1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "gc/shared/barrierSet.hpp"
  26 #include "gc/shared/c2/barrierSetC2.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/block.hpp"
  31 #include "opto/callnode.hpp"
  32 #include "opto/castnode.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/idealGraphPrinter.hpp"
  35 #include "opto/loopnode.hpp"
  36 #include "opto/machnode.hpp"
  37 #include "opto/opcodes.hpp"
  38 #include "opto/phaseX.hpp"
  39 #include "opto/regalloc.hpp"
  40 #include "opto/rootnode.hpp"
  41 #include "utilities/macros.hpp"
  42 #include "utilities/powerOfTwo.hpp"
  43 
  44 //=============================================================================
  45 #define NODE_HASH_MINIMUM_SIZE    255
  46 
  47 //------------------------------NodeHash---------------------------------------
  48 NodeHash::NodeHash(Arena *arena, uint est_max_size) :
  49   _a(arena),
  50   _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
  51   _inserts(0), _insert_limit( insert_limit() ),
  52   _table( NEW_ARENA_ARRAY( _a , Node* , _max ) )
  53 #ifndef PRODUCT
  54   , _grows(0),_look_probes(0), _lookup_hits(0), _lookup_misses(0),
  55   _insert_probes(0), _delete_probes(0), _delete_hits(0), _delete_misses(0),
  56    _total_inserts(0), _total_insert_probes(0)
  57 #endif
  58 {
  59   // _sentinel must be in the current node space
  60   _sentinel = new ProjNode(nullptr, TypeFunc::Control);
  61   memset(_table,0,sizeof(Node*)*_max);
  62 }
  63 
  64 //------------------------------hash_find--------------------------------------
  65 // Find in hash table
  66 Node *NodeHash::hash_find( const Node *n ) {
  67   // ((Node*)n)->set_hash( n->hash() );
  68   uint hash = n->hash();
  69   if (hash == Node::NO_HASH) {
  70     NOT_PRODUCT( _lookup_misses++ );
  71     return nullptr;
  72   }
  73   uint key = hash & (_max-1);
  74   uint stride = key | 0x01;
  75   NOT_PRODUCT( _look_probes++ );
  76   Node *k = _table[key];        // Get hashed value
  77   if( !k ) {                    // ?Miss?
  78     NOT_PRODUCT( _lookup_misses++ );
  79     return nullptr;             // Miss!
  80   }
  81 
  82   int op = n->Opcode();
  83   uint req = n->req();
  84   while( 1 ) {                  // While probing hash table
  85     if( k->req() == req &&      // Same count of inputs
  86         k->Opcode() == op ) {   // Same Opcode
  87       for( uint i=0; i<req; i++ )
  88         if( n->in(i)!=k->in(i)) // Different inputs?
  89           goto collision;       // "goto" is a speed hack...
  90       if( n->cmp(*k) ) {        // Check for any special bits
  91         NOT_PRODUCT( _lookup_hits++ );
  92         return k;               // Hit!
  93       }
  94     }
  95   collision:
  96     NOT_PRODUCT( _look_probes++ );
  97     key = (key + stride/*7*/) & (_max-1); // Stride through table with relative prime
  98     k = _table[key];            // Get hashed value
  99     if( !k ) {                  // ?Miss?
 100       NOT_PRODUCT( _lookup_misses++ );
 101       return nullptr;           // Miss!
 102     }
 103   }
 104   ShouldNotReachHere();
 105   return nullptr;
 106 }
 107 
 108 //------------------------------hash_find_insert-------------------------------
 109 // Find in hash table, insert if not already present
 110 // Used to preserve unique entries in hash table
 111 Node *NodeHash::hash_find_insert( Node *n ) {
 112   // n->set_hash( );
 113   uint hash = n->hash();
 114   if (hash == Node::NO_HASH) {
 115     NOT_PRODUCT( _lookup_misses++ );
 116     return nullptr;
 117   }
 118   uint key = hash & (_max-1);
 119   uint stride = key | 0x01;     // stride must be relatively prime to table siz
 120   uint first_sentinel = 0;      // replace a sentinel if seen.
 121   NOT_PRODUCT( _look_probes++ );
 122   Node *k = _table[key];        // Get hashed value
 123   if( !k ) {                    // ?Miss?
 124     NOT_PRODUCT( _lookup_misses++ );
 125     _table[key] = n;            // Insert into table!
 126     DEBUG_ONLY(n->enter_hash_lock()); // Lock down the node while in the table.
 127     check_grow();               // Grow table if insert hit limit
 128     return nullptr;             // Miss!
 129   }
 130   else if( k == _sentinel ) {
 131     first_sentinel = key;      // Can insert here
 132   }
 133 
 134   int op = n->Opcode();
 135   uint req = n->req();
 136   while( 1 ) {                  // While probing hash table
 137     if( k->req() == req &&      // Same count of inputs
 138         k->Opcode() == op ) {   // Same Opcode
 139       for( uint i=0; i<req; i++ )
 140         if( n->in(i)!=k->in(i)) // Different inputs?
 141           goto collision;       // "goto" is a speed hack...
 142       if( n->cmp(*k) ) {        // Check for any special bits
 143         NOT_PRODUCT( _lookup_hits++ );
 144         return k;               // Hit!
 145       }
 146     }
 147   collision:
 148     NOT_PRODUCT( _look_probes++ );
 149     key = (key + stride) & (_max-1); // Stride through table w/ relative prime
 150     k = _table[key];            // Get hashed value
 151     if( !k ) {                  // ?Miss?
 152       NOT_PRODUCT( _lookup_misses++ );
 153       key = (first_sentinel == 0) ? key : first_sentinel; // ?saw sentinel?
 154       _table[key] = n;          // Insert into table!
 155       DEBUG_ONLY(n->enter_hash_lock()); // Lock down the node while in the table.
 156       check_grow();             // Grow table if insert hit limit
 157       return nullptr;           // Miss!
 158     }
 159     else if( first_sentinel == 0 && k == _sentinel ) {
 160       first_sentinel = key;    // Can insert here
 161     }
 162 
 163   }
 164   ShouldNotReachHere();
 165   return nullptr;
 166 }
 167 
 168 //------------------------------hash_insert------------------------------------
 169 // Insert into hash table
 170 void NodeHash::hash_insert( Node *n ) {
 171   // // "conflict" comments -- print nodes that conflict
 172   // bool conflict = false;
 173   // n->set_hash();
 174   uint hash = n->hash();
 175   if (hash == Node::NO_HASH) {
 176     return;
 177   }
 178   check_grow();
 179   uint key = hash & (_max-1);
 180   uint stride = key | 0x01;
 181 
 182   while( 1 ) {                  // While probing hash table
 183     NOT_PRODUCT( _insert_probes++ );
 184     Node *k = _table[key];      // Get hashed value
 185     if( !k || (k == _sentinel) ) break;       // Found a slot
 186     assert( k != n, "already inserted" );
 187     // if( PrintCompilation && PrintOptoStatistics && Verbose ) { tty->print("  conflict: "); k->dump(); conflict = true; }
 188     key = (key + stride) & (_max-1); // Stride through table w/ relative prime
 189   }
 190   _table[key] = n;              // Insert into table!
 191   DEBUG_ONLY(n->enter_hash_lock()); // Lock down the node while in the table.
 192   // if( conflict ) { n->dump(); }
 193 }
 194 
 195 //------------------------------hash_delete------------------------------------
 196 // Replace in hash table with sentinel
 197 bool NodeHash::hash_delete( const Node *n ) {
 198   Node *k;
 199   uint hash = n->hash();
 200   if (hash == Node::NO_HASH) {
 201     NOT_PRODUCT( _delete_misses++ );
 202     return false;
 203   }
 204   uint key = hash & (_max-1);
 205   uint stride = key | 0x01;
 206   DEBUG_ONLY( uint counter = 0; );
 207   for( ; /* (k != nullptr) && (k != _sentinel) */; ) {
 208     DEBUG_ONLY( counter++ );
 209     NOT_PRODUCT( _delete_probes++ );
 210     k = _table[key];            // Get hashed value
 211     if( !k ) {                  // Miss?
 212       NOT_PRODUCT( _delete_misses++ );
 213       return false;             // Miss! Not in chain
 214     }
 215     else if( n == k ) {
 216       NOT_PRODUCT( _delete_hits++ );
 217       _table[key] = _sentinel;  // Hit! Label as deleted entry
 218       DEBUG_ONLY(((Node*)n)->exit_hash_lock()); // Unlock the node upon removal from table.
 219       return true;
 220     }
 221     else {
 222       // collision: move through table with prime offset
 223       key = (key + stride/*7*/) & (_max-1);
 224       assert( counter <= _insert_limit, "Cycle in hash-table");
 225     }
 226   }
 227   ShouldNotReachHere();
 228   return false;
 229 }
 230 
 231 //------------------------------round_up---------------------------------------
 232 // Round up to nearest power of 2
 233 uint NodeHash::round_up(uint x) {
 234   x += (x >> 2);                  // Add 25% slop
 235   return MAX2(16U, round_up_power_of_2(x));
 236 }
 237 
 238 //------------------------------grow-------------------------------------------
 239 // Grow _table to next power of 2 and insert old entries
 240 void  NodeHash::grow() {
 241   // Record old state
 242   uint   old_max   = _max;
 243   Node **old_table = _table;
 244   // Construct new table with twice the space
 245 #ifndef PRODUCT
 246   _grows++;
 247   _total_inserts       += _inserts;
 248   _total_insert_probes += _insert_probes;
 249   _insert_probes   = 0;
 250 #endif
 251   _inserts         = 0;
 252   _max     = _max << 1;
 253   _table   = NEW_ARENA_ARRAY( _a , Node* , _max ); // (Node**)_a->Amalloc( _max * sizeof(Node*) );
 254   memset(_table,0,sizeof(Node*)*_max);
 255   _insert_limit = insert_limit();
 256   // Insert old entries into the new table
 257   for( uint i = 0; i < old_max; i++ ) {
 258     Node *m = *old_table++;
 259     if( !m || m == _sentinel ) continue;
 260     DEBUG_ONLY(m->exit_hash_lock()); // Unlock the node upon removal from old table.
 261     hash_insert(m);
 262   }
 263 }
 264 
 265 //------------------------------clear------------------------------------------
 266 // Clear all entries in _table to null but keep storage
 267 void  NodeHash::clear() {
 268 #ifdef ASSERT
 269   // Unlock all nodes upon removal from table.
 270   for (uint i = 0; i < _max; i++) {
 271     Node* n = _table[i];
 272     if (!n || n == _sentinel)  continue;
 273     n->exit_hash_lock();
 274   }
 275 #endif
 276 
 277   memset( _table, 0, _max * sizeof(Node*) );
 278 }
 279 
 280 //-----------------------remove_useless_nodes----------------------------------
 281 // Remove useless nodes from value table,
 282 // implementation does not depend on hash function
 283 void NodeHash::remove_useless_nodes(VectorSet &useful) {
 284 
 285   // Dead nodes in the hash table inherited from GVN should not replace
 286   // existing nodes, remove dead nodes.
 287   uint max = size();
 288   Node *sentinel_node = sentinel();
 289   for( uint i = 0; i < max; ++i ) {
 290     Node *n = at(i);
 291     if(n != nullptr && n != sentinel_node && !useful.test(n->_idx)) {
 292       DEBUG_ONLY(n->exit_hash_lock()); // Unlock the node when removed
 293       _table[i] = sentinel_node;       // Replace with placeholder
 294     }
 295   }
 296 }
 297 
 298 
 299 void NodeHash::check_no_speculative_types() {
 300 #ifdef ASSERT
 301   uint max = size();
 302   Unique_Node_List live_nodes;
 303   Compile::current()->identify_useful_nodes(live_nodes);
 304   Node *sentinel_node = sentinel();
 305   for (uint i = 0; i < max; ++i) {
 306     Node *n = at(i);
 307     if (n != nullptr &&
 308         n != sentinel_node &&
 309         n->is_Type() &&
 310         live_nodes.member(n)) {
 311       TypeNode* tn = n->as_Type();
 312       const Type* t = tn->type();
 313       const Type* t_no_spec = t->remove_speculative();
 314       assert(t == t_no_spec, "dead node in hash table or missed node during speculative cleanup");
 315     }
 316   }
 317 #endif
 318 }
 319 
 320 #ifndef PRODUCT
 321 //------------------------------dump-------------------------------------------
 322 // Dump statistics for the hash table
 323 void NodeHash::dump() {
 324   _total_inserts       += _inserts;
 325   _total_insert_probes += _insert_probes;
 326   if (PrintCompilation && PrintOptoStatistics && Verbose && (_inserts > 0)) {
 327     if (WizardMode) {
 328       for (uint i=0; i<_max; i++) {
 329         if (_table[i])
 330           tty->print("%d/%d/%d ",i,_table[i]->hash()&(_max-1),_table[i]->_idx);
 331       }
 332     }
 333     tty->print("\nGVN Hash stats:  %d grows to %d max_size\n", _grows, _max);
 334     tty->print("  %d/%d (%8.1f%% full)\n", _inserts, _max, (double)_inserts/_max*100.0);
 335     tty->print("  %dp/(%dh+%dm) (%8.2f probes/lookup)\n", _look_probes, _lookup_hits, _lookup_misses, (double)_look_probes/(_lookup_hits+_lookup_misses));
 336     tty->print("  %dp/%di (%8.2f probes/insert)\n", _total_insert_probes, _total_inserts, (double)_total_insert_probes/_total_inserts);
 337     // sentinels increase lookup cost, but not insert cost
 338     assert((_lookup_misses+_lookup_hits)*4+100 >= _look_probes, "bad hash function");
 339     assert( _inserts+(_inserts>>3) < _max, "table too full" );
 340     assert( _inserts*3+100 >= _insert_probes, "bad hash function" );
 341   }
 342 }
 343 
 344 Node *NodeHash::find_index(uint idx) { // For debugging
 345   // Find an entry by its index value
 346   for( uint i = 0; i < _max; i++ ) {
 347     Node *m = _table[i];
 348     if( !m || m == _sentinel ) continue;
 349     if( m->_idx == (uint)idx ) return m;
 350   }
 351   return nullptr;
 352 }
 353 #endif
 354 
 355 #ifdef ASSERT
 356 NodeHash::~NodeHash() {
 357   // Unlock all nodes upon destruction of table.
 358   if (_table != (Node**)badAddress)  clear();
 359 }
 360 #endif
 361 
 362 
 363 //=============================================================================
 364 //------------------------------PhaseRemoveUseless-----------------------------
 365 // 1) Use a breadthfirst walk to collect useful nodes reachable from root.
 366 PhaseRemoveUseless::PhaseRemoveUseless(PhaseGVN* gvn, Unique_Node_List& worklist, PhaseNumber phase_num) : Phase(phase_num) {
 367   C->print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 368   // Implementation requires an edge from root to each SafePointNode
 369   // at a backward branch. Inserted in add_safepoint().
 370 
 371   // Identify nodes that are reachable from below, useful.
 372   C->identify_useful_nodes(_useful);
 373   // Update dead node list
 374   C->update_dead_node_list(_useful);
 375 
 376   // Remove all useless nodes from PhaseValues' recorded types
 377   // Must be done before disconnecting nodes to preserve hash-table-invariant
 378   gvn->remove_useless_nodes(_useful.member_set());
 379 
 380   // Remove all useless nodes from future worklist
 381   worklist.remove_useless_nodes(_useful.member_set());
 382 
 383   // Disconnect 'useless' nodes that are adjacent to useful nodes
 384   C->disconnect_useless_nodes(_useful, worklist);
 385 }
 386 
 387 //=============================================================================
 388 //------------------------------PhaseRenumberLive------------------------------
 389 // First, remove useless nodes (equivalent to identifying live nodes).
 390 // Then, renumber live nodes.
 391 //
 392 // The set of live nodes is returned by PhaseRemoveUseless in the _useful structure.
 393 // If the number of live nodes is 'x' (where 'x' == _useful.size()), then the
 394 // PhaseRenumberLive updates the node ID of each node (the _idx field) with a unique
 395 // value in the range [0, x).
 396 //
 397 // At the end of the PhaseRenumberLive phase, the compiler's count of unique nodes is
 398 // updated to 'x' and the list of dead nodes is reset (as there are no dead nodes).
 399 //
 400 // The PhaseRenumberLive phase updates two data structures with the new node IDs.
 401 // (1) The "worklist" is "C->igvn_worklist()", which is to collect which nodes need to
 402 //     be processed by IGVN after removal of the useless nodes.
 403 // (2) Type information "gvn->types()" (same as "C->types()") maps every node ID to
 404 //     the node's type. The mapping is updated to use the new node IDs as well. We
 405 //     create a new map, and swap it with the old one.
 406 //
 407 // Other data structures used by the compiler are not updated. The hash table for value
 408 // numbering ("C->node_hash()", referenced by PhaseValue::_table) is not updated because
 409 // computing the hash values is not based on node IDs.
 410 PhaseRenumberLive::PhaseRenumberLive(PhaseGVN* gvn,
 411                                      Unique_Node_List& worklist,
 412                                      PhaseNumber phase_num) :
 413   PhaseRemoveUseless(gvn, worklist, Remove_Useless_And_Renumber_Live),
 414   _new_type_array(C->comp_arena()),
 415   _old2new_map(C->unique(), C->unique(), -1),
 416   _is_pass_finished(false),
 417   _live_node_count(C->live_nodes())
 418 {
 419   assert(RenumberLiveNodes, "RenumberLiveNodes must be set to true for node renumbering to take place");
 420   assert(C->live_nodes() == _useful.size(), "the number of live nodes must match the number of useful nodes");
 421   assert(_delayed.size() == 0, "should be empty");
 422   assert(&worklist == C->igvn_worklist(), "reference still same as the one from Compile");
 423   assert(&gvn->types() == C->types(), "reference still same as that from Compile");
 424 
 425   GrowableArray<Node_Notes*>* old_node_note_array = C->node_note_array();
 426   if (old_node_note_array != nullptr) {
 427     int new_size = (_useful.size() >> 8) + 1; // The node note array uses blocks, see C->_log2_node_notes_block_size
 428     new_size = MAX2(8, new_size);
 429     C->set_node_note_array(new (C->comp_arena()) GrowableArray<Node_Notes*> (C->comp_arena(), new_size, 0, nullptr));
 430     C->grow_node_notes(C->node_note_array(), new_size);
 431   }
 432 
 433   assert(worklist.is_subset_of(_useful), "only useful nodes should still be in the worklist");
 434 
 435   // Iterate over the set of live nodes.
 436   for (uint current_idx = 0; current_idx < _useful.size(); current_idx++) {
 437     Node* n = _useful.at(current_idx);
 438 
 439     const Type* type = gvn->type_or_null(n);
 440     _new_type_array.map(current_idx, type);
 441 
 442     assert(_old2new_map.at(n->_idx) == -1, "already seen");
 443     _old2new_map.at_put(n->_idx, current_idx);
 444 
 445     if (old_node_note_array != nullptr) {
 446       Node_Notes* nn = C->locate_node_notes(old_node_note_array, n->_idx);
 447       C->set_node_notes_at(current_idx, nn);
 448     }
 449 
 450     n->set_idx(current_idx); // Update node ID.
 451 
 452     if (update_embedded_ids(n) < 0) {
 453       _delayed.push(n); // has embedded IDs; handle later
 454     }
 455   }
 456 
 457   // VectorSet in Unique_Node_Set must be recomputed, since IDs have changed.
 458   worklist.recompute_idx_set();
 459 
 460   assert(_live_node_count == _useful.size(), "all live nodes must be processed");
 461 
 462   _is_pass_finished = true; // pass finished; safe to process delayed updates
 463 
 464   while (_delayed.size() > 0) {
 465     Node* n = _delayed.pop();
 466     int no_of_updates = update_embedded_ids(n);
 467     assert(no_of_updates > 0, "should be updated");
 468   }
 469 
 470   // Replace the compiler's type information with the updated type information.
 471   gvn->types().swap(_new_type_array);
 472 
 473   // Update the unique node count of the compilation to the number of currently live nodes.
 474   C->set_unique(_live_node_count);
 475 
 476   // Set the dead node count to 0 and reset dead node list.
 477   C->reset_dead_node_list();
 478 }
 479 
 480 int PhaseRenumberLive::new_index(int old_idx) {
 481   assert(_is_pass_finished, "not finished");
 482   if (_old2new_map.at(old_idx) == -1) { // absent
 483     // Allocate a placeholder to preserve uniqueness
 484     _old2new_map.at_put(old_idx, _live_node_count);
 485     _live_node_count++;
 486   }
 487   return _old2new_map.at(old_idx);
 488 }
 489 
 490 int PhaseRenumberLive::update_embedded_ids(Node* n) {
 491   int no_of_updates = 0;
 492   if (n->is_Phi()) {
 493     PhiNode* phi = n->as_Phi();
 494     if (phi->_inst_id != -1) {
 495       if (!_is_pass_finished) {
 496         return -1; // delay
 497       }
 498       int new_idx = new_index(phi->_inst_id);
 499       assert(new_idx != -1, "");
 500       phi->_inst_id = new_idx;
 501       no_of_updates++;
 502     }
 503     if (phi->_inst_mem_id != -1) {
 504       if (!_is_pass_finished) {
 505         return -1; // delay
 506       }
 507       int new_idx = new_index(phi->_inst_mem_id);
 508       assert(new_idx != -1, "");
 509       phi->_inst_mem_id = new_idx;
 510       no_of_updates++;
 511     }
 512   }
 513 
 514   const Type* type = _new_type_array.fast_lookup(n->_idx);
 515   if (type != nullptr && type->isa_oopptr() && type->is_oopptr()->is_known_instance()) {
 516     if (!_is_pass_finished) {
 517         return -1; // delay
 518     }
 519     int old_idx = type->is_oopptr()->instance_id();
 520     int new_idx = new_index(old_idx);
 521     const Type* new_type = type->is_oopptr()->with_instance_id(new_idx);
 522     _new_type_array.map(n->_idx, new_type);
 523     no_of_updates++;
 524   }
 525 
 526   return no_of_updates;
 527 }
 528 
 529 void PhaseValues::init_con_caches() {
 530   memset(_icons,0,sizeof(_icons));
 531   memset(_lcons,0,sizeof(_lcons));
 532   memset(_zcons,0,sizeof(_zcons));
 533 }
 534 
 535 PhaseIterGVN* PhaseValues::is_IterGVN() {
 536   return (_phase == PhaseValuesType::iter_gvn || _phase == PhaseValuesType::ccp) ? static_cast<PhaseIterGVN*>(this) : nullptr;
 537 }
 538 
 539 //--------------------------------find_int_type--------------------------------
 540 const TypeInt* PhaseValues::find_int_type(Node* n) {
 541   if (n == nullptr)  return nullptr;
 542   // Call type_or_null(n) to determine node's type since we might be in
 543   // parse phase and call n->Value() may return wrong type.
 544   // (For example, a phi node at the beginning of loop parsing is not ready.)
 545   const Type* t = type_or_null(n);
 546   if (t == nullptr)  return nullptr;
 547   return t->isa_int();
 548 }
 549 
 550 
 551 //-------------------------------find_long_type--------------------------------
 552 const TypeLong* PhaseValues::find_long_type(Node* n) {
 553   if (n == nullptr)  return nullptr;
 554   // (See comment above on type_or_null.)
 555   const Type* t = type_or_null(n);
 556   if (t == nullptr)  return nullptr;
 557   return t->isa_long();
 558 }
 559 
 560 //------------------------------~PhaseValues-----------------------------------
 561 #ifndef PRODUCT
 562 PhaseValues::~PhaseValues() {
 563   // Statistics for NodeHash
 564   _table.dump();
 565   // Statistics for value progress and efficiency
 566   if( PrintCompilation && Verbose && WizardMode ) {
 567     tty->print("\n%sValues: %d nodes ---> %d/%d (%d)",
 568       is_IterGVN() ? "Iter" : "    ", C->unique(), made_progress(), made_transforms(), made_new_values());
 569     if( made_transforms() != 0 ) {
 570       tty->print_cr("  ratio %f", made_progress()/(float)made_transforms() );
 571     } else {
 572       tty->cr();
 573     }
 574   }
 575 }
 576 #endif
 577 
 578 //------------------------------makecon----------------------------------------
 579 ConNode* PhaseValues::makecon(const Type* t) {
 580   assert(t->singleton(), "must be a constant");
 581   assert(!t->empty() || t == Type::TOP, "must not be vacuous range");
 582   switch (t->base()) {  // fast paths
 583   case Type::Half:
 584   case Type::Top:  return (ConNode*) C->top();
 585   case Type::Int:  return intcon( t->is_int()->get_con() );
 586   case Type::Long: return longcon( t->is_long()->get_con() );
 587   default:         break;
 588   }
 589   if (t->is_zero_type())
 590     return zerocon(t->basic_type());
 591   return uncached_makecon(t);
 592 }
 593 
 594 //--------------------------uncached_makecon-----------------------------------
 595 // Make an idealized constant - one of ConINode, ConPNode, etc.
 596 ConNode* PhaseValues::uncached_makecon(const Type *t) {
 597   assert(t->singleton(), "must be a constant");
 598   ConNode* x = ConNode::make(t);
 599   ConNode* k = (ConNode*)hash_find_insert(x); // Value numbering
 600   if (k == nullptr) {
 601     set_type(x, t);             // Missed, provide type mapping
 602     GrowableArray<Node_Notes*>* nna = C->node_note_array();
 603     if (nna != nullptr) {
 604       Node_Notes* loc = C->locate_node_notes(nna, x->_idx, true);
 605       loc->clear(); // do not put debug info on constants
 606     }
 607   } else {
 608     x->destruct(this);          // Hit, destroy duplicate constant
 609     x = k;                      // use existing constant
 610   }
 611   return x;
 612 }
 613 
 614 //------------------------------intcon-----------------------------------------
 615 // Fast integer constant.  Same as "transform(new ConINode(TypeInt::make(i)))"
 616 ConINode* PhaseValues::intcon(jint i) {
 617   // Small integer?  Check cache! Check that cached node is not dead
 618   if (i >= _icon_min && i <= _icon_max) {
 619     ConINode* icon = _icons[i-_icon_min];
 620     if (icon != nullptr && icon->in(TypeFunc::Control) != nullptr)
 621       return icon;
 622   }
 623   ConINode* icon = (ConINode*) uncached_makecon(TypeInt::make(i));
 624   assert(icon->is_Con(), "");
 625   if (i >= _icon_min && i <= _icon_max)
 626     _icons[i-_icon_min] = icon;   // Cache small integers
 627   return icon;
 628 }
 629 
 630 //------------------------------longcon----------------------------------------
 631 // Fast long constant.
 632 ConLNode* PhaseValues::longcon(jlong l) {
 633   // Small integer?  Check cache! Check that cached node is not dead
 634   if (l >= _lcon_min && l <= _lcon_max) {
 635     ConLNode* lcon = _lcons[l-_lcon_min];
 636     if (lcon != nullptr && lcon->in(TypeFunc::Control) != nullptr)
 637       return lcon;
 638   }
 639   ConLNode* lcon = (ConLNode*) uncached_makecon(TypeLong::make(l));
 640   assert(lcon->is_Con(), "");
 641   if (l >= _lcon_min && l <= _lcon_max)
 642     _lcons[l-_lcon_min] = lcon;      // Cache small integers
 643   return lcon;
 644 }
 645 ConNode* PhaseValues::integercon(jlong l, BasicType bt) {
 646   if (bt == T_INT) {
 647     return intcon(checked_cast<jint>(l));
 648   }
 649   assert(bt == T_LONG, "not an integer");
 650   return longcon(l);
 651 }
 652 
 653 
 654 //------------------------------zerocon-----------------------------------------
 655 // Fast zero or null constant. Same as "transform(ConNode::make(Type::get_zero_type(bt)))"
 656 ConNode* PhaseValues::zerocon(BasicType bt) {
 657   assert((uint)bt <= _zcon_max, "domain check");
 658   ConNode* zcon = _zcons[bt];
 659   if (zcon != nullptr && zcon->in(TypeFunc::Control) != nullptr)
 660     return zcon;
 661   zcon = (ConNode*) uncached_makecon(Type::get_zero_type(bt));
 662   _zcons[bt] = zcon;
 663   return zcon;
 664 }
 665 
 666 
 667 
 668 //=============================================================================
 669 Node* PhaseGVN::apply_ideal(Node* k, bool can_reshape) {
 670   Node* i = BarrierSet::barrier_set()->barrier_set_c2()->ideal_node(this, k, can_reshape);
 671   if (i == nullptr) {
 672     i = k->Ideal(this, can_reshape);
 673   }
 674   return i;
 675 }
 676 
 677 //------------------------------transform--------------------------------------
 678 // Return a node which computes the same function as this node, but
 679 // in a faster or cheaper fashion.
 680 Node* PhaseGVN::transform(Node* n) {
 681   NOT_PRODUCT( set_transforms(); )
 682 
 683   // Apply the Ideal call in a loop until it no longer applies
 684   Node* k = n;
 685   Node* i = apply_ideal(k, /*can_reshape=*/false);
 686   NOT_PRODUCT(uint loop_count = 1;)
 687   while (i != nullptr) {
 688     assert(i->_idx >= k->_idx, "Idealize should return new nodes, use Identity to return old nodes" );
 689     k = i;
 690 #ifdef ASSERT
 691     if (loop_count >= K + C->live_nodes()) {
 692       dump_infinite_loop_info(i, "PhaseGVN::transform");
 693     }
 694 #endif
 695     i = apply_ideal(k, /*can_reshape=*/false);
 696     NOT_PRODUCT(loop_count++;)
 697   }
 698   NOT_PRODUCT(if (loop_count != 0) { set_progress(); })
 699 
 700   // If brand new node, make space in type array.
 701   ensure_type_or_null(k);
 702 
 703   // Since I just called 'Value' to compute the set of run-time values
 704   // for this Node, and 'Value' is non-local (and therefore expensive) I'll
 705   // cache Value.  Later requests for the local phase->type of this Node can
 706   // use the cached Value instead of suffering with 'bottom_type'.
 707   const Type* t = k->Value(this); // Get runtime Value set
 708   assert(t != nullptr, "value sanity");
 709   if (type_or_null(k) != t) {
 710 #ifndef PRODUCT
 711     // Do not count initial visit to node as a transformation
 712     if (type_or_null(k) == nullptr) {
 713       inc_new_values();
 714       set_progress();
 715     }
 716 #endif
 717     set_type(k, t);
 718     // If k is a TypeNode, capture any more-precise type permanently into Node
 719     k->raise_bottom_type(t);
 720   }
 721 
 722   if (t->singleton() && !k->is_Con()) {
 723     NOT_PRODUCT(set_progress();)
 724     return makecon(t);          // Turn into a constant
 725   }
 726 
 727   // Now check for Identities
 728   i = k->Identity(this);        // Look for a nearby replacement
 729   if (i != k) {                 // Found? Return replacement!
 730     NOT_PRODUCT(set_progress();)
 731     return i;
 732   }
 733 
 734   // Global Value Numbering
 735   i = hash_find_insert(k);      // Insert if new
 736   if (i && (i != k)) {
 737     // Return the pre-existing node
 738     NOT_PRODUCT(set_progress();)
 739     return i;
 740   }
 741 
 742   // Return Idealized original
 743   return k;
 744 }
 745 
 746 bool PhaseGVN::is_dominator_helper(Node *d, Node *n, bool linear_only) {
 747   if (d->is_top() || (d->is_Proj() && d->in(0)->is_top())) {
 748     return false;
 749   }
 750   if (n->is_top() || (n->is_Proj() && n->in(0)->is_top())) {
 751     return false;
 752   }
 753   assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
 754   int i = 0;
 755   while (d != n) {
 756     n = IfNode::up_one_dom(n, linear_only);
 757     i++;
 758     if (n == nullptr || i >= 100) {
 759       return false;
 760     }
 761   }
 762   return true;
 763 }
 764 
 765 #ifdef ASSERT
 766 //------------------------------dead_loop_check--------------------------------
 767 // Check for a simple dead loop when a data node references itself directly
 768 // or through an other data node excluding cons and phis.
 769 void PhaseGVN::dead_loop_check(Node* n) {
 770   // Phi may reference itself in a loop.
 771   if (n == nullptr || n->is_dead_loop_safe() || n->is_CFG()) {
 772     return;
 773   }
 774 
 775   // Do 2 levels check and only data inputs.
 776   for (uint i = 1; i < n->req(); i++) {
 777     Node* in = n->in(i);
 778     if (in == n) {
 779       n->dump_bfs(100, nullptr, "");
 780       fatal("Dead loop detected, node references itself: %s (%d)",
 781             n->Name(), n->_idx);
 782     }
 783 
 784     if (in == nullptr || in->is_dead_loop_safe()) {
 785       continue;
 786     }
 787     for (uint j = 1; j < in->req(); j++) {
 788       if (in->in(j) == n) {
 789         n->dump_bfs(100, nullptr, "");
 790         fatal("Dead loop detected, node input references current node: %s (%d) -> %s (%d)",
 791               in->Name(), in->_idx, n->Name(), n->_idx);
 792       }
 793       if (in->in(j) == in) {
 794         n->dump_bfs(100, nullptr, "");
 795         fatal("Dead loop detected, node input references itself: %s (%d)",
 796               in->Name(), in->_idx);
 797       }
 798     }
 799   }
 800 }
 801 
 802 
 803 /**
 804  * Dumps information that can help to debug the problem. A debug
 805  * build fails with an assert.
 806  */
 807 void PhaseGVN::dump_infinite_loop_info(Node* n, const char* where) {
 808   n->dump(4);
 809   assert(false, "infinite loop in %s", where);
 810 }
 811 #endif
 812 
 813 //=============================================================================
 814 //------------------------------PhaseIterGVN-----------------------------------
 815 // Initialize with previous PhaseIterGVN info; used by PhaseCCP
 816 PhaseIterGVN::PhaseIterGVN(PhaseIterGVN* igvn) : _delay_transform(igvn->_delay_transform),
 817                                                  _worklist(*C->igvn_worklist())
 818 {
 819   _phase = PhaseValuesType::iter_gvn;
 820   assert(&_worklist == &igvn->_worklist, "sanity");
 821 }
 822 
 823 //------------------------------PhaseIterGVN-----------------------------------
 824 // Initialize from scratch
 825 PhaseIterGVN::PhaseIterGVN() : _delay_transform(false),
 826                                _worklist(*C->igvn_worklist())
 827 {
 828   _phase = PhaseValuesType::iter_gvn;
 829   uint max;
 830 
 831   // Dead nodes in the hash table inherited from GVN were not treated as
 832   // roots during def-use info creation; hence they represent an invisible
 833   // use.  Clear them out.
 834   max = _table.size();
 835   for( uint i = 0; i < max; ++i ) {
 836     Node *n = _table.at(i);
 837     if(n != nullptr && n != _table.sentinel() && n->outcnt() == 0) {
 838       if( n->is_top() ) continue;
 839       // If remove_useless_nodes() has run, we expect no such nodes left.
 840       assert(false, "remove_useless_nodes missed this node");
 841       hash_delete(n);
 842     }
 843   }
 844 
 845   // Any Phis or Regions on the worklist probably had uses that could not
 846   // make more progress because the uses were made while the Phis and Regions
 847   // were in half-built states.  Put all uses of Phis and Regions on worklist.
 848   max = _worklist.size();
 849   for( uint j = 0; j < max; j++ ) {
 850     Node *n = _worklist.at(j);
 851     uint uop = n->Opcode();
 852     if( uop == Op_Phi || uop == Op_Region ||
 853         n->is_Type() ||
 854         n->is_Mem() )
 855       add_users_to_worklist(n);
 856   }
 857 }
 858 
 859 void PhaseIterGVN::shuffle_worklist() {
 860   if (_worklist.size() < 2) return;
 861   for (uint i = _worklist.size() - 1; i >= 1; i--) {
 862     uint j = C->random() % (i + 1);
 863     swap(_worklist.adr()[i], _worklist.adr()[j]);
 864   }
 865 }
 866 
 867 #ifndef PRODUCT
 868 void PhaseIterGVN::verify_step(Node* n) {
 869   if (is_verify_def_use()) {
 870     ResourceMark rm;
 871     VectorSet visited;
 872     Node_List worklist;
 873 
 874     _verify_window[_verify_counter % _verify_window_size] = n;
 875     ++_verify_counter;
 876     if (C->unique() < 1000 || 0 == _verify_counter % (C->unique() < 10000 ? 10 : 100)) {
 877       ++_verify_full_passes;
 878       worklist.push(C->root());
 879       Node::verify(-1, visited, worklist);
 880       return;
 881     }
 882     for (int i = 0; i < _verify_window_size; i++) {
 883       Node* n = _verify_window[i];
 884       if (n == nullptr) {
 885         continue;
 886       }
 887       if (n->in(0) == NodeSentinel) { // xform_idom
 888         _verify_window[i] = n->in(1);
 889         --i;
 890         continue;
 891       }
 892       // Typical fanout is 1-2, so this call visits about 6 nodes.
 893       if (!visited.test_set(n->_idx)) {
 894         worklist.push(n);
 895       }
 896     }
 897     Node::verify(4, visited, worklist);
 898   }
 899 }
 900 
 901 void PhaseIterGVN::trace_PhaseIterGVN(Node* n, Node* nn, const Type* oldtype) {
 902   const Type* newtype = type_or_null(n);
 903   if (nn != n || oldtype != newtype) {
 904     C->print_method(PHASE_AFTER_ITER_GVN_STEP, 5, n);
 905   }
 906   if (TraceIterativeGVN) {
 907     uint wlsize = _worklist.size();
 908     if (nn != n) {
 909       // print old node
 910       tty->print("< ");
 911       if (oldtype != newtype && oldtype != nullptr) {
 912         oldtype->dump();
 913       }
 914       do { tty->print("\t"); } while (tty->position() < 16);
 915       tty->print("<");
 916       n->dump();
 917     }
 918     if (oldtype != newtype || nn != n) {
 919       // print new node and/or new type
 920       if (oldtype == nullptr) {
 921         tty->print("* ");
 922       } else if (nn != n) {
 923         tty->print("> ");
 924       } else {
 925         tty->print("= ");
 926       }
 927       if (newtype == nullptr) {
 928         tty->print("null");
 929       } else {
 930         newtype->dump();
 931       }
 932       do { tty->print("\t"); } while (tty->position() < 16);
 933       nn->dump();
 934     }
 935     if (Verbose && wlsize < _worklist.size()) {
 936       tty->print("  Push {");
 937       while (wlsize != _worklist.size()) {
 938         Node* pushed = _worklist.at(wlsize++);
 939         tty->print(" %d", pushed->_idx);
 940       }
 941       tty->print_cr(" }");
 942     }
 943     if (nn != n) {
 944       // ignore n, it might be subsumed
 945       verify_step((Node*) nullptr);
 946     }
 947   }
 948 }
 949 
 950 void PhaseIterGVN::init_verifyPhaseIterGVN() {
 951   _verify_counter = 0;
 952   _verify_full_passes = 0;
 953   for (int i = 0; i < _verify_window_size; i++) {
 954     _verify_window[i] = nullptr;
 955   }
 956 #ifdef ASSERT
 957   // Verify that all modified nodes are on _worklist
 958   Unique_Node_List* modified_list = C->modified_nodes();
 959   while (modified_list != nullptr && modified_list->size()) {
 960     Node* n = modified_list->pop();
 961     if (!n->is_Con() && !_worklist.member(n)) {
 962       n->dump();
 963       fatal("modified node is not on IGVN._worklist");
 964     }
 965   }
 966 #endif
 967 }
 968 
 969 void PhaseIterGVN::verify_PhaseIterGVN() {
 970 #ifdef ASSERT
 971   // Verify nodes with changed inputs.
 972   Unique_Node_List* modified_list = C->modified_nodes();
 973   while (modified_list != nullptr && modified_list->size()) {
 974     Node* n = modified_list->pop();
 975     if (!n->is_Con()) { // skip Con nodes
 976       n->dump();
 977       fatal("modified node was not processed by IGVN.transform_old()");
 978     }
 979   }
 980 #endif
 981 
 982   C->verify_graph_edges();
 983   if (is_verify_def_use() && PrintOpto) {
 984     if (_verify_counter == _verify_full_passes) {
 985       tty->print_cr("VerifyIterativeGVN: %d transforms and verify passes",
 986                     (int) _verify_full_passes);
 987     } else {
 988       tty->print_cr("VerifyIterativeGVN: %d transforms, %d full verify passes",
 989                   (int) _verify_counter, (int) _verify_full_passes);
 990     }
 991   }
 992 
 993 #ifdef ASSERT
 994   if (modified_list != nullptr) {
 995     while (modified_list->size() > 0) {
 996       Node* n = modified_list->pop();
 997       n->dump();
 998       assert(false, "VerifyIterativeGVN: new modified node was added");
 999     }
1000   }
1001 
1002   verify_optimize();
1003 #endif
1004 }
1005 #endif /* PRODUCT */
1006 
1007 #ifdef ASSERT
1008 /**
1009  * Dumps information that can help to debug the problem. A debug
1010  * build fails with an assert.
1011  */
1012 void PhaseIterGVN::dump_infinite_loop_info(Node* n, const char* where) {
1013   n->dump(4);
1014   _worklist.dump();
1015   assert(false, "infinite loop in %s", where);
1016 }
1017 
1018 /**
1019  * Prints out information about IGVN if the 'verbose' option is used.
1020  */
1021 void PhaseIterGVN::trace_PhaseIterGVN_verbose(Node* n, int num_processed) {
1022   if (TraceIterativeGVN && Verbose) {
1023     tty->print("  Pop ");
1024     n->dump();
1025     if ((num_processed % 100) == 0) {
1026       _worklist.print_set();
1027     }
1028   }
1029 }
1030 #endif /* ASSERT */
1031 
1032 void PhaseIterGVN::optimize() {
1033   DEBUG_ONLY(uint num_processed  = 0;)
1034   NOT_PRODUCT(init_verifyPhaseIterGVN();)
1035   NOT_PRODUCT(C->reset_igv_phase_iter(PHASE_AFTER_ITER_GVN_STEP);)
1036   C->print_method(PHASE_BEFORE_ITER_GVN, 3);
1037   if (StressIGVN) {
1038     shuffle_worklist();
1039   }
1040 
1041   // The node count check in the loop below (check_node_count) assumes that we
1042   // increase the live node count with at most
1043   // max_live_nodes_increase_per_iteration in between checks. If this
1044   // assumption does not hold, there is a risk that we exceed the max node
1045   // limit in between checks and trigger an assert during node creation.
1046   const int max_live_nodes_increase_per_iteration = NodeLimitFudgeFactor * 3;
1047 
1048   uint loop_count = 0;
1049   // Pull from worklist and transform the node. If the node has changed,
1050   // update edge info and put uses on worklist.
1051   while (_worklist.size() > 0) {
1052     if (C->check_node_count(max_live_nodes_increase_per_iteration, "Out of nodes")) {
1053       C->print_method(PHASE_AFTER_ITER_GVN, 3);
1054       return;
1055     }
1056     Node* n  = _worklist.pop();
1057     if (loop_count >= K * C->live_nodes()) {
1058       DEBUG_ONLY(dump_infinite_loop_info(n, "PhaseIterGVN::optimize");)
1059       C->record_method_not_compilable("infinite loop in PhaseIterGVN::optimize");
1060       C->print_method(PHASE_AFTER_ITER_GVN, 3);
1061       return;
1062     }
1063     DEBUG_ONLY(trace_PhaseIterGVN_verbose(n, num_processed++);)
1064     if (n->outcnt() != 0) {
1065       NOT_PRODUCT(const Type* oldtype = type_or_null(n));
1066       // Do the transformation
1067       DEBUG_ONLY(int live_nodes_before = C->live_nodes();)
1068       Node* nn = transform_old(n);
1069       DEBUG_ONLY(int live_nodes_after = C->live_nodes();)
1070       // Ensure we did not increase the live node count with more than
1071       // max_live_nodes_increase_per_iteration during the call to transform_old
1072       DEBUG_ONLY(int increase = live_nodes_after - live_nodes_before;)
1073       assert(increase < max_live_nodes_increase_per_iteration,
1074              "excessive live node increase in single iteration of IGVN: %d "
1075              "(should be at most %d)",
1076              increase, max_live_nodes_increase_per_iteration);
1077       NOT_PRODUCT(trace_PhaseIterGVN(n, nn, oldtype);)
1078     } else if (!n->is_top()) {
1079       remove_dead_node(n);
1080     }
1081     loop_count++;
1082   }
1083   NOT_PRODUCT(verify_PhaseIterGVN();)
1084   C->print_method(PHASE_AFTER_ITER_GVN, 3);
1085 }
1086 
1087 #ifdef ASSERT
1088 void PhaseIterGVN::verify_optimize() {
1089   assert(_worklist.size() == 0, "igvn worklist must be empty before verify");
1090 
1091   if (is_verify_Value() ||
1092       is_verify_Ideal() ||
1093       is_verify_Identity() ||
1094       is_verify_invariants()) {
1095     ResourceMark rm;
1096     Unique_Node_List worklist;
1097     // BFS all nodes, starting at root
1098     worklist.push(C->root());
1099     for (uint j = 0; j < worklist.size(); ++j) {
1100       Node* n = worklist.at(j);
1101       // If we get an assert here, check why the reported node was not processed again in IGVN.
1102       // We should either make sure that this node is properly added back to the IGVN worklist
1103       // in PhaseIterGVN::add_users_to_worklist to update it again or add an exception
1104       // in the verification methods below if that is not possible for some reason (like Load nodes).
1105       if (is_verify_Value()) {
1106         verify_Value_for(n);
1107       }
1108       if (is_verify_Ideal()) {
1109         verify_Ideal_for(n, false);
1110         verify_Ideal_for(n, true);
1111       }
1112       if (is_verify_Identity()) {
1113         verify_Identity_for(n);
1114       }
1115       if (is_verify_invariants()) {
1116         verify_node_invariants_for(n);
1117       }
1118 
1119       // traverse all inputs and outputs
1120       for (uint i = 0; i < n->req(); i++) {
1121         if (n->in(i) != nullptr) {
1122           worklist.push(n->in(i));
1123         }
1124       }
1125       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1126         worklist.push(n->fast_out(i));
1127       }
1128     }
1129   }
1130 
1131   verify_empty_worklist(nullptr);
1132 }
1133 
1134 void PhaseIterGVN::verify_empty_worklist(Node* node) {
1135   // Verify that the igvn worklist is empty. If no optimization happened, then
1136   // nothing needs to be on the worklist.
1137   if (_worklist.size() == 0) { return; }
1138 
1139   stringStream ss; // Print as a block without tty lock.
1140   for (uint j = 0; j < _worklist.size(); j++) {
1141     Node* n = _worklist.at(j);
1142     ss.print("igvn.worklist[%d] ", j);
1143     n->dump("\n", false, &ss);
1144   }
1145   if (_worklist.size() != 0 && node != nullptr) {
1146     ss.print_cr("Previously optimized:");
1147     node->dump("\n", false, &ss);
1148   }
1149   tty->print_cr("%s", ss.as_string());
1150   assert(false, "igvn worklist must still be empty after verify");
1151 }
1152 
1153 // Check that type(n) == n->Value(), asserts if we have a failure.
1154 // We have a list of exceptions, see detailed comments in code.
1155 // (1) Integer "widen" changes, but the range is the same.
1156 // (2) LoadNode performs deep traversals. Load is not notified for changes far away.
1157 // (3) CmpPNode performs deep traversals if it compares oopptr. CmpP is not notified for changes far away.
1158 void PhaseIterGVN::verify_Value_for(const Node* n, bool strict) {
1159   // If we assert inside type(n), because the type is still a null, then maybe
1160   // the node never went through gvn.transform, which would be a bug.
1161   const Type* told = type(n);
1162   const Type* tnew = n->Value(this);
1163   if (told == tnew) {
1164     return;
1165   }
1166   // Exception (1)
1167   // Integer "widen" changes, but range is the same.
1168   if (told->isa_integer(tnew->basic_type()) != nullptr) { // both either int or long
1169     const TypeInteger* t0 = told->is_integer(tnew->basic_type());
1170     const TypeInteger* t1 = tnew->is_integer(tnew->basic_type());
1171     if (t0->lo_as_long() == t1->lo_as_long() &&
1172         t0->hi_as_long() == t1->hi_as_long()) {
1173       return; // ignore integer widen
1174     }
1175   }
1176   // Exception (2)
1177   // LoadNode performs deep traversals. Load is not notified for changes far away.
1178   if (!strict && n->is_Load() && !told->singleton()) {
1179     // MemNode::can_see_stored_value looks up through many memory nodes,
1180     // which means we would need to notify modifications from far up in
1181     // the inputs all the way down to the LoadNode. We don't do that.
1182     return;
1183   }
1184   // Exception (3)
1185   // CmpPNode performs deep traversals if it compares oopptr. CmpP is not notified for changes far away.
1186   if (!strict && n->Opcode() == Op_CmpP && type(n->in(1))->isa_oopptr() && type(n->in(2))->isa_oopptr()) {
1187     // SubNode::Value
1188     // CmpPNode::sub
1189     // MemNode::detect_ptr_independence
1190     // MemNode::all_controls_dominate
1191     // We find all controls of a pointer load, and see if they dominate the control of
1192     // an allocation. If they all dominate, we know the allocation is after (independent)
1193     // of the pointer load, and we can say the pointers are different. For this we call
1194     // n->dominates(sub, nlist) to check if controls n of the pointer load dominate the
1195     // control sub of the allocation. The problems is that sometimes dominates answers
1196     // false conservatively, and later it can determine that it is indeed true. Loops with
1197     // Region heads can lead to giving up, whereas LoopNodes can be skipped easier, and
1198     // so the traversal becomes more powerful. This is difficult to remedy, we would have
1199     // to notify the CmpP of CFG updates. Luckily, we recompute CmpP::Value during CCP
1200     // after loop-opts, so that should take care of many of these cases.
1201     return;
1202   }
1203 
1204   stringStream ss; // Print as a block without tty lock.
1205   ss.cr();
1206   ss.print_cr("Missed Value optimization:");
1207   n->dump_bfs(1, nullptr, "", &ss);
1208   ss.print_cr("Current type:");
1209   told->dump_on(&ss);
1210   ss.cr();
1211   ss.print_cr("Optimized type:");
1212   tnew->dump_on(&ss);
1213   ss.cr();
1214   tty->print_cr("%s", ss.as_string());
1215 
1216   switch (_phase) {
1217     case PhaseValuesType::iter_gvn:
1218       assert(false, "Missed Value optimization opportunity in PhaseIterGVN for %s",n->Name());
1219       break;
1220     case PhaseValuesType::ccp:
1221       assert(false, "PhaseCCP not at fixpoint: analysis result may be unsound for %s", n->Name());
1222       break;
1223     default:
1224       assert(false, "Unexpected phase");
1225       break;
1226   }
1227 }
1228 
1229 // Check that all Ideal optimizations that could be done were done.
1230 // Asserts if it found missed optimization opportunities or encountered unexpected changes, and
1231 //         returns normally otherwise (no missed optimization, or skipped verification).
1232 void PhaseIterGVN::verify_Ideal_for(Node* n, bool can_reshape) {
1233   // First, we check a list of exceptions, where we skip verification,
1234   // because there are known cases where Ideal can optimize after IGVN.
1235   // Some may be expected and cannot be fixed, and others should be fixed.
1236   switch (n->Opcode()) {
1237     // RangeCheckNode::Ideal looks up the chain for about 999 nodes
1238     // (see "Range-Check scan limit"). So, it is possible that something
1239     // is optimized in that input subgraph, and the RangeCheck was not
1240     // added to the worklist because it would be too expensive to walk
1241     // down the graph for 1000 nodes and put all on the worklist.
1242     //
1243     // Found with:
1244     //   java -XX:VerifyIterativeGVN=0100 -Xbatch --version
1245     case Op_RangeCheck:
1246       return;
1247 
1248     // IfNode::Ideal does:
1249     //   Node* prev_dom = search_identical(dist, igvn);
1250     // which means we seach up the CFG, traversing at most up to a distance.
1251     // If anything happens rather far away from the If, we may not put the If
1252     // back on the worklist.
1253     //
1254     // Found with:
1255     //   java -XX:VerifyIterativeGVN=0100 -Xcomp --version
1256     case Op_If:
1257       return;
1258 
1259     // IfNode::simple_subsuming
1260     // Looks for dominating test that subsumes the current test.
1261     // Notification could be difficult because of larger distance.
1262     //
1263     // Found with:
1264     //   runtime/exceptionMsgs/ArrayIndexOutOfBoundsException/ArrayIndexOutOfBoundsExceptionTest.java#id1
1265     //   -XX:VerifyIterativeGVN=1110
1266     case Op_CountedLoopEnd:
1267       return;
1268 
1269     // LongCountedLoopEndNode::Ideal
1270     // Probably same issue as above.
1271     //
1272     // Found with:
1273     //   compiler/predicates/assertion/TestAssertionPredicates.java#NoLoopPredicationXbatch
1274     //   -XX:StressLongCountedLoop=2000000 -XX:+IgnoreUnrecognizedVMOptions -XX:VerifyIterativeGVN=1110
1275     case Op_LongCountedLoopEnd:
1276       return;
1277 
1278     // RegionNode::Ideal does "Skip around the useless IF diamond".
1279     //   245  IfTrue  === 244
1280     //   258  If  === 245 257
1281     //   259  IfTrue  === 258  [[ 263 ]]
1282     //   260  IfFalse  === 258  [[ 263 ]]
1283     //   263  Region  === 263 260 259  [[ 263 268 ]]
1284     // to
1285     //   245  IfTrue  === 244
1286     //   263  Region  === 263 245 _  [[ 263 268 ]]
1287     //
1288     // "Useless" means that there is no code in either branch of the If.
1289     // I found a case where this was not done yet during IGVN.
1290     // Why does the Region not get added to IGVN worklist when the If diamond becomes useless?
1291     //
1292     // Found with:
1293     //   java -XX:VerifyIterativeGVN=0100 -Xcomp --version
1294     case Op_Region:
1295       return;
1296 
1297     // In AddNode::Ideal, we call "commute", which swaps the inputs so
1298     // that smaller idx are first. Tracking it back, it led me to
1299     // PhaseIdealLoop::remix_address_expressions which swapped the edges.
1300     //
1301     // Example:
1302     //   Before PhaseIdealLoop::remix_address_expressions
1303     //     154  AddI  === _ 12 144
1304     //   After PhaseIdealLoop::remix_address_expressions
1305     //     154  AddI  === _ 144 12
1306     //   After AddNode::Ideal
1307     //     154  AddI  === _ 12 144
1308     //
1309     // I suspect that the node should be added to the IGVN worklist after
1310     // PhaseIdealLoop::remix_address_expressions
1311     //
1312     // This is the only case I looked at, there may be others. Found like this:
1313     //   java -XX:VerifyIterativeGVN=0100 -Xbatch --version
1314     //
1315     // The following hit the same logic in PhaseIdealLoop::remix_address_expressions.
1316     //
1317     // Note: currently all of these fail also for other reasons, for example
1318     // because of "commute" doing the reordering with the phi below. Once
1319     // that is resolved, we can come back to this issue here.
1320     //
1321     // case Op_AddD:
1322     // case Op_AddI:
1323     // case Op_AddL:
1324     // case Op_AddF:
1325     // case Op_MulI:
1326     // case Op_MulL:
1327     // case Op_MulF:
1328     // case Op_MulD:
1329     //   if (n->in(1)->_idx > n->in(2)->_idx) {
1330     //     // Expect "commute" to revert this case.
1331     //     return false;
1332     //   }
1333     //   break; // keep verifying
1334 
1335     // AddFNode::Ideal calls "commute", which can reorder the inputs for this:
1336     //   Check for tight loop increments: Loop-phi of Add of loop-phi
1337     // It wants to take the phi into in(1):
1338     //    471  Phi  === 435 38 390
1339     //    390  AddF  === _ 471 391
1340     //
1341     // Other Associative operators are also affected equally.
1342     //
1343     // Investigate why this does not happen earlier during IGVN.
1344     //
1345     // Found with:
1346     //   test/hotspot/jtreg/compiler/loopopts/superword/ReductionPerf.java
1347     //   -XX:VerifyIterativeGVN=1110
1348     case Op_AddD:
1349     //case Op_AddI: // Also affected for other reasons, see case further down.
1350     //case Op_AddL: // Also affected for other reasons, see case further down.
1351     case Op_AddF:
1352     case Op_MulI:
1353     case Op_MulL:
1354     case Op_MulF:
1355     case Op_MulD:
1356     case Op_MinF:
1357     case Op_MinD:
1358     case Op_MaxF:
1359     case Op_MaxD:
1360     // XorINode::Ideal
1361     // Found with:
1362     //   compiler/intrinsics/chacha/TestChaCha20.java
1363     //   -XX:VerifyIterativeGVN=1110
1364     case Op_XorI:
1365     case Op_XorL:
1366     // It seems we may have similar issues with the HF cases.
1367     // Found with aarch64:
1368     //   compiler/vectorization/TestFloat16VectorOperations.java
1369     //   -XX:VerifyIterativeGVN=1110
1370     case Op_AddHF:
1371     case Op_MulHF:
1372     case Op_MaxHF:
1373     case Op_MinHF:
1374       return;
1375 
1376     // In MulNode::Ideal the edges can be swapped to help value numbering:
1377     //
1378     //    // We are OK if right is a constant, or right is a load and
1379     //    // left is a non-constant.
1380     //    if( !(t2->singleton() ||
1381     //          (in(2)->is_Load() && !(t1->singleton() || in(1)->is_Load())) ) ) {
1382     //      if( t1->singleton() ||       // Left input is a constant?
1383     //          // Otherwise, sort inputs (commutativity) to help value numbering.
1384     //          (in(1)->_idx > in(2)->_idx) ) {
1385     //        swap_edges(1, 2);
1386     //
1387     // Why was this not done earlier during IGVN?
1388     //
1389     // Found with:
1390     //    test/hotspot/jtreg/gc/stress/gcbasher/TestGCBasherWithG1.java
1391     //    -XX:VerifyIterativeGVN=1110
1392     case Op_AndI:
1393     // Same for AndL.
1394     // Found with:
1395     //   compiler/intrinsics/bigInteger/MontgomeryMultiplyTest.java
1396     //    -XX:VerifyIterativeGVN=1110
1397     case Op_AndL:
1398       return;
1399 
1400     // SubLNode::Ideal does transform like:
1401     //   Convert "c1 - (y+c0)" into "(c1-c0) - y"
1402     //
1403     // In IGVN before verification:
1404     //   8423  ConvI2L  === _ 3519  [[ 8424 ]]  #long:-2
1405     //   8422  ConvI2L  === _ 8399  [[ 8424 ]]  #long:3..256:www
1406     //   8424  AddL  === _ 8422 8423  [[ 8383 ]]  !orig=[8382]
1407     //   8016  ConL  === 0  [[ 8383 ]]  #long:0
1408     //   8383  SubL  === _ 8016 8424  [[ 8156 ]]  !orig=[8154]
1409     //
1410     // And then in verification:
1411     //   8338  ConL  === 0  [[ 8339 8424 ]]  #long:-2     <----- Was constant folded.
1412     //   8422  ConvI2L  === _ 8399  [[ 8424 ]]  #long:3..256:www
1413     //   8424  AddL  === _ 8422 8338  [[ 8383 ]]  !orig=[8382]
1414     //   8016  ConL  === 0  [[ 8383 ]]  #long:0
1415     //   8383  SubL  === _ 8016 8424  [[ 8156 ]]  !orig=[8154]
1416     //
1417     // So the form changed from:
1418     //   c1 - (y + [8423  ConvI2L])
1419     // to
1420     //   c1 - (y + -2)
1421     // but the SubL was not added to the IGVN worklist. Investigate why.
1422     // There could be other issues too.
1423     //
1424     // There seems to be a related AddL IGVN optimization that triggers
1425     // the same SubL optimization, so investigate that too.
1426     //
1427     // Found with:
1428     //   java -XX:VerifyIterativeGVN=0100 -Xcomp --version
1429     case Op_SubL:
1430       return;
1431 
1432     // SubINode::Ideal does
1433     // Convert "x - (y+c0)" into "(x-y) - c0" AND
1434     // Convert "c1 - (y+c0)" into "(c1-c0) - y"
1435     //
1436     // Investigate why this does not yet happen during IGVN.
1437     //
1438     // Found with:
1439     //   test/hotspot/jtreg/compiler/c2/IVTest.java
1440     //   -XX:VerifyIterativeGVN=1110
1441     case Op_SubI:
1442       return;
1443 
1444     // AddNode::IdealIL does transform like:
1445     //   Convert x + (con - y) into "(x - y) + con"
1446     //
1447     // In IGVN before verification:
1448     //   8382  ConvI2L
1449     //   8381  ConvI2L  === _ 791  [[ 8383 ]]  #long:0
1450     //   8383  SubL  === _ 8381 8382
1451     //   8168  ConvI2L
1452     //   8156  AddL  === _ 8168 8383  [[ 8158 ]]
1453     //
1454     // And then in verification:
1455     //   8424  AddL
1456     //   8016  ConL  === 0  [[ 8383 ]]  #long:0  <--- Was constant folded.
1457     //   8383  SubL  === _ 8016 8424
1458     //   8168  ConvI2L
1459     //   8156  AddL  === _ 8168 8383  [[ 8158 ]]
1460     //
1461     // So the form changed from:
1462     //   x + (ConvI2L(0) - [8382  ConvI2L])
1463     // to
1464     //   x + (0 - [8424  AddL])
1465     // but the AddL was not added to the IGVN worklist. Investigate why.
1466     // There could be other issues, too. For example with "commute", see above.
1467     //
1468     // Found with:
1469     //   java -XX:VerifyIterativeGVN=0100 -Xcomp --version
1470     case Op_AddL:
1471       return;
1472 
1473     // SubTypeCheckNode::Ideal calls SubTypeCheckNode::verify_helper, which does
1474     //   Node* cmp = phase->transform(new CmpPNode(subklass, in(SuperKlass)));
1475     //   record_for_cleanup(cmp, phase);
1476     // This verification code in the Ideal code creates new nodes, and checks
1477     // if they fold in unexpected ways. This means some nodes are created and
1478     // added to the worklist, even if the SubTypeCheck is not optimized. This
1479     // goes agains the assumption of the verification here, which assumes that
1480     // if the node is not optimized, then no new nodes should be created, and
1481     // also no nodes should be added to the worklist.
1482     // I see two options:
1483     //  1) forbid what verify_helper does, because for each Ideal call it
1484     //     uses memory and that is suboptimal. But it is not clear how that
1485     //     verification can be done otherwise.
1486     //  2) Special case the verification here. Probably the new nodes that
1487     //     were just created are dead, i.e. they are not connected down to
1488     //     root. We could verify that, and remove those nodes from the graph
1489     //     by setting all their inputs to nullptr. And of course we would
1490     //     have to remove those nodes from the worklist.
1491     // Maybe there are other options too, I did not dig much deeper yet.
1492     //
1493     // Found with:
1494     //   java -XX:VerifyIterativeGVN=0100 -Xbatch --version
1495     case Op_SubTypeCheck:
1496       return;
1497 
1498     // LoopLimitNode::Ideal when stride is constant power-of-2, we can do a lowering
1499     // to other nodes: Conv, Add, Sub, Mul, And ...
1500     //
1501     //  107  ConI  === 0  [[ ... ]]  #int:2
1502     //   84  LoadRange  === _ 7 83
1503     //   50  ConI  === 0  [[ ... ]]  #int:0
1504     //  549  LoopLimit  === _ 50 84 107
1505     //
1506     // I stepped backward, to see how the node was generated, and I found that it was
1507     // created in PhaseIdealLoop::exact_limit and not changed since. It is added to the
1508     // IGVN worklist. I quickly checked when it goes into LoopLimitNode::Ideal after
1509     // that, and it seems we want to skip lowering it until after loop-opts, but never
1510     // add call record_for_post_loop_opts_igvn. This would be an easy fix, but there
1511     // could be other issues too.
1512     //
1513     // Fond with:
1514     //   java -XX:VerifyIterativeGVN=0100 -Xcomp --version
1515     case Op_LoopLimit:
1516       return;
1517 
1518     // PhiNode::Ideal calls split_flow_path, which tries to do this:
1519     // "This optimization tries to find two or more inputs of phi with the same constant
1520     // value. It then splits them into a separate Phi, and according Region."
1521     //
1522     // Example:
1523     //   130  DecodeN  === _ 129
1524     //    50  ConP  === 0  [[ 18 91 99 18 ]]  #null
1525     //    18  Phi  === 14 50 130 50  [[ 133 ]]  #java/lang/Object *  Oop:java/lang/Object *
1526     //
1527     //  turns into:
1528     //
1529     //    50  ConP  === 0  [[ 99 91 18 ]]  #null
1530     //   130  DecodeN  === _ 129  [[ 18 ]]
1531     //    18  Phi  === 14 130 50  [[ 133 ]]  #java/lang/Object *  Oop:java/lang/Object *
1532     //
1533     // We would have to investigate why this optimization does not happen during IGVN.
1534     // There could also be other issues - I did not investigate further yet.
1535     //
1536     // Found with:
1537     //   java -XX:VerifyIterativeGVN=0100 -Xcomp --version
1538     case Op_Phi:
1539       return;
1540 
1541     // MemBarNode::Ideal does "Eliminate volatile MemBars for scalar replaced objects".
1542     // For examle "The allocated object does not escape".
1543     //
1544     // It seems the difference to earlier calls to MemBarNode::Ideal, is that there
1545     // alloc->as_Allocate()->does_not_escape_thread() returned false, but in verification
1546     // it returned true. Why does the MemBarStoreStore not get added to the IGVN
1547     // worklist when this change happens?
1548     //
1549     // Found with:
1550     //   java -XX:VerifyIterativeGVN=0100 -Xcomp --version
1551     case Op_MemBarStoreStore:
1552       return;
1553 
1554     // ConvI2LNode::Ideal converts
1555     //   648  AddI  === _ 583 645  [[ 661 ]]
1556     //   661  ConvI2L  === _ 648  [[ 664 ]]  #long:0..maxint-1:www
1557     // into
1558     //   772  ConvI2L  === _ 645  [[ 773 ]]  #long:-120..maxint-61:www
1559     //   771  ConvI2L  === _ 583  [[ 773 ]]  #long:60..120:www
1560     //   773  AddL  === _ 771 772  [[ ]]
1561     //
1562     // We have to investigate why this does not happen during IGVN in this case.
1563     // There could also be other issues - I did not investigate further yet.
1564     //
1565     // Found with:
1566     //   java -XX:VerifyIterativeGVN=0100 -Xcomp --version
1567     case Op_ConvI2L:
1568       return;
1569 
1570     // AddNode::IdealIL can do this transform (and similar other ones):
1571     //   Convert "a*b+a*c into a*(b+c)
1572     // The example had AddI(MulI(a, b), MulI(a, c)). Why did this not happen
1573     // during IGVN? There was a mutation for one of the MulI, and only
1574     // after that the pattern was as needed for the optimization. The MulI
1575     // was added to the IGVN worklist, but not the AddI. This probably
1576     // can be fixed by adding the correct pattern in add_users_of_use_to_worklist.
1577     //
1578     // Found with:
1579     //   test/hotspot/jtreg/compiler/loopopts/superword/ReductionPerf.java
1580     //   -XX:VerifyIterativeGVN=1110
1581     case Op_AddI:
1582       return;
1583 
1584     // ArrayCopyNode::Ideal
1585     //    calls ArrayCopyNode::prepare_array_copy
1586     //    calls Compile::conv_I2X_index        -> is called with sizetype = intcon(0), I think that
1587     //                                            is not expected, and we create a range int:0..-1
1588     //    calls Compile::constrained_convI2L   -> creates ConvI2L(intcon(1), int:0..-1)
1589     //                                            note: the type is already empty!
1590     //    calls PhaseIterGVN::transform
1591     //    calls PhaseIterGVN::transform_old
1592     //    calls PhaseIterGVN::subsume_node     -> subsume ConvI2L with TOP
1593     //    calls Unique_Node_List::push         -> pushes TOP to worklist
1594     //
1595     // Once we get back to ArrayCopyNode::prepare_array_copy, we get back TOP, and
1596     // return false. This means we eventually return nullptr from ArrayCopyNode::Ideal.
1597     //
1598     // Question: is it ok to push anything to the worklist during ::Ideal, if we will
1599     //           return nullptr, indicating nothing happened?
1600     //           Is it smart to do transform in Compile::constrained_convI2L, and then
1601     //           check for TOP in calls ArrayCopyNode::prepare_array_copy?
1602     //           Should we just allow TOP to land on the worklist, as an exception?
1603     //
1604     // Found with:
1605     //   compiler/arraycopy/TestArrayCopyAsLoadsStores.java
1606     //   -XX:VerifyIterativeGVN=1110
1607     case Op_ArrayCopy:
1608       return;
1609 
1610     // CastLLNode::Ideal
1611     //    calls ConstraintCastNode::optimize_integer_cast -> pushes CastLL through SubL
1612     //
1613     // Could be a notification issue, where updates inputs of CastLL do not notify
1614     // down through SubL to CastLL.
1615     //
1616     // Found With:
1617     //   compiler/c2/TestMergeStoresMemorySegment.java#byte-array
1618     //   -XX:VerifyIterativeGVN=1110
1619     case Op_CastLL:
1620       return;
1621 
1622     // Similar case happens to CastII
1623     //
1624     // Found With:
1625     //   compiler/c2/TestScalarReplacementMaxLiveNodes.java
1626     //   -XX:VerifyIterativeGVN=1110
1627     case Op_CastII:
1628       return;
1629 
1630     // MaxLNode::Ideal
1631     //   calls AddNode::Ideal
1632     //   calls commute -> decides to swap edges
1633     //
1634     // Another notification issue, because we check inputs of inputs?
1635     // MaxL -> Phi -> Loop
1636     // MaxL -> Phi -> MaxL
1637     //
1638     // Found with:
1639     //   compiler/c2/irTests/TestIfMinMax.java
1640     //   -XX:VerifyIterativeGVN=1110
1641     case Op_MaxL:
1642     case Op_MinL:
1643       return;
1644 
1645     // OrINode::Ideal
1646     //   calls AddNode::Ideal
1647     //   calls commute -> left is Load, right not -> commute.
1648     //
1649     // Not sure why notification does not work here, seems like
1650     // the depth is only 1, so it should work. Needs investigation.
1651     //
1652     // Found with:
1653     //   compiler/codegen/TestCharVect2.java#id0
1654     //   -XX:VerifyIterativeGVN=1110
1655     case Op_OrI:
1656     case Op_OrL:
1657       return;
1658 
1659     // Bool -> constant folded to 1.
1660     // Issue with notification?
1661     //
1662     // Found with:
1663     //   compiler/c2/irTests/TestVectorizationMismatchedAccess.java
1664     //   -XX:VerifyIterativeGVN=1110
1665     case Op_Bool:
1666       return;
1667 
1668     // LShiftLNode::Ideal
1669     // Looks at pattern: "(x + x) << c0", converts it to "x << (c0 + 1)"
1670     // Probably a notification issue.
1671     //
1672     // Found with:
1673     //   compiler/conversions/TestMoveConvI2LOrCastIIThruAddIs.java
1674     //   -ea -esa -XX:CompileThreshold=100 -XX:+UnlockExperimentalVMOptions -server -XX:-TieredCompilation -XX:+IgnoreUnrecognizedVMOptions -XX:VerifyIterativeGVN=1110
1675     case Op_LShiftL:
1676       return;
1677 
1678     // LShiftINode::Ideal
1679     // pattern: ((x + con1) << con2) -> x << con2 + con1 << con2
1680     // Could be issue with notification of inputs of inputs
1681     //
1682     // Side-note: should cases like these not be shared between
1683     //            LShiftI and LShiftL?
1684     //
1685     // Found with:
1686     //   compiler/escapeAnalysis/Test6689060.java
1687     //   -XX:+IgnoreUnrecognizedVMOptions -XX:VerifyIterativeGVN=1110 -ea -esa -XX:CompileThreshold=100 -XX:+UnlockExperimentalVMOptions -server -XX:-TieredCompilation -XX:+IgnoreUnrecognizedVMOptions -XX:VerifyIterativeGVN=1110
1688     case Op_LShiftI:
1689       return;
1690 
1691     // AddPNode::Ideal seems to do set_req without removing lock first.
1692     // Found with various vector tests tier1-tier3.
1693     case Op_AddP:
1694       return;
1695 
1696     // StrIndexOfNode::Ideal
1697     // Found in tier1-3.
1698     case Op_StrIndexOf:
1699     case Op_StrIndexOfChar:
1700       return;
1701 
1702     // StrEqualsNode::Identity
1703     //
1704     // Found (linux x64 only?) with:
1705     //   serviceability/sa/ClhsdbThreadContext.java
1706     //   -XX:+UnlockExperimentalVMOptions -XX:LockingMode=1 -XX:+IgnoreUnrecognizedVMOptions -XX:VerifyIterativeGVN=1110
1707     //   Note: The -XX:LockingMode option is not available anymore.
1708     case Op_StrEquals:
1709       return;
1710 
1711     // AryEqNode::Ideal
1712     // Not investigated. Reshapes itself and adds lots of nodes to the worklist.
1713     //
1714     // Found with:
1715     //   vmTestbase/vm/mlvm/meth/stress/compiler/i2c_c2i/Test.java
1716     //   -XX:+UnlockDiagnosticVMOptions -XX:-TieredCompilation -XX:+StressUnstableIfTraps -XX:+IgnoreUnrecognizedVMOptions -XX:VerifyIterativeGVN=1110
1717     case Op_AryEq:
1718       return;
1719 
1720     // MergeMemNode::Ideal
1721     // Found in tier1-3. Did not investigate further yet.
1722     case Op_MergeMem:
1723       return;
1724 
1725     // URShiftINode::Ideal
1726     // Found in tier1-3. Did not investigate further yet.
1727     case Op_URShiftI:
1728       return;
1729 
1730     // CMoveINode::Ideal
1731     // Found in tier1-3. Did not investigate further yet.
1732     case Op_CMoveI:
1733       return;
1734 
1735     // CmpPNode::Ideal calls isa_const_java_mirror
1736     // and generates new constant nodes, even if no progress is made.
1737     // We can probably rewrite this so that only types are generated.
1738     // It seems that object types are not hashed, we could investigate
1739     // if that is an option as well.
1740     //
1741     // Found with:
1742     //   java -XX:VerifyIterativeGVN=1110 -Xcomp --version
1743     case Op_CmpP:
1744       return;
1745 
1746     // MinINode::Ideal
1747     // Did not investigate, but there are some patterns that might
1748     // need more notification.
1749     case Op_MinI:
1750     case Op_MaxI: // preemptively removed it as well.
1751       return;
1752   }
1753 
1754   if (n->is_Load()) {
1755     // LoadNode::Ideal uses tries to find an earlier memory state, and
1756     // checks can_see_stored_value for it.
1757     //
1758     // Investigate why this was not already done during IGVN.
1759     // A similar issue happens with Identity.
1760     //
1761     // There seem to be other cases where loads go up some steps, like
1762     // LoadNode::Ideal going up 10x steps to find dominating load.
1763     //
1764     // Found with:
1765     //   test/hotspot/jtreg/compiler/arraycopy/TestCloneAccess.java
1766     //   -XX:VerifyIterativeGVN=1110
1767     return;
1768   }
1769 
1770   if (n->is_Store()) {
1771     // StoreNode::Ideal can do this:
1772     //  // Capture an unaliased, unconditional, simple store into an initializer.
1773     //  // Or, if it is independent of the allocation, hoist it above the allocation.
1774     // That replaces the Store with a MergeMem.
1775     //
1776     // We have to investigate why this does not happen during IGVN in this case.
1777     // There could also be other issues - I did not investigate further yet.
1778     //
1779     // Found with:
1780     //   java -XX:VerifyIterativeGVN=0100 -Xcomp --version
1781     return;
1782   }
1783 
1784   if (n->is_Vector()) {
1785     // VectorNode::Ideal swaps edges, but only for ops
1786     // that are deemed commutable. But swap_edges
1787     // requires the hash to be invariant when the edges
1788     // are swapped, which is not implemented for these
1789     // vector nodes. This seems not to create any trouble
1790     // usually, but we can also get graphs where in the
1791     // end the nodes are not all commuted, so there is
1792     // definitively an issue here.
1793     //
1794     // Probably we have two options: kill the hash, or
1795     // properly make the hash commutation friendly.
1796     //
1797     // Found with:
1798     //   compiler/vectorapi/TestMaskedMacroLogicVector.java
1799     //   -XX:+IgnoreUnrecognizedVMOptions -XX:VerifyIterativeGVN=1110 -XX:+UseParallelGC -XX:+UseNUMA
1800     return;
1801   }
1802 
1803   if (n->is_Region()) {
1804     // LoopNode::Ideal calls RegionNode::Ideal.
1805     // CountedLoopNode::Ideal calls RegionNode::Ideal too.
1806     // But I got an issue because RegionNode::optimize_trichotomy
1807     // then modifies another node, and pushes nodes to the worklist
1808     // Not sure if this is ok, modifying another node like that.
1809     // Maybe it is, then we need to look into what to do with
1810     // the nodes that are now on the worklist, maybe just clear
1811     // them out again. But maybe modifying other nodes like that
1812     // is also bad design. In the end, we return nullptr for
1813     // the current CountedLoop. But the extra nodes on the worklist
1814     // trip the asserts later on.
1815     //
1816     // Found with:
1817     //   compiler/eliminateAutobox/TestShortBoxing.java
1818     //   -ea -esa -XX:CompileThreshold=100 -XX:+UnlockExperimentalVMOptions -server -XX:-TieredCompilation -XX:+IgnoreUnrecognizedVMOptions -XX:VerifyIterativeGVN=1110
1819     return;
1820   }
1821 
1822   if (n->is_CallJava()) {
1823     // CallStaticJavaNode::Ideal
1824     // Led to a crash:
1825     //   assert((is_CallStaticJava() && cg->is_mh_late_inline()) || (is_CallDynamicJava() && cg->is_virtual_late_inline())) failed: mismatch
1826     //
1827     // Did not investigate yet, could be a bug.
1828     // Or maybe it does not expect to be called during verification.
1829     //
1830     // Found with:
1831     //   test/jdk/jdk/incubator/vector/VectorRuns.java
1832     //   -XX:VerifyIterativeGVN=1110
1833 
1834     // CallDynamicJavaNode::Ideal, and I think also for CallStaticJavaNode::Ideal
1835     //  and possibly their subclasses.
1836     // During late inlining it can call CallJavaNode::register_for_late_inline
1837     // That means we do more rounds of late inlining, but might fail.
1838     // Then we do IGVN again, and register the node again for late inlining.
1839     // This creates an endless cycle. Everytime we try late inlining, we
1840     // are also creating more nodes, especially SafePoint and MergeMem.
1841     // These nodes are immediately rejected when the inlining fails in the
1842     // do_late_inline_check, but they still grow the memory, until we hit
1843     // the MemLimit and crash.
1844     // The assumption here seems that CallDynamicJavaNode::Ideal does not get
1845     // called repeatedly, and eventually we terminate. I fear this is not
1846     // a great assumption to make. We should investigate more.
1847     //
1848     // Found with:
1849     //   compiler/loopopts/superword/TestDependencyOffsets.java#vanilla-U
1850     //   -XX:+IgnoreUnrecognizedVMOptions -XX:VerifyIterativeGVN=1110
1851     return;
1852   }
1853 
1854   // The number of nodes shoud not increase.
1855   uint old_unique = C->unique();
1856   // The hash of a node should not change, this would indicate different inputs
1857   uint old_hash = n->hash();
1858   // Remove 'n' from hash table in case it gets modified. We want to avoid
1859   // hitting the "Need to remove from hash before changing edges" assert if
1860   // a change occurs. Instead, we would like to proceed with the optimization,
1861   // return and finally hit the assert in PhaseIterGVN::verify_optimize to get
1862   // a more meaningful message
1863   _table.hash_delete(n);
1864   Node* i = n->Ideal(this, can_reshape);
1865   // If there was no new Idealization, we are probably happy.
1866   if (i == nullptr) {
1867     if (old_unique < C->unique()) {
1868       stringStream ss; // Print as a block without tty lock.
1869       ss.cr();
1870       ss.print_cr("Ideal optimization did not make progress but created new unused nodes.");
1871       ss.print_cr("  old_unique = %d, unique = %d", old_unique, C->unique());
1872       n->dump_bfs(1, nullptr, "", &ss);
1873       tty->print_cr("%s", ss.as_string());
1874       assert(false, "Unexpected new unused nodes from applying Ideal optimization on %s", n->Name());
1875     }
1876 
1877     if (old_hash != n->hash()) {
1878       stringStream ss; // Print as a block without tty lock.
1879       ss.cr();
1880       ss.print_cr("Ideal optimization did not make progress but node hash changed.");
1881       ss.print_cr("  old_hash = %d, hash = %d", old_hash, n->hash());
1882       n->dump_bfs(1, nullptr, "", &ss);
1883       tty->print_cr("%s", ss.as_string());
1884       assert(false, "Unexpected hash change from applying Ideal optimization on %s", n->Name());
1885     }
1886 
1887     verify_empty_worklist(n);
1888 
1889     // Everything is good.
1890     hash_find_insert(n);
1891     return;
1892   }
1893 
1894   // We just saw a new Idealization which was not done during IGVN.
1895   stringStream ss; // Print as a block without tty lock.
1896   ss.cr();
1897   ss.print_cr("Missed Ideal optimization (can_reshape=%s):", can_reshape ? "true": "false");
1898   if (i == n) {
1899     ss.print_cr("The node was reshaped by Ideal.");
1900   } else {
1901     ss.print_cr("The node was replaced by Ideal.");
1902     ss.print_cr("Old node:");
1903     n->dump_bfs(1, nullptr, "", &ss);
1904   }
1905   ss.print_cr("The result after Ideal:");
1906   i->dump_bfs(1, nullptr, "", &ss);
1907   tty->print_cr("%s", ss.as_string());
1908 
1909   assert(false, "Missed Ideal optimization opportunity in PhaseIterGVN for %s", n->Name());
1910 }
1911 
1912 // Check that all Identity optimizations that could be done were done.
1913 // Asserts if it found missed optimization opportunities, and
1914 //         returns normally otherwise (no missed optimization, or skipped verification).
1915 void PhaseIterGVN::verify_Identity_for(Node* n) {
1916   // First, we check a list of exceptions, where we skip verification,
1917   // because there are known cases where Ideal can optimize after IGVN.
1918   // Some may be expected and cannot be fixed, and others should be fixed.
1919   switch (n->Opcode()) {
1920     // SafePointNode::Identity can remove SafePoints, but wants to wait until
1921     // after loopopts:
1922     //   // Transforming long counted loops requires a safepoint node. Do not
1923     //   // eliminate a safepoint until loop opts are over.
1924     //   if (in(0)->is_Proj() && !phase->C->major_progress()) {
1925     //
1926     // I think the check for major_progress does delay it until after loopopts
1927     // but it does not ensure that the node is on the IGVN worklist after
1928     // loopopts. I think we should try to instead check for
1929     // phase->C->post_loop_opts_phase() and call record_for_post_loop_opts_igvn.
1930     //
1931     // Found with:
1932     //   java -XX:VerifyIterativeGVN=1000 -Xcomp --version
1933     case Op_SafePoint:
1934       return;
1935 
1936     // MergeMemNode::Identity replaces the MergeMem with its base_memory if it
1937     // does not record any other memory splits.
1938     //
1939     // I did not deeply investigate, but it looks like MergeMemNode::Identity
1940     // never got called during IGVN for this node, investigate why.
1941     //
1942     // Found with:
1943     //   java -XX:VerifyIterativeGVN=1000 -Xcomp --version
1944     case Op_MergeMem:
1945       return;
1946 
1947     // ConstraintCastNode::Identity finds casts that are the same, except that
1948     // the control is "higher up", i.e. dominates. The call goes via
1949     // ConstraintCastNode::dominating_cast to PhaseGVN::is_dominator_helper,
1950     // which traverses up to 100 idom steps. If anything gets optimized somewhere
1951     // away from the cast, but within 100 idom steps, the cast may not be
1952     // put on the IGVN worklist any more.
1953     //
1954     // Found with:
1955     //   java -XX:VerifyIterativeGVN=1000 -Xcomp --version
1956     case Op_CastPP:
1957     case Op_CastII:
1958     case Op_CastLL:
1959       return;
1960 
1961     // Same issue for CheckCastPP, uses ConstraintCastNode::Identity and
1962     // checks dominator, which may be changed, but too far up for notification
1963     // to work.
1964     //
1965     // Found with:
1966     //   compiler/c2/irTests/TestSkeletonPredicates.java
1967     //   -XX:VerifyIterativeGVN=1110
1968     case Op_CheckCastPP:
1969       return;
1970 
1971     // In SubNode::Identity, we do:
1972     //   Convert "(X+Y) - Y" into X and "(X+Y) - X" into Y
1973     // In the example, the AddI had an input replaced, the AddI is
1974     // added to the IGVN worklist, but the SubI is one link further
1975     // down and is not added. I checked add_users_of_use_to_worklist
1976     // where I would expect the SubI would be added, and I cannot
1977     // find the pattern, only this one:
1978     //   If changed AddI/SubI inputs, check CmpU for range check optimization.
1979     //
1980     // Fix this "notification" issue and check if there are any other
1981     // issues.
1982     //
1983     // Found with:
1984     //   java -XX:VerifyIterativeGVN=1000 -Xcomp --version
1985     case Op_SubI:
1986     case Op_SubL:
1987       return;
1988 
1989     // PhiNode::Identity checks for patterns like:
1990     //   r = (x != con) ? x : con;
1991     // that can be constant folded to "x".
1992     //
1993     // Call goes through PhiNode::is_cmove_id and CMoveNode::is_cmove_id.
1994     // I suspect there was some earlier change to one of the inputs, but
1995     // not all relevant outputs were put on the IGVN worklist.
1996     //
1997     // Found with:
1998     //   test/hotspot/jtreg/gc/stress/gcbasher/TestGCBasherWithG1.java
1999     //   -XX:VerifyIterativeGVN=1110
2000     case Op_Phi:
2001       return;
2002 
2003     // ConvI2LNode::Identity does
2004     // convert I2L(L2I(x)) => x
2005     //
2006     // Investigate why this did not already happen during IGVN.
2007     //
2008     // Found with:
2009     //   compiler/loopopts/superword/TestDependencyOffsets.java#vanilla-A
2010     //   -XX:VerifyIterativeGVN=1110
2011     case Op_ConvI2L:
2012       return;
2013 
2014     // MaxNode::find_identity_operation
2015     //  Finds patterns like Max(A, Max(A, B)) -> Max(A, B)
2016     //  This can be a 2-hop search, so maybe notification is not
2017     //  good enough.
2018     //
2019     // Found with:
2020     //   compiler/codegen/TestBooleanVect.java
2021     //   -XX:VerifyIterativeGVN=1110
2022     case Op_MaxL:
2023     case Op_MinL:
2024     case Op_MaxI:
2025     case Op_MinI:
2026     case Op_MaxF:
2027     case Op_MinF:
2028     case Op_MaxHF:
2029     case Op_MinHF:
2030     case Op_MaxD:
2031     case Op_MinD:
2032       return;
2033 
2034 
2035     // AddINode::Identity
2036     // Converts (x-y)+y to x
2037     // Could be issue with notification
2038     //
2039     // Turns out AddL does the same.
2040     //
2041     // Found with:
2042     //  compiler/c2/Test6792161.java
2043     //  -ea -esa -XX:CompileThreshold=100 -XX:+UnlockExperimentalVMOptions -server -XX:-TieredCompilation -XX:+IgnoreUnrecognizedVMOptions -XX:VerifyIterativeGVN=1110
2044     case Op_AddI:
2045     case Op_AddL:
2046       return;
2047 
2048     // AbsINode::Identity
2049     // Not investigated yet.
2050     case Op_AbsI:
2051       return;
2052   }
2053 
2054   if (n->is_Load()) {
2055     // LoadNode::Identity tries to look for an earlier store value via
2056     // can_see_stored_value. I found an example where this led to
2057     // an Allocation, where we could assume the value was still zero.
2058     // So the LoadN can be replaced with a zerocon.
2059     //
2060     // Investigate why this was not already done during IGVN.
2061     // A similar issue happens with Ideal.
2062     //
2063     // Found with:
2064     //   java -XX:VerifyIterativeGVN=1000 -Xcomp --version
2065     return;
2066   }
2067 
2068   if (n->is_Store()) {
2069     // StoreNode::Identity
2070     // Not investigated, but found missing optimization for StoreI.
2071     // Looks like a StoreI is replaced with an InitializeNode.
2072     //
2073     // Found with:
2074     //   applications/ctw/modules/java_base_2.java
2075     //   -ea -esa -XX:CompileThreshold=100 -XX:+UnlockExperimentalVMOptions -server -XX:-TieredCompilation -Djava.awt.headless=true -XX:+IgnoreUnrecognizedVMOptions -XX:VerifyIterativeGVN=1110
2076     return;
2077   }
2078 
2079   if (n->is_Vector()) {
2080     // Found with tier1-3. Not investigated yet.
2081     // The observed issue was with AndVNode::Identity
2082     return;
2083   }
2084 
2085   Node* i = n->Identity(this);
2086   // If we cannot find any other Identity, we are happy.
2087   if (i == n) {
2088     verify_empty_worklist(n);
2089     return;
2090   }
2091 
2092   // The verification just found a new Identity that was not found during IGVN.
2093   stringStream ss; // Print as a block without tty lock.
2094   ss.cr();
2095   ss.print_cr("Missed Identity optimization:");
2096   ss.print_cr("Old node:");
2097   n->dump_bfs(1, nullptr, "", &ss);
2098   ss.print_cr("New node:");
2099   i->dump_bfs(1, nullptr, "", &ss);
2100   tty->print_cr("%s", ss.as_string());
2101 
2102   assert(false, "Missed Identity optimization opportunity in PhaseIterGVN for %s", n->Name());
2103 }
2104 
2105 // Some other verifications that are not specific to a particular transformation.
2106 void PhaseIterGVN::verify_node_invariants_for(const Node* n) {
2107   if (n->is_AddP()) {
2108     if (!n->as_AddP()->address_input_has_same_base()) {
2109       stringStream ss; // Print as a block without tty lock.
2110       ss.cr();
2111       ss.print_cr("Base pointers must match for AddP chain:");
2112       n->dump_bfs(2, nullptr, "", &ss);
2113       tty->print_cr("%s", ss.as_string());
2114 
2115       assert(false, "Broken node invariant for %s", n->Name());
2116     }
2117   }
2118 }
2119 #endif
2120 
2121 /**
2122  * Register a new node with the optimizer.  Update the types array, the def-use
2123  * info.  Put on worklist.
2124  */
2125 Node* PhaseIterGVN::register_new_node_with_optimizer(Node* n, Node* orig) {
2126   set_type_bottom(n);
2127   _worklist.push(n);
2128   if (orig != nullptr)  C->copy_node_notes_to(n, orig);
2129   return n;
2130 }
2131 
2132 //------------------------------transform--------------------------------------
2133 // Non-recursive: idealize Node 'n' with respect to its inputs and its value
2134 Node *PhaseIterGVN::transform( Node *n ) {
2135   if (_delay_transform) {
2136     // Register the node but don't optimize for now
2137     register_new_node_with_optimizer(n);
2138     return n;
2139   }
2140 
2141   // If brand new node, make space in type array, and give it a type.
2142   ensure_type_or_null(n);
2143   if (type_or_null(n) == nullptr) {
2144     set_type_bottom(n);
2145   }
2146 
2147   return transform_old(n);
2148 }
2149 
2150 Node *PhaseIterGVN::transform_old(Node* n) {
2151   NOT_PRODUCT(set_transforms());
2152   // Remove 'n' from hash table in case it gets modified
2153   _table.hash_delete(n);
2154 #ifdef ASSERT
2155   if (is_verify_def_use()) {
2156     assert(!_table.find_index(n->_idx), "found duplicate entry in table");
2157   }
2158 #endif
2159 
2160   // Allow Bool -> Cmp idealisation in late inlining intrinsics that return a bool
2161   if (n->is_Cmp()) {
2162     add_users_to_worklist(n);
2163   }
2164 
2165   // Apply the Ideal call in a loop until it no longer applies
2166   Node* k = n;
2167   DEBUG_ONLY(dead_loop_check(k);)
2168   DEBUG_ONLY(bool is_new = (k->outcnt() == 0);)
2169   C->remove_modified_node(k);
2170   Node* i = apply_ideal(k, /*can_reshape=*/true);
2171   assert(i != k || is_new || i->outcnt() > 0, "don't return dead nodes");
2172 #ifndef PRODUCT
2173   verify_step(k);
2174 #endif
2175 
2176   DEBUG_ONLY(uint loop_count = 1;)
2177   while (i != nullptr) {
2178 #ifdef ASSERT
2179     if (loop_count >= K + C->live_nodes()) {
2180       dump_infinite_loop_info(i, "PhaseIterGVN::transform_old");
2181     }
2182 #endif
2183     assert((i->_idx >= k->_idx) || i->is_top(), "Idealize should return new nodes, use Identity to return old nodes");
2184     // Made a change; put users of original Node on worklist
2185     add_users_to_worklist(k);
2186     // Replacing root of transform tree?
2187     if (k != i) {
2188       // Make users of old Node now use new.
2189       subsume_node(k, i);
2190       k = i;
2191     }
2192     DEBUG_ONLY(dead_loop_check(k);)
2193     // Try idealizing again
2194     DEBUG_ONLY(is_new = (k->outcnt() == 0);)
2195     C->remove_modified_node(k);
2196     i = apply_ideal(k, /*can_reshape=*/true);
2197     assert(i != k || is_new || (i->outcnt() > 0), "don't return dead nodes");
2198 #ifndef PRODUCT
2199     verify_step(k);
2200 #endif
2201     DEBUG_ONLY(loop_count++;)
2202   }
2203 
2204   // If brand new node, make space in type array.
2205   ensure_type_or_null(k);
2206 
2207   // See what kind of values 'k' takes on at runtime
2208   const Type* t = k->Value(this);
2209   assert(t != nullptr, "value sanity");
2210 
2211   // Since I just called 'Value' to compute the set of run-time values
2212   // for this Node, and 'Value' is non-local (and therefore expensive) I'll
2213   // cache Value.  Later requests for the local phase->type of this Node can
2214   // use the cached Value instead of suffering with 'bottom_type'.
2215   if (type_or_null(k) != t) {
2216 #ifndef PRODUCT
2217     inc_new_values();
2218     set_progress();
2219 #endif
2220     set_type(k, t);
2221     // If k is a TypeNode, capture any more-precise type permanently into Node
2222     k->raise_bottom_type(t);
2223     // Move users of node to worklist
2224     add_users_to_worklist(k);
2225   }
2226   // If 'k' computes a constant, replace it with a constant
2227   if (t->singleton() && !k->is_Con()) {
2228     NOT_PRODUCT(set_progress();)
2229     Node* con = makecon(t);     // Make a constant
2230     add_users_to_worklist(k);
2231     subsume_node(k, con);       // Everybody using k now uses con
2232     return con;
2233   }
2234 
2235   // Now check for Identities
2236   i = k->Identity(this);      // Look for a nearby replacement
2237   if (i != k) {                // Found? Return replacement!
2238     NOT_PRODUCT(set_progress();)
2239     add_users_to_worklist(k);
2240     subsume_node(k, i);       // Everybody using k now uses i
2241     return i;
2242   }
2243 
2244   // Global Value Numbering
2245   i = hash_find_insert(k);      // Check for pre-existing node
2246   if (i && (i != k)) {
2247     // Return the pre-existing node if it isn't dead
2248     NOT_PRODUCT(set_progress();)
2249     add_users_to_worklist(k);
2250     subsume_node(k, i);       // Everybody using k now uses i
2251     return i;
2252   }
2253 
2254   // Return Idealized original
2255   return k;
2256 }
2257 
2258 //---------------------------------saturate------------------------------------
2259 const Type* PhaseIterGVN::saturate(const Type* new_type, const Type* old_type,
2260                                    const Type* limit_type) const {
2261   return new_type->narrow(old_type);
2262 }
2263 
2264 //------------------------------remove_globally_dead_node----------------------
2265 // Kill a globally dead Node.  All uses are also globally dead and are
2266 // aggressively trimmed.
2267 void PhaseIterGVN::remove_globally_dead_node( Node *dead ) {
2268   enum DeleteProgress {
2269     PROCESS_INPUTS,
2270     PROCESS_OUTPUTS
2271   };
2272   ResourceMark rm;
2273   Node_Stack stack(32);
2274   stack.push(dead, PROCESS_INPUTS);
2275 
2276   while (stack.is_nonempty()) {
2277     dead = stack.node();
2278     if (dead->Opcode() == Op_SafePoint) {
2279       dead->as_SafePoint()->disconnect_from_root(this);
2280     }
2281     uint progress_state = stack.index();
2282     assert(dead != C->root(), "killing root, eh?");
2283     assert(!dead->is_top(), "add check for top when pushing");
2284     NOT_PRODUCT( set_progress(); )
2285     if (progress_state == PROCESS_INPUTS) {
2286       // After following inputs, continue to outputs
2287       stack.set_index(PROCESS_OUTPUTS);
2288       if (!dead->is_Con()) { // Don't kill cons but uses
2289         bool recurse = false;
2290         // Remove from hash table
2291         _table.hash_delete( dead );
2292         // Smash all inputs to 'dead', isolating him completely
2293         for (uint i = 0; i < dead->req(); i++) {
2294           Node *in = dead->in(i);
2295           if (in != nullptr && in != C->top()) {  // Points to something?
2296             int nrep = dead->replace_edge(in, nullptr, this);  // Kill edges
2297             assert((nrep > 0), "sanity");
2298             if (in->outcnt() == 0) { // Made input go dead?
2299               stack.push(in, PROCESS_INPUTS); // Recursively remove
2300               recurse = true;
2301             } else if (in->outcnt() == 1 &&
2302                        in->has_special_unique_user()) {
2303               _worklist.push(in->unique_out());
2304             } else if (in->outcnt() <= 2 && dead->is_Phi()) {
2305               if (in->Opcode() == Op_Region) {
2306                 _worklist.push(in);
2307               } else if (in->is_Store()) {
2308                 DUIterator_Fast imax, i = in->fast_outs(imax);
2309                 _worklist.push(in->fast_out(i));
2310                 i++;
2311                 if (in->outcnt() == 2) {
2312                   _worklist.push(in->fast_out(i));
2313                   i++;
2314                 }
2315                 assert(!(i < imax), "sanity");
2316               }
2317             } else if (dead->is_data_proj_of_pure_function(in)) {
2318               _worklist.push(in);
2319             } else {
2320               BarrierSet::barrier_set()->barrier_set_c2()->enqueue_useful_gc_barrier(this, in);
2321             }
2322             if (ReduceFieldZeroing && dead->is_Load() && i == MemNode::Memory &&
2323                 in->is_Proj() && in->in(0) != nullptr && in->in(0)->is_Initialize()) {
2324               // A Load that directly follows an InitializeNode is
2325               // going away. The Stores that follow are candidates
2326               // again to be captured by the InitializeNode.
2327               for (DUIterator_Fast jmax, j = in->fast_outs(jmax); j < jmax; j++) {
2328                 Node *n = in->fast_out(j);
2329                 if (n->is_Store()) {
2330                   _worklist.push(n);
2331                 }
2332               }
2333             }
2334           } // if (in != nullptr && in != C->top())
2335         } // for (uint i = 0; i < dead->req(); i++)
2336         if (recurse) {
2337           continue;
2338         }
2339       } // if (!dead->is_Con())
2340     } // if (progress_state == PROCESS_INPUTS)
2341 
2342     // Aggressively kill globally dead uses
2343     // (Rather than pushing all the outs at once, we push one at a time,
2344     // plus the parent to resume later, because of the indefinite number
2345     // of edge deletions per loop trip.)
2346     if (dead->outcnt() > 0) {
2347       // Recursively remove output edges
2348       stack.push(dead->raw_out(0), PROCESS_INPUTS);
2349     } else {
2350       // Finished disconnecting all input and output edges.
2351       stack.pop();
2352       // Remove dead node from iterative worklist
2353       _worklist.remove(dead);
2354       C->remove_useless_node(dead);
2355     }
2356   } // while (stack.is_nonempty())
2357 }
2358 
2359 //------------------------------subsume_node-----------------------------------
2360 // Remove users from node 'old' and add them to node 'nn'.
2361 void PhaseIterGVN::subsume_node( Node *old, Node *nn ) {
2362   if (old->Opcode() == Op_SafePoint) {
2363     old->as_SafePoint()->disconnect_from_root(this);
2364   }
2365   assert( old != hash_find(old), "should already been removed" );
2366   assert( old != C->top(), "cannot subsume top node");
2367   // Copy debug or profile information to the new version:
2368   C->copy_node_notes_to(nn, old);
2369   // Move users of node 'old' to node 'nn'
2370   for (DUIterator_Last imin, i = old->last_outs(imin); i >= imin; ) {
2371     Node* use = old->last_out(i);  // for each use...
2372     // use might need re-hashing (but it won't if it's a new node)
2373     rehash_node_delayed(use);
2374     // Update use-def info as well
2375     // We remove all occurrences of old within use->in,
2376     // so as to avoid rehashing any node more than once.
2377     // The hash table probe swamps any outer loop overhead.
2378     uint num_edges = 0;
2379     for (uint jmax = use->len(), j = 0; j < jmax; j++) {
2380       if (use->in(j) == old) {
2381         use->set_req(j, nn);
2382         ++num_edges;
2383       }
2384     }
2385     i -= num_edges;    // we deleted 1 or more copies of this edge
2386   }
2387 
2388   // Search for instance field data PhiNodes in the same region pointing to the old
2389   // memory PhiNode and update their instance memory ids to point to the new node.
2390   if (old->is_Phi() && old->as_Phi()->type()->has_memory() && old->in(0) != nullptr) {
2391     Node* region = old->in(0);
2392     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
2393       PhiNode* phi = region->fast_out(i)->isa_Phi();
2394       if (phi != nullptr && phi->inst_mem_id() == (int)old->_idx) {
2395         phi->set_inst_mem_id((int)nn->_idx);
2396       }
2397     }
2398   }
2399 
2400   // Smash all inputs to 'old', isolating him completely
2401   Node *temp = new Node(1);
2402   temp->init_req(0,nn);     // Add a use to nn to prevent him from dying
2403   remove_dead_node( old );
2404   temp->del_req(0);         // Yank bogus edge
2405   if (nn != nullptr && nn->outcnt() == 0) {
2406     _worklist.push(nn);
2407   }
2408 #ifndef PRODUCT
2409   if (is_verify_def_use()) {
2410     for ( int i = 0; i < _verify_window_size; i++ ) {
2411       if ( _verify_window[i] == old )
2412         _verify_window[i] = nn;
2413     }
2414   }
2415 #endif
2416   temp->destruct(this);     // reuse the _idx of this little guy
2417 }
2418 
2419 //------------------------------add_users_to_worklist--------------------------
2420 void PhaseIterGVN::add_users_to_worklist0(Node* n, Unique_Node_List& worklist) {
2421   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2422     worklist.push(n->fast_out(i));  // Push on worklist
2423   }
2424 }
2425 
2426 // Return counted loop Phi if as a counted loop exit condition, cmp
2427 // compares the induction variable with n
2428 static PhiNode* countedloop_phi_from_cmp(CmpNode* cmp, Node* n) {
2429   for (DUIterator_Fast imax, i = cmp->fast_outs(imax); i < imax; i++) {
2430     Node* bol = cmp->fast_out(i);
2431     for (DUIterator_Fast i2max, i2 = bol->fast_outs(i2max); i2 < i2max; i2++) {
2432       Node* iff = bol->fast_out(i2);
2433       if (iff->is_BaseCountedLoopEnd()) {
2434         BaseCountedLoopEndNode* cle = iff->as_BaseCountedLoopEnd();
2435         if (cle->limit() == n) {
2436           PhiNode* phi = cle->phi();
2437           if (phi != nullptr) {
2438             return phi;
2439           }
2440         }
2441       }
2442     }
2443   }
2444   return nullptr;
2445 }
2446 
2447 void PhaseIterGVN::add_users_to_worklist(Node *n) {
2448   add_users_to_worklist0(n, _worklist);
2449 
2450   Unique_Node_List& worklist = _worklist;
2451   // Move users of node to worklist
2452   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2453     Node* use = n->fast_out(i); // Get use
2454     add_users_of_use_to_worklist(n, use, worklist);
2455   }
2456 }
2457 
2458 void PhaseIterGVN::add_users_of_use_to_worklist(Node* n, Node* use, Unique_Node_List& worklist) {
2459   if(use->is_Multi() ||      // Multi-definer?  Push projs on worklist
2460       use->is_Store() )       // Enable store/load same address
2461     add_users_to_worklist0(use, worklist);
2462 
2463   // If we changed the receiver type to a call, we need to revisit
2464   // the Catch following the call.  It's looking for a non-null
2465   // receiver to know when to enable the regular fall-through path
2466   // in addition to the NullPtrException path.
2467   if (use->is_CallDynamicJava() && n == use->in(TypeFunc::Parms)) {
2468     Node* p = use->as_CallDynamicJava()->proj_out_or_null(TypeFunc::Control);
2469     if (p != nullptr) {
2470       add_users_to_worklist0(p, worklist);
2471     }
2472   }
2473 
2474   uint use_op = use->Opcode();
2475   if(use->is_Cmp()) {       // Enable CMP/BOOL optimization
2476     add_users_to_worklist0(use, worklist); // Put Bool on worklist
2477     if (use->outcnt() > 0) {
2478       Node* bol = use->raw_out(0);
2479       if (bol->outcnt() > 0) {
2480         Node* iff = bol->raw_out(0);
2481         if (iff->outcnt() == 2) {
2482           // Look for the 'is_x2logic' pattern: "x ? : 0 : 1" and put the
2483           // phi merging either 0 or 1 onto the worklist
2484           Node* ifproj0 = iff->raw_out(0);
2485           Node* ifproj1 = iff->raw_out(1);
2486           if (ifproj0->outcnt() > 0 && ifproj1->outcnt() > 0) {
2487             Node* region0 = ifproj0->raw_out(0);
2488             Node* region1 = ifproj1->raw_out(0);
2489             if( region0 == region1 )
2490               add_users_to_worklist0(region0, worklist);
2491           }
2492         }
2493       }
2494     }
2495     if (use_op == Op_CmpI || use_op == Op_CmpL) {
2496       Node* phi = countedloop_phi_from_cmp(use->as_Cmp(), n);
2497       if (phi != nullptr) {
2498         // Input to the cmp of a loop exit check has changed, thus
2499         // the loop limit may have changed, which can then change the
2500         // range values of the trip-count Phi.
2501         worklist.push(phi);
2502       }
2503     }
2504     if (use_op == Op_CmpI) {
2505       Node* cmp = use;
2506       Node* in1 = cmp->in(1);
2507       Node* in2 = cmp->in(2);
2508       // Notify CmpI / If pattern from CastIINode::Value (left pattern).
2509       // Must also notify if in1 is modified and possibly turns into X (right pattern).
2510       //
2511       // in1  in2                   in1  in2
2512       //  |    |                     |    |
2513       //  +--- | --+                 |    |
2514       //  |    |   |                 |    |
2515       // CmpINode  |                CmpINode
2516       //    |      |                   |
2517       // BoolNode  |                BoolNode
2518       //    |      |        OR         |
2519       //  IfNode   |                 IfNode
2520       //    |      |                   |
2521       //  IfProj   |                 IfProj   X
2522       //    |      |                   |      |
2523       //   CastIINode                 CastIINode
2524       //
2525       if (in1 != in2) { // if they are equal, the CmpI can fold them away
2526         if (in1 == n) {
2527           // in1 modified -> could turn into X -> do traversal based on right pattern.
2528           for (DUIterator_Fast i2max, i2 = cmp->fast_outs(i2max); i2 < i2max; i2++) {
2529             Node* bol = cmp->fast_out(i2); // For each Bool
2530             if (bol->is_Bool()) {
2531               for (DUIterator_Fast i3max, i3 = bol->fast_outs(i3max); i3 < i3max; i3++) {
2532                 Node* iff = bol->fast_out(i3); // For each If
2533                 if (iff->is_If()) {
2534                   for (DUIterator_Fast i4max, i4 = iff->fast_outs(i4max); i4 < i4max; i4++) {
2535                     Node* if_proj = iff->fast_out(i4); // For each IfProj
2536                     assert(if_proj->is_IfProj(), "If only has IfTrue and IfFalse as outputs");
2537                     for (DUIterator_Fast i5max, i5 = if_proj->fast_outs(i5max); i5 < i5max; i5++) {
2538                       Node* castii = if_proj->fast_out(i5); // For each CastII
2539                       if (castii->is_CastII() &&
2540                           castii->as_CastII()->carry_dependency()) {
2541                         worklist.push(castii);
2542                       }
2543                     }
2544                   }
2545                 }
2546               }
2547             }
2548           }
2549         } else {
2550           // Only in2 modified -> can assume X == in2 (left pattern).
2551           assert(n == in2, "only in2 modified");
2552           // Find all CastII with input in1.
2553           for (DUIterator_Fast jmax, j = in1->fast_outs(jmax); j < jmax; j++) {
2554             Node* castii = in1->fast_out(j);
2555             if (castii->is_CastII() && castii->as_CastII()->carry_dependency()) {
2556               // Find If.
2557               if (castii->in(0) != nullptr && castii->in(0)->in(0) != nullptr && castii->in(0)->in(0)->is_If()) {
2558                 Node* ifnode = castii->in(0)->in(0);
2559                 // Check that if connects to the cmp
2560                 if (ifnode->in(1) != nullptr && ifnode->in(1)->is_Bool() && ifnode->in(1)->in(1) == cmp) {
2561                   worklist.push(castii);
2562                 }
2563               }
2564             }
2565           }
2566         }
2567       }
2568     }
2569   }
2570 
2571   // If changed Cast input, notify down for Phi, Sub, and Xor - all do "uncast"
2572   // Patterns:
2573   // ConstraintCast+ -> Sub
2574   // ConstraintCast+ -> Phi
2575   // ConstraintCast+ -> Xor
2576   if (use->is_ConstraintCast()) {
2577     auto push_the_uses_to_worklist = [&](Node* n){
2578       if (n->is_Phi() || n->is_Sub() || n->Opcode() == Op_XorI || n->Opcode() == Op_XorL) {
2579         worklist.push(n);
2580       }
2581     };
2582     auto is_boundary = [](Node* n){ return !n->is_ConstraintCast(); };
2583     use->visit_uses(push_the_uses_to_worklist, is_boundary);
2584   }
2585   // If changed LShift inputs, check RShift users for useless sign-ext
2586   if (use_op == Op_LShiftI || use_op == Op_LShiftL) {
2587     for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
2588       Node* u = use->fast_out(i2);
2589       if (u->Opcode() == Op_RShiftI || u->Opcode() == Op_RShiftL)
2590         worklist.push(u);
2591     }
2592   }
2593   // If changed LShift inputs, check And users for shift and mask (And) operation
2594   if (use_op == Op_LShiftI || use_op == Op_LShiftL) {
2595     for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
2596       Node* u = use->fast_out(i2);
2597       if (u->Opcode() == Op_AndI || u->Opcode() == Op_AndL) {
2598         worklist.push(u);
2599       }
2600     }
2601   }
2602   // If changed AddI/SubI inputs, check CmpU for range check optimization.
2603   if (use_op == Op_AddI || use_op == Op_SubI) {
2604     for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
2605       Node* u = use->fast_out(i2);
2606       if (u->is_Cmp() && (u->Opcode() == Op_CmpU)) {
2607         worklist.push(u);
2608       }
2609     }
2610   }
2611   // If changed AndI/AndL inputs, check RShift/URShift users for "(x & mask) >> shift" optimization opportunity
2612   if (use_op == Op_AndI || use_op == Op_AndL) {
2613     for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
2614       Node* u = use->fast_out(i2);
2615       if (u->Opcode() == Op_RShiftI || u->Opcode() == Op_RShiftL ||
2616           u->Opcode() == Op_URShiftI || u->Opcode() == Op_URShiftL) {
2617         worklist.push(u);
2618       }
2619     }
2620   }
2621   // Check for redundant conversion patterns:
2622   // ConvD2L->ConvL2D->ConvD2L
2623   // ConvF2I->ConvI2F->ConvF2I
2624   // ConvF2L->ConvL2F->ConvF2L
2625   // ConvI2F->ConvF2I->ConvI2F
2626   // Note: there may be other 3-nodes conversion chains that would require to be added here, but these
2627   // are the only ones that are known to trigger missed optimizations otherwise
2628   if (use_op == Op_ConvL2D ||
2629       use_op == Op_ConvI2F ||
2630       use_op == Op_ConvL2F ||
2631       use_op == Op_ConvF2I) {
2632     for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
2633       Node* u = use->fast_out(i2);
2634       if ((use_op == Op_ConvL2D && u->Opcode() == Op_ConvD2L) ||
2635           (use_op == Op_ConvI2F && u->Opcode() == Op_ConvF2I) ||
2636           (use_op == Op_ConvL2F && u->Opcode() == Op_ConvF2L) ||
2637           (use_op == Op_ConvF2I && u->Opcode() == Op_ConvI2F)) {
2638         worklist.push(u);
2639       }
2640     }
2641   }
2642   // If changed AddP inputs:
2643   // - check Stores for loop invariant, and
2644   // - if the changed input is the offset, check constant-offset AddP users for
2645   //   address expression flattening.
2646   if (use_op == Op_AddP) {
2647     bool offset_changed = n == use->in(AddPNode::Offset);
2648     for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
2649       Node* u = use->fast_out(i2);
2650       if (u->is_Mem()) {
2651         worklist.push(u);
2652       } else if (offset_changed && u->is_AddP() && u->in(AddPNode::Offset)->is_Con()) {
2653         worklist.push(u);
2654       }
2655     }
2656   }
2657   // Check for "abs(0-x)" into "abs(x)" conversion
2658   if (use->is_Sub()) {
2659     for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
2660       Node* u = use->fast_out(i2);
2661       if (u->Opcode() == Op_AbsD || u->Opcode() == Op_AbsF ||
2662           u->Opcode() == Op_AbsL || u->Opcode() == Op_AbsI) {
2663         worklist.push(u);
2664       }
2665     }
2666   }
2667   // Check for Max/Min(A, Max/Min(B, C)) where A == B or A == C
2668   if (use->is_MinMax()) {
2669     for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
2670       Node* u = use->fast_out(i2);
2671       if (u->Opcode() == use->Opcode()) {
2672         worklist.push(u);
2673       }
2674     }
2675   }
2676   auto enqueue_init_mem_projs = [&](ProjNode* proj) {
2677     add_users_to_worklist0(proj, worklist);
2678   };
2679   // If changed initialization activity, check dependent Stores
2680   if (use_op == Op_Allocate || use_op == Op_AllocateArray) {
2681     InitializeNode* init = use->as_Allocate()->initialization();
2682     if (init != nullptr) {
2683       init->for_each_proj(enqueue_init_mem_projs, TypeFunc::Memory);
2684     }
2685   }
2686   // If the ValidLengthTest input changes then the fallthrough path out of the AllocateArray may have become dead.
2687   // CatchNode::Value() is responsible for killing that path. The CatchNode has to be explicitly enqueued for igvn
2688   // to guarantee the change is not missed.
2689   if (use_op == Op_AllocateArray && n == use->in(AllocateNode::ValidLengthTest)) {
2690     Node* p = use->as_AllocateArray()->proj_out_or_null(TypeFunc::Control);
2691     if (p != nullptr) {
2692       add_users_to_worklist0(p, worklist);
2693     }
2694   }
2695 
2696   if (use_op == Op_Initialize) {
2697     InitializeNode* init = use->as_Initialize();
2698     init->for_each_proj(enqueue_init_mem_projs, TypeFunc::Memory);
2699   }
2700   // Loading the java mirror from a Klass requires two loads and the type
2701   // of the mirror load depends on the type of 'n'. See LoadNode::Value().
2702   //   LoadBarrier?(LoadP(LoadP(AddP(foo:Klass, #java_mirror))))
2703   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2704   bool has_load_barrier_nodes = bs->has_load_barrier_nodes();
2705 
2706   if (use_op == Op_LoadP && use->bottom_type()->isa_rawptr()) {
2707     for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
2708       Node* u = use->fast_out(i2);
2709       const Type* ut = u->bottom_type();
2710       if (u->Opcode() == Op_LoadP && ut->isa_instptr()) {
2711         if (has_load_barrier_nodes) {
2712           // Search for load barriers behind the load
2713           for (DUIterator_Fast i3max, i3 = u->fast_outs(i3max); i3 < i3max; i3++) {
2714             Node* b = u->fast_out(i3);
2715             if (bs->is_gc_barrier_node(b)) {
2716               worklist.push(b);
2717             }
2718           }
2719         }
2720         worklist.push(u);
2721       }
2722     }
2723   }
2724   if (use->Opcode() == Op_OpaqueZeroTripGuard) {
2725     assert(use->outcnt() <= 1, "OpaqueZeroTripGuard can't be shared");
2726     if (use->outcnt() == 1) {
2727       Node* cmp = use->unique_out();
2728       worklist.push(cmp);
2729     }
2730   }
2731 
2732   // From CastX2PNode::Ideal
2733   // CastX2P(AddX(x, y))
2734   // CastX2P(SubX(x, y))
2735   if (use->Opcode() == Op_AddX || use->Opcode() == Op_SubX) {
2736     for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
2737       Node* u = use->fast_out(i2);
2738       if (u->Opcode() == Op_CastX2P) {
2739         worklist.push(u);
2740       }
2741     }
2742   }
2743 
2744   /* AndNode has a special handling when one of the operands is a LShiftNode:
2745    * (LHS << s) & RHS
2746    * if RHS fits in less than s bits, the value of this expression is 0.
2747    * The difficulty is that there might be a conversion node (ConvI2L) between
2748    * the LShiftINode and the AndLNode, like so:
2749    * AndLNode(ConvI2L(LShiftI(LHS, s)), RHS)
2750    * This case is handled by And[IL]Node::Value(PhaseGVN*)
2751    * (see `AndIL_min_trailing_zeros`).
2752    *
2753    * But, when the shift is updated during IGVN, pushing the user (ConvI2L)
2754    * is not enough: there might be no update happening there. We need to
2755    * directly push the And[IL]Node on the worklist, jumping over ConvI2L.
2756    *
2757    * Moreover we can have ConstraintCasts in between. It may look like
2758    * ConstraintCast+ -> ConvI2L -> ConstraintCast+ -> And
2759    * and And[IL]Node::Value(PhaseGVN*) still handles that by looking through casts.
2760    * So we must deal with that as well.
2761    */
2762   if (use->is_ConstraintCast() || use_op == Op_ConvI2L) {
2763     auto is_boundary = [](Node* n){ return !n->is_ConstraintCast() && n->Opcode() != Op_ConvI2L; };
2764     auto push_and_to_worklist = [&worklist](Node* n){
2765       if (n->Opcode() == Op_AndL || n->Opcode() == Op_AndI) {
2766         worklist.push(n);
2767       }
2768     };
2769     use->visit_uses(push_and_to_worklist, is_boundary);
2770   }
2771 }
2772 
2773 /**
2774  * Remove the speculative part of all types that we know of
2775  */
2776 void PhaseIterGVN::remove_speculative_types()  {
2777   assert(UseTypeSpeculation, "speculation is off");
2778   for (uint i = 0; i < _types.Size(); i++)  {
2779     const Type* t = _types.fast_lookup(i);
2780     if (t != nullptr) {
2781       _types.map(i, t->remove_speculative());
2782     }
2783   }
2784   _table.check_no_speculative_types();
2785 }
2786 
2787 // Check if the type of a divisor of a Div or Mod node includes zero.
2788 bool PhaseIterGVN::no_dependent_zero_check(Node* n) const {
2789   switch (n->Opcode()) {
2790     case Op_DivI:
2791     case Op_ModI:
2792     case Op_UDivI:
2793     case Op_UModI: {
2794       // Type of divisor includes 0?
2795       if (type(n->in(2)) == Type::TOP) {
2796         // 'n' is dead. Treat as if zero check is still there to avoid any further optimizations.
2797         return false;
2798       }
2799       const TypeInt* type_divisor = type(n->in(2))->is_int();
2800       return (type_divisor->_hi < 0 || type_divisor->_lo > 0);
2801     }
2802     case Op_DivL:
2803     case Op_ModL:
2804     case Op_UDivL:
2805     case Op_UModL: {
2806       // Type of divisor includes 0?
2807       if (type(n->in(2)) == Type::TOP) {
2808         // 'n' is dead. Treat as if zero check is still there to avoid any further optimizations.
2809         return false;
2810       }
2811       const TypeLong* type_divisor = type(n->in(2))->is_long();
2812       return (type_divisor->_hi < 0 || type_divisor->_lo > 0);
2813     }
2814   }
2815   return true;
2816 }
2817 
2818 //=============================================================================
2819 #ifndef PRODUCT
2820 uint PhaseCCP::_total_invokes   = 0;
2821 uint PhaseCCP::_total_constants = 0;
2822 #endif
2823 //------------------------------PhaseCCP---------------------------------------
2824 // Conditional Constant Propagation, ala Wegman & Zadeck
2825 PhaseCCP::PhaseCCP( PhaseIterGVN *igvn ) : PhaseIterGVN(igvn) {
2826   NOT_PRODUCT( clear_constants(); )
2827   assert( _worklist.size() == 0, "" );
2828   _phase = PhaseValuesType::ccp;
2829   analyze();
2830 }
2831 
2832 #ifndef PRODUCT
2833 //------------------------------~PhaseCCP--------------------------------------
2834 PhaseCCP::~PhaseCCP() {
2835   inc_invokes();
2836   _total_constants += count_constants();
2837 }
2838 #endif
2839 
2840 
2841 #ifdef ASSERT
2842 void PhaseCCP::verify_type(Node* n, const Type* tnew, const Type* told) {
2843   if (tnew->meet(told) != tnew->remove_speculative()) {
2844     n->dump(1);
2845     tty->print("told = "); told->dump(); tty->cr();
2846     tty->print("tnew = "); tnew->dump(); tty->cr();
2847     fatal("Not monotonic");
2848   }
2849   assert(!told->isa_int() || !tnew->isa_int() || told->is_int()->_widen <= tnew->is_int()->_widen, "widen increases");
2850   assert(!told->isa_long() || !tnew->isa_long() || told->is_long()->_widen <= tnew->is_long()->_widen, "widen increases");
2851 }
2852 #endif //ASSERT
2853 
2854 // In this analysis, all types are initially set to TOP. We iteratively call Value() on all nodes of the graph until
2855 // we reach a fixed-point (i.e. no types change anymore). We start with a list that only contains the root node. Each time
2856 // a new type is set, we push all uses of that node back to the worklist (in some cases, we also push grandchildren
2857 // or nodes even further down back to the worklist because their type could change as a result of the current type
2858 // change).
2859 void PhaseCCP::analyze() {
2860   // Initialize all types to TOP, optimistic analysis
2861   for (uint i = 0; i < C->unique(); i++)  {
2862     _types.map(i, Type::TOP);
2863   }
2864 
2865   // CCP worklist is placed on a local arena, so that we can allow ResourceMarks on "Compile::current()->resource_arena()".
2866   // We also do not want to put the worklist on "Compile::current()->comp_arena()", as that one only gets de-allocated after
2867   // Compile is over. The local arena gets de-allocated at the end of its scope.
2868   ResourceArea local_arena(mtCompiler);
2869   Unique_Node_List worklist(&local_arena);
2870   Unique_Node_List worklist_revisit(&local_arena);
2871   DEBUG_ONLY(Unique_Node_List worklist_verify(&local_arena);)
2872 
2873   // Push root onto worklist
2874   worklist.push(C->root());
2875 
2876   assert(_root_and_safepoints.size() == 0, "must be empty (unused)");
2877   _root_and_safepoints.push(C->root());
2878 
2879   // This is the meat of CCP: pull from worklist; compute new value; push changes out.
2880 
2881   // Do the first round. Since all initial types are TOP, this will visit all alive nodes.
2882   while (worklist.size() != 0) {
2883     Node* n = fetch_next_node(worklist);
2884     DEBUG_ONLY(worklist_verify.push(n);)
2885     if (needs_revisit(n)) {
2886       worklist_revisit.push(n);
2887     }
2888     if (n->is_SafePoint()) {
2889       // Make sure safepoints are processed by PhaseCCP::transform even if they are
2890       // not reachable from the bottom. Otherwise, infinite loops would be removed.
2891       _root_and_safepoints.push(n);
2892     }
2893     analyze_step(worklist, n);
2894   }
2895 
2896   // More rounds to catch updates far in the graph.
2897   // Revisit nodes that might be able to refine their types at the end of the round.
2898   // If so, process these nodes. If there is remaining work, start another round.
2899   do {
2900     while (worklist.size() != 0) {
2901       Node* n = fetch_next_node(worklist);
2902       analyze_step(worklist, n);
2903     }
2904     for (uint t = 0; t < worklist_revisit.size(); t++) {
2905       Node* n = worklist_revisit.at(t);
2906       analyze_step(worklist, n);
2907     }
2908   } while (worklist.size() != 0);
2909 
2910   DEBUG_ONLY(verify_analyze(worklist_verify);)
2911 }
2912 
2913 void PhaseCCP::analyze_step(Unique_Node_List& worklist, Node* n) {
2914   const Type* new_type = n->Value(this);
2915   if (new_type != type(n)) {
2916     DEBUG_ONLY(verify_type(n, new_type, type(n));)
2917     dump_type_and_node(n, new_type);
2918     set_type(n, new_type);
2919     push_child_nodes_to_worklist(worklist, n);
2920   }
2921   if (KillPathsReachableByDeadTypeNode && n->is_Type() && new_type == Type::TOP) {
2922     // Keep track of Type nodes to kill CFG paths that use Type
2923     // nodes that become dead.
2924     _maybe_top_type_nodes.push(n);
2925   }
2926 }
2927 
2928 // Some nodes can refine their types due to type change somewhere deep
2929 // in the graph. We will need to revisit them before claiming convergence.
2930 // Add nodes here if particular *Node::Value is doing deep graph traversals
2931 // not handled by PhaseCCP::push_more_uses().
2932 bool PhaseCCP::needs_revisit(Node* n) const {
2933   // LoadNode performs deep traversals. Load is not notified for changes far away.
2934   if (n->is_Load()) {
2935     return true;
2936   }
2937   // CmpPNode performs deep traversals if it compares oopptr. CmpP is not notified for changes far away.
2938   if (n->Opcode() == Op_CmpP && type(n->in(1))->isa_oopptr() && type(n->in(2))->isa_oopptr()) {
2939     return true;
2940   }
2941   return false;
2942 }
2943 
2944 #ifdef ASSERT
2945 // For every node n on verify list, check if type(n) == n->Value()
2946 // Note for CCP the non-convergence can lead to unsound analysis and mis-compilation.
2947 // Therefore, we are verifying Value convergence strictly.
2948 void PhaseCCP::verify_analyze(Unique_Node_List& worklist_verify) {
2949   while (worklist_verify.size()) {
2950     Node* n = worklist_verify.pop();
2951 
2952     // An assert in verify_Value_for means that PhaseCCP is not at fixpoint
2953     // and that the analysis result may be unsound.
2954     // If this happens, check why the reported nodes were not processed again in CCP.
2955     // We should either make sure that these nodes are properly added back to the CCP worklist
2956     // in PhaseCCP::push_child_nodes_to_worklist() to update their type in the same round,
2957     // or that they are added in PhaseCCP::needs_revisit() so that analysis revisits
2958     // them at the end of the round.
2959     verify_Value_for(n, true);
2960   }
2961 }
2962 #endif
2963 
2964 // Fetch next node from worklist to be examined in this iteration.
2965 Node* PhaseCCP::fetch_next_node(Unique_Node_List& worklist) {
2966   if (StressCCP) {
2967     return worklist.remove(C->random() % worklist.size());
2968   } else {
2969     return worklist.pop();
2970   }
2971 }
2972 
2973 #ifndef PRODUCT
2974 void PhaseCCP::dump_type_and_node(const Node* n, const Type* t) {
2975   if (TracePhaseCCP) {
2976     t->dump();
2977     do {
2978       tty->print("\t");
2979     } while (tty->position() < 16);
2980     n->dump();
2981   }
2982 }
2983 #endif
2984 
2985 // We need to propagate the type change of 'n' to all its uses. Depending on the kind of node, additional nodes
2986 // (grandchildren or even further down) need to be revisited as their types could also be improved as a result
2987 // of the new type of 'n'. Push these nodes to the worklist.
2988 void PhaseCCP::push_child_nodes_to_worklist(Unique_Node_List& worklist, Node* n) const {
2989   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2990     Node* use = n->fast_out(i);
2991     push_if_not_bottom_type(worklist, use);
2992     push_more_uses(worklist, n, use);
2993   }
2994 }
2995 
2996 void PhaseCCP::push_if_not_bottom_type(Unique_Node_List& worklist, Node* n) const {
2997   if (n->bottom_type() != type(n)) {
2998     worklist.push(n);
2999   }
3000 }
3001 
3002 // For some nodes, we need to propagate the type change to grandchildren or even further down.
3003 // Add them back to the worklist.
3004 void PhaseCCP::push_more_uses(Unique_Node_List& worklist, Node* parent, const Node* use) const {
3005   push_phis(worklist, use);
3006   push_catch(worklist, use);
3007   push_cmpu(worklist, use);
3008   push_counted_loop_phi(worklist, parent, use);
3009   push_loadp(worklist, use);
3010   push_and(worklist, parent, use);
3011   push_cast_ii(worklist, parent, use);
3012   push_opaque_zero_trip_guard(worklist, use);
3013   push_bool_with_cmpu_and_mask(worklist, use);
3014 }
3015 
3016 
3017 // We must recheck Phis too if use is a Region.
3018 void PhaseCCP::push_phis(Unique_Node_List& worklist, const Node* use) const {
3019   if (use->is_Region()) {
3020     for (DUIterator_Fast imax, i = use->fast_outs(imax); i < imax; i++) {
3021       push_if_not_bottom_type(worklist, use->fast_out(i));
3022     }
3023   }
3024 }
3025 
3026 // If we changed the receiver type to a call, we need to revisit the Catch node following the call. It's looking for a
3027 // non-null receiver to know when to enable the regular fall-through path in addition to the NullPtrException path.
3028 // Same is true if the type of a ValidLengthTest input to an AllocateArrayNode changes.
3029 void PhaseCCP::push_catch(Unique_Node_List& worklist, const Node* use) {
3030   if (use->is_Call()) {
3031     for (DUIterator_Fast imax, i = use->fast_outs(imax); i < imax; i++) {
3032       Node* proj = use->fast_out(i);
3033       if (proj->is_Proj() && proj->as_Proj()->_con == TypeFunc::Control) {
3034         Node* catch_node = proj->find_out_with(Op_Catch);
3035         if (catch_node != nullptr) {
3036           worklist.push(catch_node);
3037         }
3038       }
3039     }
3040   }
3041 }
3042 
3043 // CmpU nodes can get their type information from two nodes up in the graph (instead of from the nodes immediately
3044 // above). Make sure they are added to the worklist if nodes they depend on are updated since they could be missed
3045 // and get wrong types otherwise.
3046 void PhaseCCP::push_cmpu(Unique_Node_List& worklist, const Node* use) const {
3047   uint use_op = use->Opcode();
3048   if (use_op == Op_AddI || use_op == Op_SubI) {
3049     for (DUIterator_Fast imax, i = use->fast_outs(imax); i < imax; i++) {
3050       Node* cmpu = use->fast_out(i);
3051       const uint cmpu_opcode = cmpu->Opcode();
3052       if (cmpu_opcode == Op_CmpU || cmpu_opcode == Op_CmpU3) {
3053         // Got a CmpU or CmpU3 which might need the new type information from node n.
3054         push_if_not_bottom_type(worklist, cmpu);
3055       }
3056     }
3057   }
3058 }
3059 
3060 // Look for the following shape, which can be optimized by BoolNode::Value_cmpu_and_mask() (i.e. corresponds to case
3061 // (1b): "(m & x) <u (m + 1))".
3062 // If any of the inputs on the level (%%) change, we need to revisit Bool because we could have prematurely found that
3063 // the Bool is constant (i.e. case (1b) can be applied) which could become invalid with new type information during CCP.
3064 //
3065 //  m    x  m    1  (%%)
3066 //   \  /    \  /
3067 //   AndI    AddI
3068 //      \    /
3069 //       CmpU
3070 //        |
3071 //       Bool
3072 //
3073 void PhaseCCP::push_bool_with_cmpu_and_mask(Unique_Node_List& worklist, const Node* use) const {
3074   uint use_op = use->Opcode();
3075   if (use_op != Op_AndI && (use_op != Op_AddI || use->in(2)->find_int_con(0) != 1)) {
3076     // Not "m & x" or "m + 1"
3077     return;
3078   }
3079   for (DUIterator_Fast imax, i = use->fast_outs(imax); i < imax; i++) {
3080     Node* cmpu = use->fast_out(i);
3081     if (cmpu->Opcode() == Op_CmpU) {
3082       push_bool_matching_case1b(worklist, cmpu);
3083     }
3084   }
3085 }
3086 
3087 // Push any Bool below 'cmpu' that matches case (1b) of BoolNode::Value_cmpu_and_mask().
3088 void PhaseCCP::push_bool_matching_case1b(Unique_Node_List& worklist, const Node* cmpu) const {
3089   assert(cmpu->Opcode() == Op_CmpU, "must be");
3090   for (DUIterator_Fast imax, i = cmpu->fast_outs(imax); i < imax; i++) {
3091     Node* bol = cmpu->fast_out(i);
3092     if (!bol->is_Bool() || bol->as_Bool()->_test._test != BoolTest::lt) {
3093       // Not a Bool with "<u"
3094       continue;
3095     }
3096     Node* andI = cmpu->in(1);
3097     Node* addI = cmpu->in(2);
3098     if (andI->Opcode() != Op_AndI || addI->Opcode() != Op_AddI || addI->in(2)->find_int_con(0) != 1) {
3099       // Not "m & x" and "m + 1"
3100       continue;
3101     }
3102 
3103     Node* m = addI->in(1);
3104     if (m == andI->in(1) || m == andI->in(2)) {
3105       // Is "m" shared? Matched (1b) and thus we revisit Bool.
3106       push_if_not_bottom_type(worklist, bol);
3107     }
3108   }
3109 }
3110 
3111 // If n is used in a counted loop exit condition, then the type of the counted loop's Phi depends on the type of 'n'.
3112 // Seem PhiNode::Value().
3113 void PhaseCCP::push_counted_loop_phi(Unique_Node_List& worklist, Node* parent, const Node* use) {
3114   uint use_op = use->Opcode();
3115   if (use_op == Op_CmpI || use_op == Op_CmpL) {
3116     PhiNode* phi = countedloop_phi_from_cmp(use->as_Cmp(), parent);
3117     if (phi != nullptr) {
3118       worklist.push(phi);
3119     }
3120   }
3121 }
3122 
3123 // Loading the java mirror from a Klass requires two loads and the type of the mirror load depends on the type of 'n'.
3124 // See LoadNode::Value().
3125 void PhaseCCP::push_loadp(Unique_Node_List& worklist, const Node* use) const {
3126   BarrierSetC2* barrier_set = BarrierSet::barrier_set()->barrier_set_c2();
3127   bool has_load_barrier_nodes = barrier_set->has_load_barrier_nodes();
3128 
3129   if (use->Opcode() == Op_LoadP && use->bottom_type()->isa_rawptr()) {
3130     for (DUIterator_Fast imax, i = use->fast_outs(imax); i < imax; i++) {
3131       Node* loadp = use->fast_out(i);
3132       const Type* ut = loadp->bottom_type();
3133       if (loadp->Opcode() == Op_LoadP && ut->isa_instptr() && ut != type(loadp)) {
3134         if (has_load_barrier_nodes) {
3135           // Search for load barriers behind the load
3136           push_load_barrier(worklist, barrier_set, loadp);
3137         }
3138         worklist.push(loadp);
3139       }
3140     }
3141   }
3142 }
3143 
3144 void PhaseCCP::push_load_barrier(Unique_Node_List& worklist, const BarrierSetC2* barrier_set, const Node* use) {
3145   for (DUIterator_Fast imax, i = use->fast_outs(imax); i < imax; i++) {
3146     Node* barrier_node = use->fast_out(i);
3147     if (barrier_set->is_gc_barrier_node(barrier_node)) {
3148       worklist.push(barrier_node);
3149     }
3150   }
3151 }
3152 
3153 // AndI/L::Value() optimizes patterns similar to (v << 2) & 3, or CON & 3 to zero if they are bitwise disjoint.
3154 // Add the AndI/L nodes back to the worklist to re-apply Value() in case the value is now a constant or shift
3155 // value changed.
3156 void PhaseCCP::push_and(Unique_Node_List& worklist, const Node* parent, const Node* use) const {
3157   const TypeInteger* parent_type = type(parent)->isa_integer(type(parent)->basic_type());
3158   uint use_op = use->Opcode();
3159   if (
3160     // Pattern: parent (now constant) -> (ConstraintCast | ConvI2L)* -> And
3161     (parent_type != nullptr && parent_type->is_con()) ||
3162     // Pattern: parent -> LShift (use) -> (ConstraintCast | ConvI2L)* -> And
3163     ((use_op == Op_LShiftI || use_op == Op_LShiftL) && use->in(2) == parent)) {
3164 
3165     auto push_and_uses_to_worklist = [&](Node* n) {
3166       uint opc = n->Opcode();
3167       if (opc == Op_AndI || opc == Op_AndL) {
3168         push_if_not_bottom_type(worklist, n);
3169       }
3170     };
3171     auto is_boundary = [](Node* n) {
3172       return !(n->is_ConstraintCast() || n->Opcode() == Op_ConvI2L);
3173     };
3174     use->visit_uses(push_and_uses_to_worklist, is_boundary);
3175   }
3176 }
3177 
3178 // CastII::Value() optimizes CmpI/If patterns if the right input of the CmpI has a constant type. If the CastII input is
3179 // the same node as the left input into the CmpI node, the type of the CastII node can be improved accordingly. Add the
3180 // CastII node back to the worklist to re-apply Value() to either not miss this optimization or to undo it because it
3181 // cannot be applied anymore. We could have optimized the type of the CastII before but now the type of the right input
3182 // of the CmpI (i.e. 'parent') is no longer constant. The type of the CastII must be widened in this case.
3183 void PhaseCCP::push_cast_ii(Unique_Node_List& worklist, const Node* parent, const Node* use) const {
3184   if (use->Opcode() == Op_CmpI && use->in(2) == parent) {
3185     Node* other_cmp_input = use->in(1);
3186     for (DUIterator_Fast imax, i = other_cmp_input->fast_outs(imax); i < imax; i++) {
3187       Node* cast_ii = other_cmp_input->fast_out(i);
3188       if (cast_ii->is_CastII()) {
3189         push_if_not_bottom_type(worklist, cast_ii);
3190       }
3191     }
3192   }
3193 }
3194 
3195 void PhaseCCP::push_opaque_zero_trip_guard(Unique_Node_List& worklist, const Node* use) const {
3196   if (use->Opcode() == Op_OpaqueZeroTripGuard) {
3197     push_if_not_bottom_type(worklist, use->unique_out());
3198   }
3199 }
3200 
3201 //------------------------------do_transform-----------------------------------
3202 // Top level driver for the recursive transformer
3203 void PhaseCCP::do_transform() {
3204   // Correct leaves of new-space Nodes; they point to old-space.
3205   C->set_root( transform(C->root())->as_Root() );
3206   assert( C->top(),  "missing TOP node" );
3207   assert( C->root(), "missing root" );
3208 }
3209 
3210 //------------------------------transform--------------------------------------
3211 // Given a Node in old-space, clone him into new-space.
3212 // Convert any of his old-space children into new-space children.
3213 Node *PhaseCCP::transform( Node *n ) {
3214   assert(n->is_Root(), "traversal must start at root");
3215   assert(_root_and_safepoints.member(n), "root (n) must be in list");
3216 
3217   ResourceMark rm;
3218   // Map: old node idx -> node after CCP (or nullptr if not yet transformed or useless).
3219   Node_List node_map;
3220   // Pre-allocate to avoid frequent realloc
3221   GrowableArray <Node *> transform_stack(C->live_nodes() >> 1);
3222   // track all visited nodes, so that we can remove the complement
3223   Unique_Node_List useful;
3224 
3225   if (KillPathsReachableByDeadTypeNode) {
3226     for (uint i = 0; i < _maybe_top_type_nodes.size(); ++i) {
3227       Node* type_node = _maybe_top_type_nodes.at(i);
3228       if (type(type_node) == Type::TOP) {
3229         ResourceMark rm;
3230         type_node->as_Type()->make_paths_from_here_dead(this, nullptr, "ccp");
3231       }
3232     }
3233   } else {
3234     assert(_maybe_top_type_nodes.size() == 0, "we don't need type nodes");
3235   }
3236 
3237   // Initialize the traversal.
3238   // This CCP pass may prove that no exit test for a loop ever succeeds (i.e. the loop is infinite). In that case,
3239   // the logic below doesn't follow any path from Root to the loop body: there's at least one such path but it's proven
3240   // never taken (its type is TOP). As a consequence the node on the exit path that's input to Root (let's call it n) is
3241   // replaced by the top node and the inputs of that node n are not enqueued for further processing. If CCP only works
3242   // through the graph from Root, this causes the loop body to never be processed here even when it's not dead (that
3243   // is reachable from Root following its uses). To prevent that issue, transform() starts walking the graph from Root
3244   // and all safepoints.
3245   for (uint i = 0; i < _root_and_safepoints.size(); ++i) {
3246     Node* nn = _root_and_safepoints.at(i);
3247     Node* new_node = node_map[nn->_idx];
3248     assert(new_node == nullptr, "");
3249     new_node = transform_once(nn);  // Check for constant
3250     node_map.map(nn->_idx, new_node); // Flag as having been cloned
3251     transform_stack.push(new_node); // Process children of cloned node
3252     useful.push(new_node);
3253   }
3254 
3255   while (transform_stack.is_nonempty()) {
3256     Node* clone = transform_stack.pop();
3257     uint cnt = clone->req();
3258     for( uint i = 0; i < cnt; i++ ) {          // For all inputs do
3259       Node *input = clone->in(i);
3260       if( input != nullptr ) {                 // Ignore nulls
3261         Node *new_input = node_map[input->_idx]; // Check for cloned input node
3262         if( new_input == nullptr ) {
3263           new_input = transform_once(input);   // Check for constant
3264           node_map.map( input->_idx, new_input );// Flag as having been cloned
3265           transform_stack.push(new_input);     // Process children of cloned node
3266           useful.push(new_input);
3267         }
3268         assert( new_input == clone->in(i), "insanity check");
3269       }
3270     }
3271   }
3272 
3273   // The above transformation might lead to subgraphs becoming unreachable from the
3274   // bottom while still being reachable from the top. As a result, nodes in that
3275   // subgraph are not transformed and their bottom types are not updated, leading to
3276   // an inconsistency between bottom_type() and type(). In rare cases, LoadNodes in
3277   // such a subgraph, might be re-enqueued for IGVN indefinitely by MemNode::Ideal_common
3278   // because their address type is inconsistent. Therefore, we aggressively remove
3279   // all useless nodes here even before PhaseIdealLoop::build_loop_late gets a chance
3280   // to remove them anyway.
3281   if (C->cached_top_node()) {
3282     useful.push(C->cached_top_node());
3283   }
3284   C->update_dead_node_list(useful);
3285   remove_useless_nodes(useful.member_set());
3286   _worklist.remove_useless_nodes(useful.member_set());
3287   C->disconnect_useless_nodes(useful, _worklist, &_root_and_safepoints);
3288 
3289   Node* new_root = node_map[n->_idx];
3290   assert(new_root->is_Root(), "transformed root node must be a root node");
3291   return new_root;
3292 }
3293 
3294 //------------------------------transform_once---------------------------------
3295 // For PhaseCCP, transformation is IDENTITY unless Node computed a constant.
3296 Node *PhaseCCP::transform_once( Node *n ) {
3297   const Type *t = type(n);
3298   // Constant?  Use constant Node instead
3299   if( t->singleton() ) {
3300     Node *nn = n;               // Default is to return the original constant
3301     if( t == Type::TOP ) {
3302       // cache my top node on the Compile instance
3303       if( C->cached_top_node() == nullptr || C->cached_top_node()->in(0) == nullptr ) {
3304         C->set_cached_top_node(ConNode::make(Type::TOP));
3305         set_type(C->top(), Type::TOP);
3306       }
3307       nn = C->top();
3308     }
3309     if( !n->is_Con() ) {
3310       if( t != Type::TOP ) {
3311         nn = makecon(t);        // ConNode::make(t);
3312         NOT_PRODUCT( inc_constants(); )
3313       } else if( n->is_Region() ) { // Unreachable region
3314         // Note: nn == C->top()
3315         n->set_req(0, nullptr);     // Cut selfreference
3316         bool progress = true;
3317         uint max = n->outcnt();
3318         DUIterator i;
3319         while (progress) {
3320           progress = false;
3321           // Eagerly remove dead phis to avoid phis copies creation.
3322           for (i = n->outs(); n->has_out(i); i++) {
3323             Node* m = n->out(i);
3324             if (m->is_Phi()) {
3325               assert(type(m) == Type::TOP, "Unreachable region should not have live phis.");
3326               replace_node(m, nn);
3327               if (max != n->outcnt()) {
3328                 progress = true;
3329                 i = n->refresh_out_pos(i);
3330                 max = n->outcnt();
3331               }
3332             }
3333           }
3334         }
3335       }
3336       replace_node(n,nn);       // Update DefUse edges for new constant
3337     }
3338     return nn;
3339   }
3340 
3341   // If x is a TypeNode, capture any more-precise type permanently into Node
3342   if (t != n->bottom_type()) {
3343     hash_delete(n);             // changing bottom type may force a rehash
3344     n->raise_bottom_type(t);
3345     _worklist.push(n);          // n re-enters the hash table via the worklist
3346     add_users_to_worklist(n);   // if ideal or identity optimizations depend on the input type, users need to be notified
3347   }
3348 
3349   // TEMPORARY fix to ensure that 2nd GVN pass eliminates null checks
3350   switch( n->Opcode() ) {
3351   case Op_CallStaticJava:  // Give post-parse call devirtualization a chance
3352   case Op_CallDynamicJava:
3353   case Op_FastLock:        // Revisit FastLocks for lock coarsening
3354   case Op_If:
3355   case Op_CountedLoopEnd:
3356   case Op_Region:
3357   case Op_Loop:
3358   case Op_CountedLoop:
3359   case Op_Conv2B:
3360   case Op_Opaque1:
3361     _worklist.push(n);
3362     break;
3363   default:
3364     break;
3365   }
3366 
3367   return  n;
3368 }
3369 
3370 //---------------------------------saturate------------------------------------
3371 const Type* PhaseCCP::saturate(const Type* new_type, const Type* old_type,
3372                                const Type* limit_type) const {
3373   const Type* wide_type = new_type->widen(old_type, limit_type);
3374   if (wide_type != new_type) {          // did we widen?
3375     // If so, we may have widened beyond the limit type.  Clip it back down.
3376     new_type = wide_type->filter(limit_type);
3377   }
3378   return new_type;
3379 }
3380 
3381 //------------------------------print_statistics-------------------------------
3382 #ifndef PRODUCT
3383 void PhaseCCP::print_statistics() {
3384   tty->print_cr("CCP: %d  constants found: %d", _total_invokes, _total_constants);
3385 }
3386 #endif
3387 
3388 
3389 //=============================================================================
3390 #ifndef PRODUCT
3391 uint PhasePeephole::_total_peepholes = 0;
3392 #endif
3393 //------------------------------PhasePeephole----------------------------------
3394 // Conditional Constant Propagation, ala Wegman & Zadeck
3395 PhasePeephole::PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg )
3396   : PhaseTransform(Peephole), _regalloc(regalloc), _cfg(cfg) {
3397   NOT_PRODUCT( clear_peepholes(); )
3398 }
3399 
3400 #ifndef PRODUCT
3401 //------------------------------~PhasePeephole---------------------------------
3402 PhasePeephole::~PhasePeephole() {
3403   _total_peepholes += count_peepholes();
3404 }
3405 #endif
3406 
3407 //------------------------------transform--------------------------------------
3408 Node *PhasePeephole::transform( Node *n ) {
3409   ShouldNotCallThis();
3410   return nullptr;
3411 }
3412 
3413 //------------------------------do_transform-----------------------------------
3414 void PhasePeephole::do_transform() {
3415   bool method_name_not_printed = true;
3416 
3417   // Examine each basic block
3418   for (uint block_number = 1; block_number < _cfg.number_of_blocks(); ++block_number) {
3419     Block* block = _cfg.get_block(block_number);
3420     bool block_not_printed = true;
3421 
3422     for (bool progress = true; progress;) {
3423       progress = false;
3424       // block->end_idx() not valid after PhaseRegAlloc
3425       uint end_index = block->number_of_nodes();
3426       for( uint instruction_index = end_index - 1; instruction_index > 0; --instruction_index ) {
3427         Node     *n = block->get_node(instruction_index);
3428         if( n->is_Mach() ) {
3429           MachNode *m = n->as_Mach();
3430           // check for peephole opportunities
3431           int result = m->peephole(block, instruction_index, &_cfg, _regalloc);
3432           if( result != -1 ) {
3433 #ifndef PRODUCT
3434             if( PrintOptoPeephole ) {
3435               // Print method, first time only
3436               if( C->method() && method_name_not_printed ) {
3437                 C->method()->print_short_name(); tty->cr();
3438                 method_name_not_printed = false;
3439               }
3440               // Print this block
3441               if( Verbose && block_not_printed) {
3442                 tty->print_cr("in block");
3443                 block->dump();
3444                 block_not_printed = false;
3445               }
3446               // Print the peephole number
3447               tty->print_cr("peephole number: %d", result);
3448             }
3449             inc_peepholes();
3450 #endif
3451             // Set progress, start again
3452             progress = true;
3453             break;
3454           }
3455         }
3456       }
3457     }
3458   }
3459 }
3460 
3461 //------------------------------print_statistics-------------------------------
3462 #ifndef PRODUCT
3463 void PhasePeephole::print_statistics() {
3464   tty->print_cr("Peephole: peephole rules applied: %d",  _total_peepholes);
3465 }
3466 #endif
3467 
3468 
3469 //=============================================================================
3470 //------------------------------set_req_X--------------------------------------
3471 void Node::set_req_X( uint i, Node *n, PhaseIterGVN *igvn ) {
3472   assert( is_not_dead(n), "can not use dead node");
3473 #ifdef ASSERT
3474   if (igvn->hash_find(this) == this) {
3475     tty->print_cr("Need to remove from hash before changing edges");
3476     this->dump(1);
3477     tty->print_cr("Set at i = %d", i);
3478     n->dump();
3479     assert(false, "Need to remove from hash before changing edges");
3480   }
3481 #endif
3482   Node *old = in(i);
3483   set_req(i, n);
3484 
3485   // old goes dead?
3486   if( old ) {
3487     switch (old->outcnt()) {
3488     case 0:
3489       // Put into the worklist to kill later. We do not kill it now because the
3490       // recursive kill will delete the current node (this) if dead-loop exists
3491       if (!old->is_top())
3492         igvn->_worklist.push( old );
3493       break;
3494     case 1:
3495       if( old->is_Store() || old->has_special_unique_user() )
3496         igvn->add_users_to_worklist( old );
3497       break;
3498     case 2:
3499       if( old->is_Store() )
3500         igvn->add_users_to_worklist( old );
3501       if( old->Opcode() == Op_Region )
3502         igvn->_worklist.push(old);
3503       break;
3504     case 3:
3505       if( old->Opcode() == Op_Region ) {
3506         igvn->_worklist.push(old);
3507         igvn->add_users_to_worklist( old );
3508       }
3509       break;
3510     default:
3511       break;
3512     }
3513 
3514     BarrierSet::barrier_set()->barrier_set_c2()->enqueue_useful_gc_barrier(igvn, old);
3515   }
3516 }
3517 
3518 void Node::set_req_X(uint i, Node *n, PhaseGVN *gvn) {
3519   PhaseIterGVN* igvn = gvn->is_IterGVN();
3520   if (igvn == nullptr) {
3521     set_req(i, n);
3522     return;
3523   }
3524   set_req_X(i, n, igvn);
3525 }
3526 
3527 //-------------------------------replace_by-----------------------------------
3528 // Using def-use info, replace one node for another.  Follow the def-use info
3529 // to all users of the OLD node.  Then make all uses point to the NEW node.
3530 void Node::replace_by(Node *new_node) {
3531   assert(!is_top(), "top node has no DU info");
3532   for (DUIterator_Last imin, i = last_outs(imin); i >= imin; ) {
3533     Node* use = last_out(i);
3534     uint uses_found = 0;
3535     for (uint j = 0; j < use->len(); j++) {
3536       if (use->in(j) == this) {
3537         if (j < use->req())
3538               use->set_req(j, new_node);
3539         else  use->set_prec(j, new_node);
3540         uses_found++;
3541       }
3542     }
3543     i -= uses_found;    // we deleted 1 or more copies of this edge
3544   }
3545 }
3546 
3547 //=============================================================================
3548 //-----------------------------------------------------------------------------
3549 void Type_Array::grow( uint i ) {
3550   assert(_a == Compile::current()->comp_arena(), "Should be allocated in comp_arena");
3551   if( !_max ) {
3552     _max = 1;
3553     _types = (const Type**)_a->Amalloc( _max * sizeof(Type*) );
3554     _types[0] = nullptr;
3555   }
3556   uint old = _max;
3557   _max = next_power_of_2(i);
3558   _types = (const Type**)_a->Arealloc( _types, old*sizeof(Type*),_max*sizeof(Type*));
3559   memset( &_types[old], 0, (_max-old)*sizeof(Type*) );
3560 }
3561 
3562 //------------------------------dump-------------------------------------------
3563 #ifndef PRODUCT
3564 void Type_Array::dump() const {
3565   uint max = Size();
3566   for( uint i = 0; i < max; i++ ) {
3567     if( _types[i] != nullptr ) {
3568       tty->print("  %d\t== ", i); _types[i]->dump(); tty->cr();
3569     }
3570   }
3571 }
3572 #endif