1 /*
   2  * Copyright (c) 1997, 2026, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "compiler/compileLog.hpp"
  26 #include "gc/shared/barrierSet.hpp"
  27 #include "gc/shared/c2/barrierSetC2.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/cfgnode.hpp"
  32 #include "opto/loopnode.hpp"
  33 #include "opto/matcher.hpp"
  34 #include "opto/movenode.hpp"
  35 #include "opto/mulnode.hpp"
  36 #include "opto/opaquenode.hpp"
  37 #include "opto/opcodes.hpp"
  38 #include "opto/phaseX.hpp"
  39 #include "opto/subnode.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "utilities/reverse_bits.hpp"
  42 
  43 // Portions of code courtesy of Clifford Click
  44 
  45 // Optimization - Graph Style
  46 
  47 #include "math.h"
  48 
  49 //=============================================================================
  50 //------------------------------Identity---------------------------------------
  51 // If right input is a constant 0, return the left input.
  52 Node* SubNode::Identity(PhaseGVN* phase) {
  53   assert(in(1) != this, "Must already have called Value");
  54   assert(in(2) != this, "Must already have called Value");
  55 
  56   const Type* zero = add_id();
  57 
  58   // Remove double negation if it is not a floating point number since negation
  59   // is not the same as subtraction for floating point numbers
  60   // (cf. JLS § 15.15.4). `0-(0-(-0.0))` must be equal to positive 0.0 according to
  61   // JLS § 15.8.2, but would result in -0.0 if this folding would be applied.
  62   if (phase->type(in(1))->higher_equal(zero) &&
  63       in(2)->Opcode() == Opcode() &&
  64       phase->type(in(2)->in(1))->higher_equal(zero) &&
  65       !phase->type(in(2)->in(2))->is_floatingpoint()) {
  66     return in(2)->in(2);
  67   }
  68 
  69   // Convert "(X+Y) - Y" into X and "(X+Y) - X" into Y
  70   if (in(1)->Opcode() == Op_AddI || in(1)->Opcode() == Op_AddL) {
  71     if (in(1)->in(2) == in(2)) {
  72       return in(1)->in(1);
  73     }
  74     if (in(1)->in(1) == in(2)) {
  75       return in(1)->in(2);
  76     }
  77   }
  78 
  79   return ( phase->type( in(2) )->higher_equal( zero ) ) ? in(1) : this;
  80 }
  81 
  82 //------------------------------Value------------------------------------------
  83 // A subtract node differences it's two inputs.
  84 const Type* SubNode::Value_common(PhaseValues* phase) const {
  85   const Node* in1 = in(1);
  86   const Node* in2 = in(2);
  87   // Either input is TOP ==> the result is TOP
  88   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
  89   if( t1 == Type::TOP ) return Type::TOP;
  90   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
  91   if( t2 == Type::TOP ) return Type::TOP;
  92 
  93   // Not correct for SubFnode and AddFNode (must check for infinity)
  94   // Equal?  Subtract is zero
  95   if (in1->eqv_uncast(in2))  return add_id();
  96 
  97   // Either input is BOTTOM ==> the result is the local BOTTOM
  98   if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
  99     return bottom_type();
 100 
 101   return nullptr;
 102 }
 103 
 104 const Type* SubNode::Value(PhaseGVN* phase) const {
 105   const Type* t = Value_common(phase);
 106   if (t != nullptr) {
 107     return t;
 108   }
 109   const Type* t1 = phase->type(in(1));
 110   const Type* t2 = phase->type(in(2));
 111   return sub(t1,t2);            // Local flavor of type subtraction
 112 
 113 }
 114 
 115 SubNode* SubNode::make(Node* in1, Node* in2, BasicType bt) {
 116   switch (bt) {
 117     case T_INT:
 118       return new SubINode(in1, in2);
 119     case T_LONG:
 120       return new SubLNode(in1, in2);
 121     default:
 122       fatal("Not implemented for %s", type2name(bt));
 123   }
 124   return nullptr;
 125 }
 126 
 127 //=============================================================================
 128 //------------------------------Helper function--------------------------------
 129 
 130 static bool is_cloop_increment(Node* inc) {
 131   precond(inc->Opcode() == Op_AddI || inc->Opcode() == Op_AddL);
 132 
 133   if (!inc->in(1)->is_Phi()) {
 134     return false;
 135   }
 136   const PhiNode* phi = inc->in(1)->as_Phi();
 137 
 138   if (!phi->region()->is_CountedLoop()) {
 139     return false;
 140   }
 141 
 142   return inc == phi->region()->as_CountedLoop()->incr();
 143 }
 144 
 145 // Given the expression '(x + C) - v', or
 146 //                      'v - (x + C)', we examine nodes '+' and 'v':
 147 //
 148 //  1. Do not convert if '+' is a counted-loop increment, because the '-' is
 149 //     loop invariant and converting extends the live-range of 'x' to overlap
 150 //     with the '+', forcing another register to be used in the loop.
 151 //
 152 //  2. Do not convert if 'v' is a counted-loop induction variable, because
 153 //     'x' might be invariant.
 154 //
 155 static bool ok_to_convert(Node* inc, Node* var) {
 156   return !(is_cloop_increment(inc) || var->is_cloop_ind_var());
 157 }
 158 
 159 static bool is_cloop_condition(BoolNode* bol) {
 160   for (DUIterator_Fast imax, i = bol->fast_outs(imax); i < imax; i++) {
 161     Node* out = bol->fast_out(i);
 162     if (out->is_BaseCountedLoopEnd()) {
 163       return true;
 164     }
 165   }
 166   return false;
 167 }
 168 
 169 //------------------------------Ideal------------------------------------------
 170 Node *SubINode::Ideal(PhaseGVN *phase, bool can_reshape){
 171   Node *in1 = in(1);
 172   Node *in2 = in(2);
 173   uint op1 = in1->Opcode();
 174   uint op2 = in2->Opcode();
 175 
 176 #ifdef ASSERT
 177   // Check for dead loop
 178   if ((in1 == this) || (in2 == this) ||
 179       ((op1 == Op_AddI || op1 == Op_SubI) &&
 180        ((in1->in(1) == this) || (in1->in(2) == this) ||
 181         (in1->in(1) == in1)  || (in1->in(2) == in1)))) {
 182     assert(false, "dead loop in SubINode::Ideal");
 183   }
 184 #endif
 185 
 186   const Type *t2 = phase->type( in2 );
 187   if( t2 == Type::TOP ) return nullptr;
 188   // Convert "x-c0" into "x+ -c0".
 189   if( t2->base() == Type::Int ){        // Might be bottom or top...
 190     const TypeInt *i = t2->is_int();
 191     if( i->is_con() )
 192       return new AddINode(in1, phase->intcon(java_negate(i->get_con())));
 193   }
 194 
 195   // Convert "(x+c0) - y" into (x-y) + c0"
 196   // Do not collapse (x+c0)-y if "+" is a loop increment or
 197   // if "y" is a loop induction variable.
 198   if( op1 == Op_AddI && ok_to_convert(in1, in2) ) {
 199     const Type *tadd = phase->type( in1->in(2) );
 200     if( tadd->singleton() && tadd != Type::TOP ) {
 201       Node *sub2 = phase->transform( new SubINode( in1->in(1), in2 ));
 202       return new AddINode( sub2, in1->in(2) );
 203     }
 204   }
 205 
 206   // Convert "x - (y+c0)" into "(x-y) - c0" AND
 207   // Convert "c1 - (y+c0)" into "(c1-c0) - y"
 208   // Need the same check as in above optimization but reversed.
 209   if (op2 == Op_AddI
 210       && ok_to_convert(in2, in1)
 211       && in2->in(2)->Opcode() == Op_ConI) {
 212     jint c0 = phase->type(in2->in(2))->isa_int()->get_con();
 213     Node* in21 = in2->in(1);
 214     if (in1->Opcode() == Op_ConI) {
 215       // Match c1
 216       jint c1 = phase->type(in1)->isa_int()->get_con();
 217       Node* sub2 = phase->intcon(java_subtract(c1, c0));
 218       return new SubINode(sub2, in21);
 219     } else {
 220       // Match x
 221       Node* sub2 = phase->transform(new SubINode(in1, in21));
 222       Node* neg_c0 = phase->intcon(java_negate(c0));
 223       return new AddINode(sub2, neg_c0);
 224     }
 225   }
 226 
 227   const Type *t1 = phase->type( in1 );
 228   if( t1 == Type::TOP ) return nullptr;
 229 
 230 #ifdef ASSERT
 231   // Check for dead loop
 232   if ((op2 == Op_AddI || op2 == Op_SubI) &&
 233       ((in2->in(1) == this) || (in2->in(2) == this) ||
 234        (in2->in(1) == in2)  || (in2->in(2) == in2))) {
 235     assert(false, "dead loop in SubINode::Ideal");
 236   }
 237 #endif
 238 
 239   // Convert "x - (x+y)" into "-y"
 240   if (op2 == Op_AddI && in1 == in2->in(1)) {
 241     return new SubINode(phase->intcon(0), in2->in(2));
 242   }
 243   // Convert "(x-y) - x" into "-y"
 244   if (op1 == Op_SubI && in1->in(1) == in2) {
 245     return new SubINode(phase->intcon(0), in1->in(2));
 246   }
 247   // Convert "x - (y+x)" into "-y"
 248   if (op2 == Op_AddI && in1 == in2->in(2)) {
 249     return new SubINode(phase->intcon(0), in2->in(1));
 250   }
 251 
 252   // Convert "0 - (x-y)" into "y-x", leave the double negation "-(-y)" to SubNode::Identity().
 253   if (t1 == TypeInt::ZERO && op2 == Op_SubI && phase->type(in2->in(1)) != TypeInt::ZERO) {
 254     return new SubINode(in2->in(2), in2->in(1));
 255   }
 256 
 257   // Convert "0 - (x+con)" into "-con-x"
 258   jint con;
 259   if( t1 == TypeInt::ZERO && op2 == Op_AddI &&
 260       (con = in2->in(2)->find_int_con(0)) != 0 )
 261     return new SubINode( phase->intcon(-con), in2->in(1) );
 262 
 263   // Convert "(X+A) - (X+B)" into "A - B"
 264   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(1) )
 265     return new SubINode( in1->in(2), in2->in(2) );
 266 
 267   // Convert "(A+X) - (B+X)" into "A - B"
 268   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(2) )
 269     return new SubINode( in1->in(1), in2->in(1) );
 270 
 271   // Convert "(A+X) - (X+B)" into "A - B"
 272   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(1) )
 273     return new SubINode( in1->in(1), in2->in(2) );
 274 
 275   // Convert "(X+A) - (B+X)" into "A - B"
 276   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(2) )
 277     return new SubINode( in1->in(2), in2->in(1) );
 278 
 279   // Convert "A-(B-C)" into (A+C)-B", since add is commutative and generally
 280   // nicer to optimize than subtract.
 281   if( op2 == Op_SubI && in2->outcnt() == 1) {
 282     Node *add1 = phase->transform( new AddINode( in1, in2->in(2) ) );
 283     return new SubINode( add1, in2->in(1) );
 284   }
 285 
 286   // Associative
 287   if (op1 == Op_MulI && op2 == Op_MulI) {
 288     Node* sub_in1 = nullptr;
 289     Node* sub_in2 = nullptr;
 290     Node* mul_in = nullptr;
 291 
 292     if (in1->in(1) == in2->in(1)) {
 293       // Convert "a*b-a*c into a*(b-c)
 294       sub_in1 = in1->in(2);
 295       sub_in2 = in2->in(2);
 296       mul_in = in1->in(1);
 297     } else if (in1->in(2) == in2->in(1)) {
 298       // Convert a*b-b*c into b*(a-c)
 299       sub_in1 = in1->in(1);
 300       sub_in2 = in2->in(2);
 301       mul_in = in1->in(2);
 302     } else if (in1->in(2) == in2->in(2)) {
 303       // Convert a*c-b*c into (a-b)*c
 304       sub_in1 = in1->in(1);
 305       sub_in2 = in2->in(1);
 306       mul_in = in1->in(2);
 307     } else if (in1->in(1) == in2->in(2)) {
 308       // Convert a*b-c*a into a*(b-c)
 309       sub_in1 = in1->in(2);
 310       sub_in2 = in2->in(1);
 311       mul_in = in1->in(1);
 312     }
 313 
 314     if (mul_in != nullptr) {
 315       Node* sub = phase->transform(new SubINode(sub_in1, sub_in2));
 316       return new MulINode(mul_in, sub);
 317     }
 318   }
 319 
 320   // Convert "0-(A>>31)" into "(A>>>31)"
 321   if ( op2 == Op_RShiftI ) {
 322     Node *in21 = in2->in(1);
 323     Node *in22 = in2->in(2);
 324     const TypeInt *zero = phase->type(in1)->isa_int();
 325     const TypeInt *t21 = phase->type(in21)->isa_int();
 326     const TypeInt *t22 = phase->type(in22)->isa_int();
 327     if ( t21 && t22 && zero == TypeInt::ZERO && t22->is_con(31) ) {
 328       return new URShiftINode(in21, in22);
 329     }
 330   }
 331 
 332   return nullptr;
 333 }
 334 
 335 //------------------------------sub--------------------------------------------
 336 // A subtract node differences it's two inputs.
 337 const Type *SubINode::sub( const Type *t1, const Type *t2 ) const {
 338   const TypeInt *r0 = t1->is_int(); // Handy access
 339   const TypeInt *r1 = t2->is_int();
 340   int32_t lo = java_subtract(r0->_lo, r1->_hi);
 341   int32_t hi = java_subtract(r0->_hi, r1->_lo);
 342 
 343   // We next check for 32-bit overflow.
 344   // If that happens, we just assume all integers are possible.
 345   if( (((r0->_lo ^ r1->_hi) >= 0) ||    // lo ends have same signs OR
 346        ((r0->_lo ^      lo) >= 0)) &&   // lo results have same signs AND
 347       (((r0->_hi ^ r1->_lo) >= 0) ||    // hi ends have same signs OR
 348        ((r0->_hi ^      hi) >= 0)) )    // hi results have same signs
 349     return TypeInt::make(lo,hi,MAX2(r0->_widen,r1->_widen));
 350   else                          // Overflow; assume all integers
 351     return TypeInt::INT;
 352 }
 353 
 354 //=============================================================================
 355 //------------------------------Ideal------------------------------------------
 356 Node *SubLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 357   Node *in1 = in(1);
 358   Node *in2 = in(2);
 359   uint op1 = in1->Opcode();
 360   uint op2 = in2->Opcode();
 361 
 362 #ifdef ASSERT
 363   // Check for dead loop
 364   if ((in1 == this) || (in2 == this) ||
 365       ((op1 == Op_AddL || op1 == Op_SubL) &&
 366        ((in1->in(1) == this) || (in1->in(2) == this) ||
 367         (in1->in(1) == in1)  || (in1->in(2) == in1)))) {
 368     assert(false, "dead loop in SubLNode::Ideal");
 369   }
 370 #endif
 371 
 372   if( phase->type( in2 ) == Type::TOP ) return nullptr;
 373   const TypeLong *i = phase->type( in2 )->isa_long();
 374   // Convert "x-c0" into "x+ -c0".
 375   if( i &&                      // Might be bottom or top...
 376       i->is_con() )
 377     return new AddLNode(in1, phase->longcon(java_negate(i->get_con())));
 378 
 379   // Convert "(x+c0) - y" into (x-y) + c0"
 380   // Do not collapse (x+c0)-y if "+" is a loop increment or
 381   // if "y" is a loop induction variable.
 382   if( op1 == Op_AddL && ok_to_convert(in1, in2) ) {
 383     Node *in11 = in1->in(1);
 384     const Type *tadd = phase->type( in1->in(2) );
 385     if( tadd->singleton() && tadd != Type::TOP ) {
 386       Node *sub2 = phase->transform( new SubLNode( in11, in2 ));
 387       return new AddLNode( sub2, in1->in(2) );
 388     }
 389   }
 390 
 391   // Convert "x - (y+c0)" into "(x-y) - c0" AND
 392   // Convert "c1 - (y+c0)" into "(c1-c0) - y"
 393   // Need the same check as in above optimization but reversed.
 394   if (op2 == Op_AddL
 395       && ok_to_convert(in2, in1)
 396       && in2->in(2)->Opcode() == Op_ConL) {
 397     jlong c0 = phase->type(in2->in(2))->isa_long()->get_con();
 398     Node* in21 = in2->in(1);
 399     if (in1->Opcode() == Op_ConL) {
 400       // Match c1
 401       jlong c1 = phase->type(in1)->isa_long()->get_con();
 402       Node* sub2 = phase->longcon(java_subtract(c1, c0));
 403       return new SubLNode(sub2, in21);
 404     } else {
 405       Node* sub2 = phase->transform(new SubLNode(in1, in21));
 406       Node* neg_c0 = phase->longcon(java_negate(c0));
 407       return new AddLNode(sub2, neg_c0);
 408     }
 409   }
 410 
 411   const Type *t1 = phase->type( in1 );
 412   if( t1 == Type::TOP ) return nullptr;
 413 
 414 #ifdef ASSERT
 415   // Check for dead loop
 416   if ((op2 == Op_AddL || op2 == Op_SubL) &&
 417       ((in2->in(1) == this) || (in2->in(2) == this) ||
 418        (in2->in(1) == in2)  || (in2->in(2) == in2))) {
 419     assert(false, "dead loop in SubLNode::Ideal");
 420   }
 421 #endif
 422 
 423   // Convert "x - (x+y)" into "-y"
 424   if (op2 == Op_AddL && in1 == in2->in(1)) {
 425     return new SubLNode(phase->makecon(TypeLong::ZERO), in2->in(2));
 426   }
 427   // Convert "(x-y) - x" into "-y"
 428   if (op1 == Op_SubL && in1->in(1) == in2) {
 429     return new SubLNode(phase->makecon(TypeLong::ZERO), in1->in(2));
 430   }
 431   // Convert "x - (y+x)" into "-y"
 432   if (op2 == Op_AddL && in1 == in2->in(2)) {
 433     return new SubLNode(phase->makecon(TypeLong::ZERO), in2->in(1));
 434   }
 435 
 436   // Convert "0 - (x-y)" into "y-x", leave the double negation "-(-y)" to SubNode::Identity.
 437   if (t1 == TypeLong::ZERO && op2 == Op_SubL && phase->type(in2->in(1)) != TypeLong::ZERO) {
 438     return new SubLNode(in2->in(2), in2->in(1));
 439   }
 440 
 441   // Convert "(X+A) - (X+B)" into "A - B"
 442   if( op1 == Op_AddL && op2 == Op_AddL && in1->in(1) == in2->in(1) )
 443     return new SubLNode( in1->in(2), in2->in(2) );
 444 
 445   // Convert "(A+X) - (B+X)" into "A - B"
 446   if( op1 == Op_AddL && op2 == Op_AddL && in1->in(2) == in2->in(2) )
 447     return new SubLNode( in1->in(1), in2->in(1) );
 448 
 449   // Convert "(A+X) - (X+B)" into "A - B"
 450   if( op1 == Op_AddL && op2 == Op_AddL && in1->in(2) == in2->in(1) )
 451     return new SubLNode( in1->in(1), in2->in(2) );
 452 
 453   // Convert "(X+A) - (B+X)" into "A - B"
 454   if( op1 == Op_AddL && op2 == Op_AddL && in1->in(1) == in2->in(2) )
 455     return new SubLNode( in1->in(2), in2->in(1) );
 456 
 457   // Convert "A-(B-C)" into (A+C)-B"
 458   if( op2 == Op_SubL && in2->outcnt() == 1) {
 459     Node *add1 = phase->transform( new AddLNode( in1, in2->in(2) ) );
 460     return new SubLNode( add1, in2->in(1) );
 461   }
 462 
 463   // Associative
 464   if (op1 == Op_MulL && op2 == Op_MulL) {
 465     Node* sub_in1 = nullptr;
 466     Node* sub_in2 = nullptr;
 467     Node* mul_in = nullptr;
 468 
 469     if (in1->in(1) == in2->in(1)) {
 470       // Convert "a*b-a*c into a*(b+c)
 471       sub_in1 = in1->in(2);
 472       sub_in2 = in2->in(2);
 473       mul_in = in1->in(1);
 474     } else if (in1->in(2) == in2->in(1)) {
 475       // Convert a*b-b*c into b*(a-c)
 476       sub_in1 = in1->in(1);
 477       sub_in2 = in2->in(2);
 478       mul_in = in1->in(2);
 479     } else if (in1->in(2) == in2->in(2)) {
 480       // Convert a*c-b*c into (a-b)*c
 481       sub_in1 = in1->in(1);
 482       sub_in2 = in2->in(1);
 483       mul_in = in1->in(2);
 484     } else if (in1->in(1) == in2->in(2)) {
 485       // Convert a*b-c*a into a*(b-c)
 486       sub_in1 = in1->in(2);
 487       sub_in2 = in2->in(1);
 488       mul_in = in1->in(1);
 489     }
 490 
 491     if (mul_in != nullptr) {
 492       Node* sub = phase->transform(new SubLNode(sub_in1, sub_in2));
 493       return new MulLNode(mul_in, sub);
 494     }
 495   }
 496 
 497   // Convert "0L-(A>>63)" into "(A>>>63)"
 498   if ( op2 == Op_RShiftL ) {
 499     Node *in21 = in2->in(1);
 500     Node *in22 = in2->in(2);
 501     const TypeLong *zero = phase->type(in1)->isa_long();
 502     const TypeLong *t21 = phase->type(in21)->isa_long();
 503     const TypeInt *t22 = phase->type(in22)->isa_int();
 504     if ( t21 && t22 && zero == TypeLong::ZERO && t22->is_con(63) ) {
 505       return new URShiftLNode(in21, in22);
 506     }
 507   }
 508 
 509   return nullptr;
 510 }
 511 
 512 //------------------------------sub--------------------------------------------
 513 // A subtract node differences it's two inputs.
 514 const Type *SubLNode::sub( const Type *t1, const Type *t2 ) const {
 515   const TypeLong *r0 = t1->is_long(); // Handy access
 516   const TypeLong *r1 = t2->is_long();
 517   jlong lo = java_subtract(r0->_lo, r1->_hi);
 518   jlong hi = java_subtract(r0->_hi, r1->_lo);
 519 
 520   // We next check for 32-bit overflow.
 521   // If that happens, we just assume all integers are possible.
 522   if( (((r0->_lo ^ r1->_hi) >= 0) ||    // lo ends have same signs OR
 523        ((r0->_lo ^      lo) >= 0)) &&   // lo results have same signs AND
 524       (((r0->_hi ^ r1->_lo) >= 0) ||    // hi ends have same signs OR
 525        ((r0->_hi ^      hi) >= 0)) )    // hi results have same signs
 526     return TypeLong::make(lo,hi,MAX2(r0->_widen,r1->_widen));
 527   else                          // Overflow; assume all integers
 528     return TypeLong::LONG;
 529 }
 530 
 531 //=============================================================================
 532 //------------------------------Value------------------------------------------
 533 // A subtract node differences its two inputs.
 534 const Type* SubFPNode::Value(PhaseGVN* phase) const {
 535   const Node* in1 = in(1);
 536   const Node* in2 = in(2);
 537   // Either input is TOP ==> the result is TOP
 538   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
 539   if( t1 == Type::TOP ) return Type::TOP;
 540   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
 541   if( t2 == Type::TOP ) return Type::TOP;
 542 
 543   // if both operands are infinity of same sign, the result is NaN; do
 544   // not replace with zero
 545   if (t1->is_finite() && t2->is_finite() && in1 == in2) {
 546     return add_id();
 547   }
 548 
 549   // Either input is BOTTOM ==> the result is the local BOTTOM
 550   const Type *bot = bottom_type();
 551   if( (t1 == bot) || (t2 == bot) ||
 552       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 553     return bot;
 554 
 555   return sub(t1,t2);            // Local flavor of type subtraction
 556 }
 557 
 558 
 559 //=============================================================================
 560 //------------------------------sub--------------------------------------------
 561 // A subtract node differences its two inputs.
 562 const Type* SubHFNode::sub(const Type* t1, const Type* t2) const {
 563   // Half precision floating point subtraction follows the rules of IEEE 754
 564   // applicable to other floating point types.
 565   if (t1->isa_half_float_constant() != nullptr &&
 566       t2->isa_half_float_constant() != nullptr)  {
 567     return TypeH::make(t1->getf() - t2->getf());
 568   } else {
 569     return Type::HALF_FLOAT;
 570   }
 571 }
 572 
 573 //------------------------------Ideal------------------------------------------
 574 Node *SubFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 575   const Type *t2 = phase->type( in(2) );
 576   // Convert "x-c0" into "x+ -c0".
 577   if( t2->base() == Type::FloatCon ) {  // Might be bottom or top...
 578     // return new (phase->C, 3) AddFNode(in(1), phase->makecon( TypeF::make(-t2->getf()) ) );
 579   }
 580 
 581   // Cannot replace 0.0-X with -X because a 'fsub' bytecode computes
 582   // 0.0-0.0 as +0.0, while a 'fneg' bytecode computes -0.0.
 583   //if( phase->type(in(1)) == TypeF::ZERO )
 584   //return new (phase->C, 2) NegFNode(in(2));
 585 
 586   return nullptr;
 587 }
 588 
 589 //------------------------------sub--------------------------------------------
 590 // A subtract node differences its two inputs.
 591 const Type *SubFNode::sub( const Type *t1, const Type *t2 ) const {
 592   // no folding if one of operands is infinity or NaN, do not do constant folding
 593   if( g_isfinite(t1->getf()) && g_isfinite(t2->getf()) ) {
 594     return TypeF::make( t1->getf() - t2->getf() );
 595   }
 596   else if( g_isnan(t1->getf()) ) {
 597     return t1;
 598   }
 599   else if( g_isnan(t2->getf()) ) {
 600     return t2;
 601   }
 602   else {
 603     return Type::FLOAT;
 604   }
 605 }
 606 
 607 //=============================================================================
 608 //------------------------------Ideal------------------------------------------
 609 Node *SubDNode::Ideal(PhaseGVN *phase, bool can_reshape){
 610   const Type *t2 = phase->type( in(2) );
 611   // Convert "x-c0" into "x+ -c0".
 612   if( t2->base() == Type::DoubleCon ) { // Might be bottom or top...
 613     // return new (phase->C, 3) AddDNode(in(1), phase->makecon( TypeD::make(-t2->getd()) ) );
 614   }
 615 
 616   // Cannot replace 0.0-X with -X because a 'dsub' bytecode computes
 617   // 0.0-0.0 as +0.0, while a 'dneg' bytecode computes -0.0.
 618   //if( phase->type(in(1)) == TypeD::ZERO )
 619   //return new (phase->C, 2) NegDNode(in(2));
 620 
 621   return nullptr;
 622 }
 623 
 624 //------------------------------sub--------------------------------------------
 625 // A subtract node differences its two inputs.
 626 const Type *SubDNode::sub( const Type *t1, const Type *t2 ) const {
 627   // no folding if one of operands is infinity or NaN, do not do constant folding
 628   if( g_isfinite(t1->getd()) && g_isfinite(t2->getd()) ) {
 629     return TypeD::make( t1->getd() - t2->getd() );
 630   }
 631   else if( g_isnan(t1->getd()) ) {
 632     return t1;
 633   }
 634   else if( g_isnan(t2->getd()) ) {
 635     return t2;
 636   }
 637   else {
 638     return Type::DOUBLE;
 639   }
 640 }
 641 
 642 //=============================================================================
 643 //------------------------------Idealize---------------------------------------
 644 // Unlike SubNodes, compare must still flatten return value to the
 645 // range -1, 0, 1.
 646 // And optimizations like those for (X + Y) - X fail if overflow happens.
 647 Node* CmpNode::Identity(PhaseGVN* phase) {
 648   return this;
 649 }
 650 
 651 CmpNode *CmpNode::make(Node *in1, Node *in2, BasicType bt, bool unsigned_comp) {
 652   switch (bt) {
 653     case T_INT:
 654       if (unsigned_comp) {
 655         return new CmpUNode(in1, in2);
 656       }
 657       return new CmpINode(in1, in2);
 658     case T_LONG:
 659       if (unsigned_comp) {
 660         return new CmpULNode(in1, in2);
 661       }
 662       return new CmpLNode(in1, in2);
 663     case T_OBJECT:
 664     case T_ARRAY:
 665     case T_ADDRESS:
 666     case T_METADATA:
 667       return new CmpPNode(in1, in2);
 668     case T_NARROWOOP:
 669     case T_NARROWKLASS:
 670       return new CmpNNode(in1, in2);
 671     default:
 672       fatal("Not implemented for %s", type2name(bt));
 673   }
 674   return nullptr;
 675 }
 676 
 677 //=============================================================================
 678 //------------------------------cmp--------------------------------------------
 679 // Simplify a CmpI (compare 2 integers) node, based on local information.
 680 // If both inputs are constants, compare them.
 681 const Type *CmpINode::sub( const Type *t1, const Type *t2 ) const {
 682   const TypeInt *r0 = t1->is_int(); // Handy access
 683   const TypeInt *r1 = t2->is_int();
 684 
 685   if( r0->_hi < r1->_lo )       // Range is always low?
 686     return TypeInt::CC_LT;
 687   else if( r0->_lo > r1->_hi )  // Range is always high?
 688     return TypeInt::CC_GT;
 689 
 690   else if( r0->is_con() && r1->is_con() ) { // comparing constants?
 691     assert(r0->get_con() == r1->get_con(), "must be equal");
 692     return TypeInt::CC_EQ;      // Equal results.
 693   } else if( r0->_hi == r1->_lo ) // Range is never high?
 694     return TypeInt::CC_LE;
 695   else if( r0->_lo == r1->_hi ) // Range is never low?
 696     return TypeInt::CC_GE;
 697 
 698   const Type* joined = r0->join(r1);
 699   if (joined == Type::TOP) {
 700     return TypeInt::CC_NE;
 701   }
 702   return TypeInt::CC;           // else use worst case results
 703 }
 704 
 705 const Type* CmpINode::Value(PhaseGVN* phase) const {
 706   Node* in1 = in(1);
 707   Node* in2 = in(2);
 708   // If this test is the zero trip guard for a main or post loop, check whether, with the opaque node removed, the test
 709   // would constant fold so the loop is never entered. If so return the type of the test without the opaque node removed:
 710   // make the loop unreachable.
 711   // The reason for this is that the iv phi captures the bounds of the loop and if the loop becomes unreachable, it can
 712   // become top. In that case, the loop must be removed.
 713   // This is safe because:
 714   // - as optimizations proceed, the range of iterations executed by the main loop narrows. If no iterations remain, then
 715   // we're done with optimizations for that loop.
 716   // - the post loop is initially not reachable but as long as there's a main loop, the zero trip guard for the post
 717   // loop takes a phi that merges the pre and main loop's iv and can't constant fold the zero trip guard. Once, the main
 718   // loop is removed, there's no need to preserve the zero trip guard for the post loop anymore.
 719   if (in1 != nullptr && in2 != nullptr) {
 720     uint input = 0;
 721     Node* cmp = nullptr;
 722     BoolTest::mask test;
 723     if (in1->Opcode() == Op_OpaqueZeroTripGuard && phase->type(in1) != Type::TOP) {
 724       cmp = new CmpINode(in1->in(1), in2);
 725       test = ((OpaqueZeroTripGuardNode*)in1)->_loop_entered_mask;
 726     }
 727     if (in2->Opcode() == Op_OpaqueZeroTripGuard && phase->type(in2) != Type::TOP) {
 728       assert(cmp == nullptr, "A cmp with 2 OpaqueZeroTripGuard inputs");
 729       cmp = new CmpINode(in1, in2->in(1));
 730       test = ((OpaqueZeroTripGuardNode*)in2)->_loop_entered_mask;
 731     }
 732     if (cmp != nullptr) {
 733       const Type* cmp_t = cmp->Value(phase);
 734       const Type* t = BoolTest(test).cc2logical(cmp_t);
 735       cmp->destruct(phase);
 736       if (t == TypeInt::ZERO) {
 737         return cmp_t;
 738       }
 739     }
 740   }
 741 
 742   return SubNode::Value(phase);
 743 }
 744 
 745 
 746 // Simplify a CmpU (compare 2 integers) node, based on local information.
 747 // If both inputs are constants, compare them.
 748 const Type* CmpUNode::sub(const Type* t1, const Type* t2) const {
 749   const TypeInt* r0 = t1->is_int();
 750   const TypeInt* r1 = t2->is_int();
 751 
 752   // Check for special case in Hashtable::get - the hash index is
 753   // mod'ed to the table size so the following range check is useless.
 754   // Check for: (X Mod Y) CmpU Y, where the mod result and Y both have
 755   // to be positive.
 756   // (This is a gross hack, since the sub method never
 757   // looks at the structure of the node in any other case.)
 758   if (r0->_lo >= 0 && r1->_lo >= 0 && is_index_range_check()) {
 759     return TypeInt::CC_LT;
 760   }
 761 
 762   if (r0->_uhi < r1->_ulo) {
 763     return TypeInt::CC_LT;
 764   } else if (r0->_ulo > r1->_uhi) {
 765     return TypeInt::CC_GT;
 766   } else if (r0->is_con() && r1->is_con()) {
 767     // Since r0->_ulo == r0->_uhi == r0->get_con(), we only reach here if the constants are equal
 768     assert(r0->get_con() == r1->get_con(), "must reach a previous branch otherwise");
 769     return TypeInt::CC_EQ;
 770   } else if (r0->_uhi == r1->_ulo) {
 771     return TypeInt::CC_LE;
 772   } else if (r0->_ulo == r1->_uhi) {
 773     return TypeInt::CC_GE;
 774   }
 775 
 776   const Type* joined = r0->join(r1);
 777   if (joined == Type::TOP) {
 778     return TypeInt::CC_NE;
 779   }
 780 
 781   return TypeInt::CC;
 782 }
 783 
 784 const Type* CmpUNode::Value(PhaseGVN* phase) const {
 785   const Type* t = SubNode::Value_common(phase);
 786   if (t != nullptr) {
 787     return t;
 788   }
 789   const Node* in1 = in(1);
 790   const Node* in2 = in(2);
 791   const Type* t1 = phase->type(in1);
 792   const Type* t2 = phase->type(in2);
 793   assert(t1->isa_int(), "CmpU has only Int type inputs");
 794   if (t2 == TypeInt::INT) { // Compare to bottom?
 795     return bottom_type();
 796   }
 797 
 798   const Type* t_sub = sub(t1, t2); // compare based on immediate inputs
 799 
 800   uint in1_op = in1->Opcode();
 801   if (in1_op == Op_AddI || in1_op == Op_SubI) {
 802     // The problem rise when result of AddI(SubI) may overflow
 803     // signed integer value. Let say the input type is
 804     // [256, maxint] then +128 will create 2 ranges due to
 805     // overflow: [minint, minint+127] and [384, maxint].
 806     // But C2 type system keep only 1 type range and as result
 807     // it use general [minint, maxint] for this case which we
 808     // can't optimize.
 809     //
 810     // Make 2 separate type ranges based on types of AddI(SubI) inputs
 811     // and compare results of their compare. If results are the same
 812     // CmpU node can be optimized.
 813     const Node* in11 = in1->in(1);
 814     const Node* in12 = in1->in(2);
 815     const Type* t11 = (in11 == in1) ? Type::TOP : phase->type(in11);
 816     const Type* t12 = (in12 == in1) ? Type::TOP : phase->type(in12);
 817     // Skip cases when input types are top or bottom.
 818     if ((t11 != Type::TOP) && (t11 != TypeInt::INT) &&
 819         (t12 != Type::TOP) && (t12 != TypeInt::INT)) {
 820       const TypeInt *r0 = t11->is_int();
 821       const TypeInt *r1 = t12->is_int();
 822       jlong lo_r0 = r0->_lo;
 823       jlong hi_r0 = r0->_hi;
 824       jlong lo_r1 = r1->_lo;
 825       jlong hi_r1 = r1->_hi;
 826       if (in1_op == Op_SubI) {
 827         jlong tmp = hi_r1;
 828         hi_r1 = -lo_r1;
 829         lo_r1 = -tmp;
 830         // Note, for substructing [minint,x] type range
 831         // long arithmetic provides correct overflow answer.
 832         // The confusion come from the fact that in 32-bit
 833         // -minint == minint but in 64-bit -minint == maxint+1.
 834       }
 835       jlong lo_long = lo_r0 + lo_r1;
 836       jlong hi_long = hi_r0 + hi_r1;
 837       int lo_tr1 = min_jint;
 838       int hi_tr1 = (int)hi_long;
 839       int lo_tr2 = (int)lo_long;
 840       int hi_tr2 = max_jint;
 841       bool underflow = lo_long != (jlong)lo_tr2;
 842       bool overflow  = hi_long != (jlong)hi_tr1;
 843       // Use sub(t1, t2) when there is no overflow (one type range)
 844       // or when both overflow and underflow (too complex).
 845       if ((underflow != overflow) && (hi_tr1 < lo_tr2)) {
 846         // Overflow only on one boundary, compare 2 separate type ranges.
 847         int w = MAX2(r0->_widen, r1->_widen); // _widen does not matter here
 848         const TypeInt* tr1 = TypeInt::make(lo_tr1, hi_tr1, w);
 849         const TypeInt* tr2 = TypeInt::make(lo_tr2, hi_tr2, w);
 850         const TypeInt* cmp1 = sub(tr1, t2)->is_int();
 851         const TypeInt* cmp2 = sub(tr2, t2)->is_int();
 852         // Compute union, so that cmp handles all possible results from the two cases
 853         const Type* t_cmp = cmp1->meet(cmp2);
 854         // Pick narrowest type, based on overflow computation and on immediate inputs
 855         return t_sub->filter(t_cmp);
 856       }
 857     }
 858   }
 859 
 860   return t_sub;
 861 }
 862 
 863 bool CmpUNode::is_index_range_check() const {
 864   // Check for the "(X ModI Y) CmpU Y" shape
 865   return (in(1)->Opcode() == Op_ModI &&
 866           in(1)->in(2)->eqv_uncast(in(2)));
 867 }
 868 
 869 //------------------------------Idealize---------------------------------------
 870 Node *CmpINode::Ideal( PhaseGVN *phase, bool can_reshape ) {
 871   if (phase->type(in(2))->higher_equal(TypeInt::ZERO)) {
 872     switch (in(1)->Opcode()) {
 873     case Op_CmpU3:              // Collapse a CmpU3/CmpI into a CmpU
 874       return new CmpUNode(in(1)->in(1),in(1)->in(2));
 875     case Op_CmpL3:              // Collapse a CmpL3/CmpI into a CmpL
 876       return new CmpLNode(in(1)->in(1),in(1)->in(2));
 877     case Op_CmpUL3:             // Collapse a CmpUL3/CmpI into a CmpUL
 878       return new CmpULNode(in(1)->in(1),in(1)->in(2));
 879     case Op_CmpF3:              // Collapse a CmpF3/CmpI into a CmpF
 880       return new CmpFNode(in(1)->in(1),in(1)->in(2));
 881     case Op_CmpD3:              // Collapse a CmpD3/CmpI into a CmpD
 882       return new CmpDNode(in(1)->in(1),in(1)->in(2));
 883     //case Op_SubI:
 884       // If (x - y) cannot overflow, then ((x - y) <?> 0)
 885       // can be turned into (x <?> y).
 886       // This is handled (with more general cases) by Ideal_sub_algebra.
 887     }
 888   }
 889   return nullptr;                  // No change
 890 }
 891 
 892 Node *CmpLNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
 893   const TypeLong *t2 = phase->type(in(2))->isa_long();
 894   if (Opcode() == Op_CmpL && in(1)->Opcode() == Op_ConvI2L && t2 && t2->is_con()) {
 895     const jlong con = t2->get_con();
 896     if (con >= min_jint && con <= max_jint) {
 897       return new CmpINode(in(1)->in(1), phase->intcon((jint)con));
 898     }
 899   }
 900   return nullptr;
 901 }
 902 
 903 //=============================================================================
 904 // Simplify a CmpL (compare 2 longs ) node, based on local information.
 905 // If both inputs are constants, compare them.
 906 const Type *CmpLNode::sub( const Type *t1, const Type *t2 ) const {
 907   const TypeLong *r0 = t1->is_long(); // Handy access
 908   const TypeLong *r1 = t2->is_long();
 909 
 910   if( r0->_hi < r1->_lo )       // Range is always low?
 911     return TypeInt::CC_LT;
 912   else if( r0->_lo > r1->_hi )  // Range is always high?
 913     return TypeInt::CC_GT;
 914 
 915   else if( r0->is_con() && r1->is_con() ) { // comparing constants?
 916     assert(r0->get_con() == r1->get_con(), "must be equal");
 917     return TypeInt::CC_EQ;      // Equal results.
 918   } else if( r0->_hi == r1->_lo ) // Range is never high?
 919     return TypeInt::CC_LE;
 920   else if( r0->_lo == r1->_hi ) // Range is never low?
 921     return TypeInt::CC_GE;
 922 
 923   const Type* joined = r0->join(r1);
 924   if (joined == Type::TOP) {
 925     return TypeInt::CC_NE;
 926   }
 927 
 928   return TypeInt::CC;           // else use worst case results
 929 }
 930 
 931 
 932 // Simplify a CmpUL (compare 2 unsigned longs) node, based on local information.
 933 // If both inputs are constants, compare them.
 934 const Type* CmpULNode::sub(const Type* t1, const Type* t2) const {
 935   const TypeLong* r0 = t1->is_long();
 936   const TypeLong* r1 = t2->is_long();
 937 
 938   if (r0->_uhi < r1->_ulo) {
 939     return TypeInt::CC_LT;
 940   } else if (r0->_ulo > r1->_uhi) {
 941     return TypeInt::CC_GT;
 942   } else if (r0->is_con() && r1->is_con()) {
 943     // Since r0->_ulo == r0->_uhi == r0->get_con(), we only reach here if the constants are equal
 944     assert(r0->get_con() == r1->get_con(), "must reach a previous branch otherwise");
 945     return TypeInt::CC_EQ;
 946   } else if (r0->_uhi == r1->_ulo) {
 947     return TypeInt::CC_LE;
 948   } else if (r0->_ulo == r1->_uhi) {
 949     return TypeInt::CC_GE;
 950   }
 951 
 952   const Type* joined = r0->join(r1);
 953   if (joined == Type::TOP) {
 954     return TypeInt::CC_NE;
 955   }
 956 
 957   return TypeInt::CC;
 958 }
 959 
 960 //=============================================================================
 961 //------------------------------sub--------------------------------------------
 962 // Simplify an CmpP (compare 2 pointers) node, based on local information.
 963 // If both inputs are constants, compare them.
 964 const Type *CmpPNode::sub( const Type *t1, const Type *t2 ) const {
 965   const TypePtr *r0 = t1->is_ptr(); // Handy access
 966   const TypePtr *r1 = t2->is_ptr();
 967 
 968   // Undefined inputs makes for an undefined result
 969   if( TypePtr::above_centerline(r0->_ptr) ||
 970       TypePtr::above_centerline(r1->_ptr) )
 971     return Type::TOP;
 972 
 973   if (r0 == r1 && r0->singleton()) {
 974     // Equal pointer constants (klasses, nulls, etc.)
 975     return TypeInt::CC_EQ;
 976   }
 977 
 978   // See if it is 2 unrelated classes.
 979   const TypeOopPtr* p0 = r0->isa_oopptr();
 980   const TypeOopPtr* p1 = r1->isa_oopptr();
 981   const TypeKlassPtr* k0 = r0->isa_klassptr();
 982   const TypeKlassPtr* k1 = r1->isa_klassptr();
 983   if ((p0 && p1) || (k0 && k1)) {
 984     if (p0 && p1) {
 985       Node* in1 = in(1)->uncast();
 986       Node* in2 = in(2)->uncast();
 987       AllocateNode* alloc1 = AllocateNode::Ideal_allocation(in1);
 988       AllocateNode* alloc2 = AllocateNode::Ideal_allocation(in2);
 989       if (MemNode::detect_ptr_independence(in1, alloc1, in2, alloc2, nullptr)) {
 990         return TypeInt::CC_GT;  // different pointers
 991       }
 992     }
 993     bool    xklass0 = p0 ? p0->klass_is_exact() : k0->klass_is_exact();
 994     bool    xklass1 = p1 ? p1->klass_is_exact() : k1->klass_is_exact();
 995     bool unrelated_classes = false;
 996 
 997     if ((p0 && p0->is_same_java_type_as(p1)) ||
 998         (k0 && k0->is_same_java_type_as(k1))) {
 999     } else if ((p0 && !p1->maybe_java_subtype_of(p0) && !p0->maybe_java_subtype_of(p1)) ||
1000                (k0 && !k1->maybe_java_subtype_of(k0) && !k0->maybe_java_subtype_of(k1))) {
1001       unrelated_classes = true;
1002     } else if ((p0 && !p1->maybe_java_subtype_of(p0)) ||
1003                (k0 && !k1->maybe_java_subtype_of(k0))) {
1004       unrelated_classes = xklass1;
1005     } else if ((p0 && !p0->maybe_java_subtype_of(p1)) ||
1006                (k0 && !k0->maybe_java_subtype_of(k1))) {
1007       unrelated_classes = xklass0;
1008     }
1009 
1010     if (unrelated_classes) {
1011       // The oops classes are known to be unrelated. If the joined PTRs of
1012       // two oops is not Null and not Bottom, then we are sure that one
1013       // of the two oops is non-null, and the comparison will always fail.
1014       TypePtr::PTR jp = r0->join_ptr(r1->_ptr);
1015       if (jp != TypePtr::Null && jp != TypePtr::BotPTR) {
1016         return TypeInt::CC_GT;
1017       }
1018     }
1019   }
1020 
1021   // Known constants can be compared exactly
1022   // Null can be distinguished from any NotNull pointers
1023   // Unknown inputs makes an unknown result
1024   if( r0->singleton() ) {
1025     intptr_t bits0 = r0->get_con();
1026     if( r1->singleton() )
1027       return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
1028     return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
1029   } else if( r1->singleton() ) {
1030     intptr_t bits1 = r1->get_con();
1031     return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
1032   } else
1033     return TypeInt::CC;
1034 }
1035 
1036 static inline Node* isa_java_mirror_load(PhaseGVN* phase, Node* n) {
1037   // Return the klass node for (indirect load from OopHandle)
1038   //   LoadBarrier?(LoadP(LoadP(AddP(foo:Klass, #java_mirror))))
1039   //   or null if not matching.
1040   if (n->Opcode() != Op_LoadP) return nullptr;
1041 
1042   const TypeInstPtr* tp = phase->type(n)->isa_instptr();
1043   if (!tp || tp->instance_klass() != phase->C->env()->Class_klass()) return nullptr;
1044 
1045   Node* adr = n->in(MemNode::Address);
1046   // First load from OopHandle: ((OopHandle)mirror)->resolve(); may need barrier.
1047   if (adr->Opcode() != Op_LoadP || !phase->type(adr)->isa_rawptr()) return nullptr;
1048   adr = adr->in(MemNode::Address);
1049 
1050   intptr_t off = 0;
1051   Node* k = AddPNode::Ideal_base_and_offset(adr, phase, off);
1052   if (k == nullptr)  return nullptr;
1053   const TypeKlassPtr* tkp = phase->type(k)->isa_klassptr();
1054   if (!tkp || off != in_bytes(Klass::java_mirror_offset())) return nullptr;
1055 
1056   // We've found the klass node of a Java mirror load.
1057   return k;
1058 }
1059 
1060 static inline Node* isa_const_java_mirror(PhaseGVN* phase, Node* n) {
1061   // for ConP(Foo.class) return ConP(Foo.klass)
1062   // otherwise return null
1063   if (!n->is_Con()) return nullptr;
1064 
1065   const TypeInstPtr* tp = phase->type(n)->isa_instptr();
1066   if (!tp) return nullptr;
1067 
1068   ciType* mirror_type = tp->java_mirror_type();
1069   // TypeInstPtr::java_mirror_type() returns non-null for compile-
1070   // time Class constants only.
1071   if (!mirror_type) return nullptr;
1072 
1073   // x.getClass() == int.class can never be true (for all primitive types)
1074   // Return a ConP(null) node for this case.
1075   if (mirror_type->is_classless()) {
1076     return phase->makecon(TypePtr::NULL_PTR);
1077   }
1078 
1079   // return the ConP(Foo.klass)
1080   assert(mirror_type->is_klass(), "mirror_type should represent a Klass*");
1081   return phase->makecon(TypeKlassPtr::make(mirror_type->as_klass(), Type::trust_interfaces));
1082 }
1083 
1084 //------------------------------Ideal------------------------------------------
1085 // Normalize comparisons between Java mirror loads to compare the klass instead.
1086 //
1087 // Also check for the case of comparing an unknown klass loaded from the primary
1088 // super-type array vs a known klass with no subtypes.  This amounts to
1089 // checking to see an unknown klass subtypes a known klass with no subtypes;
1090 // this only happens on an exact match.  We can shorten this test by 1 load.
1091 Node *CmpPNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
1092   // Normalize comparisons between Java mirrors into comparisons of the low-
1093   // level klass, where a dependent load could be shortened.
1094   //
1095   // The new pattern has a nice effect of matching the same pattern used in the
1096   // fast path of instanceof/checkcast/Class.isInstance(), which allows
1097   // redundant exact type check be optimized away by GVN.
1098   // For example, in
1099   //   if (x.getClass() == Foo.class) {
1100   //     Foo foo = (Foo) x;
1101   //     // ... use a ...
1102   //   }
1103   // a CmpPNode could be shared between if_acmpne and checkcast
1104   {
1105     Node* k1 = isa_java_mirror_load(phase, in(1));
1106     Node* k2 = isa_java_mirror_load(phase, in(2));
1107     Node* conk2 = isa_const_java_mirror(phase, in(2));
1108 
1109     if (k1 && (k2 || conk2)) {
1110       Node* lhs = k1;
1111       Node* rhs = (k2 != nullptr) ? k2 : conk2;
1112       set_req_X(1, lhs, phase);
1113       set_req_X(2, rhs, phase);
1114       return this;
1115     }
1116   }
1117 
1118   // Constant pointer on right?
1119   const TypeKlassPtr* t2 = phase->type(in(2))->isa_klassptr();
1120   if (t2 == nullptr || !t2->klass_is_exact())
1121     return nullptr;
1122   // Get the constant klass we are comparing to.
1123   ciKlass* superklass = t2->exact_klass();
1124 
1125   // Now check for LoadKlass on left.
1126   Node* ldk1 = in(1);
1127   if (ldk1->is_DecodeNKlass()) {
1128     ldk1 = ldk1->in(1);
1129     if (ldk1->Opcode() != Op_LoadNKlass )
1130       return nullptr;
1131   } else if (ldk1->Opcode() != Op_LoadKlass )
1132     return nullptr;
1133   // Take apart the address of the LoadKlass:
1134   Node* adr1 = ldk1->in(MemNode::Address);
1135   intptr_t con2 = 0;
1136   Node* ldk2 = AddPNode::Ideal_base_and_offset(adr1, phase, con2);
1137   if (ldk2 == nullptr)
1138     return nullptr;
1139   if (con2 == oopDesc::klass_offset_in_bytes()) {
1140     // We are inspecting an object's concrete class.
1141     // Short-circuit the check if the query is abstract.
1142     if (superklass->is_interface() ||
1143         superklass->is_abstract()) {
1144       // Make it come out always false:
1145       this->set_req(2, phase->makecon(TypePtr::NULL_PTR));
1146       return this;
1147     }
1148   }
1149 
1150   // Check for a LoadKlass from primary supertype array.
1151   // Any nested loadklass from loadklass+con must be from the p.s. array.
1152   if (ldk2->is_DecodeNKlass()) {
1153     // Keep ldk2 as DecodeN since it could be used in CmpP below.
1154     if (ldk2->in(1)->Opcode() != Op_LoadNKlass )
1155       return nullptr;
1156   } else if (ldk2->Opcode() != Op_LoadKlass)
1157     return nullptr;
1158 
1159   // Verify that we understand the situation
1160   if (con2 != (intptr_t) superklass->super_check_offset())
1161     return nullptr;                // Might be element-klass loading from array klass
1162 
1163   // If 'superklass' has no subklasses and is not an interface, then we are
1164   // assured that the only input which will pass the type check is
1165   // 'superklass' itself.
1166   //
1167   // We could be more liberal here, and allow the optimization on interfaces
1168   // which have a single implementor.  This would require us to increase the
1169   // expressiveness of the add_dependency() mechanism.
1170   // %%% Do this after we fix TypeOopPtr:  Deps are expressive enough now.
1171 
1172   // Object arrays must have their base element have no subtypes
1173   while (superklass->is_obj_array_klass()) {
1174     ciType* elem = superklass->as_obj_array_klass()->element_type();
1175     superklass = elem->as_klass();
1176   }
1177   if (superklass->is_instance_klass()) {
1178     ciInstanceKlass* ik = superklass->as_instance_klass();
1179     if (ik->has_subklass() || ik->is_interface())  return nullptr;
1180     // Add a dependency if there is a chance that a subclass will be added later.
1181     if (!ik->is_final()) {
1182       phase->C->dependencies()->assert_leaf_type(ik);
1183     }
1184   }
1185 
1186   // Bypass the dependent load, and compare directly
1187   this->set_req_X(1, ldk2, phase);
1188 
1189   return this;
1190 }
1191 
1192 //=============================================================================
1193 //------------------------------sub--------------------------------------------
1194 // Simplify an CmpN (compare 2 pointers) node, based on local information.
1195 // If both inputs are constants, compare them.
1196 const Type *CmpNNode::sub( const Type *t1, const Type *t2 ) const {
1197   ShouldNotReachHere();
1198   return bottom_type();
1199 }
1200 
1201 //------------------------------Ideal------------------------------------------
1202 Node *CmpNNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
1203   return nullptr;
1204 }
1205 
1206 //=============================================================================
1207 //------------------------------Value------------------------------------------
1208 // Simplify an CmpF (compare 2 floats ) node, based on local information.
1209 // If both inputs are constants, compare them.
1210 const Type* CmpFNode::Value(PhaseGVN* phase) const {
1211   const Node* in1 = in(1);
1212   const Node* in2 = in(2);
1213   // Either input is TOP ==> the result is TOP
1214   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
1215   if( t1 == Type::TOP ) return Type::TOP;
1216   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
1217   if( t2 == Type::TOP ) return Type::TOP;
1218 
1219   // Not constants?  Don't know squat - even if they are the same
1220   // value!  If they are NaN's they compare to LT instead of EQ.
1221   const TypeF *tf1 = t1->isa_float_constant();
1222   const TypeF *tf2 = t2->isa_float_constant();
1223   if( !tf1 || !tf2 ) return TypeInt::CC;
1224 
1225   // This implements the Java bytecode fcmpl, so unordered returns -1.
1226   if( tf1->is_nan() || tf2->is_nan() )
1227     return TypeInt::CC_LT;
1228 
1229   if( tf1->_f < tf2->_f ) return TypeInt::CC_LT;
1230   if( tf1->_f > tf2->_f ) return TypeInt::CC_GT;
1231   assert( tf1->_f == tf2->_f, "do not understand FP behavior" );
1232   return TypeInt::CC_EQ;
1233 }
1234 
1235 
1236 //=============================================================================
1237 //------------------------------Value------------------------------------------
1238 // Simplify an CmpD (compare 2 doubles ) node, based on local information.
1239 // If both inputs are constants, compare them.
1240 const Type* CmpDNode::Value(PhaseGVN* phase) const {
1241   const Node* in1 = in(1);
1242   const Node* in2 = in(2);
1243   // Either input is TOP ==> the result is TOP
1244   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
1245   if( t1 == Type::TOP ) return Type::TOP;
1246   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
1247   if( t2 == Type::TOP ) return Type::TOP;
1248 
1249   // Not constants?  Don't know squat - even if they are the same
1250   // value!  If they are NaN's they compare to LT instead of EQ.
1251   const TypeD *td1 = t1->isa_double_constant();
1252   const TypeD *td2 = t2->isa_double_constant();
1253   if( !td1 || !td2 ) return TypeInt::CC;
1254 
1255   // This implements the Java bytecode dcmpl, so unordered returns -1.
1256   if( td1->is_nan() || td2->is_nan() )
1257     return TypeInt::CC_LT;
1258 
1259   if( td1->_d < td2->_d ) return TypeInt::CC_LT;
1260   if( td1->_d > td2->_d ) return TypeInt::CC_GT;
1261   assert( td1->_d == td2->_d, "do not understand FP behavior" );
1262   return TypeInt::CC_EQ;
1263 }
1264 
1265 //------------------------------Ideal------------------------------------------
1266 Node *CmpDNode::Ideal(PhaseGVN *phase, bool can_reshape){
1267   // Check if we can change this to a CmpF and remove a ConvD2F operation.
1268   // Change  (CMPD (F2D (float)) (ConD value))
1269   // To      (CMPF      (float)  (ConF value))
1270   // Valid when 'value' does not lose precision as a float.
1271   // Benefits: eliminates conversion, does not require 24-bit mode
1272 
1273   // NaNs prevent commuting operands.  This transform works regardless of the
1274   // order of ConD and ConvF2D inputs by preserving the original order.
1275   int idx_f2d = 1;              // ConvF2D on left side?
1276   if( in(idx_f2d)->Opcode() != Op_ConvF2D )
1277     idx_f2d = 2;                // No, swap to check for reversed args
1278   int idx_con = 3-idx_f2d;      // Check for the constant on other input
1279 
1280   if( ConvertCmpD2CmpF &&
1281       in(idx_f2d)->Opcode() == Op_ConvF2D &&
1282       in(idx_con)->Opcode() == Op_ConD ) {
1283     const TypeD *t2 = in(idx_con)->bottom_type()->is_double_constant();
1284     double t2_value_as_double = t2->_d;
1285     float  t2_value_as_float  = (float)t2_value_as_double;
1286     if( t2_value_as_double == (double)t2_value_as_float ) {
1287       // Test value can be represented as a float
1288       // Eliminate the conversion to double and create new comparison
1289       Node *new_in1 = in(idx_f2d)->in(1);
1290       Node *new_in2 = phase->makecon( TypeF::make(t2_value_as_float) );
1291       if( idx_f2d != 1 ) {      // Must flip args to match original order
1292         Node *tmp = new_in1;
1293         new_in1 = new_in2;
1294         new_in2 = tmp;
1295       }
1296       CmpFNode *new_cmp = (Opcode() == Op_CmpD3)
1297         ? new CmpF3Node( new_in1, new_in2 )
1298         : new CmpFNode ( new_in1, new_in2 ) ;
1299       return new_cmp;           // Changed to CmpFNode
1300     }
1301     // Testing value required the precision of a double
1302   }
1303   return nullptr;                  // No change
1304 }
1305 
1306 
1307 //=============================================================================
1308 //------------------------------cc2logical-------------------------------------
1309 // Convert a condition code type to a logical type
1310 const Type *BoolTest::cc2logical( const Type *CC ) const {
1311   if( CC == Type::TOP ) return Type::TOP;
1312   if( CC->base() != Type::Int ) return TypeInt::BOOL; // Bottom or worse
1313   const TypeInt *ti = CC->is_int();
1314   if( ti->is_con() ) {          // Only 1 kind of condition codes set?
1315     // Match low order 2 bits
1316     int tmp = ((ti->get_con()&3) == (_test&3)) ? 1 : 0;
1317     if( _test & 4 ) tmp = 1-tmp;     // Optionally complement result
1318     return TypeInt::make(tmp);       // Boolean result
1319   }
1320 
1321   if( CC == TypeInt::CC_GE ) {
1322     if( _test == ge ) return TypeInt::ONE;
1323     if( _test == lt ) return TypeInt::ZERO;
1324   }
1325   if( CC == TypeInt::CC_LE ) {
1326     if( _test == le ) return TypeInt::ONE;
1327     if( _test == gt ) return TypeInt::ZERO;
1328   }
1329   if( CC == TypeInt::CC_NE ) {
1330     if( _test == ne ) return TypeInt::ONE;
1331     if( _test == eq ) return TypeInt::ZERO;
1332   }
1333 
1334   return TypeInt::BOOL;
1335 }
1336 
1337 BoolTest::mask BoolTest::unsigned_mask(BoolTest::mask btm) {
1338   switch(btm) {
1339     case eq:
1340     case ne:
1341       return btm;
1342     case lt:
1343     case le:
1344     case gt:
1345     case ge:
1346       return mask(btm | unsigned_compare);
1347     default:
1348       ShouldNotReachHere();
1349   }
1350 }
1351 
1352 //------------------------------dump_spec-------------------------------------
1353 // Print special per-node info
1354 void BoolTest::dump_on(outputStream *st) const {
1355   const char *msg[] = {"eq","gt","of","lt","ne","le","nof","ge"};
1356   st->print("%s", msg[_test]);
1357 }
1358 
1359 // Returns the logical AND of two tests (or 'never' if both tests can never be true).
1360 // For example, a test for 'le' followed by a test for 'lt' is equivalent with 'lt'.
1361 BoolTest::mask BoolTest::merge(BoolTest other) const {
1362   const mask res[illegal+1][illegal+1] = {
1363     // eq,      gt,      of,      lt,      ne,      le,      nof,     ge,      never,   illegal
1364       {eq,      never,   illegal, never,   never,   eq,      illegal, eq,      never,   illegal},  // eq
1365       {never,   gt,      illegal, never,   gt,      never,   illegal, gt,      never,   illegal},  // gt
1366       {illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, never,   illegal},  // of
1367       {never,   never,   illegal, lt,      lt,      lt,      illegal, never,   never,   illegal},  // lt
1368       {never,   gt,      illegal, lt,      ne,      lt,      illegal, gt,      never,   illegal},  // ne
1369       {eq,      never,   illegal, lt,      lt,      le,      illegal, eq,      never,   illegal},  // le
1370       {illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, never,   illegal},  // nof
1371       {eq,      gt,      illegal, never,   gt,      eq,      illegal, ge,      never,   illegal},  // ge
1372       {never,   never,   never,   never,   never,   never,   never,   never,   never,   illegal},  // never
1373       {illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal}}; // illegal
1374   return res[_test][other._test];
1375 }
1376 
1377 //=============================================================================
1378 uint BoolNode::hash() const { return (Node::hash() << 3)|(_test._test+1); }
1379 uint BoolNode::size_of() const { return sizeof(BoolNode); }
1380 
1381 //------------------------------operator==-------------------------------------
1382 bool BoolNode::cmp( const Node &n ) const {
1383   const BoolNode *b = (const BoolNode *)&n; // Cast up
1384   return (_test._test == b->_test._test);
1385 }
1386 
1387 //-------------------------------make_predicate--------------------------------
1388 Node* BoolNode::make_predicate(Node* test_value, PhaseGVN* phase) {
1389   if (test_value->is_Con())   return test_value;
1390   if (test_value->is_Bool())  return test_value;
1391   if (test_value->is_CMove() &&
1392       test_value->in(CMoveNode::Condition)->is_Bool()) {
1393     BoolNode*   bol   = test_value->in(CMoveNode::Condition)->as_Bool();
1394     const Type* ftype = phase->type(test_value->in(CMoveNode::IfFalse));
1395     const Type* ttype = phase->type(test_value->in(CMoveNode::IfTrue));
1396     if (ftype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ttype)) {
1397       return bol;
1398     } else if (ttype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ftype)) {
1399       return phase->transform( bol->negate(phase) );
1400     }
1401     // Else fall through.  The CMove gets in the way of the test.
1402     // It should be the case that make_predicate(bol->as_int_value()) == bol.
1403   }
1404   Node* cmp = new CmpINode(test_value, phase->intcon(0));
1405   cmp = phase->transform(cmp);
1406   Node* bol = new BoolNode(cmp, BoolTest::ne);
1407   return phase->transform(bol);
1408 }
1409 
1410 //--------------------------------as_int_value---------------------------------
1411 Node* BoolNode::as_int_value(PhaseGVN* phase) {
1412   // Inverse to make_predicate.  The CMove probably boils down to a Conv2B.
1413   Node* cmov = CMoveNode::make(this, phase->intcon(0), phase->intcon(1), TypeInt::BOOL);
1414   return phase->transform(cmov);
1415 }
1416 
1417 //----------------------------------negate-------------------------------------
1418 BoolNode* BoolNode::negate(PhaseGVN* phase) {
1419   return new BoolNode(in(1), _test.negate());
1420 }
1421 
1422 // Change "bool eq/ne (cmp (add/sub A B) C)" into false/true if add/sub
1423 // overflows and we can prove that C is not in the two resulting ranges.
1424 // This optimization is similar to the one performed by CmpUNode::Value().
1425 Node* BoolNode::fold_cmpI(PhaseGVN* phase, SubNode* cmp, Node* cmp1, int cmp_op,
1426                           int cmp1_op, const TypeInt* cmp2_type) {
1427   // Only optimize eq/ne integer comparison of add/sub
1428   if((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1429      (cmp_op == Op_CmpI) && (cmp1_op == Op_AddI || cmp1_op == Op_SubI)) {
1430     // Skip cases were inputs of add/sub are not integers or of bottom type
1431     const TypeInt* r0 = phase->type(cmp1->in(1))->isa_int();
1432     const TypeInt* r1 = phase->type(cmp1->in(2))->isa_int();
1433     if ((r0 != nullptr) && (r0 != TypeInt::INT) &&
1434         (r1 != nullptr) && (r1 != TypeInt::INT) &&
1435         (cmp2_type != TypeInt::INT)) {
1436       // Compute exact (long) type range of add/sub result
1437       jlong lo_long = r0->_lo;
1438       jlong hi_long = r0->_hi;
1439       if (cmp1_op == Op_AddI) {
1440         lo_long += r1->_lo;
1441         hi_long += r1->_hi;
1442       } else {
1443         lo_long -= r1->_hi;
1444         hi_long -= r1->_lo;
1445       }
1446       // Check for over-/underflow by casting to integer
1447       int lo_int = (int)lo_long;
1448       int hi_int = (int)hi_long;
1449       bool underflow = lo_long != (jlong)lo_int;
1450       bool overflow  = hi_long != (jlong)hi_int;
1451       if ((underflow != overflow) && (hi_int < lo_int)) {
1452         // Overflow on one boundary, compute resulting type ranges:
1453         // tr1 [MIN_INT, hi_int] and tr2 [lo_int, MAX_INT]
1454         int w = MAX2(r0->_widen, r1->_widen); // _widen does not matter here
1455         const TypeInt* tr1 = TypeInt::make(min_jint, hi_int, w);
1456         const TypeInt* tr2 = TypeInt::make(lo_int, max_jint, w);
1457         // Compare second input of cmp to both type ranges
1458         const Type* sub_tr1 = cmp->sub(tr1, cmp2_type);
1459         const Type* sub_tr2 = cmp->sub(tr2, cmp2_type);
1460         if (sub_tr1 == TypeInt::CC_LT && sub_tr2 == TypeInt::CC_GT) {
1461           // The result of the add/sub will never equal cmp2. Replace BoolNode
1462           // by false (0) if it tests for equality and by true (1) otherwise.
1463           return ConINode::make((_test._test == BoolTest::eq) ? 0 : 1);
1464         }
1465       }
1466     }
1467   }
1468   return nullptr;
1469 }
1470 
1471 static bool is_counted_loop_cmp(Node *cmp) {
1472   Node *n = cmp->in(1)->in(1);
1473   return n != nullptr &&
1474          n->is_Phi() &&
1475          n->in(0) != nullptr &&
1476          n->in(0)->is_CountedLoop() &&
1477          n->in(0)->as_CountedLoop()->phi() == n;
1478 }
1479 
1480 //------------------------------Ideal------------------------------------------
1481 Node *BoolNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1482   // Change "bool tst (cmp con x)" into "bool ~tst (cmp x con)".
1483   // This moves the constant to the right.  Helps value-numbering.
1484   Node *cmp = in(1);
1485   if( !cmp->is_Sub() ) return nullptr;
1486   int cop = cmp->Opcode();
1487   if( cop == Op_FastLock || cop == Op_FastUnlock ||
1488       cmp->is_SubTypeCheck() || cop == Op_VectorTest ) {
1489     return nullptr;
1490   }
1491   Node *cmp1 = cmp->in(1);
1492   Node *cmp2 = cmp->in(2);
1493   if( !cmp1 ) return nullptr;
1494 
1495   if (_test._test == BoolTest::overflow || _test._test == BoolTest::no_overflow) {
1496     return nullptr;
1497   }
1498 
1499   const int cmp1_op = cmp1->Opcode();
1500   const int cmp2_op = cmp2->Opcode();
1501 
1502   // Constant on left?
1503   Node *con = cmp1;
1504   // Move constants to the right of compare's to canonicalize.
1505   // Do not muck with Opaque1 nodes, as this indicates a loop
1506   // guard that cannot change shape.
1507   if (con->is_Con() && !cmp2->is_Con() && cmp2_op != Op_OpaqueZeroTripGuard &&
1508       // Because of NaN's, CmpD and CmpF are not commutative
1509       cop != Op_CmpD && cop != Op_CmpF &&
1510       // Protect against swapping inputs to a compare when it is used by a
1511       // counted loop exit, which requires maintaining the loop-limit as in(2)
1512       !is_counted_loop_exit_test() ) {
1513     // Ok, commute the constant to the right of the cmp node.
1514     // Clone the Node, getting a new Node of the same class
1515     cmp = cmp->clone();
1516     // Swap inputs to the clone
1517     cmp->swap_edges(1, 2);
1518     cmp = phase->transform( cmp );
1519     return new BoolNode( cmp, _test.commute() );
1520   }
1521 
1522   // Change "bool eq/ne (cmp (cmove (bool tst (cmp2)) 1 0) 0)" into "bool tst/~tst (cmp2)"
1523   if (cop == Op_CmpI &&
1524       (_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1525       cmp1_op == Op_CMoveI && cmp2->find_int_con(1) == 0) {
1526     // 0 should be on the true branch
1527     if (cmp1->in(CMoveNode::Condition)->is_Bool() &&
1528         cmp1->in(CMoveNode::IfTrue)->find_int_con(1) == 0 &&
1529         cmp1->in(CMoveNode::IfFalse)->find_int_con(0) != 0) {
1530       BoolNode* target = cmp1->in(CMoveNode::Condition)->as_Bool();
1531       return new BoolNode(target->in(1),
1532                           (_test._test == BoolTest::eq) ? target->_test._test :
1533                                                           target->_test.negate());
1534     }
1535   }
1536 
1537   // Change "bool eq/ne (cmp (and X 16) 16)" into "bool ne/eq (cmp (and X 16) 0)".
1538   if (cop == Op_CmpI &&
1539       (_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1540       cmp1_op == Op_AndI && cmp2_op == Op_ConI &&
1541       cmp1->in(2)->Opcode() == Op_ConI) {
1542     const TypeInt *t12 = phase->type(cmp2)->isa_int();
1543     const TypeInt *t112 = phase->type(cmp1->in(2))->isa_int();
1544     if (t12 && t12->is_con() && t112 && t112->is_con() &&
1545         t12->get_con() == t112->get_con() && is_power_of_2(t12->get_con())) {
1546       Node *ncmp = phase->transform(new CmpINode(cmp1, phase->intcon(0)));
1547       return new BoolNode(ncmp, _test.negate());
1548     }
1549   }
1550 
1551   // Same for long type: change "bool eq/ne (cmp (and X 16) 16)" into "bool ne/eq (cmp (and X 16) 0)".
1552   if (cop == Op_CmpL &&
1553       (_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1554       cmp1_op == Op_AndL && cmp2_op == Op_ConL &&
1555       cmp1->in(2)->Opcode() == Op_ConL) {
1556     const TypeLong *t12 = phase->type(cmp2)->isa_long();
1557     const TypeLong *t112 = phase->type(cmp1->in(2))->isa_long();
1558     if (t12 && t12->is_con() && t112 && t112->is_con() &&
1559         t12->get_con() == t112->get_con() && is_power_of_2(t12->get_con())) {
1560       Node *ncmp = phase->transform(new CmpLNode(cmp1, phase->longcon(0)));
1561       return new BoolNode(ncmp, _test.negate());
1562     }
1563   }
1564 
1565   // Change "cmp (add X min_jint) (add Y min_jint)" into "cmpu X Y"
1566   // and    "cmp (add X min_jint) c" into "cmpu X (c + min_jint)"
1567   if (cop == Op_CmpI &&
1568       cmp1_op == Op_AddI &&
1569       phase->type(cmp1->in(2)) == TypeInt::MIN &&
1570       !is_cloop_condition(this)) {
1571     if (cmp2_op == Op_ConI) {
1572       Node* ncmp2 = phase->intcon(java_add(cmp2->get_int(), min_jint));
1573       Node* ncmp = phase->transform(new CmpUNode(cmp1->in(1), ncmp2));
1574       return new BoolNode(ncmp, _test._test);
1575     } else if (cmp2_op == Op_AddI &&
1576                phase->type(cmp2->in(2)) == TypeInt::MIN &&
1577                !is_cloop_condition(this)) {
1578       Node* ncmp = phase->transform(new CmpUNode(cmp1->in(1), cmp2->in(1)));
1579       return new BoolNode(ncmp, _test._test);
1580     }
1581   }
1582 
1583   // Change "cmp (add X min_jlong) (add Y min_jlong)" into "cmpu X Y"
1584   // and    "cmp (add X min_jlong) c" into "cmpu X (c + min_jlong)"
1585   if (cop == Op_CmpL &&
1586       cmp1_op == Op_AddL &&
1587       phase->type(cmp1->in(2)) == TypeLong::MIN &&
1588       !is_cloop_condition(this)) {
1589     if (cmp2_op == Op_ConL) {
1590       Node* ncmp2 = phase->longcon(java_add(cmp2->get_long(), min_jlong));
1591       Node* ncmp = phase->transform(new CmpULNode(cmp1->in(1), ncmp2));
1592       return new BoolNode(ncmp, _test._test);
1593     } else if (cmp2_op == Op_AddL &&
1594                phase->type(cmp2->in(2)) == TypeLong::MIN &&
1595                !is_cloop_condition(this)) {
1596       Node* ncmp = phase->transform(new CmpULNode(cmp1->in(1), cmp2->in(1)));
1597       return new BoolNode(ncmp, _test._test);
1598     }
1599   }
1600 
1601   // Change "bool eq/ne (cmp (xor X 1) 0)" into "bool ne/eq (cmp X 0)".
1602   // The XOR-1 is an idiom used to flip the sense of a bool.  We flip the
1603   // test instead.
1604   const TypeInt* cmp2_type = phase->type(cmp2)->isa_int();
1605   if (cmp2_type == nullptr)  return nullptr;
1606   Node* j_xor = cmp1;
1607   if( cmp2_type == TypeInt::ZERO &&
1608       cmp1_op == Op_XorI &&
1609       j_xor->in(1) != j_xor &&          // An xor of itself is dead
1610       phase->type( j_xor->in(1) ) == TypeInt::BOOL &&
1611       phase->type( j_xor->in(2) ) == TypeInt::ONE &&
1612       (_test._test == BoolTest::eq ||
1613        _test._test == BoolTest::ne) ) {
1614     Node *ncmp = phase->transform(new CmpINode(j_xor->in(1),cmp2));
1615     return new BoolNode( ncmp, _test.negate() );
1616   }
1617 
1618   // Transform: "((x & (m - 1)) <u m)" or "(((m - 1) & x) <u m)" into "(m >u 0)"
1619   // This is case [CMPU_MASK] which is further described at the method comment of BoolNode::Value_cmpu_and_mask().
1620   if (cop == Op_CmpU && _test._test == BoolTest::lt && cmp1_op == Op_AndI) {
1621     Node* m = cmp2; // RHS: m
1622     for (int add_idx = 1; add_idx <= 2; add_idx++) { // LHS: "(m + (-1)) & x" or "x & (m + (-1))"?
1623       Node* maybe_m_minus_1 = cmp1->in(add_idx);
1624       if (maybe_m_minus_1->Opcode() == Op_AddI &&
1625           maybe_m_minus_1->in(2)->find_int_con(0) == -1 &&
1626           maybe_m_minus_1->in(1) == m) {
1627         Node* m_cmpu_0 = phase->transform(new CmpUNode(m, phase->intcon(0)));
1628         return new BoolNode(m_cmpu_0, BoolTest::gt);
1629       }
1630     }
1631   }
1632 
1633   // Change x u< 1 or x u<= 0 to x == 0
1634   // and    x u> 0 or u>= 1   to x != 0
1635   if (cop == Op_CmpU &&
1636       cmp1_op != Op_LoadRange &&
1637       (((_test._test == BoolTest::lt || _test._test == BoolTest::ge) &&
1638         cmp2->find_int_con(-1) == 1) ||
1639        ((_test._test == BoolTest::le || _test._test == BoolTest::gt) &&
1640         cmp2->find_int_con(-1) == 0))) {
1641     Node* ncmp = phase->transform(new CmpINode(cmp1, phase->intcon(0)));
1642     return new BoolNode(ncmp, _test.is_less() ? BoolTest::eq : BoolTest::ne);
1643   }
1644 
1645   // Change (arraylength <= 0) or (arraylength == 0)
1646   //   into (arraylength u<= 0)
1647   // Also change (arraylength != 0) into (arraylength u> 0)
1648   // The latter version matches the code pattern generated for
1649   // array range checks, which will more likely be optimized later.
1650   if (cop == Op_CmpI &&
1651       cmp1_op == Op_LoadRange &&
1652       cmp2->find_int_con(-1) == 0) {
1653     if (_test._test == BoolTest::le || _test._test == BoolTest::eq) {
1654       Node* ncmp = phase->transform(new CmpUNode(cmp1, cmp2));
1655       return new BoolNode(ncmp, BoolTest::le);
1656     } else if (_test._test == BoolTest::ne) {
1657       Node* ncmp = phase->transform(new CmpUNode(cmp1, cmp2));
1658       return new BoolNode(ncmp, BoolTest::gt);
1659     }
1660   }
1661 
1662   // Change "bool eq/ne (cmp (Conv2B X) 0)" into "bool eq/ne (cmp X 0)".
1663   // This is a standard idiom for branching on a boolean value.
1664   Node *c2b = cmp1;
1665   if( cmp2_type == TypeInt::ZERO &&
1666       cmp1_op == Op_Conv2B &&
1667       (_test._test == BoolTest::eq ||
1668        _test._test == BoolTest::ne) ) {
1669     Node *ncmp = phase->transform(phase->type(c2b->in(1))->isa_int()
1670        ? (Node*)new CmpINode(c2b->in(1),cmp2)
1671        : (Node*)new CmpPNode(c2b->in(1),phase->makecon(TypePtr::NULL_PTR))
1672     );
1673     return new BoolNode( ncmp, _test._test );
1674   }
1675 
1676   // Comparing a SubI against a zero is equal to comparing the SubI
1677   // arguments directly.  This only works for eq and ne comparisons
1678   // due to possible integer overflow.
1679   if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1680         (cop == Op_CmpI) &&
1681         (cmp1_op == Op_SubI) &&
1682         ( cmp2_type == TypeInt::ZERO ) ) {
1683     Node *ncmp = phase->transform( new CmpINode(cmp1->in(1),cmp1->in(2)));
1684     return new BoolNode( ncmp, _test._test );
1685   }
1686 
1687   // Same as above but with and AddI of a constant
1688   if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1689       cop == Op_CmpI &&
1690       cmp1_op == Op_AddI &&
1691       cmp1->in(2) != nullptr &&
1692       phase->type(cmp1->in(2))->isa_int() &&
1693       phase->type(cmp1->in(2))->is_int()->is_con() &&
1694       cmp2_type == TypeInt::ZERO &&
1695       !is_counted_loop_cmp(cmp) // modifying the exit test of a counted loop messes the counted loop shape
1696       ) {
1697     const TypeInt* cmp1_in2 = phase->type(cmp1->in(2))->is_int();
1698     Node *ncmp = phase->transform( new CmpINode(cmp1->in(1),phase->intcon(-cmp1_in2->_hi)));
1699     return new BoolNode( ncmp, _test._test );
1700   }
1701 
1702   // Change "bool eq/ne (cmp (phi (X -X) 0))" into "bool eq/ne (cmp X 0)"
1703   // since zero check of conditional negation of an integer is equal to
1704   // zero check of the integer directly.
1705   if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1706       (cop == Op_CmpI) &&
1707       (cmp2_type == TypeInt::ZERO) &&
1708       (cmp1_op == Op_Phi)) {
1709     // There should be a diamond phi with true path at index 1 or 2
1710     PhiNode *phi = cmp1->as_Phi();
1711     int idx_true = phi->is_diamond_phi();
1712     if (idx_true != 0) {
1713       // True input is in(idx_true) while false input is in(3 - idx_true)
1714       Node *tin = phi->in(idx_true);
1715       Node *fin = phi->in(3 - idx_true);
1716       if ((tin->Opcode() == Op_SubI) &&
1717           (phase->type(tin->in(1)) == TypeInt::ZERO) &&
1718           (tin->in(2) == fin)) {
1719         // Found conditional negation at true path, create a new CmpINode without that
1720         Node *ncmp = phase->transform(new CmpINode(fin, cmp2));
1721         return new BoolNode(ncmp, _test._test);
1722       }
1723       if ((fin->Opcode() == Op_SubI) &&
1724           (phase->type(fin->in(1)) == TypeInt::ZERO) &&
1725           (fin->in(2) == tin)) {
1726         // Found conditional negation at false path, create a new CmpINode without that
1727         Node *ncmp = phase->transform(new CmpINode(tin, cmp2));
1728         return new BoolNode(ncmp, _test._test);
1729       }
1730     }
1731   }
1732 
1733   // Change (-A vs 0) into (A vs 0) by commuting the test.  Disallow in the
1734   // most general case because negating 0x80000000 does nothing.  Needed for
1735   // the CmpF3/SubI/CmpI idiom.
1736   if( cop == Op_CmpI &&
1737       cmp1_op == Op_SubI &&
1738       cmp2_type == TypeInt::ZERO &&
1739       phase->type( cmp1->in(1) ) == TypeInt::ZERO &&
1740       phase->type( cmp1->in(2) )->higher_equal(TypeInt::SYMINT) ) {
1741     Node *ncmp = phase->transform( new CmpINode(cmp1->in(2),cmp2));
1742     return new BoolNode( ncmp, _test.commute() );
1743   }
1744 
1745   // Try to optimize signed integer comparison
1746   return fold_cmpI(phase, cmp->as_Sub(), cmp1, cop, cmp1_op, cmp2_type);
1747 
1748   //  The transformation below is not valid for either signed or unsigned
1749   //  comparisons due to wraparound concerns at MAX_VALUE and MIN_VALUE.
1750   //  This transformation can be resurrected when we are able to
1751   //  make inferences about the range of values being subtracted from
1752   //  (or added to) relative to the wraparound point.
1753   //
1754   //    // Remove +/-1's if possible.
1755   //    // "X <= Y-1" becomes "X <  Y"
1756   //    // "X+1 <= Y" becomes "X <  Y"
1757   //    // "X <  Y+1" becomes "X <= Y"
1758   //    // "X-1 <  Y" becomes "X <= Y"
1759   //    // Do not this to compares off of the counted-loop-end.  These guys are
1760   //    // checking the trip counter and they want to use the post-incremented
1761   //    // counter.  If they use the PRE-incremented counter, then the counter has
1762   //    // to be incremented in a private block on a loop backedge.
1763   //    if( du && du->cnt(this) && du->out(this)[0]->Opcode() == Op_CountedLoopEnd )
1764   //      return nullptr;
1765   //  #ifndef PRODUCT
1766   //    // Do not do this in a wash GVN pass during verification.
1767   //    // Gets triggered by too many simple optimizations to be bothered with
1768   //    // re-trying it again and again.
1769   //    if( !phase->allow_progress() ) return nullptr;
1770   //  #endif
1771   //    // Not valid for unsigned compare because of corner cases in involving zero.
1772   //    // For example, replacing "X-1 <u Y" with "X <=u Y" fails to throw an
1773   //    // exception in case X is 0 (because 0-1 turns into 4billion unsigned but
1774   //    // "0 <=u Y" is always true).
1775   //    if( cmp->Opcode() == Op_CmpU ) return nullptr;
1776   //    int cmp2_op = cmp2->Opcode();
1777   //    if( _test._test == BoolTest::le ) {
1778   //      if( cmp1_op == Op_AddI &&
1779   //          phase->type( cmp1->in(2) ) == TypeInt::ONE )
1780   //        return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::lt );
1781   //      else if( cmp2_op == Op_AddI &&
1782   //         phase->type( cmp2->in(2) ) == TypeInt::MINUS_1 )
1783   //        return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::lt );
1784   //    } else if( _test._test == BoolTest::lt ) {
1785   //      if( cmp1_op == Op_AddI &&
1786   //          phase->type( cmp1->in(2) ) == TypeInt::MINUS_1 )
1787   //        return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::le );
1788   //      else if( cmp2_op == Op_AddI &&
1789   //         phase->type( cmp2->in(2) ) == TypeInt::ONE )
1790   //        return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::le );
1791   //    }
1792 }
1793 
1794 // We use the following Lemmas/insights for the following two transformations (1) and (2):
1795 //   x & y <=u y, for any x and y           (Lemma 1, masking always results in a smaller unsigned number)
1796 //   y <u y + 1 is always true if y != -1   (Lemma 2, (uint)(-1 + 1) == (uint)(UINT_MAX + 1) which overflows)
1797 //   y <u 0 is always false for any y       (Lemma 3, 0 == UINT_MIN and nothing can be smaller than that)
1798 //
1799 // (1a) Always:     Change ((x & m) <=u m  ) or ((m & x) <=u m  ) to always true   (true by Lemma 1)
1800 // (1b) If m != -1: Change ((x & m) <u  m + 1) or ((m & x) <u  m + 1) to always true:
1801 //    x & m <=u m          is always true   // (Lemma 1)
1802 //    x & m <=u m <u m + 1 is always true   // (Lemma 2: m <u m + 1, if m != -1)
1803 //
1804 // A counter example for (1b), if we allowed m == -1:
1805 //     (x & m)  <u m + 1
1806 //     (x & -1) <u 0
1807 //      x       <u 0
1808 //   which is false for any x (Lemma 3)
1809 //
1810 // (2) Change ((x & (m - 1)) <u m) or (((m - 1) & x) <u m) to (m >u 0)
1811 // This is the off-by-one variant of the above.
1812 //
1813 // We now prove that this replacement is correct. This is the same as proving
1814 //   "m >u 0" if and only if "x & (m - 1) <u m", i.e. "m >u 0 <=> x & (m - 1) <u m"
1815 //
1816 // We use (Lemma 1) and (Lemma 3) from above.
1817 //
1818 // Case "x & (m - 1) <u m => m >u 0":
1819 //   We prove this by contradiction:
1820 //     Assume m <=u 0 which is equivalent to m == 0:
1821 //   and thus
1822 //     x & (m - 1) <u m = 0               // m == 0
1823 //     y           <u     0               // y = x & (m - 1)
1824 //   by Lemma 3, this is always false, i.e. a contradiction to our assumption.
1825 //
1826 // Case "m >u 0 => x & (m - 1) <u m":
1827 //   x & (m - 1) <=u (m - 1)              // (Lemma 1)
1828 //   x & (m - 1) <=u (m - 1) <u m         // Using assumption m >u 0, no underflow of "m - 1"
1829 //
1830 //
1831 // Note that the signed version of "m > 0":
1832 //   m > 0 <=> x & (m - 1) <u m
1833 // does not hold:
1834 //   Assume m == -1 and x == -1:
1835 //     x  & (m - 1) <u m
1836 //     -1 & -2      <u -1
1837 //     -2           <u -1
1838 //     UINT_MAX - 1 <u UINT_MAX           // Signed to unsigned numbers
1839 // which is true while
1840 //   m > 0
1841 // is false which is a contradiction.
1842 //
1843 // (1a) and (1b) is covered by this method since we can directly return a true value as type while (2) is covered
1844 // in BoolNode::Ideal since we create a new non-constant node (see [CMPU_MASK]).
1845 const Type* BoolNode::Value_cmpu_and_mask(PhaseValues* phase) const {
1846   Node* cmp = in(1);
1847   if (cmp != nullptr && cmp->Opcode() == Op_CmpU) {
1848     Node* cmp1 = cmp->in(1);
1849     Node* cmp2 = cmp->in(2);
1850 
1851     if (cmp1->Opcode() == Op_AndI) {
1852       Node* m = nullptr;
1853       if (_test._test == BoolTest::le) {
1854         // (1a) "((x & m) <=u m)", cmp2 = m
1855         m = cmp2;
1856       } else if (_test._test == BoolTest::lt && cmp2->Opcode() == Op_AddI && cmp2->in(2)->find_int_con(0) == 1) {
1857         // (1b) "(x & m) <u m + 1" and "(m & x) <u m + 1", cmp2 = m + 1
1858         Node* rhs_m = cmp2->in(1);
1859         const TypeInt* rhs_m_type = phase->type(rhs_m)->isa_int();
1860         if (rhs_m_type != nullptr && (rhs_m_type->_lo > -1 || rhs_m_type->_hi < -1)) {
1861           // Exclude any case where m == -1 is possible.
1862           m = rhs_m;
1863         }
1864       }
1865 
1866       if (cmp1->in(2) == m || cmp1->in(1) == m) {
1867         return TypeInt::ONE;
1868       }
1869     }
1870   }
1871 
1872   return nullptr;
1873 }
1874 
1875 // Simplify a Bool (convert condition codes to boolean (1 or 0)) node,
1876 // based on local information.   If the input is constant, do it.
1877 const Type* BoolNode::Value(PhaseGVN* phase) const {
1878   const Type* input_type = phase->type(in(1));
1879   if (input_type == Type::TOP) {
1880     return Type::TOP;
1881   }
1882   const Type* t = Value_cmpu_and_mask(phase);
1883   if (t != nullptr) {
1884     return t;
1885   }
1886 
1887   return _test.cc2logical(input_type);
1888 }
1889 
1890 #ifndef PRODUCT
1891 //------------------------------dump_spec--------------------------------------
1892 // Dump special per-node info
1893 void BoolNode::dump_spec(outputStream *st) const {
1894   st->print("[");
1895   _test.dump_on(st);
1896   st->print("]");
1897 }
1898 #endif
1899 
1900 //----------------------is_counted_loop_exit_test------------------------------
1901 // Returns true if node is used by a counted loop node.
1902 bool BoolNode::is_counted_loop_exit_test() {
1903   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
1904     Node* use = fast_out(i);
1905     if (use->is_CountedLoopEnd()) {
1906       return true;
1907     }
1908   }
1909   return false;
1910 }
1911 
1912 //=============================================================================
1913 //------------------------------Value------------------------------------------
1914 const Type* AbsNode::Value(PhaseGVN* phase) const {
1915   const Type* t1 = phase->type(in(1));
1916   if (t1 == Type::TOP) return Type::TOP;
1917 
1918   switch (t1->base()) {
1919   case Type::Int: {
1920     const TypeInt* ti = t1->is_int();
1921     if (ti->is_con()) {
1922       return TypeInt::make(g_uabs(ti->get_con()));
1923     }
1924     break;
1925   }
1926   case Type::Long: {
1927     const TypeLong* tl = t1->is_long();
1928     if (tl->is_con()) {
1929       return TypeLong::make(g_uabs(tl->get_con()));
1930     }
1931     break;
1932   }
1933   case Type::FloatCon:
1934     return TypeF::make(abs(t1->getf()));
1935   case Type::DoubleCon:
1936     return TypeD::make(abs(t1->getd()));
1937   default:
1938     break;
1939   }
1940 
1941   return bottom_type();
1942 }
1943 
1944 //------------------------------Identity----------------------------------------
1945 Node* AbsNode::Identity(PhaseGVN* phase) {
1946   Node* in1 = in(1);
1947   // No need to do abs for non-negative values
1948   if (phase->type(in1)->higher_equal(TypeInt::POS) ||
1949       phase->type(in1)->higher_equal(TypeLong::POS)) {
1950     return in1;
1951   }
1952   // Convert "abs(abs(x))" into "abs(x)"
1953   if (in1->Opcode() == Opcode()) {
1954     return in1;
1955   }
1956   return this;
1957 }
1958 
1959 //------------------------------Ideal------------------------------------------
1960 Node* AbsNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1961   Node* in1 = in(1);
1962   // Convert "abs(0-x)" into "abs(x)"
1963   if (in1->is_Sub() && phase->type(in1->in(1))->is_zero_type()) {
1964     set_req_X(1, in1->in(2), phase);
1965     return this;
1966   }
1967   return nullptr;
1968 }
1969 
1970 //=============================================================================
1971 //------------------------------Value------------------------------------------
1972 // Compute sqrt
1973 const Type* SqrtDNode::Value(PhaseGVN* phase) const {
1974   const Type *t1 = phase->type( in(1) );
1975   if( t1 == Type::TOP ) return Type::TOP;
1976   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1977   double d = t1->getd();
1978   if( d < 0.0 ) return Type::DOUBLE;
1979   return TypeD::make( sqrt( d ) );
1980 }
1981 
1982 const Type* SqrtFNode::Value(PhaseGVN* phase) const {
1983   const Type *t1 = phase->type( in(1) );
1984   if( t1 == Type::TOP ) return Type::TOP;
1985   if( t1->base() != Type::FloatCon ) return Type::FLOAT;
1986   float f = t1->getf();
1987   if( f < 0.0f ) return Type::FLOAT;
1988   return TypeF::make( (float)sqrt( (double)f ) );
1989 }
1990 
1991 const Type* SqrtHFNode::Value(PhaseGVN* phase) const {
1992   const Type* t1 = phase->type(in(1));
1993   if (t1 == Type::TOP) { return Type::TOP; }
1994   if (t1->base() != Type::HalfFloatCon) { return Type::HALF_FLOAT; }
1995   float f = t1->getf();
1996   if (f < 0.0f) return Type::HALF_FLOAT;
1997   return TypeH::make((float)sqrt((double)f));
1998 }
1999 
2000 static const Type* reverse_bytes(int opcode, const Type* con) {
2001   switch (opcode) {
2002     // It is valid in bytecode to load any int and pass it to a method that expects a smaller type (i.e., short, char).
2003     // Let's cast the value to match the Java behavior.
2004     case Op_ReverseBytesS:  return TypeInt::make(byteswap(static_cast<jshort>(con->is_int()->get_con())));
2005     case Op_ReverseBytesUS: return TypeInt::make(byteswap(static_cast<jchar>(con->is_int()->get_con())));
2006     case Op_ReverseBytesI:  return TypeInt::make(byteswap(con->is_int()->get_con()));
2007     case Op_ReverseBytesL:  return TypeLong::make(byteswap(con->is_long()->get_con()));
2008     default: ShouldNotReachHere();
2009   }
2010 }
2011 
2012 const Type* ReverseBytesNode::Value(PhaseGVN* phase) const {
2013   const Type* type = phase->type(in(1));
2014   if (type == Type::TOP) {
2015     return Type::TOP;
2016   }
2017   if (type->singleton()) {
2018     return reverse_bytes(Opcode(), type);
2019   }
2020   return bottom_type();
2021 }
2022 
2023 const Type* ReverseINode::Value(PhaseGVN* phase) const {
2024   const Type *t1 = phase->type( in(1) );
2025   if (t1 == Type::TOP) {
2026     return Type::TOP;
2027   }
2028   const TypeInt* t1int = t1->isa_int();
2029   if (t1int && t1int->is_con()) {
2030     jint res = reverse_bits(t1int->get_con());
2031     return TypeInt::make(res);
2032   }
2033   return bottom_type();
2034 }
2035 
2036 const Type* ReverseLNode::Value(PhaseGVN* phase) const {
2037   const Type *t1 = phase->type( in(1) );
2038   if (t1 == Type::TOP) {
2039     return Type::TOP;
2040   }
2041   const TypeLong* t1long = t1->isa_long();
2042   if (t1long && t1long->is_con()) {
2043     jlong res = reverse_bits(t1long->get_con());
2044     return TypeLong::make(res);
2045   }
2046   return bottom_type();
2047 }
2048 
2049 Node* ReverseINode::Identity(PhaseGVN* phase) {
2050   if (in(1)->Opcode() == Op_ReverseI) {
2051     return in(1)->in(1);
2052   }
2053   return this;
2054 }
2055 
2056 Node* ReverseLNode::Identity(PhaseGVN* phase) {
2057   if (in(1)->Opcode() == Op_ReverseL) {
2058     return in(1)->in(1);
2059   }
2060   return this;
2061 }