ideal_nodes.push(m);
2766     }
2767   }
2768   return total;
2769 }
2770 #endif