1 /*
   2  * Copyright (c) 2018, 2023, Red Hat, Inc. All rights reserved.
   3  * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shenandoah/shenandoahBarrierSet.hpp"
  30 #include "gc/shenandoah/shenandoahCardTable.hpp"
  31 #include "gc/shenandoah/shenandoahForwarding.hpp"
  32 #include "gc/shenandoah/shenandoahHeap.hpp"
  33 #include "gc/shenandoah/shenandoahRuntime.hpp"
  34 #include "gc/shenandoah/shenandoahThreadLocalData.hpp"
  35 #include "gc/shenandoah/c2/shenandoahBarrierSetC2.hpp"
  36 #include "gc/shenandoah/c2/shenandoahSupport.hpp"
  37 #include "gc/shenandoah/heuristics/shenandoahHeuristics.hpp"
  38 #include "opto/arraycopynode.hpp"
  39 #include "opto/escape.hpp"
  40 #include "opto/graphKit.hpp"
  41 #include "opto/idealKit.hpp"
  42 #include "opto/macro.hpp"
  43 #include "opto/movenode.hpp"
  44 #include "opto/narrowptrnode.hpp"
  45 #include "opto/rootnode.hpp"
  46 #include "opto/runtime.hpp"
  47 
  48 ShenandoahBarrierSetC2* ShenandoahBarrierSetC2::bsc2() {
  49   return reinterpret_cast<ShenandoahBarrierSetC2*>(BarrierSet::barrier_set()->barrier_set_c2());
  50 }
  51 
  52 ShenandoahBarrierSetC2State::ShenandoahBarrierSetC2State(Arena* comp_arena)
  53   : _load_reference_barriers(new (comp_arena) GrowableArray<ShenandoahLoadReferenceBarrierNode*>(comp_arena, 8,  0, nullptr)) {
  54 }
  55 
  56 int ShenandoahBarrierSetC2State::load_reference_barriers_count() const {
  57   return _load_reference_barriers->length();
  58 }
  59 
  60 ShenandoahLoadReferenceBarrierNode* ShenandoahBarrierSetC2State::load_reference_barrier(int idx) const {
  61   return _load_reference_barriers->at(idx);
  62 }
  63 
  64 void ShenandoahBarrierSetC2State::add_load_reference_barrier(ShenandoahLoadReferenceBarrierNode * n) {
  65   assert(!_load_reference_barriers->contains(n), "duplicate entry in barrier list");
  66   _load_reference_barriers->append(n);
  67 }
  68 
  69 void ShenandoahBarrierSetC2State::remove_load_reference_barrier(ShenandoahLoadReferenceBarrierNode * n) {
  70   if (_load_reference_barriers->contains(n)) {
  71     _load_reference_barriers->remove(n);
  72   }
  73 }
  74 
  75 #define __ kit->
  76 
  77 bool ShenandoahBarrierSetC2::satb_can_remove_pre_barrier(GraphKit* kit, PhaseValues* phase, Node* adr,
  78                                                          BasicType bt, uint adr_idx) const {
  79   intptr_t offset = 0;
  80   Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  81   AllocateNode* alloc = AllocateNode::Ideal_allocation(base);
  82 
  83   if (offset == Type::OffsetBot) {
  84     return false; // cannot unalias unless there are precise offsets
  85   }
  86 
  87   if (alloc == nullptr) {
  88     return false; // No allocation found
  89   }
  90 
  91   intptr_t size_in_bytes = type2aelembytes(bt);
  92 
  93   Node* mem = __ memory(adr_idx); // start searching here...
  94 
  95   for (int cnt = 0; cnt < 50; cnt++) {
  96 
  97     if (mem->is_Store()) {
  98 
  99       Node* st_adr = mem->in(MemNode::Address);
 100       intptr_t st_offset = 0;
 101       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 102 
 103       if (st_base == nullptr) {
 104         break; // inscrutable pointer
 105       }
 106 
 107       // Break we have found a store with same base and offset as ours so break
 108       if (st_base == base && st_offset == offset) {
 109         break;
 110       }
 111 
 112       if (st_offset != offset && st_offset != Type::OffsetBot) {
 113         const int MAX_STORE = BytesPerLong;
 114         if (st_offset >= offset + size_in_bytes ||
 115             st_offset <= offset - MAX_STORE ||
 116             st_offset <= offset - mem->as_Store()->memory_size()) {
 117           // Success:  The offsets are provably independent.
 118           // (You may ask, why not just test st_offset != offset and be done?
 119           // The answer is that stores of different sizes can co-exist
 120           // in the same sequence of RawMem effects.  We sometimes initialize
 121           // a whole 'tile' of array elements with a single jint or jlong.)
 122           mem = mem->in(MemNode::Memory);
 123           continue; // advance through independent store memory
 124         }
 125       }
 126 
 127       if (st_base != base
 128           && MemNode::detect_ptr_independence(base, alloc, st_base,
 129                                               AllocateNode::Ideal_allocation(st_base),
 130                                               phase)) {
 131         // Success:  The bases are provably independent.
 132         mem = mem->in(MemNode::Memory);
 133         continue; // advance through independent store memory
 134       }
 135     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 136 
 137       InitializeNode* st_init = mem->in(0)->as_Initialize();
 138       AllocateNode* st_alloc = st_init->allocation();
 139 
 140       // Make sure that we are looking at the same allocation site.
 141       // The alloc variable is guaranteed to not be null here from earlier check.
 142       if (alloc == st_alloc) {
 143         // Check that the initialization is storing null so that no previous store
 144         // has been moved up and directly write a reference
 145         Node* captured_store = st_init->find_captured_store(offset,
 146                                                             type2aelembytes(T_OBJECT),
 147                                                             phase);
 148         if (captured_store == nullptr || captured_store == st_init->zero_memory()) {
 149           return true;
 150         }
 151       }
 152     }
 153 
 154     // Unless there is an explicit 'continue', we must bail out here,
 155     // because 'mem' is an inscrutable memory state (e.g., a call).
 156     break;
 157   }
 158 
 159   return false;
 160 }
 161 
 162 #undef __
 163 #define __ ideal.
 164 
 165 void ShenandoahBarrierSetC2::satb_write_barrier_pre(GraphKit* kit,
 166                                                     bool do_load,
 167                                                     Node* obj,
 168                                                     Node* adr,
 169                                                     uint alias_idx,
 170                                                     Node* val,
 171                                                     const TypeOopPtr* val_type,
 172                                                     Node* pre_val,
 173                                                     BasicType bt) const {
 174   // Some sanity checks
 175   // Note: val is unused in this routine.
 176 
 177   if (do_load) {
 178     // We need to generate the load of the previous value
 179     assert(adr != nullptr, "where are loading from?");
 180     assert(pre_val == nullptr, "loaded already?");
 181     assert(val_type != nullptr, "need a type");
 182 
 183     if (ReduceInitialCardMarks
 184         && satb_can_remove_pre_barrier(kit, &kit->gvn(), adr, bt, alias_idx)) {
 185       return;
 186     }
 187 
 188   } else {
 189     // In this case both val_type and alias_idx are unused.
 190     assert(pre_val != nullptr, "must be loaded already");
 191     // Nothing to be done if pre_val is null.
 192     if (pre_val->bottom_type() == TypePtr::NULL_PTR) return;
 193     assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
 194   }
 195   assert(bt == T_OBJECT, "or we shouldn't be here");
 196 
 197   IdealKit ideal(kit, true);
 198 
 199   Node* tls = __ thread(); // ThreadLocalStorage
 200 
 201   Node* no_base = __ top();
 202   Node* zero  = __ ConI(0);
 203   Node* zeroX = __ ConX(0);
 204 
 205   float likely  = PROB_LIKELY(0.999);
 206   float unlikely  = PROB_UNLIKELY(0.999);
 207 
 208   // Offsets into the thread
 209   const int index_offset   = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_index_offset());
 210   const int buffer_offset  = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset());
 211 
 212   // Now the actual pointers into the thread
 213   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
 214   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
 215 
 216   // Now some of the values
 217   Node* marking;
 218   Node* gc_state = __ AddP(no_base, tls, __ ConX(in_bytes(ShenandoahThreadLocalData::gc_state_offset())));
 219   Node* ld = __ load(__ ctrl(), gc_state, TypeInt::BYTE, T_BYTE, Compile::AliasIdxRaw);
 220   marking = __ AndI(ld, __ ConI(ShenandoahHeap::MARKING));
 221   assert(ShenandoahBarrierC2Support::is_gc_state_load(ld), "Should match the shape");
 222 
 223   // if (!marking)
 224   __ if_then(marking, BoolTest::ne, zero, unlikely); {
 225     BasicType index_bt = TypeX_X->basic_type();
 226     assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading Shenandoah SATBMarkQueue::_index with wrong size.");
 227     Node* index   = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);
 228 
 229     if (do_load) {
 230       // load original value
 231       // alias_idx correct??
 232       pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
 233     }
 234 
 235     // if (pre_val != nullptr)
 236     __ if_then(pre_val, BoolTest::ne, kit->null()); {
 237       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
 238 
 239       // is the queue for this thread full?
 240       __ if_then(index, BoolTest::ne, zeroX, likely); {
 241 
 242         // decrement the index
 243         Node* next_index = kit->gvn().transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
 244 
 245         // Now get the buffer location we will log the previous value into and store it
 246         Node *log_addr = __ AddP(no_base, buffer, next_index);
 247         __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered);
 248         // update the index
 249         __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered);
 250 
 251       } __ else_(); {
 252 
 253         // logging buffer is full, call the runtime
 254         const TypeFunc *tf = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type();
 255         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry), "shenandoah_wb_pre", pre_val, tls);
 256       } __ end_if();  // (!index)
 257     } __ end_if();  // (pre_val != nullptr)
 258   } __ end_if();  // (!marking)
 259 
 260   // Final sync IdealKit and GraphKit.
 261   kit->final_sync(ideal);
 262 
 263   if (ShenandoahSATBBarrier && adr != nullptr) {
 264     Node* c = kit->control();
 265     Node* call = c->in(1)->in(1)->in(1)->in(0);
 266     assert(is_shenandoah_wb_pre_call(call), "shenandoah_wb_pre call expected");
 267     call->add_req(adr);
 268   }
 269 }
 270 
 271 bool ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(Node* call) {
 272   return call->is_CallLeaf() &&
 273          call->as_CallLeaf()->entry_point() == CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry);
 274 }
 275 
 276 bool ShenandoahBarrierSetC2::is_shenandoah_lrb_call(Node* call) {
 277   if (!call->is_CallLeaf()) {
 278     return false;
 279   }
 280 
 281   address entry_point = call->as_CallLeaf()->entry_point();
 282   return (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_strong)) ||
 283          (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_strong_narrow)) ||
 284          (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_weak)) ||
 285          (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_weak_narrow)) ||
 286          (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_phantom));
 287 }
 288 
 289 bool ShenandoahBarrierSetC2::is_shenandoah_marking_if(PhaseValues* phase, Node* n) {
 290   if (n->Opcode() != Op_If) {
 291     return false;
 292   }
 293 
 294   Node* bol = n->in(1);
 295   assert(bol->is_Bool(), "");
 296   Node* cmpx = bol->in(1);
 297   if (bol->as_Bool()->_test._test == BoolTest::ne &&
 298       cmpx->is_Cmp() && cmpx->in(2) == phase->intcon(0) &&
 299       is_shenandoah_state_load(cmpx->in(1)->in(1)) &&
 300       cmpx->in(1)->in(2)->is_Con() &&
 301       cmpx->in(1)->in(2) == phase->intcon(ShenandoahHeap::MARKING)) {
 302     return true;
 303   }
 304 
 305   return false;
 306 }
 307 
 308 bool ShenandoahBarrierSetC2::is_shenandoah_state_load(Node* n) {
 309   if (!n->is_Load()) return false;
 310   const int state_offset = in_bytes(ShenandoahThreadLocalData::gc_state_offset());
 311   return n->in(2)->is_AddP() && n->in(2)->in(2)->Opcode() == Op_ThreadLocal
 312          && n->in(2)->in(3)->is_Con()
 313          && n->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == state_offset;
 314 }
 315 
 316 void ShenandoahBarrierSetC2::shenandoah_write_barrier_pre(GraphKit* kit,
 317                                                           bool do_load,
 318                                                           Node* obj,
 319                                                           Node* adr,
 320                                                           uint alias_idx,
 321                                                           Node* val,
 322                                                           const TypeOopPtr* val_type,
 323                                                           Node* pre_val,
 324                                                           BasicType bt) const {
 325   if (ShenandoahSATBBarrier) {
 326     IdealKit ideal(kit);
 327     kit->sync_kit(ideal);
 328 
 329     satb_write_barrier_pre(kit, do_load, obj, adr, alias_idx, val, val_type, pre_val, bt);
 330 
 331     ideal.sync_kit(kit);
 332     kit->final_sync(ideal);
 333   }
 334 }
 335 
 336 // Helper that guards and inserts a pre-barrier.
 337 void ShenandoahBarrierSetC2::insert_pre_barrier(GraphKit* kit, Node* base_oop, Node* offset,
 338                                                 Node* pre_val, bool need_mem_bar) const {
 339   // We could be accessing the referent field of a reference object. If so, when Shenandoah
 340   // is enabled, we need to log the value in the referent field in an SATB buffer.
 341   // This routine performs some compile time filters and generates suitable
 342   // runtime filters that guard the pre-barrier code.
 343   // Also add memory barrier for non volatile load from the referent field
 344   // to prevent commoning of loads across safepoint.
 345 
 346   // Some compile time checks.
 347 
 348   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
 349   const TypeX* otype = offset->find_intptr_t_type();
 350   if (otype != nullptr && otype->is_con() &&
 351       otype->get_con() != java_lang_ref_Reference::referent_offset()) {
 352     // Constant offset but not the reference_offset so just return
 353     return;
 354   }
 355 
 356   // We only need to generate the runtime guards for instances.
 357   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
 358   if (btype != nullptr) {
 359     if (btype->isa_aryptr()) {
 360       // Array type so nothing to do
 361       return;
 362     }
 363 
 364     const TypeInstPtr* itype = btype->isa_instptr();
 365     if (itype != nullptr) {
 366       // Can the klass of base_oop be statically determined to be
 367       // _not_ a sub-class of Reference and _not_ Object?
 368       ciKlass* klass = itype->instance_klass();
 369       if (klass->is_loaded() &&
 370           !klass->is_subtype_of(kit->env()->Reference_klass()) &&
 371           !kit->env()->Object_klass()->is_subtype_of(klass)) {
 372         return;
 373       }
 374     }
 375   }
 376 
 377   // The compile time filters did not reject base_oop/offset so
 378   // we need to generate the following runtime filters
 379   //
 380   // if (offset == java_lang_ref_Reference::_reference_offset) {
 381   //   if (instance_of(base, java.lang.ref.Reference)) {
 382   //     pre_barrier(_, pre_val, ...);
 383   //   }
 384   // }
 385 
 386   float likely   = PROB_LIKELY(  0.999);
 387   float unlikely = PROB_UNLIKELY(0.999);
 388 
 389   IdealKit ideal(kit);
 390 
 391   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset());
 392 
 393   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
 394       // Update graphKit memory and control from IdealKit.
 395       kit->sync_kit(ideal);
 396 
 397       Node* ref_klass_con = kit->makecon(TypeKlassPtr::make(kit->env()->Reference_klass()));
 398       Node* is_instof = kit->gen_instanceof(base_oop, ref_klass_con);
 399 
 400       // Update IdealKit memory and control from graphKit.
 401       __ sync_kit(kit);
 402 
 403       Node* one = __ ConI(1);
 404       // is_instof == 0 if base_oop == nullptr
 405       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
 406 
 407         // Update graphKit from IdeakKit.
 408         kit->sync_kit(ideal);
 409 
 410         // Use the pre-barrier to record the value in the referent field
 411         satb_write_barrier_pre(kit, false /* do_load */,
 412                                nullptr /* obj */, nullptr /* adr */, max_juint /* alias_idx */, nullptr /* val */, nullptr /* val_type */,
 413                                pre_val /* pre_val */,
 414                                T_OBJECT);
 415         if (need_mem_bar) {
 416           // Add memory barrier to prevent commoning reads from this field
 417           // across safepoint since GC can change its value.
 418           kit->insert_mem_bar(Op_MemBarCPUOrder);
 419         }
 420         // Update IdealKit from graphKit.
 421         __ sync_kit(kit);
 422 
 423       } __ end_if(); // _ref_type != ref_none
 424   } __ end_if(); // offset == referent_offset
 425 
 426   // Final sync IdealKit and GraphKit.
 427   kit->final_sync(ideal);
 428 }
 429 
 430 Node* ShenandoahBarrierSetC2::byte_map_base_node(GraphKit* kit) const {
 431   BarrierSet* bs = BarrierSet::barrier_set();
 432   ShenandoahBarrierSet* ctbs = barrier_set_cast<ShenandoahBarrierSet>(bs);
 433   CardTable::CardValue* card_table_base = ctbs->card_table()->byte_map_base();
 434   if (card_table_base != nullptr) {
 435     return kit->makecon(TypeRawPtr::make((address)card_table_base));
 436   } else {
 437     return kit->null();
 438   }
 439 }
 440 
 441 void ShenandoahBarrierSetC2::post_barrier(GraphKit* kit,
 442                                           Node* ctl,
 443                                           Node* oop_store,
 444                                           Node* obj,
 445                                           Node* adr,
 446                                           uint  adr_idx,
 447                                           Node* val,
 448                                           BasicType bt,
 449                                           bool use_precise) const {
 450   assert(ShenandoahCardBarrier, "Should have been checked by caller");
 451 
 452   // No store check needed if we're storing a null.
 453   if (val != nullptr && val->is_Con()) {
 454     // must be either an oop or NULL
 455     const Type* t = val->bottom_type();
 456     if (t == TypePtr::NULL_PTR || t == Type::TOP)
 457       return;
 458   }
 459 
 460   if (ReduceInitialCardMarks && obj == kit->just_allocated_object(kit->control())) {
 461     // We can skip marks on a freshly-allocated object in Eden.
 462     // Keep this code in sync with new_deferred_store_barrier() in runtime.cpp.
 463     // That routine informs GC to take appropriate compensating steps,
 464     // upon a slow-path allocation, so as to make this card-mark
 465     // elision safe.
 466     return;
 467   }
 468 
 469   if (!use_precise) {
 470     // All card marks for a (non-array) instance are in one place:
 471     adr = obj;
 472   }
 473   // (Else it's an array (or unknown), and we want more precise card marks.)
 474   assert(adr != nullptr, "");
 475 
 476   IdealKit ideal(kit, true);
 477 
 478   // Convert the pointer to an int prior to doing math on it
 479   Node* cast = __ CastPX(__ ctrl(), adr);
 480 
 481   // Divide by card size
 482   Node* card_offset = __ URShiftX( cast, __ ConI(CardTable::card_shift()) );
 483 
 484   // Combine card table base and card offset
 485   Node* card_adr = __ AddP(__ top(), byte_map_base_node(kit), card_offset );
 486 
 487   // Get the alias_index for raw card-mark memory
 488   int adr_type = Compile::AliasIdxRaw;
 489   Node*   zero = __ ConI(0); // Dirty card value
 490 
 491   if (UseCondCardMark) {
 492     // The classic GC reference write barrier is typically implemented
 493     // as a store into the global card mark table.  Unfortunately
 494     // unconditional stores can result in false sharing and excessive
 495     // coherence traffic as well as false transactional aborts.
 496     // UseCondCardMark enables MP "polite" conditional card mark
 497     // stores.  In theory we could relax the load from ctrl() to
 498     // no_ctrl, but that doesn't buy much latitude.
 499     Node* card_val = __ load( __ ctrl(), card_adr, TypeInt::BYTE, T_BYTE, adr_type);
 500     __ if_then(card_val, BoolTest::ne, zero);
 501   }
 502 
 503   // Smash zero into card
 504   __ store(__ ctrl(), card_adr, zero, T_BYTE, adr_type, MemNode::unordered);
 505 
 506   if (UseCondCardMark) {
 507     __ end_if();
 508   }
 509 
 510   // Final sync IdealKit and GraphKit.
 511   kit->final_sync(ideal);
 512 }
 513 
 514 #undef __
 515 
 516 const TypeFunc* ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type() {
 517   const Type **fields = TypeTuple::fields(2);
 518   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 519   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
 520   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 521 
 522   // create result type (range)
 523   fields = TypeTuple::fields(0);
 524   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 525 
 526   return TypeFunc::make(domain, range);
 527 }
 528 
 529 const TypeFunc* ShenandoahBarrierSetC2::shenandoah_clone_barrier_Type() {
 530   const Type **fields = TypeTuple::fields(1);
 531   fields[TypeFunc::Parms+0] = TypeOopPtr::NOTNULL; // src oop
 532   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 533 
 534   // create result type (range)
 535   fields = TypeTuple::fields(0);
 536   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 537 
 538   return TypeFunc::make(domain, range);
 539 }
 540 
 541 const TypeFunc* ShenandoahBarrierSetC2::shenandoah_load_reference_barrier_Type() {
 542   const Type **fields = TypeTuple::fields(2);
 543   fields[TypeFunc::Parms+0] = TypeOopPtr::BOTTOM; // original field value
 544   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // original load address
 545 
 546   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 547 
 548   // create result type (range)
 549   fields = TypeTuple::fields(1);
 550   fields[TypeFunc::Parms+0] = TypeOopPtr::BOTTOM;
 551   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 552 
 553   return TypeFunc::make(domain, range);
 554 }
 555 
 556 Node* ShenandoahBarrierSetC2::store_at_resolved(C2Access& access, C2AccessValue& val) const {
 557   DecoratorSet decorators = access.decorators();
 558 
 559   const TypePtr* adr_type = access.addr().type();
 560   Node* adr = access.addr().node();
 561 
 562   if (!access.is_oop()) {
 563     return BarrierSetC2::store_at_resolved(access, val);
 564   }
 565 
 566   if (access.is_parse_access()) {
 567     C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access);
 568     GraphKit* kit = parse_access.kit();
 569 
 570     uint adr_idx = kit->C->get_alias_index(adr_type);
 571     assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
 572     shenandoah_write_barrier_pre(kit, true /* do_load */, /*kit->control(),*/ access.base(), adr, adr_idx, val.node(),
 573                                  static_cast<const TypeOopPtr*>(val.type()), nullptr /* pre_val */, access.type());
 574 
 575     Node* result = BarrierSetC2::store_at_resolved(access, val);
 576 
 577     if (ShenandoahCardBarrier) {
 578       const bool anonymous = (decorators & ON_UNKNOWN_OOP_REF) != 0;
 579       const bool is_array = (decorators & IS_ARRAY) != 0;
 580       const bool use_precise = is_array || anonymous;
 581       post_barrier(kit, kit->control(), access.raw_access(), access.base(),
 582                    adr, adr_idx, val.node(), access.type(), use_precise);
 583     }
 584     return result;
 585   } else {
 586     assert(access.is_opt_access(), "only for optimization passes");
 587     assert(((decorators & C2_TIGHTLY_COUPLED_ALLOC) != 0 || !ShenandoahSATBBarrier) && (decorators & C2_ARRAY_COPY) != 0, "unexpected caller of this code");
 588     return BarrierSetC2::store_at_resolved(access, val);
 589   }
 590 }
 591 
 592 Node* ShenandoahBarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const {
 593   // 1: non-reference load, no additional barrier is needed
 594   if (!access.is_oop()) {
 595     return BarrierSetC2::load_at_resolved(access, val_type);
 596   }
 597 
 598   Node* load = BarrierSetC2::load_at_resolved(access, val_type);
 599   DecoratorSet decorators = access.decorators();
 600   BasicType type = access.type();
 601 
 602   // 2: apply LRB if needed
 603   if (ShenandoahBarrierSet::need_load_reference_barrier(decorators, type)) {
 604     load = new ShenandoahLoadReferenceBarrierNode(nullptr, load, decorators);
 605     if (access.is_parse_access()) {
 606       load = static_cast<C2ParseAccess &>(access).kit()->gvn().transform(load);
 607     } else {
 608       load = static_cast<C2OptAccess &>(access).gvn().transform(load);
 609     }
 610   }
 611 
 612   // 3: apply keep-alive barrier for java.lang.ref.Reference if needed
 613   if (ShenandoahBarrierSet::need_keep_alive_barrier(decorators, type)) {
 614     Node* top = Compile::current()->top();
 615     Node* adr = access.addr().node();
 616     Node* offset = adr->is_AddP() ? adr->in(AddPNode::Offset) : top;
 617     Node* obj = access.base();
 618 
 619     bool unknown = (decorators & ON_UNKNOWN_OOP_REF) != 0;
 620     bool on_weak_ref = (decorators & (ON_WEAK_OOP_REF | ON_PHANTOM_OOP_REF)) != 0;
 621     bool keep_alive = (decorators & AS_NO_KEEPALIVE) == 0;
 622 
 623     // If we are reading the value of the referent field of a Reference
 624     // object (either by using Unsafe directly or through reflection)
 625     // then, if SATB is enabled, we need to record the referent in an
 626     // SATB log buffer using the pre-barrier mechanism.
 627     // Also we need to add memory barrier to prevent commoning reads
 628     // from this field across safepoint since GC can change its value.
 629     if (!on_weak_ref || (unknown && (offset == top || obj == top)) || !keep_alive) {
 630       return load;
 631     }
 632 
 633     assert(access.is_parse_access(), "entry not supported at optimization time");
 634     C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access);
 635     GraphKit* kit = parse_access.kit();
 636     bool mismatched = (decorators & C2_MISMATCHED) != 0;
 637     bool is_unordered = (decorators & MO_UNORDERED) != 0;
 638     bool in_native = (decorators & IN_NATIVE) != 0;
 639     bool need_cpu_mem_bar = !is_unordered || mismatched || in_native;
 640 
 641     if (on_weak_ref) {
 642       // Use the pre-barrier to record the value in the referent field
 643       satb_write_barrier_pre(kit, false /* do_load */,
 644                              nullptr /* obj */, nullptr /* adr */, max_juint /* alias_idx */, nullptr /* val */, nullptr /* val_type */,
 645                              load /* pre_val */, T_OBJECT);
 646       // Add memory barrier to prevent commoning reads from this field
 647       // across safepoint since GC can change its value.
 648       kit->insert_mem_bar(Op_MemBarCPUOrder);
 649     } else if (unknown) {
 650       // We do not require a mem bar inside pre_barrier if need_mem_bar
 651       // is set: the barriers would be emitted by us.
 652       insert_pre_barrier(kit, obj, offset, load, !need_cpu_mem_bar);
 653     }
 654   }
 655 
 656   return load;
 657 }
 658 
 659 Node* ShenandoahBarrierSetC2::atomic_cmpxchg_val_at_resolved(C2AtomicParseAccess& access, Node* expected_val,
 660                                                              Node* new_val, const Type* value_type) const {
 661   GraphKit* kit = access.kit();
 662   if (access.is_oop()) {
 663     shenandoah_write_barrier_pre(kit, false /* do_load */,
 664                                  nullptr, nullptr, max_juint, nullptr, nullptr,
 665                                  expected_val /* pre_val */, T_OBJECT);
 666 
 667     MemNode::MemOrd mo = access.mem_node_mo();
 668     Node* mem = access.memory();
 669     Node* adr = access.addr().node();
 670     const TypePtr* adr_type = access.addr().type();
 671     Node* load_store = nullptr;
 672 
 673 #ifdef _LP64
 674     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 675       Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop()));
 676       Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop()));
 677       if (ShenandoahCASBarrier) {
 678         load_store = kit->gvn().transform(new ShenandoahCompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
 679       } else {
 680         load_store = kit->gvn().transform(new CompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
 681       }
 682     } else
 683 #endif
 684     {
 685       if (ShenandoahCASBarrier) {
 686         load_store = kit->gvn().transform(new ShenandoahCompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo));
 687       } else {
 688         load_store = kit->gvn().transform(new CompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo));
 689       }
 690     }
 691 
 692     access.set_raw_access(load_store);
 693     pin_atomic_op(access);
 694 
 695 #ifdef _LP64
 696     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 697       load_store = kit->gvn().transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
 698     }
 699 #endif
 700     load_store = kit->gvn().transform(new ShenandoahLoadReferenceBarrierNode(nullptr, load_store, access.decorators()));
 701     if (ShenandoahCardBarrier) {
 702       post_barrier(kit, kit->control(), access.raw_access(), access.base(),
 703                    access.addr().node(), access.alias_idx(), new_val, T_OBJECT, true);
 704     }
 705     return load_store;
 706   }
 707   return BarrierSetC2::atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, value_type);
 708 }
 709 
 710 Node* ShenandoahBarrierSetC2::atomic_cmpxchg_bool_at_resolved(C2AtomicParseAccess& access, Node* expected_val,
 711                                                               Node* new_val, const Type* value_type) const {
 712   GraphKit* kit = access.kit();
 713   if (access.is_oop()) {
 714     shenandoah_write_barrier_pre(kit, false /* do_load */,
 715                                  nullptr, nullptr, max_juint, nullptr, nullptr,
 716                                  expected_val /* pre_val */, T_OBJECT);
 717     DecoratorSet decorators = access.decorators();
 718     MemNode::MemOrd mo = access.mem_node_mo();
 719     Node* mem = access.memory();
 720     bool is_weak_cas = (decorators & C2_WEAK_CMPXCHG) != 0;
 721     Node* load_store = nullptr;
 722     Node* adr = access.addr().node();
 723 #ifdef _LP64
 724     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 725       Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop()));
 726       Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop()));
 727       if (ShenandoahCASBarrier) {
 728         if (is_weak_cas) {
 729           load_store = kit->gvn().transform(new ShenandoahWeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
 730         } else {
 731           load_store = kit->gvn().transform(new ShenandoahCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
 732         }
 733       } else {
 734         if (is_weak_cas) {
 735           load_store = kit->gvn().transform(new WeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
 736         } else {
 737           load_store = kit->gvn().transform(new CompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
 738         }
 739       }
 740     } else
 741 #endif
 742     {
 743       if (ShenandoahCASBarrier) {
 744         if (is_weak_cas) {
 745           load_store = kit->gvn().transform(new ShenandoahWeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
 746         } else {
 747           load_store = kit->gvn().transform(new ShenandoahCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
 748         }
 749       } else {
 750         if (is_weak_cas) {
 751           load_store = kit->gvn().transform(new WeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
 752         } else {
 753           load_store = kit->gvn().transform(new CompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
 754         }
 755       }
 756     }
 757     access.set_raw_access(load_store);
 758     pin_atomic_op(access);
 759     if (ShenandoahCardBarrier) {
 760       post_barrier(kit, kit->control(), access.raw_access(), access.base(),
 761                    access.addr().node(), access.alias_idx(), new_val, T_OBJECT, true);
 762     }
 763     return load_store;
 764   }
 765   return BarrierSetC2::atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type);
 766 }
 767 
 768 Node* ShenandoahBarrierSetC2::atomic_xchg_at_resolved(C2AtomicParseAccess& access, Node* val, const Type* value_type) const {
 769   GraphKit* kit = access.kit();
 770   Node* result = BarrierSetC2::atomic_xchg_at_resolved(access, val, value_type);
 771   if (access.is_oop()) {
 772     result = kit->gvn().transform(new ShenandoahLoadReferenceBarrierNode(nullptr, result, access.decorators()));
 773     shenandoah_write_barrier_pre(kit, false /* do_load */,
 774                                  nullptr, nullptr, max_juint, nullptr, nullptr,
 775                                  result /* pre_val */, T_OBJECT);
 776     if (ShenandoahCardBarrier) {
 777       post_barrier(kit, kit->control(), access.raw_access(), access.base(),
 778                    access.addr().node(), access.alias_idx(), val, T_OBJECT, true);
 779     }
 780   }
 781   return result;
 782 }
 783 
 784 
 785 bool ShenandoahBarrierSetC2::is_gc_pre_barrier_node(Node* node) const {
 786   return is_shenandoah_wb_pre_call(node);
 787 }
 788 
 789 // Support for GC barriers emitted during parsing
 790 bool ShenandoahBarrierSetC2::is_gc_barrier_node(Node* node) const {
 791   if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) return true;
 792   if (node->Opcode() != Op_CallLeaf && node->Opcode() != Op_CallLeafNoFP) {
 793     return false;
 794   }
 795   CallLeafNode *call = node->as_CallLeaf();
 796   if (call->_name == nullptr) {
 797     return false;
 798   }
 799 
 800   return strcmp(call->_name, "shenandoah_clone_barrier") == 0 ||
 801          strcmp(call->_name, "shenandoah_cas_obj") == 0 ||
 802          strcmp(call->_name, "shenandoah_wb_pre") == 0;
 803 }
 804 
 805 Node* ShenandoahBarrierSetC2::step_over_gc_barrier(Node* c) const {
 806   if (c == nullptr) {
 807     return c;
 808   }
 809   if (c->Opcode() == Op_ShenandoahLoadReferenceBarrier) {
 810     return c->in(ShenandoahLoadReferenceBarrierNode::ValueIn);
 811   }
 812   return c;
 813 }
 814 
 815 bool ShenandoahBarrierSetC2::expand_barriers(Compile* C, PhaseIterGVN& igvn) const {
 816   return !ShenandoahBarrierC2Support::expand(C, igvn);
 817 }
 818 
 819 bool ShenandoahBarrierSetC2::optimize_loops(PhaseIdealLoop* phase, LoopOptsMode mode, VectorSet& visited, Node_Stack& nstack, Node_List& worklist) const {
 820   if (mode == LoopOptsShenandoahExpand) {
 821     assert(UseShenandoahGC, "only for shenandoah");
 822     ShenandoahBarrierC2Support::pin_and_expand(phase);
 823     return true;
 824   } else if (mode == LoopOptsShenandoahPostExpand) {
 825     assert(UseShenandoahGC, "only for shenandoah");
 826     visited.clear();
 827     ShenandoahBarrierC2Support::optimize_after_expansion(visited, nstack, worklist, phase);
 828     return true;
 829   }
 830   return false;
 831 }
 832 
 833 bool ShenandoahBarrierSetC2::array_copy_requires_gc_barriers(bool tightly_coupled_alloc, BasicType type, bool is_clone, bool is_clone_instance, ArrayCopyPhase phase) const {
 834   bool is_oop = is_reference_type(type);
 835   if (!is_oop) {
 836     return false;
 837   }
 838   if (ShenandoahSATBBarrier && tightly_coupled_alloc) {
 839     if (phase == Optimization) {
 840       return false;
 841     }
 842     return !is_clone;
 843   }
 844   return true;
 845 }
 846 
 847 bool ShenandoahBarrierSetC2::clone_needs_barrier(Node* src, PhaseGVN& gvn) {
 848   const TypeOopPtr* src_type = gvn.type(src)->is_oopptr();
 849   if (src_type->isa_instptr() != nullptr) {
 850     ciInstanceKlass* ik = src_type->is_instptr()->instance_klass();
 851     if ((src_type->klass_is_exact() || !ik->has_subklass()) && !ik->has_injected_fields()) {
 852       if (ik->has_object_fields()) {
 853         return true;
 854       } else {
 855         if (!src_type->klass_is_exact()) {
 856           Compile::current()->dependencies()->assert_leaf_type(ik);
 857         }
 858       }
 859     } else {
 860       return true;
 861         }
 862   } else if (src_type->isa_aryptr()) {
 863     BasicType src_elem = src_type->isa_aryptr()->elem()->array_element_basic_type();
 864     if (is_reference_type(src_elem, true)) {
 865       return true;
 866     }
 867   } else {
 868     return true;
 869   }
 870   return false;
 871 }
 872 
 873 void ShenandoahBarrierSetC2::clone_at_expansion(PhaseMacroExpand* phase, ArrayCopyNode* ac) const {
 874   Node* ctrl = ac->in(TypeFunc::Control);
 875   Node* mem = ac->in(TypeFunc::Memory);
 876   Node* src_base = ac->in(ArrayCopyNode::Src);
 877   Node* src_offset = ac->in(ArrayCopyNode::SrcPos);
 878   Node* dest_base = ac->in(ArrayCopyNode::Dest);
 879   Node* dest_offset = ac->in(ArrayCopyNode::DestPos);
 880   Node* length = ac->in(ArrayCopyNode::Length);
 881 
 882   Node* src = phase->basic_plus_adr(src_base, src_offset);
 883   Node* dest = phase->basic_plus_adr(dest_base, dest_offset);
 884 
 885   if (ShenandoahCloneBarrier && clone_needs_barrier(src, phase->igvn())) {
 886     // Check if heap is has forwarded objects. If it does, we need to call into the special
 887     // routine that would fix up source references before we can continue.
 888 
 889     enum { _heap_stable = 1, _heap_unstable, PATH_LIMIT };
 890     Node* region = new RegionNode(PATH_LIMIT);
 891     Node* mem_phi = new PhiNode(region, Type::MEMORY, TypeRawPtr::BOTTOM);
 892 
 893     Node* thread = phase->transform_later(new ThreadLocalNode());
 894     Node* offset = phase->igvn().MakeConX(in_bytes(ShenandoahThreadLocalData::gc_state_offset()));
 895     Node* gc_state_addr = phase->transform_later(new AddPNode(phase->C->top(), thread, offset));
 896 
 897     uint gc_state_idx = Compile::AliasIdxRaw;
 898     const TypePtr* gc_state_adr_type = nullptr; // debug-mode-only argument
 899     debug_only(gc_state_adr_type = phase->C->get_adr_type(gc_state_idx));
 900 
 901     Node* gc_state    = phase->transform_later(new LoadBNode(ctrl, mem, gc_state_addr, gc_state_adr_type, TypeInt::BYTE, MemNode::unordered));
 902     Node* stable_and  = phase->transform_later(new AndINode(gc_state, phase->igvn().intcon(ShenandoahHeap::HAS_FORWARDED)));
 903     Node* stable_cmp  = phase->transform_later(new CmpINode(stable_and, phase->igvn().zerocon(T_INT)));
 904     Node* stable_test = phase->transform_later(new BoolNode(stable_cmp, BoolTest::ne));
 905 
 906     IfNode* stable_iff  = phase->transform_later(new IfNode(ctrl, stable_test, PROB_UNLIKELY(0.999), COUNT_UNKNOWN))->as_If();
 907     Node* stable_ctrl   = phase->transform_later(new IfFalseNode(stable_iff));
 908     Node* unstable_ctrl = phase->transform_later(new IfTrueNode(stable_iff));
 909 
 910     // Heap is stable, no need to do anything additional
 911     region->init_req(_heap_stable, stable_ctrl);
 912     mem_phi->init_req(_heap_stable, mem);
 913 
 914     // Heap is unstable, call into clone barrier stub
 915     Node* call = phase->make_leaf_call(unstable_ctrl, mem,
 916                     ShenandoahBarrierSetC2::shenandoah_clone_barrier_Type(),
 917                     CAST_FROM_FN_PTR(address, ShenandoahRuntime::shenandoah_clone_barrier),
 918                     "shenandoah_clone",
 919                     TypeRawPtr::BOTTOM,
 920                     src_base);
 921     call = phase->transform_later(call);
 922 
 923     ctrl = phase->transform_later(new ProjNode(call, TypeFunc::Control));
 924     mem = phase->transform_later(new ProjNode(call, TypeFunc::Memory));
 925     region->init_req(_heap_unstable, ctrl);
 926     mem_phi->init_req(_heap_unstable, mem);
 927 
 928     // Wire up the actual arraycopy stub now
 929     ctrl = phase->transform_later(region);
 930     mem = phase->transform_later(mem_phi);
 931 
 932     const char* name = "arraycopy";
 933     call = phase->make_leaf_call(ctrl, mem,
 934                                  OptoRuntime::fast_arraycopy_Type(),
 935                                  phase->basictype2arraycopy(T_LONG, nullptr, nullptr, true, name, true),
 936                                  name, TypeRawPtr::BOTTOM,
 937                                  src, dest, length
 938                                  LP64_ONLY(COMMA phase->top()));
 939     call = phase->transform_later(call);
 940 
 941     // Hook up the whole thing into the graph
 942     phase->igvn().replace_node(ac, call);
 943   } else {
 944     BarrierSetC2::clone_at_expansion(phase, ac);
 945   }
 946 }
 947 
 948 
 949 // Support for macro expanded GC barriers
 950 void ShenandoahBarrierSetC2::register_potential_barrier_node(Node* node) const {
 951   if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) {
 952     state()->add_load_reference_barrier((ShenandoahLoadReferenceBarrierNode*) node);
 953   }
 954 }
 955 
 956 void ShenandoahBarrierSetC2::unregister_potential_barrier_node(Node* node) const {
 957   if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) {
 958     state()->remove_load_reference_barrier((ShenandoahLoadReferenceBarrierNode*) node);
 959   }
 960 }
 961 
 962 void ShenandoahBarrierSetC2::eliminate_gc_barrier(PhaseMacroExpand* macro, Node* node) const {
 963   if (is_shenandoah_wb_pre_call(node)) {
 964     shenandoah_eliminate_wb_pre(node, &macro->igvn());
 965   }
 966   if (ShenandoahCardBarrier && node->Opcode() == Op_CastP2X) {
 967     Node* shift = node->unique_out();
 968     Node* addp = shift->unique_out();
 969     for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
 970       Node* mem = addp->last_out(j);
 971       if (UseCondCardMark && mem->is_Load()) {
 972         assert(mem->Opcode() == Op_LoadB, "unexpected code shape");
 973         // The load is checking if the card has been written so
 974         // replace it with zero to fold the test.
 975         macro->replace_node(mem, macro->intcon(0));
 976         continue;
 977       }
 978       assert(mem->is_Store(), "store required");
 979       macro->replace_node(mem, mem->in(MemNode::Memory));
 980     }
 981   }
 982 }
 983 
 984 void ShenandoahBarrierSetC2::shenandoah_eliminate_wb_pre(Node* call, PhaseIterGVN* igvn) const {
 985   assert(UseShenandoahGC && is_shenandoah_wb_pre_call(call), "");
 986   Node* c = call->as_Call()->proj_out(TypeFunc::Control);
 987   c = c->unique_ctrl_out();
 988   assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?");
 989   c = c->unique_ctrl_out();
 990   assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?");
 991   Node* iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0);
 992   assert(iff->is_If(), "expect test");
 993   if (!is_shenandoah_marking_if(igvn, iff)) {
 994     c = c->unique_ctrl_out();
 995     assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?");
 996     iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0);
 997     assert(is_shenandoah_marking_if(igvn, iff), "expect marking test");
 998   }
 999   Node* cmpx = iff->in(1)->in(1);
1000   igvn->replace_node(cmpx, igvn->makecon(TypeInt::CC_EQ));
1001   igvn->rehash_node_delayed(call);
1002   call->del_req(call->req()-1);
1003 }
1004 
1005 void ShenandoahBarrierSetC2::enqueue_useful_gc_barrier(PhaseIterGVN* igvn, Node* node) const {
1006   if (node->Opcode() == Op_AddP && ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(node)) {
1007     igvn->add_users_to_worklist(node);
1008   }
1009 }
1010 
1011 void ShenandoahBarrierSetC2::eliminate_useless_gc_barriers(Unique_Node_List &useful, Compile* C) const {
1012   for (uint i = 0; i < useful.size(); i++) {
1013     Node* n = useful.at(i);
1014     if (n->Opcode() == Op_AddP && ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(n)) {
1015       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1016         C->record_for_igvn(n->fast_out(i));
1017       }
1018     }
1019   }
1020 
1021   for (int i = state()->load_reference_barriers_count() - 1; i >= 0; i--) {
1022     ShenandoahLoadReferenceBarrierNode* n = state()->load_reference_barrier(i);
1023     if (!useful.member(n)) {
1024       state()->remove_load_reference_barrier(n);
1025     }
1026   }
1027 }
1028 
1029 void* ShenandoahBarrierSetC2::create_barrier_state(Arena* comp_arena) const {
1030   return new(comp_arena) ShenandoahBarrierSetC2State(comp_arena);
1031 }
1032 
1033 ShenandoahBarrierSetC2State* ShenandoahBarrierSetC2::state() const {
1034   return reinterpret_cast<ShenandoahBarrierSetC2State*>(Compile::current()->barrier_set_state());
1035 }
1036 
1037 // If the BarrierSetC2 state has kept macro nodes in its compilation unit state to be
1038 // expanded later, then now is the time to do so.
1039 bool ShenandoahBarrierSetC2::expand_macro_nodes(PhaseMacroExpand* macro) const { return false; }
1040 
1041 #ifdef ASSERT
1042 void ShenandoahBarrierSetC2::verify_gc_barriers(Compile* compile, CompilePhase phase) const {
1043   if (ShenandoahVerifyOptoBarriers && phase == BarrierSetC2::BeforeMacroExpand) {
1044     ShenandoahBarrierC2Support::verify(Compile::current()->root());
1045   } else if (phase == BarrierSetC2::BeforeCodeGen) {
1046     // Verify Shenandoah pre-barriers
1047     const int gc_state_offset = in_bytes(ShenandoahThreadLocalData::gc_state_offset());
1048 
1049     Unique_Node_List visited;
1050     Node_List worklist;
1051     // We're going to walk control flow backwards starting from the Root
1052     worklist.push(compile->root());
1053     while (worklist.size() > 0) {
1054       Node *x = worklist.pop();
1055       if (x == nullptr || x == compile->top()) {
1056         continue;
1057       }
1058 
1059       if (visited.member(x)) {
1060         continue;
1061       } else {
1062         visited.push(x);
1063       }
1064 
1065       if (x->is_Region()) {
1066         for (uint i = 1; i < x->req(); i++) {
1067           worklist.push(x->in(i));
1068         }
1069       } else {
1070         worklist.push(x->in(0));
1071         // We are looking for the pattern:
1072         //                            /->ThreadLocal
1073         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
1074         //              \->ConI(0)
1075         // We want to verify that the If and the LoadB have the same control
1076         // See GraphKit::g1_write_barrier_pre()
1077         if (x->is_If()) {
1078           IfNode *iff = x->as_If();
1079           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
1080             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
1081             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
1082                 && cmp->in(1)->is_Load()) {
1083               LoadNode *load = cmp->in(1)->as_Load();
1084               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
1085                   && load->in(2)->in(3)->is_Con()
1086                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == gc_state_offset) {
1087 
1088                 Node *if_ctrl = iff->in(0);
1089                 Node *load_ctrl = load->in(0);
1090 
1091                 if (if_ctrl != load_ctrl) {
1092                   // Skip possible CProj->NeverBranch in infinite loops
1093                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
1094                       && if_ctrl->in(0)->is_NeverBranch()) {
1095                     if_ctrl = if_ctrl->in(0)->in(0);
1096                   }
1097                 }
1098                 assert(load_ctrl != nullptr && if_ctrl == load_ctrl, "controls must match");
1099               }
1100             }
1101           }
1102         }
1103       }
1104     }
1105   }
1106 }
1107 #endif
1108 
1109 Node* ShenandoahBarrierSetC2::ideal_node(PhaseGVN* phase, Node* n, bool can_reshape) const {
1110   if (is_shenandoah_wb_pre_call(n)) {
1111     uint cnt = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type()->domain()->cnt();
1112     if (n->req() > cnt) {
1113       Node* addp = n->in(cnt);
1114       if (has_only_shenandoah_wb_pre_uses(addp)) {
1115         n->del_req(cnt);
1116         if (can_reshape) {
1117           phase->is_IterGVN()->_worklist.push(addp);
1118         }
1119         return n;
1120       }
1121     }
1122   }
1123   if (n->Opcode() == Op_CmpP) {
1124     Node* in1 = n->in(1);
1125     Node* in2 = n->in(2);
1126 
1127     // If one input is null, then step over the strong LRB barriers on the other input
1128     if (in1->bottom_type() == TypePtr::NULL_PTR &&
1129         !((in2->Opcode() == Op_ShenandoahLoadReferenceBarrier) &&
1130           !ShenandoahBarrierSet::is_strong_access(((ShenandoahLoadReferenceBarrierNode*)in2)->decorators()))) {
1131       in2 = step_over_gc_barrier(in2);
1132     }
1133     if (in2->bottom_type() == TypePtr::NULL_PTR &&
1134         !((in1->Opcode() == Op_ShenandoahLoadReferenceBarrier) &&
1135           !ShenandoahBarrierSet::is_strong_access(((ShenandoahLoadReferenceBarrierNode*)in1)->decorators()))) {
1136       in1 = step_over_gc_barrier(in1);
1137     }
1138 
1139     if (in1 != n->in(1)) {
1140       n->set_req_X(1, in1, phase);
1141       assert(in2 == n->in(2), "only one change");
1142       return n;
1143     }
1144     if (in2 != n->in(2)) {
1145       n->set_req_X(2, in2, phase);
1146       return n;
1147     }
1148   } else if (can_reshape &&
1149              n->Opcode() == Op_If &&
1150              ShenandoahBarrierC2Support::is_heap_stable_test(n) &&
1151              n->in(0) != nullptr &&
1152              n->outcnt() == 2) {
1153     Node* dom = n->in(0);
1154     Node* prev_dom = n;
1155     int op = n->Opcode();
1156     int dist = 16;
1157     // Search up the dominator tree for another heap stable test
1158     while (dom->Opcode() != op    ||  // Not same opcode?
1159            !ShenandoahBarrierC2Support::is_heap_stable_test(dom) ||  // Not same input 1?
1160            prev_dom->in(0) != dom) {  // One path of test does not dominate?
1161       if (dist < 0) return nullptr;
1162 
1163       dist--;
1164       prev_dom = dom;
1165       dom = IfNode::up_one_dom(dom);
1166       if (!dom) return nullptr;
1167     }
1168 
1169     // Check that we did not follow a loop back to ourselves
1170     if (n == dom) {
1171       return nullptr;
1172     }
1173 
1174     return n->as_If()->dominated_by(prev_dom, phase->is_IterGVN(), false);
1175   }
1176 
1177   return nullptr;
1178 }
1179 
1180 bool ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(Node* n) {
1181   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1182     Node* u = n->fast_out(i);
1183     if (!is_shenandoah_wb_pre_call(u)) {
1184       return false;
1185     }
1186   }
1187   return n->outcnt() > 0;
1188 }
1189 
1190 bool ShenandoahBarrierSetC2::final_graph_reshaping(Compile* compile, Node* n, uint opcode, Unique_Node_List& dead_nodes) const {
1191   switch (opcode) {
1192     case Op_CallLeaf:
1193     case Op_CallLeafNoFP: {
1194       assert (n->is_Call(), "");
1195       CallNode *call = n->as_Call();
1196       if (ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(call)) {
1197         uint cnt = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type()->domain()->cnt();
1198         if (call->req() > cnt) {
1199           assert(call->req() == cnt + 1, "only one extra input");
1200           Node *addp = call->in(cnt);
1201           assert(!ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(addp), "useless address computation?");
1202           call->del_req(cnt);
1203         }
1204       }
1205       return false;
1206     }
1207     case Op_ShenandoahCompareAndSwapP:
1208     case Op_ShenandoahCompareAndSwapN:
1209     case Op_ShenandoahWeakCompareAndSwapN:
1210     case Op_ShenandoahWeakCompareAndSwapP:
1211     case Op_ShenandoahCompareAndExchangeP:
1212     case Op_ShenandoahCompareAndExchangeN:
1213       return true;
1214     case Op_ShenandoahLoadReferenceBarrier:
1215       assert(false, "should have been expanded already");
1216       return true;
1217     default:
1218       return false;
1219   }
1220 }
1221 
1222 bool ShenandoahBarrierSetC2::escape_add_to_con_graph(ConnectionGraph* conn_graph, PhaseGVN* gvn, Unique_Node_List* delayed_worklist, Node* n, uint opcode) const {
1223   switch (opcode) {
1224     case Op_ShenandoahCompareAndExchangeP:
1225     case Op_ShenandoahCompareAndExchangeN:
1226       conn_graph->add_objload_to_connection_graph(n, delayed_worklist);
1227       // fallthrough
1228     case Op_ShenandoahWeakCompareAndSwapP:
1229     case Op_ShenandoahWeakCompareAndSwapN:
1230     case Op_ShenandoahCompareAndSwapP:
1231     case Op_ShenandoahCompareAndSwapN:
1232       conn_graph->add_to_congraph_unsafe_access(n, opcode, delayed_worklist);
1233       return true;
1234     case Op_StoreP: {
1235       Node* adr = n->in(MemNode::Address);
1236       const Type* adr_type = gvn->type(adr);
1237       // Pointer stores in Shenandoah barriers looks like unsafe access.
1238       // Ignore such stores to be able scalar replace non-escaping
1239       // allocations.
1240       if (adr_type->isa_rawptr() && adr->is_AddP()) {
1241         Node* base = conn_graph->get_addp_base(adr);
1242         if (base->Opcode() == Op_LoadP &&
1243           base->in(MemNode::Address)->is_AddP()) {
1244           adr = base->in(MemNode::Address);
1245           Node* tls = conn_graph->get_addp_base(adr);
1246           if (tls->Opcode() == Op_ThreadLocal) {
1247              int offs = (int) gvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
1248              const int buf_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset());
1249              if (offs == buf_offset) {
1250                return true; // Pre barrier previous oop value store.
1251              }
1252           }
1253         }
1254       }
1255       return false;
1256     }
1257     case Op_ShenandoahLoadReferenceBarrier:
1258       conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahLoadReferenceBarrierNode::ValueIn), delayed_worklist);
1259       return true;
1260     default:
1261       // Nothing
1262       break;
1263   }
1264   return false;
1265 }
1266 
1267 bool ShenandoahBarrierSetC2::escape_add_final_edges(ConnectionGraph* conn_graph, PhaseGVN* gvn, Node* n, uint opcode) const {
1268   switch (opcode) {
1269     case Op_ShenandoahCompareAndExchangeP:
1270     case Op_ShenandoahCompareAndExchangeN: {
1271       Node *adr = n->in(MemNode::Address);
1272       conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, adr, nullptr);
1273       // fallthrough
1274     }
1275     case Op_ShenandoahCompareAndSwapP:
1276     case Op_ShenandoahCompareAndSwapN:
1277     case Op_ShenandoahWeakCompareAndSwapP:
1278     case Op_ShenandoahWeakCompareAndSwapN:
1279       return conn_graph->add_final_edges_unsafe_access(n, opcode);
1280     case Op_ShenandoahLoadReferenceBarrier:
1281       conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahLoadReferenceBarrierNode::ValueIn), nullptr);
1282       return true;
1283     default:
1284       // Nothing
1285       break;
1286   }
1287   return false;
1288 }
1289 
1290 bool ShenandoahBarrierSetC2::escape_has_out_with_unsafe_object(Node* n) const {
1291   return n->has_out_with(Op_ShenandoahCompareAndExchangeP) || n->has_out_with(Op_ShenandoahCompareAndExchangeN) ||
1292          n->has_out_with(Op_ShenandoahCompareAndSwapP, Op_ShenandoahCompareAndSwapN, Op_ShenandoahWeakCompareAndSwapP, Op_ShenandoahWeakCompareAndSwapN);
1293 
1294 }
1295 
1296 bool ShenandoahBarrierSetC2::matcher_find_shared_post_visit(Matcher* matcher, Node* n, uint opcode) const {
1297   switch (opcode) {
1298     case Op_ShenandoahCompareAndExchangeP:
1299     case Op_ShenandoahCompareAndExchangeN:
1300     case Op_ShenandoahWeakCompareAndSwapP:
1301     case Op_ShenandoahWeakCompareAndSwapN:
1302     case Op_ShenandoahCompareAndSwapP:
1303     case Op_ShenandoahCompareAndSwapN: {   // Convert trinary to binary-tree
1304       Node* newval = n->in(MemNode::ValueIn);
1305       Node* oldval = n->in(LoadStoreConditionalNode::ExpectedIn);
1306       Node* pair = new BinaryNode(oldval, newval);
1307       n->set_req(MemNode::ValueIn,pair);
1308       n->del_req(LoadStoreConditionalNode::ExpectedIn);
1309       return true;
1310     }
1311     default:
1312       break;
1313   }
1314   return false;
1315 }
1316 
1317 bool ShenandoahBarrierSetC2::matcher_is_store_load_barrier(Node* x, uint xop) const {
1318   return xop == Op_ShenandoahCompareAndExchangeP ||
1319          xop == Op_ShenandoahCompareAndExchangeN ||
1320          xop == Op_ShenandoahWeakCompareAndSwapP ||
1321          xop == Op_ShenandoahWeakCompareAndSwapN ||
1322          xop == Op_ShenandoahCompareAndSwapN ||
1323          xop == Op_ShenandoahCompareAndSwapP;
1324 }