1 /* 2 * Copyright (c) 2018, 2022, Red Hat, Inc. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "gc/shenandoah/shenandoahBarrierSet.hpp" 27 #include "gc/shenandoah/shenandoahBarrierSetAssembler.hpp" 28 #include "gc/shenandoah/shenandoahForwarding.hpp" 29 #include "gc/shenandoah/shenandoahHeap.inline.hpp" 30 #include "gc/shenandoah/shenandoahHeapRegion.hpp" 31 #include "gc/shenandoah/shenandoahRuntime.hpp" 32 #include "gc/shenandoah/shenandoahThreadLocalData.hpp" 33 #include "gc/shenandoah/heuristics/shenandoahHeuristics.hpp" 34 #include "interpreter/interpreter.hpp" 35 #include "interpreter/interp_masm.hpp" 36 #include "runtime/javaThread.hpp" 37 #include "runtime/sharedRuntime.hpp" 38 #ifdef COMPILER1 39 #include "c1/c1_LIRAssembler.hpp" 40 #include "c1/c1_MacroAssembler.hpp" 41 #include "gc/shenandoah/c1/shenandoahBarrierSetC1.hpp" 42 #endif 43 44 #define __ masm-> 45 46 void ShenandoahBarrierSetAssembler::arraycopy_prologue(MacroAssembler* masm, DecoratorSet decorators, bool is_oop, 47 Register src, Register dst, Register count, RegSet saved_regs) { 48 if (is_oop) { 49 bool dest_uninitialized = (decorators & IS_DEST_UNINITIALIZED) != 0; 50 if ((ShenandoahSATBBarrier && !dest_uninitialized) || ShenandoahLoadRefBarrier) { 51 52 Label done; 53 54 // Avoid calling runtime if count == 0 55 __ cbz(count, done); 56 57 // Is GC active? 58 Address gc_state(rthread, in_bytes(ShenandoahThreadLocalData::gc_state_offset())); 59 __ ldrb(rscratch1, gc_state); 60 if (ShenandoahSATBBarrier && dest_uninitialized) { 61 __ tbz(rscratch1, ShenandoahHeap::HAS_FORWARDED_BITPOS, done); 62 } else { 63 __ mov(rscratch2, ShenandoahHeap::HAS_FORWARDED | ShenandoahHeap::MARKING); 64 __ tst(rscratch1, rscratch2); 65 __ br(Assembler::EQ, done); 66 } 67 68 __ push(saved_regs, sp); 69 if (UseCompressedOops) { 70 __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::arraycopy_barrier_narrow_oop), src, dst, count); 71 } else { 72 __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::arraycopy_barrier_oop), src, dst, count); 73 } 74 __ pop(saved_regs, sp); 75 __ bind(done); 76 } 77 } 78 } 79 80 void ShenandoahBarrierSetAssembler::shenandoah_write_barrier_pre(MacroAssembler* masm, 81 Register obj, 82 Register pre_val, 83 Register thread, 84 Register tmp, 85 bool tosca_live, 86 bool expand_call) { 87 if (ShenandoahSATBBarrier) { 88 satb_write_barrier_pre(masm, obj, pre_val, thread, tmp, rscratch1, tosca_live, expand_call); 89 } 90 } 91 92 void ShenandoahBarrierSetAssembler::satb_write_barrier_pre(MacroAssembler* masm, 93 Register obj, 94 Register pre_val, 95 Register thread, 96 Register tmp1, 97 Register tmp2, 98 bool tosca_live, 99 bool expand_call) { 100 // If expand_call is true then we expand the call_VM_leaf macro 101 // directly to skip generating the check by 102 // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp. 103 104 assert(thread == rthread, "must be"); 105 106 Label done; 107 Label runtime; 108 109 assert_different_registers(obj, pre_val, tmp1, tmp2); 110 assert(pre_val != noreg && tmp1 != noreg && tmp2 != noreg, "expecting a register"); 111 112 Address index(thread, in_bytes(ShenandoahThreadLocalData::satb_mark_queue_index_offset())); 113 Address buffer(thread, in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset())); 114 115 // Is marking active? 116 Address gc_state(thread, in_bytes(ShenandoahThreadLocalData::gc_state_offset())); 117 __ ldrb(tmp1, gc_state); 118 __ tbz(tmp1, ShenandoahHeap::MARKING_BITPOS, done); 119 120 // Do we need to load the previous value? 121 if (obj != noreg) { 122 __ load_heap_oop(pre_val, Address(obj, 0), noreg, noreg, AS_RAW); 123 } 124 125 // Is the previous value null? 126 __ cbz(pre_val, done); 127 128 // Can we store original value in the thread's buffer? 129 // Is index == 0? 130 // (The index field is typed as size_t.) 131 132 __ ldr(tmp1, index); // tmp := *index_adr 133 __ cbz(tmp1, runtime); // tmp == 0? 134 // If yes, goto runtime 135 136 __ sub(tmp1, tmp1, wordSize); // tmp := tmp - wordSize 137 __ str(tmp1, index); // *index_adr := tmp 138 __ ldr(tmp2, buffer); 139 __ add(tmp1, tmp1, tmp2); // tmp := tmp + *buffer_adr 140 141 // Record the previous value 142 __ str(pre_val, Address(tmp1, 0)); 143 __ b(done); 144 145 __ bind(runtime); 146 // save the live input values 147 RegSet saved = RegSet::of(pre_val); 148 if (tosca_live) saved += RegSet::of(r0); 149 if (obj != noreg) saved += RegSet::of(obj); 150 151 __ push(saved, sp); 152 153 // Calling the runtime using the regular call_VM_leaf mechanism generates 154 // code (generated by InterpreterMacroAssember::call_VM_leaf_base) 155 // that checks that the *(rfp+frame::interpreter_frame_last_sp) == nullptr. 156 // 157 // If we care generating the pre-barrier without a frame (e.g. in the 158 // intrinsified Reference.get() routine) then rfp might be pointing to 159 // the caller frame and so this check will most likely fail at runtime. 160 // 161 // Expanding the call directly bypasses the generation of the check. 162 // So when we do not have have a full interpreter frame on the stack 163 // expand_call should be passed true. 164 165 if (expand_call) { 166 assert(pre_val != c_rarg1, "smashed arg"); 167 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre), pre_val, thread); 168 } else { 169 __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre), pre_val, thread); 170 } 171 172 __ pop(saved, sp); 173 174 __ bind(done); 175 } 176 177 void ShenandoahBarrierSetAssembler::resolve_forward_pointer(MacroAssembler* masm, Register dst, Register tmp) { 178 assert(ShenandoahLoadRefBarrier || ShenandoahCASBarrier, "Should be enabled"); 179 Label is_null; 180 __ cbz(dst, is_null); 181 resolve_forward_pointer_not_null(masm, dst, tmp); 182 __ bind(is_null); 183 } 184 185 // IMPORTANT: This must preserve all registers, even rscratch1 and rscratch2, except those explicitly 186 // passed in. 187 void ShenandoahBarrierSetAssembler::resolve_forward_pointer_not_null(MacroAssembler* masm, Register dst, Register tmp) { 188 assert(ShenandoahLoadRefBarrier || ShenandoahCASBarrier, "Should be enabled"); 189 // The below loads the mark word, checks if the lowest two bits are 190 // set, and if so, clear the lowest two bits and copy the result 191 // to dst. Otherwise it leaves dst alone. 192 // Implementing this is surprisingly awkward. I do it here by: 193 // - Inverting the mark word 194 // - Test lowest two bits == 0 195 // - If so, set the lowest two bits 196 // - Invert the result back, and copy to dst 197 198 bool borrow_reg = (tmp == noreg); 199 if (borrow_reg) { 200 // No free registers available. Make one useful. 201 tmp = rscratch1; 202 if (tmp == dst) { 203 tmp = rscratch2; 204 } 205 __ push(RegSet::of(tmp), sp); 206 } 207 208 assert_different_registers(tmp, dst); 209 210 Label done; 211 __ ldr(tmp, Address(dst, oopDesc::mark_offset_in_bytes())); 212 __ eon(tmp, tmp, zr); 213 __ ands(zr, tmp, markWord::lock_mask_in_place); 214 __ br(Assembler::NE, done); 215 __ orr(tmp, tmp, markWord::marked_value); 216 __ eon(dst, tmp, zr); 217 __ bind(done); 218 219 if (borrow_reg) { 220 __ pop(RegSet::of(tmp), sp); 221 } 222 } 223 224 void ShenandoahBarrierSetAssembler::load_reference_barrier(MacroAssembler* masm, Register dst, Address load_addr, DecoratorSet decorators) { 225 assert(ShenandoahLoadRefBarrier, "Should be enabled"); 226 assert(dst != rscratch2, "need rscratch2"); 227 assert_different_registers(load_addr.base(), load_addr.index(), rscratch1, rscratch2); 228 229 bool is_strong = ShenandoahBarrierSet::is_strong_access(decorators); 230 bool is_weak = ShenandoahBarrierSet::is_weak_access(decorators); 231 bool is_phantom = ShenandoahBarrierSet::is_phantom_access(decorators); 232 bool is_native = ShenandoahBarrierSet::is_native_access(decorators); 233 bool is_narrow = UseCompressedOops && !is_native; 234 235 Label heap_stable, not_cset; 236 __ enter(/*strip_ret_addr*/true); 237 Address gc_state(rthread, in_bytes(ShenandoahThreadLocalData::gc_state_offset())); 238 __ ldrb(rscratch2, gc_state); 239 240 // Check for heap stability 241 if (is_strong) { 242 __ tbz(rscratch2, ShenandoahHeap::HAS_FORWARDED_BITPOS, heap_stable); 243 } else { 244 Label lrb; 245 __ tbnz(rscratch2, ShenandoahHeap::WEAK_ROOTS_BITPOS, lrb); 246 __ tbz(rscratch2, ShenandoahHeap::HAS_FORWARDED_BITPOS, heap_stable); 247 __ bind(lrb); 248 } 249 250 // use r1 for load address 251 Register result_dst = dst; 252 if (dst == r1) { 253 __ mov(rscratch1, dst); 254 dst = rscratch1; 255 } 256 257 // Save r0 and r1, unless it is an output register 258 RegSet to_save = RegSet::of(r0, r1) - result_dst; 259 __ push(to_save, sp); 260 __ lea(r1, load_addr); 261 __ mov(r0, dst); 262 263 // Test for in-cset 264 if (is_strong) { 265 __ mov(rscratch2, ShenandoahHeap::in_cset_fast_test_addr()); 266 __ lsr(rscratch1, r0, ShenandoahHeapRegion::region_size_bytes_shift_jint()); 267 __ ldrb(rscratch2, Address(rscratch2, rscratch1)); 268 __ tbz(rscratch2, 0, not_cset); 269 } 270 271 __ push_call_clobbered_registers(); 272 if (is_strong) { 273 if (is_narrow) { 274 __ mov(lr, CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_strong_narrow)); 275 } else { 276 __ mov(lr, CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_strong)); 277 } 278 } else if (is_weak) { 279 if (is_narrow) { 280 __ mov(lr, CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_weak_narrow)); 281 } else { 282 __ mov(lr, CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_weak)); 283 } 284 } else { 285 assert(is_phantom, "only remaining strength"); 286 assert(!is_narrow, "phantom access cannot be narrow"); 287 __ mov(lr, CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_phantom)); 288 } 289 __ blr(lr); 290 __ mov(rscratch1, r0); 291 __ pop_call_clobbered_registers(); 292 __ mov(r0, rscratch1); 293 294 __ bind(not_cset); 295 296 __ mov(result_dst, r0); 297 __ pop(to_save, sp); 298 299 __ bind(heap_stable); 300 __ leave(); 301 } 302 303 // 304 // Arguments: 305 // 306 // Inputs: 307 // src: oop location to load from, might be clobbered 308 // 309 // Output: 310 // dst: oop loaded from src location 311 // 312 // Kill: 313 // rscratch1 (scratch reg) 314 // 315 // Alias: 316 // dst: rscratch1 (might use rscratch1 as temporary output register to avoid clobbering src) 317 // 318 void ShenandoahBarrierSetAssembler::load_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type, 319 Register dst, Address src, Register tmp1, Register tmp2) { 320 // 1: non-reference load, no additional barrier is needed 321 if (!is_reference_type(type)) { 322 BarrierSetAssembler::load_at(masm, decorators, type, dst, src, tmp1, tmp2); 323 return; 324 } 325 326 // 2: load a reference from src location and apply LRB if needed 327 if (ShenandoahBarrierSet::need_load_reference_barrier(decorators, type)) { 328 Register result_dst = dst; 329 330 // Preserve src location for LRB 331 if (dst == src.base() || dst == src.index()) { 332 dst = rscratch1; 333 } 334 assert_different_registers(dst, src.base(), src.index()); 335 336 BarrierSetAssembler::load_at(masm, decorators, type, dst, src, tmp1, tmp2); 337 338 load_reference_barrier(masm, dst, src, decorators); 339 340 if (dst != result_dst) { 341 __ mov(result_dst, dst); 342 dst = result_dst; 343 } 344 } else { 345 BarrierSetAssembler::load_at(masm, decorators, type, dst, src, tmp1, tmp2); 346 } 347 348 // 3: apply keep-alive barrier if needed 349 if (ShenandoahBarrierSet::need_keep_alive_barrier(decorators, type)) { 350 __ enter(/*strip_ret_addr*/true); 351 __ push_call_clobbered_registers(); 352 satb_write_barrier_pre(masm /* masm */, 353 noreg /* obj */, 354 dst /* pre_val */, 355 rthread /* thread */, 356 tmp1 /* tmp1 */, 357 tmp2 /* tmp2 */, 358 true /* tosca_live */, 359 true /* expand_call */); 360 __ pop_call_clobbered_registers(); 361 __ leave(); 362 } 363 } 364 365 void ShenandoahBarrierSetAssembler::store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type, 366 Address dst, Register val, Register tmp1, Register tmp2, Register tmp3) { 367 bool on_oop = is_reference_type(type); 368 if (!on_oop) { 369 BarrierSetAssembler::store_at(masm, decorators, type, dst, val, tmp1, tmp2, tmp3); 370 return; 371 } 372 373 // flatten object address if needed 374 if (dst.index() == noreg && dst.offset() == 0) { 375 if (dst.base() != tmp3) { 376 __ mov(tmp3, dst.base()); 377 } 378 } else { 379 __ lea(tmp3, dst); 380 } 381 382 shenandoah_write_barrier_pre(masm, 383 tmp3 /* obj */, 384 tmp2 /* pre_val */, 385 rthread /* thread */, 386 tmp1 /* tmp */, 387 val != noreg /* tosca_live */, 388 false /* expand_call */); 389 390 if (val == noreg) { 391 BarrierSetAssembler::store_at(masm, decorators, type, Address(tmp3, 0), noreg, noreg, noreg, noreg); 392 } else { 393 // Barrier needs uncompressed oop for region cross check. 394 Register new_val = val; 395 if (UseCompressedOops) { 396 new_val = rscratch2; 397 __ mov(new_val, val); 398 } 399 BarrierSetAssembler::store_at(masm, decorators, type, Address(tmp3, 0), val, noreg, noreg, noreg); 400 } 401 402 } 403 404 void ShenandoahBarrierSetAssembler::try_resolve_jobject_in_native(MacroAssembler* masm, Register jni_env, 405 Register obj, Register tmp, Label& slowpath) { 406 Label done; 407 // Resolve jobject 408 BarrierSetAssembler::try_resolve_jobject_in_native(masm, jni_env, obj, tmp, slowpath); 409 410 // Check for null. 411 __ cbz(obj, done); 412 413 assert(obj != rscratch2, "need rscratch2"); 414 Address gc_state(jni_env, ShenandoahThreadLocalData::gc_state_offset() - JavaThread::jni_environment_offset()); 415 __ lea(rscratch2, gc_state); 416 __ ldrb(rscratch2, Address(rscratch2)); 417 418 // Check for heap in evacuation phase 419 __ tbnz(rscratch2, ShenandoahHeap::EVACUATION_BITPOS, slowpath); 420 421 __ bind(done); 422 } 423 424 // Special Shenandoah CAS implementation that handles false negatives due 425 // to concurrent evacuation. The service is more complex than a 426 // traditional CAS operation because the CAS operation is intended to 427 // succeed if the reference at addr exactly matches expected or if the 428 // reference at addr holds a pointer to a from-space object that has 429 // been relocated to the location named by expected. There are two 430 // races that must be addressed: 431 // a) A parallel thread may mutate the contents of addr so that it points 432 // to a different object. In this case, the CAS operation should fail. 433 // b) A parallel thread may heal the contents of addr, replacing a 434 // from-space pointer held in addr with the to-space pointer 435 // representing the new location of the object. 436 // Upon entry to cmpxchg_oop, it is assured that new_val equals null 437 // or it refers to an object that is not being evacuated out of 438 // from-space, or it refers to the to-space version of an object that 439 // is being evacuated out of from-space. 440 // 441 // By default the value held in the result register following execution 442 // of the generated code sequence is 0 to indicate failure of CAS, 443 // non-zero to indicate success. If is_cae, the result is the value most 444 // recently fetched from addr rather than a boolean success indicator. 445 // 446 // Clobbers rscratch1, rscratch2 447 void ShenandoahBarrierSetAssembler::cmpxchg_oop(MacroAssembler* masm, 448 Register addr, 449 Register expected, 450 Register new_val, 451 bool acquire, bool release, 452 bool is_cae, 453 Register result) { 454 Register tmp1 = rscratch1; 455 Register tmp2 = rscratch2; 456 bool is_narrow = UseCompressedOops; 457 Assembler::operand_size size = is_narrow ? Assembler::word : Assembler::xword; 458 459 assert_different_registers(addr, expected, tmp1, tmp2); 460 assert_different_registers(addr, new_val, tmp1, tmp2); 461 462 Label step4, done; 463 464 // There are two ways to reach this label. Initial entry into the 465 // cmpxchg_oop code expansion starts at step1 (which is equivalent 466 // to label step4). Additionally, in the rare case that four steps 467 // are required to perform the requested operation, the fourth step 468 // is the same as the first. On a second pass through step 1, 469 // control may flow through step 2 on its way to failure. It will 470 // not flow from step 2 to step 3 since we are assured that the 471 // memory at addr no longer holds a from-space pointer. 472 // 473 // The comments that immediately follow the step4 label apply only 474 // to the case in which control reaches this label by branch from 475 // step 3. 476 477 __ bind (step4); 478 479 // Step 4. CAS has failed because the value most recently fetched 480 // from addr is no longer the from-space pointer held in tmp2. If a 481 // different thread replaced the in-memory value with its equivalent 482 // to-space pointer, then CAS may still be able to succeed. The 483 // value held in the expected register has not changed. 484 // 485 // It is extremely rare we reach this point. For this reason, the 486 // implementation opts for smaller rather than potentially faster 487 // code. Ultimately, smaller code for this rare case most likely 488 // delivers higher overall throughput by enabling improved icache 489 // performance. 490 491 // Step 1. Fast-path. 492 // 493 // Try to CAS with given arguments. If successful, then we are done. 494 // 495 // No label required for step 1. 496 497 __ cmpxchg(addr, expected, new_val, size, acquire, release, false, tmp2); 498 // EQ flag set iff success. tmp2 holds value fetched. 499 500 // If expected equals null but tmp2 does not equal null, the 501 // following branches to done to report failure of CAS. If both 502 // expected and tmp2 equal null, the following branches to done to 503 // report success of CAS. There's no need for a special test of 504 // expected equal to null. 505 506 __ br(Assembler::EQ, done); 507 // if CAS failed, fall through to step 2 508 509 // Step 2. CAS has failed because the value held at addr does not 510 // match expected. This may be a false negative because the value fetched 511 // from addr (now held in tmp2) may be a from-space pointer to the 512 // original copy of same object referenced by to-space pointer expected. 513 // 514 // To resolve this, it suffices to find the forward pointer associated 515 // with fetched value. If this matches expected, retry CAS with new 516 // parameters. If this mismatches, then we have a legitimate 517 // failure, and we're done. 518 // 519 // No need for step2 label. 520 521 // overwrite tmp1 with from-space pointer fetched from memory 522 __ mov(tmp1, tmp2); 523 524 if (is_narrow) { 525 // Decode tmp1 in order to resolve its forward pointer 526 __ decode_heap_oop(tmp1, tmp1); 527 } 528 resolve_forward_pointer(masm, tmp1); 529 // Encode tmp1 to compare against expected. 530 __ encode_heap_oop(tmp1, tmp1); 531 532 // Does forwarded value of fetched from-space pointer match original 533 // value of expected? If tmp1 holds null, this comparison will fail 534 // because we know from step1 that expected is not null. There is 535 // no need for a separate test for tmp1 (the value originally held 536 // in memory) equal to null. 537 __ cmp(tmp1, expected); 538 539 // If not, then the failure was legitimate and we're done. 540 // Branching to done with NE condition denotes failure. 541 __ br(Assembler::NE, done); 542 543 // Fall through to step 3. No need for step3 label. 544 545 // Step 3. We've confirmed that the value originally held in memory 546 // (now held in tmp2) pointed to from-space version of original 547 // expected value. Try the CAS again with the from-space expected 548 // value. If it now succeeds, we're good. 549 // 550 // Note: tmp2 holds encoded from-space pointer that matches to-space 551 // object residing at expected. tmp2 is the new "expected". 552 553 // Note that macro implementation of __cmpxchg cannot use same register 554 // tmp2 for result and expected since it overwrites result before it 555 // compares result with expected. 556 __ cmpxchg(addr, tmp2, new_val, size, acquire, release, false, noreg); 557 // EQ flag set iff success. tmp2 holds value fetched, tmp1 (rscratch1) clobbered. 558 559 // If fetched value did not equal the new expected, this could 560 // still be a false negative because some other thread may have 561 // newly overwritten the memory value with its to-space equivalent. 562 __ br(Assembler::NE, step4); 563 564 if (is_cae) { 565 // We're falling through to done to indicate success. Success 566 // with is_cae is denoted by returning the value of expected as 567 // result. 568 __ mov(tmp2, expected); 569 } 570 571 __ bind(done); 572 // At entry to done, the Z (EQ) flag is on iff if the CAS 573 // operation was successful. Additionally, if is_cae, tmp2 holds 574 // the value most recently fetched from addr. In this case, success 575 // is denoted by tmp2 matching expected. 576 577 if (is_cae) { 578 __ mov(result, tmp2); 579 } else { 580 __ cset(result, Assembler::EQ); 581 } 582 } 583 584 #undef __ 585 586 #ifdef COMPILER1 587 588 #define __ ce->masm()-> 589 590 void ShenandoahBarrierSetAssembler::gen_pre_barrier_stub(LIR_Assembler* ce, ShenandoahPreBarrierStub* stub) { 591 ShenandoahBarrierSetC1* bs = (ShenandoahBarrierSetC1*)BarrierSet::barrier_set()->barrier_set_c1(); 592 // At this point we know that marking is in progress. 593 // If do_load() is true then we have to emit the 594 // load of the previous value; otherwise it has already 595 // been loaded into _pre_val. 596 597 __ bind(*stub->entry()); 598 599 assert(stub->pre_val()->is_register(), "Precondition."); 600 601 Register pre_val_reg = stub->pre_val()->as_register(); 602 603 if (stub->do_load()) { 604 ce->mem2reg(stub->addr(), stub->pre_val(), T_OBJECT, stub->patch_code(), stub->info(), false /*wide*/); 605 } 606 __ cbz(pre_val_reg, *stub->continuation()); 607 ce->store_parameter(stub->pre_val()->as_register(), 0); 608 __ far_call(RuntimeAddress(bs->pre_barrier_c1_runtime_code_blob()->code_begin())); 609 __ b(*stub->continuation()); 610 } 611 612 void ShenandoahBarrierSetAssembler::gen_load_reference_barrier_stub(LIR_Assembler* ce, ShenandoahLoadReferenceBarrierStub* stub) { 613 ShenandoahBarrierSetC1* bs = (ShenandoahBarrierSetC1*)BarrierSet::barrier_set()->barrier_set_c1(); 614 __ bind(*stub->entry()); 615 616 DecoratorSet decorators = stub->decorators(); 617 bool is_strong = ShenandoahBarrierSet::is_strong_access(decorators); 618 bool is_weak = ShenandoahBarrierSet::is_weak_access(decorators); 619 bool is_phantom = ShenandoahBarrierSet::is_phantom_access(decorators); 620 bool is_native = ShenandoahBarrierSet::is_native_access(decorators); 621 622 Register obj = stub->obj()->as_register(); 623 Register res = stub->result()->as_register(); 624 Register addr = stub->addr()->as_pointer_register(); 625 Register tmp1 = stub->tmp1()->as_register(); 626 Register tmp2 = stub->tmp2()->as_register(); 627 628 assert(res == r0, "result must arrive in r0"); 629 630 if (res != obj) { 631 __ mov(res, obj); 632 } 633 634 if (is_strong) { 635 // Check for object in cset. 636 __ mov(tmp2, ShenandoahHeap::in_cset_fast_test_addr()); 637 __ lsr(tmp1, res, ShenandoahHeapRegion::region_size_bytes_shift_jint()); 638 __ ldrb(tmp2, Address(tmp2, tmp1)); 639 __ cbz(tmp2, *stub->continuation()); 640 } 641 642 ce->store_parameter(res, 0); 643 ce->store_parameter(addr, 1); 644 if (is_strong) { 645 if (is_native) { 646 __ far_call(RuntimeAddress(bs->load_reference_barrier_strong_native_rt_code_blob()->code_begin())); 647 } else { 648 __ far_call(RuntimeAddress(bs->load_reference_barrier_strong_rt_code_blob()->code_begin())); 649 } 650 } else if (is_weak) { 651 __ far_call(RuntimeAddress(bs->load_reference_barrier_weak_rt_code_blob()->code_begin())); 652 } else { 653 assert(is_phantom, "only remaining strength"); 654 __ far_call(RuntimeAddress(bs->load_reference_barrier_phantom_rt_code_blob()->code_begin())); 655 } 656 657 __ b(*stub->continuation()); 658 } 659 660 #undef __ 661 662 #define __ sasm-> 663 664 void ShenandoahBarrierSetAssembler::generate_c1_pre_barrier_runtime_stub(StubAssembler* sasm) { 665 __ prologue("shenandoah_pre_barrier", false); 666 667 // arg0 : previous value of memory 668 669 BarrierSet* bs = BarrierSet::barrier_set(); 670 671 const Register pre_val = r0; 672 const Register thread = rthread; 673 const Register tmp = rscratch1; 674 675 Address queue_index(thread, in_bytes(ShenandoahThreadLocalData::satb_mark_queue_index_offset())); 676 Address buffer(thread, in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset())); 677 678 Label done; 679 Label runtime; 680 681 // Is marking still active? 682 Address gc_state(thread, in_bytes(ShenandoahThreadLocalData::gc_state_offset())); 683 __ ldrb(tmp, gc_state); 684 __ tbz(tmp, ShenandoahHeap::MARKING_BITPOS, done); 685 686 // Can we store original value in the thread's buffer? 687 __ ldr(tmp, queue_index); 688 __ cbz(tmp, runtime); 689 690 __ sub(tmp, tmp, wordSize); 691 __ str(tmp, queue_index); 692 __ ldr(rscratch2, buffer); 693 __ add(tmp, tmp, rscratch2); 694 __ load_parameter(0, rscratch2); 695 __ str(rscratch2, Address(tmp, 0)); 696 __ b(done); 697 698 __ bind(runtime); 699 __ push_call_clobbered_registers(); 700 __ load_parameter(0, pre_val); 701 __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre), pre_val, thread); 702 __ pop_call_clobbered_registers(); 703 __ bind(done); 704 705 __ epilogue(); 706 } 707 708 void ShenandoahBarrierSetAssembler::generate_c1_load_reference_barrier_runtime_stub(StubAssembler* sasm, DecoratorSet decorators) { 709 __ prologue("shenandoah_load_reference_barrier", false); 710 // arg0 : object to be resolved 711 712 __ push_call_clobbered_registers(); 713 __ load_parameter(0, r0); 714 __ load_parameter(1, r1); 715 716 bool is_strong = ShenandoahBarrierSet::is_strong_access(decorators); 717 bool is_weak = ShenandoahBarrierSet::is_weak_access(decorators); 718 bool is_phantom = ShenandoahBarrierSet::is_phantom_access(decorators); 719 bool is_native = ShenandoahBarrierSet::is_native_access(decorators); 720 if (is_strong) { 721 if (is_native) { 722 __ mov(lr, CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_strong)); 723 } else { 724 if (UseCompressedOops) { 725 __ mov(lr, CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_strong_narrow)); 726 } else { 727 __ mov(lr, CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_strong)); 728 } 729 } 730 } else if (is_weak) { 731 assert(!is_native, "weak must not be called off-heap"); 732 if (UseCompressedOops) { 733 __ mov(lr, CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_weak_narrow)); 734 } else { 735 __ mov(lr, CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_weak)); 736 } 737 } else { 738 assert(is_phantom, "only remaining strength"); 739 assert(is_native, "phantom must only be called off-heap"); 740 __ mov(lr, CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_phantom)); 741 } 742 __ blr(lr); 743 __ mov(rscratch1, r0); 744 __ pop_call_clobbered_registers(); 745 __ mov(r0, rscratch1); 746 747 __ epilogue(); 748 } 749 750 #undef __ 751 752 #endif // COMPILER1