1 /* 2 * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 26 #include "precompiled.hpp" 27 28 #include "gc/shared/fullGCForwarding.inline.hpp" 29 #include "gc/shared/preservedMarks.inline.hpp" 30 #include "gc/shenandoah/shenandoahGenerationalFullGC.hpp" 31 #include "gc/shenandoah/shenandoahGenerationalHeap.hpp" 32 #include "gc/shenandoah/shenandoahGeneration.hpp" 33 #include "gc/shenandoah/shenandoahHeap.inline.hpp" 34 #include "gc/shenandoah/shenandoahHeapRegion.hpp" 35 #include "gc/shenandoah/shenandoahYoungGeneration.hpp" 36 #include "gc/shenandoah/shenandoahOldGeneration.hpp" 37 #include "gc/shenandoah/shenandoahUtils.hpp" 38 39 #ifdef ASSERT 40 void assert_regions_used_not_more_than_capacity(ShenandoahGeneration* generation) { 41 assert(generation->used_regions_size() <= generation->max_capacity(), 42 "%s generation affiliated regions must be less than capacity", generation->name()); 43 } 44 45 void assert_usage_not_more_than_regions_used(ShenandoahGeneration* generation) { 46 assert(generation->used_including_humongous_waste() <= generation->used_regions_size(), 47 "%s consumed can be no larger than span of affiliated regions", generation->name()); 48 } 49 #else 50 void assert_regions_used_not_more_than_capacity(ShenandoahGeneration* generation) {} 51 void assert_usage_not_more_than_regions_used(ShenandoahGeneration* generation) {} 52 #endif 53 54 55 void ShenandoahGenerationalFullGC::prepare() { 56 auto heap = ShenandoahGenerationalHeap::heap(); 57 // Since we may arrive here from degenerated GC failure of either young or old, establish generation as GLOBAL. 58 heap->set_gc_generation(heap->global_generation()); 59 heap->set_active_generation(); 60 61 // No need for old_gen->increase_used() as this was done when plabs were allocated. 62 heap->reset_generation_reserves(); 63 64 // Full GC supersedes any marking or coalescing in old generation. 65 heap->old_generation()->cancel_gc(); 66 } 67 68 void ShenandoahGenerationalFullGC::handle_completion(ShenandoahHeap* heap) { 69 // Full GC should reset time since last gc for young and old heuristics 70 ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::cast(heap); 71 ShenandoahYoungGeneration* young = gen_heap->young_generation(); 72 ShenandoahOldGeneration* old = gen_heap->old_generation(); 73 young->heuristics()->record_cycle_end(); 74 old->heuristics()->record_cycle_end(); 75 76 gen_heap->mmu_tracker()->record_full(GCId::current()); 77 gen_heap->log_heap_status("At end of Full GC"); 78 79 assert(old->is_idle(), "After full GC, old generation should be idle."); 80 81 // Since we allow temporary violation of these constraints during Full GC, we want to enforce that the assertions are 82 // made valid by the time Full GC completes. 83 assert_regions_used_not_more_than_capacity(old); 84 assert_regions_used_not_more_than_capacity(young); 85 assert_usage_not_more_than_regions_used(old); 86 assert_usage_not_more_than_regions_used(young); 87 88 // Establish baseline for next old-has-grown trigger. 89 old->set_live_bytes_after_last_mark(old->used_including_humongous_waste()); 90 } 91 92 void ShenandoahGenerationalFullGC::rebuild_remembered_set(ShenandoahHeap* heap) { 93 ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_reconstruct_remembered_set); 94 ShenandoahRegionIterator regions; 95 ShenandoahReconstructRememberedSetTask task(®ions); 96 heap->workers()->run_task(&task); 97 98 // Rebuilding the remembered set recomputes all the card offsets for objects. 99 // The adjust pointers phase coalesces and fills all necessary regions. In case 100 // we came to the full GC from an incomplete global cycle, we need to indicate 101 // that the old regions are parsable. 102 heap->old_generation()->set_parsable(true); 103 } 104 105 void ShenandoahGenerationalFullGC::balance_generations_after_gc(ShenandoahHeap* heap) { 106 ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::cast(heap); 107 ShenandoahOldGeneration* const old_gen = gen_heap->old_generation(); 108 109 size_t old_usage = old_gen->used_regions_size(); 110 size_t old_capacity = old_gen->max_capacity(); 111 112 assert(old_usage % ShenandoahHeapRegion::region_size_bytes() == 0, "Old usage must align with region size"); 113 assert(old_capacity % ShenandoahHeapRegion::region_size_bytes() == 0, "Old capacity must align with region size"); 114 115 if (old_capacity > old_usage) { 116 size_t excess_old_regions = (old_capacity - old_usage) / ShenandoahHeapRegion::region_size_bytes(); 117 gen_heap->generation_sizer()->transfer_to_young(excess_old_regions); 118 } else if (old_capacity < old_usage) { 119 size_t old_regions_deficit = (old_usage - old_capacity) / ShenandoahHeapRegion::region_size_bytes(); 120 gen_heap->generation_sizer()->force_transfer_to_old(old_regions_deficit); 121 } 122 123 log_info(gc, ergo)("FullGC done: young usage: " PROPERFMT ", old usage: " PROPERFMT, 124 PROPERFMTARGS(gen_heap->young_generation()->used()), 125 PROPERFMTARGS(old_gen->used())); 126 } 127 128 void ShenandoahGenerationalFullGC::balance_generations_after_rebuilding_free_set() { 129 auto result = ShenandoahGenerationalHeap::heap()->balance_generations(); 130 LogTarget(Info, gc, ergo) lt; 131 if (lt.is_enabled()) { 132 LogStream ls(lt); 133 result.print_on("Full GC", &ls); 134 } 135 } 136 137 void ShenandoahGenerationalFullGC::log_live_in_old(ShenandoahHeap* heap) { 138 LogTarget(Debug, gc) lt; 139 if (lt.is_enabled()) { 140 size_t live_bytes_in_old = 0; 141 for (size_t i = 0; i < heap->num_regions(); i++) { 142 ShenandoahHeapRegion* r = heap->get_region(i); 143 if (r->is_old()) { 144 live_bytes_in_old += r->get_live_data_bytes(); 145 } 146 } 147 log_debug(gc)("Live bytes in old after STW mark: " PROPERFMT, PROPERFMTARGS(live_bytes_in_old)); 148 } 149 } 150 151 void ShenandoahGenerationalFullGC::restore_top_before_promote(ShenandoahHeap* heap) { 152 for (size_t i = 0; i < heap->num_regions(); i++) { 153 ShenandoahHeapRegion* r = heap->get_region(i); 154 if (r->get_top_before_promote() != nullptr) { 155 r->restore_top_before_promote(); 156 } 157 } 158 } 159 160 void ShenandoahGenerationalFullGC::account_for_region(ShenandoahHeapRegion* r, size_t ®ion_count, size_t ®ion_usage, size_t &humongous_waste) { 161 region_count++; 162 region_usage += r->used(); 163 if (r->is_humongous_start()) { 164 // For each humongous object, we take this path once regardless of how many regions it spans. 165 HeapWord* obj_addr = r->bottom(); 166 oop obj = cast_to_oop(obj_addr); 167 size_t word_size = obj->size(); 168 size_t region_size_words = ShenandoahHeapRegion::region_size_words(); 169 size_t overreach = word_size % region_size_words; 170 if (overreach != 0) { 171 humongous_waste += (region_size_words - overreach) * HeapWordSize; 172 } 173 // else, this humongous object aligns exactly on region size, so no waste. 174 } 175 } 176 177 void ShenandoahGenerationalFullGC::maybe_coalesce_and_fill_region(ShenandoahHeapRegion* r) { 178 if (r->is_pinned() && r->is_old() && r->is_active() && !r->is_humongous()) { 179 r->begin_preemptible_coalesce_and_fill(); 180 r->oop_coalesce_and_fill(false); 181 } 182 } 183 184 void ShenandoahGenerationalFullGC::compute_balances() { 185 auto heap = ShenandoahGenerationalHeap::heap(); 186 187 // In case this Full GC resulted from degeneration, clear the tally on anticipated promotion. 188 heap->old_generation()->set_promotion_potential(0); 189 // Invoke this in case we are able to transfer memory from OLD to YOUNG. 190 heap->compute_old_generation_balance(0, 0); 191 } 192 193 ShenandoahPrepareForGenerationalCompactionObjectClosure::ShenandoahPrepareForGenerationalCompactionObjectClosure(PreservedMarks* preserved_marks, 194 GrowableArray<ShenandoahHeapRegion*>& empty_regions, 195 ShenandoahHeapRegion* from_region, uint worker_id) : 196 _preserved_marks(preserved_marks), 197 _heap(ShenandoahGenerationalHeap::heap()), 198 _tenuring_threshold(0), 199 _empty_regions(empty_regions), 200 _empty_regions_pos(0), 201 _old_to_region(nullptr), 202 _young_to_region(nullptr), 203 _from_region(nullptr), 204 _from_affiliation(ShenandoahAffiliation::FREE), 205 _old_compact_point(nullptr), 206 _young_compact_point(nullptr), 207 _worker_id(worker_id) { 208 assert(from_region != nullptr, "Worker needs from_region"); 209 // assert from_region has live? 210 if (from_region->is_old()) { 211 _old_to_region = from_region; 212 _old_compact_point = from_region->bottom(); 213 } else if (from_region->is_young()) { 214 _young_to_region = from_region; 215 _young_compact_point = from_region->bottom(); 216 } 217 218 _tenuring_threshold = _heap->age_census()->tenuring_threshold(); 219 } 220 221 void ShenandoahPrepareForGenerationalCompactionObjectClosure::set_from_region(ShenandoahHeapRegion* from_region) { 222 log_debug(gc)("Worker %u compacting %s Region " SIZE_FORMAT " which had used " SIZE_FORMAT " and %s live", 223 _worker_id, from_region->affiliation_name(), 224 from_region->index(), from_region->used(), from_region->has_live()? "has": "does not have"); 225 226 _from_region = from_region; 227 _from_affiliation = from_region->affiliation(); 228 if (_from_region->has_live()) { 229 if (_from_affiliation == ShenandoahAffiliation::OLD_GENERATION) { 230 if (_old_to_region == nullptr) { 231 _old_to_region = from_region; 232 _old_compact_point = from_region->bottom(); 233 } 234 } else { 235 assert(_from_affiliation == ShenandoahAffiliation::YOUNG_GENERATION, "from_region must be OLD or YOUNG"); 236 if (_young_to_region == nullptr) { 237 _young_to_region = from_region; 238 _young_compact_point = from_region->bottom(); 239 } 240 } 241 } // else, we won't iterate over this _from_region so we don't need to set up to region to hold copies 242 } 243 244 void ShenandoahPrepareForGenerationalCompactionObjectClosure::finish() { 245 finish_old_region(); 246 finish_young_region(); 247 } 248 249 void ShenandoahPrepareForGenerationalCompactionObjectClosure::finish_old_region() { 250 if (_old_to_region != nullptr) { 251 log_debug(gc)("Planned compaction into Old Region " SIZE_FORMAT ", used: " SIZE_FORMAT " tabulated by worker %u", 252 _old_to_region->index(), _old_compact_point - _old_to_region->bottom(), _worker_id); 253 _old_to_region->set_new_top(_old_compact_point); 254 _old_to_region = nullptr; 255 } 256 } 257 258 void ShenandoahPrepareForGenerationalCompactionObjectClosure::finish_young_region() { 259 if (_young_to_region != nullptr) { 260 log_debug(gc)("Worker %u planned compaction into Young Region " SIZE_FORMAT ", used: " SIZE_FORMAT, 261 _worker_id, _young_to_region->index(), _young_compact_point - _young_to_region->bottom()); 262 _young_to_region->set_new_top(_young_compact_point); 263 _young_to_region = nullptr; 264 } 265 } 266 267 bool ShenandoahPrepareForGenerationalCompactionObjectClosure::is_compact_same_region() { 268 return (_from_region == _old_to_region) || (_from_region == _young_to_region); 269 } 270 271 void ShenandoahPrepareForGenerationalCompactionObjectClosure::do_object(oop p) { 272 assert(_from_region != nullptr, "must set before work"); 273 assert((_from_region->bottom() <= cast_from_oop<HeapWord*>(p)) && (cast_from_oop<HeapWord*>(p) < _from_region->top()), 274 "Object must reside in _from_region"); 275 assert(_heap->complete_marking_context()->is_marked(p), "must be marked"); 276 assert(!_heap->complete_marking_context()->allocated_after_mark_start(p), "must be truly marked"); 277 278 size_t obj_size = p->size(); 279 uint from_region_age = _from_region->age(); 280 uint object_age = p->age(); 281 282 bool promote_object = false; 283 if ((_from_affiliation == ShenandoahAffiliation::YOUNG_GENERATION) && 284 (from_region_age + object_age >= _tenuring_threshold)) { 285 if ((_old_to_region != nullptr) && (_old_compact_point + obj_size > _old_to_region->end())) { 286 finish_old_region(); 287 _old_to_region = nullptr; 288 } 289 if (_old_to_region == nullptr) { 290 if (_empty_regions_pos < _empty_regions.length()) { 291 ShenandoahHeapRegion* new_to_region = _empty_regions.at(_empty_regions_pos); 292 _empty_regions_pos++; 293 new_to_region->set_affiliation(OLD_GENERATION); 294 _old_to_region = new_to_region; 295 _old_compact_point = _old_to_region->bottom(); 296 promote_object = true; 297 } 298 // Else this worker thread does not yet have any empty regions into which this aged object can be promoted so 299 // we leave promote_object as false, deferring the promotion. 300 } else { 301 promote_object = true; 302 } 303 } 304 305 if (promote_object || (_from_affiliation == ShenandoahAffiliation::OLD_GENERATION)) { 306 assert(_old_to_region != nullptr, "_old_to_region should not be nullptr when evacuating to OLD region"); 307 if (_old_compact_point + obj_size > _old_to_region->end()) { 308 ShenandoahHeapRegion* new_to_region; 309 310 log_debug(gc)("Worker %u finishing old region " SIZE_FORMAT ", compact_point: " PTR_FORMAT ", obj_size: " SIZE_FORMAT 311 ", &compact_point[obj_size]: " PTR_FORMAT ", region end: " PTR_FORMAT, _worker_id, _old_to_region->index(), 312 p2i(_old_compact_point), obj_size, p2i(_old_compact_point + obj_size), p2i(_old_to_region->end())); 313 314 // Object does not fit. Get a new _old_to_region. 315 finish_old_region(); 316 if (_empty_regions_pos < _empty_regions.length()) { 317 new_to_region = _empty_regions.at(_empty_regions_pos); 318 _empty_regions_pos++; 319 new_to_region->set_affiliation(OLD_GENERATION); 320 } else { 321 // If we've exhausted the previously selected _old_to_region, we know that the _old_to_region is distinct 322 // from _from_region. That's because there is always room for _from_region to be compacted into itself. 323 // Since we're out of empty regions, let's use _from_region to hold the results of its own compaction. 324 new_to_region = _from_region; 325 } 326 327 assert(new_to_region != _old_to_region, "must not reuse same OLD to-region"); 328 assert(new_to_region != nullptr, "must not be nullptr"); 329 _old_to_region = new_to_region; 330 _old_compact_point = _old_to_region->bottom(); 331 } 332 333 // Object fits into current region, record new location, if object does not move: 334 assert(_old_compact_point + obj_size <= _old_to_region->end(), "must fit"); 335 shenandoah_assert_not_forwarded(nullptr, p); 336 if (_old_compact_point != cast_from_oop<HeapWord*>(p)) { 337 _preserved_marks->push_if_necessary(p, p->mark()); 338 FullGCForwarding::forward_to(p, cast_to_oop(_old_compact_point)); 339 } 340 _old_compact_point += obj_size; 341 } else { 342 assert(_from_affiliation == ShenandoahAffiliation::YOUNG_GENERATION, 343 "_from_region must be OLD_GENERATION or YOUNG_GENERATION"); 344 assert(_young_to_region != nullptr, "_young_to_region should not be nullptr when compacting YOUNG _from_region"); 345 346 // After full gc compaction, all regions have age 0. Embed the region's age into the object's age in order to preserve 347 // tenuring progress. 348 if (_heap->is_aging_cycle()) { 349 ShenandoahHeap::increase_object_age(p, from_region_age + 1); 350 } else { 351 ShenandoahHeap::increase_object_age(p, from_region_age); 352 } 353 354 if (_young_compact_point + obj_size > _young_to_region->end()) { 355 ShenandoahHeapRegion* new_to_region; 356 357 log_debug(gc)("Worker %u finishing young region " SIZE_FORMAT ", compact_point: " PTR_FORMAT ", obj_size: " SIZE_FORMAT 358 ", &compact_point[obj_size]: " PTR_FORMAT ", region end: " PTR_FORMAT, _worker_id, _young_to_region->index(), 359 p2i(_young_compact_point), obj_size, p2i(_young_compact_point + obj_size), p2i(_young_to_region->end())); 360 361 // Object does not fit. Get a new _young_to_region. 362 finish_young_region(); 363 if (_empty_regions_pos < _empty_regions.length()) { 364 new_to_region = _empty_regions.at(_empty_regions_pos); 365 _empty_regions_pos++; 366 new_to_region->set_affiliation(YOUNG_GENERATION); 367 } else { 368 // If we've exhausted the previously selected _young_to_region, we know that the _young_to_region is distinct 369 // from _from_region. That's because there is always room for _from_region to be compacted into itself. 370 // Since we're out of empty regions, let's use _from_region to hold the results of its own compaction. 371 new_to_region = _from_region; 372 } 373 374 assert(new_to_region != _young_to_region, "must not reuse same OLD to-region"); 375 assert(new_to_region != nullptr, "must not be nullptr"); 376 _young_to_region = new_to_region; 377 _young_compact_point = _young_to_region->bottom(); 378 } 379 380 // Object fits into current region, record new location, if object does not move: 381 assert(_young_compact_point + obj_size <= _young_to_region->end(), "must fit"); 382 shenandoah_assert_not_forwarded(nullptr, p); 383 384 if (_young_compact_point != cast_from_oop<HeapWord*>(p)) { 385 _preserved_marks->push_if_necessary(p, p->mark()); 386 FullGCForwarding::forward_to(p, cast_to_oop(_young_compact_point)); 387 } 388 _young_compact_point += obj_size; 389 } 390 }