1 /* 2 * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 27 #include "gc/shared/fullGCForwarding.inline.hpp" 28 #include "gc/shared/preservedMarks.inline.hpp" 29 #include "gc/shenandoah/shenandoahGenerationalFullGC.hpp" 30 #include "gc/shenandoah/shenandoahGenerationalHeap.hpp" 31 #include "gc/shenandoah/shenandoahGeneration.hpp" 32 #include "gc/shenandoah/shenandoahHeap.inline.hpp" 33 #include "gc/shenandoah/shenandoahHeapRegion.hpp" 34 #include "gc/shenandoah/shenandoahYoungGeneration.hpp" 35 #include "gc/shenandoah/shenandoahOldGeneration.hpp" 36 #include "gc/shenandoah/shenandoahUtils.hpp" 37 38 #ifdef ASSERT 39 void assert_regions_used_not_more_than_capacity(ShenandoahGeneration* generation) { 40 assert(generation->used_regions_size() <= generation->max_capacity(), 41 "%s generation affiliated regions must be less than capacity", generation->name()); 42 } 43 44 void assert_usage_not_more_than_regions_used(ShenandoahGeneration* generation) { 45 assert(generation->used_including_humongous_waste() <= generation->used_regions_size(), 46 "%s consumed can be no larger than span of affiliated regions", generation->name()); 47 } 48 #else 49 void assert_regions_used_not_more_than_capacity(ShenandoahGeneration* generation) {} 50 void assert_usage_not_more_than_regions_used(ShenandoahGeneration* generation) {} 51 #endif 52 53 54 void ShenandoahGenerationalFullGC::prepare() { 55 auto heap = ShenandoahGenerationalHeap::heap(); 56 // Since we may arrive here from degenerated GC failure of either young or old, establish generation as GLOBAL. 57 heap->set_gc_generation(heap->global_generation()); 58 heap->set_active_generation(); 59 60 // No need for old_gen->increase_used() as this was done when plabs were allocated. 61 heap->reset_generation_reserves(); 62 63 // Full GC supersedes any marking or coalescing in old generation. 64 heap->old_generation()->cancel_gc(); 65 } 66 67 void ShenandoahGenerationalFullGC::handle_completion(ShenandoahHeap* heap) { 68 // Full GC should reset time since last gc for young and old heuristics 69 ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::cast(heap); 70 ShenandoahYoungGeneration* young = gen_heap->young_generation(); 71 ShenandoahOldGeneration* old = gen_heap->old_generation(); 72 young->heuristics()->record_cycle_end(); 73 old->heuristics()->record_cycle_end(); 74 75 gen_heap->mmu_tracker()->record_full(GCId::current()); 76 gen_heap->log_heap_status("At end of Full GC"); 77 78 assert(old->is_idle(), "After full GC, old generation should be idle."); 79 80 // Since we allow temporary violation of these constraints during Full GC, we want to enforce that the assertions are 81 // made valid by the time Full GC completes. 82 assert_regions_used_not_more_than_capacity(old); 83 assert_regions_used_not_more_than_capacity(young); 84 assert_usage_not_more_than_regions_used(old); 85 assert_usage_not_more_than_regions_used(young); 86 87 // Establish baseline for next old-has-grown trigger. 88 old->set_live_bytes_after_last_mark(old->used_including_humongous_waste()); 89 } 90 91 void ShenandoahGenerationalFullGC::rebuild_remembered_set(ShenandoahHeap* heap) { 92 ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_reconstruct_remembered_set); 93 ShenandoahRegionIterator regions; 94 ShenandoahReconstructRememberedSetTask task(®ions); 95 heap->workers()->run_task(&task); 96 97 // Rebuilding the remembered set recomputes all the card offsets for objects. 98 // The adjust pointers phase coalesces and fills all necessary regions. In case 99 // we came to the full GC from an incomplete global cycle, we need to indicate 100 // that the old regions are parsable. 101 heap->old_generation()->set_parsable(true); 102 } 103 104 void ShenandoahGenerationalFullGC::balance_generations_after_gc(ShenandoahHeap* heap) { 105 ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::cast(heap); 106 ShenandoahOldGeneration* const old_gen = gen_heap->old_generation(); 107 108 size_t old_usage = old_gen->used_regions_size(); 109 size_t old_capacity = old_gen->max_capacity(); 110 111 assert(old_usage % ShenandoahHeapRegion::region_size_bytes() == 0, "Old usage must align with region size"); 112 assert(old_capacity % ShenandoahHeapRegion::region_size_bytes() == 0, "Old capacity must align with region size"); 113 114 if (old_capacity > old_usage) { 115 size_t excess_old_regions = (old_capacity - old_usage) / ShenandoahHeapRegion::region_size_bytes(); 116 gen_heap->generation_sizer()->transfer_to_young(excess_old_regions); 117 } else if (old_capacity < old_usage) { 118 size_t old_regions_deficit = (old_usage - old_capacity) / ShenandoahHeapRegion::region_size_bytes(); 119 gen_heap->generation_sizer()->force_transfer_to_old(old_regions_deficit); 120 } 121 122 log_info(gc, ergo)("FullGC done: young usage: " PROPERFMT ", old usage: " PROPERFMT, 123 PROPERFMTARGS(gen_heap->young_generation()->used()), 124 PROPERFMTARGS(old_gen->used())); 125 } 126 127 void ShenandoahGenerationalFullGC::balance_generations_after_rebuilding_free_set() { 128 auto result = ShenandoahGenerationalHeap::heap()->balance_generations(); 129 LogTarget(Info, gc, ergo) lt; 130 if (lt.is_enabled()) { 131 LogStream ls(lt); 132 result.print_on("Full GC", &ls); 133 } 134 } 135 136 void ShenandoahGenerationalFullGC::log_live_in_old(ShenandoahHeap* heap) { 137 LogTarget(Debug, gc) lt; 138 if (lt.is_enabled()) { 139 size_t live_bytes_in_old = 0; 140 for (size_t i = 0; i < heap->num_regions(); i++) { 141 ShenandoahHeapRegion* r = heap->get_region(i); 142 if (r->is_old()) { 143 live_bytes_in_old += r->get_live_data_bytes(); 144 } 145 } 146 log_debug(gc)("Live bytes in old after STW mark: " PROPERFMT, PROPERFMTARGS(live_bytes_in_old)); 147 } 148 } 149 150 void ShenandoahGenerationalFullGC::restore_top_before_promote(ShenandoahHeap* heap) { 151 for (size_t i = 0; i < heap->num_regions(); i++) { 152 ShenandoahHeapRegion* r = heap->get_region(i); 153 if (r->get_top_before_promote() != nullptr) { 154 r->restore_top_before_promote(); 155 } 156 } 157 } 158 159 void ShenandoahGenerationalFullGC::account_for_region(ShenandoahHeapRegion* r, size_t ®ion_count, size_t ®ion_usage, size_t &humongous_waste) { 160 region_count++; 161 region_usage += r->used(); 162 if (r->is_humongous_start()) { 163 // For each humongous object, we take this path once regardless of how many regions it spans. 164 HeapWord* obj_addr = r->bottom(); 165 oop obj = cast_to_oop(obj_addr); 166 size_t word_size = obj->size(); 167 size_t region_size_words = ShenandoahHeapRegion::region_size_words(); 168 size_t overreach = word_size % region_size_words; 169 if (overreach != 0) { 170 humongous_waste += (region_size_words - overreach) * HeapWordSize; 171 } 172 // else, this humongous object aligns exactly on region size, so no waste. 173 } 174 } 175 176 void ShenandoahGenerationalFullGC::maybe_coalesce_and_fill_region(ShenandoahHeapRegion* r) { 177 if (r->is_pinned() && r->is_old() && r->is_active() && !r->is_humongous()) { 178 r->begin_preemptible_coalesce_and_fill(); 179 r->oop_coalesce_and_fill(false); 180 } 181 } 182 183 void ShenandoahGenerationalFullGC::compute_balances() { 184 auto heap = ShenandoahGenerationalHeap::heap(); 185 186 // In case this Full GC resulted from degeneration, clear the tally on anticipated promotion. 187 heap->old_generation()->set_promotion_potential(0); 188 // Invoke this in case we are able to transfer memory from OLD to YOUNG. 189 heap->compute_old_generation_balance(0, 0); 190 } 191 192 ShenandoahPrepareForGenerationalCompactionObjectClosure::ShenandoahPrepareForGenerationalCompactionObjectClosure(PreservedMarks* preserved_marks, 193 GrowableArray<ShenandoahHeapRegion*>& empty_regions, 194 ShenandoahHeapRegion* from_region, uint worker_id) : 195 _preserved_marks(preserved_marks), 196 _heap(ShenandoahGenerationalHeap::heap()), 197 _tenuring_threshold(0), 198 _empty_regions(empty_regions), 199 _empty_regions_pos(0), 200 _old_to_region(nullptr), 201 _young_to_region(nullptr), 202 _from_region(nullptr), 203 _from_affiliation(ShenandoahAffiliation::FREE), 204 _old_compact_point(nullptr), 205 _young_compact_point(nullptr), 206 _worker_id(worker_id) { 207 assert(from_region != nullptr, "Worker needs from_region"); 208 // assert from_region has live? 209 if (from_region->is_old()) { 210 _old_to_region = from_region; 211 _old_compact_point = from_region->bottom(); 212 } else if (from_region->is_young()) { 213 _young_to_region = from_region; 214 _young_compact_point = from_region->bottom(); 215 } 216 217 _tenuring_threshold = _heap->age_census()->tenuring_threshold(); 218 } 219 220 void ShenandoahPrepareForGenerationalCompactionObjectClosure::set_from_region(ShenandoahHeapRegion* from_region) { 221 log_debug(gc)("Worker %u compacting %s Region " SIZE_FORMAT " which had used " SIZE_FORMAT " and %s live", 222 _worker_id, from_region->affiliation_name(), 223 from_region->index(), from_region->used(), from_region->has_live()? "has": "does not have"); 224 225 _from_region = from_region; 226 _from_affiliation = from_region->affiliation(); 227 if (_from_region->has_live()) { 228 if (_from_affiliation == ShenandoahAffiliation::OLD_GENERATION) { 229 if (_old_to_region == nullptr) { 230 _old_to_region = from_region; 231 _old_compact_point = from_region->bottom(); 232 } 233 } else { 234 assert(_from_affiliation == ShenandoahAffiliation::YOUNG_GENERATION, "from_region must be OLD or YOUNG"); 235 if (_young_to_region == nullptr) { 236 _young_to_region = from_region; 237 _young_compact_point = from_region->bottom(); 238 } 239 } 240 } // else, we won't iterate over this _from_region so we don't need to set up to region to hold copies 241 } 242 243 void ShenandoahPrepareForGenerationalCompactionObjectClosure::finish() { 244 finish_old_region(); 245 finish_young_region(); 246 } 247 248 void ShenandoahPrepareForGenerationalCompactionObjectClosure::finish_old_region() { 249 if (_old_to_region != nullptr) { 250 log_debug(gc)("Planned compaction into Old Region " SIZE_FORMAT ", used: " SIZE_FORMAT " tabulated by worker %u", 251 _old_to_region->index(), _old_compact_point - _old_to_region->bottom(), _worker_id); 252 _old_to_region->set_new_top(_old_compact_point); 253 _old_to_region = nullptr; 254 } 255 } 256 257 void ShenandoahPrepareForGenerationalCompactionObjectClosure::finish_young_region() { 258 if (_young_to_region != nullptr) { 259 log_debug(gc)("Worker %u planned compaction into Young Region " SIZE_FORMAT ", used: " SIZE_FORMAT, 260 _worker_id, _young_to_region->index(), _young_compact_point - _young_to_region->bottom()); 261 _young_to_region->set_new_top(_young_compact_point); 262 _young_to_region = nullptr; 263 } 264 } 265 266 bool ShenandoahPrepareForGenerationalCompactionObjectClosure::is_compact_same_region() { 267 return (_from_region == _old_to_region) || (_from_region == _young_to_region); 268 } 269 270 void ShenandoahPrepareForGenerationalCompactionObjectClosure::do_object(oop p) { 271 assert(_from_region != nullptr, "must set before work"); 272 assert((_from_region->bottom() <= cast_from_oop<HeapWord*>(p)) && (cast_from_oop<HeapWord*>(p) < _from_region->top()), 273 "Object must reside in _from_region"); 274 assert(_heap->complete_marking_context()->is_marked(p), "must be marked"); 275 assert(!_heap->complete_marking_context()->allocated_after_mark_start(p), "must be truly marked"); 276 277 size_t obj_size = p->size(); 278 uint from_region_age = _from_region->age(); 279 uint object_age = p->age(); 280 281 bool promote_object = false; 282 if ((_from_affiliation == ShenandoahAffiliation::YOUNG_GENERATION) && 283 (from_region_age + object_age >= _tenuring_threshold)) { 284 if ((_old_to_region != nullptr) && (_old_compact_point + obj_size > _old_to_region->end())) { 285 finish_old_region(); 286 _old_to_region = nullptr; 287 } 288 if (_old_to_region == nullptr) { 289 if (_empty_regions_pos < _empty_regions.length()) { 290 ShenandoahHeapRegion* new_to_region = _empty_regions.at(_empty_regions_pos); 291 _empty_regions_pos++; 292 new_to_region->set_affiliation(OLD_GENERATION); 293 _old_to_region = new_to_region; 294 _old_compact_point = _old_to_region->bottom(); 295 promote_object = true; 296 } 297 // Else this worker thread does not yet have any empty regions into which this aged object can be promoted so 298 // we leave promote_object as false, deferring the promotion. 299 } else { 300 promote_object = true; 301 } 302 } 303 304 if (promote_object || (_from_affiliation == ShenandoahAffiliation::OLD_GENERATION)) { 305 assert(_old_to_region != nullptr, "_old_to_region should not be nullptr when evacuating to OLD region"); 306 if (_old_compact_point + obj_size > _old_to_region->end()) { 307 ShenandoahHeapRegion* new_to_region; 308 309 log_debug(gc)("Worker %u finishing old region " SIZE_FORMAT ", compact_point: " PTR_FORMAT ", obj_size: " SIZE_FORMAT 310 ", &compact_point[obj_size]: " PTR_FORMAT ", region end: " PTR_FORMAT, _worker_id, _old_to_region->index(), 311 p2i(_old_compact_point), obj_size, p2i(_old_compact_point + obj_size), p2i(_old_to_region->end())); 312 313 // Object does not fit. Get a new _old_to_region. 314 finish_old_region(); 315 if (_empty_regions_pos < _empty_regions.length()) { 316 new_to_region = _empty_regions.at(_empty_regions_pos); 317 _empty_regions_pos++; 318 new_to_region->set_affiliation(OLD_GENERATION); 319 } else { 320 // If we've exhausted the previously selected _old_to_region, we know that the _old_to_region is distinct 321 // from _from_region. That's because there is always room for _from_region to be compacted into itself. 322 // Since we're out of empty regions, let's use _from_region to hold the results of its own compaction. 323 new_to_region = _from_region; 324 } 325 326 assert(new_to_region != _old_to_region, "must not reuse same OLD to-region"); 327 assert(new_to_region != nullptr, "must not be nullptr"); 328 _old_to_region = new_to_region; 329 _old_compact_point = _old_to_region->bottom(); 330 } 331 332 // Object fits into current region, record new location, if object does not move: 333 assert(_old_compact_point + obj_size <= _old_to_region->end(), "must fit"); 334 shenandoah_assert_not_forwarded(nullptr, p); 335 if (_old_compact_point != cast_from_oop<HeapWord*>(p)) { 336 _preserved_marks->push_if_necessary(p, p->mark()); 337 FullGCForwarding::forward_to(p, cast_to_oop(_old_compact_point)); 338 } 339 _old_compact_point += obj_size; 340 } else { 341 assert(_from_affiliation == ShenandoahAffiliation::YOUNG_GENERATION, 342 "_from_region must be OLD_GENERATION or YOUNG_GENERATION"); 343 assert(_young_to_region != nullptr, "_young_to_region should not be nullptr when compacting YOUNG _from_region"); 344 345 // After full gc compaction, all regions have age 0. Embed the region's age into the object's age in order to preserve 346 // tenuring progress. 347 if (_heap->is_aging_cycle()) { 348 ShenandoahHeap::increase_object_age(p, from_region_age + 1); 349 } else { 350 ShenandoahHeap::increase_object_age(p, from_region_age); 351 } 352 353 if (_young_compact_point + obj_size > _young_to_region->end()) { 354 ShenandoahHeapRegion* new_to_region; 355 356 log_debug(gc)("Worker %u finishing young region " SIZE_FORMAT ", compact_point: " PTR_FORMAT ", obj_size: " SIZE_FORMAT 357 ", &compact_point[obj_size]: " PTR_FORMAT ", region end: " PTR_FORMAT, _worker_id, _young_to_region->index(), 358 p2i(_young_compact_point), obj_size, p2i(_young_compact_point + obj_size), p2i(_young_to_region->end())); 359 360 // Object does not fit. Get a new _young_to_region. 361 finish_young_region(); 362 if (_empty_regions_pos < _empty_regions.length()) { 363 new_to_region = _empty_regions.at(_empty_regions_pos); 364 _empty_regions_pos++; 365 new_to_region->set_affiliation(YOUNG_GENERATION); 366 } else { 367 // If we've exhausted the previously selected _young_to_region, we know that the _young_to_region is distinct 368 // from _from_region. That's because there is always room for _from_region to be compacted into itself. 369 // Since we're out of empty regions, let's use _from_region to hold the results of its own compaction. 370 new_to_region = _from_region; 371 } 372 373 assert(new_to_region != _young_to_region, "must not reuse same OLD to-region"); 374 assert(new_to_region != nullptr, "must not be nullptr"); 375 _young_to_region = new_to_region; 376 _young_compact_point = _young_to_region->bottom(); 377 } 378 379 // Object fits into current region, record new location, if object does not move: 380 assert(_young_compact_point + obj_size <= _young_to_region->end(), "must fit"); 381 shenandoah_assert_not_forwarded(nullptr, p); 382 383 if (_young_compact_point != cast_from_oop<HeapWord*>(p)) { 384 _preserved_marks->push_if_necessary(p, p->mark()); 385 FullGCForwarding::forward_to(p, cast_to_oop(_young_compact_point)); 386 } 387 _young_compact_point += obj_size; 388 } 389 }