1 /*
2 * Copyright (c) 2016, 2021, Red Hat, Inc. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "gc/shared/tlab_globals.hpp"
27 #include "gc/shenandoah/shenandoahFreeSet.hpp"
28 #include "gc/shenandoah/shenandoahHeap.inline.hpp"
29 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp"
30 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
31 #include "logging/logStream.hpp"
32 #include "memory/resourceArea.hpp"
33 #include "runtime/orderAccess.hpp"
34
35 ShenandoahFreeSet::ShenandoahFreeSet(ShenandoahHeap* heap, size_t max_regions) :
36 _heap(heap),
37 _mutator_free_bitmap(max_regions, mtGC),
38 _collector_free_bitmap(max_regions, mtGC),
39 _max(max_regions)
40 {
41 clear_internal();
42 }
43
44 void ShenandoahFreeSet::increase_used(size_t num_bytes) {
45 shenandoah_assert_heaplocked();
46 _used += num_bytes;
47
48 assert(_used <= _capacity, "must not use more than we have: used: " SIZE_FORMAT
49 ", capacity: " SIZE_FORMAT ", num_bytes: " SIZE_FORMAT, _used, _capacity, num_bytes);
50 }
51
52 bool ShenandoahFreeSet::is_mutator_free(size_t idx) const {
53 assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT " (left: " SIZE_FORMAT ", right: " SIZE_FORMAT ")",
54 idx, _max, _mutator_leftmost, _mutator_rightmost);
55 return _mutator_free_bitmap.at(idx);
56 }
57
58 bool ShenandoahFreeSet::is_collector_free(size_t idx) const {
59 assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT " (left: " SIZE_FORMAT ", right: " SIZE_FORMAT ")",
60 idx, _max, _collector_leftmost, _collector_rightmost);
61 return _collector_free_bitmap.at(idx);
62 }
63
64 HeapWord* ShenandoahFreeSet::allocate_single(ShenandoahAllocRequest& req, bool& in_new_region) {
65 // Scan the bitmap looking for a first fit.
66 //
67 // Leftmost and rightmost bounds provide enough caching to walk bitmap efficiently. Normally,
68 // we would find the region to allocate at right away.
69 //
70 // Allocations are biased: new application allocs go to beginning of the heap, and GC allocs
71 // go to the end. This makes application allocation faster, because we would clear lots
72 // of regions from the beginning most of the time.
73 //
74 // Free set maintains mutator and collector views, and normally they allocate in their views only,
75 // unless we special cases for stealing and mixed allocations.
76
77 switch (req.type()) {
78 case ShenandoahAllocRequest::_alloc_tlab:
79 case ShenandoahAllocRequest::_alloc_shared: {
80
81 // Try to allocate in the mutator view
82 for (size_t idx = _mutator_leftmost; idx <= _mutator_rightmost; idx++) {
83 if (is_mutator_free(idx)) {
84 HeapWord* result = try_allocate_in(_heap->get_region(idx), req, in_new_region);
85 if (result != nullptr) {
86 return result;
87 }
88 }
89 }
90
91 // There is no recovery. Mutator does not touch collector view at all.
92 break;
93 }
94 case ShenandoahAllocRequest::_alloc_gclab:
95 case ShenandoahAllocRequest::_alloc_shared_gc: {
96 // size_t is unsigned, need to dodge underflow when _leftmost = 0
97
98 // Fast-path: try to allocate in the collector view first
99 for (size_t c = _collector_rightmost + 1; c > _collector_leftmost; c--) {
100 size_t idx = c - 1;
101 if (is_collector_free(idx)) {
102 HeapWord* result = try_allocate_in(_heap->get_region(idx), req, in_new_region);
103 if (result != nullptr) {
104 return result;
105 }
106 }
107 }
108
109 // No dice. Can we borrow space from mutator view?
110 if (!ShenandoahEvacReserveOverflow) {
111 return nullptr;
112 }
113
114 // Try to steal the empty region from the mutator view
115 for (size_t c = _mutator_rightmost + 1; c > _mutator_leftmost; c--) {
116 size_t idx = c - 1;
117 if (is_mutator_free(idx)) {
118 ShenandoahHeapRegion* r = _heap->get_region(idx);
119 if (can_allocate_from(r)) {
120 flip_to_gc(r);
121 HeapWord *result = try_allocate_in(r, req, in_new_region);
122 if (result != nullptr) {
123 return result;
124 }
125 }
126 }
127 }
128
129 // No dice. Do not try to mix mutator and GC allocations, because
130 // URWM moves due to GC allocations would expose unparsable mutator
131 // allocations.
132
133 break;
134 }
135 default:
136 ShouldNotReachHere();
137 }
138
139 return nullptr;
140 }
141
142 HeapWord* ShenandoahFreeSet::try_allocate_in(ShenandoahHeapRegion* r, ShenandoahAllocRequest& req, bool& in_new_region) {
143 assert (!has_no_alloc_capacity(r), "Performance: should avoid full regions on this path: " SIZE_FORMAT, r->index());
144
145 if (_heap->is_concurrent_weak_root_in_progress() &&
146 r->is_trash()) {
147 return nullptr;
148 }
149
150 try_recycle_trashed(r);
151
152 in_new_region = r->is_empty();
153
154 HeapWord* result = nullptr;
155 size_t size = req.size();
156
157 if (ShenandoahElasticTLAB && req.is_lab_alloc()) {
158 size_t free = align_down(r->free() >> LogHeapWordSize, MinObjAlignment);
159 if (size > free) {
160 size = free;
161 }
162 if (size >= req.min_size()) {
163 result = r->allocate(size, req.type());
164 assert (result != nullptr, "Allocation must succeed: free " SIZE_FORMAT ", actual " SIZE_FORMAT, free, size);
165 }
166 } else {
167 result = r->allocate(size, req.type());
168 }
169
170 if (result != nullptr) {
171 // Allocation successful, bump stats:
172 if (req.is_mutator_alloc()) {
173 increase_used(size * HeapWordSize);
174 }
175
176 // Record actual allocation size
177 req.set_actual_size(size);
178
179 if (req.is_gc_alloc()) {
180 r->set_update_watermark(r->top());
181 }
182 }
183
184 if (result == nullptr || has_no_alloc_capacity(r)) {
185 // Region cannot afford this or future allocations. Retire it.
186 //
187 // While this seems a bit harsh, especially in the case when this large allocation does not
188 // fit, but the next small one would, we are risking to inflate scan times when lots of
189 // almost-full regions precede the fully-empty region where we want allocate the entire TLAB.
190 // TODO: Record first fully-empty region, and use that for large allocations
191
192 // Record the remainder as allocation waste
193 if (req.is_mutator_alloc()) {
194 size_t waste = r->free();
195 if (waste > 0) {
196 increase_used(waste);
197 _heap->notify_mutator_alloc_words(waste >> LogHeapWordSize, true);
198 }
199 }
200
201 size_t num = r->index();
202 _collector_free_bitmap.clear_bit(num);
203 _mutator_free_bitmap.clear_bit(num);
204 // Touched the bounds? Need to update:
205 if (touches_bounds(num)) {
206 adjust_bounds();
207 }
208 assert_bounds();
209 }
210 return result;
211 }
212
213 bool ShenandoahFreeSet::touches_bounds(size_t num) const {
214 return num == _collector_leftmost || num == _collector_rightmost || num == _mutator_leftmost || num == _mutator_rightmost;
215 }
216
217 void ShenandoahFreeSet::recompute_bounds() {
218 // Reset to the most pessimistic case:
219 _mutator_rightmost = _max - 1;
220 _mutator_leftmost = 0;
221 _collector_rightmost = _max - 1;
222 _collector_leftmost = 0;
223
224 // ...and adjust from there
225 adjust_bounds();
226 }
227
228 void ShenandoahFreeSet::adjust_bounds() {
229 // Rewind both mutator bounds until the next bit.
230 while (_mutator_leftmost < _max && !is_mutator_free(_mutator_leftmost)) {
231 _mutator_leftmost++;
232 }
233 while (_mutator_rightmost > 0 && !is_mutator_free(_mutator_rightmost)) {
234 _mutator_rightmost--;
235 }
236 // Rewind both collector bounds until the next bit.
237 while (_collector_leftmost < _max && !is_collector_free(_collector_leftmost)) {
238 _collector_leftmost++;
239 }
240 while (_collector_rightmost > 0 && !is_collector_free(_collector_rightmost)) {
241 _collector_rightmost--;
242 }
243 }
244
245 HeapWord* ShenandoahFreeSet::allocate_contiguous(ShenandoahAllocRequest& req) {
246 shenandoah_assert_heaplocked();
247
248 size_t words_size = req.size();
249 size_t num = ShenandoahHeapRegion::required_regions(words_size * HeapWordSize);
250
251 // No regions left to satisfy allocation, bye.
252 if (num > mutator_count()) {
253 return nullptr;
254 }
255
256 // Find the continuous interval of $num regions, starting from $beg and ending in $end,
257 // inclusive. Contiguous allocations are biased to the beginning.
258
259 size_t beg = _mutator_leftmost;
260 size_t end = beg;
261
262 while (true) {
263 if (end >= _max) {
264 // Hit the end, goodbye
265 return nullptr;
266 }
267
268 // If regions are not adjacent, then current [beg; end] is useless, and we may fast-forward.
269 // If region is not completely free, the current [beg; end] is useless, and we may fast-forward.
270 if (!is_mutator_free(end) || !can_allocate_from(_heap->get_region(end))) {
271 end++;
272 beg = end;
273 continue;
274 }
275
276 if ((end - beg + 1) == num) {
277 // found the match
278 break;
279 }
280
281 end++;
282 }
283
284 size_t remainder = words_size & ShenandoahHeapRegion::region_size_words_mask();
285
286 // Initialize regions:
287 for (size_t i = beg; i <= end; i++) {
288 ShenandoahHeapRegion* r = _heap->get_region(i);
289 try_recycle_trashed(r);
290
291 assert(i == beg || _heap->get_region(i - 1)->index() + 1 == r->index(), "Should be contiguous");
292 assert(r->is_empty(), "Should be empty");
293
294 if (i == beg) {
295 r->make_humongous_start();
296 } else {
297 r->make_humongous_cont();
298 }
299
300 // Trailing region may be non-full, record the remainder there
301 size_t used_words;
302 if ((i == end) && (remainder != 0)) {
303 used_words = remainder;
304 } else {
305 used_words = ShenandoahHeapRegion::region_size_words();
306 }
307
308 r->set_top(r->bottom() + used_words);
309
310 _mutator_free_bitmap.clear_bit(r->index());
311 }
312
313 // While individual regions report their true use, all humongous regions are
314 // marked used in the free set.
315 increase_used(ShenandoahHeapRegion::region_size_bytes() * num);
316
317 if (remainder != 0) {
318 // Record this remainder as allocation waste
319 _heap->notify_mutator_alloc_words(ShenandoahHeapRegion::region_size_words() - remainder, true);
320 }
321
322 // Allocated at left/rightmost? Move the bounds appropriately.
323 if (beg == _mutator_leftmost || end == _mutator_rightmost) {
324 adjust_bounds();
325 }
326 assert_bounds();
327
328 req.set_actual_size(words_size);
329 return _heap->get_region(beg)->bottom();
330 }
331
332 bool ShenandoahFreeSet::can_allocate_from(ShenandoahHeapRegion *r) {
333 return r->is_empty() || (r->is_trash() && !_heap->is_concurrent_weak_root_in_progress());
334 }
335
336 size_t ShenandoahFreeSet::alloc_capacity(ShenandoahHeapRegion *r) {
337 if (r->is_trash()) {
338 // This would be recycled on allocation path
339 return ShenandoahHeapRegion::region_size_bytes();
340 } else {
341 return r->free();
342 }
343 }
344
345 bool ShenandoahFreeSet::has_no_alloc_capacity(ShenandoahHeapRegion *r) {
346 return alloc_capacity(r) == 0;
347 }
348
349 void ShenandoahFreeSet::try_recycle_trashed(ShenandoahHeapRegion *r) {
350 if (r->is_trash()) {
351 _heap->decrease_used(r->used());
352 r->recycle();
353 }
354 }
355
356 void ShenandoahFreeSet::recycle_trash() {
357 // lock is not reentrable, check we don't have it
358 shenandoah_assert_not_heaplocked();
359
360 for (size_t i = 0; i < _heap->num_regions(); i++) {
361 ShenandoahHeapRegion* r = _heap->get_region(i);
362 if (r->is_trash()) {
363 ShenandoahHeapLocker locker(_heap->lock());
364 try_recycle_trashed(r);
365 }
366 SpinPause(); // allow allocators to take the lock
367 }
368 }
369
370 void ShenandoahFreeSet::flip_to_gc(ShenandoahHeapRegion* r) {
371 size_t idx = r->index();
372
373 assert(_mutator_free_bitmap.at(idx), "Should be in mutator view");
374 assert(can_allocate_from(r), "Should not be allocated");
375
376 _mutator_free_bitmap.clear_bit(idx);
377 _collector_free_bitmap.set_bit(idx);
378 _collector_leftmost = MIN2(idx, _collector_leftmost);
379 _collector_rightmost = MAX2(idx, _collector_rightmost);
380
381 _capacity -= alloc_capacity(r);
382
383 if (touches_bounds(idx)) {
384 adjust_bounds();
385 }
386 assert_bounds();
387 }
388
389 void ShenandoahFreeSet::clear() {
390 shenandoah_assert_heaplocked();
391 clear_internal();
392 }
393
394 void ShenandoahFreeSet::clear_internal() {
395 _mutator_free_bitmap.clear();
396 _collector_free_bitmap.clear();
397 _mutator_leftmost = _max;
398 _mutator_rightmost = 0;
399 _collector_leftmost = _max;
400 _collector_rightmost = 0;
401 _capacity = 0;
402 _used = 0;
403 }
404
405 void ShenandoahFreeSet::rebuild() {
406 shenandoah_assert_heaplocked();
407 clear();
408
409 for (size_t idx = 0; idx < _heap->num_regions(); idx++) {
410 ShenandoahHeapRegion* region = _heap->get_region(idx);
411 if (region->is_alloc_allowed() || region->is_trash()) {
412 assert(!region->is_cset(), "Shouldn't be adding those to the free set");
413
414 // Do not add regions that would surely fail allocation
415 if (has_no_alloc_capacity(region)) continue;
416
417 _capacity += alloc_capacity(region);
418 assert(_used <= _capacity, "must not use more than we have");
419
420 assert(!is_mutator_free(idx), "We are about to add it, it shouldn't be there already");
421 _mutator_free_bitmap.set_bit(idx);
422 }
423 }
424
425 // Evac reserve: reserve trailing space for evacuations
426 size_t to_reserve = _heap->max_capacity() / 100 * ShenandoahEvacReserve;
427 size_t reserved = 0;
428
429 for (size_t idx = _heap->num_regions() - 1; idx > 0; idx--) {
430 if (reserved >= to_reserve) break;
431
432 ShenandoahHeapRegion* region = _heap->get_region(idx);
433 if (_mutator_free_bitmap.at(idx) && can_allocate_from(region)) {
434 _mutator_free_bitmap.clear_bit(idx);
435 _collector_free_bitmap.set_bit(idx);
436 size_t ac = alloc_capacity(region);
437 _capacity -= ac;
438 reserved += ac;
439 }
440 }
441
442 recompute_bounds();
443 assert_bounds();
444 }
445
446 void ShenandoahFreeSet::log_status() {
447 shenandoah_assert_heaplocked();
448
449 LogTarget(Info, gc, ergo) lt;
450 if (lt.is_enabled()) {
451 ResourceMark rm;
452 LogStream ls(lt);
453
454 {
455 size_t last_idx = 0;
456 size_t max = 0;
457 size_t max_contig = 0;
458 size_t empty_contig = 0;
459
460 size_t total_used = 0;
461 size_t total_free = 0;
462 size_t total_free_ext = 0;
463
464 for (size_t idx = _mutator_leftmost; idx <= _mutator_rightmost; idx++) {
465 if (is_mutator_free(idx)) {
466 ShenandoahHeapRegion *r = _heap->get_region(idx);
467 size_t free = alloc_capacity(r);
468
469 max = MAX2(max, free);
470
471 if (r->is_empty()) {
472 total_free_ext += free;
473 if (last_idx + 1 == idx) {
474 empty_contig++;
475 } else {
476 empty_contig = 1;
477 }
478 } else {
479 empty_contig = 0;
480 }
481
482 total_used += r->used();
483 total_free += free;
484
485 max_contig = MAX2(max_contig, empty_contig);
486 last_idx = idx;
487 }
488 }
489
490 size_t max_humongous = max_contig * ShenandoahHeapRegion::region_size_bytes();
491 size_t free = capacity() - used();
492
493 ls.print("Free: " SIZE_FORMAT "%s, Max: " SIZE_FORMAT "%s regular, " SIZE_FORMAT "%s humongous, ",
494 byte_size_in_proper_unit(total_free), proper_unit_for_byte_size(total_free),
495 byte_size_in_proper_unit(max), proper_unit_for_byte_size(max),
496 byte_size_in_proper_unit(max_humongous), proper_unit_for_byte_size(max_humongous)
497 );
498
499 ls.print("Frag: ");
500 size_t frag_ext;
501 if (total_free_ext > 0) {
502 frag_ext = 100 - (100 * max_humongous / total_free_ext);
503 } else {
504 frag_ext = 0;
505 }
506 ls.print(SIZE_FORMAT "%% external, ", frag_ext);
507
508 size_t frag_int;
509 if (mutator_count() > 0) {
510 frag_int = (100 * (total_used / mutator_count()) / ShenandoahHeapRegion::region_size_bytes());
511 } else {
512 frag_int = 0;
513 }
514 ls.print(SIZE_FORMAT "%% internal; ", frag_int);
515 }
516
517 {
518 size_t max = 0;
519 size_t total_free = 0;
520
521 for (size_t idx = _collector_leftmost; idx <= _collector_rightmost; idx++) {
522 if (is_collector_free(idx)) {
523 ShenandoahHeapRegion *r = _heap->get_region(idx);
524 size_t free = alloc_capacity(r);
525 max = MAX2(max, free);
526 total_free += free;
527 }
528 }
529
530 ls.print_cr("Reserve: " SIZE_FORMAT "%s, Max: " SIZE_FORMAT "%s",
531 byte_size_in_proper_unit(total_free), proper_unit_for_byte_size(total_free),
532 byte_size_in_proper_unit(max), proper_unit_for_byte_size(max));
533 }
534 }
535 }
536
537 HeapWord* ShenandoahFreeSet::allocate(ShenandoahAllocRequest& req, bool& in_new_region) {
538 shenandoah_assert_heaplocked();
539 assert_bounds();
540
541 if (req.size() > ShenandoahHeapRegion::humongous_threshold_words()) {
542 switch (req.type()) {
543 case ShenandoahAllocRequest::_alloc_shared:
544 case ShenandoahAllocRequest::_alloc_shared_gc:
545 in_new_region = true;
546 return allocate_contiguous(req);
547 case ShenandoahAllocRequest::_alloc_gclab:
548 case ShenandoahAllocRequest::_alloc_tlab:
549 in_new_region = false;
550 assert(false, "Trying to allocate TLAB larger than the humongous threshold: " SIZE_FORMAT " > " SIZE_FORMAT,
551 req.size(), ShenandoahHeapRegion::humongous_threshold_words());
552 return nullptr;
553 default:
554 ShouldNotReachHere();
555 return nullptr;
556 }
557 } else {
558 return allocate_single(req, in_new_region);
559 }
560 }
561
562 size_t ShenandoahFreeSet::unsafe_peek_free() const {
563 // Deliberately not locked, this method is unsafe when free set is modified.
564
565 for (size_t index = _mutator_leftmost; index <= _mutator_rightmost; index++) {
566 if (index < _max && is_mutator_free(index)) {
567 ShenandoahHeapRegion* r = _heap->get_region(index);
568 if (r->free() >= MinTLABSize) {
569 return r->free();
570 }
571 }
572 }
573
574 // It appears that no regions left
575 return 0;
576 }
577
578 void ShenandoahFreeSet::print_on(outputStream* out) const {
579 out->print_cr("Mutator Free Set: " SIZE_FORMAT "", mutator_count());
580 for (size_t index = _mutator_leftmost; index <= _mutator_rightmost; index++) {
581 if (is_mutator_free(index)) {
582 _heap->get_region(index)->print_on(out);
583 }
584 }
585 out->print_cr("Collector Free Set: " SIZE_FORMAT "", collector_count());
586 for (size_t index = _collector_leftmost; index <= _collector_rightmost; index++) {
587 if (is_collector_free(index)) {
588 _heap->get_region(index)->print_on(out);
589 }
590 }
591 }
592
593 /*
594 * Internal fragmentation metric: describes how fragmented the heap regions are.
595 *
596 * It is derived as:
597 *
598 * sum(used[i]^2, i=0..k)
599 * IF = 1 - ------------------------------
600 * C * sum(used[i], i=0..k)
601 *
602 * ...where k is the number of regions in computation, C is the region capacity, and
603 * used[i] is the used space in the region.
604 *
605 * The non-linearity causes IF to be lower for the cases where the same total heap
606 * used is densely packed. For example:
607 * a) Heap is completely full => IF = 0
608 * b) Heap is half full, first 50% regions are completely full => IF = 0
609 * c) Heap is half full, each region is 50% full => IF = 1/2
610 * d) Heap is quarter full, first 50% regions are completely full => IF = 0
611 * e) Heap is quarter full, each region is 25% full => IF = 3/4
612 * f) Heap has one small object per each region => IF =~ 1
613 */
614 double ShenandoahFreeSet::internal_fragmentation() {
615 double squared = 0;
616 double linear = 0;
617 int count = 0;
618
619 for (size_t index = _mutator_leftmost; index <= _mutator_rightmost; index++) {
620 if (is_mutator_free(index)) {
621 ShenandoahHeapRegion* r = _heap->get_region(index);
622 size_t used = r->used();
623 squared += used * used;
624 linear += used;
625 count++;
626 }
627 }
628
629 if (count > 0) {
630 double s = squared / (ShenandoahHeapRegion::region_size_bytes() * linear);
631 return 1 - s;
632 } else {
633 return 0;
634 }
635 }
636
637 /*
638 * External fragmentation metric: describes how fragmented the heap is.
639 *
640 * It is derived as:
641 *
642 * EF = 1 - largest_contiguous_free / total_free
643 *
644 * For example:
645 * a) Heap is completely empty => EF = 0
646 * b) Heap is completely full => EF = 0
647 * c) Heap is first-half full => EF = 1/2
648 * d) Heap is half full, full and empty regions interleave => EF =~ 1
649 */
650 double ShenandoahFreeSet::external_fragmentation() {
651 size_t last_idx = 0;
652 size_t max_contig = 0;
653 size_t empty_contig = 0;
654
655 size_t free = 0;
656
657 for (size_t index = _mutator_leftmost; index <= _mutator_rightmost; index++) {
658 if (is_mutator_free(index)) {
659 ShenandoahHeapRegion* r = _heap->get_region(index);
660 if (r->is_empty()) {
661 free += ShenandoahHeapRegion::region_size_bytes();
662 if (last_idx + 1 == index) {
663 empty_contig++;
664 } else {
665 empty_contig = 1;
666 }
667 } else {
668 empty_contig = 0;
669 }
670
671 max_contig = MAX2(max_contig, empty_contig);
672 last_idx = index;
673 }
674 }
675
676 if (free > 0) {
677 return 1 - (1.0 * max_contig * ShenandoahHeapRegion::region_size_bytes() / free);
678 } else {
679 return 0;
680 }
681 }
682
683 #ifdef ASSERT
684 void ShenandoahFreeSet::assert_bounds() const {
685 // Performance invariants. Failing these would not break the free set, but performance
686 // would suffer.
687 assert (_mutator_leftmost <= _max, "leftmost in bounds: " SIZE_FORMAT " < " SIZE_FORMAT, _mutator_leftmost, _max);
688 assert (_mutator_rightmost < _max, "rightmost in bounds: " SIZE_FORMAT " < " SIZE_FORMAT, _mutator_rightmost, _max);
689
690 assert (_mutator_leftmost == _max || is_mutator_free(_mutator_leftmost), "leftmost region should be free: " SIZE_FORMAT, _mutator_leftmost);
691 assert (_mutator_rightmost == 0 || is_mutator_free(_mutator_rightmost), "rightmost region should be free: " SIZE_FORMAT, _mutator_rightmost);
692
693 size_t beg_off = _mutator_free_bitmap.find_first_set_bit(0);
694 size_t end_off = _mutator_free_bitmap.find_first_set_bit(_mutator_rightmost + 1);
695 assert (beg_off >= _mutator_leftmost, "free regions before the leftmost: " SIZE_FORMAT ", bound " SIZE_FORMAT, beg_off, _mutator_leftmost);
696 assert (end_off == _max, "free regions past the rightmost: " SIZE_FORMAT ", bound " SIZE_FORMAT, end_off, _mutator_rightmost);
697
698 assert (_collector_leftmost <= _max, "leftmost in bounds: " SIZE_FORMAT " < " SIZE_FORMAT, _collector_leftmost, _max);
699 assert (_collector_rightmost < _max, "rightmost in bounds: " SIZE_FORMAT " < " SIZE_FORMAT, _collector_rightmost, _max);
700
701 assert (_collector_leftmost == _max || is_collector_free(_collector_leftmost), "leftmost region should be free: " SIZE_FORMAT, _collector_leftmost);
702 assert (_collector_rightmost == 0 || is_collector_free(_collector_rightmost), "rightmost region should be free: " SIZE_FORMAT, _collector_rightmost);
703
704 beg_off = _collector_free_bitmap.find_first_set_bit(0);
705 end_off = _collector_free_bitmap.find_first_set_bit(_collector_rightmost + 1);
706 assert (beg_off >= _collector_leftmost, "free regions before the leftmost: " SIZE_FORMAT ", bound " SIZE_FORMAT, beg_off, _collector_leftmost);
707 assert (end_off == _max, "free regions past the rightmost: " SIZE_FORMAT ", bound " SIZE_FORMAT, end_off, _collector_rightmost);
708 }
709 #endif
|
1 /*
2 * Copyright (c) 2016, 2021, Red Hat, Inc. All rights reserved.
3 * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26 #include "precompiled.hpp"
27 #include "gc/shared/tlab_globals.hpp"
28 #include "gc/shenandoah/shenandoahAffiliation.hpp"
29 #include "gc/shenandoah/shenandoahBarrierSet.hpp"
30 #include "gc/shenandoah/shenandoahFreeSet.hpp"
31 #include "gc/shenandoah/shenandoahHeap.inline.hpp"
32 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp"
33 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
34 #include "gc/shenandoah/shenandoahOldGeneration.hpp"
35 #include "gc/shenandoah/shenandoahScanRemembered.inline.hpp"
36 #include "gc/shenandoah/shenandoahYoungGeneration.hpp"
37 #include "logging/logStream.hpp"
38 #include "memory/resourceArea.hpp"
39 #include "runtime/orderAccess.hpp"
40
41 ShenandoahSetsOfFree::ShenandoahSetsOfFree(size_t max_regions, ShenandoahFreeSet* free_set) :
42 _max(max_regions),
43 _free_set(free_set),
44 _region_size_bytes(ShenandoahHeapRegion::region_size_bytes())
45 {
46 _membership = NEW_C_HEAP_ARRAY(ShenandoahFreeMemoryType, max_regions, mtGC);
47 clear_internal();
48 }
49
50 ShenandoahSetsOfFree::~ShenandoahSetsOfFree() {
51 FREE_C_HEAP_ARRAY(ShenandoahFreeMemoryType, _membership);
52 }
53
54
55 void ShenandoahSetsOfFree::clear_internal() {
56 for (size_t idx = 0; idx < _max; idx++) {
57 _membership[idx] = NotFree;
58 }
59
60 for (size_t idx = 0; idx < NumFreeSets; idx++) {
61 _leftmosts[idx] = _max;
62 _rightmosts[idx] = 0;
63 _leftmosts_empty[idx] = _max;
64 _rightmosts_empty[idx] = 0;
65 _capacity_of[idx] = 0;
66 _used_by[idx] = 0;
67 }
68
69 _left_to_right_bias[Mutator] = true;
70 _left_to_right_bias[Collector] = false;
71 _left_to_right_bias[OldCollector] = false;
72
73 _region_counts[Mutator] = 0;
74 _region_counts[Collector] = 0;
75 _region_counts[OldCollector] = 0;
76 _region_counts[NotFree] = _max;
77 }
78
79 void ShenandoahSetsOfFree::clear_all() {
80 clear_internal();
81 }
82
83 void ShenandoahSetsOfFree::increase_used(ShenandoahFreeMemoryType which_set, size_t bytes) {
84 assert (which_set > NotFree && which_set < NumFreeSets, "Set must correspond to a valid freeset");
85 _used_by[which_set] += bytes;
86 assert (_used_by[which_set] <= _capacity_of[which_set],
87 "Must not use (" SIZE_FORMAT ") more than capacity (" SIZE_FORMAT ") after increase by " SIZE_FORMAT,
88 _used_by[which_set], _capacity_of[which_set], bytes);
89 }
90
91 inline void ShenandoahSetsOfFree::shrink_bounds_if_touched(ShenandoahFreeMemoryType set, size_t idx) {
92 if (idx == _leftmosts[set]) {
93 while ((_leftmosts[set] < _max) && !in_free_set(_leftmosts[set], set)) {
94 _leftmosts[set]++;
95 }
96 if (_leftmosts_empty[set] < _leftmosts[set]) {
97 // This gets us closer to where we need to be; we'll scan further when leftmosts_empty is requested.
98 _leftmosts_empty[set] = _leftmosts[set];
99 }
100 }
101 if (idx == _rightmosts[set]) {
102 while (_rightmosts[set] > 0 && !in_free_set(_rightmosts[set], set)) {
103 _rightmosts[set]--;
104 }
105 if (_rightmosts_empty[set] > _rightmosts[set]) {
106 // This gets us closer to where we need to be; we'll scan further when rightmosts_empty is requested.
107 _rightmosts_empty[set] = _rightmosts[set];
108 }
109 }
110 }
111
112 inline void ShenandoahSetsOfFree::expand_bounds_maybe(ShenandoahFreeMemoryType set, size_t idx, size_t region_capacity) {
113 if (region_capacity == _region_size_bytes) {
114 if (_leftmosts_empty[set] > idx) {
115 _leftmosts_empty[set] = idx;
116 }
117 if (_rightmosts_empty[set] < idx) {
118 _rightmosts_empty[set] = idx;
119 }
120 }
121 if (_leftmosts[set] > idx) {
122 _leftmosts[set] = idx;
123 }
124 if (_rightmosts[set] < idx) {
125 _rightmosts[set] = idx;
126 }
127 }
128
129 void ShenandoahSetsOfFree::remove_from_free_sets(size_t idx) {
130 assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT, idx, _max);
131 ShenandoahFreeMemoryType orig_set = membership(idx);
132 assert (orig_set > NotFree && orig_set < NumFreeSets, "Cannot remove from free sets if not already free");
133 _membership[idx] = NotFree;
134 shrink_bounds_if_touched(orig_set, idx);
135
136 _region_counts[orig_set]--;
137 _region_counts[NotFree]++;
138 }
139
140
141 void ShenandoahSetsOfFree::make_free(size_t idx, ShenandoahFreeMemoryType which_set, size_t region_capacity) {
142 assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT, idx, _max);
143 assert (_membership[idx] == NotFree, "Cannot make free if already free");
144 assert (which_set > NotFree && which_set < NumFreeSets, "selected free set must be valid");
145 _membership[idx] = which_set;
146 _capacity_of[which_set] += region_capacity;
147 expand_bounds_maybe(which_set, idx, region_capacity);
148
149 _region_counts[NotFree]--;
150 _region_counts[which_set]++;
151 }
152
153 void ShenandoahSetsOfFree::move_to_set(size_t idx, ShenandoahFreeMemoryType new_set, size_t region_capacity) {
154 assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT, idx, _max);
155 assert ((new_set > NotFree) && (new_set < NumFreeSets), "New set must be valid");
156 ShenandoahFreeMemoryType orig_set = _membership[idx];
157 assert ((orig_set > NotFree) && (orig_set < NumFreeSets), "Cannot move free unless already free");
158 // Expected transitions:
159 // During rebuild: Mutator => Collector
160 // Mutator empty => Collector
161 // During flip_to_gc:
162 // Mutator empty => Collector
163 // Mutator empty => Old Collector
164 // At start of update refs:
165 // Collector => Mutator
166 // OldCollector Empty => Mutator
167 assert (((region_capacity <= _region_size_bytes) &&
168 ((orig_set == Mutator) && (new_set == Collector)) ||
169 ((orig_set == Collector) && (new_set == Mutator))) ||
170 ((region_capacity == _region_size_bytes) &&
171 ((orig_set == Mutator) && (new_set == Collector)) ||
172 ((orig_set == OldCollector) && (new_set == Mutator)) ||
173 (new_set == OldCollector)), "Unexpected movement between sets");
174
175 _membership[idx] = new_set;
176 _capacity_of[orig_set] -= region_capacity;
177 shrink_bounds_if_touched(orig_set, idx);
178
179 _capacity_of[new_set] += region_capacity;
180 expand_bounds_maybe(new_set, idx, region_capacity);
181
182 _region_counts[orig_set]--;
183 _region_counts[new_set]++;
184 }
185
186 inline ShenandoahFreeMemoryType ShenandoahSetsOfFree::membership(size_t idx) const {
187 assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT, idx, _max);
188 return _membership[idx];
189 }
190
191 // Returns true iff region idx is in the test_set free_set. Before returning true, asserts that the free
192 // set is not empty. Requires that test_set != NotFree or NumFreeSets.
193 inline bool ShenandoahSetsOfFree::in_free_set(size_t idx, ShenandoahFreeMemoryType test_set) const {
194 assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT, idx, _max);
195 if (_membership[idx] == test_set) {
196 assert (test_set == NotFree || _free_set->alloc_capacity(idx) > 0, "Free regions must have alloc capacity");
197 return true;
198 } else {
199 return false;
200 }
201 }
202
203 inline size_t ShenandoahSetsOfFree::leftmost(ShenandoahFreeMemoryType which_set) const {
204 assert (which_set > NotFree && which_set < NumFreeSets, "selected free set must be valid");
205 size_t idx = _leftmosts[which_set];
206 if (idx >= _max) {
207 return _max;
208 } else {
209 assert (in_free_set(idx, which_set), "left-most region must be free");
210 return idx;
211 }
212 }
213
214 inline size_t ShenandoahSetsOfFree::rightmost(ShenandoahFreeMemoryType which_set) const {
215 assert (which_set > NotFree && which_set < NumFreeSets, "selected free set must be valid");
216 size_t idx = _rightmosts[which_set];
217 assert ((_leftmosts[which_set] == _max) || in_free_set(idx, which_set), "right-most region must be free");
218 return idx;
219 }
220
221 inline bool ShenandoahSetsOfFree::is_empty(ShenandoahFreeMemoryType which_set) const {
222 assert (which_set > NotFree && which_set < NumFreeSets, "selected free set must be valid");
223 return (leftmost(which_set) > rightmost(which_set));
224 }
225
226 size_t ShenandoahSetsOfFree::leftmost_empty(ShenandoahFreeMemoryType which_set) {
227 assert (which_set > NotFree && which_set < NumFreeSets, "selected free set must be valid");
228 for (size_t idx = _leftmosts_empty[which_set]; idx < _max; idx++) {
229 if ((membership(idx) == which_set) && (_free_set->alloc_capacity(idx) == _region_size_bytes)) {
230 _leftmosts_empty[which_set] = idx;
231 return idx;
232 }
233 }
234 _leftmosts_empty[which_set] = _max;
235 _rightmosts_empty[which_set] = 0;
236 return _max;
237 }
238
239 inline size_t ShenandoahSetsOfFree::rightmost_empty(ShenandoahFreeMemoryType which_set) {
240 assert (which_set > NotFree && which_set < NumFreeSets, "selected free set must be valid");
241 for (intptr_t idx = _rightmosts_empty[which_set]; idx >= 0; idx--) {
242 if ((membership(idx) == which_set) && (_free_set->alloc_capacity(idx) == _region_size_bytes)) {
243 _rightmosts_empty[which_set] = idx;
244 return idx;
245 }
246 }
247 _leftmosts_empty[which_set] = _max;
248 _rightmosts_empty[which_set] = 0;
249 return 0;
250 }
251
252 inline bool ShenandoahSetsOfFree::alloc_from_left_bias(ShenandoahFreeMemoryType which_set) {
253 assert (which_set > NotFree && which_set < NumFreeSets, "selected free set must be valid");
254 return _left_to_right_bias[which_set];
255 }
256
257 void ShenandoahSetsOfFree::establish_alloc_bias(ShenandoahFreeMemoryType which_set) {
258 ShenandoahHeap* heap = ShenandoahHeap::heap();
259 shenandoah_assert_heaplocked();
260 assert (which_set > NotFree && which_set < NumFreeSets, "selected free set must be valid");
261
262 size_t middle = (_leftmosts[which_set] + _rightmosts[which_set]) / 2;
263 size_t available_in_first_half = 0;
264 size_t available_in_second_half = 0;
265
266 for (size_t index = _leftmosts[which_set]; index < middle; index++) {
267 if (in_free_set(index, which_set)) {
268 ShenandoahHeapRegion* r = heap->get_region(index);
269 available_in_first_half += r->free();
270 }
271 }
272 for (size_t index = middle; index <= _rightmosts[which_set]; index++) {
273 if (in_free_set(index, which_set)) {
274 ShenandoahHeapRegion* r = heap->get_region(index);
275 available_in_second_half += r->free();
276 }
277 }
278
279 // We desire to first consume the sparsely distributed regions in order that the remaining regions are densely packed.
280 // Densely packing regions reduces the effort to search for a region that has sufficient memory to satisfy a new allocation
281 // request. Regions become sparsely distributed following a Full GC, which tends to slide all regions to the front of the
282 // heap rather than allowing survivor regions to remain at the high end of the heap where we intend for them to congregate.
283
284 // TODO: In the future, we may modify Full GC so that it slides old objects to the end of the heap and young objects to the
285 // front of the heap. If this is done, we can always search survivor Collector and OldCollector regions right to left.
286 _left_to_right_bias[which_set] = (available_in_second_half > available_in_first_half);
287 }
288
289 #ifdef ASSERT
290 void ShenandoahSetsOfFree::assert_bounds() {
291
292 size_t leftmosts[NumFreeSets];
293 size_t rightmosts[NumFreeSets];
294 size_t empty_leftmosts[NumFreeSets];
295 size_t empty_rightmosts[NumFreeSets];
296
297 for (int i = 0; i < NumFreeSets; i++) {
298 leftmosts[i] = _max;
299 empty_leftmosts[i] = _max;
300 rightmosts[i] = 0;
301 empty_rightmosts[i] = 0;
302 }
303
304 for (size_t i = 0; i < _max; i++) {
305 ShenandoahFreeMemoryType set = membership(i);
306 switch (set) {
307 case NotFree:
308 break;
309
310 case Mutator:
311 case Collector:
312 case OldCollector:
313 {
314 size_t capacity = _free_set->alloc_capacity(i);
315 bool is_empty = (capacity == _region_size_bytes);
316 assert(capacity > 0, "free regions must have allocation capacity");
317 if (i < leftmosts[set]) {
318 leftmosts[set] = i;
319 }
320 if (is_empty && (i < empty_leftmosts[set])) {
321 empty_leftmosts[set] = i;
322 }
323 if (i > rightmosts[set]) {
324 rightmosts[set] = i;
325 }
326 if (is_empty && (i > empty_rightmosts[set])) {
327 empty_rightmosts[set] = i;
328 }
329 break;
330 }
331
332 case NumFreeSets:
333 default:
334 ShouldNotReachHere();
335 }
336 }
337
338 // Performance invariants. Failing these would not break the free set, but performance would suffer.
339 assert (leftmost(Mutator) <= _max, "leftmost in bounds: " SIZE_FORMAT " < " SIZE_FORMAT, leftmost(Mutator), _max);
340 assert (rightmost(Mutator) < _max, "rightmost in bounds: " SIZE_FORMAT " < " SIZE_FORMAT, rightmost(Mutator), _max);
341
342 assert (leftmost(Mutator) == _max || in_free_set(leftmost(Mutator), Mutator),
343 "leftmost region should be free: " SIZE_FORMAT, leftmost(Mutator));
344 assert (leftmost(Mutator) == _max || in_free_set(rightmost(Mutator), Mutator),
345 "rightmost region should be free: " SIZE_FORMAT, rightmost(Mutator));
346
347 // If Mutator set is empty, leftmosts will both equal max, rightmosts will both equal zero. Likewise for empty region sets.
348 size_t beg_off = leftmosts[Mutator];
349 size_t end_off = rightmosts[Mutator];
350 assert (beg_off >= leftmost(Mutator),
351 "free regions before the leftmost: " SIZE_FORMAT ", bound " SIZE_FORMAT, beg_off, leftmost(Mutator));
352 assert (end_off <= rightmost(Mutator),
353 "free regions past the rightmost: " SIZE_FORMAT ", bound " SIZE_FORMAT, end_off, rightmost(Mutator));
354
355 beg_off = empty_leftmosts[Mutator];
356 end_off = empty_rightmosts[Mutator];
357 assert (beg_off >= leftmost_empty(Mutator),
358 "free empty regions before the leftmost: " SIZE_FORMAT ", bound " SIZE_FORMAT, beg_off, leftmost_empty(Mutator));
359 assert (end_off <= rightmost_empty(Mutator),
360 "free empty regions past the rightmost: " SIZE_FORMAT ", bound " SIZE_FORMAT, end_off, rightmost_empty(Mutator));
361
362 // Performance invariants. Failing these would not break the free set, but performance would suffer.
363 assert (leftmost(Collector) <= _max, "leftmost in bounds: " SIZE_FORMAT " < " SIZE_FORMAT, leftmost(Collector), _max);
364 assert (rightmost(Collector) < _max, "rightmost in bounds: " SIZE_FORMAT " < " SIZE_FORMAT, rightmost(Collector), _max);
365
366 assert (leftmost(Collector) == _max || in_free_set(leftmost(Collector), Collector),
367 "leftmost region should be free: " SIZE_FORMAT, leftmost(Collector));
368 assert (leftmost(Collector) == _max || in_free_set(rightmost(Collector), Collector),
369 "rightmost region should be free: " SIZE_FORMAT, rightmost(Collector));
370
371 // If Collector set is empty, leftmosts will both equal max, rightmosts will both equal zero. Likewise for empty region sets.
372 beg_off = leftmosts[Collector];
373 end_off = rightmosts[Collector];
374 assert (beg_off >= leftmost(Collector),
375 "free regions before the leftmost: " SIZE_FORMAT ", bound " SIZE_FORMAT, beg_off, leftmost(Collector));
376 assert (end_off <= rightmost(Collector),
377 "free regions past the rightmost: " SIZE_FORMAT ", bound " SIZE_FORMAT, end_off, rightmost(Collector));
378
379 beg_off = empty_leftmosts[Collector];
380 end_off = empty_rightmosts[Collector];
381 assert (beg_off >= leftmost_empty(Collector),
382 "free empty regions before the leftmost: " SIZE_FORMAT ", bound " SIZE_FORMAT, beg_off, leftmost_empty(Collector));
383 assert (end_off <= rightmost_empty(Collector),
384 "free empty regions past the rightmost: " SIZE_FORMAT ", bound " SIZE_FORMAT, end_off, rightmost_empty(Collector));
385
386 // Performance invariants. Failing these would not break the free set, but performance would suffer.
387 assert (leftmost(OldCollector) <= _max, "leftmost in bounds: " SIZE_FORMAT " < " SIZE_FORMAT, leftmost(OldCollector), _max);
388 assert (rightmost(OldCollector) < _max, "rightmost in bounds: " SIZE_FORMAT " < " SIZE_FORMAT, rightmost(OldCollector), _max);
389
390 assert (leftmost(OldCollector) == _max || in_free_set(leftmost(OldCollector), OldCollector),
391 "leftmost region should be free: " SIZE_FORMAT, leftmost(OldCollector));
392 assert (leftmost(OldCollector) == _max || in_free_set(rightmost(OldCollector), OldCollector),
393 "rightmost region should be free: " SIZE_FORMAT, rightmost(OldCollector));
394
395 // If OldCollector set is empty, leftmosts will both equal max, rightmosts will both equal zero. Likewise for empty region sets.
396 beg_off = leftmosts[OldCollector];
397 end_off = rightmosts[OldCollector];
398 assert (beg_off >= leftmost(OldCollector),
399 "free regions before the leftmost: " SIZE_FORMAT ", bound " SIZE_FORMAT, beg_off, leftmost(OldCollector));
400 assert (end_off <= rightmost(OldCollector),
401 "free regions past the rightmost: " SIZE_FORMAT ", bound " SIZE_FORMAT, end_off, rightmost(OldCollector));
402
403 beg_off = empty_leftmosts[OldCollector];
404 end_off = empty_rightmosts[OldCollector];
405 assert (beg_off >= leftmost_empty(OldCollector),
406 "free empty regions before the leftmost: " SIZE_FORMAT ", bound " SIZE_FORMAT, beg_off, leftmost_empty(OldCollector));
407 assert (end_off <= rightmost_empty(OldCollector),
408 "free empty regions past the rightmost: " SIZE_FORMAT ", bound " SIZE_FORMAT, end_off, rightmost_empty(OldCollector));
409 }
410 #endif
411
412 ShenandoahFreeSet::ShenandoahFreeSet(ShenandoahHeap* heap, size_t max_regions) :
413 _heap(heap),
414 _free_sets(max_regions, this)
415 {
416 clear_internal();
417 }
418
419 // This allocates from a region within the old_collector_set. If affiliation equals OLD, the allocation must be taken
420 // from a region that is_old(). Otherwise, affiliation should be FREE, in which case this will put a previously unaffiliated
421 // region into service.
422 HeapWord* ShenandoahFreeSet::allocate_old_with_affiliation(ShenandoahAffiliation affiliation,
423 ShenandoahAllocRequest& req, bool& in_new_region) {
424 shenandoah_assert_heaplocked();
425
426 size_t rightmost =
427 (affiliation == ShenandoahAffiliation::FREE)? _free_sets.rightmost_empty(OldCollector): _free_sets.rightmost(OldCollector);
428 size_t leftmost =
429 (affiliation == ShenandoahAffiliation::FREE)? _free_sets.leftmost_empty(OldCollector): _free_sets.leftmost(OldCollector);
430 if (_free_sets.alloc_from_left_bias(OldCollector)) {
431 // This mode picks up stragglers left by a full GC
432 for (size_t idx = leftmost; idx <= rightmost; idx++) {
433 if (_free_sets.in_free_set(idx, OldCollector)) {
434 ShenandoahHeapRegion* r = _heap->get_region(idx);
435 assert(r->is_trash() || !r->is_affiliated() || r->is_old(), "old_collector_set region has bad affiliation");
436 if (r->affiliation() == affiliation) {
437 HeapWord* result = try_allocate_in(r, req, in_new_region);
438 if (result != nullptr) {
439 return result;
440 }
441 }
442 }
443 }
444 } else {
445 // This mode picks up stragglers left by a previous concurrent GC
446 for (size_t count = rightmost + 1; count > leftmost; count--) {
447 // size_t is unsigned, need to dodge underflow when _leftmost = 0
448 size_t idx = count - 1;
449 if (_free_sets.in_free_set(idx, OldCollector)) {
450 ShenandoahHeapRegion* r = _heap->get_region(idx);
451 assert(r->is_trash() || !r->is_affiliated() || r->is_old(), "old_collector_set region has bad affiliation");
452 if (r->affiliation() == affiliation) {
453 HeapWord* result = try_allocate_in(r, req, in_new_region);
454 if (result != nullptr) {
455 return result;
456 }
457 }
458 }
459 }
460 }
461 return nullptr;
462 }
463
464 void ShenandoahFreeSet::add_old_collector_free_region(ShenandoahHeapRegion* region) {
465 shenandoah_assert_heaplocked();
466 size_t idx = region->index();
467 size_t capacity = alloc_capacity(region);
468 assert(_free_sets.membership(idx) == NotFree, "Regions promoted in place should not be in any free set");
469 if (capacity >= PLAB::min_size() * HeapWordSize) {
470 _free_sets.make_free(idx, OldCollector, capacity);
471 _heap->augment_promo_reserve(capacity);
472 }
473 }
474
475 HeapWord* ShenandoahFreeSet::allocate_with_affiliation(ShenandoahAffiliation affiliation,
476 ShenandoahAllocRequest& req, bool& in_new_region) {
477 shenandoah_assert_heaplocked();
478 size_t rightmost =
479 (affiliation == ShenandoahAffiliation::FREE)? _free_sets.rightmost_empty(Collector): _free_sets.rightmost(Collector);
480 size_t leftmost =
481 (affiliation == ShenandoahAffiliation::FREE)? _free_sets.leftmost_empty(Collector): _free_sets.leftmost(Collector);
482 for (size_t c = rightmost + 1; c > leftmost; c--) {
483 // size_t is unsigned, need to dodge underflow when _leftmost = 0
484 size_t idx = c - 1;
485 if (_free_sets.in_free_set(idx, Collector)) {
486 ShenandoahHeapRegion* r = _heap->get_region(idx);
487 if (r->affiliation() == affiliation) {
488 HeapWord* result = try_allocate_in(r, req, in_new_region);
489 if (result != nullptr) {
490 return result;
491 }
492 }
493 }
494 }
495 log_debug(gc, free)("Could not allocate collector region with affiliation: %s for request " PTR_FORMAT,
496 shenandoah_affiliation_name(affiliation), p2i(&req));
497 return nullptr;
498 }
499
500 HeapWord* ShenandoahFreeSet::allocate_single(ShenandoahAllocRequest& req, bool& in_new_region) {
501 shenandoah_assert_heaplocked();
502
503 // Scan the bitmap looking for a first fit.
504 //
505 // Leftmost and rightmost bounds provide enough caching to walk bitmap efficiently. Normally,
506 // we would find the region to allocate at right away.
507 //
508 // Allocations are biased: new application allocs go to beginning of the heap, and GC allocs
509 // go to the end. This makes application allocation faster, because we would clear lots
510 // of regions from the beginning most of the time.
511 //
512 // Free set maintains mutator and collector views, and normally they allocate in their views only,
513 // unless we special cases for stealing and mixed allocations.
514
515 // Overwrite with non-zero (non-NULL) values only if necessary for allocation bookkeeping.
516
517 bool allow_new_region = true;
518 if (_heap->mode()->is_generational()) {
519 switch (req.affiliation()) {
520 case ShenandoahAffiliation::OLD_GENERATION:
521 // Note: unsigned result from free_unaffiliated_regions() will never be less than zero, but it may equal zero.
522 if (_heap->old_generation()->free_unaffiliated_regions() <= 0) {
523 allow_new_region = false;
524 }
525 break;
526
527 case ShenandoahAffiliation::YOUNG_GENERATION:
528 // Note: unsigned result from free_unaffiliated_regions() will never be less than zero, but it may equal zero.
529 if (_heap->young_generation()->free_unaffiliated_regions() <= 0) {
530 allow_new_region = false;
531 }
532 break;
533
534 case ShenandoahAffiliation::FREE:
535 fatal("Should request affiliation");
536
537 default:
538 ShouldNotReachHere();
539 break;
540 }
541 }
542 switch (req.type()) {
543 case ShenandoahAllocRequest::_alloc_tlab:
544 case ShenandoahAllocRequest::_alloc_shared: {
545 // Try to allocate in the mutator view
546 // Allocate within mutator free from high memory to low so as to preserve low memory for humongous allocations
547 if (!_free_sets.is_empty(Mutator)) {
548 // Use signed idx. Otherwise, loop will never terminate.
549 int leftmost = (int) _free_sets.leftmost(Mutator);
550 for (int idx = (int) _free_sets.rightmost(Mutator); idx >= leftmost; idx--) {
551 ShenandoahHeapRegion* r = _heap->get_region(idx);
552 if (_free_sets.in_free_set(idx, Mutator) && (allow_new_region || r->is_affiliated())) {
553 // try_allocate_in() increases used if the allocation is successful.
554 HeapWord* result;
555 size_t min_size = (req.type() == ShenandoahAllocRequest::_alloc_tlab)? req.min_size(): req.size();
556 if ((alloc_capacity(r) >= min_size) && ((result = try_allocate_in(r, req, in_new_region)) != nullptr)) {
557 return result;
558 }
559 }
560 }
561 }
562 // There is no recovery. Mutator does not touch collector view at all.
563 break;
564 }
565 case ShenandoahAllocRequest::_alloc_gclab:
566 // GCLABs are for evacuation so we must be in evacuation phase. If this allocation is successful, increment
567 // the relevant evac_expended rather than used value.
568
569 case ShenandoahAllocRequest::_alloc_plab:
570 // PLABs always reside in old-gen and are only allocated during evacuation phase.
571
572 case ShenandoahAllocRequest::_alloc_shared_gc: {
573 if (!_heap->mode()->is_generational()) {
574 // size_t is unsigned, need to dodge underflow when _leftmost = 0
575 // Fast-path: try to allocate in the collector view first
576 for (size_t c = _free_sets.rightmost(Collector) + 1; c > _free_sets.leftmost(Collector); c--) {
577 size_t idx = c - 1;
578 if (_free_sets.in_free_set(idx, Collector)) {
579 HeapWord* result = try_allocate_in(_heap->get_region(idx), req, in_new_region);
580 if (result != nullptr) {
581 return result;
582 }
583 }
584 }
585 } else {
586 // First try to fit into a region that is already in use in the same generation.
587 HeapWord* result;
588 if (req.is_old()) {
589 result = allocate_old_with_affiliation(req.affiliation(), req, in_new_region);
590 } else {
591 result = allocate_with_affiliation(req.affiliation(), req, in_new_region);
592 }
593 if (result != nullptr) {
594 return result;
595 }
596 if (allow_new_region) {
597 // Then try a free region that is dedicated to GC allocations.
598 if (req.is_old()) {
599 result = allocate_old_with_affiliation(FREE, req, in_new_region);
600 } else {
601 result = allocate_with_affiliation(FREE, req, in_new_region);
602 }
603 if (result != nullptr) {
604 return result;
605 }
606 }
607 }
608 // No dice. Can we borrow space from mutator view?
609 if (!ShenandoahEvacReserveOverflow) {
610 return nullptr;
611 }
612
613 if (!allow_new_region && req.is_old() && (_heap->young_generation()->free_unaffiliated_regions() > 0)) {
614 // This allows us to flip a mutator region to old_collector
615 allow_new_region = true;
616 }
617
618 // We should expand old-gen if this can prevent an old-gen evacuation failure. We don't care so much about
619 // promotion failures since they can be mitigated in a subsequent GC pass. Would be nice to know if this
620 // allocation request is for evacuation or promotion. Individual threads limit their use of PLAB memory for
621 // promotions, so we already have an assurance that any additional memory set aside for old-gen will be used
622 // only for old-gen evacuations.
623
624 // Also TODO:
625 // if (GC is idle (out of cycle) and mutator allocation fails and there is memory reserved in Collector
626 // or OldCollector sets, transfer a region of memory so that we can satisfy the allocation request, and
627 // immediately trigger the start of GC. Is better to satisfy the allocation than to trigger out-of-cycle
628 // allocation failure (even if this means we have a little less memory to handle evacuations during the
629 // subsequent GC pass).
630
631 if (allow_new_region) {
632 // Try to steal an empty region from the mutator view.
633 for (size_t c = _free_sets.rightmost_empty(Mutator) + 1; c > _free_sets.leftmost_empty(Mutator); c--) {
634 size_t idx = c - 1;
635 if (_free_sets.in_free_set(idx, Mutator)) {
636 ShenandoahHeapRegion* r = _heap->get_region(idx);
637 if (can_allocate_from(r)) {
638 if (req.is_old()) {
639 flip_to_old_gc(r);
640 } else {
641 flip_to_gc(r);
642 }
643 HeapWord *result = try_allocate_in(r, req, in_new_region);
644 if (result != nullptr) {
645 log_debug(gc, free)("Flipped region " SIZE_FORMAT " to gc for request: " PTR_FORMAT, idx, p2i(&req));
646 return result;
647 }
648 }
649 }
650 }
651 }
652
653 // No dice. Do not try to mix mutator and GC allocations, because
654 // URWM moves due to GC allocations would expose unparsable mutator
655 // allocations.
656 break;
657 }
658 default:
659 ShouldNotReachHere();
660 }
661 return nullptr;
662 }
663
664 // This work method takes an argument corresponding to the number of bytes
665 // free in a region, and returns the largest amount in heapwords that can be allocated
666 // such that both of the following conditions are satisfied:
667 //
668 // 1. it is a multiple of card size
669 // 2. any remaining shard may be filled with a filler object
670 //
671 // The idea is that the allocation starts and ends at card boundaries. Because
672 // a region ('s end) is card-aligned, the remainder shard that must be filled is
673 // at the start of the free space.
674 //
675 // This is merely a helper method to use for the purpose of such a calculation.
676 size_t get_usable_free_words(size_t free_bytes) {
677 // e.g. card_size is 512, card_shift is 9, min_fill_size() is 8
678 // free is 514
679 // usable_free is 512, which is decreased to 0
680 size_t usable_free = (free_bytes / CardTable::card_size()) << CardTable::card_shift();
681 assert(usable_free <= free_bytes, "Sanity check");
682 if ((free_bytes != usable_free) && (free_bytes - usable_free < ShenandoahHeap::min_fill_size() * HeapWordSize)) {
683 // After aligning to card multiples, the remainder would be smaller than
684 // the minimum filler object, so we'll need to take away another card's
685 // worth to construct a filler object.
686 if (usable_free >= CardTable::card_size()) {
687 usable_free -= CardTable::card_size();
688 } else {
689 assert(usable_free == 0, "usable_free is a multiple of card_size and card_size > min_fill_size");
690 }
691 }
692
693 return usable_free / HeapWordSize;
694 }
695
696 // Given a size argument, which is a multiple of card size, a request struct
697 // for a PLAB, and an old region, return a pointer to the allocated space for
698 // a PLAB which is card-aligned and where any remaining shard in the region
699 // has been suitably filled by a filler object.
700 // It is assumed (and assertion-checked) that such an allocation is always possible.
701 HeapWord* ShenandoahFreeSet::allocate_aligned_plab(size_t size, ShenandoahAllocRequest& req, ShenandoahHeapRegion* r) {
702 assert(_heap->mode()->is_generational(), "PLABs are only for generational mode");
703 assert(r->is_old(), "All PLABs reside in old-gen");
704 assert(!req.is_mutator_alloc(), "PLABs should not be allocated by mutators.");
705 assert(size % CardTable::card_size_in_words() == 0, "size must be multiple of card table size, was " SIZE_FORMAT, size);
706
707 HeapWord* result = r->allocate_aligned(size, req, CardTable::card_size());
708 assert(result != nullptr, "Allocation cannot fail");
709 assert(r->top() <= r->end(), "Allocation cannot span end of region");
710 assert(req.actual_size() == size, "Should not have needed to adjust size for PLAB.");
711 assert(((uintptr_t) result) % CardTable::card_size_in_words() == 0, "PLAB start must align with card boundary");
712
713 return result;
714 }
715
716 HeapWord* ShenandoahFreeSet::try_allocate_in(ShenandoahHeapRegion* r, ShenandoahAllocRequest& req, bool& in_new_region) {
717 assert (has_alloc_capacity(r), "Performance: should avoid full regions on this path: " SIZE_FORMAT, r->index());
718 if (_heap->is_concurrent_weak_root_in_progress() && r->is_trash()) {
719 return nullptr;
720 }
721
722 try_recycle_trashed(r);
723 if (!r->is_affiliated()) {
724 ShenandoahMarkingContext* const ctx = _heap->complete_marking_context();
725 r->set_affiliation(req.affiliation());
726 if (r->is_old()) {
727 // Any OLD region allocated during concurrent coalesce-and-fill does not need to be coalesced and filled because
728 // all objects allocated within this region are above TAMS (and thus are implicitly marked). In case this is an
729 // OLD region and concurrent preparation for mixed evacuations visits this region before the start of the next
730 // old-gen concurrent mark (i.e. this region is allocated following the start of old-gen concurrent mark but before
731 // concurrent preparations for mixed evacuations are completed), we mark this region as not requiring any
732 // coalesce-and-fill processing.
733 r->end_preemptible_coalesce_and_fill();
734 _heap->clear_cards_for(r);
735 _heap->old_generation()->increment_affiliated_region_count();
736 } else {
737 _heap->young_generation()->increment_affiliated_region_count();
738 }
739
740 assert(ctx->top_at_mark_start(r) == r->bottom(), "Newly established allocation region starts with TAMS equal to bottom");
741 assert(ctx->is_bitmap_clear_range(ctx->top_bitmap(r), r->end()), "Bitmap above top_bitmap() must be clear");
742 } else if (r->affiliation() != req.affiliation()) {
743 assert(_heap->mode()->is_generational(), "Request for %s from %s region should only happen in generational mode.",
744 req.affiliation_name(), r->affiliation_name());
745 return nullptr;
746 }
747
748 in_new_region = r->is_empty();
749 HeapWord* result = nullptr;
750
751 if (in_new_region) {
752 log_debug(gc, free)("Using new region (" SIZE_FORMAT ") for %s (" PTR_FORMAT ").",
753 r->index(), ShenandoahAllocRequest::alloc_type_to_string(req.type()), p2i(&req));
754 }
755
756 // req.size() is in words, r->free() is in bytes.
757 if (ShenandoahElasticTLAB && req.is_lab_alloc()) {
758 if (req.type() == ShenandoahAllocRequest::_alloc_plab) {
759 assert(_heap->mode()->is_generational(), "PLABs are only for generational mode");
760 assert(_free_sets.in_free_set(r->index(), OldCollector), "PLABS must be allocated in old_collector_free regions");
761 // Need to assure that plabs are aligned on multiple of card region.
762 // Since we have Elastic TLABs, align sizes up. They may be decreased to fit in the usable
763 // memory remaining in the region (which will also be aligned to cards).
764 size_t adjusted_size = align_up(req.size(), CardTable::card_size_in_words());
765 size_t adjusted_min_size = align_up(req.min_size(), CardTable::card_size_in_words());
766 size_t usable_free = get_usable_free_words(r->free());
767
768 if (adjusted_size > usable_free) {
769 adjusted_size = usable_free;
770 }
771
772 if (adjusted_size >= adjusted_min_size) {
773 result = allocate_aligned_plab(adjusted_size, req, r);
774 }
775 // Otherwise, leave result == nullptr because the adjusted size is smaller than min size.
776 } else {
777 // This is a GCLAB or a TLAB allocation
778 size_t adjusted_size = req.size();
779 size_t free = align_down(r->free() >> LogHeapWordSize, MinObjAlignment);
780 if (adjusted_size > free) {
781 adjusted_size = free;
782 }
783 if (adjusted_size >= req.min_size()) {
784 result = r->allocate(adjusted_size, req);
785 assert (result != nullptr, "Allocation must succeed: free " SIZE_FORMAT ", actual " SIZE_FORMAT, free, adjusted_size);
786 req.set_actual_size(adjusted_size);
787 } else {
788 log_trace(gc, free)("Failed to shrink TLAB or GCLAB request (" SIZE_FORMAT ") in region " SIZE_FORMAT " to " SIZE_FORMAT
789 " because min_size() is " SIZE_FORMAT, req.size(), r->index(), adjusted_size, req.min_size());
790 }
791 }
792 } else if (req.is_lab_alloc() && req.type() == ShenandoahAllocRequest::_alloc_plab) {
793
794 // inelastic PLAB
795 size_t size = req.size();
796 size_t usable_free = get_usable_free_words(r->free());
797 if (size <= usable_free) {
798 result = allocate_aligned_plab(size, req, r);
799 }
800 } else {
801 size_t size = req.size();
802 result = r->allocate(size, req);
803 if (result != nullptr) {
804 // Record actual allocation size
805 req.set_actual_size(size);
806 }
807 }
808
809 ShenandoahGeneration* generation = _heap->generation_for(req.affiliation());
810 if (result != nullptr) {
811 // Allocation successful, bump stats:
812 if (req.is_mutator_alloc()) {
813 assert(req.is_young(), "Mutator allocations always come from young generation.");
814 _free_sets.increase_used(Mutator, req.actual_size() * HeapWordSize);
815 } else {
816 assert(req.is_gc_alloc(), "Should be gc_alloc since req wasn't mutator alloc");
817
818 // For GC allocations, we advance update_watermark because the objects relocated into this memory during
819 // evacuation are not updated during evacuation. For both young and old regions r, it is essential that all
820 // PLABs be made parsable at the end of evacuation. This is enabled by retiring all plabs at end of evacuation.
821 // TODO: Making a PLAB parsable involves placing a filler object in its remnant memory but does not require
822 // that the PLAB be disabled for all future purposes. We may want to introduce a new service to make the
823 // PLABs parsable while still allowing the PLAB to serve future allocation requests that arise during the
824 // next evacuation pass.
825 r->set_update_watermark(r->top());
826 if (r->is_old()) {
827 assert(req.type() != ShenandoahAllocRequest::_alloc_gclab, "old-gen allocations use PLAB or shared allocation");
828 // for plabs, we'll sort the difference between evac and promotion usage when we retire the plab
829 }
830 }
831 }
832
833 if (result == nullptr || alloc_capacity(r) < PLAB::min_size() * HeapWordSize) {
834 // Region cannot afford this and is likely to not afford future allocations. Retire it.
835 //
836 // While this seems a bit harsh, especially in the case when this large allocation does not
837 // fit but the next small one would, we are risking to inflate scan times when lots of
838 // almost-full regions precede the fully-empty region where we want to allocate the entire TLAB.
839
840 // Record the remainder as allocation waste
841 size_t idx = r->index();
842 if (req.is_mutator_alloc()) {
843 size_t waste = r->free();
844 if (waste > 0) {
845 _free_sets.increase_used(Mutator, waste);
846 // This one request could cause several regions to be "retired", so we must accumulate the waste
847 req.set_waste((waste >> LogHeapWordSize) + req.waste());
848 }
849 assert(_free_sets.membership(idx) == Mutator, "Must be mutator free: " SIZE_FORMAT, idx);
850 } else {
851 assert(_free_sets.membership(idx) == Collector || _free_sets.membership(idx) == OldCollector,
852 "Must be collector or old-collector free: " SIZE_FORMAT, idx);
853 }
854 // This region is no longer considered free (in any set)
855 _free_sets.remove_from_free_sets(idx);
856 _free_sets.assert_bounds();
857 }
858 return result;
859 }
860
861 HeapWord* ShenandoahFreeSet::allocate_contiguous(ShenandoahAllocRequest& req) {
862 shenandoah_assert_heaplocked();
863
864 size_t words_size = req.size();
865 size_t num = ShenandoahHeapRegion::required_regions(words_size * HeapWordSize);
866
867 assert(req.is_young(), "Humongous regions always allocated in YOUNG");
868 ShenandoahGeneration* generation = _heap->generation_for(req.affiliation());
869
870 // Check if there are enough regions left to satisfy allocation.
871 if (_heap->mode()->is_generational()) {
872 size_t avail_young_regions = generation->free_unaffiliated_regions();
873 if (num > _free_sets.count(Mutator) || (num > avail_young_regions)) {
874 return nullptr;
875 }
876 } else {
877 if (num > _free_sets.count(Mutator)) {
878 return nullptr;
879 }
880 }
881
882 // Find the continuous interval of $num regions, starting from $beg and ending in $end,
883 // inclusive. Contiguous allocations are biased to the beginning.
884
885 size_t beg = _free_sets.leftmost(Mutator);
886 size_t end = beg;
887
888 while (true) {
889 if (end >= _free_sets.max()) {
890 // Hit the end, goodbye
891 return nullptr;
892 }
893
894 // If regions are not adjacent, then current [beg; end] is useless, and we may fast-forward.
895 // If region is not completely free, the current [beg; end] is useless, and we may fast-forward.
896 if (!_free_sets.in_free_set(end, Mutator) || !can_allocate_from(_heap->get_region(end))) {
897 end++;
898 beg = end;
899 continue;
900 }
901
902 if ((end - beg + 1) == num) {
903 // found the match
904 break;
905 }
906
907 end++;
908 }
909
910 size_t remainder = words_size & ShenandoahHeapRegion::region_size_words_mask();
911 ShenandoahMarkingContext* const ctx = _heap->complete_marking_context();
912
913 // Initialize regions:
914 for (size_t i = beg; i <= end; i++) {
915 ShenandoahHeapRegion* r = _heap->get_region(i);
916 try_recycle_trashed(r);
917
918 assert(i == beg || _heap->get_region(i - 1)->index() + 1 == r->index(), "Should be contiguous");
919 assert(r->is_empty(), "Should be empty");
920
921 if (i == beg) {
922 r->make_humongous_start();
923 } else {
924 r->make_humongous_cont();
925 }
926
927 // Trailing region may be non-full, record the remainder there
928 size_t used_words;
929 if ((i == end) && (remainder != 0)) {
930 used_words = remainder;
931 } else {
932 used_words = ShenandoahHeapRegion::region_size_words();
933 }
934
935 r->set_affiliation(req.affiliation());
936 r->set_update_watermark(r->bottom());
937 r->set_top(r->bottom() + used_words);
938
939 // While individual regions report their true use, all humongous regions are marked used in the free set.
940 _free_sets.remove_from_free_sets(r->index());
941 }
942 _heap->young_generation()->increase_affiliated_region_count(num);
943
944 size_t total_humongous_size = ShenandoahHeapRegion::region_size_bytes() * num;
945 _free_sets.increase_used(Mutator, total_humongous_size);
946 _free_sets.assert_bounds();
947 req.set_actual_size(words_size);
948 if (remainder != 0) {
949 req.set_waste(ShenandoahHeapRegion::region_size_words() - remainder);
950 }
951 return _heap->get_region(beg)->bottom();
952 }
953
954 // Returns true iff this region is entirely available, either because it is empty() or because it has been found to represent
955 // immediate trash and we'll be able to immediately recycle it. Note that we cannot recycle immediate trash if
956 // concurrent weak root processing is in progress.
957 bool ShenandoahFreeSet::can_allocate_from(ShenandoahHeapRegion *r) const {
958 return r->is_empty() || (r->is_trash() && !_heap->is_concurrent_weak_root_in_progress());
959 }
960
961 bool ShenandoahFreeSet::can_allocate_from(size_t idx) const {
962 ShenandoahHeapRegion* r = _heap->get_region(idx);
963 return can_allocate_from(r);
964 }
965
966 size_t ShenandoahFreeSet::alloc_capacity(size_t idx) const {
967 ShenandoahHeapRegion* r = _heap->get_region(idx);
968 return alloc_capacity(r);
969 }
970
971 size_t ShenandoahFreeSet::alloc_capacity(ShenandoahHeapRegion *r) const {
972 if (r->is_trash()) {
973 // This would be recycled on allocation path
974 return ShenandoahHeapRegion::region_size_bytes();
975 } else {
976 return r->free();
977 }
978 }
979
980 bool ShenandoahFreeSet::has_alloc_capacity(ShenandoahHeapRegion *r) const {
981 return alloc_capacity(r) > 0;
982 }
983
984 void ShenandoahFreeSet::try_recycle_trashed(ShenandoahHeapRegion *r) {
985 if (r->is_trash()) {
986 r->recycle();
987 }
988 }
989
990 void ShenandoahFreeSet::recycle_trash() {
991 // lock is not reentrable, check we don't have it
992 shenandoah_assert_not_heaplocked();
993
994 for (size_t i = 0; i < _heap->num_regions(); i++) {
995 ShenandoahHeapRegion* r = _heap->get_region(i);
996 if (r->is_trash()) {
997 ShenandoahHeapLocker locker(_heap->lock());
998 try_recycle_trashed(r);
999 }
1000 SpinPause(); // allow allocators to take the lock
1001 }
1002 }
1003
1004 void ShenandoahFreeSet::flip_to_old_gc(ShenandoahHeapRegion* r) {
1005 size_t idx = r->index();
1006
1007 assert(_free_sets.in_free_set(idx, Mutator), "Should be in mutator view");
1008 // Note: can_allocate_from(r) means r is entirely empty
1009 assert(can_allocate_from(r), "Should not be allocated");
1010
1011 size_t region_capacity = alloc_capacity(r);
1012 _free_sets.move_to_set(idx, OldCollector, region_capacity);
1013 _free_sets.assert_bounds();
1014 _heap->augment_old_evac_reserve(region_capacity);
1015 bool transferred = _heap->generation_sizer()->transfer_to_old(1);
1016 if (!transferred) {
1017 log_warning(gc, free)("Forcing transfer of " SIZE_FORMAT " to old reserve.", idx);
1018 _heap->generation_sizer()->force_transfer_to_old(1);
1019 }
1020 // We do not ensure that the region is no longer trash, relying on try_allocate_in(), which always comes next,
1021 // to recycle trash before attempting to allocate anything in the region.
1022 }
1023
1024 void ShenandoahFreeSet::flip_to_gc(ShenandoahHeapRegion* r) {
1025 size_t idx = r->index();
1026
1027 assert(_free_sets.in_free_set(idx, Mutator), "Should be in mutator view");
1028 assert(can_allocate_from(r), "Should not be allocated");
1029
1030 size_t region_capacity = alloc_capacity(r);
1031 _free_sets.move_to_set(idx, Collector, region_capacity);
1032 _free_sets.assert_bounds();
1033
1034 // We do not ensure that the region is no longer trash, relying on try_allocate_in(), which always comes next,
1035 // to recycle trash before attempting to allocate anything in the region.
1036 }
1037
1038 void ShenandoahFreeSet::clear() {
1039 shenandoah_assert_heaplocked();
1040 clear_internal();
1041 }
1042
1043 void ShenandoahFreeSet::clear_internal() {
1044 _free_sets.clear_all();
1045 }
1046
1047 // This function places all is_old() regions that have allocation capacity into the old_collector set. It places
1048 // all other regions (not is_old()) that have allocation capacity into the mutator_set. Subsequently, we will
1049 // move some of the mutator regions into the collector set or old_collector set with the intent of packing
1050 // old_collector memory into the highest (rightmost) addresses of the heap and the collector memory into the
1051 // next highest addresses of the heap, with mutator memory consuming the lowest addresses of the heap.
1052 void ShenandoahFreeSet::find_regions_with_alloc_capacity(size_t &young_cset_regions, size_t &old_cset_regions,
1053 size_t &first_old_region, size_t &last_old_region,
1054 size_t &old_region_count) {
1055 first_old_region = _heap->num_regions();
1056 last_old_region = 0;
1057 old_region_count = 0;
1058 old_cset_regions = 0;
1059 young_cset_regions = 0;
1060 for (size_t idx = 0; idx < _heap->num_regions(); idx++) {
1061 ShenandoahHeapRegion* region = _heap->get_region(idx);
1062 if (region->is_trash()) {
1063 // Trashed regions represent regions that had been in the collection set but have not yet been "cleaned up".
1064 if (region->is_old()) {
1065 old_cset_regions++;
1066 } else {
1067 assert(region->is_young(), "Trashed region should be old or young");
1068 young_cset_regions++;
1069 }
1070 } else if (region->is_old() && region->is_regular()) {
1071 old_region_count++;
1072 if (first_old_region > idx) {
1073 first_old_region = idx;
1074 }
1075 last_old_region = idx;
1076 }
1077 if (region->is_alloc_allowed() || region->is_trash()) {
1078 assert(!region->is_cset(), "Shouldn't be adding cset regions to the free set");
1079 assert(_free_sets.in_free_set(idx, NotFree), "We are about to make region free; it should not be free already");
1080
1081 // Do not add regions that would almost surely fail allocation
1082 if (alloc_capacity(region) < PLAB::min_size() * HeapWordSize) continue;
1083
1084 if (region->is_old()) {
1085 _free_sets.make_free(idx, OldCollector, alloc_capacity(region));
1086 log_debug(gc, free)(
1087 " Adding Region " SIZE_FORMAT " (Free: " SIZE_FORMAT "%s, Used: " SIZE_FORMAT "%s) to old collector set",
1088 idx, byte_size_in_proper_unit(region->free()), proper_unit_for_byte_size(region->free()),
1089 byte_size_in_proper_unit(region->used()), proper_unit_for_byte_size(region->used()));
1090 } else {
1091 _free_sets.make_free(idx, Mutator, alloc_capacity(region));
1092 log_debug(gc, free)(
1093 " Adding Region " SIZE_FORMAT " (Free: " SIZE_FORMAT "%s, Used: " SIZE_FORMAT "%s) to mutator set",
1094 idx, byte_size_in_proper_unit(region->free()), proper_unit_for_byte_size(region->free()),
1095 byte_size_in_proper_unit(region->used()), proper_unit_for_byte_size(region->used()));
1096 }
1097 }
1098 }
1099 }
1100
1101 // Move no more than cset_regions from the existing Collector and OldCollector free sets to the Mutator free set.
1102 // This is called from outside the heap lock.
1103 void ShenandoahFreeSet::move_collector_sets_to_mutator(size_t max_xfer_regions) {
1104 size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes();
1105 size_t collector_empty_xfer = 0;
1106 size_t collector_not_empty_xfer = 0;
1107 size_t old_collector_empty_xfer = 0;
1108
1109 // Process empty regions within the Collector free set
1110 if ((max_xfer_regions > 0) && (_free_sets.leftmost_empty(Collector) <= _free_sets.rightmost_empty(Collector))) {
1111 ShenandoahHeapLocker locker(_heap->lock());
1112 for (size_t idx = _free_sets.leftmost_empty(Collector);
1113 (max_xfer_regions > 0) && (idx <= _free_sets.rightmost_empty(Collector)); idx++) {
1114 if (_free_sets.in_free_set(idx, Collector) && can_allocate_from(idx)) {
1115 _free_sets.move_to_set(idx, Mutator, region_size_bytes);
1116 max_xfer_regions--;
1117 collector_empty_xfer += region_size_bytes;
1118 }
1119 }
1120 }
1121
1122 // Process empty regions within the OldCollector free set
1123 size_t old_collector_regions = 0;
1124 if ((max_xfer_regions > 0) && (_free_sets.leftmost_empty(OldCollector) <= _free_sets.rightmost_empty(OldCollector))) {
1125 ShenandoahHeapLocker locker(_heap->lock());
1126 for (size_t idx = _free_sets.leftmost_empty(OldCollector);
1127 (max_xfer_regions > 0) && (idx <= _free_sets.rightmost_empty(OldCollector)); idx++) {
1128 if (_free_sets.in_free_set(idx, OldCollector) && can_allocate_from(idx)) {
1129 _free_sets.move_to_set(idx, Mutator, region_size_bytes);
1130 max_xfer_regions--;
1131 old_collector_empty_xfer += region_size_bytes;
1132 old_collector_regions++;
1133 }
1134 }
1135 if (old_collector_regions > 0) {
1136 _heap->generation_sizer()->transfer_to_young(old_collector_regions);
1137 }
1138 }
1139
1140 // If there are any non-empty regions within Collector set, we can also move them to the Mutator free set
1141 if ((max_xfer_regions > 0) && (_free_sets.leftmost(Collector) <= _free_sets.rightmost(Collector))) {
1142 ShenandoahHeapLocker locker(_heap->lock());
1143 for (size_t idx = _free_sets.leftmost(Collector); (max_xfer_regions > 0) && (idx <= _free_sets.rightmost(Collector)); idx++) {
1144 size_t alloc_capacity = this->alloc_capacity(idx);
1145 if (_free_sets.in_free_set(idx, Collector) && (alloc_capacity > 0)) {
1146 _free_sets.move_to_set(idx, Mutator, alloc_capacity);
1147 max_xfer_regions--;
1148 collector_not_empty_xfer += alloc_capacity;
1149 }
1150 }
1151 }
1152
1153 size_t collector_xfer = collector_empty_xfer + collector_not_empty_xfer;
1154 size_t total_xfer = collector_xfer + old_collector_empty_xfer;
1155 log_info(gc, free)("At start of update refs, moving " SIZE_FORMAT "%s to Mutator free set from Collector Reserve ("
1156 SIZE_FORMAT "%s) and from Old Collector Reserve (" SIZE_FORMAT "%s)",
1157 byte_size_in_proper_unit(total_xfer), proper_unit_for_byte_size(total_xfer),
1158 byte_size_in_proper_unit(collector_xfer), proper_unit_for_byte_size(collector_xfer),
1159 byte_size_in_proper_unit(old_collector_empty_xfer), proper_unit_for_byte_size(old_collector_empty_xfer));
1160 }
1161
1162
1163 // Overwrite arguments to represent the amount of memory in each generation that is about to be recycled
1164 void ShenandoahFreeSet::prepare_to_rebuild(size_t &young_cset_regions, size_t &old_cset_regions,
1165 size_t &first_old_region, size_t &last_old_region, size_t &old_region_count) {
1166 shenandoah_assert_heaplocked();
1167 // This resets all state information, removing all regions from all sets.
1168 clear();
1169 log_debug(gc, free)("Rebuilding FreeSet");
1170
1171 // This places regions that have alloc_capacity into the old_collector set if they identify as is_old() or the
1172 // mutator set otherwise.
1173 find_regions_with_alloc_capacity(young_cset_regions, old_cset_regions, first_old_region, last_old_region, old_region_count);
1174 }
1175
1176 void ShenandoahFreeSet::rebuild(size_t young_cset_regions, size_t old_cset_regions) {
1177 shenandoah_assert_heaplocked();
1178 size_t young_reserve, old_reserve;
1179 size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes();
1180
1181 size_t old_capacity = _heap->old_generation()->max_capacity();
1182 size_t old_available = _heap->old_generation()->available();
1183 size_t old_unaffiliated_regions = _heap->old_generation()->free_unaffiliated_regions();
1184 size_t young_capacity = _heap->young_generation()->max_capacity();
1185 size_t young_available = _heap->young_generation()->available();
1186 size_t young_unaffiliated_regions = _heap->young_generation()->free_unaffiliated_regions();
1187
1188 old_unaffiliated_regions += old_cset_regions;
1189 old_available += old_cset_regions * region_size_bytes;
1190 young_unaffiliated_regions += young_cset_regions;
1191 young_available += young_cset_regions * region_size_bytes;
1192
1193 // Consult old-region surplus and deficit to make adjustments to current generation capacities and availability.
1194 // The generation region transfers take place after we rebuild.
1195 size_t old_region_surplus = _heap->get_old_region_surplus();
1196 size_t old_region_deficit = _heap->get_old_region_deficit();
1197
1198 if (old_region_surplus > 0) {
1199 size_t xfer_bytes = old_region_surplus * region_size_bytes;
1200 assert(old_region_surplus <= old_unaffiliated_regions, "Cannot transfer regions that are affiliated");
1201 old_capacity -= xfer_bytes;
1202 old_available -= xfer_bytes;
1203 old_unaffiliated_regions -= old_region_surplus;
1204 young_capacity += xfer_bytes;
1205 young_available += xfer_bytes;
1206 young_unaffiliated_regions += old_region_surplus;
1207 } else if (old_region_deficit > 0) {
1208 size_t xfer_bytes = old_region_deficit * region_size_bytes;
1209 assert(old_region_deficit <= young_unaffiliated_regions, "Cannot transfer regions that are affiliated");
1210 old_capacity += xfer_bytes;
1211 old_available += xfer_bytes;
1212 old_unaffiliated_regions += old_region_deficit;
1213 young_capacity -= xfer_bytes;
1214 young_available -= xfer_bytes;
1215 young_unaffiliated_regions -= old_region_deficit;
1216 }
1217
1218 // Evac reserve: reserve trailing space for evacuations, with regions reserved for old evacuations placed to the right
1219 // of regions reserved of young evacuations.
1220 if (!_heap->mode()->is_generational()) {
1221 young_reserve = (_heap->max_capacity() / 100) * ShenandoahEvacReserve;
1222 old_reserve = 0;
1223 } else {
1224 // All allocations taken from the old collector set are performed by GC, generally using PLABs for both
1225 // promotions and evacuations. The partition between which old memory is reserved for evacuation and
1226 // which is reserved for promotion is enforced using thread-local variables that prescribe intentons for
1227 // each PLAB's available memory.
1228 if (_heap->has_evacuation_reserve_quantities()) {
1229 // We are rebuilding at the end of final mark, having already established evacuation budgets for this GC pass.
1230 young_reserve = _heap->get_young_evac_reserve();
1231 old_reserve = _heap->get_promoted_reserve() + _heap->get_old_evac_reserve();
1232 assert(old_reserve <= old_available,
1233 "Cannot reserve (" SIZE_FORMAT " + " SIZE_FORMAT") more OLD than is available: " SIZE_FORMAT,
1234 _heap->get_promoted_reserve(), _heap->get_old_evac_reserve(), old_available);
1235 } else {
1236 // We are rebuilding at end of GC, so we set aside budgets specified on command line (or defaults)
1237 young_reserve = (young_capacity * ShenandoahEvacReserve) / 100;
1238 // The auto-sizer has already made old-gen large enough to hold all anticipated evacuations and promotions.
1239 // Affiliated old-gen regions are already in the OldCollector free set. Add in the relevant number of
1240 // unaffiliated regions.
1241 old_reserve = old_available;
1242 }
1243 }
1244
1245 // Old available regions that have less than PLAB::min_size() of available memory are not placed into the OldCollector
1246 // free set. Because of this, old_available may not have enough memory to represent the intended reserve. Adjust
1247 // the reserve downward to account for this possibility. This loss is part of the reason why the original budget
1248 // was adjusted with ShenandoahOldEvacWaste and ShenandoahOldPromoWaste multipliers.
1249 if (old_reserve > _free_sets.capacity_of(OldCollector) + old_unaffiliated_regions * region_size_bytes) {
1250 old_reserve = _free_sets.capacity_of(OldCollector) + old_unaffiliated_regions * region_size_bytes;
1251 }
1252
1253 if (young_reserve > young_unaffiliated_regions * region_size_bytes) {
1254 young_reserve = young_unaffiliated_regions * region_size_bytes;
1255 }
1256
1257 reserve_regions(young_reserve, old_reserve);
1258 _free_sets.establish_alloc_bias(OldCollector);
1259 _free_sets.assert_bounds();
1260 log_status();
1261 }
1262
1263 // Having placed all regions that have allocation capacity into the mutator set if they identify as is_young()
1264 // or into the old collector set if they identify as is_old(), move some of these regions from the mutator set
1265 // into the collector set or old collector set in order to assure that the memory available for allocations within
1266 // the collector set is at least to_reserve, and the memory available for allocations within the old collector set
1267 // is at least to_reserve_old.
1268 void ShenandoahFreeSet::reserve_regions(size_t to_reserve, size_t to_reserve_old) {
1269 for (size_t i = _heap->num_regions(); i > 0; i--) {
1270 size_t idx = i - 1;
1271 ShenandoahHeapRegion* r = _heap->get_region(idx);
1272 if (!_free_sets.in_free_set(idx, Mutator)) {
1273 continue;
1274 }
1275
1276 size_t ac = alloc_capacity(r);
1277 assert (ac > 0, "Membership in free set implies has capacity");
1278 assert (!r->is_old(), "mutator_is_free regions should not be affiliated OLD");
1279
1280 bool move_to_old = _free_sets.capacity_of(OldCollector) < to_reserve_old;
1281 bool move_to_young = _free_sets.capacity_of(Collector) < to_reserve;
1282
1283 if (!move_to_old && !move_to_young) {
1284 // We've satisfied both to_reserve and to_reserved_old
1285 break;
1286 }
1287
1288 if (move_to_old) {
1289 if (r->is_trash() || !r->is_affiliated()) {
1290 // OLD regions that have available memory are already in the old_collector free set
1291 _free_sets.move_to_set(idx, OldCollector, ac);
1292 log_debug(gc, free)(" Shifting region " SIZE_FORMAT " from mutator_free to old_collector_free", idx);
1293 continue;
1294 }
1295 }
1296
1297 if (move_to_young) {
1298 // Note: In a previous implementation, regions were only placed into the survivor space (collector_is_free) if
1299 // they were entirely empty. I'm not sure I understand the rationale for that. That alternative behavior would
1300 // tend to mix survivor objects with ephemeral objects, making it more difficult to reclaim the memory for the
1301 // ephemeral objects. It also delays aging of regions, causing promotion in place to be delayed.
1302 _free_sets.move_to_set(idx, Collector, ac);
1303 log_debug(gc)(" Shifting region " SIZE_FORMAT " from mutator_free to collector_free", idx);
1304 }
1305 }
1306
1307 if (LogTarget(Info, gc, free)::is_enabled()) {
1308 size_t old_reserve = _free_sets.capacity_of(OldCollector);
1309 if (old_reserve < to_reserve_old) {
1310 log_info(gc, free)("Wanted " PROPERFMT " for old reserve, but only reserved: " PROPERFMT,
1311 PROPERFMTARGS(to_reserve_old), PROPERFMTARGS(old_reserve));
1312 }
1313 size_t young_reserve = _free_sets.capacity_of(Collector);
1314 if (young_reserve < to_reserve) {
1315 log_info(gc, free)("Wanted " PROPERFMT " for young reserve, but only reserved: " PROPERFMT,
1316 PROPERFMTARGS(to_reserve), PROPERFMTARGS(young_reserve));
1317 }
1318 }
1319 }
1320
1321 void ShenandoahFreeSet::log_status() {
1322 shenandoah_assert_heaplocked();
1323
1324 #ifdef ASSERT
1325 // Dump of the FreeSet details is only enabled if assertions are enabled
1326 if (LogTarget(Debug, gc, free)::is_enabled()) {
1327 #define BUFFER_SIZE 80
1328 size_t retired_old = 0;
1329 size_t retired_old_humongous = 0;
1330 size_t retired_young = 0;
1331 size_t retired_young_humongous = 0;
1332 size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes();
1333 size_t retired_young_waste = 0;
1334 size_t retired_old_waste = 0;
1335 size_t consumed_collector = 0;
1336 size_t consumed_old_collector = 0;
1337 size_t consumed_mutator = 0;
1338 size_t available_old = 0;
1339 size_t available_young = 0;
1340 size_t available_mutator = 0;
1341 size_t available_collector = 0;
1342 size_t available_old_collector = 0;
1343
1344 char buffer[BUFFER_SIZE];
1345 for (uint i = 0; i < BUFFER_SIZE; i++) {
1346 buffer[i] = '\0';
1347 }
1348 log_debug(gc, free)("FreeSet map legend:"
1349 " M:mutator_free C:collector_free O:old_collector_free"
1350 " H:humongous ~:retired old _:retired young");
1351 log_debug(gc, free)(" mutator free range [" SIZE_FORMAT ".." SIZE_FORMAT "], "
1352 " collector free range [" SIZE_FORMAT ".." SIZE_FORMAT "], "
1353 "old collector free range [" SIZE_FORMAT ".." SIZE_FORMAT "] allocates from %s",
1354 _free_sets.leftmost(Mutator), _free_sets.rightmost(Mutator),
1355 _free_sets.leftmost(Collector), _free_sets.rightmost(Collector),
1356 _free_sets.leftmost(OldCollector), _free_sets.rightmost(OldCollector),
1357 _free_sets.alloc_from_left_bias(OldCollector)? "left to right": "right to left");
1358
1359 for (uint i = 0; i < _heap->num_regions(); i++) {
1360 ShenandoahHeapRegion *r = _heap->get_region(i);
1361 uint idx = i % 64;
1362 if ((i != 0) && (idx == 0)) {
1363 log_debug(gc, free)(" %6u: %s", i-64, buffer);
1364 }
1365 if (_free_sets.in_free_set(i, Mutator)) {
1366 assert(!r->is_old(), "Old regions should not be in mutator_free set");
1367 size_t capacity = alloc_capacity(r);
1368 available_mutator += capacity;
1369 consumed_mutator += region_size_bytes - capacity;
1370 buffer[idx] = (capacity == region_size_bytes)? 'M': 'm';
1371 } else if (_free_sets.in_free_set(i, Collector)) {
1372 assert(!r->is_old(), "Old regions should not be in collector_free set");
1373 size_t capacity = alloc_capacity(r);
1374 available_collector += capacity;
1375 consumed_collector += region_size_bytes - capacity;
1376 buffer[idx] = (capacity == region_size_bytes)? 'C': 'c';
1377 } else if (_free_sets.in_free_set(i, OldCollector)) {
1378 size_t capacity = alloc_capacity(r);
1379 available_old_collector += capacity;
1380 consumed_old_collector += region_size_bytes - capacity;
1381 buffer[idx] = (capacity == region_size_bytes)? 'O': 'o';
1382 } else if (r->is_humongous()) {
1383 if (r->is_old()) {
1384 buffer[idx] = 'H';
1385 retired_old_humongous += region_size_bytes;
1386 } else {
1387 buffer[idx] = 'h';
1388 retired_young_humongous += region_size_bytes;
1389 }
1390 } else {
1391 if (r->is_old()) {
1392 buffer[idx] = '~';
1393 retired_old_waste += alloc_capacity(r);
1394 retired_old += region_size_bytes;
1395 } else {
1396 buffer[idx] = '_';
1397 retired_young_waste += alloc_capacity(r);
1398 retired_young += region_size_bytes;
1399 }
1400 }
1401 }
1402 uint remnant = _heap->num_regions() % 64;
1403 if (remnant > 0) {
1404 buffer[remnant] = '\0';
1405 } else {
1406 remnant = 64;
1407 }
1408 log_debug(gc, free)(" %6u: %s", (uint) (_heap->num_regions() - remnant), buffer);
1409 size_t total_young = retired_young + retired_young_humongous;
1410 size_t total_old = retired_old + retired_old_humongous;
1411 }
1412 #endif
1413
1414 LogTarget(Info, gc, free) lt;
1415 if (lt.is_enabled()) {
1416 ResourceMark rm;
1417 LogStream ls(lt);
1418
1419 {
1420 size_t last_idx = 0;
1421 size_t max = 0;
1422 size_t max_contig = 0;
1423 size_t empty_contig = 0;
1424
1425 size_t total_used = 0;
1426 size_t total_free = 0;
1427 size_t total_free_ext = 0;
1428
1429 for (size_t idx = _free_sets.leftmost(Mutator); idx <= _free_sets.rightmost(Mutator); idx++) {
1430 if (_free_sets.in_free_set(idx, Mutator)) {
1431 ShenandoahHeapRegion *r = _heap->get_region(idx);
1432 size_t free = alloc_capacity(r);
1433 max = MAX2(max, free);
1434 if (r->is_empty()) {
1435 total_free_ext += free;
1436 if (last_idx + 1 == idx) {
1437 empty_contig++;
1438 } else {
1439 empty_contig = 1;
1440 }
1441 } else {
1442 empty_contig = 0;
1443 }
1444 total_used += r->used();
1445 total_free += free;
1446 max_contig = MAX2(max_contig, empty_contig);
1447 last_idx = idx;
1448 }
1449 }
1450
1451 size_t max_humongous = max_contig * ShenandoahHeapRegion::region_size_bytes();
1452 size_t free = capacity() - used();
1453
1454 assert(free == total_free, "Sum of free within mutator regions (" SIZE_FORMAT
1455 ") should match mutator capacity (" SIZE_FORMAT ") minus mutator used (" SIZE_FORMAT ")",
1456 total_free, capacity(), used());
1457
1458 ls.print("Free: " SIZE_FORMAT "%s, Max: " SIZE_FORMAT "%s regular, " SIZE_FORMAT "%s humongous, ",
1459 byte_size_in_proper_unit(total_free), proper_unit_for_byte_size(total_free),
1460 byte_size_in_proper_unit(max), proper_unit_for_byte_size(max),
1461 byte_size_in_proper_unit(max_humongous), proper_unit_for_byte_size(max_humongous)
1462 );
1463
1464 ls.print("Frag: ");
1465 size_t frag_ext;
1466 if (total_free_ext > 0) {
1467 frag_ext = 100 - (100 * max_humongous / total_free_ext);
1468 } else {
1469 frag_ext = 0;
1470 }
1471 ls.print(SIZE_FORMAT "%% external, ", frag_ext);
1472
1473 size_t frag_int;
1474 if (_free_sets.count(Mutator) > 0) {
1475 frag_int = (100 * (total_used / _free_sets.count(Mutator)) / ShenandoahHeapRegion::region_size_bytes());
1476 } else {
1477 frag_int = 0;
1478 }
1479 ls.print(SIZE_FORMAT "%% internal; ", frag_int);
1480 ls.print("Used: " SIZE_FORMAT "%s, Mutator Free: " SIZE_FORMAT,
1481 byte_size_in_proper_unit(total_used), proper_unit_for_byte_size(total_used), _free_sets.count(Mutator));
1482 }
1483
1484 {
1485 size_t max = 0;
1486 size_t total_free = 0;
1487 size_t total_used = 0;
1488
1489 for (size_t idx = _free_sets.leftmost(Collector); idx <= _free_sets.rightmost(Collector); idx++) {
1490 if (_free_sets.in_free_set(idx, Collector)) {
1491 ShenandoahHeapRegion *r = _heap->get_region(idx);
1492 size_t free = alloc_capacity(r);
1493 max = MAX2(max, free);
1494 total_free += free;
1495 total_used += r->used();
1496 }
1497 }
1498 ls.print(" Collector Reserve: " SIZE_FORMAT "%s, Max: " SIZE_FORMAT "%s; Used: " SIZE_FORMAT "%s",
1499 byte_size_in_proper_unit(total_free), proper_unit_for_byte_size(total_free),
1500 byte_size_in_proper_unit(max), proper_unit_for_byte_size(max),
1501 byte_size_in_proper_unit(total_used), proper_unit_for_byte_size(total_used));
1502 }
1503
1504 if (_heap->mode()->is_generational()) {
1505 size_t max = 0;
1506 size_t total_free = 0;
1507 size_t total_used = 0;
1508
1509 for (size_t idx = _free_sets.leftmost(OldCollector); idx <= _free_sets.rightmost(OldCollector); idx++) {
1510 if (_free_sets.in_free_set(idx, OldCollector)) {
1511 ShenandoahHeapRegion *r = _heap->get_region(idx);
1512 size_t free = alloc_capacity(r);
1513 max = MAX2(max, free);
1514 total_free += free;
1515 total_used += r->used();
1516 }
1517 }
1518 ls.print_cr(" Old Collector Reserve: " SIZE_FORMAT "%s, Max: " SIZE_FORMAT "%s; Used: " SIZE_FORMAT "%s",
1519 byte_size_in_proper_unit(total_free), proper_unit_for_byte_size(total_free),
1520 byte_size_in_proper_unit(max), proper_unit_for_byte_size(max),
1521 byte_size_in_proper_unit(total_used), proper_unit_for_byte_size(total_used));
1522 }
1523 }
1524 }
1525
1526 HeapWord* ShenandoahFreeSet::allocate(ShenandoahAllocRequest& req, bool& in_new_region) {
1527 shenandoah_assert_heaplocked();
1528
1529 // Allocation request is known to satisfy all memory budgeting constraints.
1530 if (req.size() > ShenandoahHeapRegion::humongous_threshold_words()) {
1531 switch (req.type()) {
1532 case ShenandoahAllocRequest::_alloc_shared:
1533 case ShenandoahAllocRequest::_alloc_shared_gc:
1534 in_new_region = true;
1535 return allocate_contiguous(req);
1536 case ShenandoahAllocRequest::_alloc_plab:
1537 case ShenandoahAllocRequest::_alloc_gclab:
1538 case ShenandoahAllocRequest::_alloc_tlab:
1539 in_new_region = false;
1540 assert(false, "Trying to allocate TLAB larger than the humongous threshold: " SIZE_FORMAT " > " SIZE_FORMAT,
1541 req.size(), ShenandoahHeapRegion::humongous_threshold_words());
1542 return nullptr;
1543 default:
1544 ShouldNotReachHere();
1545 return nullptr;
1546 }
1547 } else {
1548 return allocate_single(req, in_new_region);
1549 }
1550 }
1551
1552 size_t ShenandoahFreeSet::unsafe_peek_free() const {
1553 // Deliberately not locked, this method is unsafe when free set is modified.
1554
1555 for (size_t index = _free_sets.leftmost(Mutator); index <= _free_sets.rightmost(Mutator); index++) {
1556 if (index < _free_sets.max() && _free_sets.in_free_set(index, Mutator)) {
1557 ShenandoahHeapRegion* r = _heap->get_region(index);
1558 if (r->free() >= MinTLABSize) {
1559 return r->free();
1560 }
1561 }
1562 }
1563
1564 // It appears that no regions left
1565 return 0;
1566 }
1567
1568 void ShenandoahFreeSet::print_on(outputStream* out) const {
1569 out->print_cr("Mutator Free Set: " SIZE_FORMAT "", _free_sets.count(Mutator));
1570 for (size_t index = _free_sets.leftmost(Mutator); index <= _free_sets.rightmost(Mutator); index++) {
1571 if (_free_sets.in_free_set(index, Mutator)) {
1572 _heap->get_region(index)->print_on(out);
1573 }
1574 }
1575 out->print_cr("Collector Free Set: " SIZE_FORMAT "", _free_sets.count(Collector));
1576 for (size_t index = _free_sets.leftmost(Collector); index <= _free_sets.rightmost(Collector); index++) {
1577 if (_free_sets.in_free_set(index, Collector)) {
1578 _heap->get_region(index)->print_on(out);
1579 }
1580 }
1581 if (_heap->mode()->is_generational()) {
1582 out->print_cr("Old Collector Free Set: " SIZE_FORMAT "", _free_sets.count(OldCollector));
1583 for (size_t index = _free_sets.leftmost(OldCollector); index <= _free_sets.rightmost(OldCollector); index++) {
1584 if (_free_sets.in_free_set(index, OldCollector)) {
1585 _heap->get_region(index)->print_on(out);
1586 }
1587 }
1588 }
1589 }
1590
1591 /*
1592 * Internal fragmentation metric: describes how fragmented the heap regions are.
1593 *
1594 * It is derived as:
1595 *
1596 * sum(used[i]^2, i=0..k)
1597 * IF = 1 - ------------------------------
1598 * C * sum(used[i], i=0..k)
1599 *
1600 * ...where k is the number of regions in computation, C is the region capacity, and
1601 * used[i] is the used space in the region.
1602 *
1603 * The non-linearity causes IF to be lower for the cases where the same total heap
1604 * used is densely packed. For example:
1605 * a) Heap is completely full => IF = 0
1606 * b) Heap is half full, first 50% regions are completely full => IF = 0
1607 * c) Heap is half full, each region is 50% full => IF = 1/2
1608 * d) Heap is quarter full, first 50% regions are completely full => IF = 0
1609 * e) Heap is quarter full, each region is 25% full => IF = 3/4
1610 * f) Heap has one small object per each region => IF =~ 1
1611 */
1612 double ShenandoahFreeSet::internal_fragmentation() {
1613 double squared = 0;
1614 double linear = 0;
1615 int count = 0;
1616
1617 for (size_t index = _free_sets.leftmost(Mutator); index <= _free_sets.rightmost(Mutator); index++) {
1618 if (_free_sets.in_free_set(index, Mutator)) {
1619 ShenandoahHeapRegion* r = _heap->get_region(index);
1620 size_t used = r->used();
1621 squared += used * used;
1622 linear += used;
1623 count++;
1624 }
1625 }
1626
1627 if (count > 0) {
1628 double s = squared / (ShenandoahHeapRegion::region_size_bytes() * linear);
1629 return 1 - s;
1630 } else {
1631 return 0;
1632 }
1633 }
1634
1635 /*
1636 * External fragmentation metric: describes how fragmented the heap is.
1637 *
1638 * It is derived as:
1639 *
1640 * EF = 1 - largest_contiguous_free / total_free
1641 *
1642 * For example:
1643 * a) Heap is completely empty => EF = 0
1644 * b) Heap is completely full => EF = 0
1645 * c) Heap is first-half full => EF = 1/2
1646 * d) Heap is half full, full and empty regions interleave => EF =~ 1
1647 */
1648 double ShenandoahFreeSet::external_fragmentation() {
1649 size_t last_idx = 0;
1650 size_t max_contig = 0;
1651 size_t empty_contig = 0;
1652
1653 size_t free = 0;
1654
1655 for (size_t index = _free_sets.leftmost(Mutator); index <= _free_sets.rightmost(Mutator); index++) {
1656 if (_free_sets.in_free_set(index, Mutator)) {
1657 ShenandoahHeapRegion* r = _heap->get_region(index);
1658 if (r->is_empty()) {
1659 free += ShenandoahHeapRegion::region_size_bytes();
1660 if (last_idx + 1 == index) {
1661 empty_contig++;
1662 } else {
1663 empty_contig = 1;
1664 }
1665 } else {
1666 empty_contig = 0;
1667 }
1668
1669 max_contig = MAX2(max_contig, empty_contig);
1670 last_idx = index;
1671 }
1672 }
1673
1674 if (free > 0) {
1675 return 1 - (1.0 * max_contig * ShenandoahHeapRegion::region_size_bytes() / free);
1676 } else {
1677 return 0;
1678 }
1679 }
1680
|