1 /*
  2  * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"
 26 
 27 #include "gc/shared/preservedMarks.inline.hpp"
 28 #include "gc/shenandoah/shenandoahGenerationalFullGC.hpp"
 29 #include "gc/shenandoah/shenandoahGenerationalHeap.hpp"
 30 #include "gc/shenandoah/shenandoahGeneration.hpp"
 31 #include "gc/shenandoah/shenandoahHeap.inline.hpp"
 32 #include "gc/shenandoah/shenandoahHeapRegion.hpp"
 33 #include "gc/shenandoah/shenandoahYoungGeneration.hpp"
 34 #include "gc/shenandoah/shenandoahOldGeneration.hpp"
 35 #include "gc/shenandoah/shenandoahUtils.hpp"
 36 
 37 #ifdef ASSERT
 38 void assert_regions_used_not_more_than_capacity(ShenandoahGeneration* generation) {
 39   assert(generation->used_regions_size() <= generation->max_capacity(),
 40          "%s generation affiliated regions must be less than capacity", generation->name());
 41 }
 42 
 43 void assert_usage_not_more_than_regions_used(ShenandoahGeneration* generation) {
 44   assert(generation->used_including_humongous_waste() <= generation->used_regions_size(),
 45          "%s consumed can be no larger than span of affiliated regions", generation->name());
 46 }
 47 #else
 48 void assert_regions_used_not_more_than_capacity(ShenandoahGeneration* generation) {}
 49 void assert_usage_not_more_than_regions_used(ShenandoahGeneration* generation) {}
 50 #endif
 51 
 52 
 53 void ShenandoahGenerationalFullGC::prepare() {
 54   auto heap = ShenandoahGenerationalHeap::heap();
 55   // Since we may arrive here from degenerated GC failure of either young or old, establish generation as GLOBAL.
 56   heap->set_gc_generation(heap->global_generation());
 57 
 58   // No need for old_gen->increase_used() as this was done when plabs were allocated.
 59   heap->reset_generation_reserves();
 60 
 61   // Full GC supersedes any marking or coalescing in old generation.
 62   heap->cancel_old_gc();
 63 }
 64 
 65 void ShenandoahGenerationalFullGC::handle_completion(ShenandoahHeap* heap) {
 66   // Full GC should reset time since last gc for young and old heuristics
 67   ShenandoahYoungGeneration* young = heap->young_generation();
 68   ShenandoahOldGeneration* old = heap->old_generation();
 69   young->heuristics()->record_cycle_end();
 70   old->heuristics()->record_cycle_end();
 71 
 72   heap->mmu_tracker()->record_full(GCId::current());
 73   heap->log_heap_status("At end of Full GC");
 74 
 75   assert(old->is_idle(), "After full GC, old generation should be idle.");
 76 
 77   // Since we allow temporary violation of these constraints during Full GC, we want to enforce that the assertions are
 78   // made valid by the time Full GC completes.
 79   assert_regions_used_not_more_than_capacity(old);
 80   assert_regions_used_not_more_than_capacity(young);
 81   assert_usage_not_more_than_regions_used(old);
 82   assert_usage_not_more_than_regions_used(young);
 83 
 84   // Establish baseline for next old-has-grown trigger.
 85   old->set_live_bytes_after_last_mark(old->used_including_humongous_waste());
 86 }
 87 
 88 void ShenandoahGenerationalFullGC::rebuild_remembered_set(ShenandoahHeap* heap) {
 89   ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_reconstruct_remembered_set);
 90   ShenandoahRegionIterator regions;
 91   ShenandoahReconstructRememberedSetTask task(&regions);
 92   heap->workers()->run_task(&task);
 93 
 94   // Rebuilding the remembered set recomputes all the card offsets for objects.
 95   // The adjust pointers phase coalesces and fills all necessary regions. In case
 96   // we came to the full GC from an incomplete global cycle, we need to indicate
 97   // that the old regions are parseable.
 98   heap->old_generation()->set_parseable(true);
 99 }
100 
101 void ShenandoahGenerationalFullGC::balance_generations_after_gc(ShenandoahHeap* heap) {
102   size_t old_usage = heap->old_generation()->used_regions_size();
103   size_t old_capacity = heap->old_generation()->max_capacity();
104 
105   assert(old_usage % ShenandoahHeapRegion::region_size_bytes() == 0, "Old usage must align with region size");
106   assert(old_capacity % ShenandoahHeapRegion::region_size_bytes() == 0, "Old capacity must align with region size");
107 
108   if (old_capacity > old_usage) {
109     size_t excess_old_regions = (old_capacity - old_usage) / ShenandoahHeapRegion::region_size_bytes();
110     heap->generation_sizer()->transfer_to_young(excess_old_regions);
111   } else if (old_capacity < old_usage) {
112     size_t old_regions_deficit = (old_usage - old_capacity) / ShenandoahHeapRegion::region_size_bytes();
113     heap->generation_sizer()->force_transfer_to_old(old_regions_deficit);
114   }
115 
116   log_info(gc)("FullGC done: young usage: " PROPERFMT ", old usage: " PROPERFMT,
117                PROPERFMTARGS(heap->young_generation()->used()),
118                PROPERFMTARGS(heap->old_generation()->used()));
119 }
120 
121 void ShenandoahGenerationalFullGC::balance_generations_after_rebuilding_free_set() {
122   auto result = ShenandoahGenerationalHeap::heap()->balance_generations();
123   LogTarget(Info, gc, ergo) lt;
124   if (lt.is_enabled()) {
125     LogStream ls(lt);
126     result.print_on("Full GC", &ls);
127   }
128 }
129 
130 void ShenandoahGenerationalFullGC::log_live_in_old(ShenandoahHeap* heap) {
131   LogTarget(Info, gc) lt;
132   if (lt.is_enabled()) {
133     size_t live_bytes_in_old = 0;
134     for (size_t i = 0; i < heap->num_regions(); i++) {
135       ShenandoahHeapRegion* r = heap->get_region(i);
136       if (r->is_old()) {
137         live_bytes_in_old += r->get_live_data_bytes();
138       }
139     }
140     log_info(gc)("Live bytes in old after STW mark: " PROPERFMT, PROPERFMTARGS(live_bytes_in_old));
141   }
142 }
143 
144 void ShenandoahGenerationalFullGC::restore_top_before_promote(ShenandoahHeap* heap) {
145   for (size_t i = 0; i < heap->num_regions(); i++) {
146     ShenandoahHeapRegion* r = heap->get_region(i);
147     if (r->get_top_before_promote() != nullptr) {
148       r->restore_top_before_promote();
149     }
150   }
151 }
152 
153 void ShenandoahGenerationalFullGC::account_for_region(ShenandoahHeapRegion* r, size_t &region_count, size_t &region_usage, size_t &humongous_waste) {
154   region_count++;
155   region_usage += r->used();
156   if (r->is_humongous_start()) {
157     // For each humongous object, we take this path once regardless of how many regions it spans.
158     HeapWord* obj_addr = r->bottom();
159     oop obj = cast_to_oop(obj_addr);
160     size_t word_size = obj->size();
161     size_t region_size_words = ShenandoahHeapRegion::region_size_words();
162     size_t overreach = word_size % region_size_words;
163     if (overreach != 0) {
164       humongous_waste += (region_size_words - overreach) * HeapWordSize;
165     }
166     // else, this humongous object aligns exactly on region size, so no waste.
167   }
168 }
169 
170 void ShenandoahGenerationalFullGC::maybe_coalesce_and_fill_region(ShenandoahHeapRegion* r) {
171   if (r->is_pinned() && r->is_old() && r->is_active() && !r->is_humongous()) {
172     r->begin_preemptible_coalesce_and_fill();
173     r->oop_coalesce_and_fill(false);
174   }
175 }
176 
177 void ShenandoahGenerationalFullGC::compute_balances() {
178   auto heap = ShenandoahGenerationalHeap::heap();
179 
180   // In case this Full GC resulted from degeneration, clear the tally on anticipated promotion.
181   heap->old_generation()->set_promotion_potential(0);
182   // Invoke this in case we are able to transfer memory from OLD to YOUNG.
183   heap->compute_old_generation_balance(0, 0);
184 }
185 
186 ShenandoahPrepareForGenerationalCompactionObjectClosure::ShenandoahPrepareForGenerationalCompactionObjectClosure(PreservedMarks* preserved_marks,
187                                                           GrowableArray<ShenandoahHeapRegion*>& empty_regions,
188                                                           ShenandoahHeapRegion* from_region, uint worker_id) :
189         _preserved_marks(preserved_marks),
190         _heap(ShenandoahHeap::heap()),
191         _tenuring_threshold(0),
192         _empty_regions(empty_regions),
193         _empty_regions_pos(0),
194         _old_to_region(nullptr),
195         _young_to_region(nullptr),
196         _from_region(nullptr),
197         _from_affiliation(ShenandoahAffiliation::FREE),
198         _old_compact_point(nullptr),
199         _young_compact_point(nullptr),
200         _worker_id(worker_id) {
201   assert(from_region != nullptr, "Worker needs from_region");
202   // assert from_region has live?
203   if (from_region->is_old()) {
204     _old_to_region = from_region;
205     _old_compact_point = from_region->bottom();
206   } else if (from_region->is_young()) {
207     _young_to_region = from_region;
208     _young_compact_point = from_region->bottom();
209   }
210 
211   _tenuring_threshold = _heap->age_census()->tenuring_threshold();
212 }
213 
214 void ShenandoahPrepareForGenerationalCompactionObjectClosure::set_from_region(ShenandoahHeapRegion* from_region) {
215   log_debug(gc)("Worker %u compacting %s Region " SIZE_FORMAT " which had used " SIZE_FORMAT " and %s live",
216                 _worker_id, from_region->affiliation_name(),
217                 from_region->index(), from_region->used(), from_region->has_live()? "has": "does not have");
218 
219   _from_region = from_region;
220   _from_affiliation = from_region->affiliation();
221   if (_from_region->has_live()) {
222     if (_from_affiliation == ShenandoahAffiliation::OLD_GENERATION) {
223       if (_old_to_region == nullptr) {
224         _old_to_region = from_region;
225         _old_compact_point = from_region->bottom();
226       }
227     } else {
228       assert(_from_affiliation == ShenandoahAffiliation::YOUNG_GENERATION, "from_region must be OLD or YOUNG");
229       if (_young_to_region == nullptr) {
230         _young_to_region = from_region;
231         _young_compact_point = from_region->bottom();
232       }
233     }
234   } // else, we won't iterate over this _from_region so we don't need to set up to region to hold copies
235 }
236 
237 void ShenandoahPrepareForGenerationalCompactionObjectClosure::finish() {
238   finish_old_region();
239   finish_young_region();
240 }
241 
242 void ShenandoahPrepareForGenerationalCompactionObjectClosure::finish_old_region() {
243   if (_old_to_region != nullptr) {
244     log_debug(gc)("Planned compaction into Old Region " SIZE_FORMAT ", used: " SIZE_FORMAT " tabulated by worker %u",
245             _old_to_region->index(), _old_compact_point - _old_to_region->bottom(), _worker_id);
246     _old_to_region->set_new_top(_old_compact_point);
247     _old_to_region = nullptr;
248   }
249 }
250 
251 void ShenandoahPrepareForGenerationalCompactionObjectClosure::finish_young_region() {
252   if (_young_to_region != nullptr) {
253     log_debug(gc)("Worker %u planned compaction into Young Region " SIZE_FORMAT ", used: " SIZE_FORMAT,
254             _worker_id, _young_to_region->index(), _young_compact_point - _young_to_region->bottom());
255     _young_to_region->set_new_top(_young_compact_point);
256     _young_to_region = nullptr;
257   }
258 }
259 
260 bool ShenandoahPrepareForGenerationalCompactionObjectClosure::is_compact_same_region() {
261   return (_from_region == _old_to_region) || (_from_region == _young_to_region);
262 }
263 
264 void ShenandoahPrepareForGenerationalCompactionObjectClosure::do_object(oop p) {
265   assert(_from_region != nullptr, "must set before work");
266   assert((_from_region->bottom() <= cast_from_oop<HeapWord*>(p)) && (cast_from_oop<HeapWord*>(p) < _from_region->top()),
267          "Object must reside in _from_region");
268   assert(_heap->complete_marking_context()->is_marked(p), "must be marked");
269   assert(!_heap->complete_marking_context()->allocated_after_mark_start(p), "must be truly marked");
270 
271   size_t obj_size = p->size();
272   uint from_region_age = _from_region->age();
273   uint object_age = p->age();
274 
275   bool promote_object = false;
276   if ((_from_affiliation == ShenandoahAffiliation::YOUNG_GENERATION) &&
277       (from_region_age + object_age >= _tenuring_threshold)) {
278     if ((_old_to_region != nullptr) && (_old_compact_point + obj_size > _old_to_region->end())) {
279       finish_old_region();
280       _old_to_region = nullptr;
281     }
282     if (_old_to_region == nullptr) {
283       if (_empty_regions_pos < _empty_regions.length()) {
284         ShenandoahHeapRegion* new_to_region = _empty_regions.at(_empty_regions_pos);
285         _empty_regions_pos++;
286         new_to_region->set_affiliation(OLD_GENERATION);
287         _old_to_region = new_to_region;
288         _old_compact_point = _old_to_region->bottom();
289         promote_object = true;
290       }
291       // Else this worker thread does not yet have any empty regions into which this aged object can be promoted so
292       // we leave promote_object as false, deferring the promotion.
293     } else {
294       promote_object = true;
295     }
296   }
297 
298   if (promote_object || (_from_affiliation == ShenandoahAffiliation::OLD_GENERATION)) {
299     assert(_old_to_region != nullptr, "_old_to_region should not be nullptr when evacuating to OLD region");
300     if (_old_compact_point + obj_size > _old_to_region->end()) {
301       ShenandoahHeapRegion* new_to_region;
302 
303       log_debug(gc)("Worker %u finishing old region " SIZE_FORMAT ", compact_point: " PTR_FORMAT ", obj_size: " SIZE_FORMAT
304       ", &compact_point[obj_size]: " PTR_FORMAT ", region end: " PTR_FORMAT,  _worker_id, _old_to_region->index(),
305               p2i(_old_compact_point), obj_size, p2i(_old_compact_point + obj_size), p2i(_old_to_region->end()));
306 
307       // Object does not fit.  Get a new _old_to_region.
308       finish_old_region();
309       if (_empty_regions_pos < _empty_regions.length()) {
310         new_to_region = _empty_regions.at(_empty_regions_pos);
311         _empty_regions_pos++;
312         new_to_region->set_affiliation(OLD_GENERATION);
313       } else {
314         // If we've exhausted the previously selected _old_to_region, we know that the _old_to_region is distinct
315         // from _from_region.  That's because there is always room for _from_region to be compacted into itself.
316         // Since we're out of empty regions, let's use _from_region to hold the results of its own compaction.
317         new_to_region = _from_region;
318       }
319 
320       assert(new_to_region != _old_to_region, "must not reuse same OLD to-region");
321       assert(new_to_region != nullptr, "must not be nullptr");
322       _old_to_region = new_to_region;
323       _old_compact_point = _old_to_region->bottom();
324     }
325 
326     // Object fits into current region, record new location, if object does not move:
327     assert(_old_compact_point + obj_size <= _old_to_region->end(), "must fit");
328     shenandoah_assert_not_forwarded(nullptr, p);
329     if (_old_compact_point != cast_from_oop<HeapWord*>(p)) {
330       _preserved_marks->push_if_necessary(p, p->mark());
331       p->forward_to(cast_to_oop(_old_compact_point));
332     }
333     _old_compact_point += obj_size;
334   } else {
335     assert(_from_affiliation == ShenandoahAffiliation::YOUNG_GENERATION,
336            "_from_region must be OLD_GENERATION or YOUNG_GENERATION");
337     assert(_young_to_region != nullptr, "_young_to_region should not be nullptr when compacting YOUNG _from_region");
338 
339     // After full gc compaction, all regions have age 0.  Embed the region's age into the object's age in order to preserve
340     // tenuring progress.
341     if (_heap->is_aging_cycle()) {
342       ShenandoahHeap::increase_object_age(p, from_region_age + 1);
343     } else {
344       ShenandoahHeap::increase_object_age(p, from_region_age);
345     }
346 
347     if (_young_compact_point + obj_size > _young_to_region->end()) {
348       ShenandoahHeapRegion* new_to_region;
349 
350       log_debug(gc)("Worker %u finishing young region " SIZE_FORMAT ", compact_point: " PTR_FORMAT ", obj_size: " SIZE_FORMAT
351       ", &compact_point[obj_size]: " PTR_FORMAT ", region end: " PTR_FORMAT,  _worker_id, _young_to_region->index(),
352               p2i(_young_compact_point), obj_size, p2i(_young_compact_point + obj_size), p2i(_young_to_region->end()));
353 
354       // Object does not fit.  Get a new _young_to_region.
355       finish_young_region();
356       if (_empty_regions_pos < _empty_regions.length()) {
357         new_to_region = _empty_regions.at(_empty_regions_pos);
358         _empty_regions_pos++;
359         new_to_region->set_affiliation(YOUNG_GENERATION);
360       } else {
361         // If we've exhausted the previously selected _young_to_region, we know that the _young_to_region is distinct
362         // from _from_region.  That's because there is always room for _from_region to be compacted into itself.
363         // Since we're out of empty regions, let's use _from_region to hold the results of its own compaction.
364         new_to_region = _from_region;
365       }
366 
367       assert(new_to_region != _young_to_region, "must not reuse same OLD to-region");
368       assert(new_to_region != nullptr, "must not be nullptr");
369       _young_to_region = new_to_region;
370       _young_compact_point = _young_to_region->bottom();
371     }
372 
373     // Object fits into current region, record new location, if object does not move:
374     assert(_young_compact_point + obj_size <= _young_to_region->end(), "must fit");
375     shenandoah_assert_not_forwarded(nullptr, p);
376 
377     if (_young_compact_point != cast_from_oop<HeapWord*>(p)) {
378       _preserved_marks->push_if_necessary(p, p->mark());
379       p->forward_to(cast_to_oop(_young_compact_point));
380     }
381     _young_compact_point += obj_size;
382   }
383 }