1 /*
  2  * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"
 26 
 27 #include "gc/shenandoah/heuristics/shenandoahOldHeuristics.hpp"
 28 #include "gc/shenandoah/shenandoahCollectionSet.hpp"
 29 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp"
 30 #include "gc/shenandoah/shenandoahGenerationalHeap.hpp"
 31 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp"
 32 #include "gc/shenandoah/shenandoahOldGeneration.hpp"
 33 #include "logging/log.hpp"
 34 #include "utilities/quickSort.hpp"
 35 
 36 uint ShenandoahOldHeuristics::NOT_FOUND = -1U;
 37 
 38 // sort by increasing live (so least live comes first)
 39 int ShenandoahOldHeuristics::compare_by_live(RegionData a, RegionData b) {
 40   if (a.get_livedata() < b.get_livedata()) {
 41     return -1;
 42   } else if (a.get_livedata() > b.get_livedata()) {
 43     return 1;
 44   } else {
 45     return 0;
 46   }
 47 }
 48 
 49 // sort by increasing index
 50 int ShenandoahOldHeuristics::compare_by_index(RegionData a, RegionData b) {
 51   if (a.get_region()->index() < b.get_region()->index()) {
 52     return -1;
 53   } else if (a.get_region()->index() > b.get_region()->index()) {
 54     return 1;
 55   } else {
 56     // quicksort may compare to self during search for pivot
 57     return 0;
 58   }
 59 }
 60 
 61 ShenandoahOldHeuristics::ShenandoahOldHeuristics(ShenandoahOldGeneration* generation, ShenandoahGenerationalHeap* gen_heap) :
 62   ShenandoahHeuristics(generation),
 63   _heap(gen_heap),
 64   _old_gen(generation),
 65   _first_pinned_candidate(NOT_FOUND),
 66   _last_old_collection_candidate(0),
 67   _next_old_collection_candidate(0),
 68   _last_old_region(0),
 69   _live_bytes_in_unprocessed_candidates(0),
 70   _old_generation(generation),
 71   _cannot_expand_trigger(false),
 72   _fragmentation_trigger(false),
 73   _growth_trigger(false),
 74   _fragmentation_density(0.0),
 75   _fragmentation_first_old_region(0),
 76   _fragmentation_last_old_region(0)
 77 {
 78 }
 79 
 80 bool ShenandoahOldHeuristics::prime_collection_set(ShenandoahCollectionSet* collection_set) {
 81   if (unprocessed_old_collection_candidates() == 0) {
 82     return false;
 83   }
 84 
 85   _first_pinned_candidate = NOT_FOUND;
 86 
 87   uint included_old_regions = 0;
 88   size_t evacuated_old_bytes = 0;
 89   size_t collected_old_bytes = 0;
 90 
 91   // If a region is put into the collection set, then this region's free (not yet used) bytes are no longer
 92   // "available" to hold the results of other evacuations.  This may cause a decrease in the remaining amount
 93   // of memory that can still be evacuated.  We address this by reducing the evacuation budget by the amount
 94   // of live memory in that region and by the amount of unallocated memory in that region if the evacuation
 95   // budget is constrained by availability of free memory.
 96   const size_t old_evacuation_reserve = _old_generation->get_evacuation_reserve();
 97   const size_t old_evacuation_budget = (size_t) ((double) old_evacuation_reserve / ShenandoahOldEvacWaste);
 98   size_t unfragmented_available = _old_generation->free_unaffiliated_regions() * ShenandoahHeapRegion::region_size_bytes();
 99   size_t fragmented_available;
100   size_t excess_fragmented_available;
101 
102   if (unfragmented_available > old_evacuation_budget) {
103     unfragmented_available = old_evacuation_budget;
104     fragmented_available = 0;
105     excess_fragmented_available = 0;
106   } else {
107     assert(_old_generation->available() >= old_evacuation_budget, "Cannot budget more than is available");
108     fragmented_available = _old_generation->available() - unfragmented_available;
109     assert(fragmented_available + unfragmented_available >= old_evacuation_budget, "Budgets do not add up");
110     if (fragmented_available + unfragmented_available > old_evacuation_budget) {
111       excess_fragmented_available = (fragmented_available + unfragmented_available) - old_evacuation_budget;
112       fragmented_available -= excess_fragmented_available;
113     }
114   }
115 
116   size_t remaining_old_evacuation_budget = old_evacuation_budget;
117   log_info(gc)("Choose old regions for mixed collection: old evacuation budget: " SIZE_FORMAT "%s, candidates: %u",
118                byte_size_in_proper_unit(old_evacuation_budget), proper_unit_for_byte_size(old_evacuation_budget),
119                unprocessed_old_collection_candidates());
120 
121   size_t lost_evacuation_capacity = 0;
122 
123   // The number of old-gen regions that were selected as candidates for collection at the end of the most recent old-gen
124   // concurrent marking phase and have not yet been collected is represented by unprocessed_old_collection_candidates().
125   // Candidate regions are ordered according to increasing amount of live data.  If there is not sufficient room to
126   // evacuate region N, then there is no need to even consider evacuating region N+1.
127   while (unprocessed_old_collection_candidates() > 0) {
128     // Old collection candidates are sorted in order of decreasing garbage contained therein.
129     ShenandoahHeapRegion* r = next_old_collection_candidate();
130     if (r == nullptr) {
131       break;
132     }
133     assert(r->is_regular(), "There should be no humongous regions in the set of mixed-evac candidates");
134 
135     // If region r is evacuated to fragmented memory (to free memory within a partially used region), then we need
136     // to decrease the capacity of the fragmented memory by the scaled loss.
137 
138     size_t live_data_for_evacuation = r->get_live_data_bytes();
139     size_t lost_available = r->free();
140 
141     if ((lost_available > 0) && (excess_fragmented_available > 0)) {
142       if (lost_available < excess_fragmented_available) {
143         excess_fragmented_available -= lost_available;
144         lost_evacuation_capacity -= lost_available;
145         lost_available  = 0;
146       } else {
147         lost_available -= excess_fragmented_available;
148         lost_evacuation_capacity -= excess_fragmented_available;
149         excess_fragmented_available = 0;
150       }
151     }
152     size_t scaled_loss = (size_t) ((double) lost_available / ShenandoahOldEvacWaste);
153     if ((lost_available > 0) && (fragmented_available > 0)) {
154       if (scaled_loss + live_data_for_evacuation < fragmented_available) {
155         fragmented_available -= scaled_loss;
156         scaled_loss = 0;
157       } else {
158         // We will have to allocate this region's evacuation memory from unfragmented memory, so don't bother
159         // to decrement scaled_loss
160       }
161     }
162     if (scaled_loss > 0) {
163       // We were not able to account for the lost free memory within fragmented memory, so we need to take this
164       // allocation out of unfragmented memory.  Unfragmented memory does not need to account for loss of free.
165       if (live_data_for_evacuation > unfragmented_available) {
166         // There is not room to evacuate this region or any that come after it in within the candidates array.
167         break;
168       } else {
169         unfragmented_available -= live_data_for_evacuation;
170       }
171     } else {
172       // Since scaled_loss == 0, we have accounted for the loss of free memory, so we can allocate from either
173       // fragmented or unfragmented available memory.  Use up the fragmented memory budget first.
174       size_t evacuation_need = live_data_for_evacuation;
175 
176       if (evacuation_need > fragmented_available) {
177         evacuation_need -= fragmented_available;
178         fragmented_available = 0;
179       } else {
180         fragmented_available -= evacuation_need;
181         evacuation_need = 0;
182       }
183       if (evacuation_need > unfragmented_available) {
184         // There is not room to evacuate this region or any that come after it in within the candidates array.
185         break;
186       } else {
187         unfragmented_available -= evacuation_need;
188         // dead code: evacuation_need == 0;
189       }
190     }
191     collection_set->add_region(r);
192     included_old_regions++;
193     evacuated_old_bytes += live_data_for_evacuation;
194     collected_old_bytes += r->garbage();
195     consume_old_collection_candidate();
196   }
197 
198   if (_first_pinned_candidate != NOT_FOUND) {
199     // Need to deal with pinned regions
200     slide_pinned_regions_to_front();
201   }
202   decrease_unprocessed_old_collection_candidates_live_memory(evacuated_old_bytes);
203   if (included_old_regions > 0) {
204     log_info(gc)("Old-gen piggyback evac (" UINT32_FORMAT " regions, evacuating " SIZE_FORMAT "%s, reclaiming: " SIZE_FORMAT "%s)",
205                  included_old_regions,
206                  byte_size_in_proper_unit(evacuated_old_bytes), proper_unit_for_byte_size(evacuated_old_bytes),
207                  byte_size_in_proper_unit(collected_old_bytes), proper_unit_for_byte_size(collected_old_bytes));
208   }
209 
210   if (unprocessed_old_collection_candidates() == 0) {
211     // We have added the last of our collection candidates to a mixed collection.
212     // Any triggers that occurred during mixed evacuations may no longer be valid.  They can retrigger if appropriate.
213     clear_triggers();
214 
215     _old_generation->complete_mixed_evacuations();
216   } else if (included_old_regions == 0) {
217     // We have candidates, but none were included for evacuation - are they all pinned?
218     // or did we just not have enough room for any of them in this collection set?
219     // We don't want a region with a stuck pin to prevent subsequent old collections, so
220     // if they are all pinned we transition to a state that will allow us to make these uncollected
221     // (pinned) regions parsable.
222     if (all_candidates_are_pinned()) {
223       log_info(gc)("All candidate regions " UINT32_FORMAT " are pinned", unprocessed_old_collection_candidates());
224       _old_generation->abandon_mixed_evacuations();
225     } else {
226       log_info(gc)("No regions selected for mixed collection. "
227                    "Old evacuation budget: " PROPERFMT ", Remaining evacuation budget: " PROPERFMT
228                    ", Lost capacity: " PROPERFMT
229                    ", Next candidate: " UINT32_FORMAT ", Last candidate: " UINT32_FORMAT,
230                    PROPERFMTARGS(old_evacuation_reserve),
231                    PROPERFMTARGS(remaining_old_evacuation_budget),
232                    PROPERFMTARGS(lost_evacuation_capacity),
233                    _next_old_collection_candidate, _last_old_collection_candidate);
234     }
235   }
236 
237   return (included_old_regions > 0);
238 }
239 
240 bool ShenandoahOldHeuristics::all_candidates_are_pinned() {
241 #ifdef ASSERT
242   if (uint(os::random()) % 100 < ShenandoahCoalesceChance) {
243     return true;
244   }
245 #endif
246 
247   for (uint i = _next_old_collection_candidate; i < _last_old_collection_candidate; ++i) {
248     ShenandoahHeapRegion* region = _region_data[i].get_region();
249     if (!region->is_pinned()) {
250       return false;
251     }
252   }
253   return true;
254 }
255 
256 void ShenandoahOldHeuristics::slide_pinned_regions_to_front() {
257   // Find the first unpinned region to the left of the next region that
258   // will be added to the collection set. These regions will have been
259   // added to the cset, so we can use them to hold pointers to regions
260   // that were pinned when the cset was chosen.
261   // [ r p r p p p r r ]
262   //     ^         ^ ^
263   //     |         | | pointer to next region to add to a mixed collection is here.
264   //     |         | first r to the left should be in the collection set now.
265   //     | first pinned region, we don't need to look past this
266   uint write_index = NOT_FOUND;
267   for (uint search = _next_old_collection_candidate - 1; search > _first_pinned_candidate; --search) {
268     ShenandoahHeapRegion* region = _region_data[search].get_region();
269     if (!region->is_pinned()) {
270       write_index = search;
271       assert(region->is_cset(), "Expected unpinned region to be added to the collection set.");
272       break;
273     }
274   }
275 
276   // If we could not find an unpinned region, it means there are no slots available
277   // to move up the pinned regions. In this case, we just reset our next index in the
278   // hopes that some of these regions will become unpinned before the next mixed
279   // collection. We may want to bailout of here instead, as it should be quite
280   // rare to have so many pinned regions and may indicate something is wrong.
281   if (write_index == NOT_FOUND) {
282     assert(_first_pinned_candidate != NOT_FOUND, "Should only be here if there are pinned regions.");
283     _next_old_collection_candidate = _first_pinned_candidate;
284     return;
285   }
286 
287   // Find pinned regions to the left and move their pointer into a slot
288   // that was pointing at a region that has been added to the cset (or was pointing
289   // to a pinned region that we've already moved up). We are done when the leftmost
290   // pinned region has been slid up.
291   // [ r p r x p p p r ]
292   //         ^       ^
293   //         |       | next region for mixed collections
294   //         | Write pointer is here. We know this region is already in the cset
295   //         | so we can clobber it with the next pinned region we find.
296   for (int32_t search = (int32_t)write_index - 1; search >= (int32_t)_first_pinned_candidate; --search) {
297     RegionData& skipped = _region_data[search];
298     if (skipped.get_region()->is_pinned()) {
299       RegionData& available_slot = _region_data[write_index];
300       available_slot.set_region_and_livedata(skipped.get_region(), skipped.get_livedata());
301       --write_index;
302     }
303   }
304 
305   // Update to read from the leftmost pinned region. Plus one here because we decremented
306   // the write index to hold the next found pinned region. We are just moving it back now
307   // to point to the first pinned region.
308   _next_old_collection_candidate = write_index + 1;
309 }
310 
311 void ShenandoahOldHeuristics::prepare_for_old_collections() {
312   ShenandoahHeap* heap = ShenandoahHeap::heap();
313 
314   const size_t num_regions = heap->num_regions();
315   size_t cand_idx = 0;
316   size_t immediate_garbage = 0;
317   size_t immediate_regions = 0;
318   size_t live_data = 0;
319 
320   RegionData* candidates = _region_data;
321   for (size_t i = 0; i < num_regions; i++) {
322     ShenandoahHeapRegion* region = heap->get_region(i);
323     if (!region->is_old()) {
324       continue;
325     }
326 
327     size_t garbage = region->garbage();
328     size_t live_bytes = region->get_live_data_bytes();
329     live_data += live_bytes;
330 
331     if (region->is_regular() || region->is_regular_pinned()) {
332         // Only place regular or pinned regions with live data into the candidate set.
333         // Pinned regions cannot be evacuated, but we are not actually choosing candidates
334         // for the collection set here. That happens later during the next young GC cycle,
335         // by which time, the pinned region may no longer be pinned.
336       if (!region->has_live()) {
337         assert(!region->is_pinned(), "Pinned region should have live (pinned) objects.");
338         region->make_trash_immediate();
339         immediate_regions++;
340         immediate_garbage += garbage;
341       } else {
342         region->begin_preemptible_coalesce_and_fill();
343         candidates[cand_idx].set_region_and_livedata(region, live_bytes);
344         cand_idx++;
345       }
346     } else if (region->is_humongous_start()) {
347       // This will handle humongous start regions whether they are also pinned, or not.
348       // If they are pinned, we expect them to hold live data, so they will not be
349       // turned into immediate garbage.
350       if (!region->has_live()) {
351         assert(!region->is_pinned(), "Pinned region should have live (pinned) objects.");
352         // The humongous object is dead, we can just return this region and the continuations
353         // immediately to the freeset - no evacuations are necessary here. The continuations
354         // will be made into trash by this method, so they'll be skipped by the 'is_regular'
355         // check above, but we still need to count the start region.
356         immediate_regions++;
357         immediate_garbage += garbage;
358         size_t region_count = heap->trash_humongous_region_at(region);
359         log_debug(gc)("Trashed " SIZE_FORMAT " regions for humongous object.", region_count);
360       }
361     } else if (region->is_trash()) {
362       // Count humongous objects made into trash here.
363       immediate_regions++;
364       immediate_garbage += garbage;
365     }
366   }
367 
368   _old_generation->set_live_bytes_after_last_mark(live_data);
369 
370   // Unlike young, we are more interested in efficiently packing OLD-gen than in reclaiming garbage first.  We sort by live-data.
371   // Some regular regions may have been promoted in place with no garbage but also with very little live data.  When we "compact"
372   // old-gen, we want to pack these underutilized regions together so we can have more unaffiliated (unfragmented) free regions
373   // in old-gen.
374 
375   QuickSort::sort<RegionData>(candidates, cand_idx, compare_by_live);
376 
377   const size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes();
378 
379   // The convention is to collect regions that have more than this amount of garbage.
380   const size_t garbage_threshold = region_size_bytes * ShenandoahOldGarbageThreshold / 100;
381 
382   // Enlightened interpretation: collect regions that have less than this amount of live.
383   const size_t live_threshold = region_size_bytes - garbage_threshold;
384 
385   _last_old_region = (uint)cand_idx;
386   _last_old_collection_candidate = (uint)cand_idx;
387   _next_old_collection_candidate = 0;
388 
389   size_t unfragmented = 0;
390   size_t candidates_garbage = 0;
391 
392   for (size_t i = 0; i < cand_idx; i++) {
393     size_t live = candidates[i].get_livedata();
394     if (live > live_threshold) {
395       // Candidates are sorted in increasing order of live data, so no regions after this will be below the threshold.
396       _last_old_collection_candidate = (uint)i;
397       break;
398     }
399     ShenandoahHeapRegion* r = candidates[i].get_region();
400     size_t region_garbage = r->garbage();
401     size_t region_free = r->free();
402     candidates_garbage += region_garbage;
403     unfragmented += region_free;
404   }
405 
406   // defrag_count represents regions that are placed into the old collection set in order to defragment the memory
407   // that we try to "reserve" for humongous allocations.
408   size_t defrag_count = 0;
409   size_t total_uncollected_old_regions = _last_old_region - _last_old_collection_candidate;
410 
411   if (cand_idx > _last_old_collection_candidate) {
412     // Above, we have added into the set of mixed-evacuation candidates all old-gen regions for which the live memory
413     // that they contain is below a particular old-garbage threshold.  Regions that were not selected for the collection
414     // set hold enough live memory that it is not considered efficient (by "garbage-first standards") to compact these
415     // at the current time.
416     //
417     // However, if any of these regions that were rejected from the collection set reside within areas of memory that
418     // might interfere with future humongous allocation requests, we will prioritize them for evacuation at this time.
419     // Humongous allocations target the bottom of the heap.  We want old-gen regions to congregate at the top of the
420     // heap.
421     //
422     // Sort the regions that were initially rejected from the collection set in order of index.  This allows us to
423     // focus our attention on the regions that have low index value (i.e. the old-gen regions at the bottom of the heap).
424     QuickSort::sort<RegionData>(candidates + _last_old_collection_candidate, cand_idx - _last_old_collection_candidate,
425                                 compare_by_index);
426 
427     const size_t first_unselected_old_region = candidates[_last_old_collection_candidate].get_region()->index();
428     const size_t last_unselected_old_region = candidates[cand_idx - 1].get_region()->index();
429     size_t span_of_uncollected_regions = 1 + last_unselected_old_region - first_unselected_old_region;
430 
431     // Add no more than 1/8 of the existing old-gen regions to the set of mixed evacuation candidates.
432     const int MAX_FRACTION_OF_HUMONGOUS_DEFRAG_REGIONS = 8;
433     const size_t bound_on_additional_regions = cand_idx / MAX_FRACTION_OF_HUMONGOUS_DEFRAG_REGIONS;
434 
435     // The heuristic old_is_fragmented trigger may be seeking to achieve up to 75% density.  Allow ourselves to overshoot
436     // that target (at 7/8) so we will not have to do another defragmenting old collection right away.
437     while ((defrag_count < bound_on_additional_regions) &&
438            (total_uncollected_old_regions < 7 * span_of_uncollected_regions / 8)) {
439       ShenandoahHeapRegion* r = candidates[_last_old_collection_candidate].get_region();
440       assert(r->is_regular() || r->is_regular_pinned(), "Region " SIZE_FORMAT " has wrong state for collection: %s",
441              r->index(), ShenandoahHeapRegion::region_state_to_string(r->state()));
442       const size_t region_garbage = r->garbage();
443       const size_t region_free = r->free();
444       candidates_garbage += region_garbage;
445       unfragmented += region_free;
446       defrag_count++;
447       _last_old_collection_candidate++;
448 
449       // We now have one fewer uncollected regions, and our uncollected span shrinks because we have removed its first region.
450       total_uncollected_old_regions--;
451       span_of_uncollected_regions =
452         1 + last_unselected_old_region - candidates[_last_old_collection_candidate].get_region()->index();
453     }
454   }
455 
456   // Note that we do not coalesce and fill occupied humongous regions
457   // HR: humongous regions, RR: regular regions, CF: coalesce and fill regions
458   const size_t collectable_garbage = immediate_garbage + candidates_garbage;
459   const size_t old_candidates = _last_old_collection_candidate;
460   const size_t mixed_evac_live = old_candidates * region_size_bytes - (candidates_garbage + unfragmented);
461   set_unprocessed_old_collection_candidates_live_memory(mixed_evac_live);
462 
463   log_info(gc)("Old-Gen Collectable Garbage: " PROPERFMT " consolidated with free: " PROPERFMT ", over " SIZE_FORMAT " regions",
464                PROPERFMTARGS(collectable_garbage), PROPERFMTARGS(unfragmented), old_candidates);
465   log_info(gc)("Old-Gen Immediate Garbage: " PROPERFMT " over " SIZE_FORMAT " regions",
466               PROPERFMTARGS(immediate_garbage), immediate_regions);
467   log_info(gc)("Old regions selected for defragmentation: " SIZE_FORMAT, defrag_count);
468   log_info(gc)("Old regions not selected: " SIZE_FORMAT, total_uncollected_old_regions);
469 
470   if (unprocessed_old_collection_candidates() > 0) {
471     _old_generation->transition_to(ShenandoahOldGeneration::EVACUATING);
472   } else if (has_coalesce_and_fill_candidates()) {
473     _old_generation->transition_to(ShenandoahOldGeneration::FILLING);
474   } else {
475     _old_generation->transition_to(ShenandoahOldGeneration::WAITING_FOR_BOOTSTRAP);
476   }
477 }
478 
479 size_t ShenandoahOldHeuristics::unprocessed_old_collection_candidates_live_memory() const {
480   return _live_bytes_in_unprocessed_candidates;
481 }
482 
483 void ShenandoahOldHeuristics::set_unprocessed_old_collection_candidates_live_memory(size_t initial_live) {
484   _live_bytes_in_unprocessed_candidates = initial_live;
485 }
486 
487 void ShenandoahOldHeuristics::decrease_unprocessed_old_collection_candidates_live_memory(size_t evacuated_live) {
488   assert(evacuated_live <= _live_bytes_in_unprocessed_candidates, "Cannot evacuate more than was present");
489   _live_bytes_in_unprocessed_candidates -= evacuated_live;
490 }
491 
492 // Used by unit test: test_shenandoahOldHeuristic.cpp
493 uint ShenandoahOldHeuristics::last_old_collection_candidate_index() const {
494   return _last_old_collection_candidate;
495 }
496 
497 uint ShenandoahOldHeuristics::unprocessed_old_collection_candidates() const {
498   return _last_old_collection_candidate - _next_old_collection_candidate;
499 }
500 
501 ShenandoahHeapRegion* ShenandoahOldHeuristics::next_old_collection_candidate() {
502   while (_next_old_collection_candidate < _last_old_collection_candidate) {
503     ShenandoahHeapRegion* next = _region_data[_next_old_collection_candidate].get_region();
504     if (!next->is_pinned()) {
505       return next;
506     } else {
507       assert(next->is_pinned(), "sanity");
508       if (_first_pinned_candidate == NOT_FOUND) {
509         _first_pinned_candidate = _next_old_collection_candidate;
510       }
511     }
512 
513     _next_old_collection_candidate++;
514   }
515   return nullptr;
516 }
517 
518 void ShenandoahOldHeuristics::consume_old_collection_candidate() {
519   _next_old_collection_candidate++;
520 }
521 
522 unsigned int ShenandoahOldHeuristics::get_coalesce_and_fill_candidates(ShenandoahHeapRegion** buffer) {
523   uint end = _last_old_region;
524   uint index = _next_old_collection_candidate;
525   while (index < end) {
526     *buffer++ = _region_data[index++].get_region();
527   }
528   return (_last_old_region - _next_old_collection_candidate);
529 }
530 
531 void ShenandoahOldHeuristics::abandon_collection_candidates() {
532   _last_old_collection_candidate = 0;
533   _next_old_collection_candidate = 0;
534   _last_old_region = 0;
535 }
536 
537 void ShenandoahOldHeuristics::record_cycle_end() {
538   this->ShenandoahHeuristics::record_cycle_end();
539   clear_triggers();
540 }
541 
542 void ShenandoahOldHeuristics::clear_triggers() {
543   // Clear any triggers that were set during mixed evacuations.  Conditions may be different now that this phase has finished.
544   _cannot_expand_trigger = false;
545   _fragmentation_trigger = false;
546   _growth_trigger = false;
547 }
548 
549 // This triggers old-gen collection if the number of regions "dedicated" to old generation is much larger than
550 // is required to represent the memory currently used within the old generation.  This trigger looks specifically
551 // at density of the old-gen spanned region.  A different mechanism triggers old-gen GC if the total number of
552 // old-gen regions (regardless of how close the regions are to one another) grows beyond an anticipated growth target.
553 void ShenandoahOldHeuristics::set_trigger_if_old_is_fragmented(size_t first_old_region, size_t last_old_region,
554                                                                size_t old_region_count, size_t num_regions) {
555   if (ShenandoahGenerationalHumongousReserve > 0) {
556     // Our intent is to pack old-gen memory into the highest-numbered regions of the heap.  Count all memory
557     // above first_old_region as the "span" of old generation.
558     size_t old_region_span = (first_old_region <= last_old_region)? (num_regions - first_old_region): 0;
559     // Given that memory at the bottom of the heap is reserved to represent humongous objects, the number of
560     // regions that old_gen is "allowed" to consume is less than the total heap size.  The restriction on allowed
561     // span is not strictly enforced.  This is a heuristic designed to reduce the likelihood that a humongous
562     // allocation request will require a STW full GC.
563     size_t allowed_old_gen_span = num_regions - (ShenandoahGenerationalHumongousReserve * num_regions) / 100;
564 
565     size_t old_available = _old_gen->available() / HeapWordSize;
566     size_t region_size_words = ShenandoahHeapRegion::region_size_words();
567     size_t old_unaffiliated_available = _old_gen->free_unaffiliated_regions() * region_size_words;
568     assert(old_available >= old_unaffiliated_available, "sanity");
569     size_t old_fragmented_available = old_available - old_unaffiliated_available;
570 
571     size_t old_words_consumed = old_region_count * region_size_words - old_fragmented_available;
572     size_t old_words_spanned = old_region_span * region_size_words;
573     double old_density = ((double) old_words_consumed) / old_words_spanned;
574 
575     double old_span_percent = ((double) old_region_span) / allowed_old_gen_span;
576     if (old_span_percent > 0.50) {
577       // Squaring old_span_percent in the denominator below allows more aggressive triggering when we are
578       // above desired maximum span and less aggressive triggering when we are far below the desired maximum span.
579       double old_span_percent_squared = old_span_percent * old_span_percent;
580       if (old_density / old_span_percent_squared < 0.75) {
581         // We trigger old defragmentation, for example, if:
582         //  old_span_percent is 110% and old_density is below 90.8%, or
583         //  old_span_percent is 100% and old_density is below 75.0%, or
584         //  old_span_percent is  90% and old_density is below 60.8%, or
585         //  old_span_percent is  80% and old_density is below 48.0%, or
586         //  old_span_percent is  70% and old_density is below 36.8%, or
587         //  old_span_percent is  60% and old_density is below 27.0%, or
588         //  old_span_percent is  50% and old_density is below 18.8%.
589 
590         // Set the fragmentation trigger and related attributes
591         _fragmentation_trigger = true;
592         _fragmentation_density = old_density;
593         _fragmentation_first_old_region = first_old_region;
594         _fragmentation_last_old_region = last_old_region;
595       }
596     }
597   }
598 }
599 
600 void ShenandoahOldHeuristics::set_trigger_if_old_is_overgrown() {
601   size_t old_used = _old_gen->used() + _old_gen->get_humongous_waste();
602   size_t trigger_threshold = _old_gen->usage_trigger_threshold();
603   // Detects unsigned arithmetic underflow
604   assert(old_used <= _heap->capacity(),
605          "Old used (" SIZE_FORMAT ", " SIZE_FORMAT") must not be more than heap capacity (" SIZE_FORMAT ")",
606          _old_gen->used(), _old_gen->get_humongous_waste(), _heap->capacity());
607   if (old_used > trigger_threshold) {
608     _growth_trigger = true;
609   }
610 }
611 
612 void ShenandoahOldHeuristics::evaluate_triggers(size_t first_old_region, size_t last_old_region,
613                                                 size_t old_region_count, size_t num_regions) {
614   set_trigger_if_old_is_fragmented(first_old_region, last_old_region, old_region_count, num_regions);
615   set_trigger_if_old_is_overgrown();
616 }
617 
618 bool ShenandoahOldHeuristics::should_start_gc() {
619   // Cannot start a new old-gen GC until previous one has finished.
620   //
621   // Future refinement: under certain circumstances, we might be more sophisticated about this choice.
622   // For example, we could choose to abandon the previous old collection before it has completed evacuations.
623   ShenandoahHeap* heap = ShenandoahHeap::heap();
624   if (!_old_generation->can_start_gc() || heap->collection_set()->has_old_regions()) {
625     return false;
626   }
627 
628   if (_cannot_expand_trigger) {
629     const size_t old_gen_capacity = _old_generation->max_capacity();
630     const size_t heap_capacity = heap->capacity();
631     const double percent = percent_of(old_gen_capacity, heap_capacity);
632     log_info(gc)("Trigger (OLD): Expansion failure, current size: " SIZE_FORMAT "%s which is %.1f%% of total heap size",
633                  byte_size_in_proper_unit(old_gen_capacity), proper_unit_for_byte_size(old_gen_capacity), percent);
634     return true;
635   }
636 
637   if (_fragmentation_trigger) {
638     const size_t used = _old_generation->used();
639     const size_t used_regions_size = _old_generation->used_regions_size();
640 
641     // used_regions includes humongous regions
642     const size_t used_regions = _old_generation->used_regions();
643     assert(used_regions_size > used_regions, "Cannot have more used than used regions");
644 
645     size_t first_old_region, last_old_region;
646     double density;
647     get_fragmentation_trigger_reason_for_log_message(density, first_old_region, last_old_region);
648     const size_t span_of_old_regions = (last_old_region >= first_old_region)? last_old_region + 1 - first_old_region: 0;
649     const size_t fragmented_free = used_regions_size - used;
650 
651     log_info(gc)("Trigger (OLD): Old has become fragmented: "
652                  SIZE_FORMAT "%s available bytes spread between range spanned from "
653                  SIZE_FORMAT " to " SIZE_FORMAT " (" SIZE_FORMAT "), density: %.1f%%",
654                  byte_size_in_proper_unit(fragmented_free), proper_unit_for_byte_size(fragmented_free),
655                  first_old_region, last_old_region, span_of_old_regions, density * 100);
656     return true;
657   }
658 
659   if (_growth_trigger) {
660     // Growth may be falsely triggered during mixed evacuations, before the mixed-evacuation candidates have been
661     // evacuated.  Before acting on a false trigger, we check to confirm the trigger condition is still satisfied.
662     const size_t current_usage = _old_generation->used() + _old_generation->get_humongous_waste();
663     const size_t trigger_threshold = _old_generation->usage_trigger_threshold();
664     const size_t heap_size = heap->capacity();
665     const size_t ignore_threshold = (ShenandoahIgnoreOldGrowthBelowPercentage * heap_size) / 100;
666     size_t consecutive_young_cycles;
667     if ((current_usage < ignore_threshold) &&
668         ((consecutive_young_cycles = heap->shenandoah_policy()->consecutive_young_gc_count())
669          < ShenandoahDoNotIgnoreGrowthAfterYoungCycles)) {
670       log_debug(gc)("Ignoring Trigger (OLD): Old has overgrown: usage (" SIZE_FORMAT "%s) is below threshold ("
671                     SIZE_FORMAT "%s) after " SIZE_FORMAT " consecutive completed young GCs",
672                     byte_size_in_proper_unit(current_usage), proper_unit_for_byte_size(current_usage),
673                     byte_size_in_proper_unit(ignore_threshold), proper_unit_for_byte_size(ignore_threshold),
674                     consecutive_young_cycles);
675       _growth_trigger = false;
676     } else if (current_usage > trigger_threshold) {
677       const size_t live_at_previous_old = _old_generation->get_live_bytes_after_last_mark();
678       const double percent_growth = percent_of(current_usage - live_at_previous_old, live_at_previous_old);
679       log_info(gc)("Trigger (OLD): Old has overgrown, live at end of previous OLD marking: "
680                    SIZE_FORMAT "%s, current usage: " SIZE_FORMAT "%s, percent growth: %.1f%%",
681                    byte_size_in_proper_unit(live_at_previous_old), proper_unit_for_byte_size(live_at_previous_old),
682                    byte_size_in_proper_unit(current_usage), proper_unit_for_byte_size(current_usage), percent_growth);
683       return true;
684     } else {
685       // Mixed evacuations have decreased current_usage such that old-growth trigger is no longer relevant.
686       _growth_trigger = false;
687     }
688   }
689 
690   // Otherwise, defer to inherited heuristic for gc trigger.
691   return this->ShenandoahHeuristics::should_start_gc();
692 }
693 
694 void ShenandoahOldHeuristics::record_success_concurrent() {
695   // Forget any triggers that occurred while OLD GC was ongoing.  If we really need to start another, it will retrigger.
696   clear_triggers();
697   this->ShenandoahHeuristics::record_success_concurrent();
698 }
699 
700 void ShenandoahOldHeuristics::record_success_degenerated() {
701   // Forget any triggers that occurred while OLD GC was ongoing.  If we really need to start another, it will retrigger.
702   clear_triggers();
703   this->ShenandoahHeuristics::record_success_degenerated();
704 }
705 
706 void ShenandoahOldHeuristics::record_success_full() {
707   // Forget any triggers that occurred while OLD GC was ongoing.  If we really need to start another, it will retrigger.
708   clear_triggers();
709   this->ShenandoahHeuristics::record_success_full();
710 }
711 
712 const char* ShenandoahOldHeuristics::name() {
713   return "Old";
714 }
715 
716 bool ShenandoahOldHeuristics::is_diagnostic() {
717   return false;
718 }
719 
720 bool ShenandoahOldHeuristics::is_experimental() {
721   return true;
722 }
723 
724 void ShenandoahOldHeuristics::choose_collection_set_from_regiondata(ShenandoahCollectionSet* set,
725                                                                     ShenandoahHeuristics::RegionData* data,
726                                                                     size_t data_size, size_t free) {
727   ShouldNotReachHere();
728 }