1 /*
   2  * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "compiler/compileLog.hpp"
  26 #include "gc/shared/collectedHeap.inline.hpp"
  27 #include "gc/shared/tlab_globals.hpp"
  28 #include "libadt/vectset.hpp"
  29 #include "memory/universe.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/arraycopynode.hpp"
  32 #include "opto/callnode.hpp"
  33 #include "opto/castnode.hpp"
  34 #include "opto/cfgnode.hpp"
  35 #include "opto/compile.hpp"
  36 #include "opto/convertnode.hpp"
  37 #include "opto/graphKit.hpp"
  38 #include "opto/intrinsicnode.hpp"
  39 #include "opto/locknode.hpp"
  40 #include "opto/loopnode.hpp"
  41 #include "opto/macro.hpp"
  42 #include "opto/memnode.hpp"
  43 #include "opto/narrowptrnode.hpp"
  44 #include "opto/node.hpp"
  45 #include "opto/opaquenode.hpp"
  46 #include "opto/phaseX.hpp"
  47 #include "opto/rootnode.hpp"
  48 #include "opto/runtime.hpp"
  49 #include "opto/subnode.hpp"
  50 #include "opto/subtypenode.hpp"
  51 #include "opto/type.hpp"
  52 #include "prims/jvmtiExport.hpp"
  53 #include "runtime/continuation.hpp"
  54 #include "runtime/sharedRuntime.hpp"
  55 #include "utilities/macros.hpp"
  56 #include "utilities/powerOfTwo.hpp"
  57 #if INCLUDE_G1GC
  58 #include "gc/g1/g1ThreadLocalData.hpp"
  59 #endif // INCLUDE_G1GC
  60 
  61 
  62 //
  63 // Replace any references to "oldref" in inputs to "use" with "newref".
  64 // Returns the number of replacements made.
  65 //
  66 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
  67   int nreplacements = 0;
  68   uint req = use->req();
  69   for (uint j = 0; j < use->len(); j++) {
  70     Node *uin = use->in(j);
  71     if (uin == oldref) {
  72       if (j < req)
  73         use->set_req(j, newref);
  74       else
  75         use->set_prec(j, newref);
  76       nreplacements++;
  77     } else if (j >= req && uin == nullptr) {
  78       break;
  79     }
  80   }
  81   return nreplacements;
  82 }
  83 
  84 void PhaseMacroExpand::migrate_outs(Node *old, Node *target) {
  85   assert(old != nullptr, "sanity");
  86   for (DUIterator_Fast imax, i = old->fast_outs(imax); i < imax; i++) {
  87     Node* use = old->fast_out(i);
  88     _igvn.rehash_node_delayed(use);
  89     imax -= replace_input(use, old, target);
  90     // back up iterator
  91     --i;
  92   }
  93   assert(old->outcnt() == 0, "all uses must be deleted");
  94 }
  95 
  96 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word) {
  97   Node* cmp = word;
  98   Node* bol = transform_later(new BoolNode(cmp, BoolTest::ne));
  99   IfNode* iff = new IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
 100   transform_later(iff);
 101 
 102   // Fast path taken.
 103   Node *fast_taken = transform_later(new IfFalseNode(iff));
 104 
 105   // Fast path not-taken, i.e. slow path
 106   Node *slow_taken = transform_later(new IfTrueNode(iff));
 107 
 108     region->init_req(edge, fast_taken); // Capture fast-control
 109     return slow_taken;
 110 }
 111 
 112 //--------------------copy_predefined_input_for_runtime_call--------------------
 113 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
 114   // Set fixed predefined input arguments
 115   call->init_req( TypeFunc::Control, ctrl );
 116   call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
 117   call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
 118   call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
 119   call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
 120 }
 121 
 122 //------------------------------make_slow_call---------------------------------
 123 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type,
 124                                            address slow_call, const char* leaf_name, Node* slow_path,
 125                                            Node* parm0, Node* parm1, Node* parm2) {
 126 
 127   // Slow-path call
 128  CallNode *call = leaf_name
 129    ? (CallNode*)new CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
 130    : (CallNode*)new CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), TypeRawPtr::BOTTOM );
 131 
 132   // Slow path call has no side-effects, uses few values
 133   copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
 134   if (parm0 != nullptr)  call->init_req(TypeFunc::Parms+0, parm0);
 135   if (parm1 != nullptr)  call->init_req(TypeFunc::Parms+1, parm1);
 136   if (parm2 != nullptr)  call->init_req(TypeFunc::Parms+2, parm2);
 137   call->copy_call_debug_info(&_igvn, oldcall);
 138   call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
 139   _igvn.replace_node(oldcall, call);
 140   transform_later(call);
 141 
 142   return call;
 143 }
 144 
 145 void PhaseMacroExpand::eliminate_gc_barrier(Node* p2x) {
 146   BarrierSetC2 *bs = BarrierSet::barrier_set()->barrier_set_c2();
 147   bs->eliminate_gc_barrier(this, p2x);
 148 #ifndef PRODUCT
 149   if (PrintOptoStatistics) {
 150     AtomicAccess::inc(&PhaseMacroExpand::_GC_barriers_removed_counter);
 151   }
 152 #endif
 153 }
 154 
 155 // Search for a memory operation for the specified memory slice.
 156 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
 157   Node *orig_mem = mem;
 158   Node *alloc_mem = alloc->as_Allocate()->proj_out_or_null(TypeFunc::Memory, /*io_use:*/false);
 159   assert(alloc_mem != nullptr, "Allocation without a memory projection.");
 160   const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
 161   while (true) {
 162     if (mem == alloc_mem || mem == start_mem ) {
 163       return mem;  // hit one of our sentinels
 164     } else if (mem->is_MergeMem()) {
 165       mem = mem->as_MergeMem()->memory_at(alias_idx);
 166     } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
 167       Node *in = mem->in(0);
 168       // we can safely skip over safepoints, calls, locks and membars because we
 169       // already know that the object is safe to eliminate.
 170       if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
 171         return in;
 172       } else if (in->is_Call()) {
 173         CallNode *call = in->as_Call();
 174         if (call->may_modify(tinst, phase)) {
 175           assert(call->is_ArrayCopy(), "ArrayCopy is the only call node that doesn't make allocation escape");
 176           if (call->as_ArrayCopy()->modifies(offset, offset, phase, false)) {
 177             return in;
 178           }
 179         }
 180         mem = in->in(TypeFunc::Memory);
 181       } else if (in->is_MemBar()) {
 182         ArrayCopyNode* ac = nullptr;
 183         if (ArrayCopyNode::may_modify(tinst, in->as_MemBar(), phase, ac)) {
 184           if (ac != nullptr) {
 185             assert(ac->is_clonebasic(), "Only basic clone is a non escaping clone");
 186             return ac;
 187           }
 188         }
 189         mem = in->in(TypeFunc::Memory);
 190       } else {
 191 #ifdef ASSERT
 192         in->dump();
 193         mem->dump();
 194         assert(false, "unexpected projection");
 195 #endif
 196       }
 197     } else if (mem->is_Store()) {
 198       const TypePtr* atype = mem->as_Store()->adr_type();
 199       int adr_idx = phase->C->get_alias_index(atype);
 200       if (adr_idx == alias_idx) {
 201         assert(atype->isa_oopptr(), "address type must be oopptr");
 202         int adr_offset = atype->offset();
 203         uint adr_iid = atype->is_oopptr()->instance_id();
 204         // Array elements references have the same alias_idx
 205         // but different offset and different instance_id.
 206         if (adr_offset == offset && adr_iid == alloc->_idx) {
 207           return mem;
 208         }
 209       } else {
 210         assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
 211       }
 212       mem = mem->in(MemNode::Memory);
 213     } else if (mem->is_ClearArray()) {
 214       if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
 215         // Can not bypass initialization of the instance
 216         // we are looking.
 217         DEBUG_ONLY(intptr_t offset;)
 218         assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
 219         InitializeNode* init = alloc->as_Allocate()->initialization();
 220         // We are looking for stored value, return Initialize node
 221         // or memory edge from Allocate node.
 222         if (init != nullptr) {
 223           return init;
 224         } else {
 225           return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
 226         }
 227       }
 228       // Otherwise skip it (the call updated 'mem' value).
 229     } else if (mem->Opcode() == Op_SCMemProj) {
 230       mem = mem->in(0);
 231       Node* adr = nullptr;
 232       if (mem->is_LoadStore()) {
 233         adr = mem->in(MemNode::Address);
 234       } else {
 235         assert(mem->Opcode() == Op_EncodeISOArray ||
 236                mem->Opcode() == Op_StrCompressedCopy, "sanity");
 237         adr = mem->in(3); // Destination array
 238       }
 239       const TypePtr* atype = adr->bottom_type()->is_ptr();
 240       int adr_idx = phase->C->get_alias_index(atype);
 241       if (adr_idx == alias_idx) {
 242         DEBUG_ONLY(mem->dump();)
 243         assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
 244         return nullptr;
 245       }
 246       mem = mem->in(MemNode::Memory);
 247    } else if (mem->Opcode() == Op_StrInflatedCopy) {
 248       Node* adr = mem->in(3); // Destination array
 249       const TypePtr* atype = adr->bottom_type()->is_ptr();
 250       int adr_idx = phase->C->get_alias_index(atype);
 251       if (adr_idx == alias_idx) {
 252         DEBUG_ONLY(mem->dump();)
 253         assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
 254         return nullptr;
 255       }
 256       mem = mem->in(MemNode::Memory);
 257     } else {
 258       return mem;
 259     }
 260     assert(mem != orig_mem, "dead memory loop");
 261   }
 262 }
 263 
 264 // Generate loads from source of the arraycopy for fields of
 265 // destination needed at a deoptimization point
 266 Node* PhaseMacroExpand::make_arraycopy_load(ArrayCopyNode* ac, intptr_t offset, Node* ctl, Node* mem, BasicType ft, const Type *ftype, AllocateNode *alloc) {
 267   BasicType bt = ft;
 268   const Type *type = ftype;
 269   if (ft == T_NARROWOOP) {
 270     bt = T_OBJECT;
 271     type = ftype->make_oopptr();
 272   }
 273   Node* res = nullptr;
 274   if (ac->is_clonebasic()) {
 275     assert(ac->in(ArrayCopyNode::Src) != ac->in(ArrayCopyNode::Dest), "clone source equals destination");
 276     Node* base = ac->in(ArrayCopyNode::Src);
 277     Node* adr = _igvn.transform(new AddPNode(base, base, _igvn.MakeConX(offset)));
 278     const TypePtr* adr_type = _igvn.type(base)->is_ptr()->add_offset(offset);
 279     MergeMemNode* mergemen = _igvn.transform(MergeMemNode::make(mem))->as_MergeMem();
 280     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 281     res = ArrayCopyNode::load(bs, &_igvn, ctl, mergemen, adr, adr_type, type, bt);
 282   } else {
 283     if (ac->modifies(offset, offset, &_igvn, true)) {
 284       assert(ac->in(ArrayCopyNode::Dest) == alloc->result_cast(), "arraycopy destination should be allocation's result");
 285       uint shift = exact_log2(type2aelembytes(bt));
 286       Node* src_pos = ac->in(ArrayCopyNode::SrcPos);
 287       Node* dest_pos = ac->in(ArrayCopyNode::DestPos);
 288       const TypeInt* src_pos_t = _igvn.type(src_pos)->is_int();
 289       const TypeInt* dest_pos_t = _igvn.type(dest_pos)->is_int();
 290 
 291       Node* adr = nullptr;
 292       const TypePtr* adr_type = nullptr;
 293       if (src_pos_t->is_con() && dest_pos_t->is_con()) {
 294         intptr_t off = ((src_pos_t->get_con() - dest_pos_t->get_con()) << shift) + offset;
 295         Node* base = ac->in(ArrayCopyNode::Src);
 296         adr = _igvn.transform(new AddPNode(base, base, _igvn.MakeConX(off)));
 297         adr_type = _igvn.type(base)->is_ptr()->add_offset(off);
 298         if (ac->in(ArrayCopyNode::Src) == ac->in(ArrayCopyNode::Dest)) {
 299           // Don't emit a new load from src if src == dst but try to get the value from memory instead
 300           return value_from_mem(ac->in(TypeFunc::Memory), ctl, ft, ftype, adr_type->isa_oopptr(), alloc);
 301         }
 302       } else {
 303         Node* diff = _igvn.transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
 304 #ifdef _LP64
 305         diff = _igvn.transform(new ConvI2LNode(diff));
 306 #endif
 307         diff = _igvn.transform(new LShiftXNode(diff, _igvn.intcon(shift)));
 308 
 309         Node* off = _igvn.transform(new AddXNode(_igvn.MakeConX(offset), diff));
 310         Node* base = ac->in(ArrayCopyNode::Src);
 311         adr = _igvn.transform(new AddPNode(base, base, off));
 312         adr_type = _igvn.type(base)->is_ptr()->add_offset(Type::OffsetBot);
 313         if (ac->in(ArrayCopyNode::Src) == ac->in(ArrayCopyNode::Dest)) {
 314           // Non constant offset in the array: we can't statically
 315           // determine the value
 316           return nullptr;
 317         }
 318       }
 319       MergeMemNode* mergemen = _igvn.transform(MergeMemNode::make(mem))->as_MergeMem();
 320       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 321       res = ArrayCopyNode::load(bs, &_igvn, ctl, mergemen, adr, adr_type, type, bt);
 322     }
 323   }
 324   if (res != nullptr) {
 325     if (ftype->isa_narrowoop()) {
 326       // PhaseMacroExpand::scalar_replacement adds DecodeN nodes
 327       res = _igvn.transform(new EncodePNode(res, ftype));
 328     }
 329     return res;
 330   }
 331   return nullptr;
 332 }
 333 
 334 //
 335 // Given a Memory Phi, compute a value Phi containing the values from stores
 336 // on the input paths.
 337 // Note: this function is recursive, its depth is limited by the "level" argument
 338 // Returns the computed Phi, or null if it cannot compute it.
 339 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, AllocateNode *alloc, Node_Stack *value_phis, int level) {
 340   assert(mem->is_Phi(), "sanity");
 341   int alias_idx = C->get_alias_index(adr_t);
 342   int offset = adr_t->offset();
 343   int instance_id = adr_t->instance_id();
 344 
 345   // Check if an appropriate value phi already exists.
 346   Node* region = mem->in(0);
 347   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
 348     Node* phi = region->fast_out(k);
 349     if (phi->is_Phi() && phi != mem &&
 350         phi->as_Phi()->is_same_inst_field(phi_type, (int)mem->_idx, instance_id, alias_idx, offset)) {
 351       return phi;
 352     }
 353   }
 354   // Check if an appropriate new value phi already exists.
 355   Node* new_phi = value_phis->find(mem->_idx);
 356   if (new_phi != nullptr)
 357     return new_phi;
 358 
 359   if (level <= 0) {
 360     return nullptr; // Give up: phi tree too deep
 361   }
 362   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
 363   Node *alloc_mem = alloc->proj_out_or_null(TypeFunc::Memory, /*io_use:*/false);
 364   assert(alloc_mem != nullptr, "Allocation without a memory projection.");
 365 
 366   uint length = mem->req();
 367   GrowableArray <Node *> values(length, length, nullptr);
 368 
 369   // create a new Phi for the value
 370   PhiNode *phi = new PhiNode(mem->in(0), phi_type, nullptr, mem->_idx, instance_id, alias_idx, offset);
 371   transform_later(phi);
 372   value_phis->push(phi, mem->_idx);
 373 
 374   for (uint j = 1; j < length; j++) {
 375     Node *in = mem->in(j);
 376     if (in == nullptr || in->is_top()) {
 377       values.at_put(j, in);
 378     } else  {
 379       Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
 380       if (val == start_mem || val == alloc_mem) {
 381         // hit a sentinel, return appropriate 0 value
 382         values.at_put(j, _igvn.zerocon(ft));
 383         continue;
 384       }
 385       if (val->is_Initialize()) {
 386         val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 387       }
 388       if (val == nullptr) {
 389         return nullptr;  // can't find a value on this path
 390       }
 391       if (val == mem) {
 392         values.at_put(j, mem);
 393       } else if (val->is_Store()) {
 394         Node* n = val->in(MemNode::ValueIn);
 395         if (is_subword_type(ft)) {
 396           n = Compile::narrow_value(ft, n, phi_type, &_igvn, true);
 397         }
 398         values.at_put(j, n);
 399       } else if(val->is_Proj() && val->in(0) == alloc) {
 400         values.at_put(j, _igvn.zerocon(ft));
 401       } else if (val->is_Phi()) {
 402         val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
 403         if (val == nullptr) {
 404           return nullptr;
 405         }
 406         values.at_put(j, val);
 407       } else if (val->Opcode() == Op_SCMemProj) {
 408         assert(val->in(0)->is_LoadStore() ||
 409                val->in(0)->Opcode() == Op_EncodeISOArray ||
 410                val->in(0)->Opcode() == Op_StrCompressedCopy, "sanity");
 411         assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
 412         return nullptr;
 413       } else if (val->is_ArrayCopy()) {
 414         Node* res = make_arraycopy_load(val->as_ArrayCopy(), offset, val->in(0), val->in(TypeFunc::Memory), ft, phi_type, alloc);
 415         if (res == nullptr) {
 416           return nullptr;
 417         }
 418         values.at_put(j, res);
 419       } else if (val->is_top()) {
 420         // This indicates that this path into the phi is dead. Top will eventually also propagate into the Region.
 421         // IGVN will clean this up later.
 422         values.at_put(j, val);
 423       } else {
 424         DEBUG_ONLY( val->dump(); )
 425         assert(false, "unknown node on this path");
 426         return nullptr;  // unknown node on this path
 427       }
 428     }
 429   }
 430   // Set Phi's inputs
 431   for (uint j = 1; j < length; j++) {
 432     if (values.at(j) == mem) {
 433       phi->init_req(j, phi);
 434     } else {
 435       phi->init_req(j, values.at(j));
 436     }
 437   }
 438   return phi;
 439 }
 440 
 441 // Search the last value stored into the object's field.
 442 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, Node *sfpt_ctl, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, AllocateNode *alloc) {
 443   assert(adr_t->is_known_instance_field(), "instance required");
 444   int instance_id = adr_t->instance_id();
 445   assert((uint)instance_id == alloc->_idx, "wrong allocation");
 446 
 447   int alias_idx = C->get_alias_index(adr_t);
 448   int offset = adr_t->offset();
 449   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
 450   Node *alloc_ctrl = alloc->in(TypeFunc::Control);
 451   Node *alloc_mem = alloc->proj_out_or_null(TypeFunc::Memory, /*io_use:*/false);
 452   assert(alloc_mem != nullptr, "Allocation without a memory projection.");
 453   VectorSet visited;
 454 
 455   bool done = sfpt_mem == alloc_mem;
 456   Node *mem = sfpt_mem;
 457   while (!done) {
 458     if (visited.test_set(mem->_idx)) {
 459       return nullptr;  // found a loop, give up
 460     }
 461     mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
 462     if (mem == start_mem || mem == alloc_mem) {
 463       done = true;  // hit a sentinel, return appropriate 0 value
 464     } else if (mem->is_Initialize()) {
 465       mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 466       if (mem == nullptr) {
 467         done = true; // Something go wrong.
 468       } else if (mem->is_Store()) {
 469         const TypePtr* atype = mem->as_Store()->adr_type();
 470         assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
 471         done = true;
 472       }
 473     } else if (mem->is_Store()) {
 474       const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
 475       assert(atype != nullptr, "address type must be oopptr");
 476       assert(C->get_alias_index(atype) == alias_idx &&
 477              atype->is_known_instance_field() && atype->offset() == offset &&
 478              atype->instance_id() == instance_id, "store is correct memory slice");
 479       done = true;
 480     } else if (mem->is_Phi()) {
 481       // try to find a phi's unique input
 482       Node *unique_input = nullptr;
 483       Node *top = C->top();
 484       for (uint i = 1; i < mem->req(); i++) {
 485         Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
 486         if (n == nullptr || n == top || n == mem) {
 487           continue;
 488         } else if (unique_input == nullptr) {
 489           unique_input = n;
 490         } else if (unique_input != n) {
 491           unique_input = top;
 492           break;
 493         }
 494       }
 495       if (unique_input != nullptr && unique_input != top) {
 496         mem = unique_input;
 497       } else {
 498         done = true;
 499       }
 500     } else if (mem->is_ArrayCopy()) {
 501       done = true;
 502     } else if (mem->is_top()) {
 503       // The slice is on a dead path. Returning nullptr would lead to elimination
 504       // bailout, but we want to prevent that. Just forwarding the top is also legal,
 505       // and IGVN can just clean things up, and remove whatever receives top.
 506       return mem;
 507     } else {
 508       DEBUG_ONLY( mem->dump(); )
 509       assert(false, "unexpected node");
 510     }
 511   }
 512   if (mem != nullptr) {
 513     if (mem == start_mem || mem == alloc_mem) {
 514       // hit a sentinel, return appropriate 0 value
 515       return _igvn.zerocon(ft);
 516     } else if (mem->is_Store()) {
 517       return mem->in(MemNode::ValueIn);
 518     } else if (mem->is_Phi()) {
 519       // attempt to produce a Phi reflecting the values on the input paths of the Phi
 520       Node_Stack value_phis(8);
 521       Node* phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
 522       if (phi != nullptr) {
 523         return phi;
 524       } else {
 525         // Kill all new Phis
 526         while(value_phis.is_nonempty()) {
 527           Node* n = value_phis.node();
 528           _igvn.replace_node(n, C->top());
 529           value_phis.pop();
 530         }
 531       }
 532     } else if (mem->is_ArrayCopy()) {
 533       Node* ctl = mem->in(0);
 534       Node* m = mem->in(TypeFunc::Memory);
 535       if (sfpt_ctl->is_Proj() && sfpt_ctl->as_Proj()->is_uncommon_trap_proj()) {
 536         // pin the loads in the uncommon trap path
 537         ctl = sfpt_ctl;
 538         m = sfpt_mem;
 539       }
 540       return make_arraycopy_load(mem->as_ArrayCopy(), offset, ctl, m, ft, ftype, alloc);
 541     }
 542   }
 543   // Something go wrong.
 544   return nullptr;
 545 }
 546 
 547 // Check the possibility of scalar replacement.
 548 bool PhaseMacroExpand::can_eliminate_allocation(PhaseIterGVN* igvn, AllocateNode *alloc, GrowableArray <SafePointNode *>* safepoints) {
 549   //  Scan the uses of the allocation to check for anything that would
 550   //  prevent us from eliminating it.
 551   NOT_PRODUCT( const char* fail_eliminate = nullptr; )
 552   DEBUG_ONLY( Node* disq_node = nullptr; )
 553   bool can_eliminate = true;
 554   bool reduce_merge_precheck = (safepoints == nullptr);
 555 
 556   Node* res = alloc->result_cast();
 557   const TypeOopPtr* res_type = nullptr;
 558   if (res == nullptr) {
 559     // All users were eliminated.
 560   } else if (!res->is_CheckCastPP()) {
 561     NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
 562     can_eliminate = false;
 563   } else {
 564     res_type = igvn->type(res)->isa_oopptr();
 565     if (res_type == nullptr) {
 566       NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
 567       can_eliminate = false;
 568     } else if (!res_type->klass_is_exact()) {
 569       NOT_PRODUCT(fail_eliminate = "Not an exact type.";)
 570       can_eliminate = false;
 571     } else if (res_type->isa_aryptr()) {
 572       int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 573       if (length < 0) {
 574         NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
 575         can_eliminate = false;
 576       }
 577     }
 578   }
 579 
 580   if (can_eliminate && res != nullptr) {
 581     BarrierSetC2 *bs = BarrierSet::barrier_set()->barrier_set_c2();
 582     for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
 583                                j < jmax && can_eliminate; j++) {
 584       Node* use = res->fast_out(j);
 585 
 586       if (use->is_AddP()) {
 587         const TypePtr* addp_type = igvn->type(use)->is_ptr();
 588         int offset = addp_type->offset();
 589 
 590         if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
 591           NOT_PRODUCT(fail_eliminate = "Undefined field reference";)
 592           can_eliminate = false;
 593           break;
 594         }
 595         for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
 596                                    k < kmax && can_eliminate; k++) {
 597           Node* n = use->fast_out(k);
 598           if (n->is_Mem() && n->as_Mem()->is_mismatched_access()) {
 599             DEBUG_ONLY(disq_node = n);
 600             NOT_PRODUCT(fail_eliminate = "Mismatched access");
 601             can_eliminate = false;
 602           }
 603           if (!n->is_Store() && n->Opcode() != Op_CastP2X && !reduce_merge_precheck) {
 604             DEBUG_ONLY(disq_node = n;)
 605             if (n->is_Load() || n->is_LoadStore()) {
 606               NOT_PRODUCT(fail_eliminate = "Field load";)
 607             } else {
 608               NOT_PRODUCT(fail_eliminate = "Not store field reference";)
 609             }
 610             can_eliminate = false;
 611           }
 612         }
 613       } else if (use->is_ArrayCopy() &&
 614                  (use->as_ArrayCopy()->is_clonebasic() ||
 615                   use->as_ArrayCopy()->is_arraycopy_validated() ||
 616                   use->as_ArrayCopy()->is_copyof_validated() ||
 617                   use->as_ArrayCopy()->is_copyofrange_validated()) &&
 618                  use->in(ArrayCopyNode::Dest) == res) {
 619         // ok to eliminate
 620       } else if (use->is_SafePoint()) {
 621         SafePointNode* sfpt = use->as_SafePoint();
 622         if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
 623           // Object is passed as argument.
 624           DEBUG_ONLY(disq_node = use;)
 625           NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
 626           can_eliminate = false;
 627         }
 628         Node* sfptMem = sfpt->memory();
 629         if (sfptMem == nullptr || sfptMem->is_top()) {
 630           DEBUG_ONLY(disq_node = use;)
 631           NOT_PRODUCT(fail_eliminate = "null or TOP memory";)
 632           can_eliminate = false;
 633         } else if (!reduce_merge_precheck) {
 634           safepoints->append_if_missing(sfpt);
 635         }
 636       } else if (reduce_merge_precheck &&
 637                  (use->is_Phi() || use->is_EncodeP() ||
 638                   use->Opcode() == Op_MemBarRelease ||
 639                   (UseStoreStoreForCtor && use->Opcode() == Op_MemBarStoreStore))) {
 640         // Nothing to do
 641       } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
 642         if (use->is_Phi()) {
 643           if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
 644             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 645           } else {
 646             NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
 647           }
 648           DEBUG_ONLY(disq_node = use;)
 649         } else {
 650           if (use->Opcode() == Op_Return) {
 651             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 652           } else {
 653             NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
 654           }
 655           DEBUG_ONLY(disq_node = use;)
 656         }
 657         can_eliminate = false;
 658       }
 659     }
 660   }
 661 
 662 #ifndef PRODUCT
 663   if (PrintEliminateAllocations && safepoints != nullptr) {
 664     if (can_eliminate) {
 665       tty->print("Scalar ");
 666       if (res == nullptr)
 667         alloc->dump();
 668       else
 669         res->dump();
 670     } else if (alloc->_is_scalar_replaceable) {
 671       tty->print("NotScalar (%s)", fail_eliminate);
 672       if (res == nullptr)
 673         alloc->dump();
 674       else
 675         res->dump();
 676 #ifdef ASSERT
 677       if (disq_node != nullptr) {
 678           tty->print("  >>>> ");
 679           disq_node->dump();
 680       }
 681 #endif /*ASSERT*/
 682     }
 683   }
 684 
 685   if (TraceReduceAllocationMerges && !can_eliminate && reduce_merge_precheck) {
 686     tty->print_cr("\tCan't eliminate allocation because '%s': ", fail_eliminate != nullptr ? fail_eliminate : "");
 687     DEBUG_ONLY(if (disq_node != nullptr) disq_node->dump();)
 688   }
 689 #endif
 690   return can_eliminate;
 691 }
 692 
 693 void PhaseMacroExpand::undo_previous_scalarizations(GrowableArray <SafePointNode *> safepoints_done, AllocateNode* alloc) {
 694   Node* res = alloc->result_cast();
 695   int nfields = 0;
 696   assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result");
 697 
 698   if (res != nullptr) {
 699     const TypeOopPtr* res_type = _igvn.type(res)->isa_oopptr();
 700 
 701     if (res_type->isa_instptr()) {
 702       // find the fields of the class which will be needed for safepoint debug information
 703       ciInstanceKlass* iklass = res_type->is_instptr()->instance_klass();
 704       nfields = iklass->nof_nonstatic_fields();
 705     } else {
 706       // find the array's elements which will be needed for safepoint debug information
 707       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 708       assert(nfields >= 0, "must be an array klass.");
 709     }
 710   }
 711 
 712   // rollback processed safepoints
 713   while (safepoints_done.length() > 0) {
 714     SafePointNode* sfpt_done = safepoints_done.pop();
 715     // remove any extra entries we added to the safepoint
 716     uint last = sfpt_done->req() - 1;
 717     for (int k = 0;  k < nfields; k++) {
 718       sfpt_done->del_req(last--);
 719     }
 720     JVMState *jvms = sfpt_done->jvms();
 721     jvms->set_endoff(sfpt_done->req());
 722     // Now make a pass over the debug information replacing any references
 723     // to SafePointScalarObjectNode with the allocated object.
 724     int start = jvms->debug_start();
 725     int end   = jvms->debug_end();
 726     for (int i = start; i < end; i++) {
 727       if (sfpt_done->in(i)->is_SafePointScalarObject()) {
 728         SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
 729         if (scobj->first_index(jvms) == sfpt_done->req() &&
 730             scobj->n_fields() == (uint)nfields) {
 731           assert(scobj->alloc() == alloc, "sanity");
 732           sfpt_done->set_req(i, res);
 733         }
 734       }
 735     }
 736     _igvn._worklist.push(sfpt_done);
 737   }
 738 }
 739 
 740 #ifdef ASSERT
 741   // Verify if a value can be written into a field.
 742   void verify_type_compatability(const Type* value_type, const Type* field_type) {
 743     BasicType value_bt = value_type->basic_type();
 744     BasicType field_bt = field_type->basic_type();
 745 
 746     // Primitive types must match.
 747     if (is_java_primitive(value_bt) && value_bt == field_bt) { return; }
 748 
 749     // I have been struggling to make a similar assert for non-primitive
 750     // types. I we can add one in the future. For now, I just let them
 751     // pass without checks.
 752     // In particular, I was struggling with a value that came from a call,
 753     // and had only a non-null check CastPP. There was also a checkcast
 754     // in the graph to verify the interface, but the corresponding
 755     // CheckCastPP result was not updated in the stack slot, and so
 756     // we ended up using the CastPP. That means that the field knows
 757     // that it should get an oop from an interface, but the value lost
 758     // that information, and so it is not a subtype.
 759     // There may be other issues, feel free to investigate further!
 760     if (!is_java_primitive(value_bt)) { return; }
 761 
 762     tty->print_cr("value not compatible for field: %s vs %s",
 763                   type2name(value_bt),
 764                   type2name(field_bt));
 765     tty->print("value_type: ");
 766     value_type->dump();
 767     tty->cr();
 768     tty->print("field_type: ");
 769     field_type->dump();
 770     tty->cr();
 771     assert(false, "value_type does not fit field_type");
 772   }
 773 #endif
 774 
 775 SafePointScalarObjectNode* PhaseMacroExpand::create_scalarized_object_description(AllocateNode *alloc, SafePointNode* sfpt) {
 776   // Fields of scalar objs are referenced only at the end
 777   // of regular debuginfo at the last (youngest) JVMS.
 778   // Record relative start index.
 779   ciInstanceKlass* iklass    = nullptr;
 780   BasicType basic_elem_type  = T_ILLEGAL;
 781   const Type* field_type     = nullptr;
 782   const TypeOopPtr* res_type = nullptr;
 783   int nfields                = 0;
 784   int array_base             = 0;
 785   int element_size           = 0;
 786   uint first_ind             = (sfpt->req() - sfpt->jvms()->scloff());
 787   Node* res                  = alloc->result_cast();
 788 
 789   assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result");
 790   assert(sfpt->jvms() != nullptr, "missed JVMS");
 791 
 792   if (res != nullptr) { // Could be null when there are no users
 793     res_type = _igvn.type(res)->isa_oopptr();
 794 
 795     if (res_type->isa_instptr()) {
 796       // find the fields of the class which will be needed for safepoint debug information
 797       iklass = res_type->is_instptr()->instance_klass();
 798       nfields = iklass->nof_nonstatic_fields();
 799     } else {
 800       // find the array's elements which will be needed for safepoint debug information
 801       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 802       assert(nfields >= 0, "must be an array klass.");
 803       basic_elem_type = res_type->is_aryptr()->elem()->array_element_basic_type();
 804       array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
 805       element_size = type2aelembytes(basic_elem_type);
 806       field_type = res_type->is_aryptr()->elem();
 807     }
 808   }
 809 
 810   SafePointScalarObjectNode* sobj = new SafePointScalarObjectNode(res_type, alloc, first_ind, sfpt->jvms()->depth(), nfields);
 811   sobj->init_req(0, C->root());
 812   transform_later(sobj);
 813 
 814   // Scan object's fields adding an input to the safepoint for each field.
 815   for (int j = 0; j < nfields; j++) {
 816     intptr_t offset;
 817     ciField* field = nullptr;
 818     if (iklass != nullptr) {
 819       field = iklass->nonstatic_field_at(j);
 820       offset = field->offset_in_bytes();
 821       ciType* elem_type = field->type();
 822       basic_elem_type = field->layout_type();
 823 
 824       // The next code is taken from Parse::do_get_xxx().
 825       if (is_reference_type(basic_elem_type)) {
 826         if (!elem_type->is_loaded()) {
 827           field_type = TypeInstPtr::BOTTOM;
 828         } else if (field != nullptr && field->is_static_constant()) {
 829           ciObject* con = field->constant_value().as_object();
 830           // Do not "join" in the previous type; it doesn't add value,
 831           // and may yield a vacuous result if the field is of interface type.
 832           field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
 833           assert(field_type != nullptr, "field singleton type must be consistent");
 834         } else {
 835           field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
 836         }
 837         if (UseCompressedOops) {
 838           field_type = field_type->make_narrowoop();
 839           basic_elem_type = T_NARROWOOP;
 840         }
 841       } else {
 842         field_type = Type::get_const_basic_type(basic_elem_type);
 843       }
 844     } else {
 845       offset = array_base + j * (intptr_t)element_size;
 846     }
 847 
 848     const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
 849 
 850     Node *field_val = value_from_mem(sfpt->memory(), sfpt->control(), basic_elem_type, field_type, field_addr_type, alloc);
 851 
 852     // We weren't able to find a value for this field,
 853     // give up on eliminating this allocation.
 854     if (field_val == nullptr) {
 855       uint last = sfpt->req() - 1;
 856       for (int k = 0;  k < j; k++) {
 857         sfpt->del_req(last--);
 858       }
 859       _igvn._worklist.push(sfpt);
 860 
 861 #ifndef PRODUCT
 862       if (PrintEliminateAllocations) {
 863         if (field != nullptr) {
 864           tty->print("=== At SafePoint node %d can't find value of field: ", sfpt->_idx);
 865           field->print();
 866           int field_idx = C->get_alias_index(field_addr_type);
 867           tty->print(" (alias_idx=%d)", field_idx);
 868         } else { // Array's element
 869           tty->print("=== At SafePoint node %d can't find value of array element [%d]", sfpt->_idx, j);
 870         }
 871         tty->print(", which prevents elimination of: ");
 872         if (res == nullptr)
 873           alloc->dump();
 874         else
 875           res->dump();
 876       }
 877 #endif
 878 
 879       return nullptr;
 880     }
 881 
 882     if (UseCompressedOops && field_type->isa_narrowoop()) {
 883       // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
 884       // to be able scalar replace the allocation.
 885       if (field_val->is_EncodeP()) {
 886         field_val = field_val->in(1);
 887       } else {
 888         field_val = transform_later(new DecodeNNode(field_val, field_val->get_ptr_type()));
 889       }
 890     }
 891     DEBUG_ONLY(verify_type_compatability(field_val->bottom_type(), field_type);)
 892     sfpt->add_req(field_val);
 893   }
 894 
 895   sfpt->jvms()->set_endoff(sfpt->req());
 896 
 897   return sobj;
 898 }
 899 
 900 // Do scalar replacement.
 901 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
 902   GrowableArray <SafePointNode *> safepoints_done;
 903   Node* res = alloc->result_cast();
 904   assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result");
 905 
 906   // Process the safepoint uses
 907   while (safepoints.length() > 0) {
 908     SafePointNode* sfpt = safepoints.pop();
 909     SafePointScalarObjectNode* sobj = create_scalarized_object_description(alloc, sfpt);
 910 
 911     if (sobj == nullptr) {
 912       undo_previous_scalarizations(safepoints_done, alloc);
 913       return false;
 914     }
 915 
 916     // Now make a pass over the debug information replacing any references
 917     // to the allocated object with "sobj"
 918     JVMState *jvms = sfpt->jvms();
 919     sfpt->replace_edges_in_range(res, sobj, jvms->debug_start(), jvms->debug_end(), &_igvn);
 920     _igvn._worklist.push(sfpt);
 921 
 922     // keep it for rollback
 923     safepoints_done.append_if_missing(sfpt);
 924   }
 925 
 926   return true;
 927 }
 928 
 929 static void disconnect_projections(MultiNode* n, PhaseIterGVN& igvn) {
 930   Node* ctl_proj = n->proj_out_or_null(TypeFunc::Control);
 931   Node* mem_proj = n->proj_out_or_null(TypeFunc::Memory);
 932   if (ctl_proj != nullptr) {
 933     igvn.replace_node(ctl_proj, n->in(0));
 934   }
 935   if (mem_proj != nullptr) {
 936     igvn.replace_node(mem_proj, n->in(TypeFunc::Memory));
 937   }
 938 }
 939 
 940 // Process users of eliminated allocation.
 941 void PhaseMacroExpand::process_users_of_allocation(CallNode *alloc) {
 942   Node* res = alloc->result_cast();
 943   if (res != nullptr) {
 944     for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
 945       Node *use = res->last_out(j);
 946       uint oc1 = res->outcnt();
 947 
 948       if (use->is_AddP()) {
 949         for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
 950           Node *n = use->last_out(k);
 951           uint oc2 = use->outcnt();
 952           if (n->is_Store()) {
 953 #ifdef ASSERT
 954             // Verify that there is no dependent MemBarVolatile nodes,
 955             // they should be removed during IGVN, see MemBarNode::Ideal().
 956             for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
 957                                        p < pmax; p++) {
 958               Node* mb = n->fast_out(p);
 959               assert(mb->is_Initialize() || !mb->is_MemBar() ||
 960                      mb->req() <= MemBarNode::Precedent ||
 961                      mb->in(MemBarNode::Precedent) != n,
 962                      "MemBarVolatile should be eliminated for non-escaping object");
 963             }
 964 #endif
 965             _igvn.replace_node(n, n->in(MemNode::Memory));
 966           } else {
 967             eliminate_gc_barrier(n);
 968           }
 969           k -= (oc2 - use->outcnt());
 970         }
 971         _igvn.remove_dead_node(use);
 972       } else if (use->is_ArrayCopy()) {
 973         // Disconnect ArrayCopy node
 974         ArrayCopyNode* ac = use->as_ArrayCopy();
 975         if (ac->is_clonebasic()) {
 976           Node* membar_after = ac->proj_out(TypeFunc::Control)->unique_ctrl_out();
 977           disconnect_projections(ac, _igvn);
 978           assert(alloc->in(TypeFunc::Memory)->is_Proj() && alloc->in(TypeFunc::Memory)->in(0)->Opcode() == Op_MemBarCPUOrder, "mem barrier expected before allocation");
 979           Node* membar_before = alloc->in(TypeFunc::Memory)->in(0);
 980           disconnect_projections(membar_before->as_MemBar(), _igvn);
 981           if (membar_after->is_MemBar()) {
 982             disconnect_projections(membar_after->as_MemBar(), _igvn);
 983           }
 984         } else {
 985           assert(ac->is_arraycopy_validated() ||
 986                  ac->is_copyof_validated() ||
 987                  ac->is_copyofrange_validated(), "unsupported");
 988           CallProjections callprojs;
 989           ac->extract_projections(&callprojs, true);
 990 
 991           _igvn.replace_node(callprojs.fallthrough_ioproj, ac->in(TypeFunc::I_O));
 992           _igvn.replace_node(callprojs.fallthrough_memproj, ac->in(TypeFunc::Memory));
 993           _igvn.replace_node(callprojs.fallthrough_catchproj, ac->in(TypeFunc::Control));
 994 
 995           // Set control to top. IGVN will remove the remaining projections
 996           ac->set_req(0, top());
 997           ac->replace_edge(res, top(), &_igvn);
 998 
 999           // Disconnect src right away: it can help find new
1000           // opportunities for allocation elimination
1001           Node* src = ac->in(ArrayCopyNode::Src);
1002           ac->replace_edge(src, top(), &_igvn);
1003           // src can be top at this point if src and dest of the
1004           // arraycopy were the same
1005           if (src->outcnt() == 0 && !src->is_top()) {
1006             _igvn.remove_dead_node(src);
1007           }
1008         }
1009         _igvn._worklist.push(ac);
1010       } else {
1011         eliminate_gc_barrier(use);
1012       }
1013       j -= (oc1 - res->outcnt());
1014     }
1015     assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
1016     _igvn.remove_dead_node(res);
1017   }
1018 
1019   //
1020   // Process other users of allocation's projections
1021   //
1022   if (_callprojs.resproj != nullptr && _callprojs.resproj->outcnt() != 0) {
1023     // First disconnect stores captured by Initialize node.
1024     // If Initialize node is eliminated first in the following code,
1025     // it will kill such stores and DUIterator_Last will assert.
1026     for (DUIterator_Fast jmax, j = _callprojs.resproj->fast_outs(jmax);  j < jmax; j++) {
1027       Node* use = _callprojs.resproj->fast_out(j);
1028       if (use->is_AddP()) {
1029         // raw memory addresses used only by the initialization
1030         _igvn.replace_node(use, C->top());
1031         --j; --jmax;
1032       }
1033     }
1034     for (DUIterator_Last jmin, j = _callprojs.resproj->last_outs(jmin); j >= jmin; ) {
1035       Node* use = _callprojs.resproj->last_out(j);
1036       uint oc1 = _callprojs.resproj->outcnt();
1037       if (use->is_Initialize()) {
1038         // Eliminate Initialize node.
1039         InitializeNode *init = use->as_Initialize();
1040         Node *ctrl_proj = init->proj_out_or_null(TypeFunc::Control);
1041         if (ctrl_proj != nullptr) {
1042           _igvn.replace_node(ctrl_proj, init->in(TypeFunc::Control));
1043 #ifdef ASSERT
1044           // If the InitializeNode has no memory out, it will die, and tmp will become null
1045           Node* tmp = init->in(TypeFunc::Control);
1046           assert(tmp == nullptr || tmp == _callprojs.fallthrough_catchproj, "allocation control projection");
1047 #endif
1048         }
1049         Node* mem = init->in(TypeFunc::Memory);
1050 #ifdef ASSERT
1051         if (init->number_of_projs(TypeFunc::Memory) > 0) {
1052           if (mem->is_MergeMem()) {
1053             assert(mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw) == _callprojs.fallthrough_memproj, "allocation memory projection");
1054           } else {
1055             assert(mem == _callprojs.fallthrough_memproj, "allocation memory projection");
1056           }
1057         }
1058 #endif
1059         init->replace_mem_projs_by(mem, &_igvn);
1060         assert(init->outcnt() == 0, "should only have had a control and some memory projections, and we removed them");
1061       } else  {
1062         assert(false, "only Initialize or AddP expected");
1063       }
1064       j -= (oc1 - _callprojs.resproj->outcnt());
1065     }
1066   }
1067   if (_callprojs.fallthrough_catchproj != nullptr) {
1068     _igvn.replace_node(_callprojs.fallthrough_catchproj, alloc->in(TypeFunc::Control));
1069   }
1070   if (_callprojs.fallthrough_memproj != nullptr) {
1071     _igvn.replace_node(_callprojs.fallthrough_memproj, alloc->in(TypeFunc::Memory));
1072   }
1073   if (_callprojs.catchall_memproj != nullptr) {
1074     _igvn.replace_node(_callprojs.catchall_memproj, C->top());
1075   }
1076   if (_callprojs.fallthrough_ioproj != nullptr) {
1077     _igvn.replace_node(_callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
1078   }
1079   if (_callprojs.catchall_ioproj != nullptr) {
1080     _igvn.replace_node(_callprojs.catchall_ioproj, C->top());
1081   }
1082   if (_callprojs.catchall_catchproj != nullptr) {
1083     _igvn.replace_node(_callprojs.catchall_catchproj, C->top());
1084   }
1085 }
1086 
1087 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
1088   // If reallocation fails during deoptimization we'll pop all
1089   // interpreter frames for this compiled frame and that won't play
1090   // nice with JVMTI popframe.
1091   // We avoid this issue by eager reallocation when the popframe request
1092   // is received.
1093   if (!EliminateAllocations || !alloc->_is_non_escaping) {
1094     return false;
1095   }
1096   Node* klass = alloc->in(AllocateNode::KlassNode);
1097   const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
1098   Node* res = alloc->result_cast();
1099   // Eliminate boxing allocations which are not used
1100   // regardless scalar replaceable status.
1101   bool boxing_alloc = C->eliminate_boxing() &&
1102                       tklass->isa_instklassptr() &&
1103                       tklass->is_instklassptr()->instance_klass()->is_box_klass();
1104   if (!alloc->_is_scalar_replaceable && (!boxing_alloc || (res != nullptr))) {
1105     return false;
1106   }
1107 
1108   alloc->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/);
1109 
1110   GrowableArray <SafePointNode *> safepoints;
1111   if (!can_eliminate_allocation(&_igvn, alloc, &safepoints)) {
1112     return false;
1113   }
1114 
1115   if (!alloc->_is_scalar_replaceable) {
1116     assert(res == nullptr, "sanity");
1117     // We can only eliminate allocation if all debug info references
1118     // are already replaced with SafePointScalarObject because
1119     // we can't search for a fields value without instance_id.
1120     if (safepoints.length() > 0) {
1121       return false;
1122     }
1123   }
1124 
1125   if (!scalar_replacement(alloc, safepoints)) {
1126     return false;
1127   }
1128 
1129   CompileLog* log = C->log();
1130   if (log != nullptr) {
1131     log->head("eliminate_allocation type='%d'",
1132               log->identify(tklass->exact_klass()));
1133     JVMState* p = alloc->jvms();
1134     while (p != nullptr) {
1135       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1136       p = p->caller();
1137     }
1138     log->tail("eliminate_allocation");
1139   }
1140 
1141   process_users_of_allocation(alloc);
1142 
1143 #ifndef PRODUCT
1144   if (PrintEliminateAllocations) {
1145     if (alloc->is_AllocateArray())
1146       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
1147     else
1148       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
1149   }
1150 #endif
1151 
1152   return true;
1153 }
1154 
1155 bool PhaseMacroExpand::eliminate_boxing_node(CallStaticJavaNode *boxing) {
1156   // EA should remove all uses of non-escaping boxing node.
1157   if (!C->eliminate_boxing() || boxing->proj_out_or_null(TypeFunc::Parms) != nullptr) {
1158     return false;
1159   }
1160 
1161   assert(boxing->result_cast() == nullptr, "unexpected boxing node result");
1162 
1163   boxing->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/);
1164 
1165   const TypeTuple* r = boxing->tf()->range();
1166   assert(r->cnt() > TypeFunc::Parms, "sanity");
1167   const TypeInstPtr* t = r->field_at(TypeFunc::Parms)->isa_instptr();
1168   assert(t != nullptr, "sanity");
1169 
1170   CompileLog* log = C->log();
1171   if (log != nullptr) {
1172     log->head("eliminate_boxing type='%d'",
1173               log->identify(t->instance_klass()));
1174     JVMState* p = boxing->jvms();
1175     while (p != nullptr) {
1176       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1177       p = p->caller();
1178     }
1179     log->tail("eliminate_boxing");
1180   }
1181 
1182   process_users_of_allocation(boxing);
1183 
1184 #ifndef PRODUCT
1185   if (PrintEliminateAllocations) {
1186     tty->print("++++ Eliminated: %d ", boxing->_idx);
1187     boxing->method()->print_short_name(tty);
1188     tty->cr();
1189   }
1190 #endif
1191 
1192   return true;
1193 }
1194 
1195 
1196 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
1197   Node* adr = basic_plus_adr(base, offset);
1198   const TypePtr* adr_type = adr->bottom_type()->is_ptr();
1199   Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt, MemNode::unordered);
1200   transform_later(value);
1201   return value;
1202 }
1203 
1204 
1205 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
1206   Node* adr = basic_plus_adr(base, offset);
1207   mem = StoreNode::make(_igvn, ctl, mem, adr, nullptr, value, bt, MemNode::unordered);
1208   transform_later(mem);
1209   return mem;
1210 }
1211 
1212 //=============================================================================
1213 //
1214 //                              A L L O C A T I O N
1215 //
1216 // Allocation attempts to be fast in the case of frequent small objects.
1217 // It breaks down like this:
1218 //
1219 // 1) Size in doublewords is computed.  This is a constant for objects and
1220 // variable for most arrays.  Doubleword units are used to avoid size
1221 // overflow of huge doubleword arrays.  We need doublewords in the end for
1222 // rounding.
1223 //
1224 // 2) Size is checked for being 'too large'.  Too-large allocations will go
1225 // the slow path into the VM.  The slow path can throw any required
1226 // exceptions, and does all the special checks for very large arrays.  The
1227 // size test can constant-fold away for objects.  For objects with
1228 // finalizers it constant-folds the otherway: you always go slow with
1229 // finalizers.
1230 //
1231 // 3) If NOT using TLABs, this is the contended loop-back point.
1232 // Load-Locked the heap top.  If using TLABs normal-load the heap top.
1233 //
1234 // 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
1235 // NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
1236 // "size*8" we always enter the VM, where "largish" is a constant picked small
1237 // enough that there's always space between the eden max and 4Gig (old space is
1238 // there so it's quite large) and large enough that the cost of entering the VM
1239 // is dwarfed by the cost to initialize the space.
1240 //
1241 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
1242 // down.  If contended, repeat at step 3.  If using TLABs normal-store
1243 // adjusted heap top back down; there is no contention.
1244 //
1245 // 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
1246 // fields.
1247 //
1248 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
1249 // oop flavor.
1250 //
1251 //=============================================================================
1252 // FastAllocateSizeLimit value is in DOUBLEWORDS.
1253 // Allocations bigger than this always go the slow route.
1254 // This value must be small enough that allocation attempts that need to
1255 // trigger exceptions go the slow route.  Also, it must be small enough so
1256 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
1257 //=============================================================================j//
1258 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
1259 // The allocator will coalesce int->oop copies away.  See comment in
1260 // coalesce.cpp about how this works.  It depends critically on the exact
1261 // code shape produced here, so if you are changing this code shape
1262 // make sure the GC info for the heap-top is correct in and around the
1263 // slow-path call.
1264 //
1265 
1266 void PhaseMacroExpand::expand_allocate_common(
1267             AllocateNode* alloc, // allocation node to be expanded
1268             Node* length,  // array length for an array allocation
1269             const TypeFunc* slow_call_type, // Type of slow call
1270             address slow_call_address,  // Address of slow call
1271             Node* valid_length_test // whether length is valid or not
1272     )
1273 {
1274   Node* ctrl = alloc->in(TypeFunc::Control);
1275   Node* mem  = alloc->in(TypeFunc::Memory);
1276   Node* i_o  = alloc->in(TypeFunc::I_O);
1277   Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
1278   Node* klass_node        = alloc->in(AllocateNode::KlassNode);
1279   Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
1280   assert(ctrl != nullptr, "must have control");
1281 
1282   // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
1283   // they will not be used if "always_slow" is set
1284   enum { slow_result_path = 1, fast_result_path = 2 };
1285   Node *result_region = nullptr;
1286   Node *result_phi_rawmem = nullptr;
1287   Node *result_phi_rawoop = nullptr;
1288   Node *result_phi_i_o = nullptr;
1289 
1290   // The initial slow comparison is a size check, the comparison
1291   // we want to do is a BoolTest::gt
1292   bool expand_fast_path = true;
1293   int tv = _igvn.find_int_con(initial_slow_test, -1);
1294   if (tv >= 0) {
1295     // InitialTest has constant result
1296     //   0 - can fit in TLAB
1297     //   1 - always too big or negative
1298     assert(tv <= 1, "0 or 1 if a constant");
1299     expand_fast_path = (tv == 0);
1300     initial_slow_test = nullptr;
1301   } else {
1302     initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
1303   }
1304 
1305   if (!UseTLAB) {
1306     // Force slow-path allocation
1307     expand_fast_path = false;
1308     initial_slow_test = nullptr;
1309   }
1310 
1311   bool allocation_has_use = (alloc->result_cast() != nullptr);
1312   if (!allocation_has_use) {
1313     InitializeNode* init = alloc->initialization();
1314     if (init != nullptr) {
1315       init->remove(&_igvn);
1316     }
1317     if (expand_fast_path && (initial_slow_test == nullptr)) {
1318       // Remove allocation node and return.
1319       // Size is a non-negative constant -> no initial check needed -> directly to fast path.
1320       // Also, no usages -> empty fast path -> no fall out to slow path -> nothing left.
1321 #ifndef PRODUCT
1322       if (PrintEliminateAllocations) {
1323         tty->print("NotUsed ");
1324         Node* res = alloc->proj_out_or_null(TypeFunc::Parms);
1325         if (res != nullptr) {
1326           res->dump();
1327         } else {
1328           alloc->dump();
1329         }
1330       }
1331 #endif
1332       yank_alloc_node(alloc);
1333       return;
1334     }
1335   }
1336 
1337   enum { too_big_or_final_path = 1, need_gc_path = 2 };
1338   Node *slow_region = nullptr;
1339   Node *toobig_false = ctrl;
1340 
1341   // generate the initial test if necessary
1342   if (initial_slow_test != nullptr ) {
1343     assert (expand_fast_path, "Only need test if there is a fast path");
1344     slow_region = new RegionNode(3);
1345 
1346     // Now make the initial failure test.  Usually a too-big test but
1347     // might be a TRUE for finalizers.
1348     IfNode *toobig_iff = new IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
1349     transform_later(toobig_iff);
1350     // Plug the failing-too-big test into the slow-path region
1351     Node *toobig_true = new IfTrueNode( toobig_iff );
1352     transform_later(toobig_true);
1353     slow_region    ->init_req( too_big_or_final_path, toobig_true );
1354     toobig_false = new IfFalseNode( toobig_iff );
1355     transform_later(toobig_false);
1356   } else {
1357     // No initial test, just fall into next case
1358     assert(allocation_has_use || !expand_fast_path, "Should already have been handled");
1359     toobig_false = ctrl;
1360     DEBUG_ONLY(slow_region = NodeSentinel);
1361   }
1362 
1363   // If we are here there are several possibilities
1364   // - expand_fast_path is false - then only a slow path is expanded. That's it.
1365   // no_initial_check means a constant allocation.
1366   // - If check always evaluates to false -> expand_fast_path is false (see above)
1367   // - If check always evaluates to true -> directly into fast path (but may bailout to slowpath)
1368   // if !allocation_has_use the fast path is empty
1369   // if !allocation_has_use && no_initial_check
1370   // - Then there are no fastpath that can fall out to slowpath -> no allocation code at all.
1371   //   removed by yank_alloc_node above.
1372 
1373   Node *slow_mem = mem;  // save the current memory state for slow path
1374   // generate the fast allocation code unless we know that the initial test will always go slow
1375   if (expand_fast_path) {
1376     // Fast path modifies only raw memory.
1377     if (mem->is_MergeMem()) {
1378       mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
1379     }
1380 
1381     // allocate the Region and Phi nodes for the result
1382     result_region = new RegionNode(3);
1383     result_phi_rawmem = new PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1384     result_phi_i_o    = new PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch
1385 
1386     // Grab regular I/O before optional prefetch may change it.
1387     // Slow-path does no I/O so just set it to the original I/O.
1388     result_phi_i_o->init_req(slow_result_path, i_o);
1389 
1390     // Name successful fast-path variables
1391     Node* fast_oop_ctrl;
1392     Node* fast_oop_rawmem;
1393     if (allocation_has_use) {
1394       Node* needgc_ctrl = nullptr;
1395       result_phi_rawoop = new PhiNode(result_region, TypeRawPtr::BOTTOM);
1396 
1397       intx prefetch_lines = length != nullptr ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
1398       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1399       Node* fast_oop = bs->obj_allocate(this, mem, toobig_false, size_in_bytes, i_o, needgc_ctrl,
1400                                         fast_oop_ctrl, fast_oop_rawmem,
1401                                         prefetch_lines);
1402 
1403       if (initial_slow_test != nullptr) {
1404         // This completes all paths into the slow merge point
1405         slow_region->init_req(need_gc_path, needgc_ctrl);
1406         transform_later(slow_region);
1407       } else {
1408         // No initial slow path needed!
1409         // Just fall from the need-GC path straight into the VM call.
1410         slow_region = needgc_ctrl;
1411       }
1412 
1413       InitializeNode* init = alloc->initialization();
1414       fast_oop_rawmem = initialize_object(alloc,
1415                                           fast_oop_ctrl, fast_oop_rawmem, fast_oop,
1416                                           klass_node, length, size_in_bytes);
1417       expand_initialize_membar(alloc, init, fast_oop_ctrl, fast_oop_rawmem);
1418       expand_dtrace_alloc_probe(alloc, fast_oop, fast_oop_ctrl, fast_oop_rawmem);
1419 
1420       result_phi_rawoop->init_req(fast_result_path, fast_oop);
1421     } else {
1422       assert (initial_slow_test != nullptr, "sanity");
1423       fast_oop_ctrl   = toobig_false;
1424       fast_oop_rawmem = mem;
1425       transform_later(slow_region);
1426     }
1427 
1428     // Plug in the successful fast-path into the result merge point
1429     result_region    ->init_req(fast_result_path, fast_oop_ctrl);
1430     result_phi_i_o   ->init_req(fast_result_path, i_o);
1431     result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem);
1432   } else {
1433     slow_region = ctrl;
1434     result_phi_i_o = i_o; // Rename it to use in the following code.
1435   }
1436 
1437   // Generate slow-path call
1438   CallNode *call = new CallStaticJavaNode(slow_call_type, slow_call_address,
1439                                OptoRuntime::stub_name(slow_call_address),
1440                                TypePtr::BOTTOM);
1441   call->init_req(TypeFunc::Control,   slow_region);
1442   call->init_req(TypeFunc::I_O,       top());    // does no i/o
1443   call->init_req(TypeFunc::Memory,    slow_mem); // may gc ptrs
1444   call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
1445   call->init_req(TypeFunc::FramePtr,  alloc->in(TypeFunc::FramePtr));
1446 
1447   call->init_req(TypeFunc::Parms+0, klass_node);
1448   if (length != nullptr) {
1449     call->init_req(TypeFunc::Parms+1, length);
1450   }
1451 
1452   // Copy debug information and adjust JVMState information, then replace
1453   // allocate node with the call
1454   call->copy_call_debug_info(&_igvn, alloc);
1455   // For array allocations, copy the valid length check to the call node so Compile::final_graph_reshaping() can verify
1456   // that the call has the expected number of CatchProj nodes (in case the allocation always fails and the fallthrough
1457   // path dies).
1458   if (valid_length_test != nullptr) {
1459     call->add_req(valid_length_test);
1460   }
1461   if (expand_fast_path) {
1462     call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
1463   } else {
1464     // Hook i_o projection to avoid its elimination during allocation
1465     // replacement (when only a slow call is generated).
1466     call->set_req(TypeFunc::I_O, result_phi_i_o);
1467   }
1468   _igvn.replace_node(alloc, call);
1469   transform_later(call);
1470 
1471   // Identify the output projections from the allocate node and
1472   // adjust any references to them.
1473   // The control and io projections look like:
1474   //
1475   //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
1476   //  Allocate                   Catch
1477   //        ^---Proj(io) <-------+   ^---CatchProj(io)
1478   //
1479   //  We are interested in the CatchProj nodes.
1480   //
1481   call->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/);
1482 
1483   // An allocate node has separate memory projections for the uses on
1484   // the control and i_o paths. Replace the control memory projection with
1485   // result_phi_rawmem (unless we are only generating a slow call when
1486   // both memory projections are combined)
1487   if (expand_fast_path && _callprojs.fallthrough_memproj != nullptr) {
1488     migrate_outs(_callprojs.fallthrough_memproj, result_phi_rawmem);
1489   }
1490   // Now change uses of catchall_memproj to use fallthrough_memproj and delete
1491   // catchall_memproj so we end up with a call that has only 1 memory projection.
1492   if (_callprojs.catchall_memproj != nullptr ) {
1493     if (_callprojs.fallthrough_memproj == nullptr) {
1494       _callprojs.fallthrough_memproj = new ProjNode(call, TypeFunc::Memory);
1495       transform_later(_callprojs.fallthrough_memproj);
1496     }
1497     migrate_outs(_callprojs.catchall_memproj, _callprojs.fallthrough_memproj);
1498     _igvn.remove_dead_node(_callprojs.catchall_memproj);
1499   }
1500 
1501   // An allocate node has separate i_o projections for the uses on the control
1502   // and i_o paths. Always replace the control i_o projection with result i_o
1503   // otherwise incoming i_o become dead when only a slow call is generated
1504   // (it is different from memory projections where both projections are
1505   // combined in such case).
1506   if (_callprojs.fallthrough_ioproj != nullptr) {
1507     migrate_outs(_callprojs.fallthrough_ioproj, result_phi_i_o);
1508   }
1509   // Now change uses of catchall_ioproj to use fallthrough_ioproj and delete
1510   // catchall_ioproj so we end up with a call that has only 1 i_o projection.
1511   if (_callprojs.catchall_ioproj != nullptr ) {
1512     if (_callprojs.fallthrough_ioproj == nullptr) {
1513       _callprojs.fallthrough_ioproj = new ProjNode(call, TypeFunc::I_O);
1514       transform_later(_callprojs.fallthrough_ioproj);
1515     }
1516     migrate_outs(_callprojs.catchall_ioproj, _callprojs.fallthrough_ioproj);
1517     _igvn.remove_dead_node(_callprojs.catchall_ioproj);
1518   }
1519 
1520   // if we generated only a slow call, we are done
1521   if (!expand_fast_path) {
1522     // Now we can unhook i_o.
1523     if (result_phi_i_o->outcnt() > 1) {
1524       call->set_req(TypeFunc::I_O, top());
1525     } else {
1526       assert(result_phi_i_o->unique_ctrl_out() == call, "sanity");
1527       // Case of new array with negative size known during compilation.
1528       // AllocateArrayNode::Ideal() optimization disconnect unreachable
1529       // following code since call to runtime will throw exception.
1530       // As result there will be no users of i_o after the call.
1531       // Leave i_o attached to this call to avoid problems in preceding graph.
1532     }
1533     return;
1534   }
1535 
1536   if (_callprojs.fallthrough_catchproj != nullptr) {
1537     ctrl = _callprojs.fallthrough_catchproj->clone();
1538     transform_later(ctrl);
1539     _igvn.replace_node(_callprojs.fallthrough_catchproj, result_region);
1540   } else {
1541     ctrl = top();
1542   }
1543   Node *slow_result;
1544   if (_callprojs.resproj == nullptr) {
1545     // no uses of the allocation result
1546     slow_result = top();
1547   } else {
1548     slow_result = _callprojs.resproj->clone();
1549     transform_later(slow_result);
1550     _igvn.replace_node(_callprojs.resproj, result_phi_rawoop);
1551   }
1552 
1553   // Plug slow-path into result merge point
1554   result_region->init_req( slow_result_path, ctrl);
1555   transform_later(result_region);
1556   if (allocation_has_use) {
1557     result_phi_rawoop->init_req(slow_result_path, slow_result);
1558     transform_later(result_phi_rawoop);
1559   }
1560   result_phi_rawmem->init_req(slow_result_path, _callprojs.fallthrough_memproj);
1561   transform_later(result_phi_rawmem);
1562   transform_later(result_phi_i_o);
1563   // This completes all paths into the result merge point
1564 }
1565 
1566 // Remove alloc node that has no uses.
1567 void PhaseMacroExpand::yank_alloc_node(AllocateNode* alloc) {
1568   Node* ctrl = alloc->in(TypeFunc::Control);
1569   Node* mem  = alloc->in(TypeFunc::Memory);
1570   Node* i_o  = alloc->in(TypeFunc::I_O);
1571 
1572   alloc->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/);
1573   if (_callprojs.resproj != nullptr) {
1574     for (DUIterator_Fast imax, i = _callprojs.resproj->fast_outs(imax); i < imax; i++) {
1575       Node* use = _callprojs.resproj->fast_out(i);
1576       use->isa_MemBar()->remove(&_igvn);
1577       --imax;
1578       --i; // back up iterator
1579     }
1580     assert(_callprojs.resproj->outcnt() == 0, "all uses must be deleted");
1581     _igvn.remove_dead_node(_callprojs.resproj);
1582   }
1583   if (_callprojs.fallthrough_catchproj != nullptr) {
1584     migrate_outs(_callprojs.fallthrough_catchproj, ctrl);
1585     _igvn.remove_dead_node(_callprojs.fallthrough_catchproj);
1586   }
1587   if (_callprojs.catchall_catchproj != nullptr) {
1588     _igvn.rehash_node_delayed(_callprojs.catchall_catchproj);
1589     _callprojs.catchall_catchproj->set_req(0, top());
1590   }
1591   if (_callprojs.fallthrough_proj != nullptr) {
1592     Node* catchnode = _callprojs.fallthrough_proj->unique_ctrl_out();
1593     _igvn.remove_dead_node(catchnode);
1594     _igvn.remove_dead_node(_callprojs.fallthrough_proj);
1595   }
1596   if (_callprojs.fallthrough_memproj != nullptr) {
1597     migrate_outs(_callprojs.fallthrough_memproj, mem);
1598     _igvn.remove_dead_node(_callprojs.fallthrough_memproj);
1599   }
1600   if (_callprojs.fallthrough_ioproj != nullptr) {
1601     migrate_outs(_callprojs.fallthrough_ioproj, i_o);
1602     _igvn.remove_dead_node(_callprojs.fallthrough_ioproj);
1603   }
1604   if (_callprojs.catchall_memproj != nullptr) {
1605     _igvn.rehash_node_delayed(_callprojs.catchall_memproj);
1606     _callprojs.catchall_memproj->set_req(0, top());
1607   }
1608   if (_callprojs.catchall_ioproj != nullptr) {
1609     _igvn.rehash_node_delayed(_callprojs.catchall_ioproj);
1610     _callprojs.catchall_ioproj->set_req(0, top());
1611   }
1612 #ifndef PRODUCT
1613   if (PrintEliminateAllocations) {
1614     if (alloc->is_AllocateArray()) {
1615       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
1616     } else {
1617       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
1618     }
1619   }
1620 #endif
1621   _igvn.remove_dead_node(alloc);
1622 }
1623 
1624 void PhaseMacroExpand::expand_initialize_membar(AllocateNode* alloc, InitializeNode* init,
1625                                                 Node*& fast_oop_ctrl, Node*& fast_oop_rawmem) {
1626   // If initialization is performed by an array copy, any required
1627   // MemBarStoreStore was already added. If the object does not
1628   // escape no need for a MemBarStoreStore. If the object does not
1629   // escape in its initializer and memory barrier (MemBarStoreStore or
1630   // stronger) is already added at exit of initializer, also no need
1631   // for a MemBarStoreStore. Otherwise we need a MemBarStoreStore
1632   // so that stores that initialize this object can't be reordered
1633   // with a subsequent store that makes this object accessible by
1634   // other threads.
1635   // Other threads include java threads and JVM internal threads
1636   // (for example concurrent GC threads). Current concurrent GC
1637   // implementation: G1 will not scan newly created object,
1638   // so it's safe to skip storestore barrier when allocation does
1639   // not escape.
1640   if (!alloc->does_not_escape_thread() &&
1641     !alloc->is_allocation_MemBar_redundant() &&
1642     (init == nullptr || !init->is_complete_with_arraycopy())) {
1643     if (init == nullptr || init->req() < InitializeNode::RawStores) {
1644       // No InitializeNode or no stores captured by zeroing
1645       // elimination. Simply add the MemBarStoreStore after object
1646       // initialization.
1647       // What we want is to prevent the compiler and the CPU from re-ordering the stores that initialize this object
1648       // with subsequent stores to any slice. As a consequence, this MemBar should capture the entire memory state at
1649       // this point in the IR and produce a new memory state that should cover all slices. However, the Initialize node
1650       // only captures/produces a partial memory state making it complicated to insert such a MemBar. Because
1651       // re-ordering by the compiler can't happen by construction (a later Store that publishes the just allocated
1652       // object reference is indirectly control dependent on the Initialize node), preventing reordering by the CPU is
1653       // sufficient. For that a MemBar on the raw memory slice is good enough.
1654       // If init is null, this allocation does have an InitializeNode but this logic can't locate it (see comment in
1655       // PhaseMacroExpand::initialize_object()).
1656       MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxRaw);
1657       transform_later(mb);
1658 
1659       mb->init_req(TypeFunc::Memory, fast_oop_rawmem);
1660       mb->init_req(TypeFunc::Control, fast_oop_ctrl);
1661       fast_oop_ctrl = new ProjNode(mb, TypeFunc::Control);
1662       transform_later(fast_oop_ctrl);
1663       fast_oop_rawmem = new ProjNode(mb, TypeFunc::Memory);
1664       transform_later(fast_oop_rawmem);
1665     } else {
1666       // Add the MemBarStoreStore after the InitializeNode so that
1667       // all stores performing the initialization that were moved
1668       // before the InitializeNode happen before the storestore
1669       // barrier.
1670 
1671       Node* init_ctrl = init->proj_out_or_null(TypeFunc::Control);
1672 
1673       // See comment above that explains why a raw memory MemBar is good enough.
1674       MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxRaw);
1675       transform_later(mb);
1676 
1677       Node* ctrl = new ProjNode(init, TypeFunc::Control);
1678       transform_later(ctrl);
1679       Node* old_raw_mem_proj = nullptr;
1680       auto find_raw_mem = [&](ProjNode* proj) {
1681         if (C->get_alias_index(proj->adr_type()) == Compile::AliasIdxRaw) {
1682           assert(old_raw_mem_proj == nullptr, "only one expected");
1683           old_raw_mem_proj = proj;
1684         }
1685       };
1686       init->for_each_proj(find_raw_mem, TypeFunc::Memory);
1687       assert(old_raw_mem_proj != nullptr, "should have found raw mem Proj");
1688       Node* raw_mem_proj = new ProjNode(init, TypeFunc::Memory);
1689       transform_later(raw_mem_proj);
1690 
1691       // The MemBarStoreStore depends on control and memory coming
1692       // from the InitializeNode
1693       mb->init_req(TypeFunc::Memory, raw_mem_proj);
1694       mb->init_req(TypeFunc::Control, ctrl);
1695 
1696       ctrl = new ProjNode(mb, TypeFunc::Control);
1697       transform_later(ctrl);
1698       Node* mem = new ProjNode(mb, TypeFunc::Memory);
1699       transform_later(mem);
1700 
1701       // All nodes that depended on the InitializeNode for control
1702       // and memory must now depend on the MemBarNode that itself
1703       // depends on the InitializeNode
1704       if (init_ctrl != nullptr) {
1705         _igvn.replace_node(init_ctrl, ctrl);
1706       }
1707       _igvn.replace_node(old_raw_mem_proj, mem);
1708     }
1709   }
1710 }
1711 
1712 void PhaseMacroExpand::expand_dtrace_alloc_probe(AllocateNode* alloc, Node* oop,
1713                                                 Node*& ctrl, Node*& rawmem) {
1714   if (C->env()->dtrace_alloc_probes()) {
1715     // Slow-path call
1716     int size = TypeFunc::Parms + 2;
1717     CallLeafNode *call = new CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
1718                                           CAST_FROM_FN_PTR(address,
1719                                           static_cast<int (*)(JavaThread*, oopDesc*)>(SharedRuntime::dtrace_object_alloc)),
1720                                           "dtrace_object_alloc",
1721                                           TypeRawPtr::BOTTOM);
1722 
1723     // Get base of thread-local storage area
1724     Node* thread = new ThreadLocalNode();
1725     transform_later(thread);
1726 
1727     call->init_req(TypeFunc::Parms + 0, thread);
1728     call->init_req(TypeFunc::Parms + 1, oop);
1729     call->init_req(TypeFunc::Control, ctrl);
1730     call->init_req(TypeFunc::I_O    , top()); // does no i/o
1731     call->init_req(TypeFunc::Memory , rawmem);
1732     call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
1733     call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
1734     transform_later(call);
1735     ctrl = new ProjNode(call, TypeFunc::Control);
1736     transform_later(ctrl);
1737     rawmem = new ProjNode(call, TypeFunc::Memory);
1738     transform_later(rawmem);
1739   }
1740 }
1741 
1742 // Helper for PhaseMacroExpand::expand_allocate_common.
1743 // Initializes the newly-allocated storage.
1744 Node*
1745 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
1746                                     Node* control, Node* rawmem, Node* object,
1747                                     Node* klass_node, Node* length,
1748                                     Node* size_in_bytes) {
1749   InitializeNode* init = alloc->initialization();
1750   // Store the klass & mark bits
1751   Node* mark_node = alloc->make_ideal_mark(&_igvn, object, control, rawmem);
1752   if (!mark_node->is_Con()) {
1753     transform_later(mark_node);
1754   }
1755   rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, TypeX_X->basic_type());
1756 
1757   if (!UseCompactObjectHeaders) {
1758     rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA);
1759   }
1760   int header_size = alloc->minimum_header_size();  // conservatively small
1761 
1762   // Array length
1763   if (length != nullptr) {         // Arrays need length field
1764     rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
1765     // conservatively small header size:
1766     header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1767     if (_igvn.type(klass_node)->isa_aryklassptr()) {   // we know the exact header size in most cases:
1768       BasicType elem = _igvn.type(klass_node)->is_klassptr()->as_instance_type()->isa_aryptr()->elem()->array_element_basic_type();
1769       if (is_reference_type(elem, true)) {
1770         elem = T_OBJECT;
1771       }
1772       header_size = Klass::layout_helper_header_size(Klass::array_layout_helper(elem));
1773     }
1774   }
1775 
1776   // Clear the object body, if necessary.
1777   if (init == nullptr) {
1778     // The init has somehow disappeared; be cautious and clear everything.
1779     //
1780     // This can happen if a node is allocated but an uncommon trap occurs
1781     // immediately.  In this case, the Initialize gets associated with the
1782     // trap, and may be placed in a different (outer) loop, if the Allocate
1783     // is in a loop.  If (this is rare) the inner loop gets unrolled, then
1784     // there can be two Allocates to one Initialize.  The answer in all these
1785     // edge cases is safety first.  It is always safe to clear immediately
1786     // within an Allocate, and then (maybe or maybe not) clear some more later.
1787     if (!(UseTLAB && ZeroTLAB)) {
1788       rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
1789                                             header_size, size_in_bytes,
1790                                             &_igvn);
1791     }
1792   } else {
1793     if (!init->is_complete()) {
1794       // Try to win by zeroing only what the init does not store.
1795       // We can also try to do some peephole optimizations,
1796       // such as combining some adjacent subword stores.
1797       rawmem = init->complete_stores(control, rawmem, object,
1798                                      header_size, size_in_bytes, &_igvn);
1799     }
1800     // We have no more use for this link, since the AllocateNode goes away:
1801     init->set_req(InitializeNode::RawAddress, top());
1802     // (If we keep the link, it just confuses the register allocator,
1803     // who thinks he sees a real use of the address by the membar.)
1804   }
1805 
1806   return rawmem;
1807 }
1808 
1809 // Generate prefetch instructions for next allocations.
1810 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
1811                                         Node*& contended_phi_rawmem,
1812                                         Node* old_eden_top, Node* new_eden_top,
1813                                         intx lines) {
1814    enum { fall_in_path = 1, pf_path = 2 };
1815    if( UseTLAB && AllocatePrefetchStyle == 2 ) {
1816       // Generate prefetch allocation with watermark check.
1817       // As an allocation hits the watermark, we will prefetch starting
1818       // at a "distance" away from watermark.
1819 
1820       Node *pf_region = new RegionNode(3);
1821       Node *pf_phi_rawmem = new PhiNode( pf_region, Type::MEMORY,
1822                                                 TypeRawPtr::BOTTOM );
1823       // I/O is used for Prefetch
1824       Node *pf_phi_abio = new PhiNode( pf_region, Type::ABIO );
1825 
1826       Node *thread = new ThreadLocalNode();
1827       transform_later(thread);
1828 
1829       Node *eden_pf_adr = new AddPNode( top()/*not oop*/, thread,
1830                    _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
1831       transform_later(eden_pf_adr);
1832 
1833       Node *old_pf_wm = new LoadPNode(needgc_false,
1834                                    contended_phi_rawmem, eden_pf_adr,
1835                                    TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,
1836                                    MemNode::unordered);
1837       transform_later(old_pf_wm);
1838 
1839       // check against new_eden_top
1840       Node *need_pf_cmp = new CmpPNode( new_eden_top, old_pf_wm );
1841       transform_later(need_pf_cmp);
1842       Node *need_pf_bol = new BoolNode( need_pf_cmp, BoolTest::ge );
1843       transform_later(need_pf_bol);
1844       IfNode *need_pf_iff = new IfNode( needgc_false, need_pf_bol,
1845                                        PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
1846       transform_later(need_pf_iff);
1847 
1848       // true node, add prefetchdistance
1849       Node *need_pf_true = new IfTrueNode( need_pf_iff );
1850       transform_later(need_pf_true);
1851 
1852       Node *need_pf_false = new IfFalseNode( need_pf_iff );
1853       transform_later(need_pf_false);
1854 
1855       Node *new_pf_wmt = new AddPNode( top(), old_pf_wm,
1856                                     _igvn.MakeConX(AllocatePrefetchDistance) );
1857       transform_later(new_pf_wmt );
1858       new_pf_wmt->set_req(0, need_pf_true);
1859 
1860       Node *store_new_wmt = new StorePNode(need_pf_true,
1861                                        contended_phi_rawmem, eden_pf_adr,
1862                                        TypeRawPtr::BOTTOM, new_pf_wmt,
1863                                        MemNode::unordered);
1864       transform_later(store_new_wmt);
1865 
1866       // adding prefetches
1867       pf_phi_abio->init_req( fall_in_path, i_o );
1868 
1869       Node *prefetch_adr;
1870       Node *prefetch;
1871       uint step_size = AllocatePrefetchStepSize;
1872       uint distance = 0;
1873 
1874       for ( intx i = 0; i < lines; i++ ) {
1875         prefetch_adr = new AddPNode( old_pf_wm, new_pf_wmt,
1876                                             _igvn.MakeConX(distance) );
1877         transform_later(prefetch_adr);
1878         prefetch = new PrefetchAllocationNode( i_o, prefetch_adr );
1879         transform_later(prefetch);
1880         distance += step_size;
1881         i_o = prefetch;
1882       }
1883       pf_phi_abio->set_req( pf_path, i_o );
1884 
1885       pf_region->init_req( fall_in_path, need_pf_false );
1886       pf_region->init_req( pf_path, need_pf_true );
1887 
1888       pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
1889       pf_phi_rawmem->init_req( pf_path, store_new_wmt );
1890 
1891       transform_later(pf_region);
1892       transform_later(pf_phi_rawmem);
1893       transform_later(pf_phi_abio);
1894 
1895       needgc_false = pf_region;
1896       contended_phi_rawmem = pf_phi_rawmem;
1897       i_o = pf_phi_abio;
1898    } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
1899       // Insert a prefetch instruction for each allocation.
1900       // This code is used to generate 1 prefetch instruction per cache line.
1901 
1902       // Generate several prefetch instructions.
1903       uint step_size = AllocatePrefetchStepSize;
1904       uint distance = AllocatePrefetchDistance;
1905 
1906       // Next cache address.
1907       Node *cache_adr = new AddPNode(old_eden_top, old_eden_top,
1908                                      _igvn.MakeConX(step_size + distance));
1909       transform_later(cache_adr);
1910       cache_adr = new CastP2XNode(needgc_false, cache_adr);
1911       transform_later(cache_adr);
1912       // Address is aligned to execute prefetch to the beginning of cache line size.
1913       Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
1914       cache_adr = new AndXNode(cache_adr, mask);
1915       transform_later(cache_adr);
1916       cache_adr = new CastX2PNode(cache_adr);
1917       transform_later(cache_adr);
1918 
1919       // Prefetch
1920       Node *prefetch = new PrefetchAllocationNode( contended_phi_rawmem, cache_adr );
1921       prefetch->set_req(0, needgc_false);
1922       transform_later(prefetch);
1923       contended_phi_rawmem = prefetch;
1924       Node *prefetch_adr;
1925       distance = step_size;
1926       for ( intx i = 1; i < lines; i++ ) {
1927         prefetch_adr = new AddPNode( cache_adr, cache_adr,
1928                                             _igvn.MakeConX(distance) );
1929         transform_later(prefetch_adr);
1930         prefetch = new PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr );
1931         transform_later(prefetch);
1932         distance += step_size;
1933         contended_phi_rawmem = prefetch;
1934       }
1935    } else if( AllocatePrefetchStyle > 0 ) {
1936       // Insert a prefetch for each allocation only on the fast-path
1937       Node *prefetch_adr;
1938       Node *prefetch;
1939       // Generate several prefetch instructions.
1940       uint step_size = AllocatePrefetchStepSize;
1941       uint distance = AllocatePrefetchDistance;
1942       for ( intx i = 0; i < lines; i++ ) {
1943         prefetch_adr = new AddPNode( old_eden_top, new_eden_top,
1944                                             _igvn.MakeConX(distance) );
1945         transform_later(prefetch_adr);
1946         prefetch = new PrefetchAllocationNode( i_o, prefetch_adr );
1947         // Do not let it float too high, since if eden_top == eden_end,
1948         // both might be null.
1949         if( i == 0 ) { // Set control for first prefetch, next follows it
1950           prefetch->init_req(0, needgc_false);
1951         }
1952         transform_later(prefetch);
1953         distance += step_size;
1954         i_o = prefetch;
1955       }
1956    }
1957    return i_o;
1958 }
1959 
1960 
1961 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
1962   expand_allocate_common(alloc, nullptr,
1963                          OptoRuntime::new_instance_Type(),
1964                          OptoRuntime::new_instance_Java(), nullptr);
1965 }
1966 
1967 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
1968   Node* length = alloc->in(AllocateNode::ALength);
1969   Node* valid_length_test = alloc->in(AllocateNode::ValidLengthTest);
1970   InitializeNode* init = alloc->initialization();
1971   Node* klass_node = alloc->in(AllocateNode::KlassNode);
1972   const TypeAryKlassPtr* ary_klass_t = _igvn.type(klass_node)->isa_aryklassptr();
1973   address slow_call_address;  // Address of slow call
1974   if (init != nullptr && init->is_complete_with_arraycopy() &&
1975       ary_klass_t && ary_klass_t->elem()->isa_klassptr() == nullptr) {
1976     // Don't zero type array during slow allocation in VM since
1977     // it will be initialized later by arraycopy in compiled code.
1978     slow_call_address = OptoRuntime::new_array_nozero_Java();
1979   } else {
1980     slow_call_address = OptoRuntime::new_array_Java();
1981   }
1982   expand_allocate_common(alloc, length,
1983                          OptoRuntime::new_array_Type(),
1984                          slow_call_address, valid_length_test);
1985 }
1986 
1987 //-------------------mark_eliminated_box----------------------------------
1988 //
1989 // During EA obj may point to several objects but after few ideal graph
1990 // transformations (CCP) it may point to only one non escaping object
1991 // (but still using phi), corresponding locks and unlocks will be marked
1992 // for elimination. Later obj could be replaced with a new node (new phi)
1993 // and which does not have escape information. And later after some graph
1994 // reshape other locks and unlocks (which were not marked for elimination
1995 // before) are connected to this new obj (phi) but they still will not be
1996 // marked for elimination since new obj has no escape information.
1997 // Mark all associated (same box and obj) lock and unlock nodes for
1998 // elimination if some of them marked already.
1999 void PhaseMacroExpand::mark_eliminated_box(Node* box, Node* obj) {
2000   BoxLockNode* oldbox = box->as_BoxLock();
2001   if (oldbox->is_eliminated()) {
2002     return; // This BoxLock node was processed already.
2003   }
2004   assert(!oldbox->is_unbalanced(), "this should not be called for unbalanced region");
2005   // New implementation (EliminateNestedLocks) has separate BoxLock
2006   // node for each locked region so mark all associated locks/unlocks as
2007   // eliminated even if different objects are referenced in one locked region
2008   // (for example, OSR compilation of nested loop inside locked scope).
2009   if (EliminateNestedLocks ||
2010       oldbox->as_BoxLock()->is_simple_lock_region(nullptr, obj, nullptr)) {
2011     // Box is used only in one lock region. Mark this box as eliminated.
2012     oldbox->set_local();      // This verifies correct state of BoxLock
2013     _igvn.hash_delete(oldbox);
2014     oldbox->set_eliminated(); // This changes box's hash value
2015      _igvn.hash_insert(oldbox);
2016 
2017     for (uint i = 0; i < oldbox->outcnt(); i++) {
2018       Node* u = oldbox->raw_out(i);
2019       if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) {
2020         AbstractLockNode* alock = u->as_AbstractLock();
2021         // Check lock's box since box could be referenced by Lock's debug info.
2022         if (alock->box_node() == oldbox) {
2023           // Mark eliminated all related locks and unlocks.
2024 #ifdef ASSERT
2025           alock->log_lock_optimization(C, "eliminate_lock_set_non_esc4");
2026 #endif
2027           alock->set_non_esc_obj();
2028         }
2029       }
2030     }
2031     return;
2032   }
2033 
2034   // Create new "eliminated" BoxLock node and use it in monitor debug info
2035   // instead of oldbox for the same object.
2036   BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
2037 
2038   // Note: BoxLock node is marked eliminated only here and it is used
2039   // to indicate that all associated lock and unlock nodes are marked
2040   // for elimination.
2041   newbox->set_local(); // This verifies correct state of BoxLock
2042   newbox->set_eliminated();
2043   transform_later(newbox);
2044 
2045   // Replace old box node with new box for all users of the same object.
2046   for (uint i = 0; i < oldbox->outcnt();) {
2047     bool next_edge = true;
2048 
2049     Node* u = oldbox->raw_out(i);
2050     if (u->is_AbstractLock()) {
2051       AbstractLockNode* alock = u->as_AbstractLock();
2052       if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) {
2053         // Replace Box and mark eliminated all related locks and unlocks.
2054 #ifdef ASSERT
2055         alock->log_lock_optimization(C, "eliminate_lock_set_non_esc5");
2056 #endif
2057         alock->set_non_esc_obj();
2058         _igvn.rehash_node_delayed(alock);
2059         alock->set_box_node(newbox);
2060         next_edge = false;
2061       }
2062     }
2063     if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) {
2064       FastLockNode* flock = u->as_FastLock();
2065       assert(flock->box_node() == oldbox, "sanity");
2066       _igvn.rehash_node_delayed(flock);
2067       flock->set_box_node(newbox);
2068       next_edge = false;
2069     }
2070 
2071     // Replace old box in monitor debug info.
2072     if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
2073       SafePointNode* sfn = u->as_SafePoint();
2074       JVMState* youngest_jvms = sfn->jvms();
2075       int max_depth = youngest_jvms->depth();
2076       for (int depth = 1; depth <= max_depth; depth++) {
2077         JVMState* jvms = youngest_jvms->of_depth(depth);
2078         int num_mon  = jvms->nof_monitors();
2079         // Loop over monitors
2080         for (int idx = 0; idx < num_mon; idx++) {
2081           Node* obj_node = sfn->monitor_obj(jvms, idx);
2082           Node* box_node = sfn->monitor_box(jvms, idx);
2083           if (box_node == oldbox && obj_node->eqv_uncast(obj)) {
2084             int j = jvms->monitor_box_offset(idx);
2085             _igvn.replace_input_of(u, j, newbox);
2086             next_edge = false;
2087           }
2088         }
2089       }
2090     }
2091     if (next_edge) i++;
2092   }
2093 }
2094 
2095 //-----------------------mark_eliminated_locking_nodes-----------------------
2096 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) {
2097   if (!alock->is_balanced()) {
2098     return; // Can't do any more elimination for this locking region
2099   }
2100   if (EliminateNestedLocks) {
2101     if (alock->is_nested()) {
2102        assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity");
2103        return;
2104     } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened
2105       // Only Lock node has JVMState needed here.
2106       // Not that preceding claim is documented anywhere else.
2107       if (alock->jvms() != nullptr) {
2108         if (alock->as_Lock()->is_nested_lock_region()) {
2109           // Mark eliminated related nested locks and unlocks.
2110           Node* obj = alock->obj_node();
2111           BoxLockNode* box_node = alock->box_node()->as_BoxLock();
2112           assert(!box_node->is_eliminated(), "should not be marked yet");
2113           // Note: BoxLock node is marked eliminated only here
2114           // and it is used to indicate that all associated lock
2115           // and unlock nodes are marked for elimination.
2116           box_node->set_eliminated(); // Box's hash is always NO_HASH here
2117           for (uint i = 0; i < box_node->outcnt(); i++) {
2118             Node* u = box_node->raw_out(i);
2119             if (u->is_AbstractLock()) {
2120               alock = u->as_AbstractLock();
2121               if (alock->box_node() == box_node) {
2122                 // Verify that this Box is referenced only by related locks.
2123                 assert(alock->obj_node()->eqv_uncast(obj), "");
2124                 // Mark all related locks and unlocks.
2125 #ifdef ASSERT
2126                 alock->log_lock_optimization(C, "eliminate_lock_set_nested");
2127 #endif
2128                 alock->set_nested();
2129               }
2130             }
2131           }
2132         } else {
2133 #ifdef ASSERT
2134           alock->log_lock_optimization(C, "eliminate_lock_NOT_nested_lock_region");
2135           if (C->log() != nullptr)
2136             alock->as_Lock()->is_nested_lock_region(C); // rerun for debugging output
2137 #endif
2138         }
2139       }
2140       return;
2141     }
2142     // Process locks for non escaping object
2143     assert(alock->is_non_esc_obj(), "");
2144   } // EliminateNestedLocks
2145 
2146   if (alock->is_non_esc_obj()) { // Lock is used for non escaping object
2147     // Look for all locks of this object and mark them and
2148     // corresponding BoxLock nodes as eliminated.
2149     Node* obj = alock->obj_node();
2150     for (uint j = 0; j < obj->outcnt(); j++) {
2151       Node* o = obj->raw_out(j);
2152       if (o->is_AbstractLock() &&
2153           o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) {
2154         alock = o->as_AbstractLock();
2155         Node* box = alock->box_node();
2156         // Replace old box node with new eliminated box for all users
2157         // of the same object and mark related locks as eliminated.
2158         mark_eliminated_box(box, obj);
2159       }
2160     }
2161   }
2162 }
2163 
2164 // we have determined that this lock/unlock can be eliminated, we simply
2165 // eliminate the node without expanding it.
2166 //
2167 // Note:  The membar's associated with the lock/unlock are currently not
2168 //        eliminated.  This should be investigated as a future enhancement.
2169 //
2170 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
2171 
2172   if (!alock->is_eliminated()) {
2173     return false;
2174   }
2175 #ifdef ASSERT
2176   if (!alock->is_coarsened()) {
2177     // Check that new "eliminated" BoxLock node is created.
2178     BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
2179     assert(oldbox->is_eliminated(), "should be done already");
2180   }
2181 #endif
2182 
2183   alock->log_lock_optimization(C, "eliminate_lock");
2184 
2185 #ifndef PRODUCT
2186   if (PrintEliminateLocks) {
2187     tty->print_cr("++++ Eliminated: %d %s '%s'", alock->_idx, (alock->is_Lock() ? "Lock" : "Unlock"), alock->kind_as_string());
2188   }
2189 #endif
2190 
2191   Node* mem  = alock->in(TypeFunc::Memory);
2192   Node* ctrl = alock->in(TypeFunc::Control);
2193   guarantee(ctrl != nullptr, "missing control projection, cannot replace_node() with null");
2194 
2195   alock->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/);
2196   // There are 2 projections from the lock.  The lock node will
2197   // be deleted when its last use is subsumed below.
2198   assert(alock->outcnt() == 2 &&
2199          _callprojs.fallthrough_proj != nullptr &&
2200          _callprojs.fallthrough_memproj != nullptr,
2201          "Unexpected projections from Lock/Unlock");
2202 
2203   Node* fallthroughproj = _callprojs.fallthrough_proj;
2204   Node* memproj_fallthrough = _callprojs.fallthrough_memproj;
2205 
2206   // The memory projection from a lock/unlock is RawMem
2207   // The input to a Lock is merged memory, so extract its RawMem input
2208   // (unless the MergeMem has been optimized away.)
2209   if (alock->is_Lock()) {
2210     // Search for MemBarAcquireLock node and delete it also.
2211     MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
2212     assert(membar != nullptr && membar->Opcode() == Op_MemBarAcquireLock, "");
2213     Node* ctrlproj = membar->proj_out(TypeFunc::Control);
2214     Node* memproj = membar->proj_out(TypeFunc::Memory);
2215     _igvn.replace_node(ctrlproj, fallthroughproj);
2216     _igvn.replace_node(memproj, memproj_fallthrough);
2217 
2218     // Delete FastLock node also if this Lock node is unique user
2219     // (a loop peeling may clone a Lock node).
2220     Node* flock = alock->as_Lock()->fastlock_node();
2221     if (flock->outcnt() == 1) {
2222       assert(flock->unique_out() == alock, "sanity");
2223       _igvn.replace_node(flock, top());
2224     }
2225   }
2226 
2227   // Search for MemBarReleaseLock node and delete it also.
2228   if (alock->is_Unlock() && ctrl->is_Proj() && ctrl->in(0)->is_MemBar()) {
2229     MemBarNode* membar = ctrl->in(0)->as_MemBar();
2230     assert(membar->Opcode() == Op_MemBarReleaseLock &&
2231            mem->is_Proj() && membar == mem->in(0), "");
2232     _igvn.replace_node(fallthroughproj, ctrl);
2233     _igvn.replace_node(memproj_fallthrough, mem);
2234     fallthroughproj = ctrl;
2235     memproj_fallthrough = mem;
2236     ctrl = membar->in(TypeFunc::Control);
2237     mem  = membar->in(TypeFunc::Memory);
2238   }
2239 
2240   _igvn.replace_node(fallthroughproj, ctrl);
2241   _igvn.replace_node(memproj_fallthrough, mem);
2242   return true;
2243 }
2244 
2245 
2246 //------------------------------expand_lock_node----------------------
2247 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
2248 
2249   Node* ctrl = lock->in(TypeFunc::Control);
2250   Node* mem = lock->in(TypeFunc::Memory);
2251   Node* obj = lock->obj_node();
2252   Node* box = lock->box_node();
2253   Node* flock = lock->fastlock_node();
2254 
2255   assert(!box->as_BoxLock()->is_eliminated(), "sanity");
2256 
2257   // Make the merge point
2258   Node *region;
2259   Node *mem_phi;
2260   Node *slow_path;
2261 
2262   region  = new RegionNode(3);
2263   // create a Phi for the memory state
2264   mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2265 
2266   // Optimize test; set region slot 2
2267   slow_path = opt_bits_test(ctrl, region, 2, flock);
2268   mem_phi->init_req(2, mem);
2269 
2270   // Make slow path call
2271   CallNode* call = make_slow_call(lock, OptoRuntime::complete_monitor_enter_Type(),
2272                                   OptoRuntime::complete_monitor_locking_Java(), nullptr, slow_path,
2273                                   obj, box, nullptr);
2274 
2275   call->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/);
2276 
2277   // Slow path can only throw asynchronous exceptions, which are always
2278   // de-opted.  So the compiler thinks the slow-call can never throw an
2279   // exception.  If it DOES throw an exception we would need the debug
2280   // info removed first (since if it throws there is no monitor).
2281   assert(_callprojs.fallthrough_ioproj == nullptr && _callprojs.catchall_ioproj == nullptr &&
2282          _callprojs.catchall_memproj == nullptr && _callprojs.catchall_catchproj == nullptr, "Unexpected projection from Lock");
2283 
2284   // Capture slow path
2285   // disconnect fall-through projection from call and create a new one
2286   // hook up users of fall-through projection to region
2287   Node *slow_ctrl = _callprojs.fallthrough_proj->clone();
2288   transform_later(slow_ctrl);
2289   _igvn.hash_delete(_callprojs.fallthrough_proj);
2290   _callprojs.fallthrough_proj->disconnect_inputs(C);
2291   region->init_req(1, slow_ctrl);
2292   // region inputs are now complete
2293   transform_later(region);
2294   _igvn.replace_node(_callprojs.fallthrough_proj, region);
2295 
2296   Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory));
2297 
2298   mem_phi->init_req(1, memproj);
2299 
2300   transform_later(mem_phi);
2301 
2302   _igvn.replace_node(_callprojs.fallthrough_memproj, mem_phi);
2303 }
2304 
2305 //------------------------------expand_unlock_node----------------------
2306 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
2307 
2308   Node* ctrl = unlock->in(TypeFunc::Control);
2309   Node* mem = unlock->in(TypeFunc::Memory);
2310   Node* obj = unlock->obj_node();
2311   Node* box = unlock->box_node();
2312 
2313   assert(!box->as_BoxLock()->is_eliminated(), "sanity");
2314 
2315   // No need for a null check on unlock
2316 
2317   // Make the merge point
2318   Node *region;
2319   Node *mem_phi;
2320 
2321   region  = new RegionNode(3);
2322   // create a Phi for the memory state
2323   mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2324 
2325   FastUnlockNode *funlock = new FastUnlockNode( ctrl, obj, box );
2326   funlock = transform_later( funlock )->as_FastUnlock();
2327   // Optimize test; set region slot 2
2328   Node *slow_path = opt_bits_test(ctrl, region, 2, funlock);
2329   Node *thread = transform_later(new ThreadLocalNode());
2330 
2331   CallNode *call = make_slow_call((CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(),
2332                                   CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C),
2333                                   "complete_monitor_unlocking_C", slow_path, obj, box, thread);
2334 
2335   call->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/);
2336   assert(_callprojs.fallthrough_ioproj == nullptr && _callprojs.catchall_ioproj == nullptr &&
2337          _callprojs.catchall_memproj == nullptr && _callprojs.catchall_catchproj == nullptr, "Unexpected projection from Lock");
2338 
2339   // No exceptions for unlocking
2340   // Capture slow path
2341   // disconnect fall-through projection from call and create a new one
2342   // hook up users of fall-through projection to region
2343   Node *slow_ctrl = _callprojs.fallthrough_proj->clone();
2344   transform_later(slow_ctrl);
2345   _igvn.hash_delete(_callprojs.fallthrough_proj);
2346   _callprojs.fallthrough_proj->disconnect_inputs(C);
2347   region->init_req(1, slow_ctrl);
2348   // region inputs are now complete
2349   transform_later(region);
2350   _igvn.replace_node(_callprojs.fallthrough_proj, region);
2351 
2352   Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory) );
2353   mem_phi->init_req(1, memproj );
2354   mem_phi->init_req(2, mem);
2355   transform_later(mem_phi);
2356 
2357   _igvn.replace_node(_callprojs.fallthrough_memproj, mem_phi);
2358 }
2359 
2360 void PhaseMacroExpand::expand_subtypecheck_node(SubTypeCheckNode *check) {
2361   assert(check->in(SubTypeCheckNode::Control) == nullptr, "should be pinned");
2362   Node* bol = check->unique_out();
2363   Node* obj_or_subklass = check->in(SubTypeCheckNode::ObjOrSubKlass);
2364   Node* superklass = check->in(SubTypeCheckNode::SuperKlass);
2365   assert(bol->is_Bool() && bol->as_Bool()->_test._test == BoolTest::ne, "unexpected bool node");
2366 
2367   for (DUIterator_Last imin, i = bol->last_outs(imin); i >= imin; --i) {
2368     Node* iff = bol->last_out(i);
2369     assert(iff->is_If(), "where's the if?");
2370 
2371     if (iff->in(0)->is_top()) {
2372       _igvn.replace_input_of(iff, 1, C->top());
2373       continue;
2374     }
2375 
2376     Node* iftrue = iff->as_If()->proj_out(1);
2377     Node* iffalse = iff->as_If()->proj_out(0);
2378     Node* ctrl = iff->in(0);
2379 
2380     Node* subklass = nullptr;
2381     if (_igvn.type(obj_or_subklass)->isa_klassptr()) {
2382       subklass = obj_or_subklass;
2383     } else {
2384       Node* k_adr = basic_plus_adr(obj_or_subklass, oopDesc::klass_offset_in_bytes());
2385       subklass = _igvn.transform(LoadKlassNode::make(_igvn, C->immutable_memory(), k_adr, TypeInstPtr::KLASS));
2386     }
2387 
2388     Node* not_subtype_ctrl = Phase::gen_subtype_check(subklass, superklass, &ctrl, nullptr, _igvn, check->method(), check->bci());
2389 
2390     _igvn.replace_input_of(iff, 0, C->top());
2391     _igvn.replace_node(iftrue, not_subtype_ctrl);
2392     _igvn.replace_node(iffalse, ctrl);
2393   }
2394   _igvn.replace_node(check, C->top());
2395 }
2396 
2397 // Perform refining of strip mined loop nodes in the macro nodes list.
2398 void PhaseMacroExpand::refine_strip_mined_loop_macro_nodes() {
2399    for (int i = C->macro_count(); i > 0; i--) {
2400     Node* n = C->macro_node(i - 1);
2401     if (n->is_OuterStripMinedLoop()) {
2402       n->as_OuterStripMinedLoop()->adjust_strip_mined_loop(&_igvn);
2403     }
2404   }
2405 }
2406 
2407 //---------------------------eliminate_macro_nodes----------------------
2408 // Eliminate scalar replaced allocations and associated locks.
2409 void PhaseMacroExpand::eliminate_macro_nodes() {
2410   if (C->macro_count() == 0)
2411     return;
2412 
2413   if (StressMacroElimination) {
2414     C->shuffle_macro_nodes();
2415   }
2416   NOT_PRODUCT(int membar_before = count_MemBar(C);)
2417 
2418   // Before elimination may re-mark (change to Nested or NonEscObj)
2419   // all associated (same box and obj) lock and unlock nodes.
2420   int cnt = C->macro_count();
2421   for (int i=0; i < cnt; i++) {
2422     Node *n = C->macro_node(i);
2423     if (n->is_AbstractLock()) { // Lock and Unlock nodes
2424       mark_eliminated_locking_nodes(n->as_AbstractLock());
2425     }
2426   }
2427   // Re-marking may break consistency of Coarsened locks.
2428   if (!C->coarsened_locks_consistent()) {
2429     return; // recompile without Coarsened locks if broken
2430   } else {
2431     // After coarsened locks are eliminated locking regions
2432     // become unbalanced. We should not execute any more
2433     // locks elimination optimizations on them.
2434     C->mark_unbalanced_boxes();
2435   }
2436 
2437   // First, attempt to eliminate locks
2438   bool progress = true;
2439   while (progress) {
2440     progress = false;
2441     for (int i = C->macro_count(); i > 0; i = MIN2(i - 1, C->macro_count())) { // more than 1 element can be eliminated at once
2442       Node* n = C->macro_node(i - 1);
2443       bool success = false;
2444       DEBUG_ONLY(int old_macro_count = C->macro_count();)
2445       if (n->is_AbstractLock()) {
2446         success = eliminate_locking_node(n->as_AbstractLock());
2447 #ifndef PRODUCT
2448         if (success && PrintOptoStatistics) {
2449           AtomicAccess::inc(&PhaseMacroExpand::_monitor_objects_removed_counter);
2450         }
2451 #endif
2452       }
2453       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2454       progress = progress || success;
2455       if (success) {
2456         C->print_method(PHASE_AFTER_MACRO_ELIMINATION_STEP, 5, n);
2457       }
2458     }
2459   }
2460   // Next, attempt to eliminate allocations
2461   progress = true;
2462   while (progress) {
2463     progress = false;
2464     for (int i = C->macro_count(); i > 0; i = MIN2(i - 1, C->macro_count())) { // more than 1 element can be eliminated at once
2465       Node* n = C->macro_node(i - 1);
2466       bool success = false;
2467       DEBUG_ONLY(int old_macro_count = C->macro_count();)
2468       switch (n->class_id()) {
2469       case Node::Class_Allocate:
2470       case Node::Class_AllocateArray:
2471         success = eliminate_allocate_node(n->as_Allocate());
2472 #ifndef PRODUCT
2473         if (success && PrintOptoStatistics) {
2474           AtomicAccess::inc(&PhaseMacroExpand::_objs_scalar_replaced_counter);
2475         }
2476 #endif
2477         break;
2478       case Node::Class_CallStaticJava:
2479         success = eliminate_boxing_node(n->as_CallStaticJava());
2480         break;
2481       case Node::Class_Lock:
2482       case Node::Class_Unlock:
2483         assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
2484         break;
2485       case Node::Class_ArrayCopy:
2486         break;
2487       case Node::Class_OuterStripMinedLoop:
2488         break;
2489       case Node::Class_SubTypeCheck:
2490         break;
2491       case Node::Class_Opaque1:
2492         break;
2493       default:
2494         assert(n->Opcode() == Op_LoopLimit ||
2495                n->Opcode() == Op_ModD ||
2496                n->Opcode() == Op_ModF ||
2497                n->is_OpaqueNotNull()       ||
2498                n->is_OpaqueInitializedAssertionPredicate() ||
2499                n->Opcode() == Op_MaxL      ||
2500                n->Opcode() == Op_MinL      ||
2501                BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(n),
2502                "unknown node type in macro list");
2503       }
2504       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2505       progress = progress || success;
2506       if (success) {
2507         C->print_method(PHASE_AFTER_MACRO_ELIMINATION_STEP, 5, n);
2508       }
2509     }
2510   }
2511 #ifndef PRODUCT
2512   if (PrintOptoStatistics) {
2513     int membar_after = count_MemBar(C);
2514     AtomicAccess::add(&PhaseMacroExpand::_memory_barriers_removed_counter, membar_before - membar_after);
2515   }
2516 #endif
2517 }
2518 
2519 void PhaseMacroExpand::eliminate_opaque_looplimit_macro_nodes() {
2520   if (C->macro_count() == 0) {
2521     return;
2522   }
2523   refine_strip_mined_loop_macro_nodes();
2524   // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations.
2525   bool progress = true;
2526   while (progress) {
2527     progress = false;
2528     for (int i = C->macro_count(); i > 0; i--) {
2529       Node* n = C->macro_node(i-1);
2530       bool success = false;
2531       DEBUG_ONLY(int old_macro_count = C->macro_count();)
2532       if (n->Opcode() == Op_LoopLimit) {
2533         // Remove it from macro list and put on IGVN worklist to optimize.
2534         C->remove_macro_node(n);
2535         _igvn._worklist.push(n);
2536         success = true;
2537       } else if (n->Opcode() == Op_CallStaticJava) {
2538         // Remove it from macro list and put on IGVN worklist to optimize.
2539         C->remove_macro_node(n);
2540         _igvn._worklist.push(n);
2541         success = true;
2542       } else if (n->is_Opaque1()) {
2543         _igvn.replace_node(n, n->in(1));
2544         success = true;
2545       } else if (n->is_OpaqueNotNull()) {
2546         // Tests with OpaqueNotNull nodes are implicitly known to be true. Replace the node with true. In debug builds,
2547         // we leave the test in the graph to have an additional sanity check at runtime. If the test fails (i.e. a bug),
2548         // we will execute a Halt node.
2549 #ifdef ASSERT
2550         _igvn.replace_node(n, n->in(1));
2551 #else
2552         _igvn.replace_node(n, _igvn.intcon(1));
2553 #endif
2554         success = true;
2555       } else if (n->is_OpaqueInitializedAssertionPredicate()) {
2556           // Initialized Assertion Predicates must always evaluate to true. Therefore, we get rid of them in product
2557           // builds as they are useless. In debug builds we keep them as additional verification code. Even though
2558           // loop opts are already over, we want to keep Initialized Assertion Predicates alive as long as possible to
2559           // enable folding of dead control paths within which cast nodes become top after due to impossible types -
2560           // even after loop opts are over. Therefore, we delay the removal of these opaque nodes until now.
2561 #ifdef ASSERT
2562         _igvn.replace_node(n, n->in(1));
2563 #else
2564         _igvn.replace_node(n, _igvn.intcon(1));
2565 #endif // ASSERT
2566       } else if (n->Opcode() == Op_OuterStripMinedLoop) {
2567         C->remove_macro_node(n);
2568         success = true;
2569       } else if (n->Opcode() == Op_MaxL) {
2570         // Since MaxL and MinL are not implemented in the backend, we expand them to
2571         // a CMoveL construct now. At least until here, the type could be computed
2572         // precisely. CMoveL is not so smart, but we can give it at least the best
2573         // type we know abouot n now.
2574         Node* repl = MaxNode::signed_max(n->in(1), n->in(2), _igvn.type(n), _igvn);
2575         _igvn.replace_node(n, repl);
2576         success = true;
2577       } else if (n->Opcode() == Op_MinL) {
2578         Node* repl = MaxNode::signed_min(n->in(1), n->in(2), _igvn.type(n), _igvn);
2579         _igvn.replace_node(n, repl);
2580         success = true;
2581       }
2582       assert(!success || (C->macro_count() == (old_macro_count - 1)), "elimination must have deleted one node from macro list");
2583       progress = progress || success;
2584       if (success) {
2585         C->print_method(PHASE_AFTER_MACRO_ELIMINATION_STEP, 5, n);
2586       }
2587     }
2588   }
2589 }
2590 
2591 //------------------------------expand_macro_nodes----------------------
2592 //  Returns true if a failure occurred.
2593 bool PhaseMacroExpand::expand_macro_nodes() {
2594   if (StressMacroExpansion) {
2595     C->shuffle_macro_nodes();
2596   }
2597 
2598   // Clean up the graph so we're less likely to hit the maximum node
2599   // limit
2600   _igvn.set_delay_transform(false);
2601   _igvn.optimize();
2602   if (C->failing())  return true;
2603   _igvn.set_delay_transform(true);
2604 
2605 
2606   // Because we run IGVN after each expansion, some macro nodes may go
2607   // dead and be removed from the list as we iterate over it. Move
2608   // Allocate nodes (processed in a second pass) at the beginning of
2609   // the list and then iterate from the last element of the list until
2610   // an Allocate node is seen. This is robust to random deletion in
2611   // the list due to nodes going dead.
2612   C->sort_macro_nodes();
2613 
2614   // expand arraycopy "macro" nodes first
2615   // For ReduceBulkZeroing, we must first process all arraycopy nodes
2616   // before the allocate nodes are expanded.
2617   while (C->macro_count() > 0) {
2618     int macro_count = C->macro_count();
2619     Node * n = C->macro_node(macro_count-1);
2620     assert(n->is_macro(), "only macro nodes expected here");
2621     if (_igvn.type(n) == Type::TOP || (n->in(0) != nullptr && n->in(0)->is_top())) {
2622       // node is unreachable, so don't try to expand it
2623       C->remove_macro_node(n);
2624       continue;
2625     }
2626     if (n->is_Allocate()) {
2627       break;
2628     }
2629     // Make sure expansion will not cause node limit to be exceeded.
2630     // Worst case is a macro node gets expanded into about 200 nodes.
2631     // Allow 50% more for optimization.
2632     if (C->check_node_count(300, "out of nodes before macro expansion")) {
2633       return true;
2634     }
2635 
2636     DEBUG_ONLY(int old_macro_count = C->macro_count();)
2637     switch (n->class_id()) {
2638     case Node::Class_Lock:
2639       expand_lock_node(n->as_Lock());
2640       break;
2641     case Node::Class_Unlock:
2642       expand_unlock_node(n->as_Unlock());
2643       break;
2644     case Node::Class_ArrayCopy:
2645       expand_arraycopy_node(n->as_ArrayCopy());
2646       break;
2647     case Node::Class_SubTypeCheck:
2648       expand_subtypecheck_node(n->as_SubTypeCheck());
2649       break;
2650     default:
2651       switch (n->Opcode()) {
2652       case Op_ModD:
2653       case Op_ModF: {
2654         CallNode* mod_macro = n->as_Call();
2655         CallNode* call = new CallLeafPureNode(mod_macro->tf(), mod_macro->entry_point(),
2656                                               mod_macro->_name, TypeRawPtr::BOTTOM);
2657         call->init_req(TypeFunc::Control, mod_macro->in(TypeFunc::Control));
2658         call->init_req(TypeFunc::I_O, C->top());
2659         call->init_req(TypeFunc::Memory, C->top());
2660         call->init_req(TypeFunc::ReturnAdr, C->top());
2661         call->init_req(TypeFunc::FramePtr, C->top());
2662         for (unsigned int i = 0; i < mod_macro->tf()->domain()->cnt() - TypeFunc::Parms; i++) {
2663           call->init_req(TypeFunc::Parms + i, mod_macro->in(TypeFunc::Parms + i));
2664         }
2665         _igvn.replace_node(mod_macro, call);
2666         transform_later(call);
2667         break;
2668       }
2669       default:
2670         assert(false, "unknown node type in macro list");
2671       }
2672     }
2673     assert(C->macro_count() == (old_macro_count - 1), "expansion must have deleted one node from macro list");
2674     if (C->failing())  return true;
2675     C->print_method(PHASE_AFTER_MACRO_EXPANSION_STEP, 5, n);
2676 
2677     // Clean up the graph so we're less likely to hit the maximum node
2678     // limit
2679     _igvn.set_delay_transform(false);
2680     _igvn.optimize();
2681     if (C->failing())  return true;
2682     _igvn.set_delay_transform(true);
2683   }
2684 
2685   // All nodes except Allocate nodes are expanded now. There could be
2686   // new optimization opportunities (such as folding newly created
2687   // load from a just allocated object). Run IGVN.
2688 
2689   // expand "macro" nodes
2690   // nodes are removed from the macro list as they are processed
2691   while (C->macro_count() > 0) {
2692     int macro_count = C->macro_count();
2693     Node * n = C->macro_node(macro_count-1);
2694     assert(n->is_macro(), "only macro nodes expected here");
2695     if (_igvn.type(n) == Type::TOP || (n->in(0) != nullptr && n->in(0)->is_top())) {
2696       // node is unreachable, so don't try to expand it
2697       C->remove_macro_node(n);
2698       continue;
2699     }
2700     // Make sure expansion will not cause node limit to be exceeded.
2701     // Worst case is a macro node gets expanded into about 200 nodes.
2702     // Allow 50% more for optimization.
2703     if (C->check_node_count(300, "out of nodes before macro expansion")) {
2704       return true;
2705     }
2706     switch (n->class_id()) {
2707     case Node::Class_Allocate:
2708       expand_allocate(n->as_Allocate());
2709       break;
2710     case Node::Class_AllocateArray:
2711       expand_allocate_array(n->as_AllocateArray());
2712       break;
2713     default:
2714       assert(false, "unknown node type in macro list");
2715     }
2716     assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
2717     if (C->failing())  return true;
2718     C->print_method(PHASE_AFTER_MACRO_EXPANSION_STEP, 5, n);
2719 
2720     // Clean up the graph so we're less likely to hit the maximum node
2721     // limit
2722     _igvn.set_delay_transform(false);
2723     _igvn.optimize();
2724     if (C->failing())  return true;
2725     _igvn.set_delay_transform(true);
2726   }
2727 
2728   _igvn.set_delay_transform(false);
2729   return false;
2730 }
2731 
2732 #ifndef PRODUCT
2733 int PhaseMacroExpand::_objs_scalar_replaced_counter = 0;
2734 int PhaseMacroExpand::_monitor_objects_removed_counter = 0;
2735 int PhaseMacroExpand::_GC_barriers_removed_counter = 0;
2736 int PhaseMacroExpand::_memory_barriers_removed_counter = 0;
2737 
2738 void PhaseMacroExpand::print_statistics() {
2739   tty->print("Objects scalar replaced = %d, ", AtomicAccess::load(&_objs_scalar_replaced_counter));
2740   tty->print("Monitor objects removed = %d, ", AtomicAccess::load(&_monitor_objects_removed_counter));
2741   tty->print("GC barriers removed = %d, ", AtomicAccess::load(&_GC_barriers_removed_counter));
2742   tty->print_cr("Memory barriers removed = %d", AtomicAccess::load(&_memory_barriers_removed_counter));
2743 }
2744 
2745 int PhaseMacroExpand::count_MemBar(Compile *C) {
2746   if (!PrintOptoStatistics) {
2747     return 0;
2748   }
2749   Unique_Node_List ideal_nodes;
2750   int total = 0;
2751   ideal_nodes.map(C->live_nodes(), nullptr);
2752   ideal_nodes.push(C->root());
2753   for (uint next = 0; next < ideal_nodes.size(); ++next) {
2754     Node* n = ideal_nodes.at(next);
2755     if (n->is_MemBar()) {
2756       total++;
2757     }
2758     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2759       Node* m = n->fast_out(i);
2760       ideal_nodes.push(m);
2761     }
2762   }
2763   return total;
2764 }
2765 #endif