1 /*
   2  * Copyright (c) 2005, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "compiler/compileLog.hpp"
  26 #include "gc/shared/collectedHeap.inline.hpp"
  27 #include "gc/shared/tlab_globals.hpp"
  28 #include "libadt/vectset.hpp"
  29 #include "memory/universe.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/arraycopynode.hpp"
  32 #include "opto/callnode.hpp"
  33 #include "opto/castnode.hpp"
  34 #include "opto/cfgnode.hpp"
  35 #include "opto/compile.hpp"
  36 #include "opto/convertnode.hpp"
  37 #include "opto/graphKit.hpp"
  38 #include "opto/intrinsicnode.hpp"
  39 #include "opto/locknode.hpp"
  40 #include "opto/loopnode.hpp"
  41 #include "opto/macro.hpp"
  42 #include "opto/memnode.hpp"
  43 #include "opto/narrowptrnode.hpp"
  44 #include "opto/node.hpp"
  45 #include "opto/opaquenode.hpp"
  46 #include "opto/phaseX.hpp"
  47 #include "opto/rootnode.hpp"
  48 #include "opto/runtime.hpp"
  49 #include "opto/subnode.hpp"
  50 #include "opto/subtypenode.hpp"
  51 #include "opto/type.hpp"
  52 #include "prims/jvmtiExport.hpp"
  53 #include "runtime/continuation.hpp"
  54 #include "runtime/sharedRuntime.hpp"
  55 #include "utilities/macros.hpp"
  56 #include "utilities/powerOfTwo.hpp"
  57 #if INCLUDE_G1GC
  58 #include "gc/g1/g1ThreadLocalData.hpp"
  59 #endif // INCLUDE_G1GC
  60 
  61 
  62 //
  63 // Replace any references to "oldref" in inputs to "use" with "newref".
  64 // Returns the number of replacements made.
  65 //
  66 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
  67   int nreplacements = 0;
  68   uint req = use->req();
  69   for (uint j = 0; j < use->len(); j++) {
  70     Node *uin = use->in(j);
  71     if (uin == oldref) {
  72       if (j < req)
  73         use->set_req(j, newref);
  74       else
  75         use->set_prec(j, newref);
  76       nreplacements++;
  77     } else if (j >= req && uin == nullptr) {
  78       break;
  79     }
  80   }
  81   return nreplacements;
  82 }
  83 
  84 void PhaseMacroExpand::migrate_outs(Node *old, Node *target) {
  85   assert(old != nullptr, "sanity");
  86   for (DUIterator_Fast imax, i = old->fast_outs(imax); i < imax; i++) {
  87     Node* use = old->fast_out(i);
  88     _igvn.rehash_node_delayed(use);
  89     imax -= replace_input(use, old, target);
  90     // back up iterator
  91     --i;
  92   }
  93   assert(old->outcnt() == 0, "all uses must be deleted");
  94 }
  95 
  96 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word) {
  97   Node* cmp = word;
  98   Node* bol = transform_later(new BoolNode(cmp, BoolTest::ne));
  99   IfNode* iff = new IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
 100   transform_later(iff);
 101 
 102   // Fast path taken.
 103   Node *fast_taken = transform_later(new IfFalseNode(iff));
 104 
 105   // Fast path not-taken, i.e. slow path
 106   Node *slow_taken = transform_later(new IfTrueNode(iff));
 107 
 108     region->init_req(edge, fast_taken); // Capture fast-control
 109     return slow_taken;
 110 }
 111 
 112 //--------------------copy_predefined_input_for_runtime_call--------------------
 113 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
 114   // Set fixed predefined input arguments
 115   call->init_req( TypeFunc::Control, ctrl );
 116   call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
 117   call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
 118   call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
 119   call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
 120 }
 121 
 122 //------------------------------make_slow_call---------------------------------
 123 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type,
 124                                            address slow_call, const char* leaf_name, Node* slow_path,
 125                                            Node* parm0, Node* parm1, Node* parm2) {
 126 
 127   // Slow-path call
 128  CallNode *call = leaf_name
 129    ? (CallNode*)new CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
 130    : (CallNode*)new CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), TypeRawPtr::BOTTOM );
 131 
 132   // Slow path call has no side-effects, uses few values
 133   copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
 134   if (parm0 != nullptr)  call->init_req(TypeFunc::Parms+0, parm0);
 135   if (parm1 != nullptr)  call->init_req(TypeFunc::Parms+1, parm1);
 136   if (parm2 != nullptr)  call->init_req(TypeFunc::Parms+2, parm2);
 137   call->copy_call_debug_info(&_igvn, oldcall);
 138   call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
 139   _igvn.replace_node(oldcall, call);
 140   transform_later(call);
 141 
 142   return call;
 143 }
 144 
 145 void PhaseMacroExpand::eliminate_gc_barrier(Node* p2x) {
 146   BarrierSetC2 *bs = BarrierSet::barrier_set()->barrier_set_c2();
 147   bs->eliminate_gc_barrier(this, p2x);
 148 #ifndef PRODUCT
 149   if (PrintOptoStatistics) {
 150     AtomicAccess::inc(&PhaseMacroExpand::_GC_barriers_removed_counter);
 151   }
 152 #endif
 153 }
 154 
 155 // Search for a memory operation for the specified memory slice.
 156 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
 157   Node *orig_mem = mem;
 158   Node *alloc_mem = alloc->as_Allocate()->proj_out_or_null(TypeFunc::Memory, /*io_use:*/false);
 159   assert(alloc_mem != nullptr, "Allocation without a memory projection.");
 160   const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
 161   while (true) {
 162     if (mem == alloc_mem || mem == start_mem ) {
 163       return mem;  // hit one of our sentinels
 164     } else if (mem->is_MergeMem()) {
 165       mem = mem->as_MergeMem()->memory_at(alias_idx);
 166     } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
 167       Node *in = mem->in(0);
 168       // we can safely skip over safepoints, calls, locks and membars because we
 169       // already know that the object is safe to eliminate.
 170       if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
 171         return in;
 172       } else if (in->is_Call()) {
 173         CallNode *call = in->as_Call();
 174         if (call->may_modify(tinst, phase)) {
 175           assert(call->is_ArrayCopy(), "ArrayCopy is the only call node that doesn't make allocation escape");
 176           if (call->as_ArrayCopy()->modifies(offset, offset, phase, false)) {
 177             return in;
 178           }
 179         }
 180         mem = in->in(TypeFunc::Memory);
 181       } else if (in->is_MemBar()) {
 182         ArrayCopyNode* ac = nullptr;
 183         if (ArrayCopyNode::may_modify(tinst, in->as_MemBar(), phase, ac)) {
 184           if (ac != nullptr) {
 185             assert(ac->is_clonebasic(), "Only basic clone is a non escaping clone");
 186             return ac;
 187           }
 188         }
 189         mem = in->in(TypeFunc::Memory);
 190       } else {
 191 #ifdef ASSERT
 192         in->dump();
 193         mem->dump();
 194         assert(false, "unexpected projection");
 195 #endif
 196       }
 197     } else if (mem->is_Store()) {
 198       const TypePtr* atype = mem->as_Store()->adr_type();
 199       int adr_idx = phase->C->get_alias_index(atype);
 200       if (adr_idx == alias_idx) {
 201         assert(atype->isa_oopptr(), "address type must be oopptr");
 202         int adr_offset = atype->offset();
 203         uint adr_iid = atype->is_oopptr()->instance_id();
 204         // Array elements references have the same alias_idx
 205         // but different offset and different instance_id.
 206         if (adr_offset == offset && adr_iid == alloc->_idx) {
 207           return mem;
 208         }
 209       } else {
 210         assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
 211       }
 212       mem = mem->in(MemNode::Memory);
 213     } else if (mem->is_ClearArray()) {
 214       if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
 215         // Can not bypass initialization of the instance
 216         // we are looking.
 217         DEBUG_ONLY(intptr_t offset;)
 218         assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
 219         InitializeNode* init = alloc->as_Allocate()->initialization();
 220         // We are looking for stored value, return Initialize node
 221         // or memory edge from Allocate node.
 222         if (init != nullptr) {
 223           return init;
 224         } else {
 225           return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
 226         }
 227       }
 228       // Otherwise skip it (the call updated 'mem' value).
 229     } else if (mem->Opcode() == Op_SCMemProj) {
 230       mem = mem->in(0);
 231       Node* adr = nullptr;
 232       if (mem->is_LoadStore()) {
 233         adr = mem->in(MemNode::Address);
 234       } else {
 235         assert(mem->Opcode() == Op_EncodeISOArray ||
 236                mem->Opcode() == Op_StrCompressedCopy, "sanity");
 237         adr = mem->in(3); // Destination array
 238       }
 239       const TypePtr* atype = adr->bottom_type()->is_ptr();
 240       int adr_idx = phase->C->get_alias_index(atype);
 241       if (adr_idx == alias_idx) {
 242         DEBUG_ONLY(mem->dump();)
 243         assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
 244         return nullptr;
 245       }
 246       mem = mem->in(MemNode::Memory);
 247    } else if (mem->Opcode() == Op_StrInflatedCopy) {
 248       Node* adr = mem->in(3); // Destination array
 249       const TypePtr* atype = adr->bottom_type()->is_ptr();
 250       int adr_idx = phase->C->get_alias_index(atype);
 251       if (adr_idx == alias_idx) {
 252         DEBUG_ONLY(mem->dump();)
 253         assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
 254         return nullptr;
 255       }
 256       mem = mem->in(MemNode::Memory);
 257     } else {
 258       return mem;
 259     }
 260     assert(mem != orig_mem, "dead memory loop");
 261   }
 262 }
 263 
 264 // Generate loads from source of the arraycopy for fields of
 265 // destination needed at a deoptimization point
 266 Node* PhaseMacroExpand::make_arraycopy_load(ArrayCopyNode* ac, intptr_t offset, Node* ctl, Node* mem, BasicType ft, const Type *ftype, AllocateNode *alloc) {
 267   BasicType bt = ft;
 268   const Type *type = ftype;
 269   if (ft == T_NARROWOOP) {
 270     bt = T_OBJECT;
 271     type = ftype->make_oopptr();
 272   }
 273   Node* res = nullptr;
 274   if (ac->is_clonebasic()) {
 275     assert(ac->in(ArrayCopyNode::Src) != ac->in(ArrayCopyNode::Dest), "clone source equals destination");
 276     Node* base = ac->in(ArrayCopyNode::Src);
 277     Node* adr = _igvn.transform(new AddPNode(base, base, _igvn.MakeConX(offset)));
 278     const TypePtr* adr_type = _igvn.type(base)->is_ptr()->add_offset(offset);
 279     MergeMemNode* mergemen = _igvn.transform(MergeMemNode::make(mem))->as_MergeMem();
 280     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 281     res = ArrayCopyNode::load(bs, &_igvn, ctl, mergemen, adr, adr_type, type, bt);
 282   } else {
 283     if (ac->modifies(offset, offset, &_igvn, true)) {
 284       assert(ac->in(ArrayCopyNode::Dest) == alloc->result_cast(), "arraycopy destination should be allocation's result");
 285       uint shift = exact_log2(type2aelembytes(bt));
 286       Node* src_pos = ac->in(ArrayCopyNode::SrcPos);
 287       Node* dest_pos = ac->in(ArrayCopyNode::DestPos);
 288       const TypeInt* src_pos_t = _igvn.type(src_pos)->is_int();
 289       const TypeInt* dest_pos_t = _igvn.type(dest_pos)->is_int();
 290 
 291       Node* adr = nullptr;
 292       const TypePtr* adr_type = nullptr;
 293       if (src_pos_t->is_con() && dest_pos_t->is_con()) {
 294         intptr_t off = ((src_pos_t->get_con() - dest_pos_t->get_con()) << shift) + offset;
 295         Node* base = ac->in(ArrayCopyNode::Src);
 296         adr = _igvn.transform(new AddPNode(base, base, _igvn.MakeConX(off)));
 297         adr_type = _igvn.type(base)->is_ptr()->add_offset(off);
 298         if (ac->in(ArrayCopyNode::Src) == ac->in(ArrayCopyNode::Dest)) {
 299           // Don't emit a new load from src if src == dst but try to get the value from memory instead
 300           return value_from_mem(ac->in(TypeFunc::Memory), ctl, ft, ftype, adr_type->isa_oopptr(), alloc);
 301         }
 302       } else {
 303         Node* diff = _igvn.transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
 304 #ifdef _LP64
 305         diff = _igvn.transform(new ConvI2LNode(diff));
 306 #endif
 307         diff = _igvn.transform(new LShiftXNode(diff, _igvn.intcon(shift)));
 308 
 309         Node* off = _igvn.transform(new AddXNode(_igvn.MakeConX(offset), diff));
 310         Node* base = ac->in(ArrayCopyNode::Src);
 311         adr = _igvn.transform(new AddPNode(base, base, off));
 312         adr_type = _igvn.type(base)->is_ptr()->add_offset(Type::OffsetBot);
 313         if (ac->in(ArrayCopyNode::Src) == ac->in(ArrayCopyNode::Dest)) {
 314           // Non constant offset in the array: we can't statically
 315           // determine the value
 316           return nullptr;
 317         }
 318       }
 319       MergeMemNode* mergemen = _igvn.transform(MergeMemNode::make(mem))->as_MergeMem();
 320       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 321       res = ArrayCopyNode::load(bs, &_igvn, ctl, mergemen, adr, adr_type, type, bt);
 322     }
 323   }
 324   if (res != nullptr) {
 325     if (ftype->isa_narrowoop()) {
 326       // PhaseMacroExpand::scalar_replacement adds DecodeN nodes
 327       res = _igvn.transform(new EncodePNode(res, ftype));
 328     }
 329     return res;
 330   }
 331   return nullptr;
 332 }
 333 
 334 //
 335 // Given a Memory Phi, compute a value Phi containing the values from stores
 336 // on the input paths.
 337 // Note: this function is recursive, its depth is limited by the "level" argument
 338 // Returns the computed Phi, or null if it cannot compute it.
 339 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, AllocateNode *alloc, Node_Stack *value_phis, int level) {
 340   assert(mem->is_Phi(), "sanity");
 341   int alias_idx = C->get_alias_index(adr_t);
 342   int offset = adr_t->offset();
 343   int instance_id = adr_t->instance_id();
 344 
 345   // Check if an appropriate value phi already exists.
 346   Node* region = mem->in(0);
 347   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
 348     Node* phi = region->fast_out(k);
 349     if (phi->is_Phi() && phi != mem &&
 350         phi->as_Phi()->is_same_inst_field(phi_type, (int)mem->_idx, instance_id, alias_idx, offset)) {
 351       return phi;
 352     }
 353   }
 354   // Check if an appropriate new value phi already exists.
 355   Node* new_phi = value_phis->find(mem->_idx);
 356   if (new_phi != nullptr)
 357     return new_phi;
 358 
 359   if (level <= 0) {
 360     return nullptr; // Give up: phi tree too deep
 361   }
 362   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
 363   Node *alloc_mem = alloc->proj_out_or_null(TypeFunc::Memory, /*io_use:*/false);
 364   assert(alloc_mem != nullptr, "Allocation without a memory projection.");
 365 
 366   uint length = mem->req();
 367   GrowableArray <Node *> values(length, length, nullptr);
 368 
 369   // create a new Phi for the value
 370   PhiNode *phi = new PhiNode(mem->in(0), phi_type, nullptr, mem->_idx, instance_id, alias_idx, offset);
 371   transform_later(phi);
 372   value_phis->push(phi, mem->_idx);
 373 
 374   for (uint j = 1; j < length; j++) {
 375     Node *in = mem->in(j);
 376     if (in == nullptr || in->is_top()) {
 377       values.at_put(j, in);
 378     } else  {
 379       Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
 380       if (val == start_mem || val == alloc_mem) {
 381         // hit a sentinel, return appropriate 0 value
 382         values.at_put(j, _igvn.zerocon(ft));
 383         continue;
 384       }
 385       if (val->is_Initialize()) {
 386         val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 387       }
 388       if (val == nullptr) {
 389         return nullptr;  // can't find a value on this path
 390       }
 391       if (val == mem) {
 392         values.at_put(j, mem);
 393       } else if (val->is_Store()) {
 394         Node* n = val->in(MemNode::ValueIn);
 395         if (is_subword_type(ft)) {
 396           n = Compile::narrow_value(ft, n, phi_type, &_igvn, true);
 397         }
 398         values.at_put(j, n);
 399       } else if(val->is_Proj() && val->in(0) == alloc) {
 400         values.at_put(j, _igvn.zerocon(ft));
 401       } else if (val->is_Phi()) {
 402         val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
 403         if (val == nullptr) {
 404           return nullptr;
 405         }
 406         values.at_put(j, val);
 407       } else if (val->Opcode() == Op_SCMemProj) {
 408         assert(val->in(0)->is_LoadStore() ||
 409                val->in(0)->Opcode() == Op_EncodeISOArray ||
 410                val->in(0)->Opcode() == Op_StrCompressedCopy, "sanity");
 411         assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
 412         return nullptr;
 413       } else if (val->is_ArrayCopy()) {
 414         Node* res = make_arraycopy_load(val->as_ArrayCopy(), offset, val->in(0), val->in(TypeFunc::Memory), ft, phi_type, alloc);
 415         if (res == nullptr) {
 416           return nullptr;
 417         }
 418         values.at_put(j, res);
 419       } else if (val->is_top()) {
 420         // This indicates that this path into the phi is dead. Top will eventually also propagate into the Region.
 421         // IGVN will clean this up later.
 422         values.at_put(j, val);
 423       } else {
 424         DEBUG_ONLY( val->dump(); )
 425         assert(false, "unknown node on this path");
 426         return nullptr;  // unknown node on this path
 427       }
 428     }
 429   }
 430   // Set Phi's inputs
 431   for (uint j = 1; j < length; j++) {
 432     if (values.at(j) == mem) {
 433       phi->init_req(j, phi);
 434     } else {
 435       phi->init_req(j, values.at(j));
 436     }
 437   }
 438   return phi;
 439 }
 440 
 441 // Search the last value stored into the object's field.
 442 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, Node *sfpt_ctl, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, AllocateNode *alloc) {
 443   assert(adr_t->is_known_instance_field(), "instance required");
 444   int instance_id = adr_t->instance_id();
 445   assert((uint)instance_id == alloc->_idx, "wrong allocation");
 446 
 447   int alias_idx = C->get_alias_index(adr_t);
 448   int offset = adr_t->offset();
 449   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
 450   Node *alloc_ctrl = alloc->in(TypeFunc::Control);
 451   Node *alloc_mem = alloc->proj_out_or_null(TypeFunc::Memory, /*io_use:*/false);
 452   assert(alloc_mem != nullptr, "Allocation without a memory projection.");
 453   VectorSet visited;
 454 
 455   bool done = sfpt_mem == alloc_mem;
 456   Node *mem = sfpt_mem;
 457   while (!done) {
 458     if (visited.test_set(mem->_idx)) {
 459       return nullptr;  // found a loop, give up
 460     }
 461     mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
 462     if (mem == start_mem || mem == alloc_mem) {
 463       done = true;  // hit a sentinel, return appropriate 0 value
 464     } else if (mem->is_Initialize()) {
 465       mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 466       if (mem == nullptr) {
 467         done = true; // Something go wrong.
 468       } else if (mem->is_Store()) {
 469         const TypePtr* atype = mem->as_Store()->adr_type();
 470         assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
 471         done = true;
 472       }
 473     } else if (mem->is_Store()) {
 474       const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
 475       assert(atype != nullptr, "address type must be oopptr");
 476       assert(C->get_alias_index(atype) == alias_idx &&
 477              atype->is_known_instance_field() && atype->offset() == offset &&
 478              atype->instance_id() == instance_id, "store is correct memory slice");
 479       done = true;
 480     } else if (mem->is_Phi()) {
 481       // try to find a phi's unique input
 482       Node *unique_input = nullptr;
 483       Node *top = C->top();
 484       for (uint i = 1; i < mem->req(); i++) {
 485         Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
 486         if (n == nullptr || n == top || n == mem) {
 487           continue;
 488         } else if (unique_input == nullptr) {
 489           unique_input = n;
 490         } else if (unique_input != n) {
 491           unique_input = top;
 492           break;
 493         }
 494       }
 495       if (unique_input != nullptr && unique_input != top) {
 496         mem = unique_input;
 497       } else {
 498         done = true;
 499       }
 500     } else if (mem->is_ArrayCopy()) {
 501       done = true;
 502     } else {
 503       DEBUG_ONLY( mem->dump(); )
 504       assert(false, "unexpected node");
 505     }
 506   }
 507   if (mem != nullptr) {
 508     if (mem == start_mem || mem == alloc_mem) {
 509       // hit a sentinel, return appropriate 0 value
 510       return _igvn.zerocon(ft);
 511     } else if (mem->is_Store()) {
 512       return mem->in(MemNode::ValueIn);
 513     } else if (mem->is_Phi()) {
 514       // attempt to produce a Phi reflecting the values on the input paths of the Phi
 515       Node_Stack value_phis(8);
 516       Node* phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
 517       if (phi != nullptr) {
 518         return phi;
 519       } else {
 520         // Kill all new Phis
 521         while(value_phis.is_nonempty()) {
 522           Node* n = value_phis.node();
 523           _igvn.replace_node(n, C->top());
 524           value_phis.pop();
 525         }
 526       }
 527     } else if (mem->is_ArrayCopy()) {
 528       Node* ctl = mem->in(0);
 529       Node* m = mem->in(TypeFunc::Memory);
 530       if (sfpt_ctl->is_Proj() && sfpt_ctl->as_Proj()->is_uncommon_trap_proj()) {
 531         // pin the loads in the uncommon trap path
 532         ctl = sfpt_ctl;
 533         m = sfpt_mem;
 534       }
 535       return make_arraycopy_load(mem->as_ArrayCopy(), offset, ctl, m, ft, ftype, alloc);
 536     }
 537   }
 538   // Something go wrong.
 539   return nullptr;
 540 }
 541 
 542 // Check the possibility of scalar replacement.
 543 bool PhaseMacroExpand::can_eliminate_allocation(PhaseIterGVN* igvn, AllocateNode *alloc, GrowableArray <SafePointNode *>* safepoints) {
 544   //  Scan the uses of the allocation to check for anything that would
 545   //  prevent us from eliminating it.
 546   NOT_PRODUCT( const char* fail_eliminate = nullptr; )
 547   DEBUG_ONLY( Node* disq_node = nullptr; )
 548   bool can_eliminate = true;
 549   bool reduce_merge_precheck = (safepoints == nullptr);
 550 
 551   Node* res = alloc->result_cast();
 552   const TypeOopPtr* res_type = nullptr;
 553   if (res == nullptr) {
 554     // All users were eliminated.
 555   } else if (!res->is_CheckCastPP()) {
 556     NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
 557     can_eliminate = false;
 558   } else {
 559     res_type = igvn->type(res)->isa_oopptr();
 560     if (res_type == nullptr) {
 561       NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
 562       can_eliminate = false;
 563     } else if (!res_type->klass_is_exact()) {
 564       NOT_PRODUCT(fail_eliminate = "Not an exact type.";)
 565       can_eliminate = false;
 566     } else if (res_type->isa_aryptr()) {
 567       int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 568       if (length < 0) {
 569         NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
 570         can_eliminate = false;
 571       }
 572     }
 573   }
 574 
 575   if (can_eliminate && res != nullptr) {
 576     BarrierSetC2 *bs = BarrierSet::barrier_set()->barrier_set_c2();
 577     for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
 578                                j < jmax && can_eliminate; j++) {
 579       Node* use = res->fast_out(j);
 580 
 581       if (use->is_AddP()) {
 582         const TypePtr* addp_type = igvn->type(use)->is_ptr();
 583         int offset = addp_type->offset();
 584 
 585         if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
 586           NOT_PRODUCT(fail_eliminate = "Undefined field reference";)
 587           can_eliminate = false;
 588           break;
 589         }
 590         for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
 591                                    k < kmax && can_eliminate; k++) {
 592           Node* n = use->fast_out(k);
 593           if (!n->is_Store() && n->Opcode() != Op_CastP2X && !reduce_merge_precheck) {
 594             DEBUG_ONLY(disq_node = n;)
 595             if (n->is_Load() || n->is_LoadStore()) {
 596               NOT_PRODUCT(fail_eliminate = "Field load";)
 597             } else {
 598               NOT_PRODUCT(fail_eliminate = "Not store field reference";)
 599             }
 600             can_eliminate = false;
 601           }
 602         }
 603       } else if (use->is_ArrayCopy() &&
 604                  (use->as_ArrayCopy()->is_clonebasic() ||
 605                   use->as_ArrayCopy()->is_arraycopy_validated() ||
 606                   use->as_ArrayCopy()->is_copyof_validated() ||
 607                   use->as_ArrayCopy()->is_copyofrange_validated()) &&
 608                  use->in(ArrayCopyNode::Dest) == res) {
 609         // ok to eliminate
 610       } else if (use->is_SafePoint()) {
 611         SafePointNode* sfpt = use->as_SafePoint();
 612         if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
 613           // Object is passed as argument.
 614           DEBUG_ONLY(disq_node = use;)
 615           NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
 616           can_eliminate = false;
 617         }
 618         Node* sfptMem = sfpt->memory();
 619         if (sfptMem == nullptr || sfptMem->is_top()) {
 620           DEBUG_ONLY(disq_node = use;)
 621           NOT_PRODUCT(fail_eliminate = "null or TOP memory";)
 622           can_eliminate = false;
 623         } else if (!reduce_merge_precheck) {
 624           safepoints->append_if_missing(sfpt);
 625         }
 626       } else if (reduce_merge_precheck &&
 627                  (use->is_Phi() || use->is_EncodeP() ||
 628                   use->Opcode() == Op_MemBarRelease ||
 629                   (UseStoreStoreForCtor && use->Opcode() == Op_MemBarStoreStore))) {
 630         // Nothing to do
 631       } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
 632         if (use->is_Phi()) {
 633           if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
 634             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 635           } else {
 636             NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
 637           }
 638           DEBUG_ONLY(disq_node = use;)
 639         } else {
 640           if (use->Opcode() == Op_Return) {
 641             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 642           } else {
 643             NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
 644           }
 645           DEBUG_ONLY(disq_node = use;)
 646         }
 647         can_eliminate = false;
 648       }
 649     }
 650   }
 651 
 652 #ifndef PRODUCT
 653   if (PrintEliminateAllocations && safepoints != nullptr) {
 654     if (can_eliminate) {
 655       tty->print("Scalar ");
 656       if (res == nullptr)
 657         alloc->dump();
 658       else
 659         res->dump();
 660     } else if (alloc->_is_scalar_replaceable) {
 661       tty->print("NotScalar (%s)", fail_eliminate);
 662       if (res == nullptr)
 663         alloc->dump();
 664       else
 665         res->dump();
 666 #ifdef ASSERT
 667       if (disq_node != nullptr) {
 668           tty->print("  >>>> ");
 669           disq_node->dump();
 670       }
 671 #endif /*ASSERT*/
 672     }
 673   }
 674 
 675   if (TraceReduceAllocationMerges && !can_eliminate && reduce_merge_precheck) {
 676     tty->print_cr("\tCan't eliminate allocation because '%s': ", fail_eliminate != nullptr ? fail_eliminate : "");
 677     DEBUG_ONLY(if (disq_node != nullptr) disq_node->dump();)
 678   }
 679 #endif
 680   return can_eliminate;
 681 }
 682 
 683 void PhaseMacroExpand::undo_previous_scalarizations(GrowableArray <SafePointNode *> safepoints_done, AllocateNode* alloc) {
 684   Node* res = alloc->result_cast();
 685   int nfields = 0;
 686   assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result");
 687 
 688   if (res != nullptr) {
 689     const TypeOopPtr* res_type = _igvn.type(res)->isa_oopptr();
 690 
 691     if (res_type->isa_instptr()) {
 692       // find the fields of the class which will be needed for safepoint debug information
 693       ciInstanceKlass* iklass = res_type->is_instptr()->instance_klass();
 694       nfields = iklass->nof_nonstatic_fields();
 695     } else {
 696       // find the array's elements which will be needed for safepoint debug information
 697       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 698       assert(nfields >= 0, "must be an array klass.");
 699     }
 700   }
 701 
 702   // rollback processed safepoints
 703   while (safepoints_done.length() > 0) {
 704     SafePointNode* sfpt_done = safepoints_done.pop();
 705     // remove any extra entries we added to the safepoint
 706     uint last = sfpt_done->req() - 1;
 707     for (int k = 0;  k < nfields; k++) {
 708       sfpt_done->del_req(last--);
 709     }
 710     JVMState *jvms = sfpt_done->jvms();
 711     jvms->set_endoff(sfpt_done->req());
 712     // Now make a pass over the debug information replacing any references
 713     // to SafePointScalarObjectNode with the allocated object.
 714     int start = jvms->debug_start();
 715     int end   = jvms->debug_end();
 716     for (int i = start; i < end; i++) {
 717       if (sfpt_done->in(i)->is_SafePointScalarObject()) {
 718         SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
 719         if (scobj->first_index(jvms) == sfpt_done->req() &&
 720             scobj->n_fields() == (uint)nfields) {
 721           assert(scobj->alloc() == alloc, "sanity");
 722           sfpt_done->set_req(i, res);
 723         }
 724       }
 725     }
 726     _igvn._worklist.push(sfpt_done);
 727   }
 728 }
 729 
 730 SafePointScalarObjectNode* PhaseMacroExpand::create_scalarized_object_description(AllocateNode *alloc, SafePointNode* sfpt) {
 731   // Fields of scalar objs are referenced only at the end
 732   // of regular debuginfo at the last (youngest) JVMS.
 733   // Record relative start index.
 734   ciInstanceKlass* iklass    = nullptr;
 735   BasicType basic_elem_type  = T_ILLEGAL;
 736   const Type* field_type     = nullptr;
 737   const TypeOopPtr* res_type = nullptr;
 738   int nfields                = 0;
 739   int array_base             = 0;
 740   int element_size           = 0;
 741   uint first_ind             = (sfpt->req() - sfpt->jvms()->scloff());
 742   Node* res                  = alloc->result_cast();
 743 
 744   assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result");
 745   assert(sfpt->jvms() != nullptr, "missed JVMS");
 746 
 747   if (res != nullptr) { // Could be null when there are no users
 748     res_type = _igvn.type(res)->isa_oopptr();
 749 
 750     if (res_type->isa_instptr()) {
 751       // find the fields of the class which will be needed for safepoint debug information
 752       iklass = res_type->is_instptr()->instance_klass();
 753       nfields = iklass->nof_nonstatic_fields();
 754     } else {
 755       // find the array's elements which will be needed for safepoint debug information
 756       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 757       assert(nfields >= 0, "must be an array klass.");
 758       basic_elem_type = res_type->is_aryptr()->elem()->array_element_basic_type();
 759       array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
 760       element_size = type2aelembytes(basic_elem_type);
 761       field_type = res_type->is_aryptr()->elem();
 762     }
 763   }
 764 
 765   SafePointScalarObjectNode* sobj = new SafePointScalarObjectNode(res_type, alloc, first_ind, sfpt->jvms()->depth(), nfields);
 766   sobj->init_req(0, C->root());
 767   transform_later(sobj);
 768 
 769   // Scan object's fields adding an input to the safepoint for each field.
 770   for (int j = 0; j < nfields; j++) {
 771     intptr_t offset;
 772     ciField* field = nullptr;
 773     if (iklass != nullptr) {
 774       field = iklass->nonstatic_field_at(j);
 775       offset = field->offset_in_bytes();
 776       ciType* elem_type = field->type();
 777       basic_elem_type = field->layout_type();
 778 
 779       // The next code is taken from Parse::do_get_xxx().
 780       if (is_reference_type(basic_elem_type)) {
 781         if (!elem_type->is_loaded()) {
 782           field_type = TypeInstPtr::BOTTOM;
 783         } else if (field != nullptr && field->is_static_constant()) {
 784           ciObject* con = field->constant_value().as_object();
 785           // Do not "join" in the previous type; it doesn't add value,
 786           // and may yield a vacuous result if the field is of interface type.
 787           field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
 788           assert(field_type != nullptr, "field singleton type must be consistent");
 789         } else {
 790           field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
 791         }
 792         if (UseCompressedOops) {
 793           field_type = field_type->make_narrowoop();
 794           basic_elem_type = T_NARROWOOP;
 795         }
 796       } else {
 797         field_type = Type::get_const_basic_type(basic_elem_type);
 798       }
 799     } else {
 800       offset = array_base + j * (intptr_t)element_size;
 801     }
 802 
 803     const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
 804 
 805     Node *field_val = value_from_mem(sfpt->memory(), sfpt->control(), basic_elem_type, field_type, field_addr_type, alloc);
 806 
 807     // We weren't able to find a value for this field,
 808     // give up on eliminating this allocation.
 809     if (field_val == nullptr) {
 810       uint last = sfpt->req() - 1;
 811       for (int k = 0;  k < j; k++) {
 812         sfpt->del_req(last--);
 813       }
 814       _igvn._worklist.push(sfpt);
 815 
 816 #ifndef PRODUCT
 817       if (PrintEliminateAllocations) {
 818         if (field != nullptr) {
 819           tty->print("=== At SafePoint node %d can't find value of field: ", sfpt->_idx);
 820           field->print();
 821           int field_idx = C->get_alias_index(field_addr_type);
 822           tty->print(" (alias_idx=%d)", field_idx);
 823         } else { // Array's element
 824           tty->print("=== At SafePoint node %d can't find value of array element [%d]", sfpt->_idx, j);
 825         }
 826         tty->print(", which prevents elimination of: ");
 827         if (res == nullptr)
 828           alloc->dump();
 829         else
 830           res->dump();
 831       }
 832 #endif
 833 
 834       return nullptr;
 835     }
 836 
 837     if (UseCompressedOops && field_type->isa_narrowoop()) {
 838       // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
 839       // to be able scalar replace the allocation.
 840       if (field_val->is_EncodeP()) {
 841         field_val = field_val->in(1);
 842       } else {
 843         field_val = transform_later(new DecodeNNode(field_val, field_val->get_ptr_type()));
 844       }
 845     }
 846     sfpt->add_req(field_val);
 847   }
 848 
 849   sfpt->jvms()->set_endoff(sfpt->req());
 850 
 851   return sobj;
 852 }
 853 
 854 // Do scalar replacement.
 855 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
 856   GrowableArray <SafePointNode *> safepoints_done;
 857   Node* res = alloc->result_cast();
 858   assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result");
 859 
 860   // Process the safepoint uses
 861   while (safepoints.length() > 0) {
 862     SafePointNode* sfpt = safepoints.pop();
 863     SafePointScalarObjectNode* sobj = create_scalarized_object_description(alloc, sfpt);
 864 
 865     if (sobj == nullptr) {
 866       undo_previous_scalarizations(safepoints_done, alloc);
 867       return false;
 868     }
 869 
 870     // Now make a pass over the debug information replacing any references
 871     // to the allocated object with "sobj"
 872     JVMState *jvms = sfpt->jvms();
 873     sfpt->replace_edges_in_range(res, sobj, jvms->debug_start(), jvms->debug_end(), &_igvn);
 874     _igvn._worklist.push(sfpt);
 875 
 876     // keep it for rollback
 877     safepoints_done.append_if_missing(sfpt);
 878   }
 879 
 880   return true;
 881 }
 882 
 883 static void disconnect_projections(MultiNode* n, PhaseIterGVN& igvn) {
 884   Node* ctl_proj = n->proj_out_or_null(TypeFunc::Control);
 885   Node* mem_proj = n->proj_out_or_null(TypeFunc::Memory);
 886   if (ctl_proj != nullptr) {
 887     igvn.replace_node(ctl_proj, n->in(0));
 888   }
 889   if (mem_proj != nullptr) {
 890     igvn.replace_node(mem_proj, n->in(TypeFunc::Memory));
 891   }
 892 }
 893 
 894 // Process users of eliminated allocation.
 895 void PhaseMacroExpand::process_users_of_allocation(CallNode *alloc) {
 896   Node* res = alloc->result_cast();
 897   if (res != nullptr) {
 898     for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
 899       Node *use = res->last_out(j);
 900       uint oc1 = res->outcnt();
 901 
 902       if (use->is_AddP()) {
 903         for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
 904           Node *n = use->last_out(k);
 905           uint oc2 = use->outcnt();
 906           if (n->is_Store()) {
 907 #ifdef ASSERT
 908             // Verify that there is no dependent MemBarVolatile nodes,
 909             // they should be removed during IGVN, see MemBarNode::Ideal().
 910             for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
 911                                        p < pmax; p++) {
 912               Node* mb = n->fast_out(p);
 913               assert(mb->is_Initialize() || !mb->is_MemBar() ||
 914                      mb->req() <= MemBarNode::Precedent ||
 915                      mb->in(MemBarNode::Precedent) != n,
 916                      "MemBarVolatile should be eliminated for non-escaping object");
 917             }
 918 #endif
 919             _igvn.replace_node(n, n->in(MemNode::Memory));
 920           } else {
 921             eliminate_gc_barrier(n);
 922           }
 923           k -= (oc2 - use->outcnt());
 924         }
 925         _igvn.remove_dead_node(use);
 926       } else if (use->is_ArrayCopy()) {
 927         // Disconnect ArrayCopy node
 928         ArrayCopyNode* ac = use->as_ArrayCopy();
 929         if (ac->is_clonebasic()) {
 930           Node* membar_after = ac->proj_out(TypeFunc::Control)->unique_ctrl_out();
 931           disconnect_projections(ac, _igvn);
 932           assert(alloc->in(TypeFunc::Memory)->is_Proj() && alloc->in(TypeFunc::Memory)->in(0)->Opcode() == Op_MemBarCPUOrder, "mem barrier expected before allocation");
 933           Node* membar_before = alloc->in(TypeFunc::Memory)->in(0);
 934           disconnect_projections(membar_before->as_MemBar(), _igvn);
 935           if (membar_after->is_MemBar()) {
 936             disconnect_projections(membar_after->as_MemBar(), _igvn);
 937           }
 938         } else {
 939           assert(ac->is_arraycopy_validated() ||
 940                  ac->is_copyof_validated() ||
 941                  ac->is_copyofrange_validated(), "unsupported");
 942           CallProjections callprojs;
 943           ac->extract_projections(&callprojs, true);
 944 
 945           _igvn.replace_node(callprojs.fallthrough_ioproj, ac->in(TypeFunc::I_O));
 946           _igvn.replace_node(callprojs.fallthrough_memproj, ac->in(TypeFunc::Memory));
 947           _igvn.replace_node(callprojs.fallthrough_catchproj, ac->in(TypeFunc::Control));
 948 
 949           // Set control to top. IGVN will remove the remaining projections
 950           ac->set_req(0, top());
 951           ac->replace_edge(res, top(), &_igvn);
 952 
 953           // Disconnect src right away: it can help find new
 954           // opportunities for allocation elimination
 955           Node* src = ac->in(ArrayCopyNode::Src);
 956           ac->replace_edge(src, top(), &_igvn);
 957           // src can be top at this point if src and dest of the
 958           // arraycopy were the same
 959           if (src->outcnt() == 0 && !src->is_top()) {
 960             _igvn.remove_dead_node(src);
 961           }
 962         }
 963         _igvn._worklist.push(ac);
 964       } else {
 965         eliminate_gc_barrier(use);
 966       }
 967       j -= (oc1 - res->outcnt());
 968     }
 969     assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
 970     _igvn.remove_dead_node(res);
 971   }
 972 
 973   //
 974   // Process other users of allocation's projections
 975   //
 976   if (_callprojs.resproj != nullptr && _callprojs.resproj->outcnt() != 0) {
 977     // First disconnect stores captured by Initialize node.
 978     // If Initialize node is eliminated first in the following code,
 979     // it will kill such stores and DUIterator_Last will assert.
 980     for (DUIterator_Fast jmax, j = _callprojs.resproj->fast_outs(jmax);  j < jmax; j++) {
 981       Node* use = _callprojs.resproj->fast_out(j);
 982       if (use->is_AddP()) {
 983         // raw memory addresses used only by the initialization
 984         _igvn.replace_node(use, C->top());
 985         --j; --jmax;
 986       }
 987     }
 988     for (DUIterator_Last jmin, j = _callprojs.resproj->last_outs(jmin); j >= jmin; ) {
 989       Node* use = _callprojs.resproj->last_out(j);
 990       uint oc1 = _callprojs.resproj->outcnt();
 991       if (use->is_Initialize()) {
 992         // Eliminate Initialize node.
 993         InitializeNode *init = use->as_Initialize();
 994         assert(init->outcnt() <= 2, "only a control and memory projection expected");
 995         Node *ctrl_proj = init->proj_out_or_null(TypeFunc::Control);
 996         if (ctrl_proj != nullptr) {
 997           _igvn.replace_node(ctrl_proj, init->in(TypeFunc::Control));
 998 #ifdef ASSERT
 999           // If the InitializeNode has no memory out, it will die, and tmp will become null
1000           Node* tmp = init->in(TypeFunc::Control);
1001           assert(tmp == nullptr || tmp == _callprojs.fallthrough_catchproj, "allocation control projection");
1002 #endif
1003         }
1004         Node *mem_proj = init->proj_out_or_null(TypeFunc::Memory);
1005         if (mem_proj != nullptr) {
1006           Node *mem = init->in(TypeFunc::Memory);
1007 #ifdef ASSERT
1008           if (mem->is_MergeMem()) {
1009             assert(mem->in(TypeFunc::Memory) == _callprojs.fallthrough_memproj, "allocation memory projection");
1010           } else {
1011             assert(mem == _callprojs.fallthrough_memproj, "allocation memory projection");
1012           }
1013 #endif
1014           _igvn.replace_node(mem_proj, mem);
1015         }
1016       } else  {
1017         assert(false, "only Initialize or AddP expected");
1018       }
1019       j -= (oc1 - _callprojs.resproj->outcnt());
1020     }
1021   }
1022   if (_callprojs.fallthrough_catchproj != nullptr) {
1023     _igvn.replace_node(_callprojs.fallthrough_catchproj, alloc->in(TypeFunc::Control));
1024   }
1025   if (_callprojs.fallthrough_memproj != nullptr) {
1026     _igvn.replace_node(_callprojs.fallthrough_memproj, alloc->in(TypeFunc::Memory));
1027   }
1028   if (_callprojs.catchall_memproj != nullptr) {
1029     _igvn.replace_node(_callprojs.catchall_memproj, C->top());
1030   }
1031   if (_callprojs.fallthrough_ioproj != nullptr) {
1032     _igvn.replace_node(_callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
1033   }
1034   if (_callprojs.catchall_ioproj != nullptr) {
1035     _igvn.replace_node(_callprojs.catchall_ioproj, C->top());
1036   }
1037   if (_callprojs.catchall_catchproj != nullptr) {
1038     _igvn.replace_node(_callprojs.catchall_catchproj, C->top());
1039   }
1040 }
1041 
1042 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
1043   // If reallocation fails during deoptimization we'll pop all
1044   // interpreter frames for this compiled frame and that won't play
1045   // nice with JVMTI popframe.
1046   // We avoid this issue by eager reallocation when the popframe request
1047   // is received.
1048   if (!EliminateAllocations || !alloc->_is_non_escaping) {
1049     return false;
1050   }
1051   Node* klass = alloc->in(AllocateNode::KlassNode);
1052   const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
1053   Node* res = alloc->result_cast();
1054   // Eliminate boxing allocations which are not used
1055   // regardless scalar replaceable status.
1056   bool boxing_alloc = C->eliminate_boxing() &&
1057                       tklass->isa_instklassptr() &&
1058                       tklass->is_instklassptr()->instance_klass()->is_box_klass();
1059   if (!alloc->_is_scalar_replaceable && (!boxing_alloc || (res != nullptr))) {
1060     return false;
1061   }
1062 
1063   alloc->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/);
1064 
1065   GrowableArray <SafePointNode *> safepoints;
1066   if (!can_eliminate_allocation(&_igvn, alloc, &safepoints)) {
1067     return false;
1068   }
1069 
1070   if (!alloc->_is_scalar_replaceable) {
1071     assert(res == nullptr, "sanity");
1072     // We can only eliminate allocation if all debug info references
1073     // are already replaced with SafePointScalarObject because
1074     // we can't search for a fields value without instance_id.
1075     if (safepoints.length() > 0) {
1076       return false;
1077     }
1078   }
1079 
1080   if (!scalar_replacement(alloc, safepoints)) {
1081     return false;
1082   }
1083 
1084   CompileLog* log = C->log();
1085   if (log != nullptr) {
1086     log->head("eliminate_allocation type='%d'",
1087               log->identify(tklass->exact_klass()));
1088     JVMState* p = alloc->jvms();
1089     while (p != nullptr) {
1090       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1091       p = p->caller();
1092     }
1093     log->tail("eliminate_allocation");
1094   }
1095 
1096   process_users_of_allocation(alloc);
1097 
1098 #ifndef PRODUCT
1099   if (PrintEliminateAllocations) {
1100     if (alloc->is_AllocateArray())
1101       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
1102     else
1103       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
1104   }
1105 #endif
1106 
1107   return true;
1108 }
1109 
1110 bool PhaseMacroExpand::eliminate_boxing_node(CallStaticJavaNode *boxing) {
1111   // EA should remove all uses of non-escaping boxing node.
1112   if (!C->eliminate_boxing() || boxing->proj_out_or_null(TypeFunc::Parms) != nullptr) {
1113     return false;
1114   }
1115 
1116   assert(boxing->result_cast() == nullptr, "unexpected boxing node result");
1117 
1118   boxing->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/);
1119 
1120   const TypeTuple* r = boxing->tf()->range();
1121   assert(r->cnt() > TypeFunc::Parms, "sanity");
1122   const TypeInstPtr* t = r->field_at(TypeFunc::Parms)->isa_instptr();
1123   assert(t != nullptr, "sanity");
1124 
1125   CompileLog* log = C->log();
1126   if (log != nullptr) {
1127     log->head("eliminate_boxing type='%d'",
1128               log->identify(t->instance_klass()));
1129     JVMState* p = boxing->jvms();
1130     while (p != nullptr) {
1131       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1132       p = p->caller();
1133     }
1134     log->tail("eliminate_boxing");
1135   }
1136 
1137   process_users_of_allocation(boxing);
1138 
1139 #ifndef PRODUCT
1140   if (PrintEliminateAllocations) {
1141     tty->print("++++ Eliminated: %d ", boxing->_idx);
1142     boxing->method()->print_short_name(tty);
1143     tty->cr();
1144   }
1145 #endif
1146 
1147   return true;
1148 }
1149 
1150 
1151 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
1152   Node* adr = basic_plus_adr(base, offset);
1153   const TypePtr* adr_type = adr->bottom_type()->is_ptr();
1154   Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt, MemNode::unordered);
1155   transform_later(value);
1156   return value;
1157 }
1158 
1159 
1160 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
1161   Node* adr = basic_plus_adr(base, offset);
1162   mem = StoreNode::make(_igvn, ctl, mem, adr, nullptr, value, bt, MemNode::unordered);
1163   transform_later(mem);
1164   return mem;
1165 }
1166 
1167 //=============================================================================
1168 //
1169 //                              A L L O C A T I O N
1170 //
1171 // Allocation attempts to be fast in the case of frequent small objects.
1172 // It breaks down like this:
1173 //
1174 // 1) Size in doublewords is computed.  This is a constant for objects and
1175 // variable for most arrays.  Doubleword units are used to avoid size
1176 // overflow of huge doubleword arrays.  We need doublewords in the end for
1177 // rounding.
1178 //
1179 // 2) Size is checked for being 'too large'.  Too-large allocations will go
1180 // the slow path into the VM.  The slow path can throw any required
1181 // exceptions, and does all the special checks for very large arrays.  The
1182 // size test can constant-fold away for objects.  For objects with
1183 // finalizers it constant-folds the otherway: you always go slow with
1184 // finalizers.
1185 //
1186 // 3) If NOT using TLABs, this is the contended loop-back point.
1187 // Load-Locked the heap top.  If using TLABs normal-load the heap top.
1188 //
1189 // 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
1190 // NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
1191 // "size*8" we always enter the VM, where "largish" is a constant picked small
1192 // enough that there's always space between the eden max and 4Gig (old space is
1193 // there so it's quite large) and large enough that the cost of entering the VM
1194 // is dwarfed by the cost to initialize the space.
1195 //
1196 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
1197 // down.  If contended, repeat at step 3.  If using TLABs normal-store
1198 // adjusted heap top back down; there is no contention.
1199 //
1200 // 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
1201 // fields.
1202 //
1203 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
1204 // oop flavor.
1205 //
1206 //=============================================================================
1207 // FastAllocateSizeLimit value is in DOUBLEWORDS.
1208 // Allocations bigger than this always go the slow route.
1209 // This value must be small enough that allocation attempts that need to
1210 // trigger exceptions go the slow route.  Also, it must be small enough so
1211 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
1212 //=============================================================================j//
1213 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
1214 // The allocator will coalesce int->oop copies away.  See comment in
1215 // coalesce.cpp about how this works.  It depends critically on the exact
1216 // code shape produced here, so if you are changing this code shape
1217 // make sure the GC info for the heap-top is correct in and around the
1218 // slow-path call.
1219 //
1220 
1221 void PhaseMacroExpand::expand_allocate_common(
1222             AllocateNode* alloc, // allocation node to be expanded
1223             Node* length,  // array length for an array allocation
1224             const TypeFunc* slow_call_type, // Type of slow call
1225             address slow_call_address,  // Address of slow call
1226             Node* valid_length_test // whether length is valid or not
1227     )
1228 {
1229   Node* ctrl = alloc->in(TypeFunc::Control);
1230   Node* mem  = alloc->in(TypeFunc::Memory);
1231   Node* i_o  = alloc->in(TypeFunc::I_O);
1232   Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
1233   Node* klass_node        = alloc->in(AllocateNode::KlassNode);
1234   Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
1235   assert(ctrl != nullptr, "must have control");
1236 
1237   // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
1238   // they will not be used if "always_slow" is set
1239   enum { slow_result_path = 1, fast_result_path = 2 };
1240   Node *result_region = nullptr;
1241   Node *result_phi_rawmem = nullptr;
1242   Node *result_phi_rawoop = nullptr;
1243   Node *result_phi_i_o = nullptr;
1244 
1245   // The initial slow comparison is a size check, the comparison
1246   // we want to do is a BoolTest::gt
1247   bool expand_fast_path = true;
1248   int tv = _igvn.find_int_con(initial_slow_test, -1);
1249   if (tv >= 0) {
1250     // InitialTest has constant result
1251     //   0 - can fit in TLAB
1252     //   1 - always too big or negative
1253     assert(tv <= 1, "0 or 1 if a constant");
1254     expand_fast_path = (tv == 0);
1255     initial_slow_test = nullptr;
1256   } else {
1257     initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
1258   }
1259 
1260   if (!UseTLAB) {
1261     // Force slow-path allocation
1262     expand_fast_path = false;
1263     initial_slow_test = nullptr;
1264   }
1265 
1266   bool allocation_has_use = (alloc->result_cast() != nullptr);
1267   if (!allocation_has_use) {
1268     InitializeNode* init = alloc->initialization();
1269     if (init != nullptr) {
1270       init->remove(&_igvn);
1271     }
1272     if (expand_fast_path && (initial_slow_test == nullptr)) {
1273       // Remove allocation node and return.
1274       // Size is a non-negative constant -> no initial check needed -> directly to fast path.
1275       // Also, no usages -> empty fast path -> no fall out to slow path -> nothing left.
1276 #ifndef PRODUCT
1277       if (PrintEliminateAllocations) {
1278         tty->print("NotUsed ");
1279         Node* res = alloc->proj_out_or_null(TypeFunc::Parms);
1280         if (res != nullptr) {
1281           res->dump();
1282         } else {
1283           alloc->dump();
1284         }
1285       }
1286 #endif
1287       yank_alloc_node(alloc);
1288       return;
1289     }
1290   }
1291 
1292   enum { too_big_or_final_path = 1, need_gc_path = 2 };
1293   Node *slow_region = nullptr;
1294   Node *toobig_false = ctrl;
1295 
1296   // generate the initial test if necessary
1297   if (initial_slow_test != nullptr ) {
1298     assert (expand_fast_path, "Only need test if there is a fast path");
1299     slow_region = new RegionNode(3);
1300 
1301     // Now make the initial failure test.  Usually a too-big test but
1302     // might be a TRUE for finalizers.
1303     IfNode *toobig_iff = new IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
1304     transform_later(toobig_iff);
1305     // Plug the failing-too-big test into the slow-path region
1306     Node *toobig_true = new IfTrueNode( toobig_iff );
1307     transform_later(toobig_true);
1308     slow_region    ->init_req( too_big_or_final_path, toobig_true );
1309     toobig_false = new IfFalseNode( toobig_iff );
1310     transform_later(toobig_false);
1311   } else {
1312     // No initial test, just fall into next case
1313     assert(allocation_has_use || !expand_fast_path, "Should already have been handled");
1314     toobig_false = ctrl;
1315     DEBUG_ONLY(slow_region = NodeSentinel);
1316   }
1317 
1318   // If we are here there are several possibilities
1319   // - expand_fast_path is false - then only a slow path is expanded. That's it.
1320   // no_initial_check means a constant allocation.
1321   // - If check always evaluates to false -> expand_fast_path is false (see above)
1322   // - If check always evaluates to true -> directly into fast path (but may bailout to slowpath)
1323   // if !allocation_has_use the fast path is empty
1324   // if !allocation_has_use && no_initial_check
1325   // - Then there are no fastpath that can fall out to slowpath -> no allocation code at all.
1326   //   removed by yank_alloc_node above.
1327 
1328   Node *slow_mem = mem;  // save the current memory state for slow path
1329   // generate the fast allocation code unless we know that the initial test will always go slow
1330   if (expand_fast_path) {
1331     // Fast path modifies only raw memory.
1332     if (mem->is_MergeMem()) {
1333       mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
1334     }
1335 
1336     // allocate the Region and Phi nodes for the result
1337     result_region = new RegionNode(3);
1338     result_phi_rawmem = new PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1339     result_phi_i_o    = new PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch
1340 
1341     // Grab regular I/O before optional prefetch may change it.
1342     // Slow-path does no I/O so just set it to the original I/O.
1343     result_phi_i_o->init_req(slow_result_path, i_o);
1344 
1345     // Name successful fast-path variables
1346     Node* fast_oop_ctrl;
1347     Node* fast_oop_rawmem;
1348     if (allocation_has_use) {
1349       Node* needgc_ctrl = nullptr;
1350       result_phi_rawoop = new PhiNode(result_region, TypeRawPtr::BOTTOM);
1351 
1352       intx prefetch_lines = length != nullptr ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
1353       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1354       Node* fast_oop = bs->obj_allocate(this, mem, toobig_false, size_in_bytes, i_o, needgc_ctrl,
1355                                         fast_oop_ctrl, fast_oop_rawmem,
1356                                         prefetch_lines);
1357 
1358       if (initial_slow_test != nullptr) {
1359         // This completes all paths into the slow merge point
1360         slow_region->init_req(need_gc_path, needgc_ctrl);
1361         transform_later(slow_region);
1362       } else {
1363         // No initial slow path needed!
1364         // Just fall from the need-GC path straight into the VM call.
1365         slow_region = needgc_ctrl;
1366       }
1367 
1368       InitializeNode* init = alloc->initialization();
1369       fast_oop_rawmem = initialize_object(alloc,
1370                                           fast_oop_ctrl, fast_oop_rawmem, fast_oop,
1371                                           klass_node, length, size_in_bytes);
1372       expand_initialize_membar(alloc, init, fast_oop_ctrl, fast_oop_rawmem);
1373       expand_dtrace_alloc_probe(alloc, fast_oop, fast_oop_ctrl, fast_oop_rawmem);
1374 
1375       result_phi_rawoop->init_req(fast_result_path, fast_oop);
1376     } else {
1377       assert (initial_slow_test != nullptr, "sanity");
1378       fast_oop_ctrl   = toobig_false;
1379       fast_oop_rawmem = mem;
1380       transform_later(slow_region);
1381     }
1382 
1383     // Plug in the successful fast-path into the result merge point
1384     result_region    ->init_req(fast_result_path, fast_oop_ctrl);
1385     result_phi_i_o   ->init_req(fast_result_path, i_o);
1386     result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem);
1387   } else {
1388     slow_region = ctrl;
1389     result_phi_i_o = i_o; // Rename it to use in the following code.
1390   }
1391 
1392   // Generate slow-path call
1393   CallNode *call = new CallStaticJavaNode(slow_call_type, slow_call_address,
1394                                OptoRuntime::stub_name(slow_call_address),
1395                                TypePtr::BOTTOM);
1396   call->init_req(TypeFunc::Control,   slow_region);
1397   call->init_req(TypeFunc::I_O,       top());    // does no i/o
1398   call->init_req(TypeFunc::Memory,    slow_mem); // may gc ptrs
1399   call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
1400   call->init_req(TypeFunc::FramePtr,  alloc->in(TypeFunc::FramePtr));
1401 
1402   call->init_req(TypeFunc::Parms+0, klass_node);
1403   if (length != nullptr) {
1404     call->init_req(TypeFunc::Parms+1, length);
1405   }
1406 
1407   // Copy debug information and adjust JVMState information, then replace
1408   // allocate node with the call
1409   call->copy_call_debug_info(&_igvn, alloc);
1410   // For array allocations, copy the valid length check to the call node so Compile::final_graph_reshaping() can verify
1411   // that the call has the expected number of CatchProj nodes (in case the allocation always fails and the fallthrough
1412   // path dies).
1413   if (valid_length_test != nullptr) {
1414     call->add_req(valid_length_test);
1415   }
1416   if (expand_fast_path) {
1417     call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
1418   } else {
1419     // Hook i_o projection to avoid its elimination during allocation
1420     // replacement (when only a slow call is generated).
1421     call->set_req(TypeFunc::I_O, result_phi_i_o);
1422   }
1423   _igvn.replace_node(alloc, call);
1424   transform_later(call);
1425 
1426   // Identify the output projections from the allocate node and
1427   // adjust any references to them.
1428   // The control and io projections look like:
1429   //
1430   //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
1431   //  Allocate                   Catch
1432   //        ^---Proj(io) <-------+   ^---CatchProj(io)
1433   //
1434   //  We are interested in the CatchProj nodes.
1435   //
1436   call->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/);
1437 
1438   // An allocate node has separate memory projections for the uses on
1439   // the control and i_o paths. Replace the control memory projection with
1440   // result_phi_rawmem (unless we are only generating a slow call when
1441   // both memory projections are combined)
1442   if (expand_fast_path && _callprojs.fallthrough_memproj != nullptr) {
1443     migrate_outs(_callprojs.fallthrough_memproj, result_phi_rawmem);
1444   }
1445   // Now change uses of catchall_memproj to use fallthrough_memproj and delete
1446   // catchall_memproj so we end up with a call that has only 1 memory projection.
1447   if (_callprojs.catchall_memproj != nullptr ) {
1448     if (_callprojs.fallthrough_memproj == nullptr) {
1449       _callprojs.fallthrough_memproj = new ProjNode(call, TypeFunc::Memory);
1450       transform_later(_callprojs.fallthrough_memproj);
1451     }
1452     migrate_outs(_callprojs.catchall_memproj, _callprojs.fallthrough_memproj);
1453     _igvn.remove_dead_node(_callprojs.catchall_memproj);
1454   }
1455 
1456   // An allocate node has separate i_o projections for the uses on the control
1457   // and i_o paths. Always replace the control i_o projection with result i_o
1458   // otherwise incoming i_o become dead when only a slow call is generated
1459   // (it is different from memory projections where both projections are
1460   // combined in such case).
1461   if (_callprojs.fallthrough_ioproj != nullptr) {
1462     migrate_outs(_callprojs.fallthrough_ioproj, result_phi_i_o);
1463   }
1464   // Now change uses of catchall_ioproj to use fallthrough_ioproj and delete
1465   // catchall_ioproj so we end up with a call that has only 1 i_o projection.
1466   if (_callprojs.catchall_ioproj != nullptr ) {
1467     if (_callprojs.fallthrough_ioproj == nullptr) {
1468       _callprojs.fallthrough_ioproj = new ProjNode(call, TypeFunc::I_O);
1469       transform_later(_callprojs.fallthrough_ioproj);
1470     }
1471     migrate_outs(_callprojs.catchall_ioproj, _callprojs.fallthrough_ioproj);
1472     _igvn.remove_dead_node(_callprojs.catchall_ioproj);
1473   }
1474 
1475   // if we generated only a slow call, we are done
1476   if (!expand_fast_path) {
1477     // Now we can unhook i_o.
1478     if (result_phi_i_o->outcnt() > 1) {
1479       call->set_req(TypeFunc::I_O, top());
1480     } else {
1481       assert(result_phi_i_o->unique_ctrl_out() == call, "sanity");
1482       // Case of new array with negative size known during compilation.
1483       // AllocateArrayNode::Ideal() optimization disconnect unreachable
1484       // following code since call to runtime will throw exception.
1485       // As result there will be no users of i_o after the call.
1486       // Leave i_o attached to this call to avoid problems in preceding graph.
1487     }
1488     return;
1489   }
1490 
1491   if (_callprojs.fallthrough_catchproj != nullptr) {
1492     ctrl = _callprojs.fallthrough_catchproj->clone();
1493     transform_later(ctrl);
1494     _igvn.replace_node(_callprojs.fallthrough_catchproj, result_region);
1495   } else {
1496     ctrl = top();
1497   }
1498   Node *slow_result;
1499   if (_callprojs.resproj == nullptr) {
1500     // no uses of the allocation result
1501     slow_result = top();
1502   } else {
1503     slow_result = _callprojs.resproj->clone();
1504     transform_later(slow_result);
1505     _igvn.replace_node(_callprojs.resproj, result_phi_rawoop);
1506   }
1507 
1508   // Plug slow-path into result merge point
1509   result_region->init_req( slow_result_path, ctrl);
1510   transform_later(result_region);
1511   if (allocation_has_use) {
1512     result_phi_rawoop->init_req(slow_result_path, slow_result);
1513     transform_later(result_phi_rawoop);
1514   }
1515   result_phi_rawmem->init_req(slow_result_path, _callprojs.fallthrough_memproj);
1516   transform_later(result_phi_rawmem);
1517   transform_later(result_phi_i_o);
1518   // This completes all paths into the result merge point
1519 }
1520 
1521 // Remove alloc node that has no uses.
1522 void PhaseMacroExpand::yank_alloc_node(AllocateNode* alloc) {
1523   Node* ctrl = alloc->in(TypeFunc::Control);
1524   Node* mem  = alloc->in(TypeFunc::Memory);
1525   Node* i_o  = alloc->in(TypeFunc::I_O);
1526 
1527   alloc->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/);
1528   if (_callprojs.resproj != nullptr) {
1529     for (DUIterator_Fast imax, i = _callprojs.resproj->fast_outs(imax); i < imax; i++) {
1530       Node* use = _callprojs.resproj->fast_out(i);
1531       use->isa_MemBar()->remove(&_igvn);
1532       --imax;
1533       --i; // back up iterator
1534     }
1535     assert(_callprojs.resproj->outcnt() == 0, "all uses must be deleted");
1536     _igvn.remove_dead_node(_callprojs.resproj);
1537   }
1538   if (_callprojs.fallthrough_catchproj != nullptr) {
1539     migrate_outs(_callprojs.fallthrough_catchproj, ctrl);
1540     _igvn.remove_dead_node(_callprojs.fallthrough_catchproj);
1541   }
1542   if (_callprojs.catchall_catchproj != nullptr) {
1543     _igvn.rehash_node_delayed(_callprojs.catchall_catchproj);
1544     _callprojs.catchall_catchproj->set_req(0, top());
1545   }
1546   if (_callprojs.fallthrough_proj != nullptr) {
1547     Node* catchnode = _callprojs.fallthrough_proj->unique_ctrl_out();
1548     _igvn.remove_dead_node(catchnode);
1549     _igvn.remove_dead_node(_callprojs.fallthrough_proj);
1550   }
1551   if (_callprojs.fallthrough_memproj != nullptr) {
1552     migrate_outs(_callprojs.fallthrough_memproj, mem);
1553     _igvn.remove_dead_node(_callprojs.fallthrough_memproj);
1554   }
1555   if (_callprojs.fallthrough_ioproj != nullptr) {
1556     migrate_outs(_callprojs.fallthrough_ioproj, i_o);
1557     _igvn.remove_dead_node(_callprojs.fallthrough_ioproj);
1558   }
1559   if (_callprojs.catchall_memproj != nullptr) {
1560     _igvn.rehash_node_delayed(_callprojs.catchall_memproj);
1561     _callprojs.catchall_memproj->set_req(0, top());
1562   }
1563   if (_callprojs.catchall_ioproj != nullptr) {
1564     _igvn.rehash_node_delayed(_callprojs.catchall_ioproj);
1565     _callprojs.catchall_ioproj->set_req(0, top());
1566   }
1567 #ifndef PRODUCT
1568   if (PrintEliminateAllocations) {
1569     if (alloc->is_AllocateArray()) {
1570       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
1571     } else {
1572       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
1573     }
1574   }
1575 #endif
1576   _igvn.remove_dead_node(alloc);
1577 }
1578 
1579 void PhaseMacroExpand::expand_initialize_membar(AllocateNode* alloc, InitializeNode* init,
1580                                                 Node*& fast_oop_ctrl, Node*& fast_oop_rawmem) {
1581   // If initialization is performed by an array copy, any required
1582   // MemBarStoreStore was already added. If the object does not
1583   // escape no need for a MemBarStoreStore. If the object does not
1584   // escape in its initializer and memory barrier (MemBarStoreStore or
1585   // stronger) is already added at exit of initializer, also no need
1586   // for a MemBarStoreStore. Otherwise we need a MemBarStoreStore
1587   // so that stores that initialize this object can't be reordered
1588   // with a subsequent store that makes this object accessible by
1589   // other threads.
1590   // Other threads include java threads and JVM internal threads
1591   // (for example concurrent GC threads). Current concurrent GC
1592   // implementation: G1 will not scan newly created object,
1593   // so it's safe to skip storestore barrier when allocation does
1594   // not escape.
1595   if (!alloc->does_not_escape_thread() &&
1596     !alloc->is_allocation_MemBar_redundant() &&
1597     (init == nullptr || !init->is_complete_with_arraycopy())) {
1598     if (init == nullptr || init->req() < InitializeNode::RawStores) {
1599       // No InitializeNode or no stores captured by zeroing
1600       // elimination. Simply add the MemBarStoreStore after object
1601       // initialization.
1602       MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
1603       transform_later(mb);
1604 
1605       mb->init_req(TypeFunc::Memory, fast_oop_rawmem);
1606       mb->init_req(TypeFunc::Control, fast_oop_ctrl);
1607       fast_oop_ctrl = new ProjNode(mb, TypeFunc::Control);
1608       transform_later(fast_oop_ctrl);
1609       fast_oop_rawmem = new ProjNode(mb, TypeFunc::Memory);
1610       transform_later(fast_oop_rawmem);
1611     } else {
1612       // Add the MemBarStoreStore after the InitializeNode so that
1613       // all stores performing the initialization that were moved
1614       // before the InitializeNode happen before the storestore
1615       // barrier.
1616 
1617       Node* init_ctrl = init->proj_out_or_null(TypeFunc::Control);
1618       Node* init_mem = init->proj_out_or_null(TypeFunc::Memory);
1619 
1620       MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
1621       transform_later(mb);
1622 
1623       Node* ctrl = new ProjNode(init, TypeFunc::Control);
1624       transform_later(ctrl);
1625       Node* mem = new ProjNode(init, TypeFunc::Memory);
1626       transform_later(mem);
1627 
1628       // The MemBarStoreStore depends on control and memory coming
1629       // from the InitializeNode
1630       mb->init_req(TypeFunc::Memory, mem);
1631       mb->init_req(TypeFunc::Control, ctrl);
1632 
1633       ctrl = new ProjNode(mb, TypeFunc::Control);
1634       transform_later(ctrl);
1635       mem = new ProjNode(mb, TypeFunc::Memory);
1636       transform_later(mem);
1637 
1638       // All nodes that depended on the InitializeNode for control
1639       // and memory must now depend on the MemBarNode that itself
1640       // depends on the InitializeNode
1641       if (init_ctrl != nullptr) {
1642         _igvn.replace_node(init_ctrl, ctrl);
1643       }
1644       if (init_mem != nullptr) {
1645         _igvn.replace_node(init_mem, mem);
1646       }
1647     }
1648   }
1649 }
1650 
1651 void PhaseMacroExpand::expand_dtrace_alloc_probe(AllocateNode* alloc, Node* oop,
1652                                                 Node*& ctrl, Node*& rawmem) {
1653   if (C->env()->dtrace_alloc_probes()) {
1654     // Slow-path call
1655     int size = TypeFunc::Parms + 2;
1656     CallLeafNode *call = new CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
1657                                           CAST_FROM_FN_PTR(address,
1658                                           static_cast<int (*)(JavaThread*, oopDesc*)>(SharedRuntime::dtrace_object_alloc)),
1659                                           "dtrace_object_alloc",
1660                                           TypeRawPtr::BOTTOM);
1661 
1662     // Get base of thread-local storage area
1663     Node* thread = new ThreadLocalNode();
1664     transform_later(thread);
1665 
1666     call->init_req(TypeFunc::Parms + 0, thread);
1667     call->init_req(TypeFunc::Parms + 1, oop);
1668     call->init_req(TypeFunc::Control, ctrl);
1669     call->init_req(TypeFunc::I_O    , top()); // does no i/o
1670     call->init_req(TypeFunc::Memory , rawmem);
1671     call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
1672     call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
1673     transform_later(call);
1674     ctrl = new ProjNode(call, TypeFunc::Control);
1675     transform_later(ctrl);
1676     rawmem = new ProjNode(call, TypeFunc::Memory);
1677     transform_later(rawmem);
1678   }
1679 }
1680 
1681 // Helper for PhaseMacroExpand::expand_allocate_common.
1682 // Initializes the newly-allocated storage.
1683 Node*
1684 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
1685                                     Node* control, Node* rawmem, Node* object,
1686                                     Node* klass_node, Node* length,
1687                                     Node* size_in_bytes) {
1688   InitializeNode* init = alloc->initialization();
1689   // Store the klass & mark bits
1690   Node* mark_node = alloc->make_ideal_mark(&_igvn, object, control, rawmem);
1691   if (!mark_node->is_Con()) {
1692     transform_later(mark_node);
1693   }
1694   rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, TypeX_X->basic_type());
1695 
1696   if (!UseCompactObjectHeaders) {
1697     rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA);
1698   }
1699   int header_size = alloc->minimum_header_size();  // conservatively small
1700 
1701   // Array length
1702   if (length != nullptr) {         // Arrays need length field
1703     rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
1704     // conservatively small header size:
1705     header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1706     if (_igvn.type(klass_node)->isa_aryklassptr()) {   // we know the exact header size in most cases:
1707       BasicType elem = _igvn.type(klass_node)->is_klassptr()->as_instance_type()->isa_aryptr()->elem()->array_element_basic_type();
1708       if (is_reference_type(elem, true)) {
1709         elem = T_OBJECT;
1710       }
1711       header_size = Klass::layout_helper_header_size(Klass::array_layout_helper(elem));
1712     }
1713   }
1714 
1715   // Clear the object body, if necessary.
1716   if (init == nullptr) {
1717     // The init has somehow disappeared; be cautious and clear everything.
1718     //
1719     // This can happen if a node is allocated but an uncommon trap occurs
1720     // immediately.  In this case, the Initialize gets associated with the
1721     // trap, and may be placed in a different (outer) loop, if the Allocate
1722     // is in a loop.  If (this is rare) the inner loop gets unrolled, then
1723     // there can be two Allocates to one Initialize.  The answer in all these
1724     // edge cases is safety first.  It is always safe to clear immediately
1725     // within an Allocate, and then (maybe or maybe not) clear some more later.
1726     if (!(UseTLAB && ZeroTLAB)) {
1727       rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
1728                                             header_size, size_in_bytes,
1729                                             &_igvn);
1730     }
1731   } else {
1732     if (!init->is_complete()) {
1733       // Try to win by zeroing only what the init does not store.
1734       // We can also try to do some peephole optimizations,
1735       // such as combining some adjacent subword stores.
1736       rawmem = init->complete_stores(control, rawmem, object,
1737                                      header_size, size_in_bytes, &_igvn);
1738     }
1739     // We have no more use for this link, since the AllocateNode goes away:
1740     init->set_req(InitializeNode::RawAddress, top());
1741     // (If we keep the link, it just confuses the register allocator,
1742     // who thinks he sees a real use of the address by the membar.)
1743   }
1744 
1745   return rawmem;
1746 }
1747 
1748 // Generate prefetch instructions for next allocations.
1749 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
1750                                         Node*& contended_phi_rawmem,
1751                                         Node* old_eden_top, Node* new_eden_top,
1752                                         intx lines) {
1753    enum { fall_in_path = 1, pf_path = 2 };
1754    if( UseTLAB && AllocatePrefetchStyle == 2 ) {
1755       // Generate prefetch allocation with watermark check.
1756       // As an allocation hits the watermark, we will prefetch starting
1757       // at a "distance" away from watermark.
1758 
1759       Node *pf_region = new RegionNode(3);
1760       Node *pf_phi_rawmem = new PhiNode( pf_region, Type::MEMORY,
1761                                                 TypeRawPtr::BOTTOM );
1762       // I/O is used for Prefetch
1763       Node *pf_phi_abio = new PhiNode( pf_region, Type::ABIO );
1764 
1765       Node *thread = new ThreadLocalNode();
1766       transform_later(thread);
1767 
1768       Node *eden_pf_adr = new AddPNode( top()/*not oop*/, thread,
1769                    _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
1770       transform_later(eden_pf_adr);
1771 
1772       Node *old_pf_wm = new LoadPNode(needgc_false,
1773                                    contended_phi_rawmem, eden_pf_adr,
1774                                    TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,
1775                                    MemNode::unordered);
1776       transform_later(old_pf_wm);
1777 
1778       // check against new_eden_top
1779       Node *need_pf_cmp = new CmpPNode( new_eden_top, old_pf_wm );
1780       transform_later(need_pf_cmp);
1781       Node *need_pf_bol = new BoolNode( need_pf_cmp, BoolTest::ge );
1782       transform_later(need_pf_bol);
1783       IfNode *need_pf_iff = new IfNode( needgc_false, need_pf_bol,
1784                                        PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
1785       transform_later(need_pf_iff);
1786 
1787       // true node, add prefetchdistance
1788       Node *need_pf_true = new IfTrueNode( need_pf_iff );
1789       transform_later(need_pf_true);
1790 
1791       Node *need_pf_false = new IfFalseNode( need_pf_iff );
1792       transform_later(need_pf_false);
1793 
1794       Node *new_pf_wmt = new AddPNode( top(), old_pf_wm,
1795                                     _igvn.MakeConX(AllocatePrefetchDistance) );
1796       transform_later(new_pf_wmt );
1797       new_pf_wmt->set_req(0, need_pf_true);
1798 
1799       Node *store_new_wmt = new StorePNode(need_pf_true,
1800                                        contended_phi_rawmem, eden_pf_adr,
1801                                        TypeRawPtr::BOTTOM, new_pf_wmt,
1802                                        MemNode::unordered);
1803       transform_later(store_new_wmt);
1804 
1805       // adding prefetches
1806       pf_phi_abio->init_req( fall_in_path, i_o );
1807 
1808       Node *prefetch_adr;
1809       Node *prefetch;
1810       uint step_size = AllocatePrefetchStepSize;
1811       uint distance = 0;
1812 
1813       for ( intx i = 0; i < lines; i++ ) {
1814         prefetch_adr = new AddPNode( old_pf_wm, new_pf_wmt,
1815                                             _igvn.MakeConX(distance) );
1816         transform_later(prefetch_adr);
1817         prefetch = new PrefetchAllocationNode( i_o, prefetch_adr );
1818         transform_later(prefetch);
1819         distance += step_size;
1820         i_o = prefetch;
1821       }
1822       pf_phi_abio->set_req( pf_path, i_o );
1823 
1824       pf_region->init_req( fall_in_path, need_pf_false );
1825       pf_region->init_req( pf_path, need_pf_true );
1826 
1827       pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
1828       pf_phi_rawmem->init_req( pf_path, store_new_wmt );
1829 
1830       transform_later(pf_region);
1831       transform_later(pf_phi_rawmem);
1832       transform_later(pf_phi_abio);
1833 
1834       needgc_false = pf_region;
1835       contended_phi_rawmem = pf_phi_rawmem;
1836       i_o = pf_phi_abio;
1837    } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
1838       // Insert a prefetch instruction for each allocation.
1839       // This code is used to generate 1 prefetch instruction per cache line.
1840 
1841       // Generate several prefetch instructions.
1842       uint step_size = AllocatePrefetchStepSize;
1843       uint distance = AllocatePrefetchDistance;
1844 
1845       // Next cache address.
1846       Node *cache_adr = new AddPNode(old_eden_top, old_eden_top,
1847                                      _igvn.MakeConX(step_size + distance));
1848       transform_later(cache_adr);
1849       cache_adr = new CastP2XNode(needgc_false, cache_adr);
1850       transform_later(cache_adr);
1851       // Address is aligned to execute prefetch to the beginning of cache line size
1852       // (it is important when BIS instruction is used on SPARC as prefetch).
1853       Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
1854       cache_adr = new AndXNode(cache_adr, mask);
1855       transform_later(cache_adr);
1856       cache_adr = new CastX2PNode(cache_adr);
1857       transform_later(cache_adr);
1858 
1859       // Prefetch
1860       Node *prefetch = new PrefetchAllocationNode( contended_phi_rawmem, cache_adr );
1861       prefetch->set_req(0, needgc_false);
1862       transform_later(prefetch);
1863       contended_phi_rawmem = prefetch;
1864       Node *prefetch_adr;
1865       distance = step_size;
1866       for ( intx i = 1; i < lines; i++ ) {
1867         prefetch_adr = new AddPNode( cache_adr, cache_adr,
1868                                             _igvn.MakeConX(distance) );
1869         transform_later(prefetch_adr);
1870         prefetch = new PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr );
1871         transform_later(prefetch);
1872         distance += step_size;
1873         contended_phi_rawmem = prefetch;
1874       }
1875    } else if( AllocatePrefetchStyle > 0 ) {
1876       // Insert a prefetch for each allocation only on the fast-path
1877       Node *prefetch_adr;
1878       Node *prefetch;
1879       // Generate several prefetch instructions.
1880       uint step_size = AllocatePrefetchStepSize;
1881       uint distance = AllocatePrefetchDistance;
1882       for ( intx i = 0; i < lines; i++ ) {
1883         prefetch_adr = new AddPNode( old_eden_top, new_eden_top,
1884                                             _igvn.MakeConX(distance) );
1885         transform_later(prefetch_adr);
1886         prefetch = new PrefetchAllocationNode( i_o, prefetch_adr );
1887         // Do not let it float too high, since if eden_top == eden_end,
1888         // both might be null.
1889         if( i == 0 ) { // Set control for first prefetch, next follows it
1890           prefetch->init_req(0, needgc_false);
1891         }
1892         transform_later(prefetch);
1893         distance += step_size;
1894         i_o = prefetch;
1895       }
1896    }
1897    return i_o;
1898 }
1899 
1900 
1901 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
1902   expand_allocate_common(alloc, nullptr,
1903                          OptoRuntime::new_instance_Type(),
1904                          OptoRuntime::new_instance_Java(), nullptr);
1905 }
1906 
1907 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
1908   Node* length = alloc->in(AllocateNode::ALength);
1909   Node* valid_length_test = alloc->in(AllocateNode::ValidLengthTest);
1910   InitializeNode* init = alloc->initialization();
1911   Node* klass_node = alloc->in(AllocateNode::KlassNode);
1912   const TypeAryKlassPtr* ary_klass_t = _igvn.type(klass_node)->isa_aryklassptr();
1913   address slow_call_address;  // Address of slow call
1914   if (init != nullptr && init->is_complete_with_arraycopy() &&
1915       ary_klass_t && ary_klass_t->elem()->isa_klassptr() == nullptr) {
1916     // Don't zero type array during slow allocation in VM since
1917     // it will be initialized later by arraycopy in compiled code.
1918     slow_call_address = OptoRuntime::new_array_nozero_Java();
1919   } else {
1920     slow_call_address = OptoRuntime::new_array_Java();
1921   }
1922   expand_allocate_common(alloc, length,
1923                          OptoRuntime::new_array_Type(),
1924                          slow_call_address, valid_length_test);
1925 }
1926 
1927 //-------------------mark_eliminated_box----------------------------------
1928 //
1929 // During EA obj may point to several objects but after few ideal graph
1930 // transformations (CCP) it may point to only one non escaping object
1931 // (but still using phi), corresponding locks and unlocks will be marked
1932 // for elimination. Later obj could be replaced with a new node (new phi)
1933 // and which does not have escape information. And later after some graph
1934 // reshape other locks and unlocks (which were not marked for elimination
1935 // before) are connected to this new obj (phi) but they still will not be
1936 // marked for elimination since new obj has no escape information.
1937 // Mark all associated (same box and obj) lock and unlock nodes for
1938 // elimination if some of them marked already.
1939 void PhaseMacroExpand::mark_eliminated_box(Node* box, Node* obj) {
1940   BoxLockNode* oldbox = box->as_BoxLock();
1941   if (oldbox->is_eliminated()) {
1942     return; // This BoxLock node was processed already.
1943   }
1944   assert(!oldbox->is_unbalanced(), "this should not be called for unbalanced region");
1945   // New implementation (EliminateNestedLocks) has separate BoxLock
1946   // node for each locked region so mark all associated locks/unlocks as
1947   // eliminated even if different objects are referenced in one locked region
1948   // (for example, OSR compilation of nested loop inside locked scope).
1949   if (EliminateNestedLocks ||
1950       oldbox->as_BoxLock()->is_simple_lock_region(nullptr, obj, nullptr)) {
1951     // Box is used only in one lock region. Mark this box as eliminated.
1952     oldbox->set_local();      // This verifies correct state of BoxLock
1953     _igvn.hash_delete(oldbox);
1954     oldbox->set_eliminated(); // This changes box's hash value
1955      _igvn.hash_insert(oldbox);
1956 
1957     for (uint i = 0; i < oldbox->outcnt(); i++) {
1958       Node* u = oldbox->raw_out(i);
1959       if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) {
1960         AbstractLockNode* alock = u->as_AbstractLock();
1961         // Check lock's box since box could be referenced by Lock's debug info.
1962         if (alock->box_node() == oldbox) {
1963           // Mark eliminated all related locks and unlocks.
1964 #ifdef ASSERT
1965           alock->log_lock_optimization(C, "eliminate_lock_set_non_esc4");
1966 #endif
1967           alock->set_non_esc_obj();
1968         }
1969       }
1970     }
1971     return;
1972   }
1973 
1974   // Create new "eliminated" BoxLock node and use it in monitor debug info
1975   // instead of oldbox for the same object.
1976   BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
1977 
1978   // Note: BoxLock node is marked eliminated only here and it is used
1979   // to indicate that all associated lock and unlock nodes are marked
1980   // for elimination.
1981   newbox->set_local(); // This verifies correct state of BoxLock
1982   newbox->set_eliminated();
1983   transform_later(newbox);
1984 
1985   // Replace old box node with new box for all users of the same object.
1986   for (uint i = 0; i < oldbox->outcnt();) {
1987     bool next_edge = true;
1988 
1989     Node* u = oldbox->raw_out(i);
1990     if (u->is_AbstractLock()) {
1991       AbstractLockNode* alock = u->as_AbstractLock();
1992       if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) {
1993         // Replace Box and mark eliminated all related locks and unlocks.
1994 #ifdef ASSERT
1995         alock->log_lock_optimization(C, "eliminate_lock_set_non_esc5");
1996 #endif
1997         alock->set_non_esc_obj();
1998         _igvn.rehash_node_delayed(alock);
1999         alock->set_box_node(newbox);
2000         next_edge = false;
2001       }
2002     }
2003     if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) {
2004       FastLockNode* flock = u->as_FastLock();
2005       assert(flock->box_node() == oldbox, "sanity");
2006       _igvn.rehash_node_delayed(flock);
2007       flock->set_box_node(newbox);
2008       next_edge = false;
2009     }
2010 
2011     // Replace old box in monitor debug info.
2012     if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
2013       SafePointNode* sfn = u->as_SafePoint();
2014       JVMState* youngest_jvms = sfn->jvms();
2015       int max_depth = youngest_jvms->depth();
2016       for (int depth = 1; depth <= max_depth; depth++) {
2017         JVMState* jvms = youngest_jvms->of_depth(depth);
2018         int num_mon  = jvms->nof_monitors();
2019         // Loop over monitors
2020         for (int idx = 0; idx < num_mon; idx++) {
2021           Node* obj_node = sfn->monitor_obj(jvms, idx);
2022           Node* box_node = sfn->monitor_box(jvms, idx);
2023           if (box_node == oldbox && obj_node->eqv_uncast(obj)) {
2024             int j = jvms->monitor_box_offset(idx);
2025             _igvn.replace_input_of(u, j, newbox);
2026             next_edge = false;
2027           }
2028         }
2029       }
2030     }
2031     if (next_edge) i++;
2032   }
2033 }
2034 
2035 //-----------------------mark_eliminated_locking_nodes-----------------------
2036 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) {
2037   if (!alock->is_balanced()) {
2038     return; // Can't do any more elimination for this locking region
2039   }
2040   if (EliminateNestedLocks) {
2041     if (alock->is_nested()) {
2042        assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity");
2043        return;
2044     } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened
2045       // Only Lock node has JVMState needed here.
2046       // Not that preceding claim is documented anywhere else.
2047       if (alock->jvms() != nullptr) {
2048         if (alock->as_Lock()->is_nested_lock_region()) {
2049           // Mark eliminated related nested locks and unlocks.
2050           Node* obj = alock->obj_node();
2051           BoxLockNode* box_node = alock->box_node()->as_BoxLock();
2052           assert(!box_node->is_eliminated(), "should not be marked yet");
2053           // Note: BoxLock node is marked eliminated only here
2054           // and it is used to indicate that all associated lock
2055           // and unlock nodes are marked for elimination.
2056           box_node->set_eliminated(); // Box's hash is always NO_HASH here
2057           for (uint i = 0; i < box_node->outcnt(); i++) {
2058             Node* u = box_node->raw_out(i);
2059             if (u->is_AbstractLock()) {
2060               alock = u->as_AbstractLock();
2061               if (alock->box_node() == box_node) {
2062                 // Verify that this Box is referenced only by related locks.
2063                 assert(alock->obj_node()->eqv_uncast(obj), "");
2064                 // Mark all related locks and unlocks.
2065 #ifdef ASSERT
2066                 alock->log_lock_optimization(C, "eliminate_lock_set_nested");
2067 #endif
2068                 alock->set_nested();
2069               }
2070             }
2071           }
2072         } else {
2073 #ifdef ASSERT
2074           alock->log_lock_optimization(C, "eliminate_lock_NOT_nested_lock_region");
2075           if (C->log() != nullptr)
2076             alock->as_Lock()->is_nested_lock_region(C); // rerun for debugging output
2077 #endif
2078         }
2079       }
2080       return;
2081     }
2082     // Process locks for non escaping object
2083     assert(alock->is_non_esc_obj(), "");
2084   } // EliminateNestedLocks
2085 
2086   if (alock->is_non_esc_obj()) { // Lock is used for non escaping object
2087     // Look for all locks of this object and mark them and
2088     // corresponding BoxLock nodes as eliminated.
2089     Node* obj = alock->obj_node();
2090     for (uint j = 0; j < obj->outcnt(); j++) {
2091       Node* o = obj->raw_out(j);
2092       if (o->is_AbstractLock() &&
2093           o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) {
2094         alock = o->as_AbstractLock();
2095         Node* box = alock->box_node();
2096         // Replace old box node with new eliminated box for all users
2097         // of the same object and mark related locks as eliminated.
2098         mark_eliminated_box(box, obj);
2099       }
2100     }
2101   }
2102 }
2103 
2104 // we have determined that this lock/unlock can be eliminated, we simply
2105 // eliminate the node without expanding it.
2106 //
2107 // Note:  The membar's associated with the lock/unlock are currently not
2108 //        eliminated.  This should be investigated as a future enhancement.
2109 //
2110 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
2111 
2112   if (!alock->is_eliminated()) {
2113     return false;
2114   }
2115 #ifdef ASSERT
2116   if (!alock->is_coarsened()) {
2117     // Check that new "eliminated" BoxLock node is created.
2118     BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
2119     assert(oldbox->is_eliminated(), "should be done already");
2120   }
2121 #endif
2122 
2123   alock->log_lock_optimization(C, "eliminate_lock");
2124 
2125 #ifndef PRODUCT
2126   if (PrintEliminateLocks) {
2127     tty->print_cr("++++ Eliminated: %d %s '%s'", alock->_idx, (alock->is_Lock() ? "Lock" : "Unlock"), alock->kind_as_string());
2128   }
2129 #endif
2130 
2131   Node* mem  = alock->in(TypeFunc::Memory);
2132   Node* ctrl = alock->in(TypeFunc::Control);
2133   guarantee(ctrl != nullptr, "missing control projection, cannot replace_node() with null");
2134 
2135   alock->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/);
2136   // There are 2 projections from the lock.  The lock node will
2137   // be deleted when its last use is subsumed below.
2138   assert(alock->outcnt() == 2 &&
2139          _callprojs.fallthrough_proj != nullptr &&
2140          _callprojs.fallthrough_memproj != nullptr,
2141          "Unexpected projections from Lock/Unlock");
2142 
2143   Node* fallthroughproj = _callprojs.fallthrough_proj;
2144   Node* memproj_fallthrough = _callprojs.fallthrough_memproj;
2145 
2146   // The memory projection from a lock/unlock is RawMem
2147   // The input to a Lock is merged memory, so extract its RawMem input
2148   // (unless the MergeMem has been optimized away.)
2149   if (alock->is_Lock()) {
2150     // Search for MemBarAcquireLock node and delete it also.
2151     MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
2152     assert(membar != nullptr && membar->Opcode() == Op_MemBarAcquireLock, "");
2153     Node* ctrlproj = membar->proj_out(TypeFunc::Control);
2154     Node* memproj = membar->proj_out(TypeFunc::Memory);
2155     _igvn.replace_node(ctrlproj, fallthroughproj);
2156     _igvn.replace_node(memproj, memproj_fallthrough);
2157 
2158     // Delete FastLock node also if this Lock node is unique user
2159     // (a loop peeling may clone a Lock node).
2160     Node* flock = alock->as_Lock()->fastlock_node();
2161     if (flock->outcnt() == 1) {
2162       assert(flock->unique_out() == alock, "sanity");
2163       _igvn.replace_node(flock, top());
2164     }
2165   }
2166 
2167   // Search for MemBarReleaseLock node and delete it also.
2168   if (alock->is_Unlock() && ctrl->is_Proj() && ctrl->in(0)->is_MemBar()) {
2169     MemBarNode* membar = ctrl->in(0)->as_MemBar();
2170     assert(membar->Opcode() == Op_MemBarReleaseLock &&
2171            mem->is_Proj() && membar == mem->in(0), "");
2172     _igvn.replace_node(fallthroughproj, ctrl);
2173     _igvn.replace_node(memproj_fallthrough, mem);
2174     fallthroughproj = ctrl;
2175     memproj_fallthrough = mem;
2176     ctrl = membar->in(TypeFunc::Control);
2177     mem  = membar->in(TypeFunc::Memory);
2178   }
2179 
2180   _igvn.replace_node(fallthroughproj, ctrl);
2181   _igvn.replace_node(memproj_fallthrough, mem);
2182   return true;
2183 }
2184 
2185 
2186 //------------------------------expand_lock_node----------------------
2187 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
2188 
2189   Node* ctrl = lock->in(TypeFunc::Control);
2190   Node* mem = lock->in(TypeFunc::Memory);
2191   Node* obj = lock->obj_node();
2192   Node* box = lock->box_node();
2193   Node* flock = lock->fastlock_node();
2194 
2195   assert(!box->as_BoxLock()->is_eliminated(), "sanity");
2196 
2197   // Make the merge point
2198   Node *region;
2199   Node *mem_phi;
2200   Node *slow_path;
2201 
2202   region  = new RegionNode(3);
2203   // create a Phi for the memory state
2204   mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2205 
2206   // Optimize test; set region slot 2
2207   slow_path = opt_bits_test(ctrl, region, 2, flock);
2208   mem_phi->init_req(2, mem);
2209 
2210   // Make slow path call
2211   CallNode* call = make_slow_call(lock, OptoRuntime::complete_monitor_enter_Type(),
2212                                   OptoRuntime::complete_monitor_locking_Java(), nullptr, slow_path,
2213                                   obj, box, nullptr);
2214 
2215   call->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/);
2216 
2217   // Slow path can only throw asynchronous exceptions, which are always
2218   // de-opted.  So the compiler thinks the slow-call can never throw an
2219   // exception.  If it DOES throw an exception we would need the debug
2220   // info removed first (since if it throws there is no monitor).
2221   assert(_callprojs.fallthrough_ioproj == nullptr && _callprojs.catchall_ioproj == nullptr &&
2222          _callprojs.catchall_memproj == nullptr && _callprojs.catchall_catchproj == nullptr, "Unexpected projection from Lock");
2223 
2224   // Capture slow path
2225   // disconnect fall-through projection from call and create a new one
2226   // hook up users of fall-through projection to region
2227   Node *slow_ctrl = _callprojs.fallthrough_proj->clone();
2228   transform_later(slow_ctrl);
2229   _igvn.hash_delete(_callprojs.fallthrough_proj);
2230   _callprojs.fallthrough_proj->disconnect_inputs(C);
2231   region->init_req(1, slow_ctrl);
2232   // region inputs are now complete
2233   transform_later(region);
2234   _igvn.replace_node(_callprojs.fallthrough_proj, region);
2235 
2236   Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory));
2237 
2238   mem_phi->init_req(1, memproj);
2239 
2240   transform_later(mem_phi);
2241 
2242   _igvn.replace_node(_callprojs.fallthrough_memproj, mem_phi);
2243 }
2244 
2245 //------------------------------expand_unlock_node----------------------
2246 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
2247 
2248   Node* ctrl = unlock->in(TypeFunc::Control);
2249   Node* mem = unlock->in(TypeFunc::Memory);
2250   Node* obj = unlock->obj_node();
2251   Node* box = unlock->box_node();
2252 
2253   assert(!box->as_BoxLock()->is_eliminated(), "sanity");
2254 
2255   // No need for a null check on unlock
2256 
2257   // Make the merge point
2258   Node *region;
2259   Node *mem_phi;
2260 
2261   region  = new RegionNode(3);
2262   // create a Phi for the memory state
2263   mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2264 
2265   FastUnlockNode *funlock = new FastUnlockNode( ctrl, obj, box );
2266   funlock = transform_later( funlock )->as_FastUnlock();
2267   // Optimize test; set region slot 2
2268   Node *slow_path = opt_bits_test(ctrl, region, 2, funlock);
2269   Node *thread = transform_later(new ThreadLocalNode());
2270 
2271   CallNode *call = make_slow_call((CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(),
2272                                   CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C),
2273                                   "complete_monitor_unlocking_C", slow_path, obj, box, thread);
2274 
2275   call->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/);
2276   assert(_callprojs.fallthrough_ioproj == nullptr && _callprojs.catchall_ioproj == nullptr &&
2277          _callprojs.catchall_memproj == nullptr && _callprojs.catchall_catchproj == nullptr, "Unexpected projection from Lock");
2278 
2279   // No exceptions for unlocking
2280   // Capture slow path
2281   // disconnect fall-through projection from call and create a new one
2282   // hook up users of fall-through projection to region
2283   Node *slow_ctrl = _callprojs.fallthrough_proj->clone();
2284   transform_later(slow_ctrl);
2285   _igvn.hash_delete(_callprojs.fallthrough_proj);
2286   _callprojs.fallthrough_proj->disconnect_inputs(C);
2287   region->init_req(1, slow_ctrl);
2288   // region inputs are now complete
2289   transform_later(region);
2290   _igvn.replace_node(_callprojs.fallthrough_proj, region);
2291 
2292   Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory) );
2293   mem_phi->init_req(1, memproj );
2294   mem_phi->init_req(2, mem);
2295   transform_later(mem_phi);
2296 
2297   _igvn.replace_node(_callprojs.fallthrough_memproj, mem_phi);
2298 }
2299 
2300 void PhaseMacroExpand::expand_subtypecheck_node(SubTypeCheckNode *check) {
2301   assert(check->in(SubTypeCheckNode::Control) == nullptr, "should be pinned");
2302   Node* bol = check->unique_out();
2303   Node* obj_or_subklass = check->in(SubTypeCheckNode::ObjOrSubKlass);
2304   Node* superklass = check->in(SubTypeCheckNode::SuperKlass);
2305   assert(bol->is_Bool() && bol->as_Bool()->_test._test == BoolTest::ne, "unexpected bool node");
2306 
2307   for (DUIterator_Last imin, i = bol->last_outs(imin); i >= imin; --i) {
2308     Node* iff = bol->last_out(i);
2309     assert(iff->is_If(), "where's the if?");
2310 
2311     if (iff->in(0)->is_top()) {
2312       _igvn.replace_input_of(iff, 1, C->top());
2313       continue;
2314     }
2315 
2316     Node* iftrue = iff->as_If()->proj_out(1);
2317     Node* iffalse = iff->as_If()->proj_out(0);
2318     Node* ctrl = iff->in(0);
2319 
2320     Node* subklass = nullptr;
2321     if (_igvn.type(obj_or_subklass)->isa_klassptr()) {
2322       subklass = obj_or_subklass;
2323     } else {
2324       Node* k_adr = basic_plus_adr(obj_or_subklass, oopDesc::klass_offset_in_bytes());
2325       subklass = _igvn.transform(LoadKlassNode::make(_igvn, C->immutable_memory(), k_adr, TypeInstPtr::KLASS));
2326     }
2327 
2328     Node* not_subtype_ctrl = Phase::gen_subtype_check(subklass, superklass, &ctrl, nullptr, _igvn, check->method(), check->bci());
2329 
2330     _igvn.replace_input_of(iff, 0, C->top());
2331     _igvn.replace_node(iftrue, not_subtype_ctrl);
2332     _igvn.replace_node(iffalse, ctrl);
2333   }
2334   _igvn.replace_node(check, C->top());
2335 }
2336 
2337 // Perform refining of strip mined loop nodes in the macro nodes list.
2338 void PhaseMacroExpand::refine_strip_mined_loop_macro_nodes() {
2339    for (int i = C->macro_count(); i > 0; i--) {
2340     Node* n = C->macro_node(i - 1);
2341     if (n->is_OuterStripMinedLoop()) {
2342       n->as_OuterStripMinedLoop()->adjust_strip_mined_loop(&_igvn);
2343     }
2344   }
2345 }
2346 
2347 //---------------------------eliminate_macro_nodes----------------------
2348 // Eliminate scalar replaced allocations and associated locks.
2349 void PhaseMacroExpand::eliminate_macro_nodes() {
2350   if (C->macro_count() == 0)
2351     return;
2352 
2353   if (StressMacroElimination) {
2354     C->shuffle_macro_nodes();
2355   }
2356   NOT_PRODUCT(int membar_before = count_MemBar(C);)
2357 
2358   // Before elimination may re-mark (change to Nested or NonEscObj)
2359   // all associated (same box and obj) lock and unlock nodes.
2360   int cnt = C->macro_count();
2361   for (int i=0; i < cnt; i++) {
2362     Node *n = C->macro_node(i);
2363     if (n->is_AbstractLock()) { // Lock and Unlock nodes
2364       mark_eliminated_locking_nodes(n->as_AbstractLock());
2365     }
2366   }
2367   // Re-marking may break consistency of Coarsened locks.
2368   if (!C->coarsened_locks_consistent()) {
2369     return; // recompile without Coarsened locks if broken
2370   } else {
2371     // After coarsened locks are eliminated locking regions
2372     // become unbalanced. We should not execute any more
2373     // locks elimination optimizations on them.
2374     C->mark_unbalanced_boxes();
2375   }
2376 
2377   // First, attempt to eliminate locks
2378   bool progress = true;
2379   while (progress) {
2380     progress = false;
2381     for (int i = C->macro_count(); i > 0; i = MIN2(i - 1, C->macro_count())) { // more than 1 element can be eliminated at once
2382       Node* n = C->macro_node(i - 1);
2383       bool success = false;
2384       DEBUG_ONLY(int old_macro_count = C->macro_count();)
2385       if (n->is_AbstractLock()) {
2386         success = eliminate_locking_node(n->as_AbstractLock());
2387 #ifndef PRODUCT
2388         if (success && PrintOptoStatistics) {
2389           AtomicAccess::inc(&PhaseMacroExpand::_monitor_objects_removed_counter);
2390         }
2391 #endif
2392       }
2393       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2394       progress = progress || success;
2395       if (success) {
2396         C->print_method(PHASE_AFTER_MACRO_ELIMINATION_STEP, 5, n);
2397       }
2398     }
2399   }
2400   // Next, attempt to eliminate allocations
2401   progress = true;
2402   while (progress) {
2403     progress = false;
2404     for (int i = C->macro_count(); i > 0; i = MIN2(i - 1, C->macro_count())) { // more than 1 element can be eliminated at once
2405       Node* n = C->macro_node(i - 1);
2406       bool success = false;
2407       DEBUG_ONLY(int old_macro_count = C->macro_count();)
2408       switch (n->class_id()) {
2409       case Node::Class_Allocate:
2410       case Node::Class_AllocateArray:
2411         success = eliminate_allocate_node(n->as_Allocate());
2412 #ifndef PRODUCT
2413         if (success && PrintOptoStatistics) {
2414           AtomicAccess::inc(&PhaseMacroExpand::_objs_scalar_replaced_counter);
2415         }
2416 #endif
2417         break;
2418       case Node::Class_CallStaticJava:
2419         success = eliminate_boxing_node(n->as_CallStaticJava());
2420         break;
2421       case Node::Class_Lock:
2422       case Node::Class_Unlock:
2423         assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
2424         break;
2425       case Node::Class_ArrayCopy:
2426         break;
2427       case Node::Class_OuterStripMinedLoop:
2428         break;
2429       case Node::Class_SubTypeCheck:
2430         break;
2431       case Node::Class_Opaque1:
2432         break;
2433       default:
2434         assert(n->Opcode() == Op_LoopLimit ||
2435                n->Opcode() == Op_ModD ||
2436                n->Opcode() == Op_ModF ||
2437                n->is_OpaqueNotNull()       ||
2438                n->is_OpaqueInitializedAssertionPredicate() ||
2439                n->Opcode() == Op_MaxL      ||
2440                n->Opcode() == Op_MinL      ||
2441                BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(n),
2442                "unknown node type in macro list");
2443       }
2444       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2445       progress = progress || success;
2446       if (success) {
2447         C->print_method(PHASE_AFTER_MACRO_ELIMINATION_STEP, 5, n);
2448       }
2449     }
2450   }
2451 #ifndef PRODUCT
2452   if (PrintOptoStatistics) {
2453     int membar_after = count_MemBar(C);
2454     AtomicAccess::add(&PhaseMacroExpand::_memory_barriers_removed_counter, membar_before - membar_after);
2455   }
2456 #endif
2457 }
2458 
2459 void PhaseMacroExpand::eliminate_opaque_looplimit_macro_nodes() {
2460   if (C->macro_count() == 0) {
2461     return;
2462   }
2463   refine_strip_mined_loop_macro_nodes();
2464   // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations.
2465   bool progress = true;
2466   while (progress) {
2467     progress = false;
2468     for (int i = C->macro_count(); i > 0; i--) {
2469       Node* n = C->macro_node(i-1);
2470       bool success = false;
2471       DEBUG_ONLY(int old_macro_count = C->macro_count();)
2472       if (n->Opcode() == Op_LoopLimit) {
2473         // Remove it from macro list and put on IGVN worklist to optimize.
2474         C->remove_macro_node(n);
2475         _igvn._worklist.push(n);
2476         success = true;
2477       } else if (n->Opcode() == Op_CallStaticJava) {
2478         // Remove it from macro list and put on IGVN worklist to optimize.
2479         C->remove_macro_node(n);
2480         _igvn._worklist.push(n);
2481         success = true;
2482       } else if (n->is_Opaque1()) {
2483         _igvn.replace_node(n, n->in(1));
2484         success = true;
2485       } else if (n->is_OpaqueNotNull()) {
2486         // Tests with OpaqueNotNull nodes are implicitly known to be true. Replace the node with true. In debug builds,
2487         // we leave the test in the graph to have an additional sanity check at runtime. If the test fails (i.e. a bug),
2488         // we will execute a Halt node.
2489 #ifdef ASSERT
2490         _igvn.replace_node(n, n->in(1));
2491 #else
2492         _igvn.replace_node(n, _igvn.intcon(1));
2493 #endif
2494         success = true;
2495       } else if (n->is_OpaqueInitializedAssertionPredicate()) {
2496           // Initialized Assertion Predicates must always evaluate to true. Therefore, we get rid of them in product
2497           // builds as they are useless. In debug builds we keep them as additional verification code. Even though
2498           // loop opts are already over, we want to keep Initialized Assertion Predicates alive as long as possible to
2499           // enable folding of dead control paths within which cast nodes become top after due to impossible types -
2500           // even after loop opts are over. Therefore, we delay the removal of these opaque nodes until now.
2501 #ifdef ASSERT
2502         _igvn.replace_node(n, n->in(1));
2503 #else
2504         _igvn.replace_node(n, _igvn.intcon(1));
2505 #endif // ASSERT
2506       } else if (n->Opcode() == Op_OuterStripMinedLoop) {
2507         C->remove_macro_node(n);
2508         success = true;
2509       } else if (n->Opcode() == Op_MaxL) {
2510         // Since MaxL and MinL are not implemented in the backend, we expand them to
2511         // a CMoveL construct now. At least until here, the type could be computed
2512         // precisely. CMoveL is not so smart, but we can give it at least the best
2513         // type we know abouot n now.
2514         Node* repl = MaxNode::signed_max(n->in(1), n->in(2), _igvn.type(n), _igvn);
2515         _igvn.replace_node(n, repl);
2516         success = true;
2517       } else if (n->Opcode() == Op_MinL) {
2518         Node* repl = MaxNode::signed_min(n->in(1), n->in(2), _igvn.type(n), _igvn);
2519         _igvn.replace_node(n, repl);
2520         success = true;
2521       }
2522       assert(!success || (C->macro_count() == (old_macro_count - 1)), "elimination must have deleted one node from macro list");
2523       progress = progress || success;
2524       if (success) {
2525         C->print_method(PHASE_AFTER_MACRO_ELIMINATION_STEP, 5, n);
2526       }
2527     }
2528   }
2529 }
2530 
2531 //------------------------------expand_macro_nodes----------------------
2532 //  Returns true if a failure occurred.
2533 bool PhaseMacroExpand::expand_macro_nodes() {
2534   if (StressMacroExpansion) {
2535     C->shuffle_macro_nodes();
2536   }
2537 
2538   // Clean up the graph so we're less likely to hit the maximum node
2539   // limit
2540   _igvn.set_delay_transform(false);
2541   _igvn.optimize();
2542   if (C->failing())  return true;
2543   _igvn.set_delay_transform(true);
2544 
2545 
2546   // Because we run IGVN after each expansion, some macro nodes may go
2547   // dead and be removed from the list as we iterate over it. Move
2548   // Allocate nodes (processed in a second pass) at the beginning of
2549   // the list and then iterate from the last element of the list until
2550   // an Allocate node is seen. This is robust to random deletion in
2551   // the list due to nodes going dead.
2552   C->sort_macro_nodes();
2553 
2554   // expand arraycopy "macro" nodes first
2555   // For ReduceBulkZeroing, we must first process all arraycopy nodes
2556   // before the allocate nodes are expanded.
2557   while (C->macro_count() > 0) {
2558     int macro_count = C->macro_count();
2559     Node * n = C->macro_node(macro_count-1);
2560     assert(n->is_macro(), "only macro nodes expected here");
2561     if (_igvn.type(n) == Type::TOP || (n->in(0) != nullptr && n->in(0)->is_top())) {
2562       // node is unreachable, so don't try to expand it
2563       C->remove_macro_node(n);
2564       continue;
2565     }
2566     if (n->is_Allocate()) {
2567       break;
2568     }
2569     // Make sure expansion will not cause node limit to be exceeded.
2570     // Worst case is a macro node gets expanded into about 200 nodes.
2571     // Allow 50% more for optimization.
2572     if (C->check_node_count(300, "out of nodes before macro expansion")) {
2573       return true;
2574     }
2575 
2576     DEBUG_ONLY(int old_macro_count = C->macro_count();)
2577     switch (n->class_id()) {
2578     case Node::Class_Lock:
2579       expand_lock_node(n->as_Lock());
2580       break;
2581     case Node::Class_Unlock:
2582       expand_unlock_node(n->as_Unlock());
2583       break;
2584     case Node::Class_ArrayCopy:
2585       expand_arraycopy_node(n->as_ArrayCopy());
2586       break;
2587     case Node::Class_SubTypeCheck:
2588       expand_subtypecheck_node(n->as_SubTypeCheck());
2589       break;
2590     default:
2591       switch (n->Opcode()) {
2592       case Op_ModD:
2593       case Op_ModF: {
2594         CallNode* mod_macro = n->as_Call();
2595         CallNode* call = new CallLeafPureNode(mod_macro->tf(), mod_macro->entry_point(),
2596                                               mod_macro->_name, TypeRawPtr::BOTTOM);
2597         call->init_req(TypeFunc::Control, mod_macro->in(TypeFunc::Control));
2598         call->init_req(TypeFunc::I_O, C->top());
2599         call->init_req(TypeFunc::Memory, C->top());
2600         call->init_req(TypeFunc::ReturnAdr, C->top());
2601         call->init_req(TypeFunc::FramePtr, C->top());
2602         for (unsigned int i = 0; i < mod_macro->tf()->domain()->cnt() - TypeFunc::Parms; i++) {
2603           call->init_req(TypeFunc::Parms + i, mod_macro->in(TypeFunc::Parms + i));
2604         }
2605         _igvn.replace_node(mod_macro, call);
2606         transform_later(call);
2607         break;
2608       }
2609       default:
2610         assert(false, "unknown node type in macro list");
2611       }
2612     }
2613     assert(C->macro_count() == (old_macro_count - 1), "expansion must have deleted one node from macro list");
2614     if (C->failing())  return true;
2615     C->print_method(PHASE_AFTER_MACRO_EXPANSION_STEP, 5, n);
2616 
2617     // Clean up the graph so we're less likely to hit the maximum node
2618     // limit
2619     _igvn.set_delay_transform(false);
2620     _igvn.optimize();
2621     if (C->failing())  return true;
2622     _igvn.set_delay_transform(true);
2623   }
2624 
2625   // All nodes except Allocate nodes are expanded now. There could be
2626   // new optimization opportunities (such as folding newly created
2627   // load from a just allocated object). Run IGVN.
2628 
2629   // expand "macro" nodes
2630   // nodes are removed from the macro list as they are processed
2631   while (C->macro_count() > 0) {
2632     int macro_count = C->macro_count();
2633     Node * n = C->macro_node(macro_count-1);
2634     assert(n->is_macro(), "only macro nodes expected here");
2635     if (_igvn.type(n) == Type::TOP || (n->in(0) != nullptr && n->in(0)->is_top())) {
2636       // node is unreachable, so don't try to expand it
2637       C->remove_macro_node(n);
2638       continue;
2639     }
2640     // Make sure expansion will not cause node limit to be exceeded.
2641     // Worst case is a macro node gets expanded into about 200 nodes.
2642     // Allow 50% more for optimization.
2643     if (C->check_node_count(300, "out of nodes before macro expansion")) {
2644       return true;
2645     }
2646     switch (n->class_id()) {
2647     case Node::Class_Allocate:
2648       expand_allocate(n->as_Allocate());
2649       break;
2650     case Node::Class_AllocateArray:
2651       expand_allocate_array(n->as_AllocateArray());
2652       break;
2653     default:
2654       assert(false, "unknown node type in macro list");
2655     }
2656     assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
2657     if (C->failing())  return true;
2658     C->print_method(PHASE_AFTER_MACRO_EXPANSION_STEP, 5, n);
2659 
2660     // Clean up the graph so we're less likely to hit the maximum node
2661     // limit
2662     _igvn.set_delay_transform(false);
2663     _igvn.optimize();
2664     if (C->failing())  return true;
2665     _igvn.set_delay_transform(true);
2666   }
2667 
2668   _igvn.set_delay_transform(false);
2669   return false;
2670 }
2671 
2672 #ifndef PRODUCT
2673 int PhaseMacroExpand::_objs_scalar_replaced_counter = 0;
2674 int PhaseMacroExpand::_monitor_objects_removed_counter = 0;
2675 int PhaseMacroExpand::_GC_barriers_removed_counter = 0;
2676 int PhaseMacroExpand::_memory_barriers_removed_counter = 0;
2677 
2678 void PhaseMacroExpand::print_statistics() {
2679   tty->print("Objects scalar replaced = %d, ", AtomicAccess::load(&_objs_scalar_replaced_counter));
2680   tty->print("Monitor objects removed = %d, ", AtomicAccess::load(&_monitor_objects_removed_counter));
2681   tty->print("GC barriers removed = %d, ", AtomicAccess::load(&_GC_barriers_removed_counter));
2682   tty->print_cr("Memory barriers removed = %d", AtomicAccess::load(&_memory_barriers_removed_counter));
2683 }
2684 
2685 int PhaseMacroExpand::count_MemBar(Compile *C) {
2686   if (!PrintOptoStatistics) {
2687     return 0;
2688   }
2689   Unique_Node_List ideal_nodes;
2690   int total = 0;
2691   ideal_nodes.map(C->live_nodes(), nullptr);
2692   ideal_nodes.push(C->root());
2693   for (uint next = 0; next < ideal_nodes.size(); ++next) {
2694     Node* n = ideal_nodes.at(next);
2695     if (n->is_MemBar()) {
2696       total++;
2697     }
2698     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2699       Node* m = n->fast_out(i);
2700       ideal_nodes.push(m);
2701     }
2702   }
2703   return total;
2704 }
2705 #endif