1 /*
   2  * Copyright (c) 2014, 2021, Red Hat, Inc. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 
  27 #include "compiler/oopMap.hpp"
  28 #include "gc/shared/continuationGCSupport.hpp"
  29 #include "gc/shared/fullGCForwarding.inline.hpp"
  30 #include "gc/shared/gcTraceTime.inline.hpp"
  31 #include "gc/shared/preservedMarks.inline.hpp"
  32 #include "gc/shared/tlab_globals.hpp"
  33 #include "gc/shared/workerThread.hpp"
  34 #include "gc/shenandoah/heuristics/shenandoahHeuristics.hpp"
  35 #include "gc/shenandoah/shenandoahClosures.inline.hpp"
  36 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp"
  37 #include "gc/shenandoah/shenandoahConcurrentGC.hpp"
  38 #include "gc/shenandoah/shenandoahCollectionSet.hpp"
  39 #include "gc/shenandoah/shenandoahFreeSet.hpp"
  40 #include "gc/shenandoah/shenandoahFullGC.hpp"
  41 #include "gc/shenandoah/shenandoahPhaseTimings.hpp"
  42 #include "gc/shenandoah/shenandoahMark.inline.hpp"
  43 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp"
  44 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp"
  45 #include "gc/shenandoah/shenandoahHeap.inline.hpp"
  46 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp"
  47 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  48 #include "gc/shenandoah/shenandoahMetrics.hpp"
  49 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp"
  50 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp"
  51 #include "gc/shenandoah/shenandoahSTWMark.hpp"
  52 #include "gc/shenandoah/shenandoahUtils.hpp"
  53 #include "gc/shenandoah/shenandoahVerifier.hpp"
  54 #include "gc/shenandoah/shenandoahVMOperations.hpp"
  55 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp"
  56 #include "memory/metaspaceUtils.hpp"
  57 #include "memory/universe.hpp"
  58 #include "oops/compressedOops.inline.hpp"
  59 #include "oops/oop.inline.hpp"
  60 #include "runtime/javaThread.hpp"
  61 #include "runtime/orderAccess.hpp"
  62 #include "runtime/vmThread.hpp"
  63 #include "utilities/copy.hpp"
  64 #include "utilities/events.hpp"
  65 #include "utilities/growableArray.hpp"
  66 
  67 ShenandoahFullGC::ShenandoahFullGC() :
  68   _gc_timer(ShenandoahHeap::heap()->gc_timer()),
  69   _preserved_marks(new PreservedMarksSet(true)) {}
  70 
  71 ShenandoahFullGC::~ShenandoahFullGC() {
  72   delete _preserved_marks;
  73 }
  74 
  75 bool ShenandoahFullGC::collect(GCCause::Cause cause) {
  76   vmop_entry_full(cause);
  77   // Always success
  78   return true;
  79 }
  80 
  81 void ShenandoahFullGC::vmop_entry_full(GCCause::Cause cause) {
  82   ShenandoahHeap* const heap = ShenandoahHeap::heap();
  83   TraceCollectorStats tcs(heap->monitoring_support()->full_stw_collection_counters());
  84   ShenandoahTimingsTracker timing(ShenandoahPhaseTimings::full_gc_gross);
  85 
  86   heap->try_inject_alloc_failure();
  87   VM_ShenandoahFullGC op(cause, this);
  88   VMThread::execute(&op);
  89 }
  90 
  91 void ShenandoahFullGC::entry_full(GCCause::Cause cause) {
  92   static const char* msg = "Pause Full";
  93   ShenandoahPausePhase gc_phase(msg, ShenandoahPhaseTimings::full_gc, true /* log_heap_usage */);
  94   EventMark em("%s", msg);
  95 
  96   ShenandoahWorkerScope scope(ShenandoahHeap::heap()->workers(),
  97                               ShenandoahWorkerPolicy::calc_workers_for_fullgc(),
  98                               "full gc");
  99 
 100   op_full(cause);
 101 }
 102 
 103 void ShenandoahFullGC::op_full(GCCause::Cause cause) {
 104   ShenandoahMetricsSnapshot metrics;
 105   metrics.snap_before();
 106 
 107   // Perform full GC
 108   do_it(cause);
 109 
 110   ShenandoahHeap* const heap = ShenandoahHeap::heap();
 111 
 112   metrics.snap_after();
 113 
 114   if (metrics.is_good_progress()) {
 115     heap->notify_gc_progress();
 116   } else {
 117     // Nothing to do. Tell the allocation path that we have failed to make
 118     // progress, and it can finally fail.
 119     heap->notify_gc_no_progress();
 120   }
 121 
 122   // Regardless if progress was made, we record that we completed a "successful" full GC.
 123   heap->heuristics()->record_success_full();
 124   heap->shenandoah_policy()->record_success_full();
 125 }
 126 
 127 void ShenandoahFullGC::do_it(GCCause::Cause gc_cause) {
 128   ShenandoahHeap* heap = ShenandoahHeap::heap();
 129 
 130   if (ShenandoahVerify) {
 131     heap->verifier()->verify_before_fullgc();
 132   }
 133 
 134   if (VerifyBeforeGC) {
 135     Universe::verify();
 136   }
 137 
 138   // Degenerated GC may carry concurrent root flags when upgrading to
 139   // full GC. We need to reset it before mutators resume.
 140   heap->set_concurrent_strong_root_in_progress(false);
 141   heap->set_concurrent_weak_root_in_progress(false);
 142 
 143   heap->set_full_gc_in_progress(true);
 144 
 145   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at a safepoint");
 146   assert(Thread::current()->is_VM_thread(), "Do full GC only while world is stopped");
 147 
 148   {
 149     ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_heapdump_pre);
 150     heap->pre_full_gc_dump(_gc_timer);
 151   }
 152 
 153   {
 154     ShenandoahGCPhase prepare_phase(ShenandoahPhaseTimings::full_gc_prepare);
 155     // Full GC is supposed to recover from any GC state:
 156 
 157     // a0. Remember if we have forwarded objects
 158     bool has_forwarded_objects = heap->has_forwarded_objects();
 159 
 160     // a1. Cancel evacuation, if in progress
 161     if (heap->is_evacuation_in_progress()) {
 162       heap->set_evacuation_in_progress(false);
 163     }
 164     assert(!heap->is_evacuation_in_progress(), "sanity");
 165 
 166     // a2. Cancel update-refs, if in progress
 167     if (heap->is_update_refs_in_progress()) {
 168       heap->set_update_refs_in_progress(false);
 169     }
 170     assert(!heap->is_update_refs_in_progress(), "sanity");
 171 
 172     // b. Cancel concurrent mark, if in progress
 173     if (heap->is_concurrent_mark_in_progress()) {
 174       ShenandoahConcurrentGC::cancel();
 175       heap->set_concurrent_mark_in_progress(false);
 176     }
 177     assert(!heap->is_concurrent_mark_in_progress(), "sanity");
 178 
 179     // c. Update roots if this full GC is due to evac-oom, which may carry from-space pointers in roots.
 180     if (has_forwarded_objects) {
 181       update_roots(true /*full_gc*/);
 182     }
 183 
 184     // d. Reset the bitmaps for new marking
 185     heap->reset_mark_bitmap();
 186     assert(heap->marking_context()->is_bitmap_clear(), "sanity");
 187     assert(!heap->marking_context()->is_complete(), "sanity");
 188 
 189     // e. Abandon reference discovery and clear all discovered references.
 190     ShenandoahReferenceProcessor* rp = heap->ref_processor();
 191     rp->abandon_partial_discovery();
 192 
 193     // f. Sync pinned region status from the CP marks
 194     heap->sync_pinned_region_status();
 195 
 196     // The rest of prologue:
 197     _preserved_marks->init(heap->workers()->active_workers());
 198 
 199     assert(heap->has_forwarded_objects() == has_forwarded_objects, "This should not change");
 200   }
 201 
 202   if (UseTLAB) {
 203     heap->gclabs_retire(ResizeTLAB);
 204     heap->tlabs_retire(ResizeTLAB);
 205   }
 206 
 207   OrderAccess::fence();
 208 
 209   phase1_mark_heap();
 210 
 211   // Once marking is done, which may have fixed up forwarded objects, we can drop it.
 212   // Coming out of Full GC, we would not have any forwarded objects.
 213   // This also prevents resolves with fwdptr from kicking in while adjusting pointers in phase3.
 214   heap->set_has_forwarded_objects(false);
 215 
 216   heap->set_full_gc_move_in_progress(true);
 217 
 218   // Setup workers for the rest
 219   OrderAccess::fence();
 220 
 221   // Initialize worker slices
 222   ShenandoahHeapRegionSet** worker_slices = NEW_C_HEAP_ARRAY(ShenandoahHeapRegionSet*, heap->max_workers(), mtGC);
 223   for (uint i = 0; i < heap->max_workers(); i++) {
 224     worker_slices[i] = new ShenandoahHeapRegionSet();
 225   }
 226 
 227   {
 228     // The rest of code performs region moves, where region status is undefined
 229     // until all phases run together.
 230     ShenandoahHeapLocker lock(heap->lock());
 231 
 232     phase2_calculate_target_addresses(worker_slices);
 233 
 234     OrderAccess::fence();
 235 
 236     phase3_update_references();
 237 
 238     phase4_compact_objects(worker_slices);
 239 
 240     phase5_epilog();
 241   }
 242 
 243   // Resize metaspace
 244   MetaspaceGC::compute_new_size();
 245 
 246   // Free worker slices
 247   for (uint i = 0; i < heap->max_workers(); i++) {
 248     delete worker_slices[i];
 249   }
 250   FREE_C_HEAP_ARRAY(ShenandoahHeapRegionSet*, worker_slices);
 251 
 252   heap->set_full_gc_move_in_progress(false);
 253   heap->set_full_gc_in_progress(false);
 254 
 255   if (ShenandoahVerify) {
 256     heap->verifier()->verify_after_fullgc();
 257   }
 258 
 259   if (VerifyAfterGC) {
 260     Universe::verify();
 261   }
 262 
 263   {
 264     ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_heapdump_post);
 265     heap->post_full_gc_dump(_gc_timer);
 266   }
 267 }
 268 
 269 class ShenandoahPrepareForMarkClosure: public ShenandoahHeapRegionClosure {
 270 private:
 271   ShenandoahMarkingContext* const _ctx;
 272 
 273 public:
 274   ShenandoahPrepareForMarkClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {}
 275 
 276   void heap_region_do(ShenandoahHeapRegion *r) {
 277     _ctx->capture_top_at_mark_start(r);
 278     r->clear_live_data();
 279   }
 280 
 281   bool is_thread_safe() { return true; }
 282 };
 283 
 284 void ShenandoahFullGC::phase1_mark_heap() {
 285   GCTraceTime(Info, gc, phases) time("Phase 1: Mark live objects", _gc_timer);
 286   ShenandoahGCPhase mark_phase(ShenandoahPhaseTimings::full_gc_mark);
 287 
 288   ShenandoahHeap* heap = ShenandoahHeap::heap();
 289 
 290   ShenandoahPrepareForMarkClosure cl;
 291   heap->parallel_heap_region_iterate(&cl);
 292 
 293   heap->set_unload_classes(heap->heuristics()->can_unload_classes());
 294 
 295   ShenandoahReferenceProcessor* rp = heap->ref_processor();
 296   // enable ("weak") refs discovery
 297   rp->set_soft_reference_policy(true); // forcefully purge all soft references
 298 
 299   ShenandoahSTWMark mark(true /*full_gc*/);
 300   mark.mark();
 301   heap->parallel_cleaning(true /* full_gc */);
 302 }
 303 
 304 class ShenandoahPrepareForCompactionObjectClosure : public ObjectClosure {
 305 private:
 306   PreservedMarks*          const _preserved_marks;
 307   ShenandoahHeap*          const _heap;
 308   GrowableArray<ShenandoahHeapRegion*>& _empty_regions;
 309   int _empty_regions_pos;
 310   ShenandoahHeapRegion*          _to_region;
 311   ShenandoahHeapRegion*          _from_region;
 312   HeapWord* _compact_point;
 313 
 314 public:
 315   ShenandoahPrepareForCompactionObjectClosure(PreservedMarks* preserved_marks,
 316                                               GrowableArray<ShenandoahHeapRegion*>& empty_regions,
 317                                               ShenandoahHeapRegion* to_region) :
 318     _preserved_marks(preserved_marks),
 319     _heap(ShenandoahHeap::heap()),
 320     _empty_regions(empty_regions),
 321     _empty_regions_pos(0),
 322     _to_region(to_region),
 323     _from_region(nullptr),
 324     _compact_point(to_region->bottom()) {}
 325 
 326   void set_from_region(ShenandoahHeapRegion* from_region) {
 327     _from_region = from_region;
 328   }
 329 
 330   void finish() {
 331     assert(_to_region != nullptr, "should not happen");
 332     _to_region->set_new_top(_compact_point);
 333   }
 334 
 335   bool is_compact_same_region() {
 336     return _from_region == _to_region;
 337   }
 338 
 339   int empty_regions_pos() {
 340     return _empty_regions_pos;
 341   }
 342 
 343   void do_object(oop p) {
 344     assert(_from_region != nullptr, "must set before work");
 345     assert(_heap->complete_marking_context()->is_marked(p), "must be marked");
 346     assert(!_heap->complete_marking_context()->allocated_after_mark_start(p), "must be truly marked");
 347 
 348     size_t obj_size = p->size();
 349     if (_compact_point + obj_size > _to_region->end()) {
 350       finish();
 351 
 352       // Object doesn't fit. Pick next empty region and start compacting there.
 353       ShenandoahHeapRegion* new_to_region;
 354       if (_empty_regions_pos < _empty_regions.length()) {
 355         new_to_region = _empty_regions.at(_empty_regions_pos);
 356         _empty_regions_pos++;
 357       } else {
 358         // Out of empty region? Compact within the same region.
 359         new_to_region = _from_region;
 360       }
 361 
 362       assert(new_to_region != _to_region, "must not reuse same to-region");
 363       assert(new_to_region != nullptr, "must not be null");
 364       _to_region = new_to_region;
 365       _compact_point = _to_region->bottom();
 366     }
 367 
 368     // Object fits into current region, record new location, if object does not move:
 369     assert(_compact_point + obj_size <= _to_region->end(), "must fit");
 370     shenandoah_assert_not_forwarded(nullptr, p);
 371     if (_compact_point != cast_from_oop<HeapWord*>(p)) {
 372       _preserved_marks->push_if_necessary(p, p->mark());
 373       FullGCForwarding::forward_to(p, cast_to_oop(_compact_point));
 374     }
 375     _compact_point += obj_size;
 376   }
 377 };
 378 
 379 class ShenandoahPrepareForCompactionTask : public WorkerTask {
 380 private:
 381   PreservedMarksSet*        const _preserved_marks;
 382   ShenandoahHeap*           const _heap;
 383   ShenandoahHeapRegionSet** const _worker_slices;
 384 
 385 public:
 386   ShenandoahPrepareForCompactionTask(PreservedMarksSet *preserved_marks, ShenandoahHeapRegionSet **worker_slices) :
 387     WorkerTask("Shenandoah Prepare For Compaction"),
 388     _preserved_marks(preserved_marks),
 389     _heap(ShenandoahHeap::heap()), _worker_slices(worker_slices) {
 390   }
 391 
 392   static bool is_candidate_region(ShenandoahHeapRegion* r) {
 393     // Empty region: get it into the slice to defragment the slice itself.
 394     // We could have skipped this without violating correctness, but we really
 395     // want to compact all live regions to the start of the heap, which sometimes
 396     // means moving them into the fully empty regions.
 397     if (r->is_empty()) return true;
 398 
 399     // Can move the region, and this is not the humongous region. Humongous
 400     // moves are special cased here, because their moves are handled separately.
 401     return r->is_stw_move_allowed() && !r->is_humongous();
 402   }
 403 
 404   void work(uint worker_id) override;
 405 private:
 406   template<typename ClosureType>
 407   void prepare_for_compaction(ClosureType& cl,
 408                               GrowableArray<ShenandoahHeapRegion*>& empty_regions,
 409                               ShenandoahHeapRegionSetIterator& it,
 410                               ShenandoahHeapRegion* from_region);
 411 };
 412 
 413 void ShenandoahPrepareForCompactionTask::work(uint worker_id) {
 414   ShenandoahParallelWorkerSession worker_session(worker_id);
 415   ShenandoahHeapRegionSet* slice = _worker_slices[worker_id];
 416   ShenandoahHeapRegionSetIterator it(slice);
 417   ShenandoahHeapRegion* from_region = it.next();
 418   // No work?
 419   if (from_region == nullptr) {
 420     return;
 421   }
 422 
 423   // Sliding compaction. Walk all regions in the slice, and compact them.
 424   // Remember empty regions and reuse them as needed.
 425   ResourceMark rm;
 426 
 427   GrowableArray<ShenandoahHeapRegion*> empty_regions((int)_heap->num_regions());
 428 
 429   ShenandoahPrepareForCompactionObjectClosure cl(_preserved_marks->get(worker_id), empty_regions, from_region);
 430   prepare_for_compaction(cl, empty_regions, it, from_region);
 431 }
 432 
 433 template<typename ClosureType>
 434 void ShenandoahPrepareForCompactionTask::prepare_for_compaction(ClosureType& cl,
 435                                                                 GrowableArray<ShenandoahHeapRegion*>& empty_regions,
 436                                                                 ShenandoahHeapRegionSetIterator& it,
 437                                                                 ShenandoahHeapRegion* from_region) {
 438   while (from_region != nullptr) {
 439     assert(is_candidate_region(from_region), "Sanity");
 440     cl.set_from_region(from_region);
 441     if (from_region->has_live()) {
 442       _heap->marked_object_iterate(from_region, &cl);
 443     }
 444 
 445     // Compacted the region to somewhere else? From-region is empty then.
 446     if (!cl.is_compact_same_region()) {
 447       empty_regions.append(from_region);
 448     }
 449     from_region = it.next();
 450   }
 451   cl.finish();
 452 
 453   // Mark all remaining regions as empty
 454   for (int pos = cl.empty_regions_pos(); pos < empty_regions.length(); ++pos) {
 455     ShenandoahHeapRegion* r = empty_regions.at(pos);
 456     r->set_new_top(r->bottom());
 457   }
 458 }
 459 
 460 void ShenandoahFullGC::calculate_target_humongous_objects() {
 461   ShenandoahHeap* heap = ShenandoahHeap::heap();
 462 
 463   // Compute the new addresses for humongous objects. We need to do this after addresses
 464   // for regular objects are calculated, and we know what regions in heap suffix are
 465   // available for humongous moves.
 466   //
 467   // Scan the heap backwards, because we are compacting humongous regions towards the end.
 468   // Maintain the contiguous compaction window in [to_begin; to_end), so that we can slide
 469   // humongous start there.
 470   //
 471   // The complication is potential non-movable regions during the scan. If such region is
 472   // detected, then sliding restarts towards that non-movable region.
 473 
 474   size_t to_begin = heap->num_regions();
 475   size_t to_end = heap->num_regions();
 476 
 477   for (size_t c = heap->num_regions(); c > 0; c--) {
 478     ShenandoahHeapRegion *r = heap->get_region(c - 1);
 479     if (r->is_humongous_continuation() || (r->new_top() == r->bottom())) {
 480       // To-region candidate: record this, and continue scan
 481       to_begin = r->index();
 482       continue;
 483     }
 484 
 485     if (r->is_humongous_start() && r->is_stw_move_allowed()) {
 486       // From-region candidate: movable humongous region
 487       oop old_obj = cast_to_oop(r->bottom());
 488       size_t words_size = old_obj->size();
 489       size_t num_regions = ShenandoahHeapRegion::required_regions(words_size * HeapWordSize);
 490 
 491       size_t start = to_end - num_regions;
 492 
 493       if (start >= to_begin && start != r->index()) {
 494         // Fits into current window, and the move is non-trivial. Record the move then, and continue scan.
 495         _preserved_marks->get(0)->push_if_necessary(old_obj, old_obj->mark());
 496         FullGCForwarding::forward_to(old_obj, cast_to_oop(heap->get_region(start)->bottom()));
 497         to_end = start;
 498         continue;
 499       }
 500     }
 501 
 502     // Failed to fit. Scan starting from current region.
 503     to_begin = r->index();
 504     to_end = r->index();
 505   }
 506 }
 507 
 508 class ShenandoahEnsureHeapActiveClosure: public ShenandoahHeapRegionClosure {
 509 private:
 510   ShenandoahHeap* const _heap;
 511 
 512 public:
 513   ShenandoahEnsureHeapActiveClosure() : _heap(ShenandoahHeap::heap()) {}
 514   void heap_region_do(ShenandoahHeapRegion* r) {
 515     if (r->is_trash()) {
 516       r->recycle();
 517     }
 518     if (r->is_cset()) {
 519       r->make_regular_bypass();
 520     }
 521     if (r->is_empty_uncommitted()) {
 522       r->make_committed_bypass();
 523     }
 524     assert (r->is_committed(), "only committed regions in heap now, see region " SIZE_FORMAT, r->index());
 525 
 526     // Record current region occupancy: this communicates empty regions are free
 527     // to the rest of Full GC code.
 528     r->set_new_top(r->top());
 529   }
 530 };
 531 
 532 class ShenandoahTrashImmediateGarbageClosure: public ShenandoahHeapRegionClosure {
 533 private:
 534   ShenandoahHeap* const _heap;
 535   ShenandoahMarkingContext* const _ctx;
 536 
 537 public:
 538   ShenandoahTrashImmediateGarbageClosure() :
 539     _heap(ShenandoahHeap::heap()),
 540     _ctx(ShenandoahHeap::heap()->complete_marking_context()) {}
 541 
 542   void heap_region_do(ShenandoahHeapRegion* r) {
 543     if (r->is_humongous_start()) {
 544       oop humongous_obj = cast_to_oop(r->bottom());
 545       if (!_ctx->is_marked(humongous_obj)) {
 546         assert(!r->has_live(),
 547                "Region " SIZE_FORMAT " is not marked, should not have live", r->index());
 548         _heap->trash_humongous_region_at(r);
 549       } else {
 550         assert(r->has_live(),
 551                "Region " SIZE_FORMAT " should have live", r->index());
 552       }
 553     } else if (r->is_humongous_continuation()) {
 554       // If we hit continuation, the non-live humongous starts should have been trashed already
 555       assert(r->humongous_start_region()->has_live(),
 556              "Region " SIZE_FORMAT " should have live", r->index());
 557     } else if (r->is_regular()) {
 558       if (!r->has_live()) {
 559         r->make_trash_immediate();
 560       }
 561     }
 562   }
 563 };
 564 
 565 void ShenandoahFullGC::distribute_slices(ShenandoahHeapRegionSet** worker_slices) {
 566   ShenandoahHeap* heap = ShenandoahHeap::heap();
 567 
 568   uint n_workers = heap->workers()->active_workers();
 569   size_t n_regions = heap->num_regions();
 570 
 571   // What we want to accomplish: have the dense prefix of data, while still balancing
 572   // out the parallel work.
 573   //
 574   // Assuming the amount of work is driven by the live data that needs moving, we can slice
 575   // the entire heap into equal-live-sized prefix slices, and compact into them. So, each
 576   // thread takes all regions in its prefix subset, and then it takes some regions from
 577   // the tail.
 578   //
 579   // Tail region selection becomes interesting.
 580   //
 581   // First, we want to distribute the regions fairly between the workers, and those regions
 582   // might have different amount of live data. So, until we sure no workers need live data,
 583   // we need to only take what the worker needs.
 584   //
 585   // Second, since we slide everything to the left in each slice, the most busy regions
 586   // would be the ones on the left. Which means we want to have all workers have their after-tail
 587   // regions as close to the left as possible.
 588   //
 589   // The easiest way to do this is to distribute after-tail regions in round-robin between
 590   // workers that still need live data.
 591   //
 592   // Consider parallel workers A, B, C, then the target slice layout would be:
 593   //
 594   //  AAAAAAAABBBBBBBBCCCCCCCC|ABCABCABCABCABCABCABCABABABABABABABABABABAAAAA
 595   //
 596   //  (.....dense-prefix.....) (.....................tail...................)
 597   //  [all regions fully live] [left-most regions are fuller that right-most]
 598   //
 599 
 600   // Compute how much live data is there. This would approximate the size of dense prefix
 601   // we target to create.
 602   size_t total_live = 0;
 603   for (size_t idx = 0; idx < n_regions; idx++) {
 604     ShenandoahHeapRegion *r = heap->get_region(idx);
 605     if (ShenandoahPrepareForCompactionTask::is_candidate_region(r)) {
 606       total_live += r->get_live_data_words();
 607     }
 608   }
 609 
 610   // Estimate the size for the dense prefix. Note that we specifically count only the
 611   // "full" regions, so there would be some non-full regions in the slice tail.
 612   size_t live_per_worker = total_live / n_workers;
 613   size_t prefix_regions_per_worker = live_per_worker / ShenandoahHeapRegion::region_size_words();
 614   size_t prefix_regions_total = prefix_regions_per_worker * n_workers;
 615   prefix_regions_total = MIN2(prefix_regions_total, n_regions);
 616   assert(prefix_regions_total <= n_regions, "Sanity");
 617 
 618   // There might be non-candidate regions in the prefix. To compute where the tail actually
 619   // ends up being, we need to account those as well.
 620   size_t prefix_end = prefix_regions_total;
 621   for (size_t idx = 0; idx < prefix_regions_total; idx++) {
 622     ShenandoahHeapRegion *r = heap->get_region(idx);
 623     if (!ShenandoahPrepareForCompactionTask::is_candidate_region(r)) {
 624       prefix_end++;
 625     }
 626   }
 627   prefix_end = MIN2(prefix_end, n_regions);
 628   assert(prefix_end <= n_regions, "Sanity");
 629 
 630   // Distribute prefix regions per worker: each thread definitely gets its own same-sized
 631   // subset of dense prefix.
 632   size_t prefix_idx = 0;
 633 
 634   size_t* live = NEW_C_HEAP_ARRAY(size_t, n_workers, mtGC);
 635 
 636   for (size_t wid = 0; wid < n_workers; wid++) {
 637     ShenandoahHeapRegionSet* slice = worker_slices[wid];
 638 
 639     live[wid] = 0;
 640     size_t regs = 0;
 641 
 642     // Add all prefix regions for this worker
 643     while (prefix_idx < prefix_end && regs < prefix_regions_per_worker) {
 644       ShenandoahHeapRegion *r = heap->get_region(prefix_idx);
 645       if (ShenandoahPrepareForCompactionTask::is_candidate_region(r)) {
 646         slice->add_region(r);
 647         live[wid] += r->get_live_data_words();
 648         regs++;
 649       }
 650       prefix_idx++;
 651     }
 652   }
 653 
 654   // Distribute the tail among workers in round-robin fashion.
 655   size_t wid = n_workers - 1;
 656 
 657   for (size_t tail_idx = prefix_end; tail_idx < n_regions; tail_idx++) {
 658     ShenandoahHeapRegion *r = heap->get_region(tail_idx);
 659     if (ShenandoahPrepareForCompactionTask::is_candidate_region(r)) {
 660       assert(wid < n_workers, "Sanity");
 661 
 662       size_t live_region = r->get_live_data_words();
 663 
 664       // Select next worker that still needs live data.
 665       size_t old_wid = wid;
 666       do {
 667         wid++;
 668         if (wid == n_workers) wid = 0;
 669       } while (live[wid] + live_region >= live_per_worker && old_wid != wid);
 670 
 671       if (old_wid == wid) {
 672         // Circled back to the same worker? This means liveness data was
 673         // miscalculated. Bump the live_per_worker limit so that
 674         // everyone gets a piece of the leftover work.
 675         live_per_worker += ShenandoahHeapRegion::region_size_words();
 676       }
 677 
 678       worker_slices[wid]->add_region(r);
 679       live[wid] += live_region;
 680     }
 681   }
 682 
 683   FREE_C_HEAP_ARRAY(size_t, live);
 684 
 685 #ifdef ASSERT
 686   ResourceBitMap map(n_regions);
 687   for (size_t wid = 0; wid < n_workers; wid++) {
 688     ShenandoahHeapRegionSetIterator it(worker_slices[wid]);
 689     ShenandoahHeapRegion* r = it.next();
 690     while (r != nullptr) {
 691       size_t idx = r->index();
 692       assert(ShenandoahPrepareForCompactionTask::is_candidate_region(r), "Sanity: " SIZE_FORMAT, idx);
 693       assert(!map.at(idx), "No region distributed twice: " SIZE_FORMAT, idx);
 694       map.at_put(idx, true);
 695       r = it.next();
 696     }
 697   }
 698 
 699   for (size_t rid = 0; rid < n_regions; rid++) {
 700     bool is_candidate = ShenandoahPrepareForCompactionTask::is_candidate_region(heap->get_region(rid));
 701     bool is_distributed = map.at(rid);
 702     assert(is_distributed || !is_candidate, "All candidates are distributed: " SIZE_FORMAT, rid);
 703   }
 704 #endif
 705 }
 706 
 707 void ShenandoahFullGC::phase2_calculate_target_addresses(ShenandoahHeapRegionSet** worker_slices) {
 708   GCTraceTime(Info, gc, phases) time("Phase 2: Compute new object addresses", _gc_timer);
 709   ShenandoahGCPhase calculate_address_phase(ShenandoahPhaseTimings::full_gc_calculate_addresses);
 710 
 711   ShenandoahHeap* heap = ShenandoahHeap::heap();
 712 
 713   // About to figure out which regions can be compacted, make sure pinning status
 714   // had been updated in GC prologue.
 715   heap->assert_pinned_region_status();
 716 
 717   {
 718     // Trash the immediately collectible regions before computing addresses
 719     ShenandoahTrashImmediateGarbageClosure tigcl;
 720     heap->heap_region_iterate(&tigcl);
 721 
 722     // Make sure regions are in good state: committed, active, clean.
 723     // This is needed because we are potentially sliding the data through them.
 724     ShenandoahEnsureHeapActiveClosure ecl;
 725     heap->heap_region_iterate(&ecl);
 726   }
 727 
 728   // Compute the new addresses for regular objects
 729   {
 730     ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_calculate_addresses_regular);
 731 
 732     distribute_slices(worker_slices);
 733 
 734     ShenandoahPrepareForCompactionTask task(_preserved_marks, worker_slices);
 735     heap->workers()->run_task(&task);
 736   }
 737 
 738   // Compute the new addresses for humongous objects
 739   {
 740     ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_calculate_addresses_humong);
 741     calculate_target_humongous_objects();
 742   }
 743 }
 744 
 745 class ShenandoahAdjustPointersClosure : public MetadataVisitingOopIterateClosure {
 746 private:
 747   ShenandoahHeap* const _heap;
 748   ShenandoahMarkingContext* const _ctx;
 749 
 750   template <class T>
 751   inline void do_oop_work(T* p) {
 752     T o = RawAccess<>::oop_load(p);
 753     if (!CompressedOops::is_null(o)) {
 754       oop obj = CompressedOops::decode_not_null(o);
 755       assert(_ctx->is_marked(obj), "must be marked");
 756       if (FullGCForwarding::is_forwarded(obj)) {
 757         oop forw = FullGCForwarding::forwardee(obj);
 758         RawAccess<IS_NOT_NULL>::oop_store(p, forw);
 759       }
 760     }
 761   }
 762 
 763 public:
 764   ShenandoahAdjustPointersClosure() :
 765     _heap(ShenandoahHeap::heap()),
 766     _ctx(ShenandoahHeap::heap()->complete_marking_context()) {}
 767 
 768   void do_oop(oop* p)       { do_oop_work(p); }
 769   void do_oop(narrowOop* p) { do_oop_work(p); }
 770   void do_method(Method* m) {}
 771   void do_nmethod(nmethod* nm) {}
 772 };
 773 
 774 class ShenandoahAdjustPointersObjectClosure : public ObjectClosure {
 775 private:
 776   ShenandoahHeap* const _heap;
 777   ShenandoahAdjustPointersClosure _cl;
 778 
 779 public:
 780   ShenandoahAdjustPointersObjectClosure() :
 781     _heap(ShenandoahHeap::heap()) {
 782   }
 783   void do_object(oop p) {
 784     assert(_heap->complete_marking_context()->is_marked(p), "must be marked");
 785     p->oop_iterate(&_cl);
 786   }
 787 };
 788 
 789 class ShenandoahAdjustPointersTask : public WorkerTask {
 790 private:
 791   ShenandoahHeap*          const _heap;
 792   ShenandoahRegionIterator       _regions;
 793 
 794 public:
 795   ShenandoahAdjustPointersTask() :
 796     WorkerTask("Shenandoah Adjust Pointers"),
 797     _heap(ShenandoahHeap::heap()) {
 798   }
 799 
 800   void work(uint worker_id) {
 801     ShenandoahParallelWorkerSession worker_session(worker_id);
 802     ShenandoahAdjustPointersObjectClosure obj_cl;
 803     ShenandoahHeapRegion* r = _regions.next();
 804     while (r != nullptr) {
 805       if (!r->is_humongous_continuation() && r->has_live()) {
 806         _heap->marked_object_iterate(r, &obj_cl);
 807       }
 808       r = _regions.next();
 809     }
 810   }
 811 };
 812 
 813 class ShenandoahAdjustRootPointersTask : public WorkerTask {
 814 private:
 815   ShenandoahRootAdjuster* _rp;
 816   PreservedMarksSet* _preserved_marks;
 817 public:
 818   ShenandoahAdjustRootPointersTask(ShenandoahRootAdjuster* rp, PreservedMarksSet* preserved_marks) :
 819     WorkerTask("Shenandoah Adjust Root Pointers"),
 820     _rp(rp),
 821     _preserved_marks(preserved_marks) {}
 822 
 823   void work(uint worker_id) {
 824     ShenandoahParallelWorkerSession worker_session(worker_id);
 825     ShenandoahAdjustPointersClosure cl;
 826     _rp->roots_do(worker_id, &cl);
 827     _preserved_marks->get(worker_id)->adjust_during_full_gc();
 828   }
 829 };
 830 
 831 void ShenandoahFullGC::phase3_update_references() {
 832   GCTraceTime(Info, gc, phases) time("Phase 3: Adjust pointers", _gc_timer);
 833   ShenandoahGCPhase adjust_pointer_phase(ShenandoahPhaseTimings::full_gc_adjust_pointers);
 834 
 835   ShenandoahHeap* heap = ShenandoahHeap::heap();
 836 
 837   WorkerThreads* workers = heap->workers();
 838   uint nworkers = workers->active_workers();
 839   {
 840 #if COMPILER2_OR_JVMCI
 841     DerivedPointerTable::clear();
 842 #endif
 843     ShenandoahRootAdjuster rp(nworkers, ShenandoahPhaseTimings::full_gc_adjust_roots);
 844     ShenandoahAdjustRootPointersTask task(&rp, _preserved_marks);
 845     workers->run_task(&task);
 846 #if COMPILER2_OR_JVMCI
 847     DerivedPointerTable::update_pointers();
 848 #endif
 849   }
 850 
 851   ShenandoahAdjustPointersTask adjust_pointers_task;
 852   workers->run_task(&adjust_pointers_task);
 853 }
 854 
 855 class ShenandoahCompactObjectsClosure : public ObjectClosure {
 856 private:
 857   ShenandoahHeap* const _heap;
 858   uint            const _worker_id;
 859 
 860 public:
 861   ShenandoahCompactObjectsClosure(uint worker_id) :
 862     _heap(ShenandoahHeap::heap()), _worker_id(worker_id) {}
 863 
 864   void do_object(oop p) {
 865     assert(_heap->complete_marking_context()->is_marked(p), "must be marked");
 866     size_t size = p->size();
 867     if (FullGCForwarding::is_forwarded(p)) {
 868       HeapWord* compact_from = cast_from_oop<HeapWord*>(p);
 869       HeapWord* compact_to = cast_from_oop<HeapWord*>(FullGCForwarding::forwardee(p));
 870       assert(compact_from != compact_to, "Forwarded object should move");
 871       Copy::aligned_conjoint_words(compact_from, compact_to, size);
 872       oop new_obj = cast_to_oop(compact_to);
 873 
 874       ContinuationGCSupport::relativize_stack_chunk(new_obj);
 875       new_obj->init_mark();
 876     }
 877   }
 878 };
 879 
 880 class ShenandoahCompactObjectsTask : public WorkerTask {
 881 private:
 882   ShenandoahHeap* const _heap;
 883   ShenandoahHeapRegionSet** const _worker_slices;
 884 
 885 public:
 886   ShenandoahCompactObjectsTask(ShenandoahHeapRegionSet** worker_slices) :
 887     WorkerTask("Shenandoah Compact Objects"),
 888     _heap(ShenandoahHeap::heap()),
 889     _worker_slices(worker_slices) {
 890   }
 891 
 892   void work(uint worker_id) {
 893     ShenandoahParallelWorkerSession worker_session(worker_id);
 894     ShenandoahHeapRegionSetIterator slice(_worker_slices[worker_id]);
 895 
 896     ShenandoahCompactObjectsClosure cl(worker_id);
 897     ShenandoahHeapRegion* r = slice.next();
 898     while (r != nullptr) {
 899       assert(!r->is_humongous(), "must not get humongous regions here");
 900       if (r->has_live()) {
 901         _heap->marked_object_iterate(r, &cl);
 902       }
 903       r->set_top(r->new_top());
 904       r = slice.next();
 905     }
 906   }
 907 };
 908 
 909 class ShenandoahPostCompactClosure : public ShenandoahHeapRegionClosure {
 910 private:
 911   ShenandoahHeap* const _heap;
 912   size_t _live;
 913 
 914 public:
 915   ShenandoahPostCompactClosure() : _heap(ShenandoahHeap::heap()), _live(0) {
 916   }
 917 
 918   void heap_region_do(ShenandoahHeapRegion* r) {
 919     assert (!r->is_cset(), "cset regions should have been demoted already");
 920 
 921     // Need to reset the complete-top-at-mark-start pointer here because
 922     // the complete marking bitmap is no longer valid. This ensures
 923     // size-based iteration in marked_object_iterate().
 924     // NOTE: See blurb at ShenandoahMCResetCompleteBitmapTask on why we need to skip
 925     // pinned regions.
 926     if (!r->is_pinned()) {
 927       _heap->complete_marking_context()->reset_top_at_mark_start(r);
 928     }
 929 
 930     size_t live = r->used();
 931 
 932     // Make empty regions that have been allocated into regular
 933     if (r->is_empty() && live > 0) {
 934       r->make_regular_bypass();
 935       if (ZapUnusedHeapArea) {
 936         SpaceMangler::mangle_region(MemRegion(r->top(), r->end()));
 937       }
 938     }
 939 
 940     // Reclaim regular regions that became empty
 941     if (r->is_regular() && live == 0) {
 942       r->make_trash();
 943     }
 944 
 945     // Recycle all trash regions
 946     if (r->is_trash()) {
 947       live = 0;
 948       r->recycle();
 949     }
 950 
 951     r->set_live_data(live);
 952     r->reset_alloc_metadata();
 953     _live += live;
 954   }
 955 
 956   size_t get_live() {
 957     return _live;
 958   }
 959 };
 960 
 961 void ShenandoahFullGC::compact_humongous_objects() {
 962   // Compact humongous regions, based on their fwdptr objects.
 963   //
 964   // This code is serial, because doing the in-slice parallel sliding is tricky. In most cases,
 965   // humongous regions are already compacted, and do not require further moves, which alleviates
 966   // sliding costs. We may consider doing this in parallel in the future.
 967 
 968   ShenandoahHeap* heap = ShenandoahHeap::heap();
 969 
 970   for (size_t c = heap->num_regions(); c > 0; c--) {
 971     ShenandoahHeapRegion* r = heap->get_region(c - 1);
 972     if (r->is_humongous_start()) {
 973       oop old_obj = cast_to_oop(r->bottom());
 974       if (!FullGCForwarding::is_forwarded(old_obj)) {
 975         // No need to move the object, it stays at the same slot
 976         continue;
 977       }
 978       size_t words_size = old_obj->size();
 979       size_t num_regions = ShenandoahHeapRegion::required_regions(words_size * HeapWordSize);
 980 
 981       size_t old_start = r->index();
 982       size_t old_end   = old_start + num_regions - 1;
 983       size_t new_start = heap->heap_region_index_containing(FullGCForwarding::forwardee(old_obj));
 984       size_t new_end   = new_start + num_regions - 1;
 985       assert(old_start != new_start, "must be real move");
 986       assert(r->is_stw_move_allowed(), "Region " SIZE_FORMAT " should be movable", r->index());
 987 
 988       Copy::aligned_conjoint_words(r->bottom(), heap->get_region(new_start)->bottom(), words_size);
 989       ContinuationGCSupport::relativize_stack_chunk(cast_to_oop<HeapWord*>(r->bottom()));
 990 
 991       oop new_obj = cast_to_oop(heap->get_region(new_start)->bottom());
 992       new_obj->init_mark();
 993 
 994       {
 995         for (size_t c = old_start; c <= old_end; c++) {
 996           ShenandoahHeapRegion* r = heap->get_region(c);
 997           r->make_regular_bypass();
 998           r->set_top(r->bottom());
 999         }
1000 
1001         for (size_t c = new_start; c <= new_end; c++) {
1002           ShenandoahHeapRegion* r = heap->get_region(c);
1003           if (c == new_start) {
1004             r->make_humongous_start_bypass();
1005           } else {
1006             r->make_humongous_cont_bypass();
1007           }
1008 
1009           // Trailing region may be non-full, record the remainder there
1010           size_t remainder = words_size & ShenandoahHeapRegion::region_size_words_mask();
1011           if ((c == new_end) && (remainder != 0)) {
1012             r->set_top(r->bottom() + remainder);
1013           } else {
1014             r->set_top(r->end());
1015           }
1016 
1017           r->reset_alloc_metadata();
1018         }
1019       }
1020     }
1021   }
1022 }
1023 
1024 // This is slightly different to ShHeap::reset_next_mark_bitmap:
1025 // we need to remain able to walk pinned regions.
1026 // Since pinned region do not move and don't get compacted, we will get holes with
1027 // unreachable objects in them (which may have pointers to unloaded Klasses and thus
1028 // cannot be iterated over using oop->size(). The only way to safely iterate over those is using
1029 // a valid marking bitmap and valid TAMS pointer. This class only resets marking
1030 // bitmaps for un-pinned regions, and later we only reset TAMS for unpinned regions.
1031 class ShenandoahMCResetCompleteBitmapTask : public WorkerTask {
1032 private:
1033   ShenandoahRegionIterator _regions;
1034 
1035 public:
1036   ShenandoahMCResetCompleteBitmapTask() :
1037     WorkerTask("Shenandoah Reset Bitmap") {
1038   }
1039 
1040   void work(uint worker_id) {
1041     ShenandoahParallelWorkerSession worker_session(worker_id);
1042     ShenandoahHeapRegion* region = _regions.next();
1043     ShenandoahHeap* heap = ShenandoahHeap::heap();
1044     ShenandoahMarkingContext* const ctx = heap->complete_marking_context();
1045     while (region != nullptr) {
1046       if (heap->is_bitmap_slice_committed(region) && !region->is_pinned() && region->has_live()) {
1047         ctx->clear_bitmap(region);
1048       }
1049       region = _regions.next();
1050     }
1051   }
1052 };
1053 
1054 void ShenandoahFullGC::phase4_compact_objects(ShenandoahHeapRegionSet** worker_slices) {
1055   GCTraceTime(Info, gc, phases) time("Phase 4: Move objects", _gc_timer);
1056   ShenandoahGCPhase compaction_phase(ShenandoahPhaseTimings::full_gc_copy_objects);
1057 
1058   ShenandoahHeap* heap = ShenandoahHeap::heap();
1059 
1060   // Compact regular objects first
1061   {
1062     ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_copy_objects_regular);
1063     ShenandoahCompactObjectsTask compact_task(worker_slices);
1064     heap->workers()->run_task(&compact_task);
1065   }
1066 
1067   // Compact humongous objects after regular object moves
1068   {
1069     ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_copy_objects_humong);
1070     compact_humongous_objects();
1071   }
1072 }
1073 
1074 void ShenandoahFullGC::phase5_epilog() {
1075   GCTraceTime(Info, gc, phases) time("Phase 5: Full GC epilog", _gc_timer);
1076   ShenandoahHeap* heap = ShenandoahHeap::heap();
1077 
1078   // Reset complete bitmap. We're about to reset the complete-top-at-mark-start pointer
1079   // and must ensure the bitmap is in sync.
1080   {
1081     ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_copy_objects_reset_complete);
1082     ShenandoahMCResetCompleteBitmapTask task;
1083     heap->workers()->run_task(&task);
1084   }
1085 
1086   // Bring regions in proper states after the collection, and set heap properties.
1087   {
1088     ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_copy_objects_rebuild);
1089     ShenandoahPostCompactClosure post_compact;
1090     heap->heap_region_iterate(&post_compact);
1091     heap->set_used(post_compact.get_live());
1092 
1093     heap->collection_set()->clear();
1094     heap->free_set()->rebuild();
1095     heap->clear_cancelled_gc();
1096   }
1097 
1098   _preserved_marks->restore(heap->workers());
1099   _preserved_marks->reclaim();
1100 }