1 /* 2 * Copyright (c) 2016, 2021, Red Hat, Inc. All rights reserved. 3 * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "gc/shared/tlab_globals.hpp" 28 #include "gc/shenandoah/shenandoahAffiliation.hpp" 29 #include "gc/shenandoah/shenandoahFreeSet.hpp" 30 #include "gc/shenandoah/shenandoahHeap.inline.hpp" 31 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp" 32 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" 33 #include "gc/shenandoah/shenandoahOldGeneration.hpp" 34 #include "gc/shenandoah/shenandoahYoungGeneration.hpp" 35 #include "gc/shenandoah/shenandoahSimpleBitMap.hpp" 36 #include "gc/shenandoah/shenandoahSimpleBitMap.inline.hpp" 37 #include "logging/logStream.hpp" 38 #include "memory/resourceArea.hpp" 39 #include "runtime/orderAccess.hpp" 40 41 static const char* partition_name(ShenandoahFreeSetPartitionId t) { 42 switch (t) { 43 case ShenandoahFreeSetPartitionId::NotFree: return "NotFree"; 44 case ShenandoahFreeSetPartitionId::Mutator: return "Mutator"; 45 case ShenandoahFreeSetPartitionId::Collector: return "Collector"; 46 case ShenandoahFreeSetPartitionId::OldCollector: return "OldCollector"; 47 default: 48 ShouldNotReachHere(); 49 return "Unrecognized"; 50 } 51 } 52 53 class ShenandoahLeftRightIterator { 54 private: 55 idx_t _idx; 56 idx_t _end; 57 ShenandoahRegionPartitions* _partitions; 58 ShenandoahFreeSetPartitionId _partition; 59 public: 60 explicit ShenandoahLeftRightIterator(ShenandoahRegionPartitions* partitions, ShenandoahFreeSetPartitionId partition, bool use_empty = false) 61 : _idx(0), _end(0), _partitions(partitions), _partition(partition) { 62 _idx = use_empty ? _partitions->leftmost_empty(_partition) : _partitions->leftmost(_partition); 63 _end = use_empty ? _partitions->rightmost_empty(_partition) : _partitions->rightmost(_partition); 64 } 65 66 bool has_next() const { 67 if (_idx <= _end) { 68 assert(_partitions->in_free_set(_partition, _idx), "Boundaries or find_last_set_bit failed: " SSIZE_FORMAT, _idx); 69 return true; 70 } 71 return false; 72 } 73 74 idx_t current() const { 75 return _idx; 76 } 77 78 idx_t next() { 79 _idx = _partitions->find_index_of_next_available_region(_partition, _idx + 1); 80 return current(); 81 } 82 }; 83 84 class ShenandoahRightLeftIterator { 85 private: 86 idx_t _idx; 87 idx_t _end; 88 ShenandoahRegionPartitions* _partitions; 89 ShenandoahFreeSetPartitionId _partition; 90 public: 91 explicit ShenandoahRightLeftIterator(ShenandoahRegionPartitions* partitions, ShenandoahFreeSetPartitionId partition, bool use_empty = false) 92 : _idx(0), _end(0), _partitions(partitions), _partition(partition) { 93 _idx = use_empty ? _partitions->rightmost_empty(_partition) : _partitions->rightmost(_partition); 94 _end = use_empty ? _partitions->leftmost_empty(_partition) : _partitions->leftmost(_partition); 95 } 96 97 bool has_next() const { 98 if (_idx >= _end) { 99 assert(_partitions->in_free_set(_partition, _idx), "Boundaries or find_last_set_bit failed: " SSIZE_FORMAT, _idx); 100 return true; 101 } 102 return false; 103 } 104 105 idx_t current() const { 106 return _idx; 107 } 108 109 idx_t next() { 110 _idx = _partitions->find_index_of_previous_available_region(_partition, _idx - 1); 111 return current(); 112 } 113 }; 114 115 #ifndef PRODUCT 116 void ShenandoahRegionPartitions::dump_bitmap() const { 117 log_debug(gc)("Mutator range [" SSIZE_FORMAT ", " SSIZE_FORMAT "], Collector range [" SSIZE_FORMAT ", " SSIZE_FORMAT 118 "], Old Collector range [" SSIZE_FORMAT ", " SSIZE_FORMAT "]", 119 _leftmosts[int(ShenandoahFreeSetPartitionId::Mutator)], 120 _rightmosts[int(ShenandoahFreeSetPartitionId::Mutator)], 121 _leftmosts[int(ShenandoahFreeSetPartitionId::Collector)], 122 _rightmosts[int(ShenandoahFreeSetPartitionId::Collector)], 123 _leftmosts[int(ShenandoahFreeSetPartitionId::OldCollector)], 124 _rightmosts[int(ShenandoahFreeSetPartitionId::OldCollector)]); 125 log_debug(gc)("Empty Mutator range [" SSIZE_FORMAT ", " SSIZE_FORMAT 126 "], Empty Collector range [" SSIZE_FORMAT ", " SSIZE_FORMAT 127 "], Empty Old Collecto range [" SSIZE_FORMAT ", " SSIZE_FORMAT "]", 128 _leftmosts_empty[int(ShenandoahFreeSetPartitionId::Mutator)], 129 _rightmosts_empty[int(ShenandoahFreeSetPartitionId::Mutator)], 130 _leftmosts_empty[int(ShenandoahFreeSetPartitionId::Collector)], 131 _rightmosts_empty[int(ShenandoahFreeSetPartitionId::Collector)], 132 _leftmosts_empty[int(ShenandoahFreeSetPartitionId::OldCollector)], 133 _rightmosts_empty[int(ShenandoahFreeSetPartitionId::OldCollector)]); 134 135 log_debug(gc)("%6s: %18s %18s %18s %18s", "index", "Mutator Bits", "Collector Bits", "Old Collector Bits", "NotFree Bits"); 136 dump_bitmap_range(0, _max-1); 137 } 138 139 void ShenandoahRegionPartitions::dump_bitmap_range(idx_t start_region_idx, idx_t end_region_idx) const { 140 assert((start_region_idx >= 0) && (start_region_idx < (idx_t) _max), "precondition"); 141 assert((end_region_idx >= 0) && (end_region_idx < (idx_t) _max), "precondition"); 142 idx_t aligned_start = _membership[int(ShenandoahFreeSetPartitionId::Mutator)].aligned_index(start_region_idx); 143 idx_t aligned_end = _membership[int(ShenandoahFreeSetPartitionId::Mutator)].aligned_index(end_region_idx); 144 idx_t alignment = _membership[int(ShenandoahFreeSetPartitionId::Mutator)].alignment(); 145 while (aligned_start <= aligned_end) { 146 dump_bitmap_row(aligned_start); 147 aligned_start += alignment; 148 } 149 } 150 151 void ShenandoahRegionPartitions::dump_bitmap_row(idx_t region_idx) const { 152 assert((region_idx >= 0) && (region_idx < (idx_t) _max), "precondition"); 153 idx_t aligned_idx = _membership[int(ShenandoahFreeSetPartitionId::Mutator)].aligned_index(region_idx); 154 uintx mutator_bits = _membership[int(ShenandoahFreeSetPartitionId::Mutator)].bits_at(aligned_idx); 155 uintx collector_bits = _membership[int(ShenandoahFreeSetPartitionId::Collector)].bits_at(aligned_idx); 156 uintx old_collector_bits = _membership[int(ShenandoahFreeSetPartitionId::OldCollector)].bits_at(aligned_idx); 157 uintx free_bits = mutator_bits | collector_bits | old_collector_bits; 158 uintx notfree_bits = ~free_bits; 159 log_debug(gc)(SSIZE_FORMAT_W(6) ": " SIZE_FORMAT_X_0 " 0x" SIZE_FORMAT_X_0 " 0x" SIZE_FORMAT_X_0 " 0x" SIZE_FORMAT_X_0, 160 aligned_idx, mutator_bits, collector_bits, old_collector_bits, notfree_bits); 161 } 162 #endif 163 164 ShenandoahRegionPartitions::ShenandoahRegionPartitions(size_t max_regions, ShenandoahFreeSet* free_set) : 165 _max(max_regions), 166 _region_size_bytes(ShenandoahHeapRegion::region_size_bytes()), 167 _free_set(free_set), 168 _membership{ ShenandoahSimpleBitMap(max_regions), ShenandoahSimpleBitMap(max_regions) , ShenandoahSimpleBitMap(max_regions) } 169 { 170 make_all_regions_unavailable(); 171 } 172 173 inline bool ShenandoahFreeSet::can_allocate_from(ShenandoahHeapRegion *r) const { 174 return r->is_empty() || (r->is_trash() && !_heap->is_concurrent_weak_root_in_progress()); 175 } 176 177 inline bool ShenandoahFreeSet::can_allocate_from(size_t idx) const { 178 ShenandoahHeapRegion* r = _heap->get_region(idx); 179 return can_allocate_from(r); 180 } 181 182 inline size_t ShenandoahFreeSet::alloc_capacity(ShenandoahHeapRegion *r) const { 183 if (r->is_trash()) { 184 // This would be recycled on allocation path 185 return ShenandoahHeapRegion::region_size_bytes(); 186 } else { 187 return r->free(); 188 } 189 } 190 191 inline size_t ShenandoahFreeSet::alloc_capacity(size_t idx) const { 192 ShenandoahHeapRegion* r = _heap->get_region(idx); 193 return alloc_capacity(r); 194 } 195 196 inline bool ShenandoahFreeSet::has_alloc_capacity(ShenandoahHeapRegion *r) const { 197 return alloc_capacity(r) > 0; 198 } 199 200 inline idx_t ShenandoahRegionPartitions::leftmost(ShenandoahFreeSetPartitionId which_partition) const { 201 assert (which_partition < NumPartitions, "selected free partition must be valid"); 202 idx_t idx = _leftmosts[int(which_partition)]; 203 if (idx >= _max) { 204 return _max; 205 } else { 206 // Cannot assert that membership[which_partition.is_set(idx) because this helper method may be used 207 // to query the original value of leftmost when leftmost must be adjusted because the interval representing 208 // which_partition is shrinking after the region that used to be leftmost is retired. 209 return idx; 210 } 211 } 212 213 inline idx_t ShenandoahRegionPartitions::rightmost(ShenandoahFreeSetPartitionId which_partition) const { 214 assert (which_partition < NumPartitions, "selected free partition must be valid"); 215 idx_t idx = _rightmosts[int(which_partition)]; 216 // Cannot assert that membership[which_partition.is_set(idx) because this helper method may be used 217 // to query the original value of leftmost when leftmost must be adjusted because the interval representing 218 // which_partition is shrinking after the region that used to be leftmost is retired. 219 return idx; 220 } 221 222 void ShenandoahRegionPartitions::make_all_regions_unavailable() { 223 for (size_t partition_id = 0; partition_id < IntNumPartitions; partition_id++) { 224 _membership[partition_id].clear_all(); 225 _leftmosts[partition_id] = _max; 226 _rightmosts[partition_id] = -1; 227 _leftmosts_empty[partition_id] = _max; 228 _rightmosts_empty[partition_id] = -1;; 229 _capacity[partition_id] = 0; 230 _used[partition_id] = 0; 231 } 232 _region_counts[int(ShenandoahFreeSetPartitionId::Mutator)] = _region_counts[int(ShenandoahFreeSetPartitionId::Collector)] = 0; 233 } 234 235 void ShenandoahRegionPartitions::establish_mutator_intervals(idx_t mutator_leftmost, idx_t mutator_rightmost, 236 idx_t mutator_leftmost_empty, idx_t mutator_rightmost_empty, 237 size_t mutator_region_count, size_t mutator_used) { 238 _leftmosts[int(ShenandoahFreeSetPartitionId::Mutator)] = mutator_leftmost; 239 _rightmosts[int(ShenandoahFreeSetPartitionId::Mutator)] = mutator_rightmost; 240 _leftmosts_empty[int(ShenandoahFreeSetPartitionId::Mutator)] = mutator_leftmost_empty; 241 _rightmosts_empty[int(ShenandoahFreeSetPartitionId::Mutator)] = mutator_rightmost_empty; 242 243 _region_counts[int(ShenandoahFreeSetPartitionId::Mutator)] = mutator_region_count; 244 _used[int(ShenandoahFreeSetPartitionId::Mutator)] = mutator_used; 245 _capacity[int(ShenandoahFreeSetPartitionId::Mutator)] = mutator_region_count * _region_size_bytes; 246 247 _leftmosts[int(ShenandoahFreeSetPartitionId::Collector)] = _max; 248 _rightmosts[int(ShenandoahFreeSetPartitionId::Collector)] = -1; 249 _leftmosts_empty[int(ShenandoahFreeSetPartitionId::Collector)] = _max; 250 _rightmosts_empty[int(ShenandoahFreeSetPartitionId::Collector)] = -1; 251 252 _region_counts[int(ShenandoahFreeSetPartitionId::Collector)] = 0; 253 _used[int(ShenandoahFreeSetPartitionId::Collector)] = 0; 254 _capacity[int(ShenandoahFreeSetPartitionId::Collector)] = 0; 255 } 256 257 void ShenandoahRegionPartitions::establish_old_collector_intervals(idx_t old_collector_leftmost, idx_t old_collector_rightmost, 258 idx_t old_collector_leftmost_empty, 259 idx_t old_collector_rightmost_empty, 260 size_t old_collector_region_count, size_t old_collector_used) { 261 _leftmosts[int(ShenandoahFreeSetPartitionId::OldCollector)] = old_collector_leftmost; 262 _rightmosts[int(ShenandoahFreeSetPartitionId::OldCollector)] = old_collector_rightmost; 263 _leftmosts_empty[int(ShenandoahFreeSetPartitionId::OldCollector)] = old_collector_leftmost_empty; 264 _rightmosts_empty[int(ShenandoahFreeSetPartitionId::OldCollector)] = old_collector_rightmost_empty; 265 266 _region_counts[int(ShenandoahFreeSetPartitionId::OldCollector)] = old_collector_region_count; 267 _used[int(ShenandoahFreeSetPartitionId::OldCollector)] = old_collector_used; 268 _capacity[int(ShenandoahFreeSetPartitionId::OldCollector)] = old_collector_region_count * _region_size_bytes; 269 } 270 271 void ShenandoahRegionPartitions::increase_used(ShenandoahFreeSetPartitionId which_partition, size_t bytes) { 272 assert (which_partition < NumPartitions, "Partition must be valid"); 273 _used[int(which_partition)] += bytes; 274 assert (_used[int(which_partition)] <= _capacity[int(which_partition)], 275 "Must not use (" SIZE_FORMAT ") more than capacity (" SIZE_FORMAT ") after increase by " SIZE_FORMAT, 276 _used[int(which_partition)], _capacity[int(which_partition)], bytes); 277 } 278 279 inline void ShenandoahRegionPartitions::shrink_interval_if_range_modifies_either_boundary( 280 ShenandoahFreeSetPartitionId partition, idx_t low_idx, idx_t high_idx) { 281 assert((low_idx <= high_idx) && (low_idx >= 0) && (high_idx < _max), "Range must span legal index values"); 282 if (low_idx == leftmost(partition)) { 283 assert (!_membership[int(partition)].is_set(low_idx), "Do not shrink interval if region not removed"); 284 if (high_idx + 1 == _max) { 285 _leftmosts[int(partition)] = _max; 286 } else { 287 _leftmosts[int(partition)] = find_index_of_next_available_region(partition, high_idx + 1); 288 } 289 if (_leftmosts_empty[int(partition)] < _leftmosts[int(partition)]) { 290 // This gets us closer to where we need to be; we'll scan further when leftmosts_empty is requested. 291 _leftmosts_empty[int(partition)] = _leftmosts[int(partition)]; 292 } 293 } 294 if (high_idx == _rightmosts[int(partition)]) { 295 assert (!_membership[int(partition)].is_set(high_idx), "Do not shrink interval if region not removed"); 296 if (low_idx == 0) { 297 _rightmosts[int(partition)] = -1; 298 } else { 299 _rightmosts[int(partition)] = find_index_of_previous_available_region(partition, low_idx - 1); 300 } 301 if (_rightmosts_empty[int(partition)] > _rightmosts[int(partition)]) { 302 // This gets us closer to where we need to be; we'll scan further when rightmosts_empty is requested. 303 _rightmosts_empty[int(partition)] = _rightmosts[int(partition)]; 304 } 305 } 306 if (_leftmosts[int(partition)] > _rightmosts[int(partition)]) { 307 _leftmosts[int(partition)] = _max; 308 _rightmosts[int(partition)] = -1; 309 _leftmosts_empty[int(partition)] = _max; 310 _rightmosts_empty[int(partition)] = -1; 311 } 312 } 313 314 inline void ShenandoahRegionPartitions::shrink_interval_if_boundary_modified(ShenandoahFreeSetPartitionId partition, idx_t idx) { 315 shrink_interval_if_range_modifies_either_boundary(partition, idx, idx); 316 } 317 318 inline void ShenandoahRegionPartitions::expand_interval_if_boundary_modified(ShenandoahFreeSetPartitionId partition, 319 idx_t idx, size_t region_available) { 320 if (_leftmosts[int(partition)] > idx) { 321 _leftmosts[int(partition)] = idx; 322 } 323 if (_rightmosts[int(partition)] < idx) { 324 _rightmosts[int(partition)] = idx; 325 } 326 if (region_available == _region_size_bytes) { 327 if (_leftmosts_empty[int(partition)] > idx) { 328 _leftmosts_empty[int(partition)] = idx; 329 } 330 if (_rightmosts_empty[int(partition)] < idx) { 331 _rightmosts_empty[int(partition)] = idx; 332 } 333 } 334 } 335 336 void ShenandoahRegionPartitions::retire_range_from_partition( 337 ShenandoahFreeSetPartitionId partition, idx_t low_idx, idx_t high_idx) { 338 339 // Note: we may remove from free partition even if region is not entirely full, such as when available < PLAB::min_size() 340 assert ((low_idx < _max) && (high_idx < _max), "Both indices are sane: " SIZE_FORMAT " and " SIZE_FORMAT " < " SIZE_FORMAT, 341 low_idx, high_idx, _max); 342 assert (partition < NumPartitions, "Cannot remove from free partitions if not already free"); 343 344 for (idx_t idx = low_idx; idx <= high_idx; idx++) { 345 assert (in_free_set(partition, idx), "Must be in partition to remove from partition"); 346 _membership[int(partition)].clear_bit(idx); 347 } 348 _region_counts[int(partition)] -= high_idx + 1 - low_idx; 349 shrink_interval_if_range_modifies_either_boundary(partition, low_idx, high_idx); 350 } 351 352 void ShenandoahRegionPartitions::retire_from_partition(ShenandoahFreeSetPartitionId partition, idx_t idx, size_t used_bytes) { 353 354 // Note: we may remove from free partition even if region is not entirely full, such as when available < PLAB::min_size() 355 assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT, idx, _max); 356 assert (partition < NumPartitions, "Cannot remove from free partitions if not already free"); 357 assert (in_free_set(partition, idx), "Must be in partition to remove from partition"); 358 359 if (used_bytes < _region_size_bytes) { 360 // Count the alignment pad remnant of memory as used when we retire this region 361 increase_used(partition, _region_size_bytes - used_bytes); 362 } 363 _membership[int(partition)].clear_bit(idx); 364 shrink_interval_if_boundary_modified(partition, idx); 365 _region_counts[int(partition)]--; 366 } 367 368 void ShenandoahRegionPartitions::make_free(idx_t idx, ShenandoahFreeSetPartitionId which_partition, size_t available) { 369 assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT, idx, _max); 370 assert (membership(idx) == ShenandoahFreeSetPartitionId::NotFree, "Cannot make free if already free"); 371 assert (which_partition < NumPartitions, "selected free partition must be valid"); 372 assert (available <= _region_size_bytes, "Available cannot exceed region size"); 373 374 _membership[int(which_partition)].set_bit(idx); 375 _capacity[int(which_partition)] += _region_size_bytes; 376 _used[int(which_partition)] += _region_size_bytes - available; 377 expand_interval_if_boundary_modified(which_partition, idx, available); 378 _region_counts[int(which_partition)]++; 379 } 380 381 bool ShenandoahRegionPartitions::is_mutator_partition(ShenandoahFreeSetPartitionId p) { 382 return (p == ShenandoahFreeSetPartitionId::Mutator); 383 } 384 385 bool ShenandoahRegionPartitions::is_young_collector_partition(ShenandoahFreeSetPartitionId p) { 386 return (p == ShenandoahFreeSetPartitionId::Collector); 387 } 388 389 bool ShenandoahRegionPartitions::is_old_collector_partition(ShenandoahFreeSetPartitionId p) { 390 return (p == ShenandoahFreeSetPartitionId::OldCollector); 391 } 392 393 bool ShenandoahRegionPartitions::available_implies_empty(size_t available_in_region) { 394 return (available_in_region == _region_size_bytes); 395 } 396 397 398 void ShenandoahRegionPartitions::move_from_partition_to_partition(idx_t idx, ShenandoahFreeSetPartitionId orig_partition, 399 ShenandoahFreeSetPartitionId new_partition, size_t available) { 400 ShenandoahHeapRegion* r = ShenandoahHeap::heap()->get_region(idx); 401 assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT, idx, _max); 402 assert (orig_partition < NumPartitions, "Original partition must be valid"); 403 assert (new_partition < NumPartitions, "New partition must be valid"); 404 assert (available <= _region_size_bytes, "Available cannot exceed region size"); 405 assert (_membership[int(orig_partition)].is_set(idx), "Cannot move from partition unless in partition"); 406 assert ((r != nullptr) && ((r->is_trash() && (available == _region_size_bytes)) || 407 (r->used() + available == _region_size_bytes)), 408 "Used: " SIZE_FORMAT " + available: " SIZE_FORMAT " should equal region size: " SIZE_FORMAT, 409 ShenandoahHeap::heap()->get_region(idx)->used(), available, _region_size_bytes); 410 411 // Expected transitions: 412 // During rebuild: Mutator => Collector 413 // Mutator empty => Collector 414 // Mutator empty => OldCollector 415 // During flip_to_gc: Mutator empty => Collector 416 // Mutator empty => OldCollector 417 // At start of update refs: Collector => Mutator 418 // OldCollector Empty => Mutator 419 assert ((is_mutator_partition(orig_partition) && is_young_collector_partition(new_partition)) || 420 (is_mutator_partition(orig_partition) && 421 available_implies_empty(available) && is_old_collector_partition(new_partition)) || 422 (is_young_collector_partition(orig_partition) && is_mutator_partition(new_partition)) || 423 (is_old_collector_partition(orig_partition) 424 && available_implies_empty(available) && is_mutator_partition(new_partition)), 425 "Unexpected movement between partitions, available: " SIZE_FORMAT ", _region_size_bytes: " SIZE_FORMAT 426 ", orig_partition: %s, new_partition: %s", 427 available, _region_size_bytes, partition_name(orig_partition), partition_name(new_partition)); 428 429 size_t used = _region_size_bytes - available; 430 assert (_used[int(orig_partition)] >= used, 431 "Orig partition used: " SIZE_FORMAT " must exceed moved used: " SIZE_FORMAT " within region " SSIZE_FORMAT, 432 _used[int(orig_partition)], used, idx); 433 434 _membership[int(orig_partition)].clear_bit(idx); 435 _membership[int(new_partition)].set_bit(idx); 436 437 _capacity[int(orig_partition)] -= _region_size_bytes; 438 _used[int(orig_partition)] -= used; 439 shrink_interval_if_boundary_modified(orig_partition, idx); 440 441 _capacity[int(new_partition)] += _region_size_bytes;; 442 _used[int(new_partition)] += used; 443 expand_interval_if_boundary_modified(new_partition, idx, available); 444 445 _region_counts[int(orig_partition)]--; 446 _region_counts[int(new_partition)]++; 447 } 448 449 const char* ShenandoahRegionPartitions::partition_membership_name(idx_t idx) const { 450 return partition_name(membership(idx)); 451 } 452 453 inline ShenandoahFreeSetPartitionId ShenandoahRegionPartitions::membership(idx_t idx) const { 454 assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT, idx, _max); 455 ShenandoahFreeSetPartitionId result = ShenandoahFreeSetPartitionId::NotFree; 456 for (uint partition_id = 0; partition_id < UIntNumPartitions; partition_id++) { 457 if (_membership[partition_id].is_set(idx)) { 458 assert(result == ShenandoahFreeSetPartitionId::NotFree, "Region should reside in only one partition"); 459 result = (ShenandoahFreeSetPartitionId) partition_id; 460 } 461 } 462 return result; 463 } 464 465 #ifdef ASSERT 466 inline bool ShenandoahRegionPartitions::partition_id_matches(idx_t idx, ShenandoahFreeSetPartitionId test_partition) const { 467 assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT, idx, _max); 468 assert (test_partition < ShenandoahFreeSetPartitionId::NotFree, "must be a valid partition"); 469 470 return membership(idx) == test_partition; 471 } 472 #endif 473 474 inline bool ShenandoahRegionPartitions::is_empty(ShenandoahFreeSetPartitionId which_partition) const { 475 assert (which_partition < NumPartitions, "selected free partition must be valid"); 476 return (leftmost(which_partition) > rightmost(which_partition)); 477 } 478 479 inline idx_t ShenandoahRegionPartitions::find_index_of_next_available_region( 480 ShenandoahFreeSetPartitionId which_partition, idx_t start_index) const { 481 idx_t rightmost_idx = rightmost(which_partition); 482 idx_t leftmost_idx = leftmost(which_partition); 483 if ((rightmost_idx < leftmost_idx) || (start_index > rightmost_idx)) return _max; 484 if (start_index < leftmost_idx) { 485 start_index = leftmost_idx; 486 } 487 idx_t result = _membership[int(which_partition)].find_first_set_bit(start_index, rightmost_idx + 1); 488 if (result > rightmost_idx) { 489 result = _max; 490 } 491 assert (result >= start_index, "Requires progress"); 492 return result; 493 } 494 495 inline idx_t ShenandoahRegionPartitions::find_index_of_previous_available_region( 496 ShenandoahFreeSetPartitionId which_partition, idx_t last_index) const { 497 idx_t rightmost_idx = rightmost(which_partition); 498 idx_t leftmost_idx = leftmost(which_partition); 499 // if (leftmost_idx == max) then (last_index < leftmost_idx) 500 if (last_index < leftmost_idx) return -1; 501 if (last_index > rightmost_idx) { 502 last_index = rightmost_idx; 503 } 504 idx_t result = _membership[int(which_partition)].find_last_set_bit(-1, last_index); 505 if (result < leftmost_idx) { 506 result = -1; 507 } 508 assert (result <= last_index, "Requires progress"); 509 return result; 510 } 511 512 inline idx_t ShenandoahRegionPartitions::find_index_of_next_available_cluster_of_regions( 513 ShenandoahFreeSetPartitionId which_partition, idx_t start_index, size_t cluster_size) const { 514 idx_t rightmost_idx = rightmost(which_partition); 515 idx_t leftmost_idx = leftmost(which_partition); 516 if ((rightmost_idx < leftmost_idx) || (start_index > rightmost_idx)) return _max; 517 idx_t result = _membership[int(which_partition)].find_first_consecutive_set_bits(start_index, rightmost_idx + 1, cluster_size); 518 if (result > rightmost_idx) { 519 result = _max; 520 } 521 assert (result >= start_index, "Requires progress"); 522 return result; 523 } 524 525 inline idx_t ShenandoahRegionPartitions::find_index_of_previous_available_cluster_of_regions( 526 ShenandoahFreeSetPartitionId which_partition, idx_t last_index, size_t cluster_size) const { 527 idx_t leftmost_idx = leftmost(which_partition); 528 // if (leftmost_idx == max) then (last_index < leftmost_idx) 529 if (last_index < leftmost_idx) return -1; 530 idx_t result = _membership[int(which_partition)].find_last_consecutive_set_bits(leftmost_idx - 1, last_index, cluster_size); 531 if (result <= leftmost_idx) { 532 result = -1; 533 } 534 assert (result <= last_index, "Requires progress"); 535 return result; 536 } 537 538 idx_t ShenandoahRegionPartitions::leftmost_empty(ShenandoahFreeSetPartitionId which_partition) { 539 assert (which_partition < NumPartitions, "selected free partition must be valid"); 540 idx_t max_regions = _max; 541 if (_leftmosts_empty[int(which_partition)] == _max) { 542 return _max; 543 } 544 for (idx_t idx = find_index_of_next_available_region(which_partition, _leftmosts_empty[int(which_partition)]); 545 idx < max_regions; ) { 546 assert(in_free_set(which_partition, idx), "Boundaries or find_last_set_bit failed: " SSIZE_FORMAT, idx); 547 if (_free_set->alloc_capacity(idx) == _region_size_bytes) { 548 _leftmosts_empty[int(which_partition)] = idx; 549 return idx; 550 } 551 idx = find_index_of_next_available_region(which_partition, idx + 1); 552 } 553 _leftmosts_empty[int(which_partition)] = _max; 554 _rightmosts_empty[int(which_partition)] = -1; 555 return _max; 556 } 557 558 idx_t ShenandoahRegionPartitions::rightmost_empty(ShenandoahFreeSetPartitionId which_partition) { 559 assert (which_partition < NumPartitions, "selected free partition must be valid"); 560 if (_rightmosts_empty[int(which_partition)] < 0) { 561 return -1; 562 } 563 for (idx_t idx = find_index_of_previous_available_region(which_partition, _rightmosts_empty[int(which_partition)]); 564 idx >= 0; ) { 565 assert(in_free_set(which_partition, idx), "Boundaries or find_last_set_bit failed: " SSIZE_FORMAT, idx); 566 if (_free_set->alloc_capacity(idx) == _region_size_bytes) { 567 _rightmosts_empty[int(which_partition)] = idx; 568 return idx; 569 } 570 idx = find_index_of_previous_available_region(which_partition, idx - 1); 571 } 572 _leftmosts_empty[int(which_partition)] = _max; 573 _rightmosts_empty[int(which_partition)] = -1; 574 return -1; 575 } 576 577 578 #ifdef ASSERT 579 void ShenandoahRegionPartitions::assert_bounds() { 580 581 idx_t leftmosts[UIntNumPartitions]; 582 idx_t rightmosts[UIntNumPartitions]; 583 idx_t empty_leftmosts[UIntNumPartitions]; 584 idx_t empty_rightmosts[UIntNumPartitions]; 585 586 for (uint i = 0; i < UIntNumPartitions; i++) { 587 leftmosts[i] = _max; 588 empty_leftmosts[i] = _max; 589 rightmosts[i] = -1; 590 empty_rightmosts[i] = -1; 591 } 592 593 for (idx_t i = 0; i < _max; i++) { 594 ShenandoahFreeSetPartitionId partition = membership(i); 595 switch (partition) { 596 case ShenandoahFreeSetPartitionId::NotFree: 597 break; 598 599 case ShenandoahFreeSetPartitionId::Mutator: 600 case ShenandoahFreeSetPartitionId::Collector: 601 case ShenandoahFreeSetPartitionId::OldCollector: 602 { 603 size_t capacity = _free_set->alloc_capacity(i); 604 bool is_empty = (capacity == _region_size_bytes); 605 assert(capacity > 0, "free regions must have allocation capacity"); 606 if (i < leftmosts[int(partition)]) { 607 leftmosts[int(partition)] = i; 608 } 609 if (is_empty && (i < empty_leftmosts[int(partition)])) { 610 empty_leftmosts[int(partition)] = i; 611 } 612 if (i > rightmosts[int(partition)]) { 613 rightmosts[int(partition)] = i; 614 } 615 if (is_empty && (i > empty_rightmosts[int(partition)])) { 616 empty_rightmosts[int(partition)] = i; 617 } 618 break; 619 } 620 621 default: 622 ShouldNotReachHere(); 623 } 624 } 625 626 // Performance invariants. Failing these would not break the free partition, but performance would suffer. 627 assert (leftmost(ShenandoahFreeSetPartitionId::Mutator) <= _max, 628 "leftmost in bounds: " SSIZE_FORMAT " < " SSIZE_FORMAT, leftmost(ShenandoahFreeSetPartitionId::Mutator), _max); 629 assert (rightmost(ShenandoahFreeSetPartitionId::Mutator) < _max, 630 "rightmost in bounds: " SSIZE_FORMAT " < " SSIZE_FORMAT, rightmost(ShenandoahFreeSetPartitionId::Mutator), _max); 631 632 assert (leftmost(ShenandoahFreeSetPartitionId::Mutator) == _max 633 || partition_id_matches(leftmost(ShenandoahFreeSetPartitionId::Mutator), ShenandoahFreeSetPartitionId::Mutator), 634 "leftmost region should be free: " SSIZE_FORMAT, leftmost(ShenandoahFreeSetPartitionId::Mutator)); 635 assert (leftmost(ShenandoahFreeSetPartitionId::Mutator) == _max 636 || partition_id_matches(rightmost(ShenandoahFreeSetPartitionId::Mutator), ShenandoahFreeSetPartitionId::Mutator), 637 "rightmost region should be free: " SSIZE_FORMAT, rightmost(ShenandoahFreeSetPartitionId::Mutator)); 638 639 // If Mutator partition is empty, leftmosts will both equal max, rightmosts will both equal zero. 640 // Likewise for empty region partitions. 641 idx_t beg_off = leftmosts[int(ShenandoahFreeSetPartitionId::Mutator)]; 642 idx_t end_off = rightmosts[int(ShenandoahFreeSetPartitionId::Mutator)]; 643 assert (beg_off >= leftmost(ShenandoahFreeSetPartitionId::Mutator), 644 "free regions before the leftmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT, 645 beg_off, leftmost(ShenandoahFreeSetPartitionId::Mutator)); 646 assert (end_off <= rightmost(ShenandoahFreeSetPartitionId::Mutator), 647 "free regions past the rightmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT, 648 end_off, rightmost(ShenandoahFreeSetPartitionId::Mutator)); 649 650 beg_off = empty_leftmosts[int(ShenandoahFreeSetPartitionId::Mutator)]; 651 end_off = empty_rightmosts[int(ShenandoahFreeSetPartitionId::Mutator)]; 652 assert (beg_off >= leftmost_empty(ShenandoahFreeSetPartitionId::Mutator), 653 "free empty regions before the leftmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT, 654 beg_off, leftmost_empty(ShenandoahFreeSetPartitionId::Mutator)); 655 assert (end_off <= rightmost_empty(ShenandoahFreeSetPartitionId::Mutator), 656 "free empty regions past the rightmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT, 657 end_off, rightmost_empty(ShenandoahFreeSetPartitionId::Mutator)); 658 659 // Performance invariants. Failing these would not break the free partition, but performance would suffer. 660 assert (leftmost(ShenandoahFreeSetPartitionId::Collector) <= _max, "leftmost in bounds: " SSIZE_FORMAT " < " SSIZE_FORMAT, 661 leftmost(ShenandoahFreeSetPartitionId::Collector), _max); 662 assert (rightmost(ShenandoahFreeSetPartitionId::Collector) < _max, "rightmost in bounds: " SSIZE_FORMAT " < " SSIZE_FORMAT, 663 rightmost(ShenandoahFreeSetPartitionId::Collector), _max); 664 665 assert (leftmost(ShenandoahFreeSetPartitionId::Collector) == _max 666 || partition_id_matches(leftmost(ShenandoahFreeSetPartitionId::Collector), ShenandoahFreeSetPartitionId::Collector), 667 "leftmost region should be free: " SSIZE_FORMAT, leftmost(ShenandoahFreeSetPartitionId::Collector)); 668 assert (leftmost(ShenandoahFreeSetPartitionId::Collector) == _max 669 || partition_id_matches(rightmost(ShenandoahFreeSetPartitionId::Collector), ShenandoahFreeSetPartitionId::Collector), 670 "rightmost region should be free: " SSIZE_FORMAT, rightmost(ShenandoahFreeSetPartitionId::Collector)); 671 672 // If Collector partition is empty, leftmosts will both equal max, rightmosts will both equal zero. 673 // Likewise for empty region partitions. 674 beg_off = leftmosts[int(ShenandoahFreeSetPartitionId::Collector)]; 675 end_off = rightmosts[int(ShenandoahFreeSetPartitionId::Collector)]; 676 assert (beg_off >= leftmost(ShenandoahFreeSetPartitionId::Collector), 677 "free regions before the leftmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT, 678 beg_off, leftmost(ShenandoahFreeSetPartitionId::Collector)); 679 assert (end_off <= rightmost(ShenandoahFreeSetPartitionId::Collector), 680 "free regions past the rightmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT, 681 end_off, rightmost(ShenandoahFreeSetPartitionId::Collector)); 682 683 beg_off = empty_leftmosts[int(ShenandoahFreeSetPartitionId::Collector)]; 684 end_off = empty_rightmosts[int(ShenandoahFreeSetPartitionId::Collector)]; 685 assert (beg_off >= _leftmosts_empty[int(ShenandoahFreeSetPartitionId::Collector)], 686 "free empty regions before the leftmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT, 687 beg_off, leftmost_empty(ShenandoahFreeSetPartitionId::Collector)); 688 assert (end_off <= _rightmosts_empty[int(ShenandoahFreeSetPartitionId::Collector)], 689 "free empty regions past the rightmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT, 690 end_off, rightmost_empty(ShenandoahFreeSetPartitionId::Collector)); 691 692 // Performance invariants. Failing these would not break the free partition, but performance would suffer. 693 assert (leftmost(ShenandoahFreeSetPartitionId::OldCollector) <= _max, "leftmost in bounds: " SSIZE_FORMAT " < " SSIZE_FORMAT, 694 leftmost(ShenandoahFreeSetPartitionId::OldCollector), _max); 695 assert (rightmost(ShenandoahFreeSetPartitionId::OldCollector) < _max, "rightmost in bounds: " SSIZE_FORMAT " < " SSIZE_FORMAT, 696 rightmost(ShenandoahFreeSetPartitionId::OldCollector), _max); 697 698 assert (leftmost(ShenandoahFreeSetPartitionId::OldCollector) == _max 699 || partition_id_matches(leftmost(ShenandoahFreeSetPartitionId::OldCollector), 700 ShenandoahFreeSetPartitionId::OldCollector), 701 "leftmost region should be free: " SSIZE_FORMAT, leftmost(ShenandoahFreeSetPartitionId::OldCollector)); 702 assert (leftmost(ShenandoahFreeSetPartitionId::OldCollector) == _max 703 || partition_id_matches(rightmost(ShenandoahFreeSetPartitionId::OldCollector), 704 ShenandoahFreeSetPartitionId::OldCollector), 705 "rightmost region should be free: " SSIZE_FORMAT, rightmost(ShenandoahFreeSetPartitionId::OldCollector)); 706 707 // If OldCollector partition is empty, leftmosts will both equal max, rightmosts will both equal zero. 708 // Likewise for empty region partitions. 709 beg_off = leftmosts[int(ShenandoahFreeSetPartitionId::OldCollector)]; 710 end_off = rightmosts[int(ShenandoahFreeSetPartitionId::OldCollector)]; 711 assert (beg_off >= leftmost(ShenandoahFreeSetPartitionId::OldCollector), 712 "free regions before the leftmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT, 713 beg_off, leftmost(ShenandoahFreeSetPartitionId::OldCollector)); 714 assert (end_off <= rightmost(ShenandoahFreeSetPartitionId::OldCollector), 715 "free regions past the rightmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT, 716 end_off, rightmost(ShenandoahFreeSetPartitionId::OldCollector)); 717 718 beg_off = empty_leftmosts[int(ShenandoahFreeSetPartitionId::OldCollector)]; 719 end_off = empty_rightmosts[int(ShenandoahFreeSetPartitionId::OldCollector)]; 720 assert (beg_off >= _leftmosts_empty[int(ShenandoahFreeSetPartitionId::OldCollector)], 721 "free empty regions before the leftmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT, 722 beg_off, leftmost_empty(ShenandoahFreeSetPartitionId::OldCollector)); 723 assert (end_off <= _rightmosts_empty[int(ShenandoahFreeSetPartitionId::OldCollector)], 724 "free empty regions past the rightmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT, 725 end_off, rightmost_empty(ShenandoahFreeSetPartitionId::OldCollector)); 726 } 727 #endif 728 729 ShenandoahFreeSet::ShenandoahFreeSet(ShenandoahHeap* heap, size_t max_regions) : 730 _heap(heap), 731 _partitions(max_regions, this), 732 _trash_regions(NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, max_regions, mtGC)), 733 _alloc_bias_weight(0) 734 { 735 clear_internal(); 736 } 737 738 void ShenandoahFreeSet::add_promoted_in_place_region_to_old_collector(ShenandoahHeapRegion* region) { 739 shenandoah_assert_heaplocked(); 740 size_t plab_min_size_in_bytes = ShenandoahGenerationalHeap::heap()->plab_min_size() * HeapWordSize; 741 size_t idx = region->index(); 742 size_t capacity = alloc_capacity(region); 743 assert(_partitions.membership(idx) == ShenandoahFreeSetPartitionId::NotFree, 744 "Regions promoted in place should have been excluded from Mutator partition"); 745 if (capacity >= plab_min_size_in_bytes) { 746 _partitions.make_free(idx, ShenandoahFreeSetPartitionId::OldCollector, capacity); 747 _heap->old_generation()->augment_promoted_reserve(capacity); 748 } 749 } 750 751 HeapWord* ShenandoahFreeSet::allocate_from_partition_with_affiliation(ShenandoahAffiliation affiliation, 752 ShenandoahAllocRequest& req, bool& in_new_region) { 753 754 shenandoah_assert_heaplocked(); 755 ShenandoahFreeSetPartitionId which_partition = req.is_old()? ShenandoahFreeSetPartitionId::OldCollector: ShenandoahFreeSetPartitionId::Collector; 756 if (_partitions.alloc_from_left_bias(which_partition)) { 757 ShenandoahLeftRightIterator iterator(&_partitions, which_partition, affiliation == ShenandoahAffiliation::FREE); 758 return allocate_with_affiliation(iterator, affiliation, req, in_new_region); 759 } else { 760 ShenandoahRightLeftIterator iterator(&_partitions, which_partition, affiliation == ShenandoahAffiliation::FREE); 761 return allocate_with_affiliation(iterator, affiliation, req, in_new_region); 762 } 763 } 764 765 template<typename Iter> 766 HeapWord* ShenandoahFreeSet::allocate_with_affiliation(Iter& iterator, ShenandoahAffiliation affiliation, ShenandoahAllocRequest& req, bool& in_new_region) { 767 for (idx_t idx = iterator.current(); iterator.has_next(); idx = iterator.next()) { 768 ShenandoahHeapRegion* r = _heap->get_region(idx); 769 if (r->affiliation() == affiliation) { 770 HeapWord* result = try_allocate_in(r, req, in_new_region); 771 if (result != nullptr) { 772 return result; 773 } 774 } 775 } 776 log_debug(gc, free)("Could not allocate collector region with affiliation: %s for request " PTR_FORMAT, 777 shenandoah_affiliation_name(affiliation), p2i(&req)); 778 return nullptr; 779 } 780 781 HeapWord* ShenandoahFreeSet::allocate_single(ShenandoahAllocRequest& req, bool& in_new_region) { 782 shenandoah_assert_heaplocked(); 783 784 // Scan the bitmap looking for a first fit. 785 // 786 // Leftmost and rightmost bounds provide enough caching to walk bitmap efficiently. Normally, 787 // we would find the region to allocate at right away. 788 // 789 // Allocations are biased: GC allocations are taken from the high end of the heap. Regular (and TLAB) 790 // mutator allocations are taken from the middle of heap, below the memory reserved for Collector. 791 // Humongous mutator allocations are taken from the bottom of the heap. 792 // 793 // Free set maintains mutator and collector partitions. Normally, each allocates only from its partition, 794 // except in special cases when the collector steals regions from the mutator partition. 795 796 // Overwrite with non-zero (non-NULL) values only if necessary for allocation bookkeeping. 797 798 switch (req.type()) { 799 case ShenandoahAllocRequest::_alloc_tlab: 800 case ShenandoahAllocRequest::_alloc_shared: 801 return allocate_for_mutator(req, in_new_region); 802 case ShenandoahAllocRequest::_alloc_gclab: 803 case ShenandoahAllocRequest::_alloc_plab: 804 case ShenandoahAllocRequest::_alloc_shared_gc: 805 return allocate_for_collector(req, in_new_region); 806 default: 807 ShouldNotReachHere(); 808 } 809 return nullptr; 810 } 811 812 HeapWord* ShenandoahFreeSet::allocate_for_mutator(ShenandoahAllocRequest &req, bool &in_new_region) { 813 update_allocation_bias(); 814 815 if (_partitions.is_empty(ShenandoahFreeSetPartitionId::Mutator)) { 816 // There is no recovery. Mutator does not touch collector view at all. 817 return nullptr; 818 } 819 820 // Try to allocate in the mutator view 821 if (_partitions.alloc_from_left_bias(ShenandoahFreeSetPartitionId::Mutator)) { 822 // Allocate from low to high memory. This keeps the range of fully empty regions more tightly packed. 823 // Note that the most recently allocated regions tend not to be evacuated in a given GC cycle. So this 824 // tends to accumulate "fragmented" uncollected regions in high memory. 825 ShenandoahLeftRightIterator iterator(&_partitions, ShenandoahFreeSetPartitionId::Mutator); 826 return allocate_from_regions(iterator, req, in_new_region); 827 } 828 829 // Allocate from high to low memory. This preserves low memory for humongous allocations. 830 ShenandoahRightLeftIterator iterator(&_partitions, ShenandoahFreeSetPartitionId::Mutator); 831 return allocate_from_regions(iterator, req, in_new_region); 832 } 833 834 void ShenandoahFreeSet::update_allocation_bias() { 835 if (_alloc_bias_weight-- <= 0) { 836 // We have observed that regions not collected in previous GC cycle tend to congregate at one end or the other 837 // of the heap. Typically, these are the more recently engaged regions and the objects in these regions have not 838 // yet had a chance to die (and/or are treated as floating garbage). If we use the same allocation bias on each 839 // GC pass, these "most recently" engaged regions for GC pass N will also be the "most recently" engaged regions 840 // for GC pass N+1, and the relatively large amount of live data and/or floating garbage introduced 841 // during the most recent GC pass may once again prevent the region from being collected. We have found that 842 // alternating the allocation behavior between GC passes improves evacuation performance by 3-7% on certain 843 // benchmarks. In the best case, this has the effect of consuming these partially consumed regions before 844 // the start of the next mark cycle so all of their garbage can be efficiently reclaimed. 845 // 846 // First, finish consuming regions that are already partially consumed so as to more tightly limit ranges of 847 // available regions. Other potential benefits: 848 // 1. Eventual collection set has fewer regions because we have packed newly allocated objects into fewer regions 849 // 2. We preserve the "empty" regions longer into the GC cycle, reducing likelihood of allocation failures 850 // late in the GC cycle. 851 idx_t non_empty_on_left = (_partitions.leftmost_empty(ShenandoahFreeSetPartitionId::Mutator) 852 - _partitions.leftmost(ShenandoahFreeSetPartitionId::Mutator)); 853 idx_t non_empty_on_right = (_partitions.rightmost(ShenandoahFreeSetPartitionId::Mutator) 854 - _partitions.rightmost_empty(ShenandoahFreeSetPartitionId::Mutator)); 855 _partitions.set_bias_from_left_to_right(ShenandoahFreeSetPartitionId::Mutator, (non_empty_on_right < non_empty_on_left)); 856 _alloc_bias_weight = INITIAL_ALLOC_BIAS_WEIGHT; 857 } 858 } 859 860 template<typename Iter> 861 HeapWord* ShenandoahFreeSet::allocate_from_regions(Iter& iterator, ShenandoahAllocRequest &req, bool &in_new_region) { 862 for (idx_t idx = iterator.current(); iterator.has_next(); idx = iterator.next()) { 863 ShenandoahHeapRegion* r = _heap->get_region(idx); 864 size_t min_size = (req.type() == ShenandoahAllocRequest::_alloc_tlab) ? req.min_size() : req.size(); 865 if (alloc_capacity(r) >= min_size) { 866 HeapWord* result = try_allocate_in(r, req, in_new_region); 867 if (result != nullptr) { 868 return result; 869 } 870 } 871 } 872 return nullptr; 873 } 874 875 HeapWord* ShenandoahFreeSet::allocate_for_collector(ShenandoahAllocRequest &req, bool &in_new_region) { 876 // Fast-path: try to allocate in the collector view first 877 HeapWord* result; 878 result = allocate_from_partition_with_affiliation(req.affiliation(), req, in_new_region); 879 if (result != nullptr) { 880 return result; 881 } 882 883 bool allow_new_region = can_allocate_in_new_region(req); 884 if (allow_new_region) { 885 // Try a free region that is dedicated to GC allocations. 886 result = allocate_from_partition_with_affiliation(ShenandoahAffiliation::FREE, req, in_new_region); 887 if (result != nullptr) { 888 return result; 889 } 890 } 891 892 // No dice. Can we borrow space from mutator view? 893 if (!ShenandoahEvacReserveOverflow) { 894 return nullptr; 895 } 896 897 if (!allow_new_region && req.is_old() && (_heap->young_generation()->free_unaffiliated_regions() > 0)) { 898 // This allows us to flip a mutator region to old_collector 899 allow_new_region = true; 900 } 901 902 // We should expand old-gen if this can prevent an old-gen evacuation failure. We don't care so much about 903 // promotion failures since they can be mitigated in a subsequent GC pass. Would be nice to know if this 904 // allocation request is for evacuation or promotion. Individual threads limit their use of PLAB memory for 905 // promotions, so we already have an assurance that any additional memory set aside for old-gen will be used 906 // only for old-gen evacuations. 907 if (allow_new_region) { 908 // Try to steal an empty region from the mutator view. 909 result = try_allocate_from_mutator(req, in_new_region); 910 } 911 912 // This is it. Do not try to mix mutator and GC allocations, because adjusting region UWM 913 // due to GC allocations would expose unparsable mutator allocations. 914 return result; 915 } 916 917 bool ShenandoahFreeSet::can_allocate_in_new_region(const ShenandoahAllocRequest& req) { 918 if (!_heap->mode()->is_generational()) { 919 return true; 920 } 921 922 assert(req.is_old() || req.is_young(), "Should request affiliation"); 923 return (req.is_old() && _heap->old_generation()->free_unaffiliated_regions() > 0) 924 || (req.is_young() && _heap->young_generation()->free_unaffiliated_regions() > 0); 925 } 926 927 HeapWord* ShenandoahFreeSet::try_allocate_from_mutator(ShenandoahAllocRequest& req, bool& in_new_region) { 928 // The collector prefers to keep longer lived regions toward the right side of the heap, so it always 929 // searches for regions from right to left here. 930 ShenandoahRightLeftIterator iterator(&_partitions, ShenandoahFreeSetPartitionId::Mutator, true); 931 for (idx_t idx = iterator.current(); iterator.has_next(); idx = iterator.next()) { 932 ShenandoahHeapRegion* r = _heap->get_region(idx); 933 if (can_allocate_from(r)) { 934 if (req.is_old()) { 935 flip_to_old_gc(r); 936 } else { 937 flip_to_gc(r); 938 } 939 // Region r is entirely empty. If try_allocate_in fails on region r, something else is really wrong. 940 // Don't bother to retry with other regions. 941 log_debug(gc, free)("Flipped region " SIZE_FORMAT " to gc for request: " PTR_FORMAT, idx, p2i(&req)); 942 return try_allocate_in(r, req, in_new_region); 943 } 944 } 945 946 return nullptr; 947 } 948 949 // This work method takes an argument corresponding to the number of bytes 950 // free in a region, and returns the largest amount in heapwords that can be allocated 951 // such that both of the following conditions are satisfied: 952 // 953 // 1. it is a multiple of card size 954 // 2. any remaining shard may be filled with a filler object 955 // 956 // The idea is that the allocation starts and ends at card boundaries. Because 957 // a region ('s end) is card-aligned, the remainder shard that must be filled is 958 // at the start of the free space. 959 // 960 // This is merely a helper method to use for the purpose of such a calculation. 961 size_t ShenandoahFreeSet::get_usable_free_words(size_t free_bytes) const { 962 // e.g. card_size is 512, card_shift is 9, min_fill_size() is 8 963 // free is 514 964 // usable_free is 512, which is decreased to 0 965 size_t usable_free = (free_bytes / CardTable::card_size()) << CardTable::card_shift(); 966 assert(usable_free <= free_bytes, "Sanity check"); 967 if ((free_bytes != usable_free) && (free_bytes - usable_free < ShenandoahHeap::min_fill_size() * HeapWordSize)) { 968 // After aligning to card multiples, the remainder would be smaller than 969 // the minimum filler object, so we'll need to take away another card's 970 // worth to construct a filler object. 971 if (usable_free >= CardTable::card_size()) { 972 usable_free -= CardTable::card_size(); 973 } else { 974 assert(usable_free == 0, "usable_free is a multiple of card_size and card_size > min_fill_size"); 975 } 976 } 977 978 return usable_free / HeapWordSize; 979 } 980 981 // Given a size argument, which is a multiple of card size, a request struct 982 // for a PLAB, and an old region, return a pointer to the allocated space for 983 // a PLAB which is card-aligned and where any remaining shard in the region 984 // has been suitably filled by a filler object. 985 // It is assumed (and assertion-checked) that such an allocation is always possible. 986 HeapWord* ShenandoahFreeSet::allocate_aligned_plab(size_t size, ShenandoahAllocRequest& req, ShenandoahHeapRegion* r) { 987 assert(_heap->mode()->is_generational(), "PLABs are only for generational mode"); 988 assert(r->is_old(), "All PLABs reside in old-gen"); 989 assert(!req.is_mutator_alloc(), "PLABs should not be allocated by mutators."); 990 assert(is_aligned(size, CardTable::card_size_in_words()), "Align by design"); 991 992 HeapWord* result = r->allocate_aligned(size, req, CardTable::card_size()); 993 assert(result != nullptr, "Allocation cannot fail"); 994 assert(r->top() <= r->end(), "Allocation cannot span end of region"); 995 assert(is_aligned(result, CardTable::card_size_in_words()), "Align by design"); 996 return result; 997 } 998 999 HeapWord* ShenandoahFreeSet::try_allocate_in(ShenandoahHeapRegion* r, ShenandoahAllocRequest& req, bool& in_new_region) { 1000 assert (has_alloc_capacity(r), "Performance: should avoid full regions on this path: " SIZE_FORMAT, r->index()); 1001 if (_heap->is_concurrent_weak_root_in_progress() && r->is_trash()) { 1002 return nullptr; 1003 } 1004 HeapWord* result = nullptr; 1005 try_recycle_trashed(r); 1006 in_new_region = r->is_empty(); 1007 1008 if (in_new_region) { 1009 log_debug(gc)("Using new region (" SIZE_FORMAT ") for %s (" PTR_FORMAT ").", 1010 r->index(), ShenandoahAllocRequest::alloc_type_to_string(req.type()), p2i(&req)); 1011 assert(!r->is_affiliated(), "New region " SIZE_FORMAT " should be unaffiliated", r->index()); 1012 r->set_affiliation(req.affiliation()); 1013 if (r->is_old()) { 1014 // Any OLD region allocated during concurrent coalesce-and-fill does not need to be coalesced and filled because 1015 // all objects allocated within this region are above TAMS (and thus are implicitly marked). In case this is an 1016 // OLD region and concurrent preparation for mixed evacuations visits this region before the start of the next 1017 // old-gen concurrent mark (i.e. this region is allocated following the start of old-gen concurrent mark but before 1018 // concurrent preparations for mixed evacuations are completed), we mark this region as not requiring any 1019 // coalesce-and-fill processing. 1020 r->end_preemptible_coalesce_and_fill(); 1021 _heap->old_generation()->clear_cards_for(r); 1022 } 1023 _heap->generation_for(r->affiliation())->increment_affiliated_region_count(); 1024 1025 #ifdef ASSERT 1026 ShenandoahMarkingContext* const ctx = _heap->complete_marking_context(); 1027 assert(ctx->top_at_mark_start(r) == r->bottom(), "Newly established allocation region starts with TAMS equal to bottom"); 1028 assert(ctx->is_bitmap_clear_range(ctx->top_bitmap(r), r->end()), "Bitmap above top_bitmap() must be clear"); 1029 #endif 1030 log_debug(gc)("Using new region (" SIZE_FORMAT ") for %s (" PTR_FORMAT ").", 1031 r->index(), ShenandoahAllocRequest::alloc_type_to_string(req.type()), p2i(&req)); 1032 } else { 1033 assert(r->is_affiliated(), "Region " SIZE_FORMAT " that is not new should be affiliated", r->index()); 1034 if (r->affiliation() != req.affiliation()) { 1035 assert(_heap->mode()->is_generational(), "Request for %s from %s region should only happen in generational mode.", 1036 req.affiliation_name(), r->affiliation_name()); 1037 return nullptr; 1038 } 1039 } 1040 1041 // req.size() is in words, r->free() is in bytes. 1042 if (req.is_lab_alloc()) { 1043 size_t adjusted_size = req.size(); 1044 size_t free = r->free(); // free represents bytes available within region r 1045 if (req.type() == ShenandoahAllocRequest::_alloc_plab) { 1046 // This is a PLAB allocation 1047 assert(_heap->mode()->is_generational(), "PLABs are only for generational mode"); 1048 assert(_partitions.in_free_set(ShenandoahFreeSetPartitionId::OldCollector, r->index()), 1049 "PLABS must be allocated in old_collector_free regions"); 1050 1051 // Need to assure that plabs are aligned on multiple of card region 1052 // Convert free from unaligned bytes to aligned number of words 1053 size_t usable_free = get_usable_free_words(free); 1054 if (adjusted_size > usable_free) { 1055 adjusted_size = usable_free; 1056 } 1057 adjusted_size = align_down(adjusted_size, CardTable::card_size_in_words()); 1058 if (adjusted_size >= req.min_size()) { 1059 result = allocate_aligned_plab(adjusted_size, req, r); 1060 assert(result != nullptr, "allocate must succeed"); 1061 req.set_actual_size(adjusted_size); 1062 } else { 1063 // Otherwise, leave result == nullptr because the adjusted size is smaller than min size. 1064 log_trace(gc, free)("Failed to shrink PLAB request (" SIZE_FORMAT ") in region " SIZE_FORMAT " to " SIZE_FORMAT 1065 " because min_size() is " SIZE_FORMAT, req.size(), r->index(), adjusted_size, req.min_size()); 1066 } 1067 } else { 1068 // This is a GCLAB or a TLAB allocation 1069 // Convert free from unaligned bytes to aligned number of words 1070 free = align_down(free >> LogHeapWordSize, MinObjAlignment); 1071 if (adjusted_size > free) { 1072 adjusted_size = free; 1073 } 1074 if (adjusted_size >= req.min_size()) { 1075 result = r->allocate(adjusted_size, req); 1076 assert (result != nullptr, "Allocation must succeed: free " SIZE_FORMAT ", actual " SIZE_FORMAT, free, adjusted_size); 1077 req.set_actual_size(adjusted_size); 1078 } else { 1079 log_trace(gc, free)("Failed to shrink TLAB or GCLAB request (" SIZE_FORMAT ") in region " SIZE_FORMAT " to " SIZE_FORMAT 1080 " because min_size() is " SIZE_FORMAT, req.size(), r->index(), adjusted_size, req.min_size()); 1081 } 1082 } 1083 } else { 1084 size_t size = req.size(); 1085 result = r->allocate(size, req); 1086 if (result != nullptr) { 1087 // Record actual allocation size 1088 req.set_actual_size(size); 1089 } 1090 } 1091 1092 if (result != nullptr) { 1093 // Allocation successful, bump stats: 1094 if (req.is_mutator_alloc()) { 1095 assert(req.is_young(), "Mutator allocations always come from young generation."); 1096 _partitions.increase_used(ShenandoahFreeSetPartitionId::Mutator, req.actual_size() * HeapWordSize); 1097 } else { 1098 assert(req.is_gc_alloc(), "Should be gc_alloc since req wasn't mutator alloc"); 1099 1100 // For GC allocations, we advance update_watermark because the objects relocated into this memory during 1101 // evacuation are not updated during evacuation. For both young and old regions r, it is essential that all 1102 // PLABs be made parsable at the end of evacuation. This is enabled by retiring all plabs at end of evacuation. 1103 r->set_update_watermark(r->top()); 1104 if (r->is_old()) { 1105 _partitions.increase_used(ShenandoahFreeSetPartitionId::OldCollector, req.actual_size() * HeapWordSize); 1106 assert(req.type() != ShenandoahAllocRequest::_alloc_gclab, "old-gen allocations use PLAB or shared allocation"); 1107 // for plabs, we'll sort the difference between evac and promotion usage when we retire the plab 1108 } else { 1109 _partitions.increase_used(ShenandoahFreeSetPartitionId::Collector, req.actual_size() * HeapWordSize); 1110 } 1111 } 1112 } 1113 1114 static const size_t min_capacity = (size_t) (ShenandoahHeapRegion::region_size_bytes() * (1.0 - 1.0 / ShenandoahEvacWaste)); 1115 size_t ac = alloc_capacity(r); 1116 1117 if (((result == nullptr) && (ac < min_capacity)) || (alloc_capacity(r) < PLAB::min_size() * HeapWordSize)) { 1118 // Regardless of whether this allocation succeeded, if the remaining memory is less than PLAB:min_size(), retire this region. 1119 // Note that retire_from_partition() increases used to account for waste. 1120 1121 // Also, if this allocation request failed and the consumed within this region * ShenandoahEvacWaste > region size, 1122 // then retire the region so that subsequent searches can find available memory more quickly. 1123 1124 size_t idx = r->index(); 1125 ShenandoahFreeSetPartitionId orig_partition; 1126 if (req.is_mutator_alloc()) { 1127 orig_partition = ShenandoahFreeSetPartitionId::Mutator; 1128 } else if (req.type() == ShenandoahAllocRequest::_alloc_gclab) { 1129 orig_partition = ShenandoahFreeSetPartitionId::Collector; 1130 } else if (req.type() == ShenandoahAllocRequest::_alloc_plab) { 1131 orig_partition = ShenandoahFreeSetPartitionId::OldCollector; 1132 } else { 1133 assert(req.type() == ShenandoahAllocRequest::_alloc_shared_gc, "Unexpected allocation type"); 1134 if (req.is_old()) { 1135 orig_partition = ShenandoahFreeSetPartitionId::OldCollector; 1136 } else { 1137 orig_partition = ShenandoahFreeSetPartitionId::Collector; 1138 } 1139 } 1140 _partitions.retire_from_partition(orig_partition, idx, r->used()); 1141 _partitions.assert_bounds(); 1142 } 1143 return result; 1144 } 1145 1146 HeapWord* ShenandoahFreeSet::allocate_contiguous(ShenandoahAllocRequest& req) { 1147 assert(req.is_mutator_alloc(), "All humongous allocations are performed by mutator"); 1148 shenandoah_assert_heaplocked(); 1149 1150 size_t words_size = req.size(); 1151 idx_t num = ShenandoahHeapRegion::required_regions(words_size * HeapWordSize); 1152 1153 assert(req.is_young(), "Humongous regions always allocated in YOUNG"); 1154 ShenandoahGeneration* generation = _heap->generation_for(req.affiliation()); 1155 1156 // Check if there are enough regions left to satisfy allocation. 1157 if (num > (idx_t) _partitions.count(ShenandoahFreeSetPartitionId::Mutator)) { 1158 return nullptr; 1159 } 1160 1161 idx_t start_range = _partitions.leftmost_empty(ShenandoahFreeSetPartitionId::Mutator); 1162 idx_t end_range = _partitions.rightmost_empty(ShenandoahFreeSetPartitionId::Mutator) + 1; 1163 idx_t last_possible_start = end_range - num; 1164 1165 // Find the continuous interval of $num regions, starting from $beg and ending in $end, 1166 // inclusive. Contiguous allocations are biased to the beginning. 1167 idx_t beg = _partitions.find_index_of_next_available_cluster_of_regions(ShenandoahFreeSetPartitionId::Mutator, 1168 start_range, num); 1169 if (beg > last_possible_start) { 1170 // Hit the end, goodbye 1171 return nullptr; 1172 } 1173 idx_t end = beg; 1174 1175 while (true) { 1176 // We've confirmed num contiguous regions belonging to Mutator partition, so no need to confirm membership. 1177 // If region is not completely free, the current [beg; end] is useless, and we may fast-forward. If we can extend 1178 // the existing range, we can exploit that certain regions are already known to be in the Mutator free set. 1179 while (!can_allocate_from(_heap->get_region(end))) { 1180 // region[end] is not empty, so we restart our search after region[end] 1181 idx_t slide_delta = end + 1 - beg; 1182 if (beg + slide_delta > last_possible_start) { 1183 // no room to slide 1184 return nullptr; 1185 } 1186 for (idx_t span_end = beg + num; slide_delta > 0; slide_delta--) { 1187 if (!_partitions.in_free_set(ShenandoahFreeSetPartitionId::Mutator, span_end)) { 1188 beg = _partitions.find_index_of_next_available_cluster_of_regions(ShenandoahFreeSetPartitionId::Mutator, 1189 span_end + 1, num); 1190 break; 1191 } else { 1192 beg++; 1193 span_end++; 1194 } 1195 } 1196 // Here, either beg identifies a range of num regions all of which are in the Mutator free set, or beg > last_possible_start 1197 if (beg > last_possible_start) { 1198 // Hit the end, goodbye 1199 return nullptr; 1200 } 1201 end = beg; 1202 } 1203 1204 if ((end - beg + 1) == num) { 1205 // found the match 1206 break; 1207 } 1208 1209 end++; 1210 } 1211 1212 size_t remainder = words_size & ShenandoahHeapRegion::region_size_words_mask(); 1213 // Initialize regions: 1214 for (idx_t i = beg; i <= end; i++) { 1215 ShenandoahHeapRegion* r = _heap->get_region(i); 1216 try_recycle_trashed(r); 1217 1218 assert(i == beg || _heap->get_region(i - 1)->index() + 1 == r->index(), "Should be contiguous"); 1219 assert(r->is_empty(), "Should be empty"); 1220 1221 if (i == beg) { 1222 r->make_humongous_start(); 1223 } else { 1224 r->make_humongous_cont(); 1225 } 1226 1227 // Trailing region may be non-full, record the remainder there 1228 size_t used_words; 1229 if ((i == end) && (remainder != 0)) { 1230 used_words = remainder; 1231 } else { 1232 used_words = ShenandoahHeapRegion::region_size_words(); 1233 } 1234 1235 r->set_affiliation(req.affiliation()); 1236 r->set_update_watermark(r->bottom()); 1237 r->set_top(r->bottom() + used_words); 1238 } 1239 generation->increase_affiliated_region_count(num); 1240 if (remainder != 0) { 1241 // Record this remainder as allocation waste 1242 _heap->notify_mutator_alloc_words(ShenandoahHeapRegion::region_size_words() - remainder, true); 1243 } 1244 1245 // retire_range_from_partition() will adjust bounds on Mutator free set if appropriate 1246 _partitions.retire_range_from_partition(ShenandoahFreeSetPartitionId::Mutator, beg, end); 1247 1248 size_t total_humongous_size = ShenandoahHeapRegion::region_size_bytes() * num; 1249 _partitions.increase_used(ShenandoahFreeSetPartitionId::Mutator, total_humongous_size); 1250 _partitions.assert_bounds(); 1251 req.set_actual_size(words_size); 1252 if (remainder != 0) { 1253 req.set_waste(ShenandoahHeapRegion::region_size_words() - remainder); 1254 } 1255 return _heap->get_region(beg)->bottom(); 1256 } 1257 1258 void ShenandoahFreeSet::try_recycle_trashed(ShenandoahHeapRegion* r) { 1259 if (r->is_trash()) { 1260 r->recycle(); 1261 } 1262 } 1263 1264 void ShenandoahFreeSet::recycle_trash() { 1265 // lock is not reentrable, check we don't have it 1266 shenandoah_assert_not_heaplocked(); 1267 size_t count = 0; 1268 for (size_t i = 0; i < _heap->num_regions(); i++) { 1269 ShenandoahHeapRegion* r = _heap->get_region(i); 1270 if (r->is_trash()) { 1271 _trash_regions[count++] = r; 1272 } 1273 } 1274 1275 size_t total_batches = 0; 1276 jlong batch_start_time = 0; 1277 jlong recycle_trash_start_time = os::javaTimeNanos(); // This value will be treated as the initial batch_start_time 1278 jlong batch_end_time = recycle_trash_start_time; 1279 // Process as many batches as can be processed within 10 us. 1280 static constexpr jlong deadline_ns = 10000; // 10 us 1281 size_t idx = 0; 1282 jlong predicted_next_batch_end_time; 1283 jlong batch_process_time_estimate = 0; 1284 while (idx < count) { 1285 if (idx > 0) { 1286 os::naked_yield(); // Yield to allow allocators to take the lock, except on the first iteration 1287 } 1288 // Avoid another call to javaTimeNanos() if we already know time at which last batch ended 1289 batch_start_time = batch_end_time; 1290 const jlong deadline = batch_start_time + deadline_ns; 1291 1292 ShenandoahHeapLocker locker(_heap->lock()); 1293 do { 1294 // Measurements on typical 2024 hardware suggest it typically requires between 1400 and 2000 ns to process a batch of 1295 // 32 regions, assuming low contention with other threads. Sometimes this goes higher, when mutator threads 1296 // are contending for CPU cores and/or the heap lock. On this hardware with a 10 us deadline, we expect 3-6 batches 1297 // to be processed between yields most of the time. 1298 // 1299 // Note that deadline is enforced since the end of previous batch. In the case that yield() or acquisition of heap lock 1300 // takes a "long time", we will have less time to process regions, but we will always process at least one batch between 1301 // yields. Yielding more frequently when there is heavy contention for the heap lock or for CPU cores is considered the 1302 // right thing to do. 1303 const size_t REGIONS_PER_BATCH = 32; 1304 size_t max_idx = MIN2(count, idx + REGIONS_PER_BATCH); 1305 while (idx < max_idx) { 1306 try_recycle_trashed(_trash_regions[idx++]); 1307 } 1308 total_batches++; 1309 batch_end_time = os::javaTimeNanos(); 1310 // Estimate includes historic combination of yield times and heap lock acquisition times. 1311 batch_process_time_estimate = (batch_end_time - recycle_trash_start_time) / total_batches; 1312 predicted_next_batch_end_time = batch_end_time + batch_process_time_estimate; 1313 } while ((idx < count) && (predicted_next_batch_end_time < deadline)); 1314 } 1315 } 1316 1317 void ShenandoahFreeSet::flip_to_old_gc(ShenandoahHeapRegion* r) { 1318 size_t idx = r->index(); 1319 1320 assert(_partitions.partition_id_matches(idx, ShenandoahFreeSetPartitionId::Mutator), "Should be in mutator view"); 1321 assert(can_allocate_from(r), "Should not be allocated"); 1322 1323 ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap(); 1324 size_t region_capacity = alloc_capacity(r); 1325 _partitions.move_from_partition_to_partition(idx, ShenandoahFreeSetPartitionId::Mutator, 1326 ShenandoahFreeSetPartitionId::OldCollector, region_capacity); 1327 _partitions.assert_bounds(); 1328 _heap->old_generation()->augment_evacuation_reserve(region_capacity); 1329 bool transferred = gen_heap->generation_sizer()->transfer_to_old(1); 1330 if (!transferred) { 1331 log_warning(gc, free)("Forcing transfer of " SIZE_FORMAT " to old reserve.", idx); 1332 gen_heap->generation_sizer()->force_transfer_to_old(1); 1333 } 1334 // We do not ensure that the region is no longer trash, relying on try_allocate_in(), which always comes next, 1335 // to recycle trash before attempting to allocate anything in the region. 1336 } 1337 1338 void ShenandoahFreeSet::flip_to_gc(ShenandoahHeapRegion* r) { 1339 size_t idx = r->index(); 1340 1341 assert(_partitions.partition_id_matches(idx, ShenandoahFreeSetPartitionId::Mutator), "Should be in mutator view"); 1342 assert(can_allocate_from(r), "Should not be allocated"); 1343 1344 size_t ac = alloc_capacity(r); 1345 _partitions.move_from_partition_to_partition(idx, ShenandoahFreeSetPartitionId::Mutator, 1346 ShenandoahFreeSetPartitionId::Collector, ac); 1347 _partitions.assert_bounds(); 1348 1349 // We do not ensure that the region is no longer trash, relying on try_allocate_in(), which always comes next, 1350 // to recycle trash before attempting to allocate anything in the region. 1351 } 1352 1353 void ShenandoahFreeSet::clear() { 1354 shenandoah_assert_heaplocked(); 1355 clear_internal(); 1356 } 1357 1358 void ShenandoahFreeSet::clear_internal() { 1359 _partitions.make_all_regions_unavailable(); 1360 1361 _alloc_bias_weight = 0; 1362 _partitions.set_bias_from_left_to_right(ShenandoahFreeSetPartitionId::Mutator, true); 1363 _partitions.set_bias_from_left_to_right(ShenandoahFreeSetPartitionId::Collector, false); 1364 _partitions.set_bias_from_left_to_right(ShenandoahFreeSetPartitionId::OldCollector, false); 1365 } 1366 1367 void ShenandoahFreeSet::find_regions_with_alloc_capacity(size_t &young_cset_regions, size_t &old_cset_regions, 1368 size_t &first_old_region, size_t &last_old_region, 1369 size_t &old_region_count) { 1370 clear_internal(); 1371 1372 first_old_region = _heap->num_regions(); 1373 last_old_region = 0; 1374 old_region_count = 0; 1375 old_cset_regions = 0; 1376 young_cset_regions = 0; 1377 1378 size_t region_size_bytes = _partitions.region_size_bytes(); 1379 size_t max_regions = _partitions.max_regions(); 1380 1381 size_t mutator_leftmost = max_regions; 1382 size_t mutator_rightmost = 0; 1383 size_t mutator_leftmost_empty = max_regions; 1384 size_t mutator_rightmost_empty = 0; 1385 size_t mutator_regions = 0; 1386 size_t mutator_used = 0; 1387 1388 size_t old_collector_leftmost = max_regions; 1389 size_t old_collector_rightmost = 0; 1390 size_t old_collector_leftmost_empty = max_regions; 1391 size_t old_collector_rightmost_empty = 0; 1392 size_t old_collector_regions = 0; 1393 size_t old_collector_used = 0; 1394 1395 size_t num_regions = _heap->num_regions(); 1396 for (size_t idx = 0; idx < num_regions; idx++) { 1397 ShenandoahHeapRegion* region = _heap->get_region(idx); 1398 if (region->is_trash()) { 1399 // Trashed regions represent regions that had been in the collection partition but have not yet been "cleaned up". 1400 // The cset regions are not "trashed" until we have finished update refs. 1401 if (region->is_old()) { 1402 old_cset_regions++; 1403 } else { 1404 assert(region->is_young(), "Trashed region should be old or young"); 1405 young_cset_regions++; 1406 } 1407 } else if (region->is_old()) { 1408 // count both humongous and regular regions, but don't count trash (cset) regions. 1409 old_region_count++; 1410 if (first_old_region > idx) { 1411 first_old_region = idx; 1412 } 1413 last_old_region = idx; 1414 } 1415 if (region->is_alloc_allowed() || region->is_trash()) { 1416 assert(!region->is_cset(), "Shouldn't be adding cset regions to the free set"); 1417 1418 // Do not add regions that would almost surely fail allocation 1419 size_t ac = alloc_capacity(region); 1420 if (ac > PLAB::min_size() * HeapWordSize) { 1421 if (region->is_trash() || !region->is_old()) { 1422 // Both young and old collected regions (trashed) are placed into the Mutator set 1423 _partitions.raw_assign_membership(idx, ShenandoahFreeSetPartitionId::Mutator); 1424 if (idx < mutator_leftmost) { 1425 mutator_leftmost = idx; 1426 } 1427 if (idx > mutator_rightmost) { 1428 mutator_rightmost = idx; 1429 } 1430 if (ac == region_size_bytes) { 1431 if (idx < mutator_leftmost_empty) { 1432 mutator_leftmost_empty = idx; 1433 } 1434 if (idx > mutator_rightmost_empty) { 1435 mutator_rightmost_empty = idx; 1436 } 1437 } 1438 mutator_regions++; 1439 mutator_used += (region_size_bytes - ac); 1440 } else { 1441 // !region->is_trash() && region is_old() 1442 _partitions.raw_assign_membership(idx, ShenandoahFreeSetPartitionId::OldCollector); 1443 if (idx < old_collector_leftmost) { 1444 old_collector_leftmost = idx; 1445 } 1446 if (idx > old_collector_rightmost) { 1447 old_collector_rightmost = idx; 1448 } 1449 if (ac == region_size_bytes) { 1450 if (idx < old_collector_leftmost_empty) { 1451 old_collector_leftmost_empty = idx; 1452 } 1453 if (idx > old_collector_rightmost_empty) { 1454 old_collector_rightmost_empty = idx; 1455 } 1456 } 1457 old_collector_regions++; 1458 old_collector_used += (region_size_bytes - ac); 1459 } 1460 } 1461 } 1462 } 1463 log_debug(gc)(" At end of prep_to_rebuild, mutator_leftmost: " SIZE_FORMAT 1464 ", mutator_rightmost: " SIZE_FORMAT 1465 ", mutator_leftmost_empty: " SIZE_FORMAT 1466 ", mutator_rightmost_empty: " SIZE_FORMAT 1467 ", mutator_regions: " SIZE_FORMAT 1468 ", mutator_used: " SIZE_FORMAT, 1469 mutator_leftmost, mutator_rightmost, mutator_leftmost_empty, mutator_rightmost_empty, 1470 mutator_regions, mutator_used); 1471 1472 log_debug(gc)(" old_collector_leftmost: " SIZE_FORMAT 1473 ", old_collector_rightmost: " SIZE_FORMAT 1474 ", old_collector_leftmost_empty: " SIZE_FORMAT 1475 ", old_collector_rightmost_empty: " SIZE_FORMAT 1476 ", old_collector_regions: " SIZE_FORMAT 1477 ", old_collector_used: " SIZE_FORMAT, 1478 old_collector_leftmost, old_collector_rightmost, old_collector_leftmost_empty, old_collector_rightmost_empty, 1479 old_collector_regions, old_collector_used); 1480 1481 idx_t rightmost_idx = (mutator_leftmost == max_regions)? -1: (idx_t) mutator_rightmost; 1482 idx_t rightmost_empty_idx = (mutator_leftmost_empty == max_regions)? -1: (idx_t) mutator_rightmost_empty; 1483 _partitions.establish_mutator_intervals(mutator_leftmost, rightmost_idx, mutator_leftmost_empty, rightmost_empty_idx, 1484 mutator_regions, mutator_used); 1485 rightmost_idx = (old_collector_leftmost == max_regions)? -1: (idx_t) old_collector_rightmost; 1486 rightmost_empty_idx = (old_collector_leftmost_empty == max_regions)? -1: (idx_t) old_collector_rightmost_empty; 1487 _partitions.establish_old_collector_intervals(old_collector_leftmost, rightmost_idx, old_collector_leftmost_empty, 1488 rightmost_empty_idx, old_collector_regions, old_collector_used); 1489 log_debug(gc)(" After find_regions_with_alloc_capacity(), Mutator range [" SSIZE_FORMAT ", " SSIZE_FORMAT "]," 1490 " Old Collector range [" SSIZE_FORMAT ", " SSIZE_FORMAT "]", 1491 _partitions.leftmost(ShenandoahFreeSetPartitionId::Mutator), 1492 _partitions.rightmost(ShenandoahFreeSetPartitionId::Mutator), 1493 _partitions.leftmost(ShenandoahFreeSetPartitionId::OldCollector), 1494 _partitions.rightmost(ShenandoahFreeSetPartitionId::OldCollector)); 1495 } 1496 1497 // Returns number of regions transferred, adds transferred bytes to var argument bytes_transferred 1498 size_t ShenandoahFreeSet::transfer_empty_regions_from_collector_set_to_mutator_set(ShenandoahFreeSetPartitionId which_collector, 1499 size_t max_xfer_regions, 1500 size_t& bytes_transferred) { 1501 shenandoah_assert_heaplocked(); 1502 const size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes(); 1503 size_t transferred_regions = 0; 1504 ShenandoahLeftRightIterator iterator(&_partitions, which_collector, true); 1505 idx_t rightmost = _partitions.rightmost_empty(which_collector); 1506 for (idx_t idx = iterator.current(); transferred_regions < max_xfer_regions && iterator.has_next(); idx = iterator.next()) { 1507 // Note: can_allocate_from() denotes that region is entirely empty 1508 if (can_allocate_from(idx)) { 1509 _partitions.move_from_partition_to_partition(idx, which_collector, ShenandoahFreeSetPartitionId::Mutator, region_size_bytes); 1510 transferred_regions++; 1511 bytes_transferred += region_size_bytes; 1512 } 1513 } 1514 return transferred_regions; 1515 } 1516 1517 // Returns number of regions transferred, adds transferred bytes to var argument bytes_transferred 1518 size_t ShenandoahFreeSet::transfer_non_empty_regions_from_collector_set_to_mutator_set(ShenandoahFreeSetPartitionId which_collector, 1519 size_t max_xfer_regions, 1520 size_t& bytes_transferred) { 1521 shenandoah_assert_heaplocked(); 1522 size_t transferred_regions = 0; 1523 ShenandoahLeftRightIterator iterator(&_partitions, which_collector, false); 1524 for (idx_t idx = iterator.current(); transferred_regions < max_xfer_regions && iterator.has_next(); idx = iterator.next()) { 1525 size_t ac = alloc_capacity(idx); 1526 if (ac > 0) { 1527 _partitions.move_from_partition_to_partition(idx, which_collector, ShenandoahFreeSetPartitionId::Mutator, ac); 1528 transferred_regions++; 1529 bytes_transferred += ac; 1530 } 1531 } 1532 return transferred_regions; 1533 } 1534 1535 void ShenandoahFreeSet::move_regions_from_collector_to_mutator(size_t max_xfer_regions) { 1536 size_t collector_xfer = 0; 1537 size_t old_collector_xfer = 0; 1538 1539 // Process empty regions within the Collector free partition 1540 if ((max_xfer_regions > 0) && 1541 (_partitions.leftmost_empty(ShenandoahFreeSetPartitionId::Collector) 1542 <= _partitions.rightmost_empty(ShenandoahFreeSetPartitionId::Collector))) { 1543 ShenandoahHeapLocker locker(_heap->lock()); 1544 max_xfer_regions -= 1545 transfer_empty_regions_from_collector_set_to_mutator_set(ShenandoahFreeSetPartitionId::Collector, max_xfer_regions, 1546 collector_xfer); 1547 } 1548 1549 // Process empty regions within the OldCollector free partition 1550 if ((max_xfer_regions > 0) && 1551 (_partitions.leftmost_empty(ShenandoahFreeSetPartitionId::OldCollector) 1552 <= _partitions.rightmost_empty(ShenandoahFreeSetPartitionId::OldCollector))) { 1553 ShenandoahHeapLocker locker(_heap->lock()); 1554 size_t old_collector_regions = 1555 transfer_empty_regions_from_collector_set_to_mutator_set(ShenandoahFreeSetPartitionId::OldCollector, max_xfer_regions, 1556 old_collector_xfer); 1557 max_xfer_regions -= old_collector_regions; 1558 if (old_collector_regions > 0) { 1559 ShenandoahGenerationalHeap::cast(_heap)->generation_sizer()->transfer_to_young(old_collector_regions); 1560 } 1561 } 1562 1563 // If there are any non-empty regions within Collector partition, we can also move them to the Mutator free partition 1564 if ((max_xfer_regions > 0) && (_partitions.leftmost(ShenandoahFreeSetPartitionId::Collector) 1565 <= _partitions.rightmost(ShenandoahFreeSetPartitionId::Collector))) { 1566 ShenandoahHeapLocker locker(_heap->lock()); 1567 max_xfer_regions -= 1568 transfer_non_empty_regions_from_collector_set_to_mutator_set(ShenandoahFreeSetPartitionId::Collector, max_xfer_regions, 1569 collector_xfer); 1570 } 1571 1572 size_t total_xfer = collector_xfer + old_collector_xfer; 1573 log_info(gc, ergo)("At start of update refs, moving " SIZE_FORMAT "%s to Mutator free set from Collector Reserve (" 1574 SIZE_FORMAT "%s) and from Old Collector Reserve (" SIZE_FORMAT "%s)", 1575 byte_size_in_proper_unit(total_xfer), proper_unit_for_byte_size(total_xfer), 1576 byte_size_in_proper_unit(collector_xfer), proper_unit_for_byte_size(collector_xfer), 1577 byte_size_in_proper_unit(old_collector_xfer), proper_unit_for_byte_size(old_collector_xfer)); 1578 } 1579 1580 1581 // Overwrite arguments to represent the amount of memory in each generation that is about to be recycled 1582 void ShenandoahFreeSet::prepare_to_rebuild(size_t &young_cset_regions, size_t &old_cset_regions, 1583 size_t &first_old_region, size_t &last_old_region, size_t &old_region_count) { 1584 shenandoah_assert_heaplocked(); 1585 // This resets all state information, removing all regions from all sets. 1586 clear(); 1587 log_debug(gc, free)("Rebuilding FreeSet"); 1588 1589 // This places regions that have alloc_capacity into the old_collector set if they identify as is_old() or the 1590 // mutator set otherwise. All trashed (cset) regions are affiliated young and placed in mutator set. 1591 find_regions_with_alloc_capacity(young_cset_regions, old_cset_regions, first_old_region, last_old_region, old_region_count); 1592 } 1593 1594 void ShenandoahFreeSet::establish_generation_sizes(size_t young_region_count, size_t old_region_count) { 1595 assert(young_region_count + old_region_count == ShenandoahHeap::heap()->num_regions(), "Sanity"); 1596 if (ShenandoahHeap::heap()->mode()->is_generational()) { 1597 ShenandoahGenerationalHeap* heap = ShenandoahGenerationalHeap::heap(); 1598 ShenandoahOldGeneration* old_gen = heap->old_generation(); 1599 ShenandoahYoungGeneration* young_gen = heap->young_generation(); 1600 size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes(); 1601 1602 size_t original_old_capacity = old_gen->max_capacity(); 1603 size_t new_old_capacity = old_region_count * region_size_bytes; 1604 size_t new_young_capacity = young_region_count * region_size_bytes; 1605 old_gen->set_capacity(new_old_capacity); 1606 young_gen->set_capacity(new_young_capacity); 1607 1608 if (new_old_capacity > original_old_capacity) { 1609 size_t region_count = (new_old_capacity - original_old_capacity) / region_size_bytes; 1610 log_info(gc, ergo)("Transfer " SIZE_FORMAT " region(s) from %s to %s, yielding increased size: " PROPERFMT, 1611 region_count, young_gen->name(), old_gen->name(), PROPERFMTARGS(new_old_capacity)); 1612 } else if (new_old_capacity < original_old_capacity) { 1613 size_t region_count = (original_old_capacity - new_old_capacity) / region_size_bytes; 1614 log_info(gc, ergo)("Transfer " SIZE_FORMAT " region(s) from %s to %s, yielding increased size: " PROPERFMT, 1615 region_count, old_gen->name(), young_gen->name(), PROPERFMTARGS(new_young_capacity)); 1616 } 1617 // This balances generations, so clear any pending request to balance. 1618 old_gen->set_region_balance(0); 1619 } 1620 } 1621 1622 void ShenandoahFreeSet::finish_rebuild(size_t young_cset_regions, size_t old_cset_regions, size_t old_region_count, 1623 bool have_evacuation_reserves) { 1624 shenandoah_assert_heaplocked(); 1625 size_t young_reserve(0), old_reserve(0); 1626 1627 if (_heap->mode()->is_generational()) { 1628 compute_young_and_old_reserves(young_cset_regions, old_cset_regions, have_evacuation_reserves, 1629 young_reserve, old_reserve); 1630 } else { 1631 young_reserve = (_heap->max_capacity() / 100) * ShenandoahEvacReserve; 1632 old_reserve = 0; 1633 } 1634 1635 // Move some of the mutator regions in the Collector and OldCollector partitions in order to satisfy 1636 // young_reserve and old_reserve. 1637 reserve_regions(young_reserve, old_reserve, old_region_count); 1638 size_t young_region_count = _heap->num_regions() - old_region_count; 1639 establish_generation_sizes(young_region_count, old_region_count); 1640 establish_old_collector_alloc_bias(); 1641 _partitions.assert_bounds(); 1642 log_status(); 1643 } 1644 1645 void ShenandoahFreeSet::compute_young_and_old_reserves(size_t young_cset_regions, size_t old_cset_regions, 1646 bool have_evacuation_reserves, 1647 size_t& young_reserve_result, size_t& old_reserve_result) const { 1648 shenandoah_assert_generational(); 1649 const size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes(); 1650 1651 ShenandoahOldGeneration* const old_generation = _heap->old_generation(); 1652 size_t old_available = old_generation->available(); 1653 size_t old_unaffiliated_regions = old_generation->free_unaffiliated_regions(); 1654 ShenandoahYoungGeneration* const young_generation = _heap->young_generation(); 1655 size_t young_capacity = young_generation->max_capacity(); 1656 size_t young_unaffiliated_regions = young_generation->free_unaffiliated_regions(); 1657 1658 // Add in the regions we anticipate to be freed by evacuation of the collection set 1659 old_unaffiliated_regions += old_cset_regions; 1660 young_unaffiliated_regions += young_cset_regions; 1661 1662 // Consult old-region balance to make adjustments to current generation capacities and availability. 1663 // The generation region transfers take place after we rebuild. 1664 const ssize_t old_region_balance = old_generation->get_region_balance(); 1665 if (old_region_balance != 0) { 1666 #ifdef ASSERT 1667 if (old_region_balance > 0) { 1668 assert(old_region_balance <= checked_cast<ssize_t>(old_unaffiliated_regions), "Cannot transfer regions that are affiliated"); 1669 } else { 1670 assert(0 - old_region_balance <= checked_cast<ssize_t>(young_unaffiliated_regions), "Cannot transfer regions that are affiliated"); 1671 } 1672 #endif 1673 1674 ssize_t xfer_bytes = old_region_balance * checked_cast<ssize_t>(region_size_bytes); 1675 old_available -= xfer_bytes; 1676 old_unaffiliated_regions -= old_region_balance; 1677 young_capacity += xfer_bytes; 1678 young_unaffiliated_regions += old_region_balance; 1679 } 1680 1681 // All allocations taken from the old collector set are performed by GC, generally using PLABs for both 1682 // promotions and evacuations. The partition between which old memory is reserved for evacuation and 1683 // which is reserved for promotion is enforced using thread-local variables that prescribe intentions for 1684 // each PLAB's available memory. 1685 if (have_evacuation_reserves) { 1686 // We are rebuilding at the end of final mark, having already established evacuation budgets for this GC pass. 1687 const size_t promoted_reserve = old_generation->get_promoted_reserve(); 1688 const size_t old_evac_reserve = old_generation->get_evacuation_reserve(); 1689 young_reserve_result = young_generation->get_evacuation_reserve(); 1690 old_reserve_result = promoted_reserve + old_evac_reserve; 1691 assert(old_reserve_result <= old_available, 1692 "Cannot reserve (" SIZE_FORMAT " + " SIZE_FORMAT") more OLD than is available: " SIZE_FORMAT, 1693 promoted_reserve, old_evac_reserve, old_available); 1694 } else { 1695 // We are rebuilding at end of GC, so we set aside budgets specified on command line (or defaults) 1696 young_reserve_result = (young_capacity * ShenandoahEvacReserve) / 100; 1697 // The auto-sizer has already made old-gen large enough to hold all anticipated evacuations and promotions. 1698 // Affiliated old-gen regions are already in the OldCollector free set. Add in the relevant number of 1699 // unaffiliated regions. 1700 old_reserve_result = old_available; 1701 } 1702 1703 // Old available regions that have less than PLAB::min_size() of available memory are not placed into the OldCollector 1704 // free set. Because of this, old_available may not have enough memory to represent the intended reserve. Adjust 1705 // the reserve downward to account for this possibility. This loss is part of the reason why the original budget 1706 // was adjusted with ShenandoahOldEvacWaste and ShenandoahOldPromoWaste multipliers. 1707 if (old_reserve_result > 1708 _partitions.capacity_of(ShenandoahFreeSetPartitionId::OldCollector) + old_unaffiliated_regions * region_size_bytes) { 1709 old_reserve_result = 1710 _partitions.capacity_of(ShenandoahFreeSetPartitionId::OldCollector) + old_unaffiliated_regions * region_size_bytes; 1711 } 1712 1713 if (young_reserve_result > young_unaffiliated_regions * region_size_bytes) { 1714 young_reserve_result = young_unaffiliated_regions * region_size_bytes; 1715 } 1716 } 1717 1718 // Having placed all regions that have allocation capacity into the mutator set if they identify as is_young() 1719 // or into the old collector set if they identify as is_old(), move some of these regions from the mutator set 1720 // into the collector set or old collector set in order to assure that the memory available for allocations within 1721 // the collector set is at least to_reserve and the memory available for allocations within the old collector set 1722 // is at least to_reserve_old. 1723 void ShenandoahFreeSet::reserve_regions(size_t to_reserve, size_t to_reserve_old, size_t &old_region_count) { 1724 for (size_t i = _heap->num_regions(); i > 0; i--) { 1725 size_t idx = i - 1; 1726 ShenandoahHeapRegion* r = _heap->get_region(idx); 1727 if (!_partitions.in_free_set(ShenandoahFreeSetPartitionId::Mutator, idx)) { 1728 continue; 1729 } 1730 1731 size_t ac = alloc_capacity(r); 1732 assert (ac > 0, "Membership in free set implies has capacity"); 1733 assert (!r->is_old() || r->is_trash(), "Except for trash, mutator_is_free regions should not be affiliated OLD"); 1734 1735 bool move_to_old_collector = _partitions.available_in(ShenandoahFreeSetPartitionId::OldCollector) < to_reserve_old; 1736 bool move_to_collector = _partitions.available_in(ShenandoahFreeSetPartitionId::Collector) < to_reserve; 1737 1738 if (!move_to_collector && !move_to_old_collector) { 1739 // We've satisfied both to_reserve and to_reserved_old 1740 break; 1741 } 1742 1743 if (move_to_old_collector) { 1744 // We give priority to OldCollector partition because we desire to pack OldCollector regions into higher 1745 // addresses than Collector regions. Presumably, OldCollector regions are more "stable" and less likely to 1746 // be collected in the near future. 1747 if (r->is_trash() || !r->is_affiliated()) { 1748 // OLD regions that have available memory are already in the old_collector free set. 1749 _partitions.move_from_partition_to_partition(idx, ShenandoahFreeSetPartitionId::Mutator, 1750 ShenandoahFreeSetPartitionId::OldCollector, ac); 1751 log_debug(gc)(" Shifting region " SIZE_FORMAT " from mutator_free to old_collector_free", idx); 1752 log_debug(gc)(" Shifted Mutator range [" SSIZE_FORMAT ", " SSIZE_FORMAT "]," 1753 " Old Collector range [" SSIZE_FORMAT ", " SSIZE_FORMAT "]", 1754 _partitions.leftmost(ShenandoahFreeSetPartitionId::Mutator), 1755 _partitions.rightmost(ShenandoahFreeSetPartitionId::Mutator), 1756 _partitions.leftmost(ShenandoahFreeSetPartitionId::OldCollector), 1757 _partitions.rightmost(ShenandoahFreeSetPartitionId::OldCollector)); 1758 old_region_count++; 1759 continue; 1760 } 1761 } 1762 1763 if (move_to_collector) { 1764 // Note: In a previous implementation, regions were only placed into the survivor space (collector_is_free) if 1765 // they were entirely empty. This has the effect of causing new Mutator allocation to reside next to objects 1766 // that have already survived at least one GC, mixing ephemeral with longer-lived objects in the same region. 1767 // Any objects that have survived a GC are less likely to immediately become garbage, so a region that contains 1768 // survivor objects is less likely to be selected for the collection set. This alternative implementation allows 1769 // survivor regions to continue accumulating other survivor objects, and makes it more likely that ephemeral objects 1770 // occupy regions comprised entirely of ephemeral objects. These regions are highly likely to be included in the next 1771 // collection set, and they are easily evacuated because they have low density of live objects. 1772 _partitions.move_from_partition_to_partition(idx, ShenandoahFreeSetPartitionId::Mutator, 1773 ShenandoahFreeSetPartitionId::Collector, ac); 1774 log_debug(gc)(" Shifting region " SIZE_FORMAT " from mutator_free to collector_free", idx); 1775 log_debug(gc)(" Shifted Mutator range [" SSIZE_FORMAT ", " SSIZE_FORMAT "]," 1776 " Collector range [" SSIZE_FORMAT ", " SSIZE_FORMAT "]", 1777 _partitions.leftmost(ShenandoahFreeSetPartitionId::Mutator), 1778 _partitions.rightmost(ShenandoahFreeSetPartitionId::Mutator), 1779 _partitions.leftmost(ShenandoahFreeSetPartitionId::Collector), 1780 _partitions.rightmost(ShenandoahFreeSetPartitionId::Collector)); 1781 } 1782 } 1783 1784 if (LogTarget(Info, gc, free)::is_enabled()) { 1785 size_t old_reserve = _partitions.available_in(ShenandoahFreeSetPartitionId::OldCollector); 1786 if (old_reserve < to_reserve_old) { 1787 log_info(gc, free)("Wanted " PROPERFMT " for old reserve, but only reserved: " PROPERFMT, 1788 PROPERFMTARGS(to_reserve_old), PROPERFMTARGS(old_reserve)); 1789 } 1790 size_t reserve = _partitions.available_in(ShenandoahFreeSetPartitionId::Collector); 1791 if (reserve < to_reserve) { 1792 log_debug(gc)("Wanted " PROPERFMT " for young reserve, but only reserved: " PROPERFMT, 1793 PROPERFMTARGS(to_reserve), PROPERFMTARGS(reserve)); 1794 } 1795 } 1796 } 1797 1798 void ShenandoahFreeSet::establish_old_collector_alloc_bias() { 1799 ShenandoahHeap* heap = ShenandoahHeap::heap(); 1800 shenandoah_assert_heaplocked(); 1801 1802 idx_t left_idx = _partitions.leftmost(ShenandoahFreeSetPartitionId::OldCollector); 1803 idx_t right_idx = _partitions.rightmost(ShenandoahFreeSetPartitionId::OldCollector); 1804 idx_t middle = (left_idx + right_idx) / 2; 1805 size_t available_in_first_half = 0; 1806 size_t available_in_second_half = 0; 1807 1808 for (idx_t index = left_idx; index < middle; index++) { 1809 if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::OldCollector, index)) { 1810 ShenandoahHeapRegion* r = heap->get_region((size_t) index); 1811 available_in_first_half += r->free(); 1812 } 1813 } 1814 for (idx_t index = middle; index <= right_idx; index++) { 1815 if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::OldCollector, index)) { 1816 ShenandoahHeapRegion* r = heap->get_region(index); 1817 available_in_second_half += r->free(); 1818 } 1819 } 1820 1821 // We desire to first consume the sparsely distributed regions in order that the remaining regions are densely packed. 1822 // Densely packing regions reduces the effort to search for a region that has sufficient memory to satisfy a new allocation 1823 // request. Regions become sparsely distributed following a Full GC, which tends to slide all regions to the front of the 1824 // heap rather than allowing survivor regions to remain at the high end of the heap where we intend for them to congregate. 1825 _partitions.set_bias_from_left_to_right(ShenandoahFreeSetPartitionId::OldCollector, 1826 (available_in_second_half > available_in_first_half)); 1827 } 1828 1829 void ShenandoahFreeSet::log_status_under_lock() { 1830 // Must not be heap locked, it acquires heap lock only when log is enabled 1831 shenandoah_assert_not_heaplocked(); 1832 if (LogTarget(Info, gc, free)::is_enabled() 1833 DEBUG_ONLY(|| LogTarget(Debug, gc, free)::is_enabled())) { 1834 ShenandoahHeapLocker locker(_heap->lock()); 1835 log_status(); 1836 } 1837 } 1838 1839 void ShenandoahFreeSet::log_status() { 1840 shenandoah_assert_heaplocked(); 1841 1842 #ifdef ASSERT 1843 // Dump of the FreeSet details is only enabled if assertions are enabled 1844 if (LogTarget(Debug, gc, free)::is_enabled()) { 1845 #define BUFFER_SIZE 80 1846 1847 char buffer[BUFFER_SIZE]; 1848 for (uint i = 0; i < BUFFER_SIZE; i++) { 1849 buffer[i] = '\0'; 1850 } 1851 1852 log_debug(gc)("FreeSet map legend:" 1853 " M:mutator_free C:collector_free O:old_collector_free" 1854 " H:humongous ~:retired old _:retired young"); 1855 log_debug(gc)(" mutator free range [" SIZE_FORMAT ".." SIZE_FORMAT "] allocating from %s, " 1856 " collector free range [" SIZE_FORMAT ".." SIZE_FORMAT "], " 1857 "old collector free range [" SIZE_FORMAT ".." SIZE_FORMAT "] allocates from %s", 1858 _partitions.leftmost(ShenandoahFreeSetPartitionId::Mutator), 1859 _partitions.rightmost(ShenandoahFreeSetPartitionId::Mutator), 1860 _partitions.alloc_from_left_bias(ShenandoahFreeSetPartitionId::Mutator)? "left to right": "right to left", 1861 _partitions.leftmost(ShenandoahFreeSetPartitionId::Collector), 1862 _partitions.rightmost(ShenandoahFreeSetPartitionId::Collector), 1863 _partitions.leftmost(ShenandoahFreeSetPartitionId::OldCollector), 1864 _partitions.rightmost(ShenandoahFreeSetPartitionId::OldCollector), 1865 _partitions.alloc_from_left_bias(ShenandoahFreeSetPartitionId::OldCollector)? "left to right": "right to left"); 1866 1867 for (uint i = 0; i < _heap->num_regions(); i++) { 1868 ShenandoahHeapRegion *r = _heap->get_region(i); 1869 uint idx = i % 64; 1870 if ((i != 0) && (idx == 0)) { 1871 log_debug(gc)(" %6u: %s", i-64, buffer); 1872 } 1873 if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::Mutator, i)) { 1874 size_t capacity = alloc_capacity(r); 1875 assert(!r->is_old() || r->is_trash(), "Old regions except trash regions should not be in mutator_free set"); 1876 buffer[idx] = (capacity == ShenandoahHeapRegion::region_size_bytes()) ? 'M' : 'm'; 1877 } else if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::Collector, i)) { 1878 size_t capacity = alloc_capacity(r); 1879 assert(!r->is_old() || r->is_trash(), "Old regions except trash regions should not be in collector_free set"); 1880 buffer[idx] = (capacity == ShenandoahHeapRegion::region_size_bytes()) ? 'C' : 'c'; 1881 } else if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::OldCollector, i)) { 1882 size_t capacity = alloc_capacity(r); 1883 buffer[idx] = (capacity == ShenandoahHeapRegion::region_size_bytes()) ? 'O' : 'o'; 1884 } else if (r->is_humongous()) { 1885 if (r->is_old()) { 1886 buffer[idx] = 'H'; 1887 } else { 1888 buffer[idx] = 'h'; 1889 } 1890 } else { 1891 if (r->is_old()) { 1892 buffer[idx] = '~'; 1893 } else { 1894 buffer[idx] = '_'; 1895 } 1896 } 1897 } 1898 uint remnant = _heap->num_regions() % 64; 1899 if (remnant > 0) { 1900 buffer[remnant] = '\0'; 1901 } else { 1902 remnant = 64; 1903 } 1904 log_debug(gc)(" %6u: %s", (uint) (_heap->num_regions() - remnant), buffer); 1905 } 1906 #endif 1907 1908 LogTarget(Info, gc, free) lt; 1909 if (lt.is_enabled()) { 1910 ResourceMark rm; 1911 LogStream ls(lt); 1912 1913 { 1914 idx_t last_idx = 0; 1915 size_t max = 0; 1916 size_t max_contig = 0; 1917 size_t empty_contig = 0; 1918 1919 size_t total_used = 0; 1920 size_t total_free = 0; 1921 size_t total_free_ext = 0; 1922 1923 for (idx_t idx = _partitions.leftmost(ShenandoahFreeSetPartitionId::Mutator); 1924 idx <= _partitions.rightmost(ShenandoahFreeSetPartitionId::Mutator); idx++) { 1925 if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::Mutator, idx)) { 1926 ShenandoahHeapRegion *r = _heap->get_region(idx); 1927 size_t free = alloc_capacity(r); 1928 max = MAX2(max, free); 1929 if (r->is_empty()) { 1930 total_free_ext += free; 1931 if (last_idx + 1 == idx) { 1932 empty_contig++; 1933 } else { 1934 empty_contig = 1; 1935 } 1936 } else { 1937 empty_contig = 0; 1938 } 1939 total_used += r->used(); 1940 total_free += free; 1941 max_contig = MAX2(max_contig, empty_contig); 1942 last_idx = idx; 1943 } 1944 } 1945 1946 size_t max_humongous = max_contig * ShenandoahHeapRegion::region_size_bytes(); 1947 size_t free = capacity() - used(); 1948 1949 // Since certain regions that belonged to the Mutator free partition at the time of most recent rebuild may have been 1950 // retired, the sum of used and capacities within regions that are still in the Mutator free partition may not match 1951 // my internally tracked values of used() and free(). 1952 assert(free == total_free, "Free memory should match"); 1953 ls.print("Free: " SIZE_FORMAT "%s, Max: " SIZE_FORMAT "%s regular, " SIZE_FORMAT "%s humongous, ", 1954 byte_size_in_proper_unit(total_free), proper_unit_for_byte_size(total_free), 1955 byte_size_in_proper_unit(max), proper_unit_for_byte_size(max), 1956 byte_size_in_proper_unit(max_humongous), proper_unit_for_byte_size(max_humongous) 1957 ); 1958 1959 ls.print("Frag: "); 1960 size_t frag_ext; 1961 if (total_free_ext > 0) { 1962 frag_ext = 100 - (100 * max_humongous / total_free_ext); 1963 } else { 1964 frag_ext = 0; 1965 } 1966 ls.print(SIZE_FORMAT "%% external, ", frag_ext); 1967 1968 size_t frag_int; 1969 if (_partitions.count(ShenandoahFreeSetPartitionId::Mutator) > 0) { 1970 frag_int = (100 * (total_used / _partitions.count(ShenandoahFreeSetPartitionId::Mutator)) 1971 / ShenandoahHeapRegion::region_size_bytes()); 1972 } else { 1973 frag_int = 0; 1974 } 1975 ls.print(SIZE_FORMAT "%% internal; ", frag_int); 1976 ls.print("Used: " SIZE_FORMAT "%s, Mutator Free: " SIZE_FORMAT, 1977 byte_size_in_proper_unit(total_used), proper_unit_for_byte_size(total_used), 1978 _partitions.count(ShenandoahFreeSetPartitionId::Mutator)); 1979 } 1980 1981 { 1982 size_t max = 0; 1983 size_t total_free = 0; 1984 size_t total_used = 0; 1985 1986 for (idx_t idx = _partitions.leftmost(ShenandoahFreeSetPartitionId::Collector); 1987 idx <= _partitions.rightmost(ShenandoahFreeSetPartitionId::Collector); idx++) { 1988 if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::Collector, idx)) { 1989 ShenandoahHeapRegion *r = _heap->get_region(idx); 1990 size_t free = alloc_capacity(r); 1991 max = MAX2(max, free); 1992 total_free += free; 1993 total_used += r->used(); 1994 } 1995 } 1996 ls.print(" Collector Reserve: " SIZE_FORMAT "%s, Max: " SIZE_FORMAT "%s; Used: " SIZE_FORMAT "%s", 1997 byte_size_in_proper_unit(total_free), proper_unit_for_byte_size(total_free), 1998 byte_size_in_proper_unit(max), proper_unit_for_byte_size(max), 1999 byte_size_in_proper_unit(total_used), proper_unit_for_byte_size(total_used)); 2000 } 2001 2002 if (_heap->mode()->is_generational()) { 2003 size_t max = 0; 2004 size_t total_free = 0; 2005 size_t total_used = 0; 2006 2007 for (idx_t idx = _partitions.leftmost(ShenandoahFreeSetPartitionId::OldCollector); 2008 idx <= _partitions.rightmost(ShenandoahFreeSetPartitionId::OldCollector); idx++) { 2009 if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::OldCollector, idx)) { 2010 ShenandoahHeapRegion *r = _heap->get_region(idx); 2011 size_t free = alloc_capacity(r); 2012 max = MAX2(max, free); 2013 total_free += free; 2014 total_used += r->used(); 2015 } 2016 } 2017 ls.print_cr(" Old Collector Reserve: " SIZE_FORMAT "%s, Max: " SIZE_FORMAT "%s; Used: " SIZE_FORMAT "%s", 2018 byte_size_in_proper_unit(total_free), proper_unit_for_byte_size(total_free), 2019 byte_size_in_proper_unit(max), proper_unit_for_byte_size(max), 2020 byte_size_in_proper_unit(total_used), proper_unit_for_byte_size(total_used)); 2021 } 2022 } 2023 } 2024 2025 HeapWord* ShenandoahFreeSet::allocate(ShenandoahAllocRequest& req, bool& in_new_region) { 2026 shenandoah_assert_heaplocked(); 2027 if (ShenandoahHeapRegion::requires_humongous(req.size())) { 2028 switch (req.type()) { 2029 case ShenandoahAllocRequest::_alloc_shared: 2030 case ShenandoahAllocRequest::_alloc_shared_gc: 2031 in_new_region = true; 2032 return allocate_contiguous(req); 2033 case ShenandoahAllocRequest::_alloc_plab: 2034 case ShenandoahAllocRequest::_alloc_gclab: 2035 case ShenandoahAllocRequest::_alloc_tlab: 2036 in_new_region = false; 2037 assert(false, "Trying to allocate TLAB in humongous region: " SIZE_FORMAT, req.size()); 2038 return nullptr; 2039 default: 2040 ShouldNotReachHere(); 2041 return nullptr; 2042 } 2043 } else { 2044 return allocate_single(req, in_new_region); 2045 } 2046 } 2047 2048 void ShenandoahFreeSet::print_on(outputStream* out) const { 2049 out->print_cr("Mutator Free Set: " SIZE_FORMAT "", _partitions.count(ShenandoahFreeSetPartitionId::Mutator)); 2050 ShenandoahLeftRightIterator mutator(const_cast<ShenandoahRegionPartitions*>(&_partitions), ShenandoahFreeSetPartitionId::Mutator); 2051 for (idx_t index = mutator.current(); mutator.has_next(); index = mutator.next()) { 2052 _heap->get_region(index)->print_on(out); 2053 } 2054 2055 out->print_cr("Collector Free Set: " SIZE_FORMAT "", _partitions.count(ShenandoahFreeSetPartitionId::Collector)); 2056 ShenandoahLeftRightIterator collector(const_cast<ShenandoahRegionPartitions*>(&_partitions), ShenandoahFreeSetPartitionId::Collector); 2057 for (idx_t index = collector.current(); collector.has_next(); index = collector.next()) { 2058 _heap->get_region(index)->print_on(out); 2059 } 2060 2061 if (_heap->mode()->is_generational()) { 2062 out->print_cr("Old Collector Free Set: " SIZE_FORMAT "", _partitions.count(ShenandoahFreeSetPartitionId::OldCollector)); 2063 for (idx_t index = _partitions.leftmost(ShenandoahFreeSetPartitionId::OldCollector); 2064 index <= _partitions.rightmost(ShenandoahFreeSetPartitionId::OldCollector); index++) { 2065 if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::OldCollector, index)) { 2066 _heap->get_region(index)->print_on(out); 2067 } 2068 } 2069 } 2070 } 2071 2072 double ShenandoahFreeSet::internal_fragmentation() { 2073 double squared = 0; 2074 double linear = 0; 2075 2076 ShenandoahLeftRightIterator iterator(&_partitions, ShenandoahFreeSetPartitionId::Mutator); 2077 for (idx_t index = iterator.current(); iterator.has_next(); index = iterator.next()) { 2078 ShenandoahHeapRegion* r = _heap->get_region(index); 2079 size_t used = r->used(); 2080 squared += used * used; 2081 linear += used; 2082 } 2083 2084 if (linear > 0) { 2085 double s = squared / (ShenandoahHeapRegion::region_size_bytes() * linear); 2086 return 1 - s; 2087 } else { 2088 return 0; 2089 } 2090 } 2091 2092 double ShenandoahFreeSet::external_fragmentation() { 2093 idx_t last_idx = 0; 2094 size_t max_contig = 0; 2095 size_t empty_contig = 0; 2096 size_t free = 0; 2097 2098 ShenandoahLeftRightIterator iterator(&_partitions, ShenandoahFreeSetPartitionId::Mutator); 2099 for (idx_t index = iterator.current(); iterator.has_next(); index = iterator.next()) { 2100 ShenandoahHeapRegion* r = _heap->get_region(index); 2101 if (r->is_empty()) { 2102 free += ShenandoahHeapRegion::region_size_bytes(); 2103 if (last_idx + 1 == index) { 2104 empty_contig++; 2105 } else { 2106 empty_contig = 1; 2107 } 2108 } else { 2109 empty_contig = 0; 2110 } 2111 max_contig = MAX2(max_contig, empty_contig); 2112 last_idx = index; 2113 } 2114 2115 if (free > 0) { 2116 return 1 - (1.0 * max_contig * ShenandoahHeapRegion::region_size_bytes() / free); 2117 } else { 2118 return 0; 2119 } 2120 } 2121