1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2024, 2025, Alibaba Group Holding Limited. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "gc/shared/barrierSet.hpp"
  27 #include "gc/shared/c2/barrierSetC2.hpp"
  28 #include "libadt/vectset.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "memory/resourceArea.hpp"
  31 #include "opto/ad.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/castnode.hpp"
  34 #include "opto/cfgnode.hpp"
  35 #include "opto/connode.hpp"
  36 #include "opto/loopnode.hpp"
  37 #include "opto/machnode.hpp"
  38 #include "opto/matcher.hpp"
  39 #include "opto/node.hpp"
  40 #include "opto/opcodes.hpp"
  41 #include "opto/regmask.hpp"
  42 #include "opto/rootnode.hpp"
  43 #include "opto/type.hpp"
  44 #include "utilities/copy.hpp"
  45 #include "utilities/macros.hpp"
  46 #include "utilities/powerOfTwo.hpp"
  47 #include "utilities/stringUtils.hpp"
  48 
  49 class RegMask;
  50 // #include "phase.hpp"
  51 class PhaseTransform;
  52 class PhaseGVN;
  53 
  54 // Arena we are currently building Nodes in
  55 const uint Node::NotAMachineReg = 0xffff0000;
  56 
  57 #ifndef PRODUCT
  58 extern uint nodes_created;
  59 #endif
  60 #ifdef __clang__
  61 #pragma clang diagnostic push
  62 #pragma GCC diagnostic ignored "-Wuninitialized"
  63 #endif
  64 
  65 #ifdef ASSERT
  66 
  67 //-------------------------- construct_node------------------------------------
  68 // Set a breakpoint here to identify where a particular node index is built.
  69 void Node::verify_construction() {
  70   _debug_orig = nullptr;
  71   // The decimal digits of _debug_idx are <compile_id> followed by 10 digits of <_idx>
  72   Compile* C = Compile::current();
  73   assert(C->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX");
  74   uint64_t new_debug_idx = (uint64_t)C->compile_id() * 10000000000 + _idx;
  75   set_debug_idx(new_debug_idx);
  76   if (!C->phase_optimize_finished()) {
  77     // Only check assert during parsing and optimization phase. Skip it while generating code.
  78     assert(C->live_nodes() <= C->max_node_limit(), "Live Node limit exceeded limit");
  79   }
  80   if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (uint64_t)_idx == BreakAtNode)) {
  81     tty->print_cr("BreakAtNode: _idx=%d _debug_idx=" UINT64_FORMAT, _idx, _debug_idx);
  82     BREAKPOINT;
  83   }
  84 #if OPTO_DU_ITERATOR_ASSERT
  85   _last_del = nullptr;
  86   _del_tick = 0;
  87 #endif
  88   _hash_lock = 0;
  89 }
  90 
  91 
  92 // #ifdef ASSERT ...
  93 
  94 #if OPTO_DU_ITERATOR_ASSERT
  95 void DUIterator_Common::sample(const Node* node) {
  96   _vdui     = VerifyDUIterators;
  97   _node     = node;
  98   _outcnt   = node->_outcnt;
  99   _del_tick = node->_del_tick;
 100   _last     = nullptr;
 101 }
 102 
 103 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
 104   assert(_node     == node, "consistent iterator source");
 105   assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
 106 }
 107 
 108 void DUIterator_Common::verify_resync() {
 109   // Ensure that the loop body has just deleted the last guy produced.
 110   const Node* node = _node;
 111   // Ensure that at least one copy of the last-seen edge was deleted.
 112   // Note:  It is OK to delete multiple copies of the last-seen edge.
 113   // Unfortunately, we have no way to verify that all the deletions delete
 114   // that same edge.  On this point we must use the Honor System.
 115   assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
 116   assert(node->_last_del == _last, "must have deleted the edge just produced");
 117   // We liked this deletion, so accept the resulting outcnt and tick.
 118   _outcnt   = node->_outcnt;
 119   _del_tick = node->_del_tick;
 120 }
 121 
 122 void DUIterator_Common::reset(const DUIterator_Common& that) {
 123   if (this == &that)  return;  // ignore assignment to self
 124   if (!_vdui) {
 125     // We need to initialize everything, overwriting garbage values.
 126     _last = that._last;
 127     _vdui = that._vdui;
 128   }
 129   // Note:  It is legal (though odd) for an iterator over some node x
 130   // to be reassigned to iterate over another node y.  Some doubly-nested
 131   // progress loops depend on being able to do this.
 132   const Node* node = that._node;
 133   // Re-initialize everything, except _last.
 134   _node     = node;
 135   _outcnt   = node->_outcnt;
 136   _del_tick = node->_del_tick;
 137 }
 138 
 139 void DUIterator::sample(const Node* node) {
 140   DUIterator_Common::sample(node);      // Initialize the assertion data.
 141   _refresh_tick = 0;                    // No refreshes have happened, as yet.
 142 }
 143 
 144 void DUIterator::verify(const Node* node, bool at_end_ok) {
 145   DUIterator_Common::verify(node, at_end_ok);
 146   assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
 147 }
 148 
 149 void DUIterator::verify_increment() {
 150   if (_refresh_tick & 1) {
 151     // We have refreshed the index during this loop.
 152     // Fix up _idx to meet asserts.
 153     if (_idx > _outcnt)  _idx = _outcnt;
 154   }
 155   verify(_node, true);
 156 }
 157 
 158 void DUIterator::verify_resync() {
 159   // Note:  We do not assert on _outcnt, because insertions are OK here.
 160   DUIterator_Common::verify_resync();
 161   // Make sure we are still in sync, possibly with no more out-edges:
 162   verify(_node, true);
 163 }
 164 
 165 void DUIterator::reset(const DUIterator& that) {
 166   if (this == &that)  return;  // self assignment is always a no-op
 167   assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
 168   assert(that._idx          == 0, "assign only the result of Node::outs()");
 169   assert(_idx               == that._idx, "already assigned _idx");
 170   if (!_vdui) {
 171     // We need to initialize everything, overwriting garbage values.
 172     sample(that._node);
 173   } else {
 174     DUIterator_Common::reset(that);
 175     if (_refresh_tick & 1) {
 176       _refresh_tick++;                  // Clear the "was refreshed" flag.
 177     }
 178     assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
 179   }
 180 }
 181 
 182 void DUIterator::refresh() {
 183   DUIterator_Common::sample(_node);     // Re-fetch assertion data.
 184   _refresh_tick |= 1;                   // Set the "was refreshed" flag.
 185 }
 186 
 187 void DUIterator::verify_finish() {
 188   // If the loop has killed the node, do not require it to re-run.
 189   if (_node->_outcnt == 0)  _refresh_tick &= ~1;
 190   // If this assert triggers, it means that a loop used refresh_out_pos
 191   // to re-synch an iteration index, but the loop did not correctly
 192   // re-run itself, using a "while (progress)" construct.
 193   // This iterator enforces the rule that you must keep trying the loop
 194   // until it "runs clean" without any need for refreshing.
 195   assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
 196 }
 197 
 198 
 199 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
 200   DUIterator_Common::verify(node, at_end_ok);
 201   Node** out    = node->_out;
 202   uint   cnt    = node->_outcnt;
 203   assert(cnt == _outcnt, "no insertions allowed");
 204   assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
 205   // This last check is carefully designed to work for NO_OUT_ARRAY.
 206 }
 207 
 208 void DUIterator_Fast::verify_limit() {
 209   const Node* node = _node;
 210   verify(node, true);
 211   assert(_outp == node->_out + node->_outcnt, "limit still correct");
 212 }
 213 
 214 void DUIterator_Fast::verify_resync() {
 215   const Node* node = _node;
 216   if (_outp == node->_out + _outcnt) {
 217     // Note that the limit imax, not the pointer i, gets updated with the
 218     // exact count of deletions.  (For the pointer it's always "--i".)
 219     assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
 220     // This is a limit pointer, with a name like "imax".
 221     // Fudge the _last field so that the common assert will be happy.
 222     _last = (Node*) node->_last_del;
 223     DUIterator_Common::verify_resync();
 224   } else {
 225     assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
 226     // A normal internal pointer.
 227     DUIterator_Common::verify_resync();
 228     // Make sure we are still in sync, possibly with no more out-edges:
 229     verify(node, true);
 230   }
 231 }
 232 
 233 void DUIterator_Fast::verify_relimit(uint n) {
 234   const Node* node = _node;
 235   assert((int)n > 0, "use imax -= n only with a positive count");
 236   // This must be a limit pointer, with a name like "imax".
 237   assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
 238   // The reported number of deletions must match what the node saw.
 239   assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
 240   // Fudge the _last field so that the common assert will be happy.
 241   _last = (Node*) node->_last_del;
 242   DUIterator_Common::verify_resync();
 243 }
 244 
 245 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
 246   assert(_outp              == that._outp, "already assigned _outp");
 247   DUIterator_Common::reset(that);
 248 }
 249 
 250 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
 251   // at_end_ok means the _outp is allowed to underflow by 1
 252   _outp += at_end_ok;
 253   DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
 254   _outp -= at_end_ok;
 255   assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
 256 }
 257 
 258 void DUIterator_Last::verify_limit() {
 259   // Do not require the limit address to be resynched.
 260   //verify(node, true);
 261   assert(_outp == _node->_out, "limit still correct");
 262 }
 263 
 264 void DUIterator_Last::verify_step(uint num_edges) {
 265   assert((int)num_edges > 0, "need non-zero edge count for loop progress");
 266   _outcnt   -= num_edges;
 267   _del_tick += num_edges;
 268   // Make sure we are still in sync, possibly with no more out-edges:
 269   const Node* node = _node;
 270   verify(node, true);
 271   assert(node->_last_del == _last, "must have deleted the edge just produced");
 272 }
 273 
 274 #endif //OPTO_DU_ITERATOR_ASSERT
 275 
 276 
 277 #endif //ASSERT
 278 
 279 
 280 // This constant used to initialize _out may be any non-null value.
 281 // The value null is reserved for the top node only.
 282 #define NO_OUT_ARRAY ((Node**)-1)
 283 
 284 // Out-of-line code from node constructors.
 285 // Executed only when extra debug info. is being passed around.
 286 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
 287   C->set_node_notes_at(idx, nn);
 288 }
 289 
 290 // Shared initialization code.
 291 inline int Node::Init(int req) {
 292   Compile* C = Compile::current();
 293   int idx = C->next_unique();
 294   NOT_PRODUCT(_igv_idx = C->next_igv_idx());
 295 
 296   // Allocate memory for the necessary number of edges.
 297   if (req > 0) {
 298     // Allocate space for _in array to have double alignment.
 299     _in = (Node **) ((char *) (C->node_arena()->AmallocWords(req * sizeof(void*))));
 300   }
 301   // If there are default notes floating around, capture them:
 302   Node_Notes* nn = C->default_node_notes();
 303   if (nn != nullptr)  init_node_notes(C, idx, nn);
 304 
 305   // Note:  At this point, C is dead,
 306   // and we begin to initialize the new Node.
 307 
 308   _cnt = _max = req;
 309   _outcnt = _outmax = 0;
 310   _class_id = Class_Node;
 311   _flags = 0;
 312   _out = NO_OUT_ARRAY;
 313   return idx;
 314 }
 315 
 316 //------------------------------Node-------------------------------------------
 317 // Create a Node, with a given number of required edges.
 318 Node::Node(uint req)
 319   : _idx(Init(req))
 320 #ifdef ASSERT
 321   , _parse_idx(_idx)
 322 #endif
 323 {
 324   assert( req < Compile::current()->max_node_limit() - NodeLimitFudgeFactor, "Input limit exceeded" );
 325   DEBUG_ONLY( verify_construction() );
 326   NOT_PRODUCT(nodes_created++);
 327   if (req == 0) {
 328     _in = nullptr;
 329   } else {
 330     Node** to = _in;
 331     for(uint i = 0; i < req; i++) {
 332       to[i] = nullptr;
 333     }
 334   }
 335 }
 336 
 337 //------------------------------Node-------------------------------------------
 338 Node::Node(Node *n0)
 339   : _idx(Init(1))
 340 #ifdef ASSERT
 341   , _parse_idx(_idx)
 342 #endif
 343 {
 344   DEBUG_ONLY( verify_construction() );
 345   NOT_PRODUCT(nodes_created++);
 346   assert( is_not_dead(n0), "can not use dead node");
 347   _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this);
 348 }
 349 
 350 //------------------------------Node-------------------------------------------
 351 Node::Node(Node *n0, Node *n1)
 352   : _idx(Init(2))
 353 #ifdef ASSERT
 354   , _parse_idx(_idx)
 355 #endif
 356 {
 357   DEBUG_ONLY( verify_construction() );
 358   NOT_PRODUCT(nodes_created++);
 359   assert( is_not_dead(n0), "can not use dead node");
 360   assert( is_not_dead(n1), "can not use dead node");
 361   _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this);
 362   _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this);
 363 }
 364 
 365 //------------------------------Node-------------------------------------------
 366 Node::Node(Node *n0, Node *n1, Node *n2)
 367   : _idx(Init(3))
 368 #ifdef ASSERT
 369   , _parse_idx(_idx)
 370 #endif
 371 {
 372   DEBUG_ONLY( verify_construction() );
 373   NOT_PRODUCT(nodes_created++);
 374   assert( is_not_dead(n0), "can not use dead node");
 375   assert( is_not_dead(n1), "can not use dead node");
 376   assert( is_not_dead(n2), "can not use dead node");
 377   _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this);
 378   _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this);
 379   _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this);
 380 }
 381 
 382 //------------------------------Node-------------------------------------------
 383 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
 384   : _idx(Init(4))
 385 #ifdef ASSERT
 386   , _parse_idx(_idx)
 387 #endif
 388 {
 389   DEBUG_ONLY( verify_construction() );
 390   NOT_PRODUCT(nodes_created++);
 391   assert( is_not_dead(n0), "can not use dead node");
 392   assert( is_not_dead(n1), "can not use dead node");
 393   assert( is_not_dead(n2), "can not use dead node");
 394   assert( is_not_dead(n3), "can not use dead node");
 395   _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this);
 396   _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this);
 397   _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this);
 398   _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this);
 399 }
 400 
 401 //------------------------------Node-------------------------------------------
 402 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
 403   : _idx(Init(5))
 404 #ifdef ASSERT
 405   , _parse_idx(_idx)
 406 #endif
 407 {
 408   DEBUG_ONLY( verify_construction() );
 409   NOT_PRODUCT(nodes_created++);
 410   assert( is_not_dead(n0), "can not use dead node");
 411   assert( is_not_dead(n1), "can not use dead node");
 412   assert( is_not_dead(n2), "can not use dead node");
 413   assert( is_not_dead(n3), "can not use dead node");
 414   assert( is_not_dead(n4), "can not use dead node");
 415   _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this);
 416   _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this);
 417   _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this);
 418   _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this);
 419   _in[4] = n4; if (n4 != nullptr) n4->add_out((Node *)this);
 420 }
 421 
 422 //------------------------------Node-------------------------------------------
 423 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 424                      Node *n4, Node *n5)
 425   : _idx(Init(6))
 426 #ifdef ASSERT
 427   , _parse_idx(_idx)
 428 #endif
 429 {
 430   DEBUG_ONLY( verify_construction() );
 431   NOT_PRODUCT(nodes_created++);
 432   assert( is_not_dead(n0), "can not use dead node");
 433   assert( is_not_dead(n1), "can not use dead node");
 434   assert( is_not_dead(n2), "can not use dead node");
 435   assert( is_not_dead(n3), "can not use dead node");
 436   assert( is_not_dead(n4), "can not use dead node");
 437   assert( is_not_dead(n5), "can not use dead node");
 438   _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this);
 439   _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this);
 440   _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this);
 441   _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this);
 442   _in[4] = n4; if (n4 != nullptr) n4->add_out((Node *)this);
 443   _in[5] = n5; if (n5 != nullptr) n5->add_out((Node *)this);
 444 }
 445 
 446 //------------------------------Node-------------------------------------------
 447 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 448                      Node *n4, Node *n5, Node *n6)
 449   : _idx(Init(7))
 450 #ifdef ASSERT
 451   , _parse_idx(_idx)
 452 #endif
 453 {
 454   DEBUG_ONLY( verify_construction() );
 455   NOT_PRODUCT(nodes_created++);
 456   assert( is_not_dead(n0), "can not use dead node");
 457   assert( is_not_dead(n1), "can not use dead node");
 458   assert( is_not_dead(n2), "can not use dead node");
 459   assert( is_not_dead(n3), "can not use dead node");
 460   assert( is_not_dead(n4), "can not use dead node");
 461   assert( is_not_dead(n5), "can not use dead node");
 462   assert( is_not_dead(n6), "can not use dead node");
 463   _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this);
 464   _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this);
 465   _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this);
 466   _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this);
 467   _in[4] = n4; if (n4 != nullptr) n4->add_out((Node *)this);
 468   _in[5] = n5; if (n5 != nullptr) n5->add_out((Node *)this);
 469   _in[6] = n6; if (n6 != nullptr) n6->add_out((Node *)this);
 470 }
 471 
 472 #ifdef __clang__
 473 #pragma clang diagnostic pop
 474 #endif
 475 
 476 
 477 //------------------------------clone------------------------------------------
 478 // Clone a Node.
 479 Node *Node::clone() const {
 480   Compile* C = Compile::current();
 481   uint s = size_of();           // Size of inherited Node
 482   Node *n = (Node*)C->node_arena()->AmallocWords(size_of() + _max*sizeof(Node*));
 483   Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
 484   // Set the new input pointer array
 485   n->_in = (Node**)(((char*)n)+s);
 486   // Cannot share the old output pointer array, so kill it
 487   n->_out = NO_OUT_ARRAY;
 488   // And reset the counters to 0
 489   n->_outcnt = 0;
 490   n->_outmax = 0;
 491   // Unlock this guy, since he is not in any hash table.
 492   DEBUG_ONLY(n->_hash_lock = 0);
 493   // Walk the old node's input list to duplicate its edges
 494   uint i;
 495   for( i = 0; i < len(); i++ ) {
 496     Node *x = in(i);
 497     n->_in[i] = x;
 498     if (x != nullptr) x->add_out(n);
 499   }
 500   if (is_macro()) {
 501     C->add_macro_node(n);
 502   }
 503   if (is_expensive()) {
 504     C->add_expensive_node(n);
 505   }
 506   if (for_post_loop_opts_igvn()) {
 507     // Don't add cloned node to Compile::_for_post_loop_opts_igvn list automatically.
 508     // If it is applicable, it will happen anyway when the cloned node is registered with IGVN.
 509     n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
 510   }
 511   if (for_merge_stores_igvn()) {
 512     // Don't add cloned node to Compile::_for_merge_stores_igvn list automatically.
 513     // If it is applicable, it will happen anyway when the cloned node is registered with IGVN.
 514     n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn);
 515   }
 516   if (n->is_ParsePredicate()) {
 517     C->add_parse_predicate(n->as_ParsePredicate());
 518   }
 519   if (n->is_OpaqueTemplateAssertionPredicate()) {
 520     C->add_template_assertion_predicate_opaque(n->as_OpaqueTemplateAssertionPredicate());
 521   }
 522 
 523   n->set_idx(C->next_unique()); // Get new unique index as well
 524   NOT_PRODUCT(n->_igv_idx = C->next_igv_idx());
 525   DEBUG_ONLY( n->verify_construction() );
 526   NOT_PRODUCT(nodes_created++);
 527   // Do not patch over the debug_idx of a clone, because it makes it
 528   // impossible to break on the clone's moment of creation.
 529   //DEBUG_ONLY( n->set_debug_idx( debug_idx() ) );
 530 
 531   C->copy_node_notes_to(n, (Node*) this);
 532 
 533   // MachNode clone
 534   uint nopnds;
 535   if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
 536     MachNode *mach  = n->as_Mach();
 537     MachNode *mthis = this->as_Mach();
 538     // Get address of _opnd_array.
 539     // It should be the same offset since it is the clone of this node.
 540     MachOper **from = mthis->_opnds;
 541     MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
 542                     pointer_delta((const void*)from,
 543                                   (const void*)(&mthis->_opnds), 1));
 544     mach->_opnds = to;
 545     for ( uint i = 0; i < nopnds; ++i ) {
 546       to[i] = from[i]->clone();
 547     }
 548   }
 549   if (this->is_MachProj()) {
 550     // MachProjNodes contain register masks that may contain pointers to
 551     // externally allocated memory. Make sure to use a proper constructor
 552     // instead of just shallowly copying.
 553     MachProjNode* mach = n->as_MachProj();
 554     MachProjNode* mthis = this->as_MachProj();
 555     new (&mach->_rout) RegMask(mthis->_rout);
 556   }
 557   if (n->is_Call()) {
 558     // CallGenerator is linked to the original node.
 559     CallGenerator* cg = n->as_Call()->generator();
 560     if (cg != nullptr) {
 561       CallGenerator* cloned_cg = cg->with_call_node(n->as_Call());
 562       n->as_Call()->set_generator(cloned_cg);
 563     }
 564   }
 565   if (n->is_SafePoint()) {
 566     // Scalar replacement and macro expansion might modify the JVMState.
 567     // Clone it to make sure it's not shared between SafePointNodes.
 568     n->as_SafePoint()->clone_jvms(C);
 569     n->as_SafePoint()->clone_replaced_nodes();
 570   }
 571   Compile::current()->record_modified_node(n);
 572   return n;                     // Return the clone
 573 }
 574 
 575 //---------------------------setup_is_top--------------------------------------
 576 // Call this when changing the top node, to reassert the invariants
 577 // required by Node::is_top.  See Compile::set_cached_top_node.
 578 void Node::setup_is_top() {
 579   if (this == (Node*)Compile::current()->top()) {
 580     // This node has just become top.  Kill its out array.
 581     _outcnt = _outmax = 0;
 582     _out = nullptr;                           // marker value for top
 583     assert(is_top(), "must be top");
 584   } else {
 585     if (_out == nullptr)  _out = NO_OUT_ARRAY;
 586     assert(!is_top(), "must not be top");
 587   }
 588 }
 589 
 590 //------------------------------~Node------------------------------------------
 591 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 592 void Node::destruct(PhaseValues* phase) {
 593   Compile* compile = (phase != nullptr) ? phase->C : Compile::current();
 594   if (phase != nullptr && phase->is_IterGVN()) {
 595     phase->is_IterGVN()->_worklist.remove(this);
 596   }
 597   // If this is the most recently created node, reclaim its index. Otherwise,
 598   // record the node as dead to keep liveness information accurate.
 599   if ((uint)_idx+1 == compile->unique()) {
 600     compile->set_unique(compile->unique()-1);
 601   } else {
 602     compile->record_dead_node(_idx);
 603   }
 604   // Clear debug info:
 605   Node_Notes* nn = compile->node_notes_at(_idx);
 606   if (nn != nullptr)  nn->clear();
 607   // Walk the input array, freeing the corresponding output edges
 608   _cnt = _max;  // forget req/prec distinction
 609   uint i;
 610   for( i = 0; i < _max; i++ ) {
 611     set_req(i, nullptr);
 612     //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
 613   }
 614   assert(outcnt() == 0, "deleting a node must not leave a dangling use");
 615 
 616   if (is_macro()) {
 617     compile->remove_macro_node(this);
 618   }
 619   if (is_expensive()) {
 620     compile->remove_expensive_node(this);
 621   }
 622   if (is_OpaqueTemplateAssertionPredicate()) {
 623     compile->remove_template_assertion_predicate_opaque(as_OpaqueTemplateAssertionPredicate());
 624   }
 625   if (is_ParsePredicate()) {
 626     compile->remove_parse_predicate(as_ParsePredicate());
 627   }
 628   if (for_post_loop_opts_igvn()) {
 629     compile->remove_from_post_loop_opts_igvn(this);
 630   }
 631   if (for_merge_stores_igvn()) {
 632     compile->remove_from_merge_stores_igvn(this);
 633   }
 634 
 635   if (is_SafePoint()) {
 636     as_SafePoint()->delete_replaced_nodes();
 637 
 638     if (is_CallStaticJava()) {
 639       compile->remove_unstable_if_trap(as_CallStaticJava(), false);
 640     }
 641   }
 642 
 643   // See if the input array was allocated just prior to the object
 644   int edge_size = _max*sizeof(void*);
 645   int out_edge_size = _outmax*sizeof(void*);
 646   char *in_array = ((char*)_in);
 647   char *edge_end = in_array + edge_size;
 648   char *out_array = (char*)(_out == NO_OUT_ARRAY? nullptr: _out);
 649   int node_size = size_of();
 650 
 651 #ifdef ASSERT
 652   // We will not actually delete the storage, but we'll make the node unusable.
 653   compile->remove_modified_node(this);
 654   *(address*)this = badAddress;  // smash the C++ vtbl, probably
 655   _in = _out = (Node**) badAddress;
 656   _max = _cnt = _outmax = _outcnt = 0;
 657 #endif
 658 
 659   // Free the output edge array
 660   if (out_edge_size > 0) {
 661     compile->node_arena()->Afree(out_array, out_edge_size);
 662   }
 663 
 664   // Free the input edge array and the node itself
 665   if( edge_end == (char*)this ) {
 666     // It was; free the input array and object all in one hit
 667 #ifndef ASSERT
 668     compile->node_arena()->Afree(in_array, edge_size+node_size);
 669 #endif
 670   } else {
 671     // Free just the input array
 672     compile->node_arena()->Afree(in_array, edge_size);
 673 
 674     // Free just the object
 675 #ifndef ASSERT
 676     compile->node_arena()->Afree(this, node_size);
 677 #endif
 678   }
 679 }
 680 
 681 // Resize input or output array to grow it to the next larger power-of-2 bigger
 682 // than len.
 683 void Node::resize_array(Node**& array, node_idx_t& max_size, uint len, bool needs_clearing) {
 684   Arena* arena = Compile::current()->node_arena();
 685   uint new_max = max_size;
 686   if (new_max == 0) {
 687     max_size = 4;
 688     array = (Node**)arena->Amalloc(4 * sizeof(Node*));
 689     if (needs_clearing) {
 690       array[0] = nullptr;
 691       array[1] = nullptr;
 692       array[2] = nullptr;
 693       array[3] = nullptr;
 694     }
 695     return;
 696   }
 697   new_max = next_power_of_2(len);
 698   assert(needs_clearing || (array != nullptr && array != NO_OUT_ARRAY), "out must have sensible value");
 699   array = (Node**)arena->Arealloc(array, max_size * sizeof(Node*), new_max * sizeof(Node*));
 700   if (needs_clearing) {
 701     Copy::zero_to_bytes(&array[max_size], (new_max - max_size) * sizeof(Node*)); // null all new space
 702   }
 703   max_size = new_max;               // Record new max length
 704   // This assertion makes sure that Node::_max is wide enough to
 705   // represent the numerical value of new_max.
 706   assert(max_size > len, "int width of _max or _outmax is too small");
 707 }
 708 
 709 //------------------------------grow-------------------------------------------
 710 // Grow the input array, making space for more edges
 711 void Node::grow(uint len) {
 712   resize_array(_in, _max, len, true);
 713 }
 714 
 715 //-----------------------------out_grow----------------------------------------
 716 // Grow the input array, making space for more edges
 717 void Node::out_grow(uint len) {
 718   assert(!is_top(), "cannot grow a top node's out array");
 719   resize_array(_out, _outmax, len, false);
 720 }
 721 
 722 #ifdef ASSERT
 723 //------------------------------is_dead----------------------------------------
 724 bool Node::is_dead() const {
 725   // Mach and pinch point nodes may look like dead.
 726   if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
 727     return false;
 728   for( uint i = 0; i < _max; i++ )
 729     if( _in[i] != nullptr )
 730       return false;
 731   return true;
 732 }
 733 
 734 bool Node::is_not_dead(const Node* n) {
 735   return n == nullptr || !PhaseIterGVN::is_verify_def_use() || !(n->is_dead());
 736 }
 737 
 738 bool Node::is_reachable_from_root() const {
 739   ResourceMark rm;
 740   Unique_Node_List wq;
 741   wq.push((Node*)this);
 742   RootNode* root = Compile::current()->root();
 743   for (uint i = 0; i < wq.size(); i++) {
 744     Node* m = wq.at(i);
 745     if (m == root) {
 746       return true;
 747     }
 748     for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
 749       Node* u = m->fast_out(j);
 750       wq.push(u);
 751     }
 752   }
 753   return false;
 754 }
 755 #endif
 756 
 757 //------------------------------is_unreachable---------------------------------
 758 bool Node::is_unreachable(PhaseIterGVN &igvn) const {
 759   assert(!is_Mach(), "doesn't work with MachNodes");
 760   return outcnt() == 0 || igvn.type(this) == Type::TOP || (in(0) != nullptr && in(0)->is_top());
 761 }
 762 
 763 //------------------------------add_req----------------------------------------
 764 // Add a new required input at the end
 765 void Node::add_req( Node *n ) {
 766   assert( is_not_dead(n), "can not use dead node");
 767 
 768   // Look to see if I can move precedence down one without reallocating
 769   if( (_cnt >= _max) || (in(_max-1) != nullptr) )
 770     grow( _max+1 );
 771 
 772   // Find a precedence edge to move
 773   if( in(_cnt) != nullptr ) {   // Next precedence edge is busy?
 774     uint i;
 775     for( i=_cnt; i<_max; i++ )
 776       if( in(i) == nullptr )    // Find the null at end of prec edge list
 777         break;                  // There must be one, since we grew the array
 778     _in[i] = in(_cnt);          // Move prec over, making space for req edge
 779   }
 780   _in[_cnt++] = n;            // Stuff over old prec edge
 781   if (n != nullptr) n->add_out((Node *)this);
 782   Compile::current()->record_modified_node(this);
 783 }
 784 
 785 //---------------------------add_req_batch-------------------------------------
 786 // Add a new required input at the end
 787 void Node::add_req_batch( Node *n, uint m ) {
 788   assert( is_not_dead(n), "can not use dead node");
 789   // check various edge cases
 790   if ((int)m <= 1) {
 791     assert((int)m >= 0, "oob");
 792     if (m != 0)  add_req(n);
 793     return;
 794   }
 795 
 796   // Look to see if I can move precedence down one without reallocating
 797   if( (_cnt+m) > _max || _in[_max-m] )
 798     grow( _max+m );
 799 
 800   // Find a precedence edge to move
 801   if( _in[_cnt] != nullptr ) {  // Next precedence edge is busy?
 802     uint i;
 803     for( i=_cnt; i<_max; i++ )
 804       if( _in[i] == nullptr )   // Find the null at end of prec edge list
 805         break;                  // There must be one, since we grew the array
 806     // Slide all the precs over by m positions (assume #prec << m).
 807     Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
 808   }
 809 
 810   // Stuff over the old prec edges
 811   for(uint i=0; i<m; i++ ) {
 812     _in[_cnt++] = n;
 813   }
 814 
 815   // Insert multiple out edges on the node.
 816   if (n != nullptr && !n->is_top()) {
 817     for(uint i=0; i<m; i++ ) {
 818       n->add_out((Node *)this);
 819     }
 820   }
 821   Compile::current()->record_modified_node(this);
 822 }
 823 
 824 //------------------------------del_req----------------------------------------
 825 // Delete the required edge and compact the edge array
 826 void Node::del_req( uint idx ) {
 827   assert( idx < _cnt, "oob");
 828   assert( !VerifyHashTableKeys || _hash_lock == 0,
 829           "remove node from hash table before modifying it");
 830   // First remove corresponding def-use edge
 831   Node *n = in(idx);
 832   if (n != nullptr) n->del_out((Node *)this);
 833   _in[idx] = in(--_cnt); // Compact the array
 834   // Avoid spec violation: Gap in prec edges.
 835   close_prec_gap_at(_cnt);
 836   Compile::current()->record_modified_node(this);
 837 }
 838 
 839 //------------------------------del_req_ordered--------------------------------
 840 // Delete the required edge and compact the edge array with preserved order
 841 void Node::del_req_ordered( uint idx ) {
 842   assert( idx < _cnt, "oob");
 843   assert( !VerifyHashTableKeys || _hash_lock == 0,
 844           "remove node from hash table before modifying it");
 845   // First remove corresponding def-use edge
 846   Node *n = in(idx);
 847   if (n != nullptr) n->del_out((Node *)this);
 848   if (idx < --_cnt) {    // Not last edge ?
 849     Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx)*sizeof(Node*)));
 850   }
 851   // Avoid spec violation: Gap in prec edges.
 852   close_prec_gap_at(_cnt);
 853   Compile::current()->record_modified_node(this);
 854 }
 855 
 856 //------------------------------ins_req----------------------------------------
 857 // Insert a new required input at the end
 858 void Node::ins_req( uint idx, Node *n ) {
 859   assert( is_not_dead(n), "can not use dead node");
 860   add_req(nullptr);                // Make space
 861   assert( idx < _max, "Must have allocated enough space");
 862   // Slide over
 863   if(_cnt-idx-1 > 0) {
 864     Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
 865   }
 866   _in[idx] = n;                            // Stuff over old required edge
 867   if (n != nullptr) n->add_out((Node *)this); // Add reciprocal def-use edge
 868   Compile::current()->record_modified_node(this);
 869 }
 870 
 871 //-----------------------------find_edge---------------------------------------
 872 int Node::find_edge(Node* n) {
 873   for (uint i = 0; i < len(); i++) {
 874     if (_in[i] == n)  return i;
 875   }
 876   return -1;
 877 }
 878 
 879 //----------------------------replace_edge-------------------------------------
 880 int Node::replace_edge(Node* old, Node* neww, PhaseGVN* gvn) {
 881   if (old == neww)  return 0;  // nothing to do
 882   uint nrep = 0;
 883   for (uint i = 0; i < len(); i++) {
 884     if (in(i) == old) {
 885       if (i < req()) {
 886         if (gvn != nullptr) {
 887           set_req_X(i, neww, gvn);
 888         } else {
 889           set_req(i, neww);
 890         }
 891       } else {
 892         assert(gvn == nullptr || gvn->is_IterGVN() == nullptr, "no support for igvn here");
 893         assert(find_prec_edge(neww) == -1, "spec violation: duplicated prec edge (node %d -> %d)", _idx, neww->_idx);
 894         set_prec(i, neww);
 895       }
 896       nrep++;
 897     }
 898   }
 899   return nrep;
 900 }
 901 
 902 /**
 903  * Replace input edges in the range pointing to 'old' node.
 904  */
 905 int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end, PhaseGVN* gvn) {
 906   if (old == neww)  return 0;  // nothing to do
 907   uint nrep = 0;
 908   for (int i = start; i < end; i++) {
 909     if (in(i) == old) {
 910       set_req_X(i, neww, gvn);
 911       nrep++;
 912     }
 913   }
 914   return nrep;
 915 }
 916 
 917 //-------------------------disconnect_inputs-----------------------------------
 918 // null out all inputs to eliminate incoming Def-Use edges.
 919 void Node::disconnect_inputs(Compile* C) {
 920   // the layout of Node::_in
 921   // r: a required input, null is allowed
 922   // p: a precedence, null values are all at the end
 923   // -----------------------------------
 924   // |r|...|r|p|...|p|null|...|null|
 925   //         |                     |
 926   //         req()                 len()
 927   // -----------------------------------
 928   for (uint i = 0; i < req(); ++i) {
 929     if (in(i) != nullptr) {
 930       set_req(i, nullptr);
 931     }
 932   }
 933 
 934   // Remove precedence edges if any exist
 935   // Note: Safepoints may have precedence edges, even during parsing
 936   for (uint i = len(); i > req(); ) {
 937     rm_prec(--i);  // no-op if _in[i] is null
 938   }
 939 
 940 #ifdef ASSERT
 941   // sanity check
 942   for (uint i = 0; i < len(); ++i) {
 943     assert(_in[i] == nullptr, "disconnect_inputs() failed!");
 944   }
 945 #endif
 946 
 947   // Node::destruct requires all out edges be deleted first
 948   // DEBUG_ONLY(destruct();)   // no reuse benefit expected
 949   C->record_dead_node(_idx);
 950 }
 951 
 952 //-----------------------------uncast---------------------------------------
 953 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
 954 // Strip away casting.  (It is depth-limited.)
 955 // Optionally, keep casts with dependencies.
 956 Node* Node::uncast(bool keep_deps) const {
 957   // Should be inline:
 958   //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
 959   if (is_ConstraintCast()) {
 960     return uncast_helper(this, keep_deps);
 961   } else {
 962     return (Node*) this;
 963   }
 964 }
 965 
 966 // Find out of current node that matches opcode.
 967 Node* Node::find_out_with(int opcode) {
 968   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 969     Node* use = fast_out(i);
 970     if (use->Opcode() == opcode) {
 971       return use;
 972     }
 973   }
 974   return nullptr;
 975 }
 976 
 977 // Return true if the current node has an out that matches opcode.
 978 bool Node::has_out_with(int opcode) {
 979   return (find_out_with(opcode) != nullptr);
 980 }
 981 
 982 // Return true if the current node has an out that matches any of the opcodes.
 983 bool Node::has_out_with(int opcode1, int opcode2, int opcode3, int opcode4) {
 984   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 985       int opcode = fast_out(i)->Opcode();
 986       if (opcode == opcode1 || opcode == opcode2 || opcode == opcode3 || opcode == opcode4) {
 987         return true;
 988       }
 989   }
 990   return false;
 991 }
 992 
 993 
 994 //---------------------------uncast_helper-------------------------------------
 995 Node* Node::uncast_helper(const Node* p, bool keep_deps) {
 996 #ifdef ASSERT
 997   uint depth_count = 0;
 998   const Node* orig_p = p;
 999 #endif
1000 
1001   while (true) {
1002 #ifdef ASSERT
1003     if (depth_count >= K) {
1004       orig_p->dump(4);
1005       if (p != orig_p)
1006         p->dump(1);
1007     }
1008     assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
1009 #endif
1010     if (p == nullptr || p->req() != 2) {
1011       break;
1012     } else if (p->is_ConstraintCast()) {
1013       if (keep_deps && p->as_ConstraintCast()->carry_dependency()) {
1014         break; // stop at casts with dependencies
1015       }
1016       p = p->in(1);
1017     } else {
1018       break;
1019     }
1020   }
1021   return (Node*) p;
1022 }
1023 
1024 //------------------------------add_prec---------------------------------------
1025 // Add a new precedence input.  Precedence inputs are unordered, with
1026 // duplicates removed and nulls packed down at the end.
1027 void Node::add_prec( Node *n ) {
1028   assert( is_not_dead(n), "can not use dead node");
1029 
1030   // Check for null at end
1031   if( _cnt >= _max || in(_max-1) )
1032     grow( _max+1 );
1033 
1034   // Find a precedence edge to move
1035   uint i = _cnt;
1036   while( in(i) != nullptr ) {
1037     if (in(i) == n) return; // Avoid spec violation: duplicated prec edge.
1038     i++;
1039   }
1040   _in[i] = n;                                   // Stuff prec edge over null
1041   if ( n != nullptr) n->add_out((Node *)this);  // Add mirror edge
1042 
1043 #ifdef ASSERT
1044   while ((++i)<_max) { assert(_in[i] == nullptr, "spec violation: Gap in prec edges (node %d)", _idx); }
1045 #endif
1046   Compile::current()->record_modified_node(this);
1047 }
1048 
1049 //------------------------------rm_prec----------------------------------------
1050 // Remove a precedence input.  Precedence inputs are unordered, with
1051 // duplicates removed and nulls packed down at the end.
1052 void Node::rm_prec( uint j ) {
1053   assert(j < _max, "oob: i=%d, _max=%d", j, _max);
1054   assert(j >= _cnt, "not a precedence edge");
1055   if (_in[j] == nullptr) return;   // Avoid spec violation: Gap in prec edges.
1056   _in[j]->del_out((Node *)this);
1057   close_prec_gap_at(j);
1058   Compile::current()->record_modified_node(this);
1059 }
1060 
1061 //------------------------------size_of----------------------------------------
1062 uint Node::size_of() const { return sizeof(*this); }
1063 
1064 //------------------------------ideal_reg--------------------------------------
1065 uint Node::ideal_reg() const { return 0; }
1066 
1067 //------------------------------jvms-------------------------------------------
1068 JVMState* Node::jvms() const { return nullptr; }
1069 
1070 #ifdef ASSERT
1071 //------------------------------jvms-------------------------------------------
1072 bool Node::verify_jvms(const JVMState* using_jvms) const {
1073   for (JVMState* jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) {
1074     if (jvms == using_jvms)  return true;
1075   }
1076   return false;
1077 }
1078 
1079 //------------------------------init_NodeProperty------------------------------
1080 void Node::init_NodeProperty() {
1081   assert(_max_classes <= max_juint, "too many NodeProperty classes");
1082   assert(max_flags() <= max_juint, "too many NodeProperty flags");
1083 }
1084 
1085 //-----------------------------max_flags---------------------------------------
1086 juint Node::max_flags() {
1087   return (PD::_last_flag << 1) - 1; // allow flags combination
1088 }
1089 #endif
1090 
1091 //------------------------------format-----------------------------------------
1092 // Print as assembly
1093 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
1094 //------------------------------emit-------------------------------------------
1095 // Emit bytes using C2_MacroAssembler
1096 void Node::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {}
1097 //------------------------------size-------------------------------------------
1098 // Size of instruction in bytes
1099 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
1100 
1101 //------------------------------CFG Construction-------------------------------
1102 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
1103 // Goto and Return.
1104 const Node *Node::is_block_proj() const { return nullptr; }
1105 
1106 // Minimum guaranteed type
1107 const Type *Node::bottom_type() const { return Type::BOTTOM; }
1108 
1109 
1110 //------------------------------raise_bottom_type------------------------------
1111 // Get the worst-case Type output for this Node.
1112 void Node::raise_bottom_type(const Type* new_type) {
1113   if (is_Type()) {
1114     TypeNode *n = this->as_Type();
1115     if (VerifyAliases) {
1116       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1117     }
1118     n->set_type(new_type);
1119   } else if (is_Load()) {
1120     LoadNode *n = this->as_Load();
1121     if (VerifyAliases) {
1122       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1123     }
1124     n->set_type(new_type);
1125   }
1126 }
1127 
1128 //------------------------------Identity---------------------------------------
1129 // Return a node that the given node is equivalent to.
1130 Node* Node::Identity(PhaseGVN* phase) {
1131   return this;                  // Default to no identities
1132 }
1133 
1134 //------------------------------Value------------------------------------------
1135 // Compute a new Type for a node using the Type of the inputs.
1136 const Type* Node::Value(PhaseGVN* phase) const {
1137   return bottom_type();         // Default to worst-case Type
1138 }
1139 
1140 //------------------------------Ideal------------------------------------------
1141 //
1142 // 'Idealize' the graph rooted at this Node.
1143 //
1144 // In order to be efficient and flexible there are some subtle invariants
1145 // these Ideal calls need to hold.  Running with '-XX:VerifyIterativeGVN=1' checks
1146 // these invariants, although its too slow to have on by default.  If you are
1147 // hacking an Ideal call, be sure to test with '-XX:VerifyIterativeGVN=1'
1148 //
1149 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
1150 // pointer.  If ANY change is made, it must return the root of the reshaped
1151 // graph - even if the root is the same Node.  Example: swapping the inputs
1152 // to an AddINode gives the same answer and same root, but you still have to
1153 // return the 'this' pointer instead of null.
1154 //
1155 // You cannot return an OLD Node, except for the 'this' pointer.  Use the
1156 // Identity call to return an old Node; basically if Identity can find
1157 // another Node have the Ideal call make no change and return null.
1158 // Example: AddINode::Ideal must check for add of zero; in this case it
1159 // returns null instead of doing any graph reshaping.
1160 //
1161 // You cannot modify any old Nodes except for the 'this' pointer.  Due to
1162 // sharing there may be other users of the old Nodes relying on their current
1163 // semantics.  Modifying them will break the other users.
1164 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
1165 // "X+3" unchanged in case it is shared.
1166 //
1167 // If you modify the 'this' pointer's inputs, you should use
1168 // 'set_req'.  If you are making a new Node (either as the new root or
1169 // some new internal piece) you may use 'init_req' to set the initial
1170 // value.  You can make a new Node with either 'new' or 'clone'.  In
1171 // either case, def-use info is correctly maintained.
1172 //
1173 // Example: reshape "(X+3)+4" into "X+7":
1174 //    set_req(1, in(1)->in(1));
1175 //    set_req(2, phase->intcon(7));
1176 //    return this;
1177 // Example: reshape "X*4" into "X<<2"
1178 //    return new LShiftINode(in(1), phase->intcon(2));
1179 //
1180 // You must call 'phase->transform(X)' on any new Nodes X you make, except
1181 // for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
1182 //    Node *shift=phase->transform(new LShiftINode(in(1),phase->intcon(5)));
1183 //    return new AddINode(shift, in(1));
1184 //
1185 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
1186 // These forms are faster than 'phase->transform(new ConNode())' and Do
1187 // The Right Thing with def-use info.
1188 //
1189 // You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
1190 // graph uses the 'this' Node it must be the root.  If you want a Node with
1191 // the same Opcode as the 'this' pointer use 'clone'.
1192 //
1193 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
1194   return nullptr;                  // Default to being Ideal already
1195 }
1196 
1197 // Some nodes have specific Ideal subgraph transformations only if they are
1198 // unique users of specific nodes. Such nodes should be put on IGVN worklist
1199 // for the transformations to happen.
1200 bool Node::has_special_unique_user() const {
1201   assert(outcnt() == 1, "match only for unique out");
1202   Node* n = unique_out();
1203   int op  = Opcode();
1204   if (this->is_Store()) {
1205     // Condition for back-to-back stores folding.
1206     return n->Opcode() == op && n->in(MemNode::Memory) == this;
1207   } else if (this->is_Load() || this->is_DecodeN() || this->is_Phi()) {
1208     // Condition for removing an unused LoadNode or DecodeNNode from the MemBarAcquire precedence input
1209     return n->Opcode() == Op_MemBarAcquire;
1210   } else if (op == Op_AddL) {
1211     // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
1212     return n->Opcode() == Op_ConvL2I && n->in(1) == this;
1213   } else if (op == Op_SubI || op == Op_SubL) {
1214     // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
1215     return n->Opcode() == op && n->in(2) == this;
1216   } else if (is_If() && (n->is_IfFalse() || n->is_IfTrue())) {
1217     // See IfProjNode::Identity()
1218     return true;
1219   } else if ((is_IfFalse() || is_IfTrue()) && n->is_If()) {
1220     // See IfNode::fold_compares
1221     return true;
1222   } else if (n->Opcode() == Op_XorV || n->Opcode() == Op_XorVMask) {
1223     // Condition for XorVMask(VectorMaskCmp(x,y,cond), MaskAll(true)) ==> VectorMaskCmp(x,y,ncond)
1224     return true;
1225   } else {
1226     return false;
1227   }
1228 };
1229 
1230 //--------------------------find_exact_control---------------------------------
1231 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
1232 Node* Node::find_exact_control(Node* ctrl) {
1233   if (ctrl == nullptr && this->is_Region())
1234     ctrl = this->as_Region()->is_copy();
1235 
1236   if (ctrl != nullptr && ctrl->is_CatchProj()) {
1237     if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
1238       ctrl = ctrl->in(0);
1239     if (ctrl != nullptr && !ctrl->is_top())
1240       ctrl = ctrl->in(0);
1241   }
1242 
1243   if (ctrl != nullptr && ctrl->is_Proj())
1244     ctrl = ctrl->in(0);
1245 
1246   return ctrl;
1247 }
1248 
1249 //--------------------------dominates------------------------------------------
1250 // Helper function for MemNode::all_controls_dominate().
1251 // Check if 'this' control node dominates or equal to 'sub' control node.
1252 // We already know that if any path back to Root or Start reaches 'this',
1253 // then all paths so, so this is a simple search for one example,
1254 // not an exhaustive search for a counterexample.
1255 Node::DomResult Node::dominates(Node* sub, Node_List &nlist) {
1256   assert(this->is_CFG(), "expecting control");
1257   assert(sub != nullptr && sub->is_CFG(), "expecting control");
1258 
1259   // detect dead cycle without regions
1260   int iterations_without_region_limit = DominatorSearchLimit;
1261 
1262   Node* orig_sub = sub;
1263   Node* dom      = this;
1264   bool  met_dom  = false;
1265   nlist.clear();
1266 
1267   // Walk 'sub' backward up the chain to 'dom', watching for regions.
1268   // After seeing 'dom', continue up to Root or Start.
1269   // If we hit a region (backward split point), it may be a loop head.
1270   // Keep going through one of the region's inputs.  If we reach the
1271   // same region again, go through a different input.  Eventually we
1272   // will either exit through the loop head, or give up.
1273   // (If we get confused, break out and return a conservative 'false'.)
1274   while (sub != nullptr) {
1275     if (sub->is_top()) {
1276       // Conservative answer for dead code.
1277       return DomResult::EncounteredDeadCode;
1278     }
1279     if (sub == dom) {
1280       if (nlist.size() == 0) {
1281         // No Region nodes except loops were visited before and the EntryControl
1282         // path was taken for loops: it did not walk in a cycle.
1283         return DomResult::Dominate;
1284       } else if (met_dom) {
1285         break;          // already met before: walk in a cycle
1286       } else {
1287         // Region nodes were visited. Continue walk up to Start or Root
1288         // to make sure that it did not walk in a cycle.
1289         met_dom = true; // first time meet
1290         iterations_without_region_limit = DominatorSearchLimit; // Reset
1291      }
1292     }
1293     if (sub->is_Start() || sub->is_Root()) {
1294       // Success if we met 'dom' along a path to Start or Root.
1295       // We assume there are no alternative paths that avoid 'dom'.
1296       // (This assumption is up to the caller to ensure!)
1297       return met_dom ? DomResult::Dominate : DomResult::NotDominate;
1298     }
1299     Node* up = sub->in(0);
1300     // Normalize simple pass-through regions and projections:
1301     up = sub->find_exact_control(up);
1302     // If sub == up, we found a self-loop.  Try to push past it.
1303     if (sub == up && sub->is_Loop()) {
1304       // Take loop entry path on the way up to 'dom'.
1305       up = sub->in(1); // in(LoopNode::EntryControl);
1306     } else if (sub == up && sub->is_Region() && sub->req() == 2) {
1307       // Take in(1) path on the way up to 'dom' for regions with only one input
1308       up = sub->in(1);
1309     } else if (sub == up && sub->is_Region()) {
1310       // Try both paths for Regions with 2 input paths (it may be a loop head).
1311       // It could give conservative 'false' answer without information
1312       // which region's input is the entry path.
1313       iterations_without_region_limit = DominatorSearchLimit; // Reset
1314 
1315       bool region_was_visited_before = false;
1316       // Was this Region node visited before?
1317       // If so, we have reached it because we accidentally took a
1318       // loop-back edge from 'sub' back into the body of the loop,
1319       // and worked our way up again to the loop header 'sub'.
1320       // So, take the first unexplored path on the way up to 'dom'.
1321       for (int j = nlist.size() - 1; j >= 0; j--) {
1322         intptr_t ni = (intptr_t)nlist.at(j);
1323         Node* visited = (Node*)(ni & ~1);
1324         bool  visited_twice_already = ((ni & 1) != 0);
1325         if (visited == sub) {
1326           if (visited_twice_already) {
1327             // Visited 2 paths, but still stuck in loop body.  Give up.
1328             return DomResult::NotDominate;
1329           }
1330           // The Region node was visited before only once.
1331           // (We will repush with the low bit set, below.)
1332           nlist.remove(j);
1333           // We will find a new edge and re-insert.
1334           region_was_visited_before = true;
1335           break;
1336         }
1337       }
1338 
1339       // Find an incoming edge which has not been seen yet; walk through it.
1340       assert(up == sub, "");
1341       uint skip = region_was_visited_before ? 1 : 0;
1342       for (uint i = 1; i < sub->req(); i++) {
1343         Node* in = sub->in(i);
1344         if (in != nullptr && !in->is_top() && in != sub) {
1345           if (skip == 0) {
1346             up = in;
1347             break;
1348           }
1349           --skip;               // skip this nontrivial input
1350         }
1351       }
1352 
1353       // Set 0 bit to indicate that both paths were taken.
1354       nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
1355     }
1356 
1357     if (up == sub) {
1358       break;    // some kind of tight cycle
1359     }
1360     if (up == orig_sub && met_dom) {
1361       // returned back after visiting 'dom'
1362       break;    // some kind of cycle
1363     }
1364     if (--iterations_without_region_limit < 0) {
1365       break;    // dead cycle
1366     }
1367     sub = up;
1368   }
1369 
1370   // Did not meet Root or Start node in pred. chain.
1371   return DomResult::NotDominate;
1372 }
1373 
1374 //------------------------------remove_dead_region-----------------------------
1375 // This control node is dead.  Follow the subgraph below it making everything
1376 // using it dead as well.  This will happen normally via the usual IterGVN
1377 // worklist but this call is more efficient.  Do not update use-def info
1378 // inside the dead region, just at the borders.
1379 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
1380   // Con's are a popular node to re-hit in the hash table again.
1381   if( dead->is_Con() ) return;
1382 
1383   ResourceMark rm;
1384   Node_List nstack;
1385   VectorSet dead_set; // notify uses only once
1386 
1387   Node *top = igvn->C->top();
1388   nstack.push(dead);
1389   bool has_irreducible_loop = igvn->C->has_irreducible_loop();
1390 
1391   while (nstack.size() > 0) {
1392     dead = nstack.pop();
1393     if (!dead_set.test_set(dead->_idx)) {
1394       // If dead has any live uses, those are now still attached. Notify them before we lose them.
1395       igvn->add_users_to_worklist(dead);
1396     }
1397     if (dead->Opcode() == Op_SafePoint) {
1398       dead->as_SafePoint()->disconnect_from_root(igvn);
1399     }
1400     if (dead->outcnt() > 0) {
1401       // Keep dead node on stack until all uses are processed.
1402       nstack.push(dead);
1403       // For all Users of the Dead...    ;-)
1404       for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
1405         Node* use = dead->last_out(k);
1406         igvn->hash_delete(use);       // Yank from hash table prior to mod
1407         if (use->in(0) == dead) {     // Found another dead node
1408           assert (!use->is_Con(), "Control for Con node should be Root node.");
1409           use->set_req(0, top);       // Cut dead edge to prevent processing
1410           nstack.push(use);           // the dead node again.
1411         } else if (!has_irreducible_loop && // Backedge could be alive in irreducible loop
1412                    use->is_Loop() && !use->is_Root() &&       // Don't kill Root (RootNode extends LoopNode)
1413                    use->in(LoopNode::EntryControl) == dead) { // Dead loop if its entry is dead
1414           use->set_req(LoopNode::EntryControl, top);          // Cut dead edge to prevent processing
1415           use->set_req(0, top);       // Cut self edge
1416           nstack.push(use);
1417         } else {                      // Else found a not-dead user
1418           // Dead if all inputs are top or null
1419           bool dead_use = !use->is_Root(); // Keep empty graph alive
1420           for (uint j = 1; j < use->req(); j++) {
1421             Node* in = use->in(j);
1422             if (in == dead) {         // Turn all dead inputs into TOP
1423               use->set_req(j, top);
1424             } else if (in != nullptr && !in->is_top()) {
1425               dead_use = false;
1426             }
1427           }
1428           if (dead_use) {
1429             if (use->is_Region()) {
1430               use->set_req(0, top);   // Cut self edge
1431             }
1432             nstack.push(use);
1433           } else {
1434             igvn->_worklist.push(use);
1435           }
1436         }
1437         // Refresh the iterator, since any number of kills might have happened.
1438         k = dead->last_outs(kmin);
1439       }
1440     } else { // (dead->outcnt() == 0)
1441       // Done with outputs.
1442       igvn->hash_delete(dead);
1443       igvn->_worklist.remove(dead);
1444       igvn->set_type(dead, Type::TOP);
1445       // Kill all inputs to the dead guy
1446       for (uint i=0; i < dead->req(); i++) {
1447         Node *n = dead->in(i);      // Get input to dead guy
1448         if (n != nullptr && !n->is_top()) { // Input is valid?
1449           dead->set_req(i, top);    // Smash input away
1450           if (n->outcnt() == 0) {   // Input also goes dead?
1451             if (!n->is_Con())
1452               nstack.push(n);       // Clear it out as well
1453           } else if (n->outcnt() == 1 &&
1454                      n->has_special_unique_user()) {
1455             igvn->add_users_to_worklist( n );
1456           } else if (n->outcnt() <= 2 && n->is_Store()) {
1457             // Push store's uses on worklist to enable folding optimization for
1458             // store/store and store/load to the same address.
1459             // The restriction (outcnt() <= 2) is the same as in set_req_X()
1460             // and remove_globally_dead_node().
1461             igvn->add_users_to_worklist( n );
1462           } else if (dead->is_data_proj_of_pure_function(n)) {
1463             igvn->_worklist.push(n);
1464           }
1465         }
1466       }
1467       igvn->C->remove_useless_node(dead);
1468     } // (dead->outcnt() == 0)
1469   }   // while (nstack.size() > 0) for outputs
1470   return;
1471 }
1472 
1473 //------------------------------remove_dead_region-----------------------------
1474 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
1475   Node *n = in(0);
1476   if( !n ) return false;
1477   // Lost control into this guy?  I.e., it became unreachable?
1478   // Aggressively kill all unreachable code.
1479   if (can_reshape && n->is_top()) {
1480     kill_dead_code(this, phase->is_IterGVN());
1481     return false; // Node is dead.
1482   }
1483 
1484   if( n->is_Region() && n->as_Region()->is_copy() ) {
1485     Node *m = n->nonnull_req();
1486     set_req(0, m);
1487     return true;
1488   }
1489   return false;
1490 }
1491 
1492 //------------------------------hash-------------------------------------------
1493 // Hash function over Nodes.
1494 uint Node::hash() const {
1495   uint sum = 0;
1496   for( uint i=0; i<_cnt; i++ )  // Add in all inputs
1497     sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded nulls
1498   return (sum>>2) + _cnt + Opcode();
1499 }
1500 
1501 //------------------------------cmp--------------------------------------------
1502 // Compare special parts of simple Nodes
1503 bool Node::cmp( const Node &n ) const {
1504   return true;                  // Must be same
1505 }
1506 
1507 //------------------------------rematerialize-----------------------------------
1508 // Should we clone rather than spill this instruction?
1509 bool Node::rematerialize() const {
1510   if ( is_Mach() )
1511     return this->as_Mach()->rematerialize();
1512   else
1513     return (_flags & Flag_rematerialize) != 0;
1514 }
1515 
1516 //------------------------------needs_anti_dependence_check---------------------
1517 // Nodes which use memory without consuming it, hence need antidependences.
1518 bool Node::needs_anti_dependence_check() const {
1519   if (req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0) {
1520     return false;
1521   }
1522   return in(1)->bottom_type()->has_memory();
1523 }
1524 
1525 // Get an integer constant from a ConNode (or CastIINode).
1526 // Return a default value if there is no apparent constant here.
1527 const TypeInt* Node::find_int_type() const {
1528   if (this->is_Type()) {
1529     return this->as_Type()->type()->isa_int();
1530   } else if (this->is_Con()) {
1531     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1532     return this->bottom_type()->isa_int();
1533   }
1534   return nullptr;
1535 }
1536 
1537 const TypeInteger* Node::find_integer_type(BasicType bt) const {
1538   if (this->is_Type()) {
1539     return this->as_Type()->type()->isa_integer(bt);
1540   } else if (this->is_Con()) {
1541     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1542     return this->bottom_type()->isa_integer(bt);
1543   }
1544   return nullptr;
1545 }
1546 
1547 // Get a pointer constant from a ConstNode.
1548 // Returns the constant if it is a pointer ConstNode
1549 intptr_t Node::get_ptr() const {
1550   assert( Opcode() == Op_ConP, "" );
1551   return ((ConPNode*)this)->type()->is_ptr()->get_con();
1552 }
1553 
1554 // Get a narrow oop constant from a ConNNode.
1555 intptr_t Node::get_narrowcon() const {
1556   assert( Opcode() == Op_ConN, "" );
1557   return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
1558 }
1559 
1560 // Get a long constant from a ConNode.
1561 // Return a default value if there is no apparent constant here.
1562 const TypeLong* Node::find_long_type() const {
1563   if (this->is_Type()) {
1564     return this->as_Type()->type()->isa_long();
1565   } else if (this->is_Con()) {
1566     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1567     return this->bottom_type()->isa_long();
1568   }
1569   return nullptr;
1570 }
1571 
1572 
1573 /**
1574  * Return a ptr type for nodes which should have it.
1575  */
1576 const TypePtr* Node::get_ptr_type() const {
1577   const TypePtr* tp = this->bottom_type()->make_ptr();
1578 #ifdef ASSERT
1579   if (tp == nullptr) {
1580     this->dump(1);
1581     assert((tp != nullptr), "unexpected node type");
1582   }
1583 #endif
1584   return tp;
1585 }
1586 
1587 // Get a double constant from a ConstNode.
1588 // Returns the constant if it is a double ConstNode
1589 jdouble Node::getd() const {
1590   assert( Opcode() == Op_ConD, "" );
1591   return ((ConDNode*)this)->type()->is_double_constant()->getd();
1592 }
1593 
1594 // Get a float constant from a ConstNode.
1595 // Returns the constant if it is a float ConstNode
1596 jfloat Node::getf() const {
1597   assert( Opcode() == Op_ConF, "" );
1598   return ((ConFNode*)this)->type()->is_float_constant()->getf();
1599 }
1600 
1601 // Get a half float constant from a ConstNode.
1602 // Returns the constant if it is a float ConstNode
1603 jshort Node::geth() const {
1604   assert( Opcode() == Op_ConH, "" );
1605   return ((ConHNode*)this)->type()->is_half_float_constant()->geth();
1606 }
1607 
1608 #ifndef PRODUCT
1609 
1610 // Call this from debugger:
1611 Node* old_root() {
1612   Matcher* matcher = Compile::current()->matcher();
1613   if (matcher != nullptr) {
1614     Node* new_root = Compile::current()->root();
1615     Node* old_root = matcher->find_old_node(new_root);
1616     if (old_root != nullptr) {
1617       return old_root;
1618     }
1619   }
1620   tty->print("old_root: not found.\n");
1621   return nullptr;
1622 }
1623 
1624 // BFS traverse all reachable nodes from start, call callback on them
1625 template <typename Callback>
1626 void visit_nodes(Node* start, Callback callback, bool traverse_output, bool only_ctrl) {
1627   Unique_Mixed_Node_List worklist;
1628   worklist.add(start);
1629   for (uint i = 0; i < worklist.size(); i++) {
1630     Node* n = worklist[i];
1631     callback(n);
1632     for (uint i = 0; i < n->len(); i++) {
1633       if (!only_ctrl || n->is_Region() || (n->Opcode() == Op_Root) || (i == TypeFunc::Control)) {
1634         // If only_ctrl is set: Add regions, the root node, or control inputs only
1635         worklist.add(n->in(i));
1636       }
1637     }
1638     if (traverse_output && !only_ctrl) {
1639       for (uint i = 0; i < n->outcnt(); i++) {
1640         worklist.add(n->raw_out(i));
1641       }
1642     }
1643   }
1644 }
1645 
1646 // BFS traverse from start, return node with idx
1647 static Node* find_node_by_idx(Node* start, uint idx, bool traverse_output, bool only_ctrl) {
1648   ResourceMark rm;
1649   Node* result = nullptr;
1650   auto callback = [&] (Node* n) {
1651     if (n->_idx == idx) {
1652       if (result != nullptr) {
1653         tty->print("find_node_by_idx: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
1654           (uintptr_t)result, (uintptr_t)n, idx);
1655       }
1656       result = n;
1657     }
1658   };
1659   visit_nodes(start, callback, traverse_output, only_ctrl);
1660   return result;
1661 }
1662 
1663 static int node_idx_cmp(const Node** n1, const Node** n2) {
1664   return (*n1)->_idx - (*n2)->_idx;
1665 }
1666 
1667 static void find_nodes_by_name(Node* start, const char* name) {
1668   ResourceMark rm;
1669   GrowableArray<const Node*> ns;
1670   auto callback = [&] (const Node* n) {
1671     if (StringUtils::is_star_match(name, n->Name())) {
1672       ns.push(n);
1673     }
1674   };
1675   visit_nodes(start, callback, true, false);
1676   ns.sort(node_idx_cmp);
1677   for (int i = 0; i < ns.length(); i++) {
1678     ns.at(i)->dump();
1679   }
1680 }
1681 
1682 static void find_nodes_by_dump(Node* start, const char* pattern) {
1683   ResourceMark rm;
1684   GrowableArray<const Node*> ns;
1685   auto callback = [&] (const Node* n) {
1686     stringStream stream;
1687     n->dump("", false, &stream);
1688     if (StringUtils::is_star_match(pattern, stream.base())) {
1689       ns.push(n);
1690     }
1691   };
1692   visit_nodes(start, callback, true, false);
1693   ns.sort(node_idx_cmp);
1694   for (int i = 0; i < ns.length(); i++) {
1695     ns.at(i)->dump();
1696   }
1697 }
1698 
1699 // call from debugger: find node with name pattern in new/current graph
1700 // name can contain "*" in match pattern to match any characters
1701 // the matching is case insensitive
1702 void find_nodes_by_name(const char* name) {
1703   Node* root = Compile::current()->root();
1704   find_nodes_by_name(root, name);
1705 }
1706 
1707 // call from debugger: find node with name pattern in old graph
1708 // name can contain "*" in match pattern to match any characters
1709 // the matching is case insensitive
1710 void find_old_nodes_by_name(const char* name) {
1711   Node* root = old_root();
1712   find_nodes_by_name(root, name);
1713 }
1714 
1715 // call from debugger: find node with dump pattern in new/current graph
1716 // can contain "*" in match pattern to match any characters
1717 // the matching is case insensitive
1718 void find_nodes_by_dump(const char* pattern) {
1719   Node* root = Compile::current()->root();
1720   find_nodes_by_dump(root, pattern);
1721 }
1722 
1723 // call from debugger: find node with name pattern in old graph
1724 // can contain "*" in match pattern to match any characters
1725 // the matching is case insensitive
1726 void find_old_nodes_by_dump(const char* pattern) {
1727   Node* root = old_root();
1728   find_nodes_by_dump(root, pattern);
1729 }
1730 
1731 // Call this from debugger, search in same graph as n:
1732 Node* find_node(Node* n, const int idx) {
1733   return n->find(idx);
1734 }
1735 
1736 // Call this from debugger, search in new nodes:
1737 Node* find_node(const int idx) {
1738   return Compile::current()->root()->find(idx);
1739 }
1740 
1741 // Call this from debugger, search in old nodes:
1742 Node* find_old_node(const int idx) {
1743   Node* root = old_root();
1744   return (root == nullptr) ? nullptr : root->find(idx);
1745 }
1746 
1747 // Call this from debugger, search in same graph as n:
1748 Node* find_ctrl(Node* n, const int idx) {
1749   return n->find_ctrl(idx);
1750 }
1751 
1752 // Call this from debugger, search in new nodes:
1753 Node* find_ctrl(const int idx) {
1754   return Compile::current()->root()->find_ctrl(idx);
1755 }
1756 
1757 // Call this from debugger, search in old nodes:
1758 Node* find_old_ctrl(const int idx) {
1759   Node* root = old_root();
1760   return (root == nullptr) ? nullptr : root->find_ctrl(idx);
1761 }
1762 
1763 //------------------------------find_ctrl--------------------------------------
1764 // Find an ancestor to this node in the control history with given _idx
1765 Node* Node::find_ctrl(int idx) {
1766   return find(idx, true);
1767 }
1768 
1769 //------------------------------find-------------------------------------------
1770 // Tries to find the node with the index |idx| starting from this node. If idx is negative,
1771 // the search also includes forward (out) edges. Returns null if not found.
1772 // If only_ctrl is set, the search will only be done on control nodes. Returns null if
1773 // not found or if the node to be found is not a control node (search will not find it).
1774 Node* Node::find(const int idx, bool only_ctrl) {
1775   ResourceMark rm;
1776   return find_node_by_idx(this, abs(idx), (idx < 0), only_ctrl);
1777 }
1778 
1779 class PrintBFS {
1780 public:
1781   PrintBFS(const Node* start, const int max_distance, const Node* target, const char* options, outputStream* st, const frame* fr)
1782     : _start(start), _max_distance(max_distance), _target(target), _options(options), _output(st), _frame(fr),
1783     _dcc(this), _info_uid(cmpkey, hashkey) {}
1784 
1785   void run();
1786 private:
1787   // pipeline steps
1788   bool configure();
1789   void collect();
1790   void select();
1791   void select_all();
1792   void select_all_paths();
1793   void select_shortest_path();
1794   void sort();
1795   void print();
1796 
1797   // inputs
1798   const Node* _start;
1799   const int _max_distance;
1800   const Node* _target;
1801   const char* _options;
1802   outputStream* _output;
1803   const frame* _frame;
1804 
1805   // options
1806   bool _traverse_inputs = false;
1807   bool _traverse_outputs = false;
1808   struct Filter {
1809     bool _control = false;
1810     bool _memory = false;
1811     bool _data = false;
1812     bool _mixed = false;
1813     bool _other = false;
1814     bool is_empty() const {
1815       return !(_control || _memory || _data || _mixed || _other);
1816     }
1817     void set_all() {
1818       _control = true;
1819       _memory = true;
1820       _data = true;
1821       _mixed = true;
1822       _other = true;
1823     }
1824     // Check if the filter accepts the node. Go by the type categories, but also all CFG nodes
1825     // are considered to have control.
1826     bool accepts(const Node* n) {
1827       const Type* t = n->bottom_type();
1828       return ( _data    &&  t->has_category(Type::Category::Data)                    ) ||
1829              ( _memory  &&  t->has_category(Type::Category::Memory)                  ) ||
1830              ( _mixed   &&  t->has_category(Type::Category::Mixed)                   ) ||
1831              ( _control && (t->has_category(Type::Category::Control) || n->is_CFG()) ) ||
1832              ( _other   &&  t->has_category(Type::Category::Other)                   );
1833     }
1834   };
1835   Filter _filter_visit;
1836   Filter _filter_boundary;
1837   bool _sort_idx = false;
1838   bool _all_paths = false;
1839   bool _use_color = false;
1840   bool _print_blocks = false;
1841   bool _print_old = false;
1842   bool _dump_only = false;
1843   bool _print_igv = false;
1844 
1845   void print_options_help(bool print_examples);
1846   bool parse_options();
1847 
1848 public:
1849   class DumpConfigColored : public Node::DumpConfig {
1850   public:
1851     DumpConfigColored(PrintBFS* bfs) : _bfs(bfs) {};
1852     virtual void pre_dump(outputStream* st, const Node* n);
1853     virtual void post_dump(outputStream* st);
1854   private:
1855     PrintBFS* _bfs;
1856   };
1857 private:
1858   DumpConfigColored _dcc;
1859 
1860   // node info
1861   static Node* old_node(const Node* n); // mach node -> prior IR node
1862   void print_node_idx(const Node* n);
1863   void print_block_id(const Block* b);
1864   void print_node_block(const Node* n); // _pre_order, head idx, _idom, _dom_depth
1865 
1866   // traversal data structures
1867   GrowableArray<const Node*> _worklist; // BFS queue
1868   void maybe_traverse(const Node* src, const Node* dst);
1869 
1870   // node info annotation
1871   class Info {
1872   public:
1873     Info() : Info(nullptr, 0) {};
1874     Info(const Node* node, int distance)
1875       : _node(node), _distance_from_start(distance) {};
1876     const Node* node() const { return _node; };
1877     int distance() const { return _distance_from_start; };
1878     int distance_from_target() const { return _distance_from_target; }
1879     void set_distance_from_target(int d) { _distance_from_target = d; }
1880     GrowableArray<const Node*> edge_bwd; // pointing toward _start
1881     bool is_marked() const { return _mark; } // marked to keep during select
1882     void set_mark() { _mark = true; }
1883   private:
1884     const Node* _node;
1885     int _distance_from_start; // distance from _start
1886     int _distance_from_target = 0; // distance from _target if _all_paths
1887     bool _mark = false;
1888   };
1889   Dict _info_uid;            // Node -> uid
1890   GrowableArray<Info> _info; // uid  -> info
1891 
1892   Info* find_info(const Node* n) {
1893     size_t uid = (size_t)_info_uid[n];
1894     if (uid == 0) {
1895       return nullptr;
1896     }
1897     return &_info.at((int)uid);
1898   }
1899 
1900   void make_info(const Node* node, const int distance) {
1901     assert(find_info(node) == nullptr, "node does not yet have info");
1902     size_t uid = _info.length() + 1;
1903     _info_uid.Insert((void*)node, (void*)uid);
1904     _info.at_put_grow((int)uid, Info(node, distance));
1905     assert(find_info(node)->node() == node, "stored correct node");
1906   };
1907 
1908   // filled by sort, printed by print
1909   GrowableArray<const Node*> _print_list;
1910 
1911   // print header + node table
1912   void print_header() const;
1913   void print_node(const Node* n);
1914 };
1915 
1916 void PrintBFS::run() {
1917   if (!configure()) {
1918     return;
1919   }
1920   collect();
1921   select();
1922   sort();
1923   print();
1924 }
1925 
1926 // set up configuration for BFS and print
1927 bool PrintBFS::configure() {
1928   if (_max_distance < 0) {
1929     _output->print_cr("dump_bfs: max_distance must be non-negative!");
1930     return false;
1931   }
1932   return parse_options();
1933 }
1934 
1935 // BFS traverse according to configuration, fill worklist and info
1936 void PrintBFS::collect() {
1937   maybe_traverse(_start, _start);
1938   int pos = 0;
1939   while (pos < _worklist.length()) {
1940     const Node* n = _worklist.at(pos++); // next node to traverse
1941     Info* info = find_info(n);
1942     if (!_filter_visit.accepts(n) && n != _start) {
1943       continue; // we hit boundary, do not traverse further
1944     }
1945     if (n != _start && n->is_Root()) {
1946       continue; // traversing through root node would lead to unrelated nodes
1947     }
1948     if (_traverse_inputs && _max_distance > info->distance()) {
1949       for (uint i = 0; i < n->req(); i++) {
1950         maybe_traverse(n, n->in(i));
1951       }
1952     }
1953     if (_traverse_outputs && _max_distance > info->distance()) {
1954       for (uint i = 0; i < n->outcnt(); i++) {
1955         maybe_traverse(n, n->raw_out(i));
1956       }
1957     }
1958   }
1959 }
1960 
1961 // go through work list, mark those that we want to print
1962 void PrintBFS::select() {
1963   if (_target == nullptr ) {
1964     select_all();
1965   } else {
1966     if (find_info(_target) == nullptr) {
1967       _output->print_cr("Could not find target in BFS.");
1968       return;
1969     }
1970     if (_all_paths) {
1971       select_all_paths();
1972     } else {
1973       select_shortest_path();
1974     }
1975   }
1976 }
1977 
1978 // take all nodes from BFS
1979 void PrintBFS::select_all() {
1980   for (int i = 0; i < _worklist.length(); i++) {
1981     const Node* n = _worklist.at(i);
1982     Info* info = find_info(n);
1983     info->set_mark();
1984   }
1985 }
1986 
1987 // traverse backward from target, along edges found in BFS
1988 void PrintBFS::select_all_paths() {
1989   int pos = 0;
1990   GrowableArray<const Node*> backtrace;
1991   // start from target
1992   backtrace.push(_target);
1993   find_info(_target)->set_mark();
1994   // traverse backward
1995   while (pos < backtrace.length()) {
1996     const Node* n = backtrace.at(pos++);
1997     Info* info = find_info(n);
1998     for (int i = 0; i < info->edge_bwd.length(); i++) {
1999       // all backward edges
2000       const Node* back = info->edge_bwd.at(i);
2001       Info* back_info = find_info(back);
2002       if (!back_info->is_marked()) {
2003         // not yet found this on way back.
2004         back_info->set_distance_from_target(info->distance_from_target() + 1);
2005         if (back_info->distance_from_target() + back_info->distance() <= _max_distance) {
2006           // total distance is small enough
2007           back_info->set_mark();
2008           backtrace.push(back);
2009         }
2010       }
2011     }
2012   }
2013 }
2014 
2015 void PrintBFS::select_shortest_path() {
2016   const Node* current = _target;
2017   while (true) {
2018     Info* info = find_info(current);
2019     info->set_mark();
2020     if (current == _start) {
2021       break;
2022     }
2023     // first edge -> leads us one step closer to _start
2024     current = info->edge_bwd.at(0);
2025   }
2026 }
2027 
2028 // go through worklist in desired order, put the marked ones in print list
2029 void PrintBFS::sort() {
2030   if (_traverse_inputs && !_traverse_outputs) {
2031     // reverse order
2032     for (int i = _worklist.length() - 1; i >= 0; i--) {
2033       const Node* n = _worklist.at(i);
2034       Info* info = find_info(n);
2035       if (info->is_marked()) {
2036         _print_list.push(n);
2037       }
2038     }
2039   } else {
2040     // same order as worklist
2041     for (int i = 0; i < _worklist.length(); i++) {
2042       const Node* n = _worklist.at(i);
2043       Info* info = find_info(n);
2044       if (info->is_marked()) {
2045         _print_list.push(n);
2046       }
2047     }
2048   }
2049   if (_sort_idx) {
2050     _print_list.sort(node_idx_cmp);
2051   }
2052 }
2053 
2054 // go through printlist and print
2055 void PrintBFS::print() {
2056   if (_print_list.length() > 0 ) {
2057     print_header();
2058     for (int i = 0; i < _print_list.length(); i++) {
2059       const Node* n = _print_list.at(i);
2060       print_node(n);
2061     }
2062     if (_print_igv) {
2063       Compile* C = Compile::current();
2064       C->init_igv();
2065       C->igv_print_graph_to_network(nullptr, _print_list, _frame);
2066     }
2067   } else {
2068     _output->print_cr("No nodes to print.");
2069   }
2070 }
2071 
2072 void PrintBFS::print_options_help(bool print_examples) {
2073   _output->print_cr("Usage: node->dump_bfs(int max_distance, Node* target, char* options)");
2074   _output->print_cr("");
2075   _output->print_cr("Use cases:");
2076   _output->print_cr("  BFS traversal: no target required");
2077   _output->print_cr("  shortest path: set target");
2078   _output->print_cr("  all paths: set target and put 'A' in options");
2079   _output->print_cr("  detect loop: subcase of all paths, have start==target");
2080   _output->print_cr("");
2081   _output->print_cr("Arguments:");
2082   _output->print_cr("  this/start: staring point of BFS");
2083   _output->print_cr("  target:");
2084   _output->print_cr("    if null: simple BFS");
2085   _output->print_cr("    else: shortest path or all paths between this/start and target");
2086   _output->print_cr("  options:");
2087   _output->print_cr("    if null: same as \"cdmox@B\"");
2088   _output->print_cr("    else: use combination of following characters");
2089   _output->print_cr("      h: display this help info");
2090   _output->print_cr("      H: display this help info, with examples");
2091   _output->print_cr("      +: traverse in-edges (on if neither + nor -)");
2092   _output->print_cr("      -: traverse out-edges");
2093   _output->print_cr("      c: visit control nodes");
2094   _output->print_cr("      d: visit data nodes");
2095   _output->print_cr("      m: visit memory nodes");
2096   _output->print_cr("      o: visit other nodes");
2097   _output->print_cr("      x: visit mixed nodes");
2098   _output->print_cr("      C: boundary control nodes");
2099   _output->print_cr("      D: boundary data nodes");
2100   _output->print_cr("      M: boundary memory nodes");
2101   _output->print_cr("      O: boundary other nodes");
2102   _output->print_cr("      X: boundary mixed nodes");
2103   _output->print_cr("      #: display node category in color (not supported in all terminals)");
2104   _output->print_cr("      S: sort displayed nodes by node idx");
2105   _output->print_cr("      A: all paths (not just shortest path to target)");
2106   _output->print_cr("      @: print old nodes - before matching (if available)");
2107   _output->print_cr("      B: print scheduling blocks (if available)");
2108   _output->print_cr("      $: dump only, no header, no other columns");
2109   _output->print_cr("      !: show nodes on IGV (sent over network stream)");
2110   _output->print_cr("        (use preferably with dump_bfs(int, Node*, char*, void*, void*, void*)");
2111   _output->print_cr("         to produce a C2 stack trace along with the graph dump, see examples below)");
2112   _output->print_cr("");
2113   _output->print_cr("recursively follow edges to nodes with permitted visit types,");
2114   _output->print_cr("on the boundary additionally display nodes allowed in boundary types");
2115   _output->print_cr("Note: the categories can be overlapping. For example a mixed node");
2116   _output->print_cr("      can contain control and memory output. Some from the other");
2117   _output->print_cr("      category are also control (Halt, Return, etc).");
2118   _output->print_cr("");
2119   _output->print_cr("output columns:");
2120   _output->print_cr("  dist:  BFS distance to this/start");
2121   _output->print_cr("  apd:   all paths distance (d_outputart + d_target)");
2122   _output->print_cr("  block: block identifier, based on _pre_order");
2123   _output->print_cr("  head:  first node in block");
2124   _output->print_cr("  idom:  head node of idom block");
2125   _output->print_cr("  depth: depth of block (_dom_depth)");
2126   _output->print_cr("  old:   old IR node - before matching");
2127   _output->print_cr("  dump:  node->dump()");
2128   _output->print_cr("");
2129   _output->print_cr("Note: if none of the \"cmdxo\" characters are in the options string");
2130   _output->print_cr("      then we set all of them.");
2131   _output->print_cr("      This allows for short strings like \"#\" for colored input traversal");
2132   _output->print_cr("      or \"-#\" for colored output traversal.");
2133   if (print_examples) {
2134     _output->print_cr("");
2135     _output->print_cr("Examples:");
2136     _output->print_cr("  if->dump_bfs(10, 0, \"+cxo\")");
2137     _output->print_cr("    starting at some if node, traverse inputs recursively");
2138     _output->print_cr("    only along control (mixed and other can also be control)");
2139     _output->print_cr("  phi->dump_bfs(5, 0, \"-dxo\")");
2140     _output->print_cr("    starting at phi node, traverse outputs recursively");
2141     _output->print_cr("    only along data (mixed and other can also have data flow)");
2142     _output->print_cr("  find_node(385)->dump_bfs(3, 0, \"cdmox+#@B\")");
2143     _output->print_cr("    find inputs of node 385, up to 3 nodes up (+)");
2144     _output->print_cr("    traverse all nodes (cdmox), use colors (#)");
2145     _output->print_cr("    display old nodes and blocks, if they exist");
2146     _output->print_cr("    useful call to start with");
2147     _output->print_cr("  find_node(102)->dump_bfs(10, 0, \"dCDMOX-\")");
2148     _output->print_cr("    find non-data dependencies of a data node");
2149     _output->print_cr("    follow data node outputs until we find another category");
2150     _output->print_cr("    node as the boundary");
2151     _output->print_cr("  x->dump_bfs(10, y, 0)");
2152     _output->print_cr("    find shortest path from x to y, along any edge or node");
2153     _output->print_cr("    will not find a path if it is longer than 10");
2154     _output->print_cr("    useful to find how x and y are related");
2155     _output->print_cr("  find_node(741)->dump_bfs(20, find_node(746), \"c+\")");
2156     _output->print_cr("    find shortest control path between two nodes");
2157     _output->print_cr("  find_node(741)->dump_bfs(8, find_node(746), \"cdmox+A\")");
2158     _output->print_cr("    find all paths (A) between two nodes of length at most 8");
2159     _output->print_cr("  find_node(741)->dump_bfs(7, find_node(741), \"c+A\")");
2160     _output->print_cr("    find all control loops for this node");
2161     _output->print_cr("  find_node(741)->dump_bfs(7, find_node(741), \"c+A!\", $sp, $fp, $pc)");
2162     _output->print_cr("    same as above, but printing the resulting subgraph");
2163     _output->print_cr("    along with a C2 stack trace on IGV");
2164   }
2165 }
2166 
2167 bool PrintBFS::parse_options() {
2168   if (_options == nullptr) {
2169     _options = "cdmox@B"; // default options
2170   }
2171   size_t len = strlen(_options);
2172   for (size_t i = 0; i < len; i++) {
2173     switch (_options[i]) {
2174       case '+':
2175         _traverse_inputs = true;
2176         break;
2177       case '-':
2178         _traverse_outputs = true;
2179         break;
2180       case 'c':
2181         _filter_visit._control = true;
2182         break;
2183       case 'm':
2184         _filter_visit._memory = true;
2185         break;
2186       case 'd':
2187         _filter_visit._data = true;
2188         break;
2189       case 'x':
2190         _filter_visit._mixed = true;
2191         break;
2192       case 'o':
2193         _filter_visit._other = true;
2194         break;
2195       case 'C':
2196         _filter_boundary._control = true;
2197         break;
2198       case 'M':
2199         _filter_boundary._memory = true;
2200         break;
2201       case 'D':
2202         _filter_boundary._data = true;
2203         break;
2204       case 'X':
2205         _filter_boundary._mixed = true;
2206         break;
2207       case 'O':
2208         _filter_boundary._other = true;
2209         break;
2210       case 'S':
2211         _sort_idx = true;
2212         break;
2213       case 'A':
2214         _all_paths = true;
2215         break;
2216       case '#':
2217         _use_color = true;
2218         break;
2219       case 'B':
2220         _print_blocks = true;
2221         break;
2222       case '@':
2223         _print_old = true;
2224         break;
2225       case '$':
2226         _dump_only = true;
2227         break;
2228       case '!':
2229         _print_igv = true;
2230         break;
2231       case 'h':
2232         print_options_help(false);
2233         return false;
2234        case 'H':
2235         print_options_help(true);
2236         return false;
2237       default:
2238         _output->print_cr("dump_bfs: Unrecognized option \'%c\'", _options[i]);
2239         _output->print_cr("for help, run: find_node(0)->dump_bfs(0,0,\"H\")");
2240         return false;
2241     }
2242   }
2243   if (!_traverse_inputs && !_traverse_outputs) {
2244     _traverse_inputs = true;
2245   }
2246   if (_filter_visit.is_empty()) {
2247     _filter_visit.set_all();
2248   }
2249   Compile* C = Compile::current();
2250   _print_old &= (C->matcher() != nullptr); // only show old if there are new
2251   _print_blocks &= (C->cfg() != nullptr); // only show blocks if available
2252   return true;
2253 }
2254 
2255 void PrintBFS::DumpConfigColored::pre_dump(outputStream* st, const Node* n) {
2256   if (!_bfs->_use_color) {
2257     return;
2258   }
2259   Info* info = _bfs->find_info(n);
2260   if (info == nullptr || !info->is_marked()) {
2261     return;
2262   }
2263 
2264   const Type* t = n->bottom_type();
2265   switch (t->category()) {
2266     case Type::Category::Data:
2267       st->print("\u001b[34m");
2268       break;
2269     case Type::Category::Memory:
2270       st->print("\u001b[32m");
2271       break;
2272     case Type::Category::Mixed:
2273       st->print("\u001b[35m");
2274       break;
2275     case Type::Category::Control:
2276       st->print("\u001b[31m");
2277       break;
2278     case Type::Category::Other:
2279       st->print("\u001b[33m");
2280       break;
2281     case Type::Category::Undef:
2282       n->dump();
2283       assert(false, "category undef ??");
2284       break;
2285     default:
2286       n->dump();
2287       assert(false, "not covered");
2288       break;
2289   }
2290 }
2291 
2292 void PrintBFS::DumpConfigColored::post_dump(outputStream* st) {
2293   if (!_bfs->_use_color) {
2294     return;
2295   }
2296   st->print("\u001b[0m"); // white
2297 }
2298 
2299 Node* PrintBFS::old_node(const Node* n) {
2300   Compile* C = Compile::current();
2301   if (C->matcher() == nullptr || !C->node_arena()->contains(n)) {
2302     return (Node*)nullptr;
2303   } else {
2304     return C->matcher()->find_old_node(n);
2305   }
2306 }
2307 
2308 void PrintBFS::print_node_idx(const Node* n) {
2309   Compile* C = Compile::current();
2310   char buf[30];
2311   if (n == nullptr) {
2312     os::snprintf_checked(buf, sizeof(buf), "_");           // null
2313   } else if (C->node_arena()->contains(n)) {
2314     os::snprintf_checked(buf, sizeof(buf), "%d", n->_idx);  // new node
2315   } else {
2316     os::snprintf_checked(buf, sizeof(buf), "o%d", n->_idx); // old node
2317   }
2318   _output->print("%6s", buf);
2319 }
2320 
2321 void PrintBFS::print_block_id(const Block* b) {
2322   Compile* C = Compile::current();
2323   char buf[30];
2324   os::snprintf_checked(buf, sizeof(buf), "B%d", b->_pre_order);
2325   _output->print("%7s", buf);
2326 }
2327 
2328 void PrintBFS::print_node_block(const Node* n) {
2329   Compile* C = Compile::current();
2330   Block* b = C->node_arena()->contains(n)
2331              ? C->cfg()->get_block_for_node(n)
2332              : nullptr; // guard against old nodes
2333   if (b == nullptr) {
2334     _output->print("      _"); // Block
2335     _output->print("     _");  // head
2336     _output->print("     _");  // idom
2337     _output->print("      _"); // depth
2338   } else {
2339     print_block_id(b);
2340     print_node_idx(b->head());
2341     if (b->_idom) {
2342       print_node_idx(b->_idom->head());
2343     } else {
2344       _output->print("     _"); // idom
2345     }
2346     _output->print("%6d ", b->_dom_depth);
2347   }
2348 }
2349 
2350 // filter, and add to worklist, add info, note traversal edges
2351 void PrintBFS::maybe_traverse(const Node* src, const Node* dst) {
2352   if (dst != nullptr &&
2353      (_filter_visit.accepts(dst) ||
2354       _filter_boundary.accepts(dst) ||
2355       dst == _start)) { // correct category or start?
2356     if (find_info(dst) == nullptr) {
2357       // never visited - set up info
2358       _worklist.push(dst);
2359       int d = 0;
2360       if (dst != _start) {
2361         d = find_info(src)->distance() + 1;
2362       }
2363       make_info(dst, d);
2364     }
2365     if (src != dst) {
2366       // traversal edges useful during select
2367       find_info(dst)->edge_bwd.push(src);
2368     }
2369   }
2370 }
2371 
2372 void PrintBFS::print_header() const {
2373   if (_dump_only) {
2374     return; // no header in dump only mode
2375   }
2376   _output->print("dist");                         // distance
2377   if (_all_paths) {
2378     _output->print(" apd");                       // all paths distance
2379   }
2380   if (_print_blocks) {
2381     _output->print(" [block  head  idom depth]"); // block
2382   }
2383   if (_print_old) {
2384     _output->print("   old");                     // old node
2385   }
2386   _output->print(" dump\n");                      // node dump
2387   _output->print_cr("---------------------------------------------");
2388 }
2389 
2390 void PrintBFS::print_node(const Node* n) {
2391   if (_dump_only) {
2392     n->dump("\n", false, _output, &_dcc);
2393     return;
2394   }
2395   _output->print("%4d", find_info(n)->distance());// distance
2396   if (_all_paths) {
2397     Info* info = find_info(n);
2398     int apd = info->distance() + info->distance_from_target();
2399     _output->print("%4d", apd);                   // all paths distance
2400   }
2401   if (_print_blocks) {
2402     print_node_block(n);                          // block
2403   }
2404   if (_print_old) {
2405     print_node_idx(old_node(n));                  // old node
2406   }
2407   _output->print(" ");
2408   n->dump("\n", false, _output, &_dcc);           // node dump
2409 }
2410 
2411 //------------------------------dump_bfs--------------------------------------
2412 // Call this from debugger
2413 // Useful for BFS traversal, shortest path, all path, loop detection, etc
2414 // Designed to be more readable, and provide additional info
2415 // To find all options, run:
2416 //   find_node(0)->dump_bfs(0,0,"H")
2417 void Node::dump_bfs(const int max_distance, Node* target, const char* options) const {
2418   dump_bfs(max_distance, target, options, tty);
2419 }
2420 
2421 // Used to dump to stream.
2422 void Node::dump_bfs(const int max_distance, Node* target, const char* options, outputStream* st, const frame* fr) const {
2423   PrintBFS bfs(this, max_distance, target, options, st, fr);
2424   bfs.run();
2425 }
2426 
2427 // Call this from debugger, with default arguments
2428 void Node::dump_bfs(const int max_distance) const {
2429   dump_bfs(max_distance, nullptr, nullptr);
2430 }
2431 
2432 // Call this from debugger, with stack handling register arguments for IGV dumps.
2433 // Example: p find_node(741)->dump_bfs(7, find_node(741), "c+A!", $sp, $fp, $pc).
2434 void Node::dump_bfs(const int max_distance, Node* target, const char* options, void* sp, void* fp, void* pc) const {
2435   frame fr(sp, fp, pc);
2436   dump_bfs(max_distance, target, options, tty, &fr);
2437 }
2438 
2439 // -----------------------------dump_idx---------------------------------------
2440 void Node::dump_idx(bool align, outputStream* st, DumpConfig* dc) const {
2441   if (dc != nullptr) {
2442     dc->pre_dump(st, this);
2443   }
2444   Compile* C = Compile::current();
2445   bool is_new = C->node_arena()->contains(this);
2446   if (align) { // print prefix empty spaces$
2447     // +1 for leading digit, +1 for "o"
2448     uint max_width = (C->unique() == 0 ? 0 : static_cast<uint>(log10(static_cast<double>(C->unique())))) + 2;
2449     // +1 for leading digit, maybe +1 for "o"
2450     uint width = (_idx == 0 ? 0 : static_cast<uint>(log10(static_cast<double>(_idx)))) + 1 + (is_new ? 0 : 1);
2451     while (max_width > width) {
2452       st->print(" ");
2453       width++;
2454     }
2455   }
2456   if (!is_new) {
2457     st->print("o");
2458   }
2459   st->print("%d", _idx);
2460   if (dc != nullptr) {
2461     dc->post_dump(st);
2462   }
2463 }
2464 
2465 // -----------------------------dump_name--------------------------------------
2466 void Node::dump_name(outputStream* st, DumpConfig* dc) const {
2467   if (dc != nullptr) {
2468     dc->pre_dump(st, this);
2469   }
2470   st->print("%s", Name());
2471   if (dc != nullptr) {
2472     dc->post_dump(st);
2473   }
2474 }
2475 
2476 // -----------------------------Name-------------------------------------------
2477 extern const char *NodeClassNames[];
2478 const char *Node::Name() const { return NodeClassNames[Opcode()]; }
2479 
2480 static bool is_disconnected(const Node* n) {
2481   for (uint i = 0; i < n->req(); i++) {
2482     if (n->in(i) != nullptr)  return false;
2483   }
2484   return true;
2485 }
2486 
2487 #ifdef ASSERT
2488 void Node::dump_orig(outputStream *st, bool print_key) const {
2489   Compile* C = Compile::current();
2490   Node* orig = _debug_orig;
2491   if (not_a_node(orig)) orig = nullptr;
2492   if (orig != nullptr && !C->node_arena()->contains(orig)) orig = nullptr;
2493   if (orig == nullptr) return;
2494   if (print_key) {
2495     st->print(" !orig=");
2496   }
2497   Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
2498   if (not_a_node(fast)) fast = nullptr;
2499   while (orig != nullptr) {
2500     bool discon = is_disconnected(orig);  // if discon, print [123] else 123
2501     if (discon) st->print("[");
2502     if (!Compile::current()->node_arena()->contains(orig))
2503       st->print("o");
2504     st->print("%d", orig->_idx);
2505     if (discon) st->print("]");
2506     orig = orig->debug_orig();
2507     if (not_a_node(orig)) orig = nullptr;
2508     if (orig != nullptr && !C->node_arena()->contains(orig)) orig = nullptr;
2509     if (orig != nullptr) st->print(",");
2510     if (fast != nullptr) {
2511       // Step fast twice for each single step of orig:
2512       fast = fast->debug_orig();
2513       if (not_a_node(fast)) fast = nullptr;
2514       if (fast != nullptr && fast != orig) {
2515         fast = fast->debug_orig();
2516         if (not_a_node(fast)) fast = nullptr;
2517       }
2518       if (fast == orig) {
2519         st->print("...");
2520         break;
2521       }
2522     }
2523   }
2524 }
2525 
2526 void Node::set_debug_orig(Node* orig) {
2527   _debug_orig = orig;
2528   if (BreakAtNode == 0)  return;
2529   if (not_a_node(orig))  orig = nullptr;
2530   int trip = 10;
2531   while (orig != nullptr) {
2532     if (orig->debug_idx() == BreakAtNode || (uintx)orig->_idx == BreakAtNode) {
2533       tty->print_cr("BreakAtNode: _idx=%d _debug_idx=" UINT64_FORMAT " orig._idx=%d orig._debug_idx=" UINT64_FORMAT,
2534                     this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
2535       BREAKPOINT;
2536     }
2537     orig = orig->debug_orig();
2538     if (not_a_node(orig))  orig = nullptr;
2539     if (trip-- <= 0)  break;
2540   }
2541 }
2542 #endif //ASSERT
2543 
2544 //------------------------------dump------------------------------------------
2545 // Dump a Node
2546 void Node::dump(const char* suffix, bool mark, outputStream* st, DumpConfig* dc) const {
2547   Compile* C = Compile::current();
2548   bool is_new = C->node_arena()->contains(this);
2549   C->_in_dump_cnt++;
2550 
2551   // idx mark name ===
2552   dump_idx(true, st, dc);
2553   st->print(mark ? " >" : "  ");
2554   dump_name(st, dc);
2555   st->print("  === ");
2556 
2557   // Dump the required and precedence inputs
2558   dump_req(st, dc);
2559   dump_prec(st, dc);
2560   // Dump the outputs
2561   dump_out(st, dc);
2562 
2563   if (is_disconnected(this)) {
2564 #ifdef ASSERT
2565     st->print("  [" UINT64_FORMAT "]", debug_idx());
2566     dump_orig(st);
2567 #endif
2568     st->cr();
2569     C->_in_dump_cnt--;
2570     return;                     // don't process dead nodes
2571   }
2572 
2573   if (C->clone_map().value(_idx) != 0) {
2574     C->clone_map().dump(_idx, st);
2575   }
2576   // Dump node-specific info
2577   dump_spec(st);
2578 #ifdef ASSERT
2579   // Dump the non-reset _debug_idx
2580   if (Verbose && WizardMode) {
2581     st->print("  [" UINT64_FORMAT "]", debug_idx());
2582   }
2583 #endif
2584 
2585   const Type *t = bottom_type();
2586 
2587   if (t != nullptr && (t->isa_instptr() || t->isa_instklassptr())) {
2588     const TypeInstPtr  *toop = t->isa_instptr();
2589     const TypeInstKlassPtr *tkls = t->isa_instklassptr();
2590     if (toop) {
2591       st->print("  Oop:");
2592     } else if (tkls) {
2593       st->print("  Klass:");
2594     }
2595     t->dump_on(st);
2596   } else if (t == Type::MEMORY) {
2597     st->print("  Memory:");
2598     MemNode::dump_adr_type(this, adr_type(), st);
2599   } else if (Verbose || WizardMode) {
2600     st->print("  Type:");
2601     if (t) {
2602       t->dump_on(st);
2603     } else {
2604       st->print("no type");
2605     }
2606   } else if (t->isa_vect() && this->is_MachSpillCopy()) {
2607     // Dump MachSpillcopy vector type.
2608     t->dump_on(st);
2609   }
2610   if (is_new) {
2611     DEBUG_ONLY(dump_orig(st));
2612     Node_Notes* nn = C->node_notes_at(_idx);
2613     if (nn != nullptr && !nn->is_clear()) {
2614       if (nn->jvms() != nullptr) {
2615         st->print(" !jvms:");
2616         nn->jvms()->dump_spec(st);
2617       }
2618     }
2619   }
2620   if (suffix) st->print("%s", suffix);
2621   C->_in_dump_cnt--;
2622 }
2623 
2624 // call from debugger: dump node to tty with newline
2625 void Node::dump() const {
2626   dump("\n");
2627 }
2628 
2629 //------------------------------dump_req--------------------------------------
2630 void Node::dump_req(outputStream* st, DumpConfig* dc) const {
2631   // Dump the required input edges
2632   for (uint i = 0; i < req(); i++) {    // For all required inputs
2633     Node* d = in(i);
2634     if (d == nullptr) {
2635       st->print("_ ");
2636     } else if (not_a_node(d)) {
2637       st->print("not_a_node ");  // uninitialized, sentinel, garbage, etc.
2638     } else {
2639       d->dump_idx(false, st, dc);
2640       st->print(" ");
2641     }
2642   }
2643 }
2644 
2645 
2646 //------------------------------dump_prec-------------------------------------
2647 void Node::dump_prec(outputStream* st, DumpConfig* dc) const {
2648   // Dump the precedence edges
2649   int any_prec = 0;
2650   for (uint i = req(); i < len(); i++) {       // For all precedence inputs
2651     Node* p = in(i);
2652     if (p != nullptr) {
2653       if (!any_prec++) st->print(" |");
2654       if (not_a_node(p)) { st->print("not_a_node "); continue; }
2655       p->dump_idx(false, st, dc);
2656       st->print(" ");
2657     }
2658   }
2659 }
2660 
2661 //------------------------------dump_out--------------------------------------
2662 void Node::dump_out(outputStream* st, DumpConfig* dc) const {
2663   // Delimit the output edges
2664   st->print(" [[ ");
2665   // Dump the output edges
2666   for (uint i = 0; i < _outcnt; i++) {    // For all outputs
2667     Node* u = _out[i];
2668     if (u == nullptr) {
2669       st->print("_ ");
2670     } else if (not_a_node(u)) {
2671       st->print("not_a_node ");
2672     } else {
2673       u->dump_idx(false, st, dc);
2674       st->print(" ");
2675     }
2676   }
2677   st->print("]] ");
2678 }
2679 
2680 //------------------------------dump-------------------------------------------
2681 // call from debugger: dump Node's inputs (or outputs if d negative)
2682 void Node::dump(int d) const {
2683   dump_bfs(abs(d), nullptr, (d > 0) ? "+$" : "-$");
2684 }
2685 
2686 //------------------------------dump_ctrl--------------------------------------
2687 // call from debugger: dump Node's control inputs (or outputs if d negative)
2688 void Node::dump_ctrl(int d) const {
2689   dump_bfs(abs(d), nullptr, (d > 0) ? "+$c" : "-$c");
2690 }
2691 
2692 //-----------------------------dump_compact------------------------------------
2693 void Node::dump_comp() const {
2694   this->dump_comp("\n");
2695 }
2696 
2697 //-----------------------------dump_compact------------------------------------
2698 // Dump a Node in compact representation, i.e., just print its name and index.
2699 // Nodes can specify additional specifics to print in compact representation by
2700 // implementing dump_compact_spec.
2701 void Node::dump_comp(const char* suffix, outputStream *st) const {
2702   Compile* C = Compile::current();
2703   C->_in_dump_cnt++;
2704   st->print("%s(%d)", Name(), _idx);
2705   this->dump_compact_spec(st);
2706   if (suffix) {
2707     st->print("%s", suffix);
2708   }
2709   C->_in_dump_cnt--;
2710 }
2711 
2712 // VERIFICATION CODE
2713 // Verify all nodes if verify_depth is negative
2714 void Node::verify(int verify_depth, VectorSet& visited, Node_List& worklist) {
2715   assert(verify_depth != 0, "depth should not be 0");
2716   Compile* C = Compile::current();
2717   uint last_index_on_current_depth = worklist.size() - 1;
2718   verify_depth--; // Visiting the first node on depth 1
2719   // Only add nodes to worklist if verify_depth is negative (visit all nodes) or greater than 0
2720   bool add_to_worklist = verify_depth != 0;
2721 
2722   for (uint list_index = 0; list_index < worklist.size(); list_index++) {
2723     Node* n = worklist[list_index];
2724 
2725     if (n->is_Con() && n->bottom_type() == Type::TOP) {
2726       if (C->cached_top_node() == nullptr) {
2727         C->set_cached_top_node((Node*)n);
2728       }
2729       assert(C->cached_top_node() == n, "TOP node must be unique");
2730     }
2731 
2732     uint in_len = n->len();
2733     for (uint i = 0; i < in_len; i++) {
2734       Node* x = n->_in[i];
2735       if (!x || x->is_top()) {
2736         continue;
2737       }
2738 
2739       // Verify my input has a def-use edge to me
2740       // Count use-def edges from n to x
2741       int cnt = 1;
2742       for (uint j = 0; j < i; j++) {
2743         if (n->_in[j] == x) {
2744           cnt++;
2745           break;
2746         }
2747       }
2748       if (cnt == 2) {
2749         // x is already checked as n's previous input, skip its duplicated def-use count checking
2750         continue;
2751       }
2752       for (uint j = i + 1; j < in_len; j++) {
2753         if (n->_in[j] == x) {
2754           cnt++;
2755         }
2756       }
2757 
2758       // Count def-use edges from x to n
2759       uint max = x->_outcnt;
2760       for (uint k = 0; k < max; k++) {
2761         if (x->_out[k] == n) {
2762           cnt--;
2763         }
2764       }
2765       assert(cnt == 0, "mismatched def-use edge counts");
2766 
2767       if (add_to_worklist && !visited.test_set(x->_idx)) {
2768         worklist.push(x);
2769       }
2770     }
2771 
2772     if (verify_depth > 0 && list_index == last_index_on_current_depth) {
2773       // All nodes on this depth were processed and its inputs are on the worklist. Decrement verify_depth and
2774       // store the current last list index which is the last node in the list with the new depth. All nodes
2775       // added afterwards will have a new depth again. Stop adding new nodes if depth limit is reached (=0).
2776       verify_depth--;
2777       if (verify_depth == 0) {
2778         add_to_worklist = false;
2779       }
2780       last_index_on_current_depth = worklist.size() - 1;
2781     }
2782   }
2783 }
2784 #endif // not PRODUCT
2785 
2786 //------------------------------Registers--------------------------------------
2787 // Do we Match on this edge index or not?  Generally false for Control
2788 // and true for everything else.  Weird for calls & returns.
2789 uint Node::match_edge(uint idx) const {
2790   return idx;                   // True for other than index 0 (control)
2791 }
2792 
2793 // Register classes are defined for specific machines
2794 const RegMask &Node::out_RegMask() const {
2795   ShouldNotCallThis();
2796   return RegMask::EMPTY;
2797 }
2798 
2799 const RegMask &Node::in_RegMask(uint) const {
2800   ShouldNotCallThis();
2801   return RegMask::EMPTY;
2802 }
2803 
2804 void Node_Array::grow(uint i) {
2805   assert(i >= _max, "Should have been checked before, use maybe_grow?");
2806   assert(_max > 0, "invariant");
2807   uint old = _max;
2808   _max = next_power_of_2(i);
2809   _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
2810   Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
2811 }
2812 
2813 void Node_Array::insert(uint i, Node* n) {
2814   if (_nodes[_max - 1]) {
2815     grow(_max);
2816   }
2817   Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i + 1], ((_max - i - 1) * sizeof(Node*)));
2818   _nodes[i] = n;
2819 }
2820 
2821 void Node_Array::remove(uint i) {
2822   Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i + 1], (HeapWord*)&_nodes[i], ((_max - i - 1) * sizeof(Node*)));
2823   _nodes[_max - 1] = nullptr;
2824 }
2825 
2826 void Node_Array::dump() const {
2827 #ifndef PRODUCT
2828   for (uint i = 0; i < _max; i++) {
2829     Node* nn = _nodes[i];
2830     if (nn != nullptr) {
2831       tty->print("%5d--> ",i); nn->dump();
2832     }
2833   }
2834 #endif
2835 }
2836 
2837 //--------------------------is_iteratively_computed------------------------------
2838 // Operation appears to be iteratively computed (such as an induction variable)
2839 // It is possible for this operation to return false for a loop-varying
2840 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
2841 bool Node::is_iteratively_computed() {
2842   if (ideal_reg()) { // does operation have a result register?
2843     for (uint i = 1; i < req(); i++) {
2844       Node* n = in(i);
2845       if (n != nullptr && n->is_Phi()) {
2846         for (uint j = 1; j < n->req(); j++) {
2847           if (n->in(j) == this) {
2848             return true;
2849           }
2850         }
2851       }
2852     }
2853   }
2854   return false;
2855 }
2856 
2857 //--------------------------find_similar------------------------------
2858 // Return a node with opcode "opc" and same inputs as "this" if one can
2859 // be found; Otherwise return null;
2860 Node* Node::find_similar(int opc) {
2861   if (req() >= 2) {
2862     Node* def = in(1);
2863     if (def && def->outcnt() >= 2) {
2864       for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
2865         Node* use = def->fast_out(i);
2866         if (use != this &&
2867             use->Opcode() == opc &&
2868             use->req() == req()) {
2869           uint j;
2870           for (j = 0; j < use->req(); j++) {
2871             if (use->in(j) != in(j)) {
2872               break;
2873             }
2874           }
2875           if (j == use->req()) {
2876             return use;
2877           }
2878         }
2879       }
2880     }
2881   }
2882   return nullptr;
2883 }
2884 
2885 
2886 //--------------------------unique_ctrl_out_or_null-------------------------
2887 // Return the unique control out if only one. Null if none or more than one.
2888 Node* Node::unique_ctrl_out_or_null() const {
2889   Node* found = nullptr;
2890   for (uint i = 0; i < outcnt(); i++) {
2891     Node* use = raw_out(i);
2892     if (use->is_CFG() && use != this) {
2893       if (found != nullptr) {
2894         return nullptr;
2895       }
2896       found = use;
2897     }
2898   }
2899   return found;
2900 }
2901 
2902 //--------------------------unique_ctrl_out------------------------------
2903 // Return the unique control out. Asserts if none or more than one control out.
2904 Node* Node::unique_ctrl_out() const {
2905   Node* ctrl = unique_ctrl_out_or_null();
2906   assert(ctrl != nullptr, "control out is assumed to be unique");
2907   return ctrl;
2908 }
2909 
2910 void Node::ensure_control_or_add_prec(Node* c) {
2911   if (in(0) == nullptr) {
2912     set_req(0, c);
2913   } else if (in(0) != c) {
2914     add_prec(c);
2915   }
2916 }
2917 
2918 void Node::add_prec_from(Node* n) {
2919   for (uint i = n->req(); i < n->len(); i++) {
2920     Node* prec = n->in(i);
2921     if (prec != nullptr) {
2922       add_prec(prec);
2923     }
2924   }
2925 }
2926 
2927 bool Node::is_dead_loop_safe() const {
2928   if (is_Phi()) {
2929     return true;
2930   }
2931   if (is_Proj() && in(0) == nullptr)  {
2932     return true;
2933   }
2934   if ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0) {
2935     if (!is_Proj()) {
2936       return true;
2937     }
2938     if (in(0)->is_Allocate()) {
2939       return false;
2940     }
2941     // MemNode::can_see_stored_value() peeks through the boxing call
2942     if (in(0)->is_CallStaticJava() && in(0)->as_CallStaticJava()->is_boxing_method()) {
2943       return false;
2944     }
2945     return true;
2946   }
2947   return false;
2948 }
2949 
2950 bool Node::is_div_or_mod(BasicType bt) const { return Opcode() == Op_Div(bt) || Opcode() == Op_Mod(bt) ||
2951                                                       Opcode() == Op_UDiv(bt) || Opcode() == Op_UMod(bt); }
2952 
2953 // `maybe_pure_function` is assumed to be the input of `this`. This is a bit redundant,
2954 // but we already have and need maybe_pure_function in all the call sites, so
2955 // it makes it obvious that the `maybe_pure_function` is the same node as in the caller,
2956 // while it takes more thinking to realize that a locally computed in(0) must be equal to
2957 // the local in the caller.
2958 bool Node::is_data_proj_of_pure_function(const Node* maybe_pure_function) const {
2959   return Opcode() == Op_Proj && as_Proj()->_con == TypeFunc::Parms && maybe_pure_function->is_CallLeafPure();
2960 }
2961 
2962 //=============================================================================
2963 //------------------------------yank-------------------------------------------
2964 // Find and remove
2965 void Node_List::yank( Node *n ) {
2966   uint i;
2967   for (i = 0; i < _cnt; i++) {
2968     if (_nodes[i] == n) {
2969       break;
2970     }
2971   }
2972 
2973   if (i < _cnt) {
2974     _nodes[i] = _nodes[--_cnt];
2975   }
2976 }
2977 
2978 //------------------------------dump-------------------------------------------
2979 void Node_List::dump() const {
2980 #ifndef PRODUCT
2981   for (uint i = 0; i < _cnt; i++) {
2982     if (_nodes[i]) {
2983       tty->print("%5d--> ", i);
2984       _nodes[i]->dump();
2985     }
2986   }
2987 #endif
2988 }
2989 
2990 void Node_List::dump_simple() const {
2991 #ifndef PRODUCT
2992   for (uint i = 0; i < _cnt; i++) {
2993     if( _nodes[i] ) {
2994       tty->print(" %d", _nodes[i]->_idx);
2995     } else {
2996       tty->print(" null");
2997     }
2998   }
2999 #endif
3000 }
3001 
3002 //=============================================================================
3003 //------------------------------remove-----------------------------------------
3004 void Unique_Node_List::remove(Node* n) {
3005   if (_in_worklist.test(n->_idx)) {
3006     for (uint i = 0; i < size(); i++) {
3007       if (_nodes[i] == n) {
3008         map(i, Node_List::pop());
3009         _in_worklist.remove(n->_idx);
3010         return;
3011       }
3012     }
3013     ShouldNotReachHere();
3014   }
3015 }
3016 
3017 //-----------------------remove_useless_nodes----------------------------------
3018 // Remove useless nodes from worklist
3019 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
3020   for (uint i = 0; i < size(); ++i) {
3021     Node *n = at(i);
3022     assert( n != nullptr, "Did not expect null entries in worklist");
3023     if (!useful.test(n->_idx)) {
3024       _in_worklist.remove(n->_idx);
3025       map(i, Node_List::pop());
3026       --i;  // Visit popped node
3027       // If it was last entry, loop terminates since size() was also reduced
3028     }
3029   }
3030 }
3031 
3032 //=============================================================================
3033 void Node_Stack::grow() {
3034   size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
3035   size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
3036   size_t max = old_max << 1;             // max * 2
3037   _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
3038   _inode_max = _inodes + max;
3039   _inode_top = _inodes + old_top;        // restore _top
3040 }
3041 
3042 // Node_Stack is used to map nodes.
3043 Node* Node_Stack::find(uint idx) const {
3044   uint sz = size();
3045   for (uint i = 0; i < sz; i++) {
3046     if (idx == index_at(i)) {
3047       return node_at(i);
3048     }
3049   }
3050   return nullptr;
3051 }
3052 
3053 //=============================================================================
3054 uint TypeNode::size_of() const { return sizeof(*this); }
3055 #ifndef PRODUCT
3056 void TypeNode::dump_spec(outputStream *st) const {
3057   if (!Verbose && !WizardMode) {
3058     // standard dump does this in Verbose and WizardMode
3059     st->print(" #"); _type->dump_on(st);
3060   }
3061 }
3062 
3063 void TypeNode::dump_compact_spec(outputStream *st) const {
3064   st->print("#");
3065   _type->dump_on(st);
3066 }
3067 #endif
3068 uint TypeNode::hash() const {
3069   return Node::hash() + _type->hash();
3070 }
3071 bool TypeNode::cmp(const Node& n) const {
3072   return Type::equals(_type, n.as_Type()->_type);
3073 }
3074 const Type* TypeNode::bottom_type() const { return _type; }
3075 const Type* TypeNode::Value(PhaseGVN* phase) const { return _type; }
3076 
3077 //------------------------------ideal_reg--------------------------------------
3078 uint TypeNode::ideal_reg() const {
3079   return _type->ideal_reg();
3080 }
3081 
3082 void TypeNode::make_path_dead(PhaseIterGVN* igvn, PhaseIdealLoop* loop, Node* ctrl_use, uint j, const char* phase_str) {
3083   Node* c = ctrl_use->in(j);
3084   if (igvn->type(c) != Type::TOP) {
3085     igvn->replace_input_of(ctrl_use, j, igvn->C->top());
3086     create_halt_path(igvn, c, loop, phase_str);
3087   }
3088 }
3089 
3090 // This Type node is dead. It could be because the type that it captures and the type of the node computed from its
3091 // inputs do not intersect anymore. That node has some uses along some control flow paths. Those control flow paths must
3092 // be unreachable as using a dead value makes no sense. For the Type node to capture a narrowed down type, some control
3093 // flow construct must guard the Type node (an If node usually). When the Type node becomes dead, the guard usually
3094 // constant folds and the control flow that leads to the Type node becomes unreachable. There are cases where that
3095 // doesn't happen, however. They are handled here by following uses of the Type node until a CFG or a Phi to find dead
3096 // paths. The dead paths are then replaced by a Halt node.
3097 void TypeNode::make_paths_from_here_dead(PhaseIterGVN* igvn, PhaseIdealLoop* loop, const char* phase_str) {
3098   Unique_Node_List wq;
3099   wq.push(this);
3100   for (uint i = 0; i < wq.size(); ++i) {
3101     Node* n = wq.at(i);
3102     for (DUIterator_Fast kmax, k = n->fast_outs(kmax); k < kmax; k++) {
3103       Node* u = n->fast_out(k);
3104       if (u->is_CFG()) {
3105         assert(!u->is_Region(), "Can't reach a Region without going through a Phi");
3106         make_path_dead(igvn, loop, u, 0, phase_str);
3107       } else if (u->is_Phi()) {
3108         Node* r = u->in(0);
3109         assert(r->is_Region() || r->is_top(), "unexpected Phi's control");
3110         if (r->is_Region()) {
3111           for (uint j = 1; j < u->req(); ++j) {
3112             if (u->in(j) == n && r->in(j) != nullptr) {
3113               make_path_dead(igvn, loop, r, j, phase_str);
3114             }
3115           }
3116         }
3117       } else {
3118         wq.push(u);
3119       }
3120     }
3121   }
3122 }
3123 
3124 void TypeNode::create_halt_path(PhaseIterGVN* igvn, Node* c, PhaseIdealLoop* loop, const char* phase_str) const {
3125   Node* frame = new ParmNode(igvn->C->start(), TypeFunc::FramePtr);
3126   if (loop == nullptr) {
3127     igvn->register_new_node_with_optimizer(frame);
3128   } else {
3129     loop->register_new_node(frame, igvn->C->start());
3130   }
3131 
3132   stringStream ss;
3133   ss.print("dead path discovered by TypeNode during %s", phase_str);
3134 
3135   Node* halt = new HaltNode(c, frame, ss.as_string(igvn->C->comp_arena()));
3136   if (loop == nullptr) {
3137     igvn->register_new_node_with_optimizer(halt);
3138   } else {
3139     loop->register_control(halt, loop->ltree_root(), c);
3140   }
3141   igvn->add_input_to(igvn->C->root(), halt);
3142 }
3143 
3144 Node* TypeNode::Ideal(PhaseGVN* phase, bool can_reshape) {
3145   if (KillPathsReachableByDeadTypeNode && can_reshape && Value(phase) == Type::TOP) {
3146     PhaseIterGVN* igvn = phase->is_IterGVN();
3147     Node* top = igvn->C->top();
3148     ResourceMark rm;
3149     make_paths_from_here_dead(igvn, nullptr, "igvn");
3150     return top;
3151   }
3152 
3153   return Node::Ideal(phase, can_reshape);
3154 }
3155